WorldWideScience

Sample records for dissolved silica fluxes

  1. Removing Dissolved Silica from Waste Water with Catechol and Active Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Sasan, Koroush [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanoscale Sciences Dept.; Brady, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Energy Program; Krumhansl, James L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Geosciences Dept.; Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Physical Chemical and Nano Sciences Center

    2017-01-01

    Fresh water scarcity is going to be a global great challenge in the near future because of the increasing population. Our water resources are limited and, hence, water treatment and recycling methods are the only alternatives for fresh water procurement in the upcoming decades. Water treatment and recycling methods serve to remove harmful or problematic constituents from ground, surface and waste waters prior to its consumption, industrial supply, or other uses. Scale formation in industrial and domestic installations is still an important problem during water treatment. In water treatment, silica scaling is a real and constant concern for plant operations. The focus of this study is on the viability of using a combination of catechol and active carbon to remove dissolved silica from concentrated cooling tower water (CCTW). Various analytical methods, such as ICP-MS and UV-vis, were used to understand the structure-property relationship between the material and the silica removal results. UV-Vis indicates that catechol can react with silica ions and form a silica-catecholate complex. The speciation calculation of catechol and silica shows that catechol and silica bind in the pH range of 8 – 10; there is no evidence of linkage between them in neutral and acidic pHs. The silica removal results indicate that using ~4g/L of catechol and 10g/L active carbon removes up to 50% of the dissolved silica from the CCTW.

  2. A continental scale model for dissolved silica mobilization in North America

    Science.gov (United States)

    Jansen, N.; Lauerwald, R.; Hartmann, J.; Dürr, H. H.; Loos, S.; Kempe, S.; Middelkoop, H.

    2009-04-01

    flux (Bluth and Kump, 1994; Hartmann et al., 2009). Only in relation to some lithological classes, temperature and terrain slope constitute significant predictors. An influence of land cover, soil properties or other predictors is not observed. This is partly attributed to geodata resolution and classification. Lithological classes "Basic Volcanics and Pyroclastics" and "Basic and Intermediate Plutonics" show the highest DSi yields, with respect to a given discharge. The lithological class "Siliciclastic Sedimentary Rocks" is characterized by the lowest DSi yield. The model explains 89% of the DSi yield variance; the average yield of catchments employed in model calibration is 4.32 t SiO2 km-2a-1, somewhat above the global average yield of 3.3 t SiO2 km-2a-1 (Dürr et al., 2009). The model quantifies DSi fluxes from the terrestrial into the continental aquatic systems. This helps to estimate DSi retention within fluvial systems (Lauerwald et al., submitted) and improves understanding of this part of the silicon cycle. References: Bluth, G.J.S., and Kump, L.R., 1994, Lithologic and Climatologic Controls of River Chemistry: Geochimica Cosmochimica Acta, 58, 2341-2359. Dürr, H.H., Meybeck, M., Hartmann, J., Laruelle, G.G., and Roubeix, V., 2009, Global Spatial distribution of natural riverine silica inputs to the coastal zone: Biogeosciences, (in review), bgd-2008-0173. Hartmann, J., Jansen, N., Dürr, H.H., Harashima, A., Okubo, K., and Kempe, S., 2009, Predicting riverine dissolved silica fluxes into coastal zones from a hyperactive region and analysis of their first order controls: International Journal of Earth Sciences, (DOI 10.1007/s00531-008-0381-5). Lauerwald, R., Jansen N., Hartmann, J., Dürr, H.H., Loos, S., Kempe, S., Middelkoop, H., submitted, Modeling dissolved silica retention in the limnic system of North America. (Submitted to this session).

  3. Impact of changes in river fluxes of silica on the global marine silicon cycle : a model comparison

    NARCIS (Netherlands)

    Bernard, C. Y.; Laruelle, G. G.; Slomp, C. P.; Heinze, C.

    2010-01-01

    The availability of dissolved silica (Si) in the ocean provides a major control on the growth of siliceous phytoplankton. Diatoms in particular account for a large proportion of oceanic primary production. The original source of the silica is rock weathering, followed by transport of dissolved and

  4. Impact of changes in river fluxes of silica on the global marine silicon cycle: a model comparison

    Directory of Open Access Journals (Sweden)

    C. Y. Bernard

    2010-02-01

    Full Text Available The availability of dissolved silica (Si in the ocean provides a major control on the growth of siliceous phytoplankton. Diatoms in particular account for a large proportion of oceanic primary production. The original source of the silica is rock weathering, followed by transport of dissolved and biogenic silica to the coastal zone. This model study aims at assessing the sensitivity of the global marine silicon cycle to variations in the river input of silica on timescales ranging from several centuries to millennia. We compare the performance of a box model for the marine silicon cycle to that of a global biogeochemical ocean general circulation model (HAMOCC2 and 5. Results indicate that the average global ocean response to changes in river input of silica is comparable in the models on time scales up to 150 kyrs. While the trends in export production and opal burial are the same, the box model shows a delayed response to the imposed perturbations compared to the general circulation model. Results of both models confirm the important role of the continental margins as a sink for silica at the global scale. Our work also demonstrates that the effects of changes in riverine dissolved silica on ocean biogeochemistry depend on the availability of the other nutrients such as nitrogen, phosphorus and iron. The model results suggest that the effects of reduced silica inputs due to river damming are particularly pronounced in the Gulf of Bengal, Gulf of Mexico and the Amazon plume where they negatively affect opal production. While general circulation models are indispensable when assessing the spatial variation in opal export production and biogenic Si burial in the ocean, this study demonstrates that box models provide a good alternative when studying the average global ocean response to perturbations of the oceanic silica cycle (especially on longer time scales.

  5. Precise determination of dissolved silica in seawater by ion-exclusion chromatography isotope dilution inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Nonose, Naoko; Cheong, Chikako; Ishizawa, Yukari; Miura, Tsutomu; Hioki, Akiharu

    2014-08-20

    Ion exclusion chromatograph (IEC) isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS) (IEC-ID-ICP-MS) was developed for measurement of dissolved silica in seawater, which was applied to production of certified reference materials (CRMs) of three concentration levels of nutrients (high, medium and low levels). IEC-ICP-MS has been employed to separate dissolved silica from seawater matrix. In the present study, in order to solve substantial problems due to spectral interference in ICP-MS and to improve the accuracy of IEC-ICP-MS beyond standard addition or conventional calibration methods, ID method was coupled with ICP-sector field mass spectrometry (operated under medium resolution,i.e., m/Δm=4000). In addition, effects of various operating parameters in ICP-MS on a silicon background level were also investigated to obtain lower background equivalent concentration (BEC). As a result, 3 ng g(-1) of the BEC and 0.5 % of relative standard uncertainties were achieved in the analyses of dissolved silica in seawater samples at concentration levels from 4.0 mg kg (-1) to 0.8 mg kg(-1) as silicon. The developed method was successfully validated by analyses of an artificial seawater containing a known amount of silicate and the seawater certified reference material MOOS-2 produced by the National Research Council Canada. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. SUSPENDED AND DISSOLVED MATTER FLUXES IN THE UPPER SELENGA RIVER BASIN

    Directory of Open Access Journals (Sweden)

    Sergey Chalov

    2012-01-01

    Full Text Available We synthesized recent field-based estimates of the dissolved ions (K+ Na+ Ca2+ Mg2+ Cl- SO42- HCO3-, biogens (NO3-, NO2-, PO43-(C, mg/l, heavy metal (Fesum, Mn, Pb and dissolved load (DL, kg/day, as far as suspended sediment concentration (SSC, mg/l and suspended load (SL, kg/day along upper Selenga river and its tributaries based on literature review and preliminary results of our 2011 field campaign. The crucial task of this paper is to provide full review of Russian, Mongolian and English-language literature which concern the matter fluxes in the upper part of Selenga river (within Mongolia. The exist estimates are compared with locations of 3 main matter sources within basin: mining and industry, river-bank erosion and slope wash. The heaviest increase of suspended and dissolved matter transport is indicated along Tuul-Orkhon river system (right tributary of the Selenga River where Mongolia capital Ulanbaatar, gold mine Zaamar and few other mines are located. In measurement campaigns conducted in 2005, 2006 and 2008 the increase directly after the Zaamar mining site was between 167 to 383 kg/day for Fe, between 15 and 5260 kg/day for Mn. Our field campaign indicated increase of suspended load along Tuul river from 4280 kg/day at the upstream point to 712000 kg/day below Ulaanbaatar and Zaamar. The results provide evidence on a potential connection between increased dissolved and suspended matter fluxes in transboundary rivers and zones of matter supply at industrial and mining centers, along eroded river banks and pastured lands. The gaps in the understanding of matter load fluxes within this basin are discussed with regards to determining further goals of hydrological and geochemical surveys.

  7. Benthic Nutrient Fluxes from Mangrove Sediments of an Anthropogenically Impacted Estuary in Southern China

    Directory of Open Access Journals (Sweden)

    David Kaiser

    2015-06-01

    Full Text Available Mangroves serve as either sinks or sources for inorganic and organic nutrients and can mitigate anthropogenic nutrient pollution, control the production in adjacent systems, and prevent eutrophication. To better understand the nutrient dynamics in a subtropical mangrove, we employed a three-way approach in the Nanliu River Estuary, southern China: Pore water profiles and sediment incubations revealed benthic early diagenesis as well as sediment–water exchange of dissolved nutrients and oxygen, while tidal sampling of estuarine and mangrove water identified source and sink functions of the entire mangrove forest. Fluxes of oxygen during incubations were always directed into the sediment, indicating heterotrophy of the system. There was a net uptake of dissolved inorganic nitrogen, mainly caused by nitrate influx, while ammonium and nitrite showed variable flux direction. Despite high pore water concentrations, phosphate and silica showed net uptake. Fluxes of dissolved organic carbon were generally low except for high efflux in the dark following a storm event. Due to the combination of small forest area and strong anthropogenic nutrient input, the net sink function for dissolved nitrogen and phosphorus provides no significant buffer against the eutrophication of coastal waters.

  8. Dissolved Carbon Fluxes During the 2017 Mississippi River Flood

    Science.gov (United States)

    Reiman, J. H.; Xu, Y. J.

    2017-12-01

    The Mississippi River drains approximately 3.2 million square kilometres of land and discharges about 680 cubic kilometres of water into the Northern Gulf of Mexico annually, acting as a significant medium for carbon transport from land to the ocean. A few studies have documented annual carbon fluxes in the river, however it is unclear whether floods can create riverine carbon pulses. Such information is critical in understanding the effects that extreme precipitation events may have on carbon transport under the changing climate. We hypothesize that carbon concentration and mass loading will increase in response to an increase in river discharge, creating a carbon pulse, and that the source of carbon varies from river rising to falling due to terrestrial runoff processes. This study investigated dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) loadings during the 2017 Mississippi River early-summer flood. Water samples were taken from the Mississippi River at Baton Rouge on the rising limb, crest, and falling limb of the flood. All samples were analysed for concentrations of DOC, DIC, and their respective isotopic signature (δ13C). Partial pressure of carbon dioxide (pCO2) was also recorded in the field at each sampling trip. Additionally, the water samples were analysed for nutrients, dissolved metals, and suspended solids, and in-situ measurements were made on water temperature, pH, dissolved oxygen, and specific conductance. The preliminary findings suggest that carbon species responded differently to the flood event and that δ13C values were dependent on river flood stage. This single flood event transported a large quantity of carbon, indicating that frequent large pulses of riverine carbon should be expected in the future as climate change progresses.

  9. A Thin Film Nanocomposite Membrane with MCM-41 Silica Nanoparticles for Brackish Water Purification

    Directory of Open Access Journals (Sweden)

    Mohammed Kadhom

    2016-12-01

    Full Text Available Thin film nanocomposite (TFN membranes containing MCM-41 silica nanoparticles (NPs were synthesized by the interfacial polymerization (IP process. An m-phenylenediamine (MPD aqueous solution and an organic phase with trimesoyl chloride (TMC dissolved in isooctane were used in the IP reaction, occurring on a nanoporous polysulfone (PSU support layer. Isooctane was introduced as the organic solvent for TMC in this work due to its intermediate boiling point. MCM-41 silica NPs were loaded in MPD and TMC solutions in separate experiments, in a concentration range from 0 to 0.04 wt %, and the membrane performance was assessed and compared based on salt rejection and water flux. The prepared membranes were characterized via scanning electron microscopy (SEM, transmission electron microscopy (TEM, contact angle measurement, and attenuated total reflection Fourier transform infrared (ATR FT-IR analysis. The results show that adding MCM-41 silica NPs into an MPD solution yields slightly improved and more stable results than adding them to a TMC solution. With 0.02% MCM-41 silica NPs in the MPD solution, the water flux was increased from 44.0 to 64.1 L/m2·h, while the rejection virtually remained the same at 95% (2000 ppm NaCl saline solution, 25 °C, 2068 kPa (300 psi.

  10. A Thin Film Nanocomposite Membrane with MCM-41 Silica Nanoparticles for Brackish Water Purification.

    Science.gov (United States)

    Kadhom, Mohammed; Yin, Jun; Deng, Baolin

    2016-12-06

    Thin film nanocomposite (TFN) membranes containing MCM-41 silica nanoparticles (NPs) were synthesized by the interfacial polymerization (IP) process. An m -phenylenediamine (MPD) aqueous solution and an organic phase with trimesoyl chloride (TMC) dissolved in isooctane were used in the IP reaction, occurring on a nanoporous polysulfone (PSU) support layer. Isooctane was introduced as the organic solvent for TMC in this work due to its intermediate boiling point. MCM-41 silica NPs were loaded in MPD and TMC solutions in separate experiments, in a concentration range from 0 to 0.04 wt %, and the membrane performance was assessed and compared based on salt rejection and water flux. The prepared membranes were characterized via scanning electron microscopy (SEM), transmission electron microscopy (TEM), contact angle measurement, and attenuated total reflection Fourier transform infrared (ATR FT-IR) analysis. The results show that adding MCM-41 silica NPs into an MPD solution yields slightly improved and more stable results than adding them to a TMC solution. With 0.02% MCM-41 silica NPs in the MPD solution, the water flux was increased from 44.0 to 64.1 L/m²·h, while the rejection virtually remained the same at 95% (2000 ppm NaCl saline solution, 25 °C, 2068 kPa (300 psi)).

  11. Pumping Iron and Silica Bodybuilding

    Science.gov (United States)

    Mcnair, H.; Brzezinski, M. A.; Krause, J. W.; Parker, C.; Brown, M.; Coale, T.; Bruland, K. W.

    2016-02-01

    The availability of dissolved iron influences the stoichiometry of nutrient uptake by diatoms. Under nutrient replete conditions diatoms consume silicic acid and nitrate in a 1:1 ratio, this ratio increases under iron stress. Using the tracers 32Si and PDMPO, the total community and group-specific silica production rates were measured along a gradient of dissolved iron in an upwelling plume off the California coast. At each station, a control (ambient silicic acid) and +20 µM silicic acid treatment were conducted with each tracer to determine whether silicic acid limitation controlled the rate of silica production. Dissolved iron was 1.3 nmol kg-1 nearshore and decreased to 0.15 nmol kg-1 offshore. Silicic acid decreased more rapidly than nitrate, it was nearly 9 µM higher in the nearshore and 7 µM lower than nitrate in the middle of the transect where the iron concentration had decreased. The rate of diatom silica production decreased in tandem with silicic acid concentration, and silica production limitation by low silicic acid was most pronounced when iron concentrations were >0.4 nmol kg-1. The composition of the diatom assemblage shifted from Chaetoceros spp. dominated nearshore to a more sparse pennate-dominated assemblage offshore. Changes in taxa-specific silica production rates will be reported based on examination of PDMPO labeled cells using confocal microscopy.

  12. Concentrations and fluxes of dissolved uranium in the Yellow River estuary: seasonal variation and anthropogenic (Water-Sediment Regulation Scheme) impact

    International Nuclear Information System (INIS)

    Juanjuan, Sui; Zhigang, Yu; Bochao, Xu; Wenhua, Dong; Dong, Xia; Xueyan, Jiang

    2014-01-01

    The Water-Sediment Regulation Scheme (WSRS) of the Yellow River is a procedure implemented annually from June to July to expel sediments deposited in Xiaolangdi and other large middle-reach reservoirs and to scour the lower reaches of the river, by controlling water and sediment discharges. Dissolved uranium isotopes were measured in river waters collected monthly as well as daily during the 2010 WSRS (June 19–July 16) from Station Lijin (a hydrologic station nearest to the Yellow River estuary). The monthly samples showed dissolved uranium concentrations of 3.85–7.57 μg l −1 and 234 U/ 238 U activity ratios of 1.24–1.53. The concentrations were much higher than those reported for other global major rivers, and showed seasonal variability. Laboratory simulation experiments showed significant uranium release from bottom and suspended sediment. The uranium concentrations and activity ratios differed during the two stages of the WSRS, which may reflect desorption/dissolution of uranium from suspended river sediments of different origins. An annual flux of dissolved uranium of 1.04 × 10 8 g y −1 was estimated based on the monthly average water discharge and dissolved uranium concentration in the lower reaches of the Yellow River. The amount of dissolved uranium (2.65 × 10 7 g) transported from the Yellow River to the sea during the WSRS constituted about 1/4 of the annual flux. -- Highlights: • Dissolved U in the Yellow River estuary has distinct seasonal variability. • Geochemistry of dissolved U influenced by the WSRS has been analyzed. • Uranium flux during the WSRS has been evaluated

  13. Effects of resuspension on benthic fluxes of oxygen, nutrients, dissolved inorganic carbon, iron and manganese in the Gulf of Finland, Baltic Sea

    NARCIS (Netherlands)

    Almroth, E.; Tengberg, A.; Andersson, J.H.; Pakhomova, S.; Hall, P.O.J.

    2009-01-01

    The effect of resuspension on benthic fluxes of oxygen (O2), ammonium (NH4+), nitrate (NO3-), phosphate (PO43-), silicate (Si(OH)4), dissolved inorganic carbon (DIC), total dissolved iron (Fe) and total dissolved manganese (Mn) was studied at three different stations in the Gulf of Finland (GoF),

  14. Flux and Seasonality of Dissolved Organic Matter From the Northern Dvina (Severnaya Dvina) River, Russia

    Science.gov (United States)

    Johnston, Sarah Ellen; Shorina, Natalia; Bulygina, Ekaterina; Vorobjeva, Taisya; Chupakova, Anna; Klimov, Sergey I.; Kellerman, Anne M.; Guillemette, Francois; Shiklomanov, Alexander; Podgorski, David C.; Spencer, Robert G. M.

    2018-03-01

    Pan-Arctic riverine dissolved organic carbon (DOC) fluxes represent a major transfer of carbon from land-to-ocean, and past scaling estimates have been predominantly derived from the six major Arctic rivers. However, smaller watersheds are constrained to northern high-latitude regions and, particularly with respect to the Eurasian Arctic, have received little attention. In this study, we evaluated the concentration of DOC and composition of dissolved organic matter (DOM) via optical parameters, biomarkers (lignin phenols), and ultrahigh resolution mass spectrometry in the Northern Dvina River (a midsized high-latitude constrained river). Elevated DOC, lignin concentrations, and aromatic DOM indicators were observed throughout the year in comparison to the major Arctic rivers with seasonality exhibiting a clear spring freshet and also some years a secondary pulse in the autumn concurrent with the onset of freezing. Chromophoric DOM absorbance at a350 was strongly correlated to DOC and lignin across the hydrograph; however, the relationships did not fit previous models derived from the six major Arctic rivers. Updated DOC and lignin fluxes were derived for the pan-Arctic watershed by scaling from the Northern Dvina resulting in increased DOC and lignin fluxes (50 Tg yr-1 and 216 Gg yr-1, respectively) compared to past estimates. This leads to a reduction in the residence time for terrestrial carbon in the Arctic Ocean (0.5 to 1.8 years). These findings suggest that constrained northern high-latitude rivers are underrepresented in models of fluxes based from the six largest Arctic rivers with important ramifications for the export and fate of terrestrial carbon in the Arctic Ocean.

  15. Effect of Dissolved Silica on Immobilization of Boron by Magnesium Oxide

    Directory of Open Access Journals (Sweden)

    Shoko Nozawa

    2018-02-01

    Full Text Available The effect of silica on the immobilization reaction of boron by magnesium oxide was investigated by laboratory experiments. In the absence of silica, due to dissolution of the magnesium oxide, boron was removed from solutions by the precipitation of multiple magnesium borates. In the presence of silica, magnesium silica hydrate (M-S-H was formed as a secondary mineral, which takes up boron. Here 11B magic-angle spinning nuclear magnetic resonance (MAS-NMR and Fourier transform infrared spectrometer (FT-IR data show that a part of the boron would be incorporated into M-S-H structures by isomorphic substitution of silicon. Another experiment where magnesium oxide and amorphous silica were reacted beforehand and boron was added later showed that the shorter the reaction time of the preceding reaction, the higher the sorption ratio of boron. That is, boron was incorporated into the M-S-H mainly by coprecipitation. The experiments in the study here show that the sorption of boron in the presence of silica is mainly due to the incorporation of boron during the formation of the M-S-H structure, which suggests that boron would not readily leach out, and that stable immobilization of boron can be expected.

  16. Benthic flux of nutrients and trace metals in the northern component of San Francisco Bay, California

    Science.gov (United States)

    Kuwabara, James S.; Topping, Brent R.; Parcheso, Francis; Engelstad, Anita C.; Greene, Valerie E.

    2009-01-01

    Island, the benthic flux of soluble reactive phosphorus (SRP) was consistently: (1) lower than previously reported for South Bay sites, (2) an order of magnitude lower than oligotrophic Coeur d?Alene Lake, (3) two orders of magnitude lower than determined for eutrophic Upper Klamath Lake, and (4) an order of magnitude or more lower than the estimated summer riverine inputs for SRP (900 to 1,300 kilograms of phosphorous per day (kg-P d-1)). In contrast to fluxes reported for the South Bay, nitrate fluxes were consistently negative (that is, drawn from the water column into the sediment), except for one site with statistically insignificant nitrate fluxes (Site 409 within Suisun Bay). The most negative nitrate flux (-7.3?0.1 mmole m-2d-1) was observed within Grizzly Bay (Site 416). Observed nitrate fluxes bracketed the estimated summer fluvial flux of nitrate (3,500 to 5,000 kg-N d-1). With the exception of the two Grizzly Bay sites (416 and 417), the consistently positive benthic flux of ammonia generally counteracted the negative flux of nitrate to yield a net balance of dissolved inorganic nitrogen. Ammonia benthic fluxes extrapolated for Suisun Bay ranged from 320 kg-N d-1 (Site SSB009 near the entrance to Honker Bay) to 1,900 kg-N d-1 (Montezuma Island). These values represent a significant ammonia source to the water column relative to summer riverine inputs (approximately 400 to 600 kg-N d-1). Dissolved silica also displayed a consistently positive benthic flux, except for Site 409 within Suisun Bay, which showed insignificant fluxes (also insignificant for nitrate and SRP). As with the nitrate fluxes, Grizzly Bay and Browns Island sites yielded the highest dissolved silica fluxes (1.3?1.2 to 2.5?0.6 mmole m-2d-1, respectively). These initial diffusive-flux estimates are greater than those measured in the South Bay using core-incubation experiments, which include bioturbation and bioirrigation effects, but they are nevertheless probably one to t

  17. Silica scintillating materials prepared by sol-gel methods

    International Nuclear Information System (INIS)

    Werst, D.W.; Sauer, M.C. Jr.; Cromack, K.R.; Lin, Y.; Tartakovsky, E.A.; Trifunac, A.D.

    1993-01-01

    Silica was investigated as a rad-hard alternative to organic polymer hosts for organic scintillators. Silica sol-gels were prepared by hydrolysis of tetramethoxysilane in alcohol solutions. organic dyes were incorporated into the gels by dissolving in methanol at the sol stage of gel formation. The silica sol-gel matrix is very rad-hard. The radiation stability of silica scintillators prepared by this method is dye-limited. Transient radioluminescence was measured following excitation with 30 ps pulses of 20 MeV electrons

  18. Bioavailable dissolved and particulate organic carbon flux from coastal temperate rainforest watersheds

    Science.gov (United States)

    Fellman, J.; Hood, E. W.; D'Amore, D. V.; Moll, A.

    2017-12-01

    Coastal temperate rainforest (CTR) watersheds of southeast Alaska have dense soil carbon stocks ( 300 Mg C ha-1) and high specific discharge (1.5-7 m yr-1) driven by frontal storms from the Gulf of Alaska. As a result, dissolved organic carbon (DOC) fluxes from Alaskan CTR watersheds are estimated to exceed 2 Tg yr-1; however, little is known about the export of particulate organic carbon (POC). The magnitude and bioavailability of this land-to-ocean flux of terrigenous organic matter ultimately determines how much metabolic energy is translocated to downstream and coastal marine ecosystems in this region. We sampled streamwater weekly from May through October from four watersheds of varying landcover (gradient of wetland to glacial coverage) to investigate changes in the concentration and flux of DOC and POC exported to the coastal ocean. We also used headspace analysis of CO2 following 14 day laboratory incubations to determine the flux of bioavailable DOC and POC exported from CTR watersheds. Across all sites, bioavailable DOC concentrations ranged from 0.2 to 1.9 mg L-1 but were on average 0.6 mg L-1. For POC, bioavailable concentrations ranged from below detection to 0.3 mg L-1 but were on average 0.1 mg L-1. The concentration, flux and bioavailability of DOC was higher than for POC highlighting the potential importance of DOC as a metabolic subsidy to downstream and coastal environments. Ratios of DOC to POC decreased during high flow events because the increase in POC concentrations with discharge exceeds that for DOC. Overall, our findings suggest that projected increases in precipitation and storm intensity will drive changes in the speciation, magnitude and bioavailability of the organic carbon flux from CTR watersheds.

  19. Flux patterns and membrane fouling propensity during desalination of seawater by forward osmosis

    KAUST Repository

    Li, Zhenyu; Yangali-Quintanilla, Victor; Valladares Linares, Rodrigo; Li, Qingyu; Zhan, Tong; Amy, Gary L.

    2012-01-01

    The membrane fouling propensity of natural seawater during forward osmosis was studied. Seawater from the Red Sea was used as the feed in a forward osmosis process while a 2. M sodium chloride solution was used as the draw solution. The process was conducted in a semi-batch mode under two crossflow velocities, 16.7. cm/s and 4.2. cm/s. For the first time reported, silica scaling was found to be the dominant inorganic fouling (scaling) on the surface of membrane active layer during seawater forward osmosis. Polymerization of dissolved silica was the major mechanism for the formation of silica scaling. After ten batches of seawater forward osmosis, the membrane surface was covered by a fouling layer of assorted polymerized silica clusters and natural organic matter, especially biopolymers. Moreover, the absorbed biopolymers also provided bacterial attachment sites. The accumulated organic fouling could be partially removed by water flushing while the polymerized silica was difficult to remove. The rate of flux decline was about 53% with a crossflow velocity of 16.7. cm/s while reaching more than 70% with a crossflow velocity of 4.2. cm/s. Both concentration polarization and fouling played roles in the decrease of flux. The salt rejection was stable at about 98% during seawater forward osmosis. In addition, an almost complete rejection of natural organic matter was attained. The results from this study are valuable for the design and development of a successful protocol for a pretreatment process before seawater forward osmosis and a cleaning method for fouled membranes. © 2011 Elsevier Ltd.

  20. Dissolved organic carbon fluxes from soils in the Alaskan coastal temperate rainforest

    Science.gov (United States)

    D'Amore, D. V.; Edwards, R.; Hood, E. W.; Herendeen, P. A.; Valentine, D.

    2011-12-01

    Soil saturation and temperature are the primary factors that influence soil carbon cycling. Interactions between these factors vary by soil type, climate, and landscape position, causing uncertainty in predicting soil carbon flux from. The soils of the North American perhumid coastal temperate rainforest (NCTR) store massive amounts of carbon, yet there is no estimate of dissolved organic carbon (DOC) export from different soil types in the region. There are also no working models that describe the influence of soil saturation and temperature on the export of DOC from soils. To address this key information gap, we measured soil water table elevation, soil temperature, and soil and stream DOC concentrations to calculate DOC flux across a soil hydrologic gradient that included upland soils, forested wetland soils, and sloping bog soils in the NCTR of southeast Alaska. We found that increased soil temperature and frequent fluctuations of soil water tables promoted the export of large quantities of DOC from wetland soils and relatively high amounts of DOC from mineral soils. Average area-weighted DOC flux ranged from 7.7 to 33.0 g C m-2 y-1 across a gradient of hydropedologic soil types. The total area specific export of carbon as DOC for upland, forested wetland and sloping bog catchments was 77, 306, and 329 Kg C ha-1 y-1 respectively. The annual rate of carbon export from wetland soils in this region is among the highest reported in the literature. These findings highlight the importance of terrestrial-aquatic fluxes of DOC as a pathway for carbon loss in the NCTR.

  1. Dissolved organic carbon in water fluxes of Eucalyptus grandis plantations in northeastern Entre Ríos Province, Argentina

    Science.gov (United States)

    Natalia Tesón; Víctor H Conzonno; Marcelo F Arturi; Jorge L Frangi

    2014-01-01

    Water fluxes in tree plantations and other ecosystems carry dissolved organic carbon (DOC) provided by atmospheric inputs, autotrophic and heterotrophic metabolisms and from the lysis of dead material. These compounds may be colorless or provide a yellow-to-brown color to water and may also absorb visible light due to the presence of chromophores in the chemical...

  2. Uranyl adsorption kinetics within silica gel: dependence on flow velocity and concentration

    Science.gov (United States)

    Dodd, Brandon M.; Tepper, Gary

    2017-09-01

    Trace quantities of a uranyl dissolved in water were measured using a simple optical method. A dilute solution of uranium nitrate dissolved in water was forced through nanoporous silica gel at fixed and controlled water flow rates. The uranyl ions deposited and accumulated within the silica gel and the uranyl fluorescence within the silica gel was monitored as a function of time using a light emitting diode as the excitation source and a photomultiplier tube detector. It was shown that the response time of the fluorescence output signal at a particular volumetric flow rate or average liquid velocity through the silica gel can be used to quantify the concentration of uranium in water. The response time as a function of concentration decreased with increasing flow velocity.

  3. Satellite-Derived Distributions, Inventories and Fluxes of Dissolved and Particulate Organic Matter Along the Northeastern U.S. Continental Margin

    Science.gov (United States)

    Mannino, A.; Hooker, S. B.; Hyde, K.; Novak, M. G.; Pan, X.; Friedrichs, M.; Cahill, B.; Wilkin, J.

    2011-01-01

    Estuaries and the coastal ocean experience a high degree of variability in the composition and concentration of particulate and dissolved organic matter (DOM) as a consequence of riverine and estuarine fluxes of terrigenous DOM, sediments, detritus and nutrients into coastal waters and associated phytoplankton blooms. Our approach integrates biogeochemical measurements, optical properties and remote sensing to examine the distributions and inventories of organic carbon in the U.S. Middle Atlantic Bight and Gulf of Maine. Algorithms developed to retrieve colored DOM (CDOM), Dissolved (DOC) and Particulate Organic Carbon (POC) from NASA's MODIS-Aqua and SeaWiFS satellite sensors are applied to quantify the distributions and inventories of DOC and POC. Horizontal fluxes of DOC and POC from the continental margin to the open ocean are estimated from SeaWiFS and MODIS-Aqua distributions of DOC and POC and horizontal divergence fluxes obtained from the Northeastern North Atlantic ROMS model. SeaWiFS and MODIS imagery reveal the importance of estuarine outflow to the export of CDOM and DOC to the coastal ocean and a net community production of DOC on the shelf.

  4. Geochemistry and Flux of Terrigenous Dissolved Organic Matter to the Arctic Ocean

    Science.gov (United States)

    Spencer, R. G.; Mann, P. J.; Hernes, P. J.; Tank, S. E.; Striegl, R. G.; Dyda, R. Y.; Peterson, B. J.; McClelland, J. W.; Holmes, R. M.

    2011-12-01

    Rivers draining into the Arctic Ocean exhibit high concentrations of terrigenous dissolved organic carbon (DOC) and recent studies indicate that DOC export is changing due to climatic warming and alteration in permafrost condition. The fate of exported DOC in the Arctic Ocean is of key importance for understanding the regional carbon cycle and remains a point of discussion in the literature. As part of the Arctic Great Rivers Observatory (Arctic-GRO) project, samples were collected for DOC, chromophoric dissolved organic matter (CDOM) and lignin phenols from the Ob', Yenisey, Lena, Kolyma, Mackenzie and Yukon rivers in 2009 - 2010. DOC and lignin concentrations were elevated during the spring freshet and measurements related to DOC composition indicated an increasing contribution from terrestrial vascular plant sources at this time of year (e.g. lignin carbon-normalized yield, CDOM spectral slope, SUVA254, humic-like fluorescence). CDOM absorption was found to correlate strongly with both DOC (r2=0.83) and lignin concentration (r2=0.92) across the major arctic rivers. Utilizing these relationships we modeled loads for DOC and lignin export from high-resolution CDOM measurements (daily across the freshet) to derive improved flux estimates, particularly from the dynamic spring discharge maxima period when the majority of DOC and lignin export occurs. The new load estimates for DOC and lignin are higher than previous evaluations, emphasizing that if these are more representative of current arctic riverine export, terrigenous DOC is transiting through the Arctic Ocean at a faster rate than previously thought. It is apparent that higher resolution sampling of arctic rivers is exceptionally valuable with respect to deriving accurate fluxes and we highlight the potential of CDOM in this role for future studies and the applicability of in-situ CDOM sensors.

  5. Concentrations and fluxes of dissolved uranium in the Yellow River estuary: seasonal variation and anthropogenic (Water-Sediment Regulation Scheme) impact.

    Science.gov (United States)

    Juanjuan, Sui; Zhigang, Yu; Bochao, Xu; Wenhua, Dong; Dong, Xia; Xueyan, Jiang

    2014-02-01

    The Water-Sediment Regulation Scheme (WSRS) of the Yellow River is a procedure implemented annually from June to July to expel sediments deposited in Xiaolangdi and other large middle-reach reservoirs and to scour the lower reaches of the river, by controlling water and sediment discharges. Dissolved uranium isotopes were measured in river waters collected monthly as well as daily during the 2010 WSRS (June 19-July 16) from Station Lijin (a hydrologic station nearest to the Yellow River estuary). The monthly samples showed dissolved uranium concentrations of 3.85-7.57 μg l(-1) and (234)U/(238)U activity ratios of 1.24-1.53. The concentrations were much higher than those reported for other global major rivers, and showed seasonal variability. Laboratory simulation experiments showed significant uranium release from bottom and suspended sediment. The uranium concentrations and activity ratios differed during the two stages of the WSRS, which may reflect desorption/dissolution of uranium from suspended river sediments of different origins. An annual flux of dissolved uranium of 1.04 × 10(8) g y(-1) was estimated based on the monthly average water discharge and dissolved uranium concentration in the lower reaches of the Yellow River. The amount of dissolved uranium (2.65 × 10(7) g) transported from the Yellow River to the sea during the WSRS constituted about 1/4 of the annual flux. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Seasonal variation, flux estimation, and source analysis of dissolved emerging organic contaminants in the Yangtze Estuary, China.

    Science.gov (United States)

    Zhao, Heng; Cao, Zhen; Liu, Xue; Zhan, Yi; Zhang, Jing; Xiao, Xi; Yang, Yi; Zhou, Junliang; Xu, Jiang

    2017-12-15

    The occurrence and seasonal variation of 24 dissolved emerging organic contaminants in the Yangtze Estuary were studied, including 12 non-antibiotic pharmaceuticals, seven sulfonamides, two macrolides and three chloramphenicols. Sulfadiazine, erythromycin, thiamphenicol and paracetamol were the primary contaminants in sulfonamides, macrolides, chloramphenicols and non-antibiotic pharmaceutical groups, respectively. Compared to the concentrations at Datong, chloramphenicols at Xuliujing were significantly higher in autumn and winter, while macrolides were lower in spring. Based on the flux estimation, approximately 37.1 tons of sulfonamides, 17.4 tons of macrolides, 79.2 tons of chloramphenicols and 14.1 tons of non-antibiotic pharmaceuticals were discharged into the Yangtze Estuary from June 2013 to May 2014. However, the total flux from the Huangpu River only represented 5% of the total. The pharmaceutical sources were speculated on by analyzing the seasonal variations in pharmaceutical concentrations and fluxes at various sites. Both environmental and social factors might affect the fluxes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Removal of Dissolved Silica using Calcinated Hydrotalcite in Real-life Applications.

    Energy Technology Data Exchange (ETDEWEB)

    Sasan, Koroush [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krumhansl, James L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sasan, Koroush [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sasan, Koroush [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Water shortages are a growing global problem. Reclamation of industrial and municipal wastewater will be necessary in order to mitigate water scarcity. However, many operational challenges, such as silica scaling, prevent large scale water reuse. Previously, our team at Sandia has demonstrated the use of selective ion exchange materials, such as calcinated hydrotalcite (HTC, (Mg 6 Al 2 (OH) 16 (CO 3 )*4H 2 O)), for the low cost removal of silica from synthetic cooling tower water. However, it is not currently know if calcinated HTC has similar capabilities in realistic applications. The purpose of this study was to investigate the ability of calcinated HTC to remove silica from real cooling tower water. This was investigated under both batch and continuous conditions, and in the presence of competing ions. It was determined that calcinated HTC behaved similarly in real and synthetic cooling tower water; the HTC is highly selective for the silica even in the presence of competing cations. Therefore, the data concludes that calcinated HTC is a viable anti-scaling pretreatment for the reuse of industrial wastewaters.

  8. The Role of Water Movement and Spatial Scaling for Measurement of Dissolved Inorganic Nitrogen Fluxes in Intertidal Sediments

    Science.gov (United States)

    Asmus, R. M.; Jensen, M. H.; Jensen, K. M.; Kristensen, E.; Asmus, H.; Wille, A.

    1998-02-01

    Fluxes of dissolved inorganic nitrogen (ammonium and nitrate) across the sediment-water interface were determined at intertidal locations in Königshafen, northern Wadden Sea, North Sea. Three different incubation techniques were compared: closed sediment cores (small scale), closed bell jars (medium scale) and an open flow system (Sylt flume, large scale). Water movement in the two closed systems was maintained below the resuspension limit by spinning magnets (cores, incubated in the laboratory) or by transfer of wave action through flexible plastic foil (bell jars,in situ), whereas in the flume system (in situ) water movement was unidirectional, driven by currents and waves. Data sets from several years of core measurements (1992-94), bell jar measurements (1980) and flume campaigns (1990-93) served as the basis for a comparison of dissolved inorganic nitrogen fluxes. Fluxes of ammonium and nitrate were within the same order of magnitude in closed cores and bell jars, while flume rates of ammonium were considerably higher. The high flume rates were caused by advective flushing due to tidal water movement and wave action. The release of ammonium increased significantly with current velocity between 1 and 13 cm s-1. Fluxes of ammonium were higher in sediments withArenicola marinacompared to those without this bioturbating species. The influence of benthic microalgae was evident only in the small and medium scale core and bell jar systems as reduced ammonium release during light exposure. Nitrate was consumed by sediments in both closed systems at a rate proportional to the nitrate concentration in the overlying water. Nitrate fluxes in the large scale Sylt flume were low with an average of only 7% of the ammonium fluxes, probably due to low concentrations in tidal waters during measurements (summer). Both closed, small scale or open, large scale techniques can be applied successfully for benthic flux studies, but the actual choice depends on the purpose of the

  9. Sources and the flux pattern of dissolved carbon in rivers of the Yenisey basin draining the Central Siberian Plateau

    International Nuclear Information System (INIS)

    Prokushkin, A S; Korets, M A; Prokushkin, S G; Pokrovsky, O S; Shirokova, L S; Viers, J; Amon, R M W; Guggenberger, G; McDowell, W H

    2011-01-01

    Frequent measurements of dissolved organic (DOC) and inorganic (DIC) carbon concentrations in rivers during snowmelt, the entire ice-free season, and winter were made in five large watersheds (15 000–174 000 km 2 ) of the Central Siberian Plateau (Yenisey River basin). These differ in the degree of continuous permafrost coverage, mean annual air temperature, and the proportion of tundra and forest vegetation. With an annual DOC export from the catchment areas of 2.8–4.7 gC m −2 as compared to an annual DIC export of 1.0–2.8 gC m −2 , DOC was the dominant component of terrigenous C released to rivers. There was strong temporal variation in the discharge of DOC and DIC. Like for other rivers of the pan-arctic and boreal zones, snowmelt dominated annual fluxes, being 55–71% for water runoff, 64–82% for DOC and 37–41% for DIC. Likewise, DOC and DIC exhibited also a strong spatial variation in C fluxes, with both dissolved C species decreasing from south to north. The rivers of the southern part of the plateau had the largest flow-weighted DOC concentrations among those previously reported for Siberian rivers, but the smallest flow-weighted DIC concentrations. In the study area, DOC and DIC fluxes were negatively correlated with the distribution of continuous permafrost and positively correlated with mean annual air temperature. A synthesis of literature data shows similar trends from west to east, with an eastward decrease of dissolved C concentrations and an increased proportion of DOC in the total dissolved C flux. It appears that there are two contemporary limitations for river export of terrigenous C across Siberia: (1) low productivity of ecosystems with respect to potentially mobilizable organic C, slow weathering rates with concomitant small formation of bicarbonate, and/or wildfire disturbance limit the pools of organic and inorganic C that can be mobilized for transport in rivers (source-limited), and (2) mobilization of available pools of C is

  10. Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: Model estimates for different shelf environments and sensitivity to global change

    NARCIS (Netherlands)

    Krumins, V.; Gehlen, M.; Arndt, S.; Van Cappellen, P.; Regnier, P.

    2013-01-01

    We present a one-dimensional reactive transport model to estimate benthic fluxes of dissolved inorganic carbon (DIC) and alkalinity (AT) from coastal marine sediments. The model incorporates the transport processes of sediment accumulation, molecular diffusion, bioturbation and bioirrigation,

  11. Groundfish overfishing, diatom decline, and the marine silica cycle: Lessons from Saanich Inlet, Canada, and the Baltic Sea cod crash

    Science.gov (United States)

    Katz, Timor; Yahel, Gitai; Yahel, Ruthy; Tunnicliffe, Verena; Herut, Barak; Snelgrove, Paul; Crusius, John; Lazar, Boaz

    2009-12-01

    In this study, we link groundfish activity to the marine silica cycle and suggest that the drastic mid-1980s crash of the Baltic Sea cod (Gadus morhua) population triggered a cascade of events leading to decrease in dissolved silica (DSi) and diatom abundance in the water. We suggest that this seemingly unrelated sequence of events was caused by a marked decline in sediment resuspension associated with reduced groundfish activity resulting from the cod crash. In a study in Saanich Inlet, British Columbia, Canada, we discovered that, by resuspending bottom sediments, groundfish triple DSi fluxes from the sediments and reduce silica accumulation therein. Using these findings and the available oceanographic and environmental data from the Baltic Sea, we estimate that overfishing and recruitment failure of Baltic cod reduced by 20% the DSi supply from bottom sediments to the surface water leading to a decline in the diatom population in the Baltic Sea. The major importance of the marginal ocean in the marine silica cycle and the associated high population density of groundfish suggest that groundfish play a major role in the silica cycle. We postulate that dwindling groundfish populations caused by anthropogenic perturbations, e.g., overfishing and bottom water anoxia, may cause shifts in marine phytoplankton communities.

  12. Winter climate change and fine root biogenic silica in sugar maple trees (Acer saccharum): Implications for silica in the Anthropocene

    Science.gov (United States)

    Maguire, Timothy J.; Templer, Pamela H.; Battles, John J.; Fulweiler, Robinson W.

    2017-03-01

    Winter temperatures are projected to increase over the next century, leading to reductions in winter snowpack and increased frequency of soil freezing in many northern forest ecosystems. Here we examine biogenic silica (BSi) concentrations in sugar maple (Acer saccharum) fine roots collected from a snow manipulation experiment at Hubbard Brook Experimental Forest (New Hampshire, USA). Increased soil freezing significantly lowered the BSi content of sugar maple fine roots potentially decreasing their capacity to take up water and dissolved nutrients. The reduced silica uptake (8 ± 1 kmol silica km-2) by sugar maple fine roots is comparable to silica export from temperate forest watersheds. We estimate that fine roots account for 29% of sugar maple BSi, despite accounting for only 4% of their biomass. These results suggest that increased frequency of soil freezing will reduce silica uptake by temperate tree roots, thereby changing silica availability in downstream receiving waters.

  13. Benthic flux of dissolved organic matter from lake sediment at different redox conditions and the possible effects of biogeochemical processes.

    Science.gov (United States)

    Yang, Liyang; Choi, Jung Hyun; Hur, Jin

    2014-09-15

    The benthic fluxes of dissolved organic carbon (DOC), chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) were studied for the sediment from an artificial lake, based on laboratory benthic chamber experiments. Conservative estimates for the benthic flux of DOC were 71 ± 142 and 51 ± 101 mg m(-2) day(-1) at hypoxic and oxic conditions, respectively. Two humic-like (C1 and C2), one tryptophan-like (C3), and one microbial humic-like (C4) components were identified from the samples using fluorescence excitation emission matrices and parallel factor analysis (EEM-PARAFAC). During the incubation period, C3 was removed while C4 was accumulated in the overlying water with no significant difference in the trends between the redox conditions. The humification index (HIX) increased with time. The combined results for C3, C4 and HIX suggested that microbial transformation may be an important process affecting the flux behaviors of DOM. In contrast, the overall accumulations of CDOM, C1, and C2 in the overlying water occurred only for the hypoxic condition, which was possibly explained by their enhanced photo-degradation and sorption to redox-sensitive minerals under the oxic condition. Our study demonstrated significant benthic flux of DOM in lake sediment and also the possible involvement of biogeochemical transformation in the processes, providing insight into carbon cycling in inland waters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Quantifying fluxes and characterizing compositional changes of dissolved organic matter in aquatic systems in situ using combined acoustic and optical measurements

    Science.gov (United States)

    Downing, B.D.; Boss, E.; Bergamaschi, B.A.; Fleck, J.A.; Lionberger, M.A.; Ganju, N.K.; Schoellhamer, D.H.; Fujii, R.

    2009-01-01

    Studying the dynamics and geochemical behavior of dissolved and particulate organic material is difficult because concentration and composition may rapidly change in response to aperiodic as well as periodic physical and biological forcing. Here we describe a method useful for quantifying fluxes and analyzing dissolved organic matter (DOM) dynamics. The method uses coupled optical and acoustic measurements that provide robust quantitative estimates of concentrations and constituent characteristics needed to investigate processes and calculate fluxes of DOM in tidal and other lotic environments. Data were collected several times per hour for 2 weeks or more, with the frequency and duration limited only by power consumption and data storage capacity. We assessed the capabilities and limitations of the method using data from a winter deployment in a natural tidal wetland of the San Francisco Bay estuary. We used statistical correlation of in situ optical data with traditional laboratory analyses of discrete water samples to calibrate optical properties suited as proxies for DOM concentrations and characterizations. Coupled with measurements of flow velocity, we calculated long-term residual horizontal fluxes of DOC into and out from a tidal wetland. Subsampling the dataset provides an estimate for the maximum sampling interval beyond which the error in flux estimate is significantly increased.?? 2009, by the American Society of Limnology and Oceanography, Inc.

  15. Concentration and flux of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids for monitored tributaries of Lake Champlain, 1990-2012

    Science.gov (United States)

    Medalie, Laura

    2014-01-01

    Annual and daily concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids were estimated for 18 monitored tributaries to Lake Champlain by using the Weighted Regressions on Time, Discharge, and Seasons regression model. Estimates were made for 21 or 23 years, depending on data availability, for the purpose of providing timely and accessible summary reports as stipulated in the 2010 update to the Lake Champlain “Opportunities for Action” management plan. Estimates of concentration and flux were provided for each tributary based on (1) observed daily discharges and (2) a flow-normalizing procedure, which removed the random fluctuations of climate-related variability. The flux bias statistic, an indicator of the ability of the Weighted Regressions on Time, Discharge, and Season regression models to provide accurate representations of flux, showed acceptable bias (less than ±10 percent) for 68 out of 72 models for total and dissolved phosphorus, total nitrogen, and chloride. Six out of 18 models for total suspended solids had moderate bias (between 10 and 30 percent), an expected result given the frequently nonlinear relation between total suspended solids and discharge. One model for total suspended solids with a very high bias was influenced by a single extreme value; however, removal of that value, although reducing the bias substantially, had little effect on annual fluxes.

  16. Bioturbation and dissolved organic matter enhance contaminant fluxes from sediment treated with powdered and granular activated carbon.

    Science.gov (United States)

    Kupryianchyk, D; Noori, A; Rakowska, M I; Grotenhuis, J T C; Koelmans, A A

    2013-05-21

    Sediment amendment with activated carbon (AC) is a promising technique for in situ sediment remediation. To date it is not clear whether this technique sufficiently reduces sediment-to-water fluxes of sediment-bound hydrophobic organic chemicals (HOCs) in the presence of bioturbators. Here, we report polychlorobiphenyl (PCB) pore water concentrations, fluxes, mass transfer coefficients, and survival data of two benthic species, for four treatments: no AC addition (control), powdered AC addition, granular AC addition and addition and subsequent removal of GAC (sediment stripping). AC addition decreased mass fluxes but increased apparent mass transfer coefficients because of dissolved organic carbon (DOC) facilitated transport across the benthic boundary layer (BBL). In turn, DOC concentrations depended on bioturbator activity which was high for the PAC tolerant species Asellus aquaticus and low for AC sensitive species Lumbriculus variegatus. A dual BBL resistance model combining AC effects on gradients, DOC facilitated transport and biodiffusion was evaluated against the data and showed how the type of resistance differs with treatment and chemical hydrophobicity. Data and simulations illustrate the complex interplay between AC and contaminant toxicity to benthic organisms and how differences in species tolerance affect mass fluxes from sediment to the water column.

  17. Soluble organic nutrient fluxes

    Science.gov (United States)

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  18. Fluvial fluxes of natural radium isotopes and dissolved barium for Ubatuba embayments, Sao Paulo

    International Nuclear Information System (INIS)

    Sousa, Keila Cristina Pinheiro Marchini de

    2008-01-01

    Radium isotopes are among the most important isotopes in the environment from both radioprotection and geo-hydrological points of view. They are also a powerful tool for studying geohydrological processes and have been used intensively as tracers of groundwater sources that discharge into the coastal ocean.The complex exchange of fluvial, subsurface and seawater within a coastal area directly affects global biogeochemical cycles. Environmental scientists have few tools to accurately quantify such processes and must therefore rely on various tracer techniques. Radium isotopes have been frequently applied as tracers of submarine groundwater discharge (SGD). The unique radium signature of SGD is acquired within the subterranean estuary, a mixing zone between fresh groundwater and seawater in coastal aquifers. In this study we determined the fluvial fluxes of the radium isotopes and dissolved barium for Ubatuba embayments, northernmost part of Sao Paulo Bight. The research work was carried out from April/ 2007 to August/ 2007 and covered 17 small rivers sources that belong to the major surface draining system of such coastal area. During this period of investigation, groundwater samples were also collected from 10 sources available in this coastal region. Activity concentrations of 223 Ra in riverine waters discharging to Ubatuba and Caraguatatuba embayments varied from -1 to 335 mBq 1000L -1 (in Cocanha River), while 224 Ra concentrations ranged from 17 mBq 100L -1 to 7270 mBq 100L -1 . Activity concentrations up to 1424 mBq 100L -1 were observed for 226 Ra in riverine waters, while 228 Ra concentrations varied from 1412 mBq 100L -1 to 4058 mBq 100L -1 . Groundwater activity concentrations of 223 Ra varied from 1 mBq 100L -1 to 126 mBq 100L -1 , while 224 Ra ranged from 118 mBq 100L -1 to 3701 mBq 100L -1 . 223 Ra/ 224 Ra activity ratios up to 0.7x10 -1 and 0.2 were observed in riverine and groundwater, respectively. For 226 Ra groundwater activity concentrations

  19. Development of silica RO membranes

    International Nuclear Information System (INIS)

    Ikeda, Ayumi; Kawamoto, Takashi; Matsuyama, Emi; Utsumi, Keisuke; Nomura, Mikihiro; Sugimoto, Masaki; Yoshikawa, Masato

    2012-01-01

    Silica based membranes have been developed by using a counter diffusion CVD method. Effects of alkyl groups in the silica precursors and deposition temperatures had investigated in order to control pore sizes of the silica membranes. In this study, this type of a silica membrane was applied for RO separation. Effects of silica sources, deposition temperatures and post treatments had been investigated. Tetramethoxysilane (TMOS), Ethyltrimethoxysilane (ETMOS) and Phenyltrimethoxysilane (PhTMOS) were used as silica precursors. A counter diffusion CVD method was carried out for 90 min at 270 - 600degC on γ-alumina capillary substrates (effective length: 50 mm, φ: 4 nm: NOK Co.). O 3 or O 2 was introduced into the inside of the substrate at the O 2 rate of 0.2 L min -1 . Ion beam irradiation was carried out for a post treatment using Os at 490 MeV for 1.0 x 10 10 ions cm -2 or 3.0 x 10 10 ions cm -2 . Single gas permeance was measured by using H 2 , N 2 and SF 6 . RO tests were employed at 3.0 or 5.4 MPa for 100 mg L -1 of feed NaCl solution. First, effects of the silica sources were investigated. The total fluxes increased by increasing N 2 permeance through the silica membrane deposited by ETMOS. The maximum NaCl rejection was 28.2% at 12.2 kg m -2 h -1 of the total flux through the membrane deposited at 270degC. N 2 permeance was 9.6 x 10 -9 mol m -2 s -1 Pa -1 . While, total fluxes through the membrane deposited by using PhTMOS were smaller than those through the ETMOS membranes. The phenyl groups for the PhTMOS membrane must be important for the hydrophobic properties through the membrane. Next, effects of ion beam irradiation were tested for the TMOS membranes. Water is difficult to permeate through the TMOS membranes due to the low N 2 permeance through the membrane (3.1 x 10 -11 mol m -2 s -1 Pa -1 ). N 2 permeance increased to 7.3 x 10 -9 mol m -2 s -1 Pa -1 by the irradiation. Irradiation amounts had little effects on N 2 permeance. However, NaCl rejections

  20. Impact of the natural Fe-fertilization on the magnitude, stoichiometry and efficiency of particulate biogenic silica, nitrogen and iron export fluxes

    Science.gov (United States)

    Lemaitre, N.; Planquette, H.; Dehairs, F.; van der Merwe, P.; Bowie, A. R.; Trull, T. W.; Laurenceau-Cornec, E. C.; Davies, D.; Bollinger, C.; Le Goff, M.; Grossteffan, E.; Planchon, F.

    2016-11-01

    The Kerguelen Plateau is characterized by a naturally Fe-fertilized phytoplankton bloom that extends more than 1000 km downstream in the Antarctic Circumpolar Current. During the KEOPS2 study, in austral spring, we measured particulate nitrogen (PN), biogenic silica (BSi) and particulate iron (PFe) export fluxes in order to investigate how the natural fertilization impacts the stoichiometry and the magnitude of export fluxes and therefore the efficiency of the biological carbon pump. At 9 stations, we estimated elemental export fluxes based on element concentration to 234Th activity ratios for particulate material collected with in-situ pumps and 234Th export fluxes (Planchon et al., 2015). This study revealed that the natural Fe-fertilization increased export fluxes but to variable degrees. Export fluxes for the bloom impacted area were compared with those of a high-nutrient, low-chlorophyll (HNLC), low-productive reference site located to the south-west of Kerguelen and which had the lowest BSi and PFe export fluxes (2.55 mmol BSi m-2 d-1 and 1.92 μmol PFem-2 d-1) and amongst the lowest PN export flux (0.73 mmol PN m-2 d-1). The impact of the Fe fertilization was the greatest within a meander of the polar front (PF), to the east of Kerguelen, with fluxes reaching 1.26 mmol PN m-2 d-1; 20.4 mmol BSi m-2 d-1 and 22.4 μmol PFe m-2 d-1. A highly productive site above the Kerguelen Plateau, on the contrary, was less impacted by the fertilization with export fluxes reaching 0.72 mmol PN m-2 d-1; 4.50 mmol BSi m-2 d-1 and 21.4 μmol PFe m-2 d-1. Our results suggest that ecosystem features (i.e. type of diatom community) could play an important role in setting the magnitude of export fluxes of these elements. Indeed, for the PF meander, the moderate productivity was sustained by the presence of large and strongly silicified diatom species while at the higher productivity sites, smaller and slightly silicified diatoms dominated. Interestingly, our results suggest that

  1. Treatment of cooling tower blowdown water containing silica, calcium and magnesium by electrocoagulation.

    Science.gov (United States)

    Liao, Z; Gu, Z; Schulz, M C; Davis, J R; Baygents, J C; Farrell, J

    2009-01-01

    This research investigated the effectiveness of electrocoagulation using iron and aluminium electrodes for treating cooling tower blowdown (CTB) waters containing dissolved silica (Si(OH)(4)), Ca(2 + ) and Mg(2 + ). The removal of each target species was measured as a function of the coagulant dose in simulated CTB waters with initial pH values of 5, 7, and 9. Experiments were also performed to investigate the effect of antiscaling compounds and coagulation aids on hardness ion removal. Both iron and aluminum electrodes were effective at removing dissolved silica. For coagulant doses < or =3 mM, silica removal was a linear function of the coagulant dose, with 0.4 to 0.5 moles of silica removed per mole of iron or aluminium. Iron electrodes were only 30% as effective at removing Ca(2 + ) and Mg(2 + ) as compared to silica. There was no measurable removal of hardness ions by aluminium electrodes in the absence of organic additives. Phosphonate based antiscaling compounds were uniformly effective at increasing the removal of Ca(2 + ) and Mg(2 + ) by both iron and aluminium electrodes. Cationic and amphoteric polymers used as coagulation aids were also effective at increasing hardness ion removal.

  2. Chitosan-silica complex membranes from sulfonic acid functionalized silica nanoparticles for pervaporation dehydration of ethanol-water solutions.

    Science.gov (United States)

    Liu, Ying-Ling; Hsu, Chih-Yuan; Su, Yu-Huei; Lai, Juin-Yih

    2005-01-01

    Nanosized silica particles with sulfonic acid groups (ST-GPE-S) were utilized as a cross-linker for chitosan to form a chitosan-silica complex membranes, which were applied to pervaporation dehydration of ethanol-water solutions. ST-GPE-S was obtained from reacting nanoscale silica particles with glycidyl phenyl ether, and subsequent sulfonation onto the attached phenyl groups. The chemical structure of the functionalized silica was characterized with FTIR, (1)H NMR, and energy-dispersive X-ray. Homogeneous dispersion of the silica particles in chitosan was observed with electronic microscopies, and the membranes obtained were considered as nanocomposites. The silica nanoparticles in the membranes served as spacers for polymer chains to provide extra space for water permeation, so as to bring high permeation rates to the complex membranes. With addition of 5 parts per hundred of functionalized silica into chitosan, the resulting membrane exhibited a separation factor of 919 and permeation flux of 410 g/(m(2) h) in pervaporation dehydration of 90 wt % ethanol aqueous solution at 70 degrees C.

  3. Tidal wetland fluxes of dissolved organic carbon and sediment at Browns Island, California: initial evaluation

    Science.gov (United States)

    Ganju, N.K.; Bergamaschi, B.; Schoellhamer, D.H.

    2003-01-01

    Carbon and sediment fluxes from tidal wetlands are of increasing concern in the Sacramento-San Joaquin River Delta (Delta), because of drinking water issues and habitat restoration efforts. Certain forms of dissolved organic carbon (DOC) react with disinfecting chemicals used to treat drinking water, to form disinfection byproducts (DBPs), some of which are potential carcinogens. The contribution of DBP precursors by tidal wetlands is unknown. Sediment transport to and from tidal wetlands determines the potential for marsh accretion, thereby affecting habitat formation.Water, carbon, and sediment flux were measured in the main channel of Browns Island, a tidal wetland located at the confluence of Suisun Bay and the Delta. In-situ instrumentation were deployed between May 3 and May 21, 2002. Water flux was measured using acoustic Doppler current profilers and the index-velocity method. DOC concentrations were measured using calibrated ultraviolet absorbance and fluorescence instruments. Suspended-sediment concentrations were measured using a calibrated nephelometric turbidity sensor. Tidally averaged water flux through the channel was dependent on water surface elevations in Suisun Bay. Strong westerly winds resulted in higher water surface elevations in the area east of Browns Island, causing seaward flow, while subsiding winds reversed this effect. Peak ebb flow transported 36% more water than peak flood flow, indicating an ebb-dominant system. DOC concentrations were affected strongly by porewater drainage from the banks of the channel. Peak DOC concentrations were observed during slack after ebb, when the most porewater drained into the channel. Suspended-sediment concentrations were controlled by tidal currents that mobilized sediment from the channel bed, and stronger tides mobilized more sediment than the weaker tides. Sediment was transported mainly to the island during the 2-week monitoring period, though short periods of export occurred during the spring

  4. Inhibitory Effect of Dissolved Silica on the H2O2 Decomposition by Iron(III) and Manganese(IV) Oxides: Implications for H2O2-based In Situ Chemical Oxidation

    Science.gov (United States)

    Pham, Anh Le-Tuan; Doyle, Fiona M.; Sedlak, David L.

    2011-01-01

    The decomposition of H2O2 on iron minerals can generate •OH, a strong oxidant that can transform a wide range of contaminants. This reaction is critical to In Situ Chemical Oxidation (ISCO) processes used for soil and groundwater remediation, as well as advanced oxidation processes employed in waste treatment systems. The presence of dissolved silica at concentrations comparable to those encountered in natural waters decreases the reactivity of iron minerals toward H2O2, because silica adsorbs onto the surface of iron minerals and alters catalytic sites. At circumneutral pH values, goethite, amorphous iron oxide, hematite, iron-coated sand and montmorillonite that were pre-equilibrated with 0.05 – 1.5 mM SiO2 were significantly less reactive toward H2O2 decomposition than their original counterparts, with the H2O2 loss rates inversely proportional to the SiO2 concentration. In the goethite/H2O2 system, the overall •OH yield, defined as the percentage of decomposed H2O2 producing •OH, was almost halved in the presence of 1.5 mM SiO2. Dissolved SiO2 also slows the H2O2 decomposition on manganese(IV) oxide. The presence of dissolved SiO2 results in greater persistence of H2O2 in groundwater, lower H2O2 utilization efficiency and should be considered in the design of H2O2-based treatment systems. PMID:22129132

  5. Clarification of dissolved irradiated light-water-reactor fuel

    International Nuclear Information System (INIS)

    Rodrigues, G.C.

    1983-02-01

    Bench-scale studies with actual dissolved irradiated light water reactor (LWR) fuels showed that continuous centrifugation is a practical clarification method for reprocessing. Dissolved irradiated LWR fuel was satisfactorily clarified in a bench-scale, continuous-flow bowl centrifuge. The solids separated were successfully reslurried in water. When the reslurried solids were mixed with clarified centrate, the resulting suspension behaved similar to the original dissolver solution during centrifugation. Settling rates for solids in actual irradiated fuel solutions were measured in a bottle centrifuge. The results indicate that dissolver solutions may be clarified under conditions achievable by available plant-scale centrifuge technology. The effective particle diameter of residual solids was calculated to be 0.064 microns for Oconee-1 fuel and 0.138 microns for Dresden-1 fuel. Filtration was shown unsuitable for clarification of LWR fuel solutions. Conventional filtration with filter aid would unacceptably complicate remote canyon operation and maintenance, might introduce dissolved silica from filter aids, and might irreversibly plug the filter with dissolver solids. Inertial filtration exhibited irreversible pluggage with nonradioactive stand-in suspensions under all conditions tested

  6. Microporous Silica Based Membranes for Desalination

    Directory of Open Access Journals (Sweden)

    João C. Diniz da Costa

    2012-09-01

    Full Text Available This review provides a global overview of microporous silica based membranes for desalination via pervaporation with a focus on membrane synthesis and processing, transport mechanisms and current state of the art membrane performance. Most importantly, the recent development and novel concepts for improving the hydro-stability and separating performance of silica membranes for desalination are critically examined. Research into silica based membranes for desalination has focussed on three primary methods for improving the hydro-stability. These include incorporating carbon templates into the microporous silica both as surfactants and hybrid organic-inorganic structures and incorporation of metal oxide nanoparticles into the silica matrix. The literature examined identified that only metal oxide silica membranes have demonstrated high salt rejections under a variety of feed concentrations, reasonable fluxes and unaltered performance over long-term operation. As this is an embryonic field of research several target areas for researchers were discussed including further improvement of the membrane materials, but also regarding the necessity of integrating waste or solar heat sources into the final process design to ensure cost competitiveness with conventional reverse osmosis processes.

  7. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina)

    Science.gov (United States)

    Porubsky, W.P.; Weston, N.B.; Moore, W.S.; Ruppel, C.; Joye, S.B.

    2014-01-01

    Multiple techniques, including thermal infrared aerial remote sensing, geophysical and geological data, geochemical characterization and radium isotopes, were used to evaluate the role of groundwater as a source of dissolved nutrients, carbon, and trace gases to the Okatee River estuary, South Carolina. Thermal infrared aerial remote sensing surveys illustrated the presence of multiple submarine groundwater discharge sites in Okatee headwaters. Significant relationships were observed between groundwater geochemical constituents and 226Ra activity in groundwater with higher 226Ra activity correlated to higher concentrations of organics, dissolved inorganic carbon, nutrients, and trace gases to the Okatee system. A system-level radium mass balance confirmed a substantial submarine groundwater discharge contribution of these constituents to the Okatee River. Diffusive benthic flux measurements and potential denitrification rate assays tracked the fate of constituents in creek bank sediments. Diffusive benthic fluxes were substantially lower than calculated radium-based submarine groundwater discharge inputs, showing that advection of groundwater-derived nutrients dominated fluxes in the system. While a considerable potential for denitrification in tidal creek bank sediments was noted, in situ denitrification rates were nitrate-limited, making intertidal sediments an inefficient nitrogen sink in this system. Groundwater geochemical data indicated significant differences in groundwater chemical composition and radium activity ratios between the eastern and western sides of the river; these likely arose from the distinct hydrological regimes observed in each area. Groundwater from the western side of the Okatee headwaters was characterized by higher concentrations of dissolved organic and inorganic carbon, dissolved organic nitrogen, inorganic nutrients and reduced metabolites and trace gases, i.e. methane and nitrous oxide, than groundwater from the eastern side

  8. Nutrient sequestration in Aquitaine lakes (SW France) limits nutrient flux to the coastal zone

    Science.gov (United States)

    Buquet, Damien; Anschutz, Pierre; Charbonnier, Céline; Rapin, Anne; Sinays, Rémy; Canredon, Axel; Bujan, Stéphane; Poirier, Dominique

    2017-12-01

    Oligotrophic coastal zones are disappearing from increased nutrient loading. The quantity of nutrients reaching the coast is determined not only by their original source (e.g. fertilizers used in agriculture, waste water discharges) and the land use, but also by the pathways through which nutrients are cycled from the source to the river mouth. In particular, lakes sequester nutrients and, hence, reduce downstream transfer of nutrients to coastal environments. Here, we quantify the impact of Aquitaine great lakes on the fluxes of dissolved macro-nutrients (N, P, Si) to the Bay of Biscay. For that, we have measured nutrient concentrations and fluxes in 2014 upstream and downstream lakes of Lacanau and Carcans-Hourtin, which belongs to the catchment of the Arcachon Bay, which is the largest coastal lagoon of the Bay of Biscay French coast. Data were compared to values obtained from the Leyre river, the main freshwater and nutrient source for the lagoon. Results show that processes in lakes greatly limit nutrient flux to the lagoon compared to fluxes from Leyre river, although the watershed is similar in terms of land cover. In lakes, phosphorus and silicon are trapped for long term in the sediment, silicon as amorphous biogenic silica and phosphorus as organic P and P associated with Fe-oxides. Nitrogen that enters lakes mostly as nitrate is used for primary production. N is mineralized in the sediment; a fraction diffuses as ammonium. N2 production through benthic denitrification extracts only 10% of dissolved inorganic nitrogen from the aquatic system. The main part is sequestered in organic-rich sediment that accumulates below 5 m depth in both lakes.

  9. Sedimentary and mineral dust sources of dissolved iron to the world ocean

    Directory of Open Access Journals (Sweden)

    J. K. Moore

    2008-05-01

    Full Text Available Analysis of a global compilation of dissolved-iron observations provides insights into the processes controlling iron distributions and some constraints for ocean biogeochemical models. The distribution of dissolved iron appears consistent with the conceptual model developed for Th isotopes, whereby particle scavenging is a two-step process of scavenging mainly by colloidal and small particulates, followed by aggregation and removal on larger sinking particles. Much of the dissolved iron (<0.4 μm is present as small colloids (>~0.02 μm and, thus, is subject to aggregation and scavenging removal. This implies distinct scavenging regimes for dissolved iron consistent with the observations: 1 a high scavenging regime – where dissolved-iron concentrations exceed the concentrations of strongly binding organic ligands; and 2 a moderate scavenging regime – where dissolved iron is bound to both colloidal and soluble ligands. Within the moderate scavenging regime, biological uptake and particle scavenging decrease surface iron concentrations to low levels (<0.2 nM over a wide range of low to moderate iron input levels. Removal rates are also highly nonlinear in areas with higher iron inputs. Thus, observed surface-iron concentrations exhibit a bi-modal distribution and are a poor proxy for iron input rates. Our results suggest that there is substantial removal of dissolved iron from subsurface waters (where iron concentrations are often well below 0.6 nM, most likely due to aggregation and removal on sinking particles of Fe bound to organic colloids.

    We use the observational database to improve simulation of the iron cycle within a global-scale, Biogeochemical Elemental Cycling (BEC ocean model. Modifications to the model include: 1 an improved particle scavenging parameterization, based on the sinking mass flux of particulate organic material, biogenic silica, calcium carbonate, and mineral dust particles; 2 desorption of dissolved iron

  10. Dissolved organic nitrogen in wet deposition in a coastal city (Keelung) of the southern East China Sea: Origin, molecular composition and flux

    Science.gov (United States)

    Chen, You-Xin; Chen, Hung-Yu; Wang, Wei; Yeh, Jun-Xian; Chou, Wen-Chen; Gong, Gwo-Ching; Tsai, Fu-Jung; Huang, Shih-Jen; Lin, Cheng-Ting

    2015-07-01

    In this study, we collected and analyzed rainwater samples from Keelung, Taiwan, which is a coastal city located south of the East China Sea (ECS). From January 2012 until June 2013, 78 rainwater samples were collected over an 18-month period and were analyzed to examine the total dissolved nitrogen (TDN) and major ions in the rainwater. TDN can be divided into dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON). This study, which focused on the composition of DON, is the first study to employ ultrafiltration to separate DON in wet deposition into low molecular weight-DON (LMW-DON) and high molecular weight-DON (HMW-DON). The concentrations of dissolved nitrogen species observed in the research area between November 2012 and April 2013 were relatively high, whereas those observed between May 2013 and October 2012 were relatively low. The patterns of changes over time were similar to those of non-sea-salt (nss) ions. The concentration of nss-ions was high during months in which the total dissolved nitrogen concentration was also high, which occur frequently during the spring and winter. In addition, the concentration of nss-ions was low during months in which the TDN concentration was low, which primarily occurs during the summer. The amounts of DIN and DON accounted for 63 ± 5% and 37 ± 5% of the TDN, respectively, and the percentage of the DIN was higher during the spring and winter. The concentrations of LMW-DON and HMW-DON, which accounted for 84 ± 3% and 16 ± 3% of the DON, respectively, were both high in the winter and low in the summer. The percentage of LMW-DON increased in the summer, possibly because of the numerous oceanic air masses and typhoons. Furthermore, the percentage of HMW-DON increased in the spring, potentially due to biomass burning during agricultural activities. Regarding the wet deposition fluxes, the DIN (197 ± 10.27 mmol m-2 yr-1) and DON (129 ± 6.82 mmol m-2 yr-1) accounted for approximately 64% and 36% of the

  11. Temporal Dynamics in the Concentration, Flux, and Optical Properties of Tree-Derived Dissolved Organic Matter in an Epiphyte-Laden Oak-Cedar Forest

    Science.gov (United States)

    Van Stan, John T.; Wagner, Sasha; Guillemette, François; Whitetree, Ansley; Lewis, Julius; Silva, Leticia; Stubbins, Aron

    2017-11-01

    Studies on the fate and transport of dissolved organic matter (DOM) along the rainfall-to-discharge flow pathway typically begin in streams or soils, neglecting the initial enrichment of rainfall with DOM during contact with plant canopies. However, rain water can gather significant amounts of tree-derived DOM (tree-DOM) when it drains from the canopy, as throughfall, and down the stem, as stemflow. We examined the temporal variability of event-scale tree-DOM concentrations, yield, and optical (light absorbance and fluorescence) characteristics from an epiphyte-laden Quercus virginiana-Juniperus virginiana forest on Skidaway Island, Savannah, Georgia (USA). All tree-DOM fluxes were highly enriched in dissolved organic carbon (DOC) compared to rainfall, and epiphytes further increased concentrations. Stemflow DOC concentrations were greater than throughfall across study species, yet larger throughfall water yields produced greater DOC yields versus stemflow. Tree-DOM optical characteristics indicate it is aromatic-rich with fluorescent DOM dominated by humic-like fluorescence, containing 10-20% protein-like (tryptophan-like) fluorescence. Storm size was the only storm condition that strongly correlated with tree-DOM concentration and flux; however, throughfall and stemflow optical characteristics varied little across a wide range of storm conditions (from low magnitude events to intense tropical storms). Annual tree-DOM yields from the study forest (0.8-46 g C m-2 yr-1) were similar to other yields from discrete down-gradient fluxes (litter leachates, soil leachates, and stream discharge) along the rainfall-to-discharge flow path.

  12. Under-ice eddy covariance flux measurements of heat, salt, momentum, and dissolved oxygen in an artificial sea ice pool

    DEFF Research Database (Denmark)

    Else, B. G T; Rysgaard, S.; Attard, K.

    2015-01-01

    as one possible cause of the high fluxes. Momentum fluxes showed interesting correlations with ice growth and melt but were generally higher than expected. We concluded that with the exception of the conductivity sensor, the eddy covariance system worked well, and that useful information about turbulent......Turbulent exchanges under sea ice play a controlling role in ice mass balance, ice drift, biogeochemistry, and mixed layer modification. In this study, we examined the potential to measure under-ice turbulent exchanges of heat, salt, momentum, and dissolved oxygen using eddy covariance...... in an experimental sea ice facility. Over a 15-day period in January 2013, an underwater eddy covariance system was deployed in a large (500 m3) inground concrete pool, which was filled with artificial seawater and exposed to the ambient (−5 to −30 °C) atmosphere. Turbulent exchanges were measured continuously...

  13. Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: Production, benthic flux, and environmental implications.

    Science.gov (United States)

    Chen, Meilian; Kim, Sung-Han; Jung, Heon-Jae; Hyun, Jung-Ho; Choi, Jung Hyun; Lee, Hyo-Jin; Huh, In-Ae; Hur, Jin

    2017-09-15

    In order to understand the characteristics and dynamics of dissolved organic matter (DOM) in the sediment of rivers affected by impoundments, we examined the vertical profiles and the benthic fluxes of DOM in four different core sediments located at upstream sites of weirs in major rivers of South Korea. In three out of four sites, exponential accumulation of dissolved organic carbon (DOC) with depth was observed with the signature of seasonal variability. Except for the site displaying a below-detection limit of Fe(II), the general accumulation trends of DOC with depth was concurrent with the increases of Fe(II) and NH 4 + and the decrease of PO 4 3- , signifying a close linkage of the DOM dynamics with anaerobic respiration via iron reduction, an important early diagenesis pathway. The estimated benthic fluxes from the cores revealed that the sediments likely serve as DOC, chromophoric DOM (CDOM), and fluorescent DOM (FDOM) sources to the overlying water. The benthic effluxes based on DOC were comparable to the ranges previously reported in lake and coastal areas, and those of CDOM and FDOM showed even higher levels. These findings imply that impoundment-affected river systems would change the DOM composition of the overlying water, ultimately influencing the subsequent water treatment processes such as disinfection byproducts production and membrane fouling. A simple mass balance model indicated that the impoundment-affected river sediments may operate as a net carbon sink in the environments due to a greater extent of sedimentation compared to the estimated benthic efflux and sediment biological respiration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Silicon isotope fractionation during silica precipitation from hot-spring waters

    Science.gov (United States)

    Geilert, Sonja; Vroon, Pieter; Keller, Nicole; Gudbrnadsson, Snorri; Stefánsson, Andri; van Bergen, Manfred

    2014-05-01

    Hot-spring systems in the Geysir geothermal area, Iceland, have been studied to explore silicon isotope fractionation in a natural setting where sinter deposits are actively formed over a temperature interval between 20° and 100° C. The SiO2(aq)concentrations in spring and stream waters range between 290 and 560ppm and stay relatively constant along downstream trajectories, irrespective of significant cooling gradients. The waters are predominantly oversaturated in amorphous silica at the temperatures measured in the field. Correlations between the saturation indices, temperature and amounts of evaporative water loss suggest that cooling and evaporation are the main causes of subaqueous silica precipitation. The δ30Si values of dissolved silica in spring water and outflowing streams average around +1o probably due to the small quantities of instantaneously precipitating silica relative to the dissolved amount. Siliceous sinters, in contrast, range between -0.1o to -4.0o consistent with a preferred incorporation of the light silicon isotope and with values for precipitated silica becoming more negative with downstream decreasing temperatures. Larger fractionation magnitudes are inversely correlated with the precipitation rate, which itself is dependent on temperature, saturation state and the extent of a system. The resulting magnitudes of solid-fluid isotopic fractionation generally decline from -3.5o at 10° C to -2.0o at 90° C. These values confirm a similar relationship between fractionation magnitude and temperature that we found in laboratory-controlled silica-precipitation experiments. However, a relatively constant offset of ca. -2.9o between field and experimental fractionation values indicates that temperature alone cannot be responsible for the observed shifts. We infer that precipitation kinetics are a prominent control of silicon isotope fractionation in aqueous environments, whereby the influence of the extent of the system on the precipitation

  15. Synthesis and spectroscopic properties of silica-dye-semiconductor nanocrystal hybrid particles.

    Science.gov (United States)

    Ren, Ting; Erker, Wolfgang; Basché, Thomas; Schärtl, Wolfgang

    2010-12-07

    We prepared silica-dye-nanocrystal hybrid particles and studied the energy transfer from semiconductor nanocrystals (= donor) to organic dye molecules (= acceptor). Multishell CdSe/CdS/ZnS semiconductor nanocrystals were adsorbed onto monodisperse Stöber silica particles with an outer silica shell of thickness 2-23 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the energy transfer efficiency, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of nanocrystals with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with numerically calculated FRET efficiencies and by control experiments confirming attractive interaction between the nanocrystals and Texas Red freely dissolved in solution.

  16. Declines in the dissolved organic carbon (DOC) concentration and flux from the UK

    Science.gov (United States)

    Worrall, Fred; Howden, Nicholas J. K.; Burt, Tim P.; Bartlett, Rebecca

    2018-01-01

    Increased concentrations of dissolved organic carbon (DOC) have been reported for many catchments across the northern hemisphere. Hypotheses to explain the increase have varied (eg. increasing air temperature or recovery from acidification) but one test of alternative hypotheses is the trend over the recent decade, with the competing hypotheses predicting: continuing increase; the rate of increase declining with time; and even decrease in concentration. In this study, records of DOC concentration in non-tidal rivers across the UK were examined for the period 2003-2012. The study found that: Of the 62 decade-long concentration trends that could be examined, 3 showed a significant increase, 17 experienced no significant change and 42 showed a significant decrease; in 28 of the 42 significant decreases, a significant step change was apparent with step changes being a decrease in concentration in every case. Of the 118 sites where annual flux and concentration records were available from 1974, 28 showed a significant step change down in flux and 52 showed a step down in concentration. The modal year of the step changes was 2000 with no step changes observed before 1982. At the UK national scale, DOC flux peaked in 2005 at 1354 ktonnes C/yr (5.55 tonnes C/km2/yr) but has declined since. The study suggests that there is a disconnection between DOC records from large catchments at their tidal limits and complementary records from headwater catchments, which means that mechanisms believed to be driving increases in DOC concentrations in headwaters will not necessarily be those controlling trends in DOC concentration further downstream. We propose that the changes identified here have been driven by changes in in-stream processing and changes brought about by the Urban Waste Water Treatment Directive. Therefore, signals identified in headwater catchments may bear little relation to those observed in large rivers much further downstream and vice versa.

  17. Biomimetic silica encapsultation of living cells

    Science.gov (United States)

    Jaroch, David Benjamin

    Living cells perform complex chemical processes on size and time scales that artificial systems cannot match. Cells respond dynamically to their environment, acting as biological sensors, factories, and drug delivery devices. To facilitate the use of living systems in engineered constructs, we have developed several new approaches to create stable protective microenvironments by forming bioinspired cell-membrane-specific silica-based encapsulants. These include vapor phase deposition of silica gels, use of endogenous membrane proteins and polysaccharides as a site for silica nucleation and polycondensation in a saturated environment, and protein templated ordered silica shell formation. We demonstrate silica layer formation at the surface of pluripotent stem-like cells, bacterial biofilms, and primary murine and human pancreatic islets. Materials are characterized by AFM, SEM and EDS. Viability assays confirm cell survival, and metabolite flux measurements demonstrate normal function and no major diffusion limitations. Real time PCR mRNA analysis indicates encapsulated islets express normal levels of genetic markers for β-cells and insulin production. The silica glass encapsulant produces a secondary bone like calcium phosphate mineral layer upon exposure to media. Such bioactive materials can improve device integration with surrounding tissue upon implantation. Given the favorable insulin response, bioactivity, and long-term viability observed in silica-coated islets, we are currently testing the encapsulant's ability to prevent immune system recognition of foreign transplants for the treatment of diabetes. Such hybrid silica-cellular constructs have a wide range of industrial, environmental, and medical applications.

  18. Glacial alteration of volcanic terrains: A chemical investigation of the Three Sisters, Oregon, USA.

    Science.gov (United States)

    Rutledge, Alicia; Horgan, Briony; Havig, Jeff

    2017-04-01

    Glacial silica cycling is more efficient than previously reported, and in some settings, particularly glaciated mafic volcanics, can be the dominant weathering process. Based on field work at glaciated volcanic sites, we hypothesize that this is due to a combination of high rates of silica dissolution from mafic bedrock and reprecipitation of silica in the form of opaline silica coatings and other poorly crystalline silicate alteration phases. The high rate of bedrock comminution in subglacial environments results in high rates of both chemical and physical weathering, due to the increased reactive mineral surface area formed through glacial grinding. In most bedrock types, carbonate weathering is enhanced and silica fluxes are depressed in glacial outwash compared with global average riverine catchment runoff due to low temperatures and short residence times. However, in mafic systems, higher dissolved SiO2 concentrations have been observed. The major difference between observed glacial alteration of volcanic bedrock and more typical continental terrains is the absence of significant dissolved carbonate in the former. In the absence of carbonate minerals which normally dominate dissolution processes at glacier beds, carbonation of feldspar can become the dominant weathering process, which can result in a high proportion of dissolved silica fluxes in glacial outwash waters compared to the total cation flux. Mafic volcanic rocks are particularly susceptible to silica mobility, due to the high concentration of soluble minerals (i.e. plagioclase) as compared to the high concentration of insoluble quartz found in felsic rocks. To investigate melt-driven chemical weathering of mafic volcanics, water and rock samples were collected during July 2016 from glaciated volcanic bedrock in the Three Sisters Wilderness, Oregon, U.S.A. (44°9'N, 121°46'W): Collier Glacier (basaltic andesite, andesite), Hayden Glacier (andesite, dacite), and Diller Glacier (basalt). Here we

  19. Salt Marshes as Sources and Sinks of Silica

    Science.gov (United States)

    Carey, J.; Fulweiler, R. W.

    2014-12-01

    The role of salt marshes in controlling silica exchange between terrestrial and marine environments is unclear. In some studies, large quantities of dissolved silica (DSi) appear to be exported from marshes via tidal exchange, potentially fueling future diatom production in adjacent waters. In contrast, other studies report insignificant DSi export and found instead that salt marshes appeared to be Si sinks. Further, few studies examine salt marsh Si export in relation to inorganic nitrogen (DIN) and phosphorus (DIP). We address these uncertainties by quantifying net fluxes of DSi and biogenic Si (BSi), as well as DIN and DIP during the spring and summer in a relatively undisturbed southern New England salt marsh (Narragansett Bay, USA). Our data demonstrates that during the spring, when estuarine waters are deplete in DSi, the marsh serves as a net sink of BSi (132 mol h-1) and a source of DSi (31 mol h-1) to the estuary. The spring DIN:DSi ratios of ebbing water were more than five times lower than flood waters. Most importantly, the DSi export rates (6.5 x103 mol d-1 km-2) are an order of magnitude larger than the export by rivers in the region (115 mol d-1 km-2), indicating the marsh tidal exchange is vital in supplying the Si necessary for spring diatom blooms in the estuary. Conversely, during the summer the marsh served as a net Si sink, importing on average 59 mol DSi h-1 and 39 mol BSi h-1. These data highlight that the role of salt marshes in silica cycling appears to have a strong seasonality. We hypothesize that net import of Si increases the residence time of Si in estuarine systems, providing an important and previously over-looked ecosystem service. In the absence of salt marshes, ~5.1 x 104 kmol of Si would be exported from this system during the growing season, possibly decreasing Si availability and altering phytoplankton species composition in the estuary.

  20. Diatom stratigraphy and long-term dissolved silica concentrations in the Baltic Sea

    Science.gov (United States)

    Olli, Kalle; Clarke, Annemarie; Danielsson, Åsa; Aigars, Juris; Conley, Daniel J.; Tamminen, Timo

    2008-10-01

    In many parts of the world coastal waters with anthropogenic eutrophication have experienced a gradual depletion of dissolved silica (DSi) stocks. This could put pressure on spring bloom diatom populations, e.g. by limiting the intensity of blooms or by causing shifts in species composition. In addition, eutrophication driven enhanced diatom growth is responsible for the redistribution of DSi from the water phase to the sediments, and changes in the growth conditions may be reflected in the sediment diatom stratigraphy. To test for changes in diatom communities we have analyzed four sediment cores from the Baltic Sea covering approximately the last 100 years. The sediment cores originate from the western Gulf of Finland, the Kattegat, the Baltic Proper and the Gulf of Riga. Three out of the four cores reveal only minor changes in composition of diatom assemblages, while the Gulf of Riga core contains major changes, occurring after the second World War. This area is set apart from the other Baltic Sea basins by a high frequency of low after spring bloom DSi concentrations (< 2 µmol L - 1 ) during a relatively well defined time period from 1991-1998. In 1991 to 1993 a rapid decline of DSi spring concentrations and winter stocks (down to 5 µmol L - 1 ) in the Gulf was preceded by exceptionally intense diatom spring blooms dominated by the heavily silicified species Thalassiosira baltica (1991-1992; up to 5.5 mg ww L - 1 ). T. baltica has been the principal spring bloom diatom in the Gulf of Riga since records began in 1975. DSi consumption and biomass yield experiments with cultured T. baltica suggest that intense blooms can potentially exhaust the DSi stock of the water column and exceed the annual Si dissolution in the Gulf of Riga. The phytoplankton time series reveals another exceptional T. baltica bloom period in 1981-1983 (up to 8 mg L - 1 ), which, however, took place before the regular DSi measurements. These periods may be reflected in the conspicuous

  1. Formation of Silica-Lysozyme Composites Through Co-Precipitation and Adsorption

    Science.gov (United States)

    van den Heuvel, Daniela B.; Stawski, Tomasz M.; Tobler, Dominique J.; Wirth, Richard; Peacock, Caroline L.; Benning, Liane G.

    2018-04-01

    Interactions between silica and proteins are crucial for the formation of biosilica and the production of novel functional hybrid materials for a range of industrial applications. The proteins control both precipitation pathway and the properties of the resulting silica-organic composites. Here we present data on the formation of silica-lysozyme composites through two different synthesis approaches (co-precipitation vs. adsorption) and show that the chemical and structural properties of these composites, when analyzed using a combination of synchrotron-based scattering (total scattering and SAXS), spectroscopic, electron microscopy and potentiometric methods vary dramatically. We document that while lysozyme was not incorporated into nor did its presence alter the molecular structure of silica, it strongly enhanced the aggregation of silica particles due to electrostatic and potentially hydrophobic interactions, leading to the formation of composites with characteristics differing from pure silica. The differences increased with increasing lysozyme content for both synthesis approaches. Yet, the absolute changes differ substantially between the two sets of composites, as lysozyme did not just affect aggregation during co-precipitation but also particle growth and likely polymerization during co-precipitation. Our results improve the fundamental understanding of how organic macromolecules interact with dissolved and nanoparticulate silica and how these interactions control the formation pathway of silica-organic composites from sodium silicate solutions, a widely available and cheap starting material.

  2. Soil Dissolved Organic Carbon Fluxes are Controlled by both Precipitation and Longer-Term Climate Effects on Boreal Forest Ecosystems

    Science.gov (United States)

    Hotchkiss, E. R.; Ziegler, S. E.; Edwards, K. A.; Bowering, K.

    2017-12-01

    Water acts as a control on the cycling of organic carbon (OC). Forest productivity responses to climate change are linked to water availability while water residence time is a major control on OC loss in aquatic ecosystems. However, controls on the export of terrestrial OC to the aquatic environment remains poorly understood. Transport of dissolved OC (DOC) through soils both vertically to deeper soil horizons and into aquatic systems is a key flux of terrestrial OC, but the climate drivers controlling OC mobilized from soils is poorly understood. We installed zero-tension lysimeters across similar balsam fir forest sites within three regions that span a MAT gradient of 5.2˚C and MAP of 1050-1500 mm. Using soil water collected over all seasons for four years we tested whether a warmer and wetter climate promotes greater DOC fluxes in ecosystems experiencing relatively high precipitation. Variability within and between years was compared to that observed across climates to test the sensitivity of this flux to shorter relative to longer-term climate effects on this flux. The warmest and wettest southern site exhibited the greatest annual DOC flux (25 to 28 g C m-2 y-1) in contrast to the most northern site (8 to 10 g C m -2 y-1). This flux represented 10% of litterfall C inputs across sites and surpassed the DOC export from associated forested headwater streams (1 to 16 g C m-2 y-1) suggesting terrestrial to aquatic interface processing. Historical climate and increased soil C inputs explain the greater DOC flux in the southern region. Even in years with comparable annual precipitation among regions the DOC flux differed by climate region. Furthermore, neither quantity nor form of precipitation could explain inter-annual differences in DOC flux within each region. Region specific relationships between precipitation and soil water flux instead suggest historical climate effects may impact soil water transport efficiency thereby controlling the regional variation in

  3. Impacts of soil incorporation of pre-incubated silica-rich rice residue on soil biogeochemistry and greenhouse gas fluxes under flooding and drying.

    Science.gov (United States)

    Gutekunst, Madison Y; Vargas, Rodrigo; Seyfferth, Angelia L

    2017-09-01

    Incorporation of silica-rich rice husk residue into flooded paddy soil decreases arsenic uptake by rice. However, the impact of this practice on soil greenhouse gas (GHG) emissions and elemental cycling is unresolved particularly as amended soils experience recurrent flooding and drying cycles. We evaluated the impact of pre-incubated silica-rich rice residue incorporation to soils on pore water chemistry and soil GHG fluxes (i.e., CO 2 , CH 4 , N 2 O) over a flooding and drying cycle typical of flooded rice cultivation. Soils pre-incubated with rice husk had 4-fold higher pore water Si than control and 2-fold higher than soils pre-incubated with rice straw, whereas the pore water As and Fe concentrations in soils amended with pre-incubated straw and husk were unexpectedly similar (maximum ~0.85μM and ~450μM levels, respectively). Pre-incubation of residues did not affect Si but did affect the pore water levels of As and Fe compared to previous studies using fresh residues where straw amended soils had higher As and Fe in pore water. The global warming potential (GWP) of soil GHG emissions decreased in the order straw (612±76g CO 2 -eqm -2 )>husk (367±42gCO 2 -eqm -2 )>ashed husk=ashed straw (251±26 and 278±28gCO 2 -eqm -2 )>control (186±23gCO 2 -eqm -2 ). The GWP increase due to pre-incubated straw amendment was due to: a) larger N 2 O fluxes during re-flooding; b) smaller contributions from larger CH 4 fluxes during flooded periods; and c) higher CH 4 and CO 2 fluxes at the onset of drainage. In contrast, the GWP of the husk amendment was dominated by CO 2 and CH 4 emissions during flooded and drainage periods, while ashed amendments increased CO 2 emissions particularly during drainage. This experiment shows that ashed residues and husk addition minimizes GWP of flooded soils and enhances pore water Si compared to straw addition even after pre-incubation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Formation mechanisms of colloidal silica via sodium silicate

    International Nuclear Information System (INIS)

    Tsai, M.-S.; Huang, P.Y.; Yang, C.-H.

    2006-01-01

    Colloidal silica is formed by titrating active silicic acid into a heated KOH with seed solution. The colloidal silica formation mechanisms are investigated by sampling the heated solution during titration. In the initial stage, the added seeds were dissolved. This might due to the dilution of seed concentration, the addition of potassium hydroxide (KOH) and the heating at 100 deg. C. Homogenous nucleation and surface growth occur simultaneously in the second stage of colloidal silica formation. Homogenous nucleation is more important when the seed concentration is relatively low. On the other hand, surface growth plays an important role when the seed concentration is increased. In the middle seed concentration, the seed particles grow up and some new small particles are born by the homogenous nucleation process to form a bimodal size distribution product. As the titrating volume of active silicic acid exceeds a specific value in the last stage the particle size increases rapidly and the particle number decreases, which may be caused by the aggregation of particles. The intervals between each stage were varied with the seed concentration. Increasing the seed concentration led to the formation of uniform particle size colloidal silica

  5. Mass transport in thin supported silica membranes

    NARCIS (Netherlands)

    Benes, Nieck Edwin

    2000-01-01

    In this thesis multi-component mass transport in thin supported amorphous silica membranes is discussed. These membranes are micro-porous, with pore diameters smaller than 4Å and show high fluxes for small molecules (such as hydrogen) combined with high selectivities for these molecules with respect

  6. Dissolved gaseous mercury and mercury flux measurements in Mediterranean coastal waters: A short review

    Directory of Open Access Journals (Sweden)

    Fantozzi L.

    2013-04-01

    Full Text Available There is a general agreement in the scientific community that the marine ecosystem can be a sink and/or source of the mercury that is cycling in the global environment, and current estimates of the global mercury budget for the Mediterranean region are affected by high uncertainty, primarily due to the little progress made so far in evaluating the role of chemical, physical and biological processes in the water system and in the lower atmosphere above the sea water (air-water interface. The lack of knowledge of the magnitude of the air-sea exchange mechanisms is, therefore, one of the main factors affecting the overall uncertainty associated with the assessment of net fluxes of Hg between the atmospheric and marine environments in the Mediterranean region. Results obtained during the last 15 years in the Mediterranean basin indicate the quantitative importance of such emission in the biogeochemical cycle of this element, highlighting the need for thorough investigations on the mechanisms of production and volatilization of dissolved gaseous mercury in waters.

  7. Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica

    Science.gov (United States)

    Cendrowski, Krzysztof; Sikora, Pawel; Zielinska, Beata; Horszczaruk, Elzbieta; Mijowska, Ewa

    2017-06-01

    Pristine nanoparticles of magnetite were coated by solid silica shell forming core/shell structure. 20 nm thick silica coating significantly enhanced the chemical and thermal stability of the iron oxide. Chemical and thermal stability of this structure has been compared to the magnetite coated by mesoporous shell and pristine magnetite nanoparticles. It is assumed that six-membered silica rings in a solid silica shell limit the rate of oxygen diffusion during thermal treatment in air and prevent the access of HCl molecules to the core during chemical etching. Therefore, the core/shell structure with a solid shell requires a longer time to induce the oxidation of iron oxide to a higher oxidation state and, basically, even strong concentrated acid such as HCl is not able to dissolve it totally in one month. This leads to the desired performance of the material in potential applications such as catalysis and environmental protection.

  8. In situ monitoring using Lab on Chip devices, with particular reference to dissolved silica.

    Science.gov (United States)

    Turner, G. S. C.; Loucaides, S.; Slavik, G. J.; Owsianka, D. R.; Beaton, A.; Nightingale, A.; Mowlem, M. C.

    2016-02-01

    In situ sensors are attractive alternatives to discrete sampling of natural waters, offering the potential for sustained long term monitoring and eliminating the need for sample handling. This can reduce sample contamination and degradation. In addition, sensors can be clustered into multi-parameter observatories and networked to provide both spatial and time series coverage. High resolution, low cost, and long term monitoring are the biggest advantages of these technologies to oceanographers. Microfluidic technology miniaturises bench-top assay systems into portable devices, known as a `lab on a chip' (LOC). The principle advantages of this technology are low power consumption, simplicity, speed, and stability without compromising on quality (accuracy, precision, selectivity, sensitivity). We have successfully demonstrated in situ sensors based on this technology for the measurement of pH, nitrate and nitrite. Dissolved silica (dSi) is an important macro-nutrient supporting a major fraction of oceanic primary production carried out by diatoms. The biogeochemical Si cycle is undergoing significant modifications due to human activities, which affects availability of dSi, and consequently primary production. Monitoring dSi concentrations is therefore critical in increasing our understanding of the biogeochemical Si cycle to predict and manage anthropogenic perturbations. The standard bench top air segmented flow technique utilising the reduction of silicomolybdic acid with spectrophotometric detection has been miniaturised into a LOC system; the target limit of detection is 1 nM, with ± 5% accuracy and 3% precision. Results from the assay optimisation are presented along with reagent shelf life to demonstrate the robustness of the chemistry. Laboratory trials of the sensor using ideal solutions and environmental samples in environmentally relevant conditions (temperature, pressure) are discussed, along with an overview of our current LOC analytical capabilities.

  9. Differences between silica and limestone concretes that may affect their interaction with corium

    International Nuclear Information System (INIS)

    Journeau, C.; Haquet, J. F.; Piluso, P.; Bonnet, J. M.

    2008-01-01

    Recent Molten Core Concrete Interaction tests performed at Argonne National Laboratory and at CEA Cadarache have shown that, whereas the ablation of limestone-rich concretes is almost isotropic, the ablation of silica-rich concretes is much faster towards the sides than towards the bottom of the cavity. The following differences exists between limestone-rich and silica-rich concretes: limestone concretes liberate about twice as much gas, at a given ablation rate than siliceous concretes (more than 50% more at constant heat flux) and this can affect pool hydraulics and crust stability: limestone concrete has a higher liquidus temperature than siliceous concrete and molten limestone concrete has a larger diffusion coefficient and can more easily dissolve a corium crust than siliceous melt; limestone aggregates are destroyed by de-carbonation at around 1000 K while silica aggregates melt only above 2000 K, so that floating silica aggregates can form cold spots increasing corium solidification near the interface; de-carbonation of limestone leads to a significant shrinkage of concrete melt volume compared to the cold solid that hampers the mechanical stability of overlying crusts; the chemical composition of molten mortar (sand + cement) and concrete (sand + gravel + cement) is close for limestone-rich concretes while it is different for siliceous concretes, so that the melt composition may vary significantly in case of non-simultaneous melting of the siliceous concrete constituents; molten silicates have a large viscosity, so that transport properties are different for the two types of concretes. The small range of plant concrete compositions that have been considered for MCCI experiments has not yet been found sufficient to determine which of the above-mentioned differences is paramount to explain the observed difference in ablation patterns. Separate Effect Tests using specially-designed 'artificial concretes' and prototypic corium would provide the necessary

  10. Evidence of intensified biogenic silica recycling in the Black Sea after 1970

    DEFF Research Database (Denmark)

    Mousing, Erik Askov; Adjou, Mohamed; Ellegaard, Marianne

    2015-01-01

    140 years and show that siliceous protists became significantly more dissolved after the late 1960s indicating a reduction of the silicate pool preserved in the deep sea sediment. We hypothesize that the decline in the dissolution state is caused by increased recycling of biogenic silica in the water...

  11. Waste Water for Power Generation via Energy Efficient Selective Silica Separations

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sasan, Koroush [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Paap, Scott M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Heimer, Brandon Walter [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Krumhansl, James L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howe, Kerry [Univ. of New Mexico, Albuquerque, NM (United States); Stoll, Zachary [Univ. of New Mexico, Albuquerque, NM (United States); Stomp, James [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-09-01

    Silica is ubiquitous in produced and industrial waters, and plays a major disruptive role in water recycle. Herein we have investigated the use of mixed oxides for the removal of silica from these waters, and their incorporation into a low cost and low energy water purification process. High selectivity hydrotalcite (HTC, (Mg6Al2(OH)16(CO3)•4H2O)), is combined in series with high surface area active alumina (AA, (Al2O3)) as the dissolved silica removal media. Batch test results indicated that combined HTC/AA is a more effective method for removing silica from industrial cooling tower wasters (CTW) than using HTC or AA separately. The silica uptake via ion exchange on the mixed oxides was confirmed by Fourier transform infrared (FTIR), and Energy dispersive spectroscopy (EDS). Furthermore, HTC/AA effectively removes silica from CTW even in the presence of large concentrations of competing anions, such as Cl-, NO3- HCO3-, CO32- and SO42-. Similar to batch tests, Single Path Flow Through (SPFT) tests with sequential HTC/AA column filtration has very high silica removal too. Technoeconomic Analysis (TEA) was simultaneously performed for cost comparisons to existing silica removal technologies.

  12. Quartz dissolution and silica deposition in hot-dry-rock geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, B.A.

    1982-07-01

    The kinetics of quartz dissolution control the produced fluid dissolved silica concentration in geothermal systems in which the downhole residence time is finite. The produced fluid of the Phase I, Run Segment 5 experimental Hot Dry Rock (HDR) geothermal system at Fenton Hill, NM, was undersaturated with respect to quartz in one pass through the reservoir, suggesting that the rate of granite dissolution governed the outlet dissolved silica concentration in this system. The literature data for the rate of quartz dissolution in water from 65 to 625/sup 0/C is correlated using an empirical rate law which is first order in quartz surface area and degree of undersaturation of the fluid. The Arrhenius plot (ln k vs T/sup -1/) is linear over eight orders of magnitude of the rate constant, verifying the validity of the proposed rate expression. Carefully performed quartz dissolution experiments in the present study duplicated the literature data and completed the data base in the temperature range from 150 to 250/sup 0/C. Identical experiments using crushed granite indicate that the rate of quartz dissolution in the presence of granite could be as much as 1 to 2 orders of magnitude faster than the rates observed in the pure quartz experiments. A temperature dependent HDR reservoir model incorporates the quartz dissolution rate law to simulate the dissolved silica behavior during the Fenton Hill Run Segment 5 experiment. For this low-permeability, fracture-dominated reservoir, the assumptions of one-dimensional plug flow through a vertically-inclined rectangular fracture and one-dimensional rock heat conduction perpendicular to the direction of flow are employed. These simplifications lead to an analytical solution for the temperature field in the reservoir.

  13. Concentration, flux, and the analysis of trends of total and dissolved phosphorus, total nitrogen, and chloride in 18 tributaries to Lake Champlain, Vermont and New York, 1990–2011

    Science.gov (United States)

    Medalie, Laura

    2013-01-01

    Annual concentration, flux, and yield for total phosphorus, dissolved phosphorus, total nitrogen, and chloride for 18 tributaries to Lake Champlain were estimated for 1990 through 2011 using a weighted regression method based on time, tributary streamflows (discharges), and seasonal factors. The weighted regression method generated two series of daily estimates of flux and concentration during the period of record: one based on observed discharges and a second based on a flow-normalization procedure that removes random variation due to year-to-year climate-driven effects. The flownormalized estimate for a given date is similar to an average estimate of concentration or flux that would be made if all of the observed discharges for that date were equally likely to have occurred. The flux bias statistic showed that 68 of the 72 flux regression models were minimally biased. Temporal trends in the concentrations and fluxes were determined by calculating percent changes in flow-normalized annual fluxes for the full period of analysis (1990 through 2010) and for the decades 1990–2000 and 2000–2010. Basinwide, flow-normalized total phosphorus flux decreased by 42 metric tons per year (t/yr) between 1990 and 2010. This net result reflects a basinwide decrease in flux of 21 metric tons (t) between 1990 and 2000, followed by a decrease of 20 t between 2000 and 2010; both results were largely influenced by flux patterns in the large tributaries on the eastern side of the basin. A comparison of results for total phosphorus for the two separate decades of analysis found that more tributaries had decreasing concentrations and flux rates in the second decade than the first. An overall reduction in dissolved phosphorus flux of 0.7 t/yr was seen in the Lake Champlain Basin during the full period of analysis. That very small net change in flux reflects substantial reductions between 1990 and 2000 from eastern tributaries, especially in Otter Creek and the LaPlatte and Winooski

  14. Synthesis and characterization of silica gel from siliceous sands of southern Tunisia

    Directory of Open Access Journals (Sweden)

    Ali Sdiri

    2014-09-01

    Full Text Available The present work aimed to achieve valorization of Albian sands for the preparation of sodium silicates that are commonly used as a precursor to prepare silica gel. A siliceous sand sample was mixed with sodium carbonate and heated at a high temperature (1060 °C to prepare sodium silicates. The sodium silicates were dissolved in distilled water to obtain high quality sodium silicate solution. Hydrochloric acid was then slowly added to the hydrated sodium silicates to obtain silica gel. The collected raw siliceous sands, as well as the prepared silica gels, were characterized by different techniques, such as X-ray fluorescence (XRF, X-ray diffraction (XRD, scanning electron microscopy (SEM and thermal analysis (DSC. XRF confirmed that the detrital sand deposits of southern Tunisia contain high amounts of silica, with content ranging from 88.8% to 97.5%. The internal porosity varied between 17% and 22%, and the specific surface area was less than 5 m2/g. After the treatment described above, it was observed that the porosity of the obtained silica gel reached 57% and the specific surface area exceeded 340 m2/g. Nitrogen adsorption isotherms showed that the prepared silica gels are microporous and mesoporous materials with high adsorption capacities. These results suggest that the obtained silica gels are promising materials for numerous environmental applications.

  15. Dissolved organic matter and lake metabolism: Biogeochemistry and controls of nutrient flux dynamics to fresh waters. Technical progress report, January 1, 1990--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, R.G.

    1992-12-31

    The land-water interface region consists of two major components: the wetland, and the down-gradient adjacent littoral floating-leaved and submersed, macrophyte communities. Because of the importance of very high production and nutrient turnover of attached microbiota, a major emphasis of this investigation was placed upon these biota and their metabolic capacities for assimilation and release of organic compounds and nutrient retention and cycling. Examination of the capacities of wetland littoral communities to regulate fluxes of nutrients and organic compounds often has been limited to input-output analyses. These input-output data are an integral part of these investigations, but most of the research effort concentrated on the biotic and metabolic mechanisms that control fluxes and retention capacities and their effects upon biota in the down-gradient waters. The important regulatory capacities of dissolved organic compounds on enzyme reactivity was examined experimentally and coupled to the wetland-littoral organic carbon flux budgets.

  16. Characterization and Gravimetric Analysis of the Dissolved Quartz in the Conversion of Coal Fly Ash to Sodalite

    International Nuclear Information System (INIS)

    Mohd Hilmi Mohamed; Zainab Ramli

    2012-01-01

    Coal fly ash (CFA) is a waste product produced from the electrical power plant and hazardous towards the environment. However, the high composition of silica and alumina in the CFA makes it useful as raw materials in the zeolite synthesis. However, the presence of silica in the form of quartz in the CFA does not facilitate the transformation of CFA to zeolite at 100 degree Celsius and autogeneous pressure. In this study, CFA was converted to zeolites in various NaOH concentrations by microwave heating at various heating time. All synthesized product were characterized by X-ray diffraction (XRD), and gravimetric analysis. XRD has shown that quite pure sodalite in nano size has been formed as early as 15 minutes and increase with time. Prolong heating up to 45 minutes has reduced the content of quartz to ca 20 %. Gravimetric analysis performed on the liquor of the reaction showed that the dissolved silica decrease with increase of heating time indicating that most of the dissolved quartz is used up to form sodalite framework. Hence, quartz of CFA did help in enhancing the crystallinity of the formed sodalite after prolong heating. (author)

  17. Silica fractionation and reactivity in soils

    Science.gov (United States)

    Unzué Belmonte, Dácil; Barão, Lúcia; Vandevenne, Floor; Schoelynck, Jonas; Struyf, Eric; Meire, Patrick

    2014-05-01

    The Si cycle is a globally important biogeochemical cycle, with strong connections to other biogeochemical cycles, including C. Silica is taken up by plants to form protective structures called phytoliths, which become a part of the soil and contribute strongly to soil Si cycling upon litter burial. Different silica fractions are found in soils, with phytoliths among the most easily soluble, especially compared to silicate minerals. A whole set of secondary non-biogenic fractions exist, that also have a high reactivity (adsorbed Si, reactive secondary minerals…). A good characterization of the different fractions of reactive silica is crucial to move forward knowledge on ecosystem Si cycling, which has been recognized in the last decade as crucial for terrestrial Si fluxes. A new method to analyze the different fractions of silica in soils has been described by Koning et al. (2002) and adapted by our research team (Barão et al. 2013). Using a continuous extraction of Si and aluminum in 0.5M NaOH, biogenic and non-biogenic reactive fractions are separated based on their Si/Al ratios and their reactivity in NaOH. Applying this new method I will investigate three emerging ideas on how humans can affect directly terrestrial Si fluxes. -Land use. I expect strong silica fractionation and reactivity differences in different land uses. These effects due to agricultural and forestry management have already been shown earlier in temperate soils (Vandevenne et al. 2012). Now we will test this hypothesis in recently deforested soils, in the south of Brazil. 'Pristine' forest, managed forest and tobacco field soils (with and without rotation crops) will be studied. This research belongs to an interdisciplinary project on soils and global change. -Fire. According to the IPCC report, extreme events such as fires (number and intensity) would increase due to climate change. We analyzed litter from spruce forest, beech forest and peat soils at two burning levels, after 350°C and

  18. Diatomite releases silica during spirit filtration.

    Science.gov (United States)

    Gómez, J; Gil, M L A; de la Rosa-Fox, N; Alguacil, M

    2014-09-15

    The purpose of this study was to ascertain whether diatomite is an inert filter aid during spirit filtration. Surely, any compound with a negative effect on the spirit composition or the consumer's health could be dissolved. In this study different diatomites were treated with 36% vol. ethanol/water mixtures and the amounts and structures of the extracted compounds were determined. Furthermore, Brandy de Jerez was diatomite- and membrane-filtered at different temperatures and the silicon content was analysed. It was found that up to 0.36% by weight of diatomite dissolved in the aqueous ethanol and amorphous silica, in the form of hollow spherical microparticles, was the most abundant component. Silicon concentrations in Brandy de Jerez increased by up to 163.0% after contact with diatomite and these changes were more marked for calcined diatomite. In contrast, reductions of more than 30% in silicon concentrations were achieved after membrane filtration at low temperatures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Properties of silica fume procured from natural diatomite and its usage in the production of vacuum insulation panels

    OpenAIRE

    V.P. Selyaev; V.A. Neverov; O.G. Mashtaev; A.V. Kolotushkin

    2013-01-01

    The article shows the results of the research of silica fume particles procured from diatomite from Atemar deposit by means of separating silicic acid from colloidal dissolved state into the sediment. The objective of the work was to define thermal-physical and structural characteristics of the silica fume. The research included IR-spectrometry, granulometry, thermal gravimetric analysis, X-ray structural analysis, optical microscopy, and small angle X-Ray scattering. As a result of the resea...

  20. Formation of Silica-Lysozyme Composites Through Co-Precipitation and Adsorption

    Directory of Open Access Journals (Sweden)

    Daniela B. van den Heuvel

    2018-04-01

    Full Text Available Interactions between silica and proteins are crucial for the formation of biosilica and the production of novel functional hybrid materials for a range of industrial applications. The proteins control both precipitation pathway and the properties of the resulting silica–organic composites. Here, we present data on the formation of silica–lysozyme composites through two different synthesis approaches (co-precipitation vs. adsorption and show that the chemical and structural properties of these composites, when analyzed using a combination of synchrotron-based scattering (total scattering and small-angle X-ray scattering, spectroscopic, electron microscopy, and potentiometric methods vary dramatically. We document that while lysozyme was not incorporated into nor did its presence alter the molecular structure of silica, it strongly enhanced the aggregation of silica particles due to electrostatic and potentially hydrophobic interactions, leading to the formation of composites with characteristics differing from pure silica. The differences increased with increasing lysozyme content for both synthesis approaches. Yet, the absolute changes differ substantially between the two sets of composites, as lysozyme did not just affect aggregation during co-precipitation but also particle growth and likely polymerization during co-precipitation. Our results improve the fundamental understanding of how organic macromolecules interact with dissolved and nanoparticulate silica and how these interactions control the formation pathway of silica–organic composites from sodium silicate solutions, a widely available and cheap starting material.

  1. Synthesis of poly(ethylene oxide)-silica hybrids

    International Nuclear Information System (INIS)

    Ishak Manaf

    2002-01-01

    A hybrid material incorporating silica networks in poly (ethylene oxide) was produced using the sol-gel process from solution mixtures of poly (ethylene oxide) dissolved in water and partially polymerized tetraethylorthosilicate (TEOS) with and without compatibilisation agent. These mixtures were converted into films by solvent evaporation and drying them in an air-circulating oven at 60 degree C. Depending on the alkoxysilane solution composition and several mixing parameters, different morphologies were obtained, varying from semi-interpenetrating networks of PEO within highly cross linked silica chains, to finely dispersed heterogeneous system exhibiting either co-continuous or particulate microstructure. The influence of pH, type of solvents, mixing temperatures and time, as well as the nature of compatibiliser was found to be extremely important in controlling the morphology and properties of the fine hybrid films. It was found that compatibilisation of PEO-SiO 2 hybrid system is achieved exclusively with the use of γ-glycidyloxypropyltrimethoxysilane (GOTMS) coupling agent. (Author)

  2. Amazon River dissolved load: temporal dynamics and annual budget from the Andes to the ocean.

    Science.gov (United States)

    Moquet, Jean-Sébastien; Guyot, Jean-Loup; Crave, Alain; Viers, Jérôme; Filizola, Naziano; Martinez, Jean-Michel; Oliveira, Tereza Cristina; Sánchez, Liz Stefanny Hidalgo; Lagane, Christelle; Casimiro, Waldo Sven Lavado; Noriega, Luis; Pombosa, Rodrigo

    2016-06-01

    The aim of the present study is to estimate the export fluxes of major dissolved species at the scale of the Amazon basin, to identify the main parameters controlling their spatial distribution and to identify the role of discharge variability in the variability of the total dissolved solid (TDS) flux through the hydrological cycle. Data are compiled from the monthly hydrochemistry and daily discharge database of the "Programa Climatologico y Hidrologico de la Cuenca Amazonica de Bolivia" (PHICAB) and the HYBAM observatories from 34 stations distributed over the Amazon basin (for the 1983-1992 and 2000-2012 periods, respectively). This paper consists of a first global observation of the fluxes and temporal dynamics of each geomorphological domain of the Amazon basin. Based on mean interannual monthly flux calculations, we estimated that the Amazon basin delivered approximately 272 × 10(6) t year(-1) (263-278) of TDS during the 2003-2012 period, which represents approximately 7 % of the continental inputs to the oceans. This flux is mainly made up by HCO3, Ca and SiO2, reflecting the preferential contributions of carbonate and silicate chemical weathering to the Amazon River Basin. The main tributaries contributing to the TDS flux are the Marañon and Ucayali Rivers (approximately 50 % of the TDS production over 14 % of the Amazon basin area) due to the weathering of carbonates and evaporites drained by their Andean tributaries. An Andes-sedimentary area-shield TDS flux (and specific flux) gradient is observed throughout the basin and is first explained by the TDS concentration contrast between these domains, rather than variability in runoff. This observation highlights that, under tropical context, the weathering flux repartition is primarily controlled by the geomorphological/geological setting and confirms that sedimentary areas are currently active in terms of the production of dissolved load. The log relationships of concentration vs discharge have

  3. Study of backfilling of fissures in granite by precipitation of silica

    International Nuclear Information System (INIS)

    Ribstein, A.; Ledoux, E.; Bourg, A.; Oustriere, P.; Sureau, J.F.

    1985-01-01

    The discharge of high-activity radioactive wastes in granitic formations heats the rock in the area of the waste repository. Silica, a constituent of granite, may be dissolved by subterranean water in the heated area and reprecipitated in the colder outer zone. The aim of this study is to quantify this phenomenon experimentally and to assess its extent and effects by means of a numerical model

  4. Analysis of separation quality of scandium-46 and titanium using silica gel column

    International Nuclear Information System (INIS)

    Muhamad Basit Febrian; Yanuar Setiadi; Duyeh Setiawan; Titin Sri Mulyati; Nana Suherman

    2015-01-01

    In this study, quality test of scandium and titanium mixture separation system using a silica gel column has been conducted. This system will be used in the separation of medical radioisotopes of 47 Sc from TiO 2 enriched targets. 20 mg of TiO 2 and 5 mg of Sc 2 O 3 dissolved using 0.5 mL of 50% HF solvent with gentle heating at 60°C - 80°C for 1 hour then 4.5 mL H 2 O was added. Sc and Ti mixture is separated by passing it through a column of silica gel. In the determination of scandium released from silica gel, Sc-46 radiotracer was used. Only 51.60 ± 4.5% of 5 mg of scandium could be retained in the silica gel column. From 51.60% of absorbed scandium in the column, 98.29 ± 3.4% were eluted with 5 mL of H 2 O eluent. During elution of scandium from silica gel column, 2.81 grams of 20 mg of titanium came apart as breakthrough. In determination of recovery of titanium from silica gel, 51.76 ± 5.5% of the 20 mg Ti can be recovered from silica gel column using 5M HCl eluent, whereas remaining Ti were eluted using 40 ml of HCl 5M. Based on those result, it can be concluded that there are still titanium portion in scandium after the separation using a silica gel column. Further purification step using fresh silica gel column, can separate escaped titanium from scandium. (author)

  5. Silica in invasive wetland plant species of lagoons, Côte d'Ivoire: Spatio-temporal patterns

    Science.gov (United States)

    José-mathieu Koné, Yéfanlan; Schoelynck, Jonas

    2017-04-01

    Tropical wetlands are known to accumulate a large quantity of Biogenic Silica (BSi) produced by wetland plant species (Struyf et al., 2015), and approximately 70-80% of the total supply of Dissolved Si (DSi) to the coastal zone occurs in (sub) tropical river systems (Jennerjahn et al. 2006). However, the data at these latitudes are limited. Here, we present the BSi concentration from eleven invasive macrophyte species randomly collected in three small ( 800ha) lagoons of Côte d'Ivoire during 12 months. Our data showed a large spatio-temporal variability of BSi in the three lagoons with no consistent trends. In general, the BSi concentrations obtained were high and values ranged from 0 to 54 mg g-1 through the entire sampling period, with the highest values found in Acroceras zizaniodes (emergent species of Poaceae). In general, free floating species had significantly less BSi than emergent species (Pspecies of fern, Salviniaceae) at the young stage were similar to those found in the emergent species. Based on yearly averages, highest BSi values were observed in Kodjoboué lagoon, and the lowest in the Ono lagoon that is 80% covered by macrophytes. Moreover, the dissolved silica (DSi) concentrations were systematically higher in Ono Lagoon than in Kodjoboué Lagoon. We conclude that in an eutrophic system Si accumulating in aquatic macrophytes is not related to Si availability but to other environmental factors. Jennerjahn, T.C., Knoppers, B.A., de Souze, W.F.L., Brunskill, G.J., Silva, E.I.L., Adi, S. et al., 2006. Factors controlling dissolved silica in tropical rivers. In: Ittekot, V. (ed) The silicon cycle. Island Press, Washington, D. C, pp 29-51 Schoelynck J and Struyf E, 2016. Silicon in aquatic vegetation. Functional Ecology. 30: 1323-1330. Struyf, E., Mosimane, K., Van Pelt, D., Murray-Hudson, M., Meire, P., Frings, P., Wolski, P., Schaller, J., Gondwe, M.J., Schoelynck, J. and Conley, D.J., 2015. The role of vegetation in the Okavango Delta silica sink

  6. On the problem of silica solubility at high pH

    International Nuclear Information System (INIS)

    Eikenberg, J.

    1990-07-01

    The aqueous system Na 2 O-H 2 O-SiO 2 is considered to play an important role when strong alkaline pore waters of a cement based intermediate level radioactive waste repository intrude into the rock formations surrounding the near field. Under such conditions unknown quantities of silica may dissolve. Therefore the pH-dependence of the solubility of amorphous silica and quartz is investigated by a parameter variation study using the geochemical speciation code MINEQL/EIR. Published silica solubility data obtained in sodium hydroxide solutions at 25 and 90 o C are compared with the results of four models which use different proposed values of the rather uncertain equilibrium constants. Of main interest is the question of whether, in a high pH region, the silica solubility can be explained with different monomeric species only, or to what extent additional polymeric silica species have to be considered as well. The solubility of amorphous silica at 25 o C is well understood up to a pH of about 10.5, where it is determined by the solubility product and the first dissociation constant of monomeric silic acid. The most probable cause of the increased solubility of amorphous silica in the region between pH 10.5 and 11.3 is the formation of dimers, trimers and tetramers. Below a total silica concentration of 0.001 M and pH ≤ 10.0, however, polymerisation proves to be insignificant. Besides low temperature studies using amorphous silica, the solubility of quartz has also been measured in NaOH solutions at 90 o C. As is the case at lower temperatures, the reported values for the second dissociation constant at 90 o C scatter widely. It can be shown that in a NaOH medium up to 0.1 M only mononuclear silica species are stable. Therefore it is concluded that the trend of monomers to form polymers decreases strongly with temperature. In strong NaOH solutions at elevated temperatures, silica-sodium ion pairing seems to gain importance. (author) 12 figs., 9 tabs., 65 refs

  7. Enhanced pervaporative desulfurization by polydimethylsiloxane membranes embedded with silver/silica core-shell microspheres

    International Nuclear Information System (INIS)

    Cao Ruijian; Zhang Xiongfei; Wu Hong; Wang Jingtao; Liu Xiaofei; Jiang Zhongyi

    2011-01-01

    Pervaporative desulfurization based on membrane technology provides a promising alternative for removal of sulfur substances (as represented by thiophene) in fluid catalytic cracking (FCC) gasoline. The present study focused on the performance enhancement of polydimethylsiloxane (PDMS) membrane by incorporation of core-shell structured silver/silica microspheres. A silane coupling agent, N-[3-(trimethoxysily)propyl]-ethylenediamine (TSD), was used to chelate the Ag + via its amino groups and attach the silver seeds onto the silica surface via condensation of its methoxyl groups. The resultant microspheres were characterized by Zeta-positron annihilation lifetime spectroscopy (ZetaPALS), inductively coupled plasmaoptical emission spectrophotometer (ICP), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Ag + /SiO 2 -PDMS composite membranes were prepared by blending PDMS with the as-synthesized silver/silica microspheres. PALS analysis was used to correlate the apparent fractional free volume with permeation flux. The sorption selectivity towards thiophene was enhanced after incorporation of silver/silica microspheres due to the π-complexation between the silver on the microsphere surface and the thiophene molecules. The pervaporative desulfurization performance of the composite membrane was investigated using thiophene/n-octane mixture as a model gasoline. The composite membrane exhibited an optimum desulfurization performance with a permeation flux of 7.76 kg/(m 2 h) and an enrichment factor of 4.3 at the doping content of 5%.

  8. Hydrothermal stability of silica, hybrid silica and Zr-doped hybrid silica membranes

    NARCIS (Netherlands)

    ten Hove, Marcel; Luiten-Olieman, Mieke W.J.; Huiskes, Cindy; Nijmeijer, Arian; Winnubst, Louis

    2017-01-01

    Hybrid silica membranes have demonstrated to possess a remarkable hydrothermal stability in pervaporation and gas separation processes allowing them to be used in industrial applications. In several publications the hydrothermal stability of pure silica or that of hybrid silica membranes are

  9. Predicting nitrogen and acidity effects on long-term dynamics of dissolved organic matter

    International Nuclear Information System (INIS)

    Rowe, E.C.; Tipping, E.; Posch, M.; Oulehle, F.; Cooper, D.M.; Jones, T.G.; Burden, A.; Hall, J.; Evans, C.D.

    2014-01-01

    Increases in dissolved organic carbon (DOC) fluxes may relate to changes in sulphur and nitrogen pollution. We integrated existing models of vegetation growth and soil organic matter turnover, acid–base dynamics, and organic matter mobility, to form the ‘MADOC’ model. After calibrating parameters governing interactions between pH and DOC dissolution using control treatments on two field experiments, MADOC reproduced responses of pH and DOC to additions of acidifying and alkalising solutions. Long-term trends in a range of acid waters were also reproduced. The model suggests that the sustained nature of observed DOC increases can best be explained by a continuously replenishing potentially-dissolved carbon pool, rather than dissolution of a large accumulated store. The simulations informed the development of hypotheses that: DOC increase is related to plant productivity increase as well as to pH change; DOC increases due to nitrogen pollution will become evident, and be sustained, after soil pH has stabilised. -- Highlights: • A model of dissolved organic carbon (DOC) was developed by integrating simple models • MADOC simulates effects of sulphur and nitrogen deposition and interactions with pH. • Responses of DOC and pH to experimental acidification and alkalisation were reproduced. • The persistence of DOC increases will depend on continued supply of potential DOC. • DOC fluxes are likely determined by plant productivity as well as soil solution pH. -- Effects of changes in sulphur and nitrogen pollution on dissolved organic carbon fluxes are predicted by simulating soil organic matter cycling, the release of potentially-dissolved carbon, and interactions with soil pH

  10. Fumed silica. Fumed silica

    Energy Technology Data Exchange (ETDEWEB)

    Sukawa, T.; Shirono, H. (Nippon Aerosil Co. Ltd., Tokyo (Japan))

    1991-10-18

    The fumed silica is explained in particulate superfineness, high purity, high dispersiveness and other remarkable characteristics, and wide application. The fumed silica, being presently produced, is 7 to 40nm in average primary particulate diameter and 50 to 380m{sup 2}/g in specific surface area. On the surface, there coexist hydrophilic silanol group (Si-OH) and hydrophobic siloxane group (Si-O-Si). There are many characteristics, mutually different between the fumed silica, made hydrophobic by the surface treatment, and untreated hydrophilic silica. The treated silica, if added to the liquid product, serves as agent to heighten the viscosity, prevent the sedimentation and disperse the particles. The highest effect is given to heighten the viscosity in a region of 4 to 9 in pH in water and alcohol. As filling agent to strengthen the elastomer and polymer, and powder product, it gives an effect to prevent the consolidation and improve the fluidity. As for its other applications, utilization is made of particulate superfineness, high purity, thermal insulation properties and adsorption characteristics. 2 to 3 patents are published for it as raw material of quartz glass. 38 refs., 16 figs., 4 tabs.

  11. Radiolarians decreased silicification as an evolutionary response to reduced Cenozoic ocean silica availability.

    Science.gov (United States)

    Lazarus, David B; Kotrc, Benjamin; Wulf, Gerwin; Schmidt, Daniela N

    2009-06-09

    It has been hypothesized that increased water column stratification has been an abiotic "universal driver" affecting average cell size in Cenozoic marine plankton. Gradually decreasing Cenozoic radiolarian shell weight, by contrast, suggests that competition for dissolved silica, a shared nutrient, resulted in biologic coevolution between radiolaria and marine diatoms, which expanded dramatically in the Cenozoic. We present data on the 2 components of shell weight change--size and silicification--of Cenozoic radiolarians. In low latitudes, increasing Cenozoic export of silica to deep waters by diatoms and decreasing nutrient upwelling from increased water column stratification have created modern silica-poor surface waters. Here, radiolarian silicification decreases significantly (r = 0.91, P stratification and abundance of diatoms. In high southern latitudes, Southern Ocean circulation, present since the late Eocene, maintains significant surface water silica availability. Here, radiolarian silicification decreased insignificantly (r = 0.58, P = 0.1), from approximately 0.13 at 35 Ma to 0.11 today. Trends in shell size in both time series are statistically insignificant and are not correlated with each other. We conclude that there is no universal driver changing cell size in Cenozoic marine plankton. Furthermore, biologic and physical factors have, in concert, by reducing silica availability in surface waters, forced macroevolutionary changes in Cenozoic low-latitude radiolarians.

  12. Dissolved Organic Matter (DOM) Export from Watersheds to Coastal Oceans

    Science.gov (United States)

    Chen, R. F.; Gardner, G. B.; Peri, F.

    2016-02-01

    Dissolved organic matter (DOM) from terrestrial plants and soils is transported by surface waters and groundwaters to coastal ocean waters. Along the way, photochemical and biological degradation can remove DOM, and in situ processes such as phytoplankton leaching and sediment sources can add to the DOM in the river water. Wetlands, especially coastal wetlands can add significant amounts of DOM that is carried by rivers and is exported through estuaries to coastal systems. We will present observational data from a variety of coastal systems (San Francisco Bay, Boston Harbor, Chesapeake Bay, Hudson River, the Mississippi River, and a small salt marsh in the Gulf of Mexico). High resolution measurements of chromophoric dissolved organic matter (CDOM) can be correlated with dissolved organic carbon (DOC) so can be used to estimate DOC in specific systems and seasons. Gradients in CDOM/DOC combined with water fluxes can be used to estimate DOC fluxes from a variety of coastal watersheds to coastal systems. Influences of land use, system size, residence time, DOM quality, and photochemical and biological degradation will be discussed. The significance of coastal wetlands in the land-to-ocean export of DOC will be emphasized.

  13. Sediment-water interactions affecting dissolved-mercury distributions in Camp Far West Reservoir, California

    Science.gov (United States)

    Kuwabara, James S.; Alpers, Charles N.; Marvin-DiPasquale, Mark; Topping, Brent R.; Carter, James L.; Stewart, A. Robin; Fend, Steven V.; Parcheso, Francis; Moon, Gerald E.; Krabbenhoft, David P.

    2003-01-01

    Field and laboratory studies were conducted in April and November 2002 to provide the first direct measurements of the benthic flux of dissolved (0.2-micrometer filtered) mercury species (total and methylated forms) between the bottom sediment and water column at three sampling locations within Camp Far West Reservoir, California: one near the Bear River inlet to the reservoir, a second at a mid-reservoir site of comparable depth to the inlet site, and the third at the deepest position in the reservoir near the dam (herein referred to as the inlet, midreservoir and near-dam sites, respectively; Background, Fig. 1). Because of interest in the effects of historic hydraulic mining and ore processing in the Sierra Nevada foothills just upstream of the reservoir, dissolved-mercury species and predominant ligands that often control the mercury speciation (represented by dissolved organic carbon, and sulfides) were the solutes of primary interest. Benthic flux, sometimes referred to as internal recycling, represents the transport of dissolved chemical species between the water column and the underlying sediment. Because of the affinity of mercury to adsorb onto particle surfaces and to form insoluble precipitates (particularly with sulfides), the mass transport of mercury in mining-affected watersheds is typically particle dominated. As these enriched particles accumulate at depositional sites such as reservoirs, benthic processes facilitate the repartitioning, transformation, and transport of mercury in dissolved, biologically reactive forms (dissolved methylmercury being the most bioavailable for trophic transfer). These are the forms of mercury examined in this study. In contrast to typical scientific manuscripts, this report is formatted in a pyramid-like structure to serve the needs of diverse groups who may be interested in reviewing or acquiring information at various levels of technical detail (Appendix 1). The report enables quick transitions between the initial

  14. Volatile Element Fluxes at Copahue Volcano, Argentina

    Science.gov (United States)

    Varekamp, J. C.

    2002-05-01

    Copahue volcano has a crater lake and acid hot springs that discharge into the Rio Agrio river system. These fluids are very concentrated (up to 6 % sulfate), rich in rock-forming elements (up to 2000 ppm Mg) and small spheres of native sulfur float in the crater lake. The stable isotope composition of the waters (delta 18O =-2.1 to + 3.6 per mille; delta D = -49 to -26 per mille) indicates that the hot spring waters are at their most concentrated about 70% volcanic brine and 30 % glacial meltwater. The crater lake waters have similar mixing proportions but added isotope effects from intense evaporation. Further dilution of the waters in the Rio Agrio gives values closer to local meteoric waters (delta 18O = -11 per mille; delta D = -77 per mille), whereas evaporation in closed ponds led to very heavy water (up to delta 18O = +12 per mille). The delta 34S value of dissolved sulfate is +14.2 per mille, whereas the native sulfur has values of -8.2 to -10.5 per mille. The heavy sulfate probably formed when SO2 disproportionated into bisulfate and native sulfur at about 300 C. We measured the sulfate fluxes in the Rio Agrio, which ranged from 20-40 kilotons S/year. The whole system was releasing sulfur at an equivalent rate of about 250-650 tons SO2/day. From the river flux sulfur values and the stochiometry of the disproportionation reaction we calculated the rate of liquid sulfur storage inside the volcano (6000 m3/year). During the eruptions of 1995/2000, large amounts of that stored liquid sulfur were ejected as pyroclastic sulfur. The calculated rate of rock dissolution (from rock- forming element fluxes in the Rio Agrio) suggests that the void space generated by rock dissolution is largely filled by native sulfur and silica. The S/Cl ratio in the hydrothermal fluids is about 2, whereas glass inclusions have S/Cl = 0.2, indicating the strong preferential degassing of sulfur.

  15. Biochar-Induced Changes in Soil Hydraulic Conductivity and Dissolved Nutrient Fluxes Constrained by Laboratory Experiments

    Science.gov (United States)

    Barnes, Rebecca T.; Gallagher, Morgan E.; Masiello, Caroline A.; Liu, Zuolin; Dugan, Brandon

    2014-01-01

    The addition of charcoal (or biochar) to soil has significant carbon sequestration and agronomic potential, making it important to determine how this potentially large anthropogenic carbon influx will alter ecosystem functions. We used column experiments to quantify how hydrologic and nutrient-retention characteristics of three soil materials differed with biochar amendment. We compared three homogeneous soil materials (sand, organic-rich topsoil, and clay-rich Hapludert) to provide a basic understanding of biochar-soil-water interactions. On average, biochar amendment decreased saturated hydraulic conductivity (K) by 92% in sand and 67% in organic soil, but increased K by 328% in clay-rich soil. The change in K for sand was not predicted by the accompanying physical changes to the soil mixture; the sand-biochar mixture was less dense and more porous than sand without biochar. We propose two hydrologic pathways that are potential drivers for this behavior: one through the interstitial biochar-sand space and a second through pores within the biochar grains themselves. This second pathway adds to the porosity of the soil mixture; however, it likely does not add to the effective soil K due to its tortuosity and smaller pore size. Therefore, the addition of biochar can increase or decrease soil drainage, and suggests that any potential improvement of water delivery to plants is dependent on soil type, biochar amendment rate, and biochar properties. Changes in dissolved carbon (C) and nitrogen (N) fluxes also differed; with biochar increasing the C flux from organic-poor sand, decreasing it from organic-rich soils, and retaining small amounts of soil-derived N. The aromaticity of C lost from sand and clay increased, suggesting lost C was biochar-derived; though the loss accounts for only 0.05% of added biochar-C. Thus, the direction and magnitude of hydraulic, C, and N changes associated with biochar amendments are soil type (composition and particle size) dependent

  16. Riverine dissolved carbon concentration and yield in subtropical catchments, Taiwan

    Science.gov (United States)

    Chen, Pei-Hao; Shih, Yu-ting; Huang, -Chuan, Jr.

    2017-04-01

    Dissolved carbon is not highly correlated to carbon cycle, but also a critical water quality indicator and affected by interaction of terrestrial and aquatic environment at catchment scale. However, the rates and extent of the dissolved carbon export are still poorly understood and scarcely quantified especially for typhoon events. In this study, regular and events' data of riverine dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) were monitored to estimate the export. Meanwhile, the hydrological model and mixing model were used for determination of DOC and DIC flow pathways at 3 sites of Tsengwen reservoir in southern Taiwan in 2014-2015. Results showed that the mean DOC concentration was 1.5 - 2.2 mg l-1 (flow weighted) without seasonal variation. The average DOC yield was 3.1 ton-C km-2 yr-1. On the other hand, DIC concentration ranged from 15 to 25.8 mg l-1, but DIC concentration in dry season was higher than wet season. Mean annual DIC yield was 51 ton-C km-2 yr-1. The export-ratio of DOC:DIC was 1:16.5, which was extremely lower than that of worldwide large rivers (DOC:DIC=1:4.5 in average) and other mountainous rivers (DOC:DIC=1:4.6 in average). Both DOC and DIC concentration showed the dramatically discrepant change in typhoon events. The DOC concentration increased to 4-8 folds rapidly before the flood peak. However, DIC concentration was diluted to one third with discharge simultaneously and returned slowly to base concentration in more than a week. According to the hydrological model, events contributed 14.6% of the annual discharge and 21.9% and 11.1% of DOC and DIC annual flux, respectively. Furthermore, 68.9% of events' discharge derived from surface runoff which carried out 91.3% of DOC flux and 51.1% of DIC flux. It implied that increases of surface runoff transported DOC form near soil surface, but diluted DIC concentration likely implied the contribution of groundwater. Our study characterized the specialty of dissolved carbon

  17. Silica colloids and their effect on radionuclide sorption. A literature review

    International Nuclear Information System (INIS)

    Hoelttae, P.; Hakanen, M.

    2008-05-01

    Silica sol, commercial colloidal silica manufactured by Eka Chemicals in Bohus, Sweden is a promising inorganic grout material for sealing small fractures in low permeable rock. This literature review collects information about the use of silica sol as an injection grout material, the properties of inorganic, especially silica colloids, colloid contents in granitic groundwater conditions, essential characterization methods and colloid-mediated transport of radionuclides. Objective was to evaluate the release and mobility of silica sol colloids, the effect of the groundwater conditions, the amount of colloids compared with natural colloids in Olkiluoto conditions, radionuclide sorption on colloids and their contribution to radionuclide transport. Silica sol seems to be a feasible material to seal fractures with an aperture as small as 10 μm in low permeable rock. The silica sol gel is sufficiently stable to limit to water ingress during the operational phase, the requirement that the pH should be below 11 is fulfilled and the compatibility with Engineered Barrier System (EBS) materials is expected to be good. No significant influence on the bentonite properties caused by the silica sol is expected when calcium chloride is used as an accelerator but the influence of sodium chloride has not been examined. No significant release of colloids is expected under prevailing groundwater conditions. The long-term (100 y) stability of silica sol gel has not yet been clearly demonstrated and a long-term release of silica colloids cannot be excluded. The question is the amount of colloids, how mobile they are and the influence of possible glacial melt waters. The bentonite buffer used in the EBS system is assumed to be a potential source of colloids. In a study in Olkiluoto, bentonite colloids were found only in low salinity groundwater. In general, low salinity water (total dissolved solids -1 ) favours colloid stability and bentonite colloids can remain stable over long

  18. Organic matter sources, fluxes and greenhouse gas exchange in the Oubangui River (Congo River basin)

    Science.gov (United States)

    Bouillon, S.; Yambélé, A.; Spencer, R. G. M.; Gillikin, D. P.; Hernes, P. J.; Six, J.; Merckx, R.; Borges, A. V.

    2012-06-01

    The Oubangui is a major tributary of the Congo River, draining an area of ~500 000 km2 mainly consisting of wooded savannahs. Here, we report results of a one year long, 2-weekly sampling campaign in Bangui (Central African Republic) since March 2010 for a suite of physico-chemical and biogeochemical characteristics, including total suspended matter (TSM), bulk concentration and stable isotope composition of particulate organic carbon (POC and δ13CPOC), particulate nitrogen (PN and δ15NPN), dissolved organic carbon (DOC and δ13CDOC), dissolved inorganic carbon (DIC and δ13CDIC), dissolved greenhouse gases (CO2, CH4 and N2O), and dissolved lignin composition. δ13C signatures of both POC and DOC showed strong seasonal variations (-30.6 to -25.8‰, and -31.8 to -27.1‰, respectively), but their different timing indicates that the origins of POC and DOC may vary strongly over the hydrograph and are largely uncoupled, differing up to 6‰ in δ13C signatures. Dissolved lignin characteristics (carbon-normalised yields, cinnamyl:vanillyl phenol ratios, and vanillic acid to vanillin ratios) showed marked differences between high and low discharge conditions, consistent with major seasonal variations in the sources of dissolved organic matter. We observed a strong seasonality in pCO2, ranging between 470 ± 203 ppm for Q production may be high enough to dominate the particulate organic carbon pool, and lower pCO2 values to near equilibrium values during low discharge conditions. The total annual flux of TSM, POC, PN, DOC and DIC are 2.33 Tg yr-1, 0.14 Tg C yr-1, 0.014 Tg N yr-1, 0.70 Tg C yr-1, and 0.49 Tg C yr-1, respectively. While our TSM and POC fluxes are similar to previous estimates for the Oubangui, DOC fluxes were ~30% higher and bicarbonate fluxes were ~35% lower than previous reports. DIC represented 58% of the total annual C flux, and under the assumptions that carbonate weathering represents 25% of the DIC flux and that CO2 from respiration drives

  19. Changing fluxes of carbon and other solutes from the Mekong River.

    Science.gov (United States)

    Li, Siyue; Bush, Richard T

    2015-11-02

    Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world's largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923-2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO4(2-), Cl(-) and Na(+). The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3(-) (23.4) > Ca(2+) (6.4) > SO4(2-) (3.8) > Cl(-) (1.74)~Na(+) (1.7) ~ Si (1.67) > Mg(2+) (1.2) > K(+ 0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3(-) and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3(-) flux (Himalayan Rivers included) is 34,014 × 10(9) mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3(-), and 13,553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling.

  20. Alumina plate containing photosystem I reaction center complex oriented inside plate-penetrating silica nanopores.

    Science.gov (United States)

    Kamidaki, Chihiro; Kondo, Toru; Noji, Tomoyasu; Itoh, Tetsuji; Yamaguchi, Akira; Itoh, Shigeru

    2013-08-22

    The photosynthetic photosystem I reaction center complex (PSI-RC), which has a molecular diameter of 21 nm with 100 pigments, was incorporated into silica nanopores with a 100-nm diameter that penetrates an alumina plate of 60-μm thickness to make up an inorganic-biological hybrid photocell. PSI-RCs, purified from a thermophilic cyanobacterium, were stable inside the nanopores and rapidly photoreduced a mediator dye methyl viologen. The reduced dye was more stable inside nanopores suggesting the decrease of dissolved oxygen. The analysis by a cryogenic electron spin paramagnetic resonance indicated the oriented arrangement of RCs inside the 100-nm nanopores, with their surface parallel to the silica wall and perpendicular to the plane of the alumina plate. PSI RC complex in the semicrystalline orientation inside silica nanopores can be a new type of light energy conversion unit to supply strong reducing power selectively to other molecules inside or outside nanopores.

  1. Synthesis of cristobalite from silica sands of Tuban and Tanah Laut

    Science.gov (United States)

    Nurbaiti, U.; Pratapa, S.

    2018-03-01

    Synthesis of SiO2 cristobalite powders has been successfully carried out by a coprecipitation method by making use of local silica sands from districts of Tuban and Tanah Laut, Indonesia. Cristobalite is a phase of SiO2 polymorphs which can be used as a composite filler, a coating material, a surface finishing media, and structural ceramics. In the first stage of the synthesis, the as-received sands were processed by a magnetic separation, grinding, and soaking with HCl to increase the purity of silica content. X-ray fluorescence (XRF) spectroscopy showed that the atomic content of Si (excluding oxygen) in both powders reached 95.3 and 97.4%. A coprecipitation process was then performed by dissolving the silica powders in a 7M NaOH solution followed by a titration with 2M HCl to achieve a normal pH and to form a gel. Furthermore, the silica gel is washed, dried and then calcined at a temperature of between 950-1200 °C with a variation of holding time for 1, 4 dan 10 hrs to produce white powders. X-ray diffraction (XRD) data analyses showed that the powder with calcination temperature of 1150 °C for 4 hrs exhibited the highest cristobalite content of up to 95wt%. Its scanning electron microscopy (SEM) image showed that its grain morphology was relatively homogeneous.

  2. Distribution and flux of 226Ra and 228Ra in the Amazon River estuary

    International Nuclear Information System (INIS)

    Key, R.M.; Sarmiento, J.L.; Stallard, R.F.; Moore, W.S.

    1985-01-01

    Measurements of 226 Ra and 228 Ra in the Amazon River estuary show that desorption from riverborne suspended particulate matter in the estuary increases the riverine flux of both isotopes to the ocean by a factor of approximately 5 over the flux attributable to radium dissolved in the river water alone. The total Amazon flux supplies approximately 0.20% of the 226 Ra and approximately 2.6% of the 228 Ra standing crops in the near-surface Atlantic (0-200 m). Diffusive flux from estuarine and shelf sediments and desorption from resuspended sediments in the region of the estuary approximately double the estuarine 226 Ra concentration and quadruple the estuarine 228 Ra concentration above that caused by the dissolved and desorbed river components alone

  3. Dissolution of biogenic silica: Roles of pH, salinity, pressure, electrical charging and reverse weathering. Geologica Ultraiectina (302)

    NARCIS (Netherlands)

    Loucaides, S.

    2009-01-01

    The recycling of biogenic silica (bSiO2) produced by diatoms is a vital process sustaining a significant fraction of primary production in the oceans. The efficiency with which bSiO2 dissolves controls the availability of nutrient silicon in the water column, and modulates the export of organic

  4. The hydrogen-storing microporous silica 'Microcluster' reduces acetaldehyde contained in a distilled spirit.

    Science.gov (United States)

    Kato, Shinya; Miwa, Nobuhiko

    2016-12-01

    Acetaldehyde is a detrimental substance produced in alcoholic liquor aging. We assessed an ability of hydrogen-storing microporous silica 'Microcluster' (MC+) to reduce acetaldehyde, as compared with autoclave-dehydrogenated MC+ (MC-). Acetaldehyde was quantified spectrophotometrically by an enzymatic method. Authentic acetaldehyde was treated by MC+ for 20min, and decreased from 43.4ppm to 10.9ppm, but maintained at 49.3ppm by MC-. On the other hand, acetaldehyde contained in a distilled spirit was decreased from 29.5ppm to 3.1ppm at 20min by MC+, but not decreased by MC-. Addition of MC+ or MC- to distilled water without acetaldehyde showed no seeming effect on the quantification used. Accordingly acetaldehyde in a distilled spirit is reduced to ethanol by hydrogen contained in MC+, but not by the silica moiety of MC+. Hydrogen gas of 1.2mL was released for 20min from MC+ of 0.59g in water, resulting in dissolved hydrogen of 1.09ppm and an oxidation- reduction potential of -687.0mV indicative of a marked reducing ability. Thus, MC+ has an ability to reduce acetaldehyde in a distilled spirit due to dissolved hydrogen released from MC+. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes

    Science.gov (United States)

    Bennett, Sarah A.; Achterberg, Eric P.; Connelly, Douglas P.; Statham, Peter J.; Fones, Gary R.; German, Christopher R.

    2008-06-01

    We have conducted a study of hydrothermal plumes overlying the Mid-Atlantic Ridge near 5° S to investigate whether there is a significant export flux of dissolved Fe from hydrothermal venting to the oceans. Our study combined measurements of plume-height Fe concentrations from a series of 6 CTD stations together with studies of dissolved Fe speciation in a subset of those samples. At 2.5 km down plume from the nearest known vent site dissolved Fe concentrations were ˜ 20 nM. This is much higher than would be predicted from a combination of plume dilution and dissolved Fe(II) oxidation rates, but consistent with stabilisation due to the presence of organic Fe complexes and Fe colloids. Using Competitive Ligand Exchange-Cathodic Stripping Voltammetry (CLE-CSV), stabilised dissolved Fe complexes were detected within the dissolved Fe fraction on the edges of one non-buoyant hydrothermal plume with observed ligand concentrations high enough to account for stabilisation of ˜ 4% of the total Fe emitted from the 5° S vent sites. If these results were representative of all hydrothermal systems, submarine venting could provide 12-22% of the global deep-ocean dissolved Fe budget.

  6. Silica Nephropathy

    Directory of Open Access Journals (Sweden)

    N Ghahramani

    2010-06-01

    Full Text Available Occupational exposure to heavy metals, organic solvents and silica is associated with a variety of renal manifestations. Improved understanding of occupational renal disease provides insight into environmental renal disease, improving knowledge of disease pathogenesis. Silica (SiO2 is an abundant mineral found in sand, rock, and soil. Workers exposed to silica include sandblasters, miners, quarry workers, masons, ceramic workers and glass manufacturers. New cases of silicosis per year have been estimated in the US to be 3600–7300. Exposure to silica has been associated with tubulointerstitial disease, immune-mediated multisystem disease, chronic kidney disease and end-stage renal disease. A rare syndrome of painful, nodular skin lesions has been described in dialysis patients with excessive levels of silicon. Balkan endemic nephropathy is postulated to be due to chronic intoxication with drinking water polluted by silicates released during soil erosion. The mechanism of silica nephrotoxicity is thought to be through direct nephrotoxicity, as well as silica-induced autoimmune diseases such as scleroderma and systemic lupus erythematosus. The renal histopathology varies from focal to crescentic and necrotizing glomerulonephritis with aneurysm formation suggestive of polyarteritis nodosa. The treatment for silica nephrotoxicity is non-specific and depends on the mechanism and stage of the disease. It is quite clear that further research is needed, particularly to elucidate the pathogenesis of silica nephropathy. Considering the importance of diagnosing exposure-related renal disease at early stages, it is imperative to obtain a thorough occupational history in all patients with renal disease, with particular emphasis on exposure to silica, heavy metals, and solvents.

  7. Technical Note: Mesocosm approach to quantify dissolved inorganic carbon percolation fluxes

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jessen, S.; Ambus, Per

    2014-01-01

    unplanted soil. Carbon dioxide partial pressure (pCO(2)), alkalinity, soil moisture and temperature were measured with depth and time, and DIC in the percolate was quantified using a sodium hydroxide trap. Results showed good reproducibility between two replicate mesocosms. The pCO(2) varied between 0.......2 and 1.1 %, and the alkalinity was 0.1-0.6 meq L-1. The measured cumulative effluent DIC flux over the 78-day experimental period was 185-196 mg L-1 m(-2) and in the same range as estimates derived from pCO(2) and alkalinity in samples extracted from the side of the mesocosm column and the drainage flux...

  8. Seasonal Variation and Sources of Dissolved Nutrients in the Yellow River, China

    Directory of Open Access Journals (Sweden)

    Yao Gong

    2015-08-01

    Full Text Available The rapid growth of the economy in China has caused dramatic growth in the industrial and agricultural development in the Yellow River (YR watershed. The hydrology of the YR has changed dramatically due to the climate changes and water management practices, which have resulted in a great variation in the fluxes of riverine nutrients carried by the YR. To study these changes dissolved nutrients in the YR were measured monthly at Lijin station in the downstream region of the YR from 2002 to 2004. This study provides detailed information on the nutrient status for the relevant studies in the lower YR and the Bohai Sea. The YR was enriched in nitrate (average 314 μmol·L−1 with a lower concentration of dissolved silicate (average 131 μmol·L−1 and relatively low dissolved phosphate (average 0.35 μmol·L−1. Nutrient concentrations exhibited substantial seasonal and yearly variations. The annual fluxes of dissolved inorganic nitrogen, phosphate, and silicate in 2004 were 5.3, 2.5, and 4.2 times those in 2002, respectively, primarily due to the increase in river discharge. The relative contributions of nutrient inputs to nitrogen in the YR were: wastewater > fertilizer > atmospheric deposition > soil; while to phosphorus were: wastewater > fertilizer > soil > atmospheric deposition. The ratios of N, P and Si suggest that the YR at Lijin is strongly P-limited with respect to potential phytoplankton growth.

  9. Aqueous Hybrids of Silica Nanoparticles and Hydrophobically Associating Hydrolyzed Polyacrylamide Used for EOR in High-Temperature and High-Salinity Reservoirs

    Directory of Open Access Journals (Sweden)

    Dingwei Zhu

    2014-06-01

    Full Text Available Water-soluble polymers are known to be used in chemically enhanced oil recovery (EOR processes, but their applications are limited in high-temperature and high-salinity oil reservoirs because of their inherent poor salt tolerance and weak thermal stability. Hydrophobic association of partially hydrolyzed polyacryamide (HAHPAM complexed with silica nanoparticles to prepare nano-hybrids is reported in this work. The rheological and enhanced oil recovery (EOR properties of such hybrids were studied in comparison with HAHPAM under simulated high-temperature and high-salinity oil reservoir conditions (T: 85 °C; total dissolved solids: 32,868 mg∙L−1; [Ca2+] + [Mg2+]: 873 mg∙L−1. It was found that the apparent viscosity and elastic modulus of HAHPAM solutions increased with addition of silica nanoparticles, and HAHPAM/silica hybrids exhibit better shear resistance and long-term thermal stability than HAHPAM in synthetic brine. Moreover, core flooding tests show that HAHPAM/silica hybrid has a higher oil recovery factor than HAHPAM solution.

  10. Demonstration and Validation of a Fractured Rock Passive Flux Meter

    Science.gov (United States)

    2015-04-01

    sludge disposal area and received waste water containing dissolved TCE (Strategic Environmental Research and Development Program [SERDP] project ER...visit, water level measurements, contaminant sampling and analysis, sample shipping, analytical laboratory costs, and residual waste handling. The...measurements and visual results for Tests F, G, and H comparing vertical distribution of water flux (specific discharge), contaminant flux and presence of

  11. Some Durability Characteristics of Micro Silica and Nano Silica Contained Concrete

    Directory of Open Access Journals (Sweden)

    Mohammed Salah Nasr

    2016-12-01

    Full Text Available This paper aims to investigate the influence of replacement of cement with nano and micro silica admixtures on some durability properties of concrete such as water absorption, chloride content and pH tests. Three replacement ratios (5%,10%,15% of micro silica and four replacement proportions (0.5%,1.5%,3%,5% for nano silica were used in this study. Two exposure conditions were considered for chloride content test: wetting-drying and full immersing exposure in 6% of chloride ions solution, NaCl type. Results showed that mixes of %5 micro silica and 5% nano silica had lower content of chloride (about 0.19% and 0.18% for wetting-drying and full immersing exposure respectively. For water absorption test, all mixes incorporated micro and nano silica, except for %5 micro silica mix, showed lower absorption than control mixes. For pH test, results indicated that the adding of nano and micro silica didn’t affect adversely the alkalinity of concrete.

  12. [Distributions and air-sea fluxes of dissolved nitrous oxide in the Yangtze River estuary and its adjacent marine area in spring and summer].

    Science.gov (United States)

    Wang, Lan; Zhang, Gui-ling; Sun, Ming-shuang; Ren, Jing-ling

    2014-12-01

    Distributions and air-sea fluxes of nitrous oxide (N2O) in the seawaters of the Yangtze River estuary and its adjacent marine area were investigated during two cruises in March and July 2012. Dissolved N2O concentrations in surface waters ranged from 9.34 to 49.08 nmol x L(-1) with an average of (13.27 ± 6.40) nmol x L(-1) in spring and ranged from 7.27 to 27.81 nmol x L(-1) with an average of (10.62 ± 5.03) nmol x L(-1) in summer. There was no obvious difference between surface and bottom N2O concentrations. N2O concentrations in both surface and bottom waters decreased along the freshwater plume from the river mouth to the open sea. High values of dissolved N2O were found in turbidity maximum zone, which suggests that maximal turbidity enhances nitrification. Temperature had dual effects on dissolved N2O concentrations. N2O saturations in surface waters ranged from 86.9% to 351.3% with an average of (111.5 ± 41.4)% in spring and ranged from 111.7% to 396.0% with an average of (155.9 ± 68.4)% in summer. N2O were over-saturated at most stations. The sea-to-air fluxes of N2O were estimated to be (3.2 ± 10.9), (5.5 ± 19.3) and (12.2 ±52.3) μmol x (m2 x d)(-1) in spring and (7.3 ± 12.4), (12.7 ± 20.4) and (20.4 ± 35.9) μmol x (m2 x d)(-1) in summer using the LM86, W92 and RC01 relationships, respectively. The annual emissions of N2O from the Yangtze River estuary and its adjacent marine area were estimated to be 0.6 x 10(-2) Tg x a(-1) (LM86), 1.1 x 10(-2) Tg x a(-1) (W92) and 2.0 x 10(-2) Tg x a(-1) (RC01). Although the area of the Yangtze River estuary and its adjacent marine area only accounts for 0.02% of the total area of the world's oceans, their emission of N2O accounts for 0.06% of global oceanic N2O emission, indicating that the Yangtze River estuary and its adjacent marine area is an active area to produce and emit N2O.

  13. Effects of ocean acidification and hydrodynamic conditions on carbon metabolism and dissolved organic carbon (DOC) fluxes in seagrass populations.

    Science.gov (United States)

    Egea, Luis G; Jiménez-Ramos, Rocío; Hernández, Ignacio; Bouma, Tjeerd J; Brun, Fernando G

    2018-01-01

    Global change has been acknowledged as one of the main threats to the biosphere and its provision of ecosystem services, especially in marine ecosystems. Seagrasses play a critical ecological role in coastal ecosystems, but their responses to ocean acidification (OA) and climate change are not well understood. There have been previous studies focused on the effects of OA, but the outcome of interactions with co-factors predicted to alter during climate change still needs to be addressed. For example, the impact of higher CO2 and different hydrodynamic regimes on seagrass performance remains unknown. We studied the effects of OA under different current velocities on productivity of the seagrass Zostera noltei, using changes in dissolved oxygen as a proxy for the seagrass carbon metabolism, and release of dissolved organic carbon (DOC) in a four-week experiment using an open-water outdoor mesocosm. Under current pH conditions, increasing current velocity had a positive effect on productivity, but this depended on shoot density. However, this positive effect of current velocity disappeared under OA conditions. OA conditions led to a significant increase in gross production rate and respiration, suggesting that Z. noltei is carbon-limited under the current inorganic carbon concentration of seawater. In addition, an increase in non-structural carbohydrates was found, which may lead to better growing conditions and higher resilience in seagrasses subjected to environmental stress. Regarding DOC flux, a direct and positive relationship was found between current velocity and DOC release, both under current pH and OA conditions. We conclude that OA and high current velocity may lead to favourable growth scenarios for Z. noltei populations, increasing their productivity, non-structural carbohydrate concentrations and DOC release. Our results add new dimensions to predictions on how seagrass ecosystems will respond to climate change, with important implications for the

  14. Effects of ocean acidification and hydrodynamic conditions on carbon metabolism and dissolved organic carbon (DOC fluxes in seagrass populations.

    Directory of Open Access Journals (Sweden)

    Luis G Egea

    Full Text Available Global change has been acknowledged as one of the main threats to the biosphere and its provision of ecosystem services, especially in marine ecosystems. Seagrasses play a critical ecological role in coastal ecosystems, but their responses to ocean acidification (OA and climate change are not well understood. There have been previous studies focused on the effects of OA, but the outcome of interactions with co-factors predicted to alter during climate change still needs to be addressed. For example, the impact of higher CO2 and different hydrodynamic regimes on seagrass performance remains unknown. We studied the effects of OA under different current velocities on productivity of the seagrass Zostera noltei, using changes in dissolved oxygen as a proxy for the seagrass carbon metabolism, and release of dissolved organic carbon (DOC in a four-week experiment using an open-water outdoor mesocosm. Under current pH conditions, increasing current velocity had a positive effect on productivity, but this depended on shoot density. However, this positive effect of current velocity disappeared under OA conditions. OA conditions led to a significant increase in gross production rate and respiration, suggesting that Z. noltei is carbon-limited under the current inorganic carbon concentration of seawater. In addition, an increase in non-structural carbohydrates was found, which may lead to better growing conditions and higher resilience in seagrasses subjected to environmental stress. Regarding DOC flux, a direct and positive relationship was found between current velocity and DOC release, both under current pH and OA conditions. We conclude that OA and high current velocity may lead to favourable growth scenarios for Z. noltei populations, increasing their productivity, non-structural carbohydrate concentrations and DOC release. Our results add new dimensions to predictions on how seagrass ecosystems will respond to climate change, with important

  15. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange

    Science.gov (United States)

    Fitzsimmons, Jessica N.; John, Seth G.; Marsay, Christopher M.; Hoffman, Colleen L.; Nicholas, Sarah L.; Toner, Brandy M.; German, Christopher R.; Sherrell, Robert M.

    2017-02-01

    Hydrothermally sourced dissolved metals have been recorded in all ocean basins. In the oceans' largest known hydrothermal plume, extending westwards across the Pacific from the Southern East Pacific Rise, dissolved iron and manganese were shown by the GEOTRACES program to be transported halfway across the Pacific. Here, we report that particulate iron and manganese in the same plume also exceed background concentrations, even 4,000 km from the vent source. Both dissolved and particulate iron deepen by more than 350 m relative to 3He--a non-reactive tracer of hydrothermal input--crossing isopycnals. Manganese shows no similar descent. Individual plume particle analyses indicate that particulate iron occurs within low-density organic matrices, consistent with its slow sinking rate of 5-10 m yr-1. Chemical speciation and isotopic composition analyses reveal that particulate iron consists of Fe(III) oxyhydroxides, whereas dissolved iron consists of nanoparticulate Fe(III) oxyhydroxides and an organically complexed iron phase. The descent of plume-dissolved iron is best explained by reversible exchange onto slowly sinking particles, probably mediated by organic compounds binding iron. We suggest that in ocean regimes with high particulate iron loadings, dissolved iron fluxes may depend on the balance between stabilization in the dissolved phase and the reversibility of exchange onto sinking particles.

  16. Towards an understanding of feedbacks between plant productivity, acidity and dissolved organic matter

    Science.gov (United States)

    Rowe, Ed; Tipping, Ed; Davies, Jessica; Monteith, Don; Evans, Chris

    2014-05-01

    The recent origin of much dissolved organic carbon (DOC) (Tipping et al., 2010) implies that plant productivity is a major control on DOC fluxes. However, the flocculation, sorption and release of potentially-dissolved organic matter are governed by pH, and widespread increases in DOC concentrations observed in northern temperate freshwater systems seem to be primarily related to recovery from acidification (Monteith et al., 2007). We explore the relative importance of changes in productivity and pH using a model, MADOC, that incorporates both these effects (Rowe et al., 2014). The feedback whereby DOC affects pH is included. The model uses an annual timestep and relatively simple flow-routing, yet reproduces observed changes in DOC flux and pH in experimental (Evans et al., 2012) and survey data. However, the first version of the model probably over-estimated responses of plant productivity to nitrogen (N) deposition in upland semi-natural ecosystems. There is a strong case that plant productivity is an important regulator of DOC fluxes, and theoretical reasons for suspecting widespread productivity increases in recent years due not only to N deposition but to temperature and increased atmospheric CO2 concentrations. However, evidence that productivity has increased in upland semi-natural ecosystems is sparse, and few studies have assessed the major limitations to productivity in these habitats. In systems where phosphorus (P) limitation prevails, or which are co-limited, productivity responses to anthropogenic drivers will be limited. We present a revised version of the model that incorporates P cycling and appears to represent productivity responses to atmospheric N pollution more realistically. Over the long term, relatively small fluxes of nutrient elements into and out of ecosystems can profoundly affect productivity and the accumulation of organic matter. Dissolved organic N (DON) is less easily intercepted by plants and microbes than mineral N, and DON

  17. Preliminary analysis of geothermal aspects of Brazilian thermal spring

    International Nuclear Information System (INIS)

    Hurter, S.J.; Hamza, V.M.

    1982-01-01

    Information on more than 400 geothermal springs in Brazil has been assembled. On the basis of the data colected the temperatures at the maximum depths of circulation of spring waters are calculated using the quality of silica dissolved in water. For some thermal springs temperatures are calculated on the basis of silica determination carrried out by us. Applying linear relations between silica temperature and geothermal flux the average depths of water circulation in the Parana Basin and the Brazilian folded belts surrounding the San Francisco craton are calculated. The radioactivity of the water, derived mainly from the dissolved radon can be correlated with the temperature of the spring. An inverse correlation, as was observed for thermal springs of Pocos de Caldas, can be used to calculate the ascent velocity of thermal waters, where as, a positive correlations could be interpreted as due to the mixing of thermal with surface waters. (Author) [pt

  18. Microporous silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  19. Application of in situ observations, high frequency radars, and ocean color, to study suspended matter, particulate carbon, and dissolved organic carbon fluxes in coastal waters of the Barents Sea - the NORDFLUX project

    Science.gov (United States)

    Stramska, Malgorzata; Yngve Børsheim, Knut; Białogrodzka, Jagoda; Cieszyńska, Agata; Ficek, Dariusz; Wereszka, Marzena

    2016-04-01

    There is still a limited knowledge about suspended and dissolved matter fluxes transported from coastal regions into the open sea regions in the Arctic. The land/sea interface is environmentally important and sensitive to climate change. Important biogeochemical material entering the oceans (including carbon) passes through this interface, but too little is known about the efficiency of this transport. Our goal in the NORDFLUX program is to improve quantitative understanding of the environmental feedbacks involved in these processes through an interdisciplinary study with innovative in situ observations. Completed work includes two in situ experiments in the Norwegian fiord (Porsangerfjorden) in the summers of 2014 and 2015. Experiments used research boat for collection of water samples and in situ bio-optical data, an autonomous glider, mooring with T S sensors, and a high frequency radar system. We have used these data to derive spatial maps of water temperature, salinity, surface currents, chlorophyll fluorescence, dissolved organic matter (DOM) fluorescence, and inherent optical properties (IOPs) of the water. The interpretation of these data in terms of suspended matter concentration and composition is possible by in situ 'calibrations' using water samples from discrete hydrographic stations. Total suspended matter (TSM), particulate carbon (POC and PIC), and dissolved organic carbon (DOC) concentrations together with measured water currents will allow us to estimate reservoirs and fluxes. Concentrations and fluxes will be related to physical conditions and meteorological data. An important aspect of this project is the work on regional ocean color algorithms. Global ocean color (OC) algorithms currently used by NASA do not perform sufficiently well in coastal Case 2 waters. Our data sets will allow us to derive such local algorithms. We will then use these algorithms for interpretation of OC data in terms of TSM concentrations and composition and DOC. After

  20. Dissolved air flotation of polishing wastewater from semiconductor manufacturer.

    Science.gov (United States)

    Liu, J C; Lien, C Y

    2006-01-01

    The feasibility of the dissolved air flotation (DAF) process in treating chemical mechanical polishing (CMP) wastewater was evaluated in this study. Wastewater from a local semiconductor manufacturer was sampled and characterised. Nano-sized silica (77.6 nm) with turbidity of 130 +/- 3 NTU was found in the slightly alkaline wastewater with traces of other pollutants. Experimental results indicated removal efficiency of particles, measured as suspended particle or turbidity, increased with increasing concentration of cationic collector cetyltrimethyl ammonium bromide (CTAB). When CTAB concentration was 30 mg/L, pH of 6.5 +/- 0.1 and recycle ratio of 30%, very effective removal of particles (> 98%) was observed in saturation pressure range of 4 to 6 kg/cm2, and the reaction proceeded faster under higher pressure. Similarly, the reaction was faster under the higher recycle ratio, while final removal efficiency improved slightly as the recycle ratio increased from 20 to 40%. An insignificant effect of pH on treatment efficiency was found as pH varied from 4.5 to 8.5. The presence of activator, Al3+ and Fe3+, enhanced the system performance. It is proposed that CTAB adsorbs on silica particles in polishing wastewater through electrostatic interaction and makes particles more hydrophobic. The increase in hydrophobicity results in more effective bubble-particle collisions. In addition, flocculation of silica particles through bridging effect of collector was found; it is believed that flocculation of particles also contributed to flotation. Better attachment between gas bubble and solid, higher buoyancy and higher air to solid ratio all lead to effective flotation.

  1. Seasonality and flux estimates of dissolved organic carbon in tidal wetlands and estuaries in the U.S. Mid- Atlantic Bight and Gulf of Mexico from ocean color

    Science.gov (United States)

    Cao, F.; Tzortziou, M.; Hu, C.; Najjar, R.

    2016-02-01

    Tidal wetlands and estuaries are dynamic features of coastal ocean and play critical roles in the global carbon cycle. Exchanges of dissolved organic carbon (DOC) between tidal wetlands and adjacent estuaries have important implications for carbon sequestration in tidal wetlands as well as biogeochemical cycling of wetlands derived material in the coastal zones. Recent studies demonstrated that the absorption coefficients of chromophoric dissolved organic matter at λ= 275 and 295 nm, which can be derived from satellite ocean color observations, can be used to accurately retrieve dissolved organic carbon (DOC) in some coastal waters. Based on a synthesis of existing field observations collected covering wide spatial and temporal variability in the Mid-Atlantic Bight and the Gulf of Mexico, here we developed and validated new empirical models to estimate coastal DOC from remotely sensed bio-optical properties of the surface water. We focused on the interfaces between tidal wetland-estuary and estuary-shelf water domains. The DOC algorithms were applied to SeaWiFs and MODIS observations to generate long-term climatological DOC distributions from 1998 to 2014. Empirical orthogonal function analysis revealed strong seasonality and spatial gradients in the satellite retrieved DOC in the tidal wetlands and estuaries. Combined with field observations and biogeochemical models, satellite retrievals can be used to scale up carbon fluxes from individual marshes and sub-estuaries to the whole estuarine system, and improve understanding of biogeochemical exchanges between terrestrial and aquatic ecosystems.

  2. Human impact on the historical change of CO2 degassing flux in River Changjiang

    Directory of Open Access Journals (Sweden)

    Zhang Jing

    2007-08-01

    Full Text Available Abstract The impact of water quality changes in River Changjiang (formally known as the Yangtze River on dissolved CO2 and silicate concentrations and seasonal carbon flux in the past several decades (1960s–2000 was evaluated, based on monitoring data from hydrographic gauge. It was found that dissolved CO2 and silicate in Changjiang decreased dramatically during this decades, as opposed to a marked increase in nutrient (e.g. NO3- concentrations. Our analyses revealed that dissolved CO2 in Changjiang was over-saturated with the atmosphere CO2, and its concentration had showed a declining trend since the 1960s, despite that fluvial DIC flux had maintained stable. Analysis results also suggested that the decrease in dissolved CO2 concentration was attributed to changes on the riverine trophic level and river damming activities in the Changjiang drainage basin. Due to the economic innovation (e.g. agriculture and industry development across the Changjiang watershed, fertilizers application and river regulations have significantly altered the original state of the river. Its ecosystem and hydrological condition have been evolving toward the "lacustrine/reservoir" autotrophic type prevailing with plankton. Accordingly, average CO2 diffusing flux to the atmosphere from the river had been reduced by three-fourth from the 1960s to 1990s, with the flux value being down to 14.2 mol.m-2.yr-1 in the 1990s. For a rough estimate, approximately 15.3 Mt of carbon was degassed annually into the atmosphere from the entire Changjiang drainage basin in the 1990s.

  3. Geochemistry of dissolved and suspended loads of the Seine River, France: anthropogenic impact, carbonate and silicate weathering

    Science.gov (United States)

    Roy, S.; Gaillardet, J.; Allègre, C. J.

    1999-05-01

    are transported in a solid form, the rest being transported in solution. CO 2 consumption by carbonate weathering approaches 400 × 10 3 mol/km 2/yr. In the Seine river at Paris, about 2-3 mg/l of dissolved cations are found to originate from the chemical weathering of silicates. By taking dissolved silica into accounts, the total dissolved load derived from silicate weathering is about 6-7 mg/l. This value is minimal because biological uptake of silica probably occur in the Seine river. The chemical weathering rate of aluminosilicates is estimated to be 2 t/km 2/yr . The ratio of physical over chemical weathering of silicates range between 1 and 3 and the total (chemical and physical) erosion rates of sedimentary silicates are about 2-3 mm/kyr. The CO 2 consumption by silicate weathering 15-24 × 10 3 mol/km 2/yr and is independent of dissolved silica concentration. Silicate consumption is thus 20 times less than carbonate consumption in the Paris basin. Compared to the neighboring granitic areas, the sedimentary region drained by the Seine river has 2 to 3 times lower CO 2 consumption rates. We attribute this difference to the cation-depleted nature of the Seine basin aluminosilicates, which are of sedimentary origin. At a world scale, the chemical denudation rates found for the Seine basin are very low and comparable to those given for tropical lowland rivers draining silicates, such as the rivers of the Congo and Amazon basins, in spite of huge climatic differences. We attribute this similarity to the low mechanical denudation that characterizes these two types of regions.

  4. Sources, fluxes, and behaviors of fluorescent dissolved organic matter (FDOM) in the Nakdong River Estuary, Korea

    Science.gov (United States)

    Lee, Shin-Ah; Kim, Guebuem

    2018-02-01

    We monitored seasonal variations in dissolved organic carbon (DOC), the stable carbon isotope of DOC (δ13C-DOC), and fluorescent dissolved organic matter (FDOM) in water samples from a fixed station in the Nakdong River Estuary, Korea. Sampling was performed every hour during spring tide once a month from October 2014 to August 2015. The concentrations of DOC and humic-like FDOM showed significant negative correlations against salinity (r2 = 0.42-0.98, p ocean.

  5. Applications in the oil sands industry for Particlear{sup R} silica microgel

    Energy Technology Data Exchange (ETDEWEB)

    Moffett, B. [DuPont Chemical Solutions Enterprise, Wilmington, DE (United States)

    2009-07-01

    This presentation demonstrated the use of Particlear{sup R} silica microgel in the oil sands industry. The silica-based coagulant is an amorphous silicon dioxide microgel solution. The surface area of a football field can be obtained using 2.7 grams of the substance. The coagulation mechanism is achieved by charge neutralization and inter-particle bridging. The microgel is manufactured at the point of use from commodity chemicals, water, and carbon dioxide (CO{sub 2}). Applications for the microgel include potable water treatment, paper retention, and animal processing wastewater. In the oil sands industry, Particlear{sup R} can be used in tailings flocculation, thickened tailings drying, steam assisted gravity drainage (SAGD) water treatment, and enhanced bitumen recovery. It was concluded that the microgel can be used in many oil sands processing and liquid-solid separation processes in order to remove dissolved solids and organics and increase the rate of solids dewatering. tabs., figs.

  6. Crystalline Silica Primer

    Science.gov (United States)

    ,

    1992-01-01

    Crystalline silica is the scientific name for a group of minerals composed of silicon and oxygen. The term crystalline refers to the fact that the oxygen and silicon atoms are arranged in a threedimensional repeating pattern. This group of minerals has shaped human history since the beginning of civilization. From the sand used for making glass to the piezoelectric quartz crystals used in advanced communication systems, crystalline silica has been a part of our technological development. Crystalline silica's pervasiveness in our technology is matched only by its abundance in nature. It's found in samples from every geologic era and from every location around the globe. Scientists have known for decades that prolonged and excessive exposure to crystalline silica dust in mining environments can cause silicosis, a noncancerous lung disease. During the 1980's, studies were conducted that suggested that crystalline silica also was a carcinogen. As a result of these findings, crystalline silica has been regulated under the Occupational Safety and Health Administration's (OSHA) Hazard Communication Standard (HCS). Under HCS, OSHAregulated businesses that use materials containing 0.1% or more crystalline silica must follow Federal guidelines concerning hazard communication and worker training. Although the HCS does not require that samples be analyzed for crystalline silica, mineral suppliers or OSHAregulated

  7. Iron traps terrestrially derived dissolved organic matter at redox interfaces

    Science.gov (United States)

    Riedel, Thomas; Zak, Dominik; Biester, Harald; Dittmar, Thorsten

    2013-01-01

    Reactive iron and organic carbon are intimately associated in soils and sediments. However, to date, the organic compounds involved are uncharacterized on the molecular level. At redox interfaces in peatlands, where the biogeochemical cycles of iron and dissolved organic matter (DOM) are coupled, this issue can readily be studied. We found that precipitation of iron hydroxides at the oxic surface layer of two rewetted fens removed a large fraction of DOM via coagulation. On aeration of anoxic fen pore waters, >90% of dissolved iron and 27 ± 7% (mean ± SD) of dissolved organic carbon were rapidly (within 24 h) removed. Using ultra-high-resolution MS, we show that vascular plant-derived aromatic and pyrogenic compounds were preferentially retained, whereas the majority of carboxyl-rich aliphatic acids remained in solution. We propose that redox interfaces, which are ubiquitous in marine and terrestrial settings, are selective yet intermediate barriers that limit the flux of land-derived DOM to oceanic waters. PMID:23733946

  8. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA

    Science.gov (United States)

    Spencer, Robert G. M.; Butler, Kenna D.; Aiken, George R.

    2012-09-01

    Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

  9. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA

    Science.gov (United States)

    Spencer, Robert G.M.; Butler, Kenna D.; Aiken, George R.

    2012-01-01

    Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

  10. Dissolved organic carbon fluxes from hydropedologic units in Alaskan coastal temperate rainforest watersheds

    Science.gov (United States)

    David V. D' Amore; Rick T. Edwards; Paul A. Herendeen; Eran Hood; Jason B. Fellman

    2015-01-01

    Dissolved organic C (DOC) transfer from the landscape to coastal margins is a key component of regional C cycles. Hydropedology provides a conceptual and observational framework for linking soil hydrologic function to landscape C cycling. We used hydropedology to quantify the export of DOC from the terrestrial landscape and understand how soil temperature and water...

  11. Environmental Drivers of Benthic Flux Variation and Ecosystem Functioning in Salish Sea and Northeast Pacific Sediments.

    Directory of Open Access Journals (Sweden)

    Rénald Belley

    Full Text Available The upwelling of deep waters from the oxygen minimum zone in the Northeast Pacific from the continental slope to the shelf and into the Salish Sea during spring and summer offers a unique opportunity to study ecosystem functioning in the form of benthic fluxes along natural gradients. Using the ROV ROPOS we collected sediment cores from 10 sites in May and July 2011, and September 2013 to perform shipboard incubations and flux measurements. Specifically, we measured benthic fluxes of oxygen and nutrients to evaluate potential environmental drivers of benthic flux variation and ecosystem functioning along natural gradients of temperature and bottom water dissolved oxygen concentrations. The range of temperature and dissolved oxygen encountered across our study sites allowed us to apply a suite of multivariate analyses rarely used in flux studies to identify bottom water temperature as the primary environmental driver of benthic flux variation and organic matter remineralization. Redundancy analysis revealed that bottom water characteristics (temperature and dissolved oxygen, quality of organic matter (chl a:phaeo and C:N ratios and sediment characteristics (mean grain size and porosity explained 51.5% of benthic flux variation. Multivariate analyses identified significant spatial and temporal variation in benthic fluxes, demonstrating key differences between the Northeast Pacific and Salish Sea. Moreover, Northeast Pacific slope fluxes were generally lower than shelf fluxes. Spatial and temporal variation in benthic fluxes in the Salish Sea were driven primarily by differences in temperature and quality of organic matter on the seafloor following phytoplankton blooms. These results demonstrate the utility of multivariate approaches in differentiating among potential drivers of seafloor ecosystem functioning, and indicate that current and future predictive models of organic matter remineralization and ecosystem functioning of soft-muddy shelf and

  12. Residual currents and fluxes through the mouth of Vassova coastal lagoon

    Directory of Open Access Journals (Sweden)

    G. SYLAIOS

    2003-12-01

    Full Text Available An intensive sampling program of physical and chemical parameters at the mouth of Vassova lagoon (Northern Greece during 4 separate tidal cycles is described. The study aims at understanding the tidal circulation and estimating the instantaneous and residual fluxes of water, salt and nutrients through the entrance canal of this micro-tidal lagoon. Results showed that tidal flood exceeded in duration tidal ebb, under spring and neap tidal conditions. Ebb tidal currents were recorded higher than flood currents, especially under neap tidal conditions. Unsteady flow characterized the temporal variation of longitudinal and lateral velocity, inducing a rightward deflection on flood or ebb flow. The intra-tidal variability of dissolved inorganic nitrogen showed seasonal dependence, with higher values during September, October and early March, and lower during the late March period. Residual current and flux analysis into a Eulerian and a mass transport Stokes drift mechanism illustrated that advective water and dissolved parameters (i.e., salt and nitrates, phosphates and chlorophyll-· fluxes were an order of magnitude higher than tidal pumping effects. Water and dissolved constituents moved into the lagoon under neap tidal conditions and out of the lagoon during spring tidal conditions. Calculated flushing times ranged from 5 to 14 days, with neap tidal conditions and nearly zero freshwater discharge producing the longer flushing time. Lower water flushing effects were generated under spring tides and increased precipitation.

  13. The effect of silica toward polymer membrane for water separation process

    Science.gov (United States)

    Jamalludin, Mohd Riduan; Rosli, M. U.; Ishak, Muhammad Ikman; Khor, C. Y.; Shahrin, Suhaimi; Ismail, Ras Izzati; Lailina N., M.; Leng Y., L.; Jahidi, H.

    2017-09-01

    The aim of this present work was to investigate the effect of different percentage rice husk silica (RHS) particles composition towards polymer mixed matrix membrane microstructure and performance in water separation process. The polymer membranes were prepared by a phase inversion method using polysulfone (PSf), N-methyl-2-pyrrolidone (NMP) as solvent, distilled water as non-solvent and fixed RHS at 400°C as an additive. The microstructures of PSf/PEG/RHS sample were characterized by performing scanning electron microscope (SEM). The performance was measured by using pure water flux and humic acid for the rejection test. The analyzed result of SEM analysis revealed that the addition of RHS obviously improved the microstructure of the membrane especially at the top and sub layer at the range of 1 until 3 wt. %. This was proven by the pure water flux (PWF) value measured from 114.47 LMH to 154.04 LMH and rejection from value 83% to 96% at this specified range substantially higher than the mixed matrix membrane with synthetic silica. In fact, the presence of RHS particles not only improved the properties and performance of membrane but also possess biodegradable properties which can minimize the pollution and provide a membrane green technology system.

  14. Dissolved gaseous mercury formation and mercury volatilization in intertidal sediments.

    Science.gov (United States)

    Cesário, Rute; Poissant, Laurier; Pilote, Martin; O'Driscoll, Nelson J; Mota, Ana M; Canário, João

    2017-12-15

    Intertidal sediments of Tagus estuary regularly experiences complex redistribution due to tidal forcing, which affects the cycling of mercury (Hg) between sediments and the water column. This study quantifies total mercury (Hg) and methylmercury (MMHg) concentrations and fluxes in a flooded mudflat as well as the effects on water-level fluctuations on the air-surface exchange of mercury. A fast increase in dissolved Hg and MMHg concentrations was observed in overlying water in the first 10min of inundation and corresponded to a decrease in pore waters, suggesting a rapid export of Hg and MMHg from sediments to the water column. Estimations of daily advective transport exceeded the predicted diffusive fluxes by 5 orders of magnitude. A fast increase in dissolved gaseous mercury (DGM) concentration was also observed in the first 20-30min of inundation (maximum of 40pg L -1 ). Suspended particulate matter (SPM) concentrations were inversely correlated with DGM concentrations. Dissolved Hg variation suggested that biotic DGM production in pore waters is a significant factor in addition to the photochemical reduction of Hg. Mercury volatilization (ranged from 1.1 to 3.3ngm -2 h -1 ; average of 2.1ngm -2 h -1 ) and DGM production exhibited the same pattern with no significant time-lag suggesting a fast release of the produced DGM. These results indicate that Hg sediment/water exchanges in the physical dominated estuaries can be underestimated when the tidal effect is not considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Dissolved nitrogen in rivers: comparing pristine and impacted regions of Brazil

    Directory of Open Access Journals (Sweden)

    LA Martinelli

    Full Text Available Riverine nitrogen distribution is increasingly controlled by anthropogenic activities in their watersheds, regardless of spatial scale, climate, and geographical zone. Consequently, modelling efforts to predict the export of nitrogen from rivers worldwide have used attributes such as population density, land use, urbanization and sanitation. These models have greatly enhanced our understanding of the sources and fate of nitrogen added to terrestrial systems and transported to rivers and streams, especially for developed countries of the North temperate zone. However, much of the world's population lives in developing countries of the tropics, where the effects of human activities on riverine N exports are still poorly understood. In an effort to close this gap, we compare riverine nitrogen data from 32 Brazilian rivers draining two contrasting regions in this tropical country in terms of economic development - the State of São Paulo and the Amazon. Our data include nitrogen in different dissolved forms, such as Dissolved Inorganic Nitrogen (DIN and Dissolved Organic Nitrogen (DON. The results show that nitrogen concentrations decreased as river runoff increased in both study areas, and that concentrations were significantly higher in rivers draining the most economically developed region. The relationships between nitrogen concentrations and fluxes with demographic parameters such as population density were also determined and compared to those in temperate systems. In contrast to temperate watersheds, we found that nitrogen fluxes increased only after population densities were higher than 10 individuals per km².

  16. A cross-site comparison of factors controlling streamwater carbon flux in western North American catchments (Invited)

    Science.gov (United States)

    Brooks, P. D.; Biederman, J. A.; Condon, K.; Chorover, J.; McIntosh, J. C.; Meixner, T.; Perdrial, J. N.

    2013-12-01

    Increasing variability in climate is expected to alter the amount and form of terrestrial carbon in stream water both directly, through changes in the magnitude and timing of discharge, and indirectly through changes in land cover following disturbance (e.g. drought, fire, or insect driven mortality). Predicting how these changes will impact individual stream-catchment ecosystems however, is hampered by a lack of concurrent observations on both dissolved and particulate carbon flux across a range of spatial, temporal, and discharge scales. Because carbon is strongly coupled to most biogeochemical reactions within both aquatic and terrestrial ecosystems, this represents a critical unknown in predicting the response of catchment-ecosystems to concurrent changes in climate and land cover. This presentation will address this issue using a meta-analysis of dissolved organic, dissolved inorganic, and particulate organic carbon fluxes from multiple locations, including undisturbed sites along a climate gradient from desert rivers to seasonally snow-covered, forested mountain catchments, and sites disturbed by both fire and extensive, insect driven mortality. Initial analyses suggest that dissolved (organic and inorganic) and particulate fluxes respond differently to various types of disturbance and depend on interactions between changes in size of mobile carbon pools and changes in hydrologic routing of carbon to streamwater. Anomalously large fluxes of both dissolved and particulate organic matter are associated with episodic changes in hydrologic routing (e.g. storm floods; snowmelt) that connect normally hydrologically isolated carbon pools (e.g. surficial hillslope soils) with surface water. These events are often of short duration as the supply of mobile carbon is exhausted in short term flushing response. In contrast, disturbances that increase the size of the mobile carbon pool (e.g. widespread vegetation mortality) result smaller proportional increases in

  17. Large increase in dissolved inorganic carbon flux from the Mississippi River to Gulf of Mexico due to climatic and anthropogenic changes over the 21st century.

    Science.gov (United States)

    Ren, Wei; Tian, Hanqin; Tao, Bo; Yang, Jia; Pan, Shufen; Cai, Wei-Jun; Lohrenz, Steven E; He, Ruoying; Hopkinson, Charles S

    2015-04-01

    It is recognized that anthropogenic factors have had a major impact on carbon fluxes from land to the ocean during the past two centuries. However, little is known about how future changes in climate, atmospheric CO 2 , and land use may affect riverine carbon fluxes over the 21st century. Using a coupled hydrological-biogeochemical model, the Dynamic Land Ecosystem Model, this study examines potential changes in dissolved inorganic carbon (DIC) export from the Mississippi River basin to the Gulf of Mexico during 2010-2099 attributable to climate-related conditions (temperature and precipitation), atmospheric CO 2 , and land use change. Rates of annual DIC export are projected to increase by 65% under the high emission scenario (A2) and 35% under the low emission scenario (B1) between the 2000s and the 2090s. Climate-related changes along with rising atmospheric CO 2 together would account for over 90% of the total increase in DIC export throughout the 21st century. The predicted increase in DIC export from the Mississippi River basin would alter chemistry of the coastal ocean unless appropriate climate mitigation actions are taken in the near future.

  18. Silica coated ionic liquid templated mesoporous silica nanoparticles ...

    African Journals Online (AJOL)

    A series of long chain pyridinium based ionic liquids 1-tetradecylpyridinium bromide, 1-hexadecylpyridinium bromide and 1-1-octadecylpyridinium bromide were used as templates to prepare silica coated mesoporous silica nanoparticles via condensation method under basic condition. The effects of alkyl chain length on ...

  19. Modeling the supercritical desorption of orange essential oil from a silica-gel bed

    Directory of Open Access Journals (Sweden)

    Silva E.A.

    2000-01-01

    Full Text Available One of the most important byproducts of the orange juice industry is the oil phase. This is a mixture of terpenes, alcohols, and aldehydes, dissolved in approximately 96% limonene. To satisfactorily use oil phase as an ingredient in the food and cosmetics industries separation of the limonene is required. One possibility is to use a fixed bed of silica gel to remove the light or aroma compounds from the limonene. The aroma substances are then extracted from the bed of silica gel using supercritical carbon dioxide. This work deals with the modeling of the desorption step of the process using mass balance equations coupled with the Langmuir equilibrium isotherm. Data taken from the literature for the overall extraction curves were used together with empirical correlations to calculate the concentration profile of solute in the supercritical phase at the bed outlet. The system of equations was solved by the finite volume technique. The overall extraction curves calculated were in good agreement with the experimental ones.

  20. Effect of changes in water salinity on ammonium, calcium, dissolved inorganic carbon and influence on water/sediment dynamics

    Science.gov (United States)

    López, P.

    2003-04-01

    The effect of a sudden increase in salinity from 10 to 37 in porewater concentration and the benthic fluxes of ammonium, calcium and dissolved inorganic carbon were studied in sediments of a small coastal lagoon, the Albufera d'Es Grau (Minorca Island, Spain). The temporal effects of the changes in salinity were examined over 17 days using a single diffusion-reaction model and a mass-balance approach. After the salinity change, NH 4+-flux to the water and Ca-flux toward sediments increased (NH 4+-flux: 5000-3000 μmol m -2 d -1 in seawater and 600/250 μmol m -2 d -1 in brackish water; Ca-flux: -40/-76 meq m -2 d -1 at S=37 and -13/-10 meq m -2 d -1 at S=10); however, later NH 4+-flux decreased in seawater, reaching values lower than in brackish water. In contrast, Ca-flux presented similar values in both conditions. The fluxes of dissolved inorganic carbon, which were constant at S=10 (55/45 mmol m -2 d -1), increased during the experiment at S=37 (from ˜30 mmol m -2 d -1 immediately after salinity increase to ˜60 mmol m -2 d -1 after 17 days). In brackish conditions, NH 4+ and Ca 2+ fluxes were consistent with a single diffusion-reaction model that assumes a zero-order reaction for NH 4+ production and a first-order reaction for Ca 2+ production. In seawater, this model explained the Ca-flux observed, but did not account for the high initial flux of NH 4+. The mass balance for 17 days indicated a higher retention of NH 4+ in porewater in the littoral station in seawater conditions (9.5 mmol m -2 at S=37 and 1.6 mmol m -2 at S=10) and a significant reduction in the water consumption at both sites (5 mmol m -2 at S=37; 35/23 mmol m -2 at S=10). In contrast, accumulation of dissolved inorganic carbon in porewater was lower in seawater incubations (-10/-1 meq m -2 at S=37; 50/90 meq m -2 at S=10) and was linked to a higher efflux of CO 2 to the atmosphere, because of calcium carbonate precipitation in water (675/500 meq m -2). These results indicate that increased

  1. Estabilidade da sílica biogênica extraída de capim Jaraguá (Hyparrhenia rufa em solução de NaOH Stability of biogenic silica extract of Jaraguá grass (Hyparrhenia rufa in NaOH solution

    Directory of Open Access Journals (Sweden)

    Liovando M. Costa

    2010-01-01

    Full Text Available Biogenic silica is used to describe compounds of hydrated silica (SiO2.nH2O, with specific shapes and sizes, deposited in plants. The chemical composition of biogenic silica and its stability in Jaraguá grass was studied in increasing concentration of NaOH. The analytical results demonstrated high concentration of Si, Al, Fe, Mg, P and low of Cu, Cd and Zn in the phytoliths composition. The silica bodies stability in NaOH solution with increasing concentration was different among the shapes and sizes. Silicified stomata and silicified plant tissues were dissolved along with the dumbbells because they are the less stable forms of biogenic silica.

  2. Do Regional Aerosols Contribute to the Riverine Export of Dissolved Black Carbon?

    Science.gov (United States)

    Jones, M. W.; Quine, T. A.; de Rezende, C. E.; Dittmar, T.; Johnson, B.; Manecki, M.; Marques, J. S. J.; de Aragão, L. E. O. C.

    2017-11-01

    The fate of black carbon (BC), a stable form of thermally altered organic carbon produced during biomass and fuel combustion, remains an area of uncertainty in the global carbon cycle. The transfer of photosynthetically derived BC into extremely long-term oceanic storage is of particular significance and rivers are the key linkage between terrestrial sources and oceanic stores. Significant fluvial fluxes of dissolved BC to oceans result from the slow release of BC from degrading charcoal stocks; however, these fluvial fluxes may also include undetermined contributions of aerosol BC, produced by biomass and fossil fuel combustion, which are deposited in river catchments following atmospheric transport. By investigation of the Paraíba do Sul River catchment in Southeast Brazil we show that aerosol deposits can be substantial contributors to fluvial fluxes of BC. We derived spatial distributions of BC stocks within the catchment associated with soil charcoal and with aerosol from both open biomass burning and fuel combustion. We then modeled the fluvial concentrations of dissolved BC (DBC) in scenarios with varying rates of export from each stock. We analyzed the ability of each scenario to reproduce the variability in DBC concentrations measured in four data sets of river water samples collected between 2010 and 2014 and found that the best performing scenarios included a 5-18% (135-486 Mg DBC year-1) aerosol contribution. Our results suggest that aerosol deposits of BC in river catchments have a shorter residence time in catchments than charcoal BC and, therefore, contribute disproportionately (with respect to stock magnitude) toward fluvial fluxes of BC.

  3. Dissolved organic carbon in the precipitation of Seoul, Korea: Implications for global wet depositional flux of fossil-fuel derived organic carbon

    Science.gov (United States)

    Yan, Ge; Kim, Guebuem

    2012-11-01

    Precipitation was sampled in Seoul over a one-year period from 2009 to 2010 to investigate the sources and fluxes of atmospheric dissolved organic carbon (DOC). The concentrations of DOC varied from 15 μM to 780 μM, with a volume-weighted average of 94 μM. On the basis of correlation analysis using the commonly acknowledged tracers, such as vanadium, the combustion of fossil-fuels was recognized to be the dominant source. With the aid of air mass backward trajectory analyses, we concluded that the primary fraction of DOC in our precipitation samples originated locally in Korea, albeit the frequent long-range transport from eastern and northeastern China might contribute substantially. In light of the relatively invariant organic carbon to sulfur mass ratios in precipitation over Seoul and other urban regions around the world, the global magnitude of wet depositional DOC originating from fossil-fuels was calculated to be 36 ± 10 Tg C yr-1. Our study further underscores the potentially significant environmental impacts that might be brought about by this anthropogenically derived component of organic carbon in the atmosphere.

  4. Dissolved Black Carbon in the Headwaters-To Continuum of PARAÍBA do Sul River, Brazil

    Science.gov (United States)

    Marques, Jomar S. J.; Dittmar, Thorsten; Niggemann, Jutta; Almeida, Marcelo G.; Gomez-Saez, Gonzalo V.; Rezende, Carlos E.

    2017-02-01

    Rivers annually carry 25-28 Tg carbon in the form of pyrogenic dissolved organic matter (dissolved black carbon, DBC) into the ocean, which is equivalent to about 10% of the entire riverine land-ocean flux of dissolved organic carbon (DOC). The objective of this study was to identify the main processes behind the release and turnover of DBC on a riverine catchment scale. As a model system, we chose the headwater-to-ocean continuum of Paraíba do Sul River (Brazil), the only river system with long-term DBC flux data available. The catchment was originally covered by Atlantic rain forest (mainly C3 plants) which was almost completely destroyed over the past centuries by slash-and-burn. As a result, large amounts of wood-derived charcoal reside in the soils. Today, fire-managed pasture and sugar cane (both dominated by C4 plants) cover most of the catchment area. Water samples were collected along the river, at the main tributaries, and also along the salinity gradient in the estuary and up to 35 km offshore during three different seasons. DBC was determined on a molecular level as benzenepolycarboxylic acids (BPCAs). Stable carbon isotopes (δ13C) were determined in solid phase extractable DOC (SPE-DOC) to distinguish C4 and C3 sources. Our results clearly show a relationship between hydrology and DBC concentrations in the river, with highest DBC concentrations and fluxes in the wet season (flux of 770 moles .sec 1 in 2013 and 59 moles .sec 1 in 2014) and lowest in the dry season (flux of 27 moles .sec 1). This relationship indicates that DBC is mainly mobilized from the upper soil horizons during heavy rainfalls. The relationship between DBC concentrations and δ13C-SPE-DOC indicated that most of DBC in the river system originated from C3 plants, i.e. from the historic burning event of the Atlantic rain forest. A conservative mixing model could largely reproduce the observed DBC fluxes within the catchment and the land to ocean continuum. Comparably slight

  5. Can pelagic net heterotrophy account for carbon fluxes from eastern Canadian lakes?

    International Nuclear Information System (INIS)

    Dubois, Kristal; Carignan, Richard; Veizer, Jan

    2009-01-01

    Lakes worldwide are commonly oversaturated with CO 2 , however the source of this CO 2 oversaturation is not well understood. To examine the magnitude of the C flux to the atmosphere and determine if an excess of respiration (R) over gross primary production (GPP) is sufficient to account for this C flux, metabolic parameters and stable isotopes of dissolved O 2 and C were measured in 23 Quebec lakes. All of the lakes sampled were oversaturated with CO 2 over the sampling period, on average 221 ± 25%. However, little evidence was found to conclude that this CO 2 oversaturation was the result of an excess of pelagic R over GPP. In lakes Croche and a l'Ours, where CO 2 flux, R and GPP were measured weekly, the annual difference between pelagic GPP and R, or net primary production (NPP), was not sufficient to account for the size of the CO 2 flux to the atmosphere. In Lac Croche average annual NPP was 14.4 mg C m -2 d -1 while the average annual flux of CO 2 to the atmosphere was 34 mg C m -2 d -1 . In Lac a l'Ours average annual NPP was -9.1 mg C m -2 d -1 while the average annual flux of CO 2 to the atmosphere was 55 mg C m -2 d -1 . In all of the lakes sampled, O 2 saturation averaged 104.0 ± 1.7% during the ice-free season and the isotopic composition of dissolved O 2 (δ 18 O DO ) was 22.9 ± 0.3 per mille , lower than atmospheric values and indicative of net autotrophy. Carbon evasion was not a function of R, nor did the isotopic signature of dissolved CO 2 in the lakes present evidence of excess R over GPP. External inputs of C must therefore subsidize the lake to explain the continued CO 2 oversaturation. The isotopic composition of dissolved inorganic C (δ 13 C DIC ) indicates that the CO 2 oversaturation cannot be attributed to in situ aerobic respiration. δ 13 C DIC reveals a source of excess C enriched in 13 C, which may be accounted for by anaerobic sediment respiration or groundwater inputs followed by kinetic isotope fractionation during degassing

  6. Surface modification to produce hydrophobic nano-silica particles using sodium dodecyl sulfate as a modifier

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Bing; Liang, Yong; Wang, Ting-Jie, E-mail: wangtj@tsinghua.edu.cn; Jiang, Yanping

    2016-02-28

    Graphical abstract: Nano silica particle was modified to produce hydrophobic surface with contact angle of 107° using the water soluble SDS as a modifier through a new route. The grafted density reached 1.82–2 nm. Brønsted acid sites supply proton to react with SDS via generating carbocation, forming a Si–O–C structure. - Highlights: • Silica was modified to produce hydrophobic surface using SDS as modifier. • The route is free of organic solvent and gets perfect contact of SDS and silica. • Contact angle of modified silica particles reached 107°. • Grafted density on the silica surface reached 1.82 SDS nm{sup −2}. • Brønsted acid sites supply proton to react with SDS via generating carbocation. - Abstract: Hydrophobic silica particles were prepared using the surfactant sodium dodecyl sulfate (SDS) as a modifier by a new route comprising three processes, namely, aqueous mixing, spray drying and thermal treatment. Since SDS dissolves in water, this route is free of an organic solvent and gave a perfect dispersion of SDS, that is, there was excellent contact between SDS and silica particles in the modification reaction. The hydrophobicity of the modified surface was verified by the contact angle of the nano-sized silica particles, which was 107°. The SDS grafting density reached 1.82 nm{sup −2}, which is near the highest value in the literature. The optimal parameters of the SDS/SiO{sub 2} ratio in the aqueous phase, process temperature and time of thermal treatment were determined to be 20%, 200 °C and 30 min, respectively. The grafting mechanism was studied by comparing the modification with that on same sized TiO{sub 2} particles, which indicated that the protons of the Brønsted acid sites on the surface of SiO{sub 2} reacted with SDS to give a carbocation which then formed a Si–O–C structure. This work showed that the hydrophilic surface of silica can be modified to be a hydrophobic surface by using a water soluble modifier SDS in a

  7. Kaolinite and Silica Dispersions in Low-Salinity Environments: Impact on a Water-in-Crude Oil Emulsion Stability

    Directory of Open Access Journals (Sweden)

    Vladimir Alvarado

    2011-10-01

    Full Text Available This research aims at providing evidence of particle suspension contributions to emulsion stability, which has been cited as a contributing factor in crude oil recovery by low-salinity waterflooding. Kaolinite and silica particle dispersions were characterized as functions of brine salinity. A reference aqueous phase, representing reservoir brine, was used and then diluted with distilled water to obtain brines at 10 and 100 times lower Total Dissolved Solid (TDS. Scanning Electron Microscope (SEM and X-ray Diffraction (XRD were used to examine at the morphology and composition of clays. The zeta potential and particle size distribution were also measured. Emulsions were prepared by mixing a crude oil with brine, with and without dispersed particles to investigate emulsion stability. The clay zeta potential as a function of pH was used to investigate the effect of particle charge on emulsion stability. The stability was determined through bottle tests and optical microscopy. Results show that both kaolinite and silica promote emulsion stability. Also, kaolinite, roughly 1 mm in size, stabilizes emulsions better than larger clay particles. Silica particles of larger size (5 µm yielded more stable emulsions than smaller silica particles do. Test results show that clay particles with zero point of charge (ZPC at low pH become less effective at stabilizing emulsions, while silica stabilizes emulsions better at ZPC. These result shed light on emulsion stabilization in low-salinity waterflooding.

  8. Impact of catastrophic events on small mountainous rivers: Temporal and spatial variations in suspended- and dissolved-solid fluxes along the Choshui River, central western Taiwan, during typhoon Mindulle, July 2-6, 2004

    Science.gov (United States)

    Milliman, J. D.; Lee, T. Y.; Huang, J. C.; Kao, S. J.

    2017-05-01

    Small mountainous rivers deliver disproportionately large quantities of suspended and dissolved solids to the global ocean, often in response to catastrophic events such as earthquakes or floods. Here we report on the impact of a major flood on the Choshui River, central-western Taiwan, generated by typhoon Mindulle, July 2-6, 2004, five years after the nearby Mw 7.6 Chichi earthquake. Water samples taken at 3-h intervals at three stations along main stem, as well as from two downriver tributaries, allow us to delineate the temporal and spatial variability in concentrations and fluxes of suspended and dissolved constituents within the middle and lower portions of the river in response to this flood. High suspended-sediment concentrations, some as high as 200 g/l, reflected the rapid erosion of landslide scars and debris deposits generated by super-typhoon Herb in 1996 and the 1999 Chichi earthquake. Dissolved-solid and suspended-sediment discharges totaled 0.22 and 70 million tons (mt), 50 mt of which were discharged in just two days. Particulate organic carbon (POC) discharge, most of which was pre-modern in age, was 195,000 t. More than half of the discharged water, POC and dissolved solids came from upriver, whereas about 70% of the suspended sediment and 60% of the dissolved nitrate came from two downriver tributaries, the Chenyoulan and Qingshui rivers. Spatial and temporal differences in the character and discharge of suspended and dissolved solids within and between rivers in the Choshui drainage basin reflect different geologies, landslide histories, the effects of human impact, and the abrupt draining of the Tsaoling landslide lake in the Qingshui basin, as well as the possible shifting of importance of groundwater vs. overland flow. Neither wind-blown pollutants nor sea salts appear to have contributed significantly to dissolved solid character or discharge. Sediment contribution from the landslides in the Chenyoulan basin generated by super-typhoon Herb

  9. Elevated concentrations of dissolved Ba, Fe and Mn in a mangrove subterranean estuary: Consequence of sea level rise?

    Science.gov (United States)

    Sanders, Christian J.; Santos, Isaac R.; Barcellos, Renato; Silva Filho, Emmanoel V.

    2012-07-01

    Groundwater underlying a mangrove habitat was studied to determine the geochemical nature of Ba, Fe and Mn as related to dissolved organic carbon (DOC), SO4 and salinity (Sepetiba Bay, Brazil). Wells were placed across geobotanic facies and sampled monthly for a year. We observed non-conservative behavior and elevated concentrations of dissolved metals relative to local end-members (i.e., fresh river water and seawater). Average Ba concentrations were near 2000 nM in an area with low salinity (˜5.3). Dissolved Fe (up to 654 μM) was two orders of magnitude greater in fresh groundwater than in the seaward sampling stations. Manganese concentrations were greatest (112 μM) in the high salinity (˜65) zone, being directly influenced by salinity. Groundwater Ba, Fe and Mn showed differing site specific concentrations, likely related to ion exchange processes and redox-controlled cycling along distinct mangrove facies. The results of this work show that metal concentrations are altered relative to conservative mixing between terrestrial and marine endmembers, illustrating the importance of mangrove subterranean estuaries as biogeochemical reactors. Roughly-estimated submarine groundwater discharge-derived dissolved Ba, Fe and Mn fluxes were at least one order of magnitude greater than river-derived fluxes into Sepetiba Bay.

  10. Silica-Immobilized Enzyme Reactors

    Science.gov (United States)

    2007-08-01

    Silica-IMERs 14 implicated in neurological disorders such as Schizophrenia and Parkinson’s disease.[86] Drug discovery for targets that can alter the...primarily the activation of prodrugs and proantibiotics for cancer treatments or antibiotic therapy , respectively.[87] Nitrobenzene nitroreductase was...BuChE) Monolith disks* Packed Silica Biosilica Epoxide- Silica Silica-gel Enzyme Human AChE Human AChE Human AChE Equine BuChE Human

  11. MASS BALANCE OF SILICA IN STRAW FROM THE PERSPECTIVE OF SILICA REDUCTION IN STRAW PULP

    Directory of Open Access Journals (Sweden)

    Celil Atik,

    2012-06-01

    Full Text Available The high silica content of wheat straw is an important limiting factor for straw pulping. High silica content complicates processing and black liquor recovery, wears out factory installations, and lowers paper quality. Each section of wheat straw has different cells and chemical compositions and thus different silica content. In this work, the silica content of balled straw samples were examined according to their physical components, including internodes, nodes, leaves (sheath and blade, rachis, grain, other plant bodies, and other plant spikes. Mass distribution of silica was determined by a dry ashing method. Half (50.90% of the silica comes from leaves, and its mechanical separation will reduce the silica content in wheat straw pulp significantly. Destroying silica bodies by sonication will increase the strength properties of straw pulp.

  12. Methane Flux and Authigenic Carbonate in Shallow Sediments Overlying Methane Hydrate Bearing Strata in Alaminos Canyon, Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Joseph P. Smith

    2014-09-01

    Full Text Available In June 2007 sediment cores were collected in Alaminos Canyon, Gulf of Mexico across a series of seismic data profiles indicating rapid transitions between the presence of methane hydrates and vertical gas flux. Vertical profiles of dissolved sulfate, chloride, calcium, magnesium, and dissolved inorganic carbon (DIC concentrations in porewaters, headspace methane, and solid phase carbonate concentrations were measured at each core location to investigate the cycling of methane-derived carbon in shallow sediments overlying the hydrate bearing strata. When integrated with stable carbon isotope ratios of DIC, geochemical results suggest a significant fraction of the methane flux at this site is cycled into the inorganic carbon pool. The incorporation of methane-derived carbon into dissolved and solid inorganic carbon phases represents a significant sink in local carbon cycling and plays a role in regulating the flux of methane to the overlying water column at Alaminos Canyon. Targeted, high-resolution geochemical characterization of the biogeochemical cycling of methane-derived carbon in shallow sediments overlying hydrate bearing strata like those in Alaminos Canyon is critical to quantifying methane flux and estimating methane hydrate distributions in gas hydrate bearing marine sediments.

  13. Liquid Phase Deposition of Silica on the Hexagonally Close-Packed Monolayer of Silica Spheres

    Directory of Open Access Journals (Sweden)

    Seo Young Yoon

    2013-01-01

    Full Text Available Liquid phase deposition is a method used for the nonelectrochemical production of polycrystalline ceramic films at low temperatures, most commonly silicon dioxide films. Herein, we report that silica spheres are organized in a hexagonal close-packed array using a patterned substrate. On this monolayer of silica spheres, we could fabricate new nanostructures in which deposition and etching compete through a modified LPD reaction. In the early stage, silica spheres began to undergo etching, and then, silica bridges between the silica spheres appeared by the local deposition reaction. Finally, the silica spheres and bridges disappeared completely. We propose the mechanism for the formation of nanostructure.

  14. Kinetics of CO(2) fluxes outgassing from champagne glasses in tasting conditions: the role of temperature.

    Science.gov (United States)

    Liger-Belair, Gérard; Villaume, Sandra; Cilindre, Clara; Jeandet, Philippe

    2009-03-11

    Measurements of CO(2) fluxes outgassing from a flute poured with a standard Champagne wine initially holding about 11 g L(-1) of dissolved CO(2) were presented, in tasting conditions, all along the first 10 min following the pouring process. Experiments were performed at three sets of temperature, namely, 4 degrees C, 12 degrees C, and 20 degrees C, respectively. It was demonstrated that the lower the champagne temperature, the lower CO(2) volume fluxes outgassing from the flute. Therefore, the lower the champagne temperature, the lower its progressive loss of dissolved CO(2) concentration with time, which constitutes the first analytical proof that low champagne temperatures prolong the drink's chill and helps retains its effervescence. A correlation was also proposed between CO(2) volume fluxes outgassing from the flute poured with champagne and its continuously decreasing dissolved CO(2) concentration. Finally, the contribution of effervescence to the global kinetics of CO(2) release was discussed and modeled by the use of results developed over recent years. The temperature dependence of the champagne viscosity was found to play a major role in the kinetics of CO(2) outgassing from a flute. On the basis of this bubbling model, the theoretical influence of champagne temperature on CO(2) volume fluxes outgassing from a flute was discussed and found to be in quite good accordance with our experimental results.

  15. Calculation of amorphous silica solubilities at 25° to 300°C and apparent cation hydration numbers in aqueous salt solutions using the concept of effective density of water

    Science.gov (United States)

    Fournier, Robert O.; Williams, Marshall L.

    1983-01-01

    The solubility of amorphous silica in aqueous salt solutions at 25° to 300°C can be calculated using information on its solubility in pure water and a model in which the activity of water in the salt solution is defined to equal the effective density. pe, of “free” water in that solution. At temperatures of 100°C and above, pe closely equals the product of the density of the solution times the weight fraction of water in the solution. At 25°C, a correction parameter must be applied to pe that incorporates a term called the apparent cation hydration number, h. Because of the many assumptions and other uncertainties involved in determining values of h, by the model used here, the reported numbers are not necessarily real hydration numbers even though they do agree with some published values determined by activity and diffusion methods. Whether or not h is a real hydration number, it would appear to be useful in its inclusion within a more extensive activity coefficient term that describes the departure of silica solubilities in concentrated salt solutions from expected behavior according to the model presented here. Values of h can be calculated from measured amorphous silica solubilities in salt solutions at 25°C provided there is no complexing of dissolved silica with the dissolved salt, or if the degree of complexing is known. The previously postulated aqueous silica-sulfate complexing in aqueous Na2SO4 solutions is supported by results of the present effective density of water model

  16. Plasma-deposited hybrid silica membranes with a controlled retention of organic bridges

    Energy Technology Data Exchange (ETDEWEB)

    Ngamou, P.H.T.; Creatore, M. [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Overbeek, J.P.; Kreiter, R.; Van Veen, H.M.; Vente, J.F. [ECN, Energy research Centre of the Netherlands, Petten (Netherlands); Wienk, I.M.; Cuperus, P.F. [SolSep BV, Apeldoorn (Netherlands)

    2013-03-05

    Hybrid organically bridged silica membranes are suitable for energy-efficient molecular separations under harsh industrial conditions. Such membranes can be useful in organic solvent nanofiltration if they can be deposited on flexible, porous and large area supports. Here, we report the proof of concept for applying an expanding thermal plasma to the synthesis of perm-selective hybrid silica films from an organically bridged monomer, 1,2-bis(triethoxysilyl)ethane. This membrane is the first in its class to be produced by plasma enhanced chemical vapor deposition. By tuning the plasma and process parameters, the organic bridging groups could be retained in the separating layer. This way, a defect free film could be made with pervaporation performances of an n-butanol-water mixture comparable with those of conventional ceramic supported membranes made by sol-gel technology (i.e. a water flux of [similar]1.8 kg m'-{sup 2} h{sup -1}, a water concentration in the permeate higher than 98% and a separation factor of >1100). The obtained results show the suitability of expanding thermal plasma as a technology for the deposition of hybrid silica membranes for molecular separations.

  17. Grafting of polymer onto silica surface in the presence of γ-ray irradiated silica

    International Nuclear Information System (INIS)

    Tsuchida, A.; Yokoyama, R.; Takami, M.; Chen, J.; Ohta, M.; Tsubokawa, N.

    2002-01-01

    Complete text of publication follows. We have reported the graft polymerization of vinyl monomers initiated by surface radicals formed by the decomposition of azo and peroxide groups previously introduced onto the surface. In addition, the grafting of polymers onto carbon black has been reported by the reaction of polymer radicals with the surface. On the other hand, it is well known that the relatively stable radicals are generated on the surface by the γ-ray irradiation. In this paper, the grafting of polystyrene onto silica surface during the thermal polymerization of styrene in the presence of γ-ray irradiated silica, grafting mechanism and thermal stability of grafted polymer will be discussed. The grafting of polymers onto silica surface by irradiation of polymer-adsorbed silica was also investigated. Silica obtained from Mitsubishi Chemical Co., Japan was used after pulverization: the particle size was 0.037-0.088 mm. Irradiation was performed in Cs-137 source at room temperature. The silica was irradiated at 50 Gy with dose rate of 3.463 Gy/min. Into a polymerization tube, styrene and irradiated silica was charged and the polymerization was carried out under argon under stirring. The percentage of polystyrene grafting was determined from weight loss when polystyrene-grafted silica was heated at 600 deg C by a thermal analyzer. Untreated silica did not affect the thermal polymerization of styrene. On the contrary, the thermal polymerization of styrene was remarkably retarded in the presence of the irradiated silica at 60 deg C. Similar tendency was reported during the polymerization of vinyl monomers in the presence of carbon black. In the initial stage of the polymerization in the presence of the irradiated silica below 50 deg C, the polymerization was accelerated. During the polymerization in the presence of irradiated silica, polystyrene was grafted onto the surface: the percentage of grafting was 5-11%. The amount of polystyrene grafted onto silica

  18. The Utility of CDOM for Improving the Resolution of Riverine DOM Fluxes and Biogeochemical Function

    Science.gov (United States)

    Spencer, R. G.; Aiken, G.; Mann, P. J.; Holmes, R. M.; Niggemann, J.; Dittmar, T.; Hernes, P.; Stubbins, A.

    2014-12-01

    A major historical limitation to geochemical studies assessing fluvial fluxes of dissolved organic matter (DOM) has been the issue of both temporal and spatial scaling. Examples will be presented from watersheds around the world highlighting how chromophoric dissolved organic matter (CDOM) measurements can be utilized as proxies for more intensive and expensive analytical analyses (e.g. molecular-level organic biomarkers). Utilizing these refined CDOM loads for terrigenous biomarkers results in improved temporal resolution and a significant change in flux estimates. Examining CDOM and dissolved organic carbon (DOC) flux data from an assortment of terrestrial biomes we establish a robust relationship between CDOM and DOC loads. The application of this relationship allows future studies to derive DOC loads from CDOM utilizing emerging in-situ or remote sensing technologies and thus refine river-to-ocean DOC fluxes, as well as exploit historic imagery to examine how fluxes may have changed. Calculated CDOM yields from a range of rivers are correlated to watershed percent wetland and highlight the importance of certain regions with respect to CDOM flux to the coastal ocean. This approach indicates that future studies might predict CDOM and DOC yields for different watershed types that could then be readily converted to loads providing for the estimation of CDOM and DOC export from ungauged watersheds. Examination of CDOM yields also highlights important geographical regions for future study with respect to the role of terrigenous CDOM in ocean color budgets and CDOM's role in biogeochemical processes. Finally, examples will be presented linking CDOM parameters to DOM composition and biogeochemical properties with the aim of providing measurements to improve the spatial and especially temporal resolution of the role DOM plays in fluvial networks.

  19. Hydrothermal stability of microporous silica and niobia-silica membranes

    NARCIS (Netherlands)

    Boffa, V.; Blank, David H.A.; ten Elshof, Johan E.

    2008-01-01

    The hydrothermal stability of microporous niobia–silica membranes was investigated and compared with silica membranes. The membranes were exposed to hydrothermal conditions at 150 and 200 °C for 70 h. The change of pore structure before and after exposure to steam was probed by single-gas permeation

  20. Serpentinization processes: Influence of silica

    Science.gov (United States)

    Huang, R.; Sun, W.; Ding, X.; Song, M.; Zhan, W.

    2016-12-01

    Serpentinization systems are highly enriched in molecular hydrogen (H2) and hydrocarbons (e.g. methane, ethane and propane). The production of hydrocarbons results from reactions between H2 and oxidized carbon (carbon dioxide and carbon monoxide), which possibly contribute to climate changes during early history of the Earth. However, the influence of silica on the production of H2 and hydrocarbons was poorly constrained. We performed experiments at 311-500 °C and 3.0 kbar using mechanical mixtures of silica and olivine in ratios ranging from 0 to 40%. Molecular hydrogen (H2), methane, ethane and propane were formed, which were analyzed by gas chromatography. It was found that silica largely decreased H2 production. Without any silica, olivine serpentinization produced 94.5 mmol/kg H2 after 20 days of reaction time. By contrast, with the presence of 20% silica, H2 concentrations decreased largely, 8.5 mmol/kg. However, the influence of silica on the production of hydrocarbons is negligible. Moreover, with the addition of 20%-40% silica, the major hydrous minerals are talc, which was quantified according to an established standard curve calibrated by infrared spectroscopy analyses. It shows that silica greatly enhances olivine hydration, especially at 500 °C. Without any addition of silica, reaction extents were serpentinization at 500 °C and 3.0 kbar. By contrast, with the presence of 50% silica, olivine was completely transformed to talc within 9 days. This study indicates that silica impedes the oxidation of ferrous iron into ferric iron, and that rates of olivine hydration in natural geological settings are much faster with silica supply.

  1. Sulfide flux formed by the anaerobic slime on the surface of the gravity sewer pipe wall. Shizen ryuka no gesuikan ni okeru kenki slime kara no ryukabutsu flux

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimoto, K. (Japan Sewage Works Agency, Tokyo (Japan)); Mori, T. (Shimane Univ., Shimane (Japan). Faculty of Agriculture)

    1992-09-10

    A part of sulfide dissolved in the sewage is oxidized by oxygen dissolved in the sewage from the gas phase inside by the re-aeration. In addition, a part of type of the dissolvable sulfides is diffused in the gas phase as a hydrogen sulfide gas by the turbulence and so on in the sewage. When hydrogen sulfide diffused in the gas phase is oxidized to sulfuric acid by the sulfur oxidation bacteria, the corrosion and deterioration of concrete by that sulfuric acid are concerned even in the gravity sewer pipe as same as in the sewer pipe downstream from the discharge opening of the pressurized transport pipe for a long distance. When the gravity sewer pipe is planned and designed, it is required for establishing the necessary countermeasure at the places where the generation of sulfide is predicted, by estimating the sulfide concentration in the sewage accurately. In this report, making the slime adhered on the gravity sewer pipe wall and the slime grown in the laboratory as the objects, some knowledges on the sulfide flux from the anaerobic slime were obtained by measuring the sulfide flux and so forth. 16 refs., 4 figs., 3 tabs.

  2. Synthesis of Fluorite (CaF2 Crystal from Gypsum Waste of Phosphoric Acid Factory in Silica Gel

    Directory of Open Access Journals (Sweden)

    Mohammad Misbah Khunur

    2012-06-01

    Full Text Available This paper report the synthesis and characterization of fluorite single crystal prepared from gypsum waste of phosphoric acid production in silica gel. Instead of its high calcium, gypsum was used to recycle the waste which was massively produces in the phosphoric acid production. The gypsum waste, the raw material of CaCl2 supernatant, was dissolved in concentrated HCl and then precipitated as calcium oxalate (CaC2O4 by addition of ammonium oxalate. The CaCl2 was obtained by dissolving the CaC2O4 with HCl 3M. The crystals were grown at room temperature in silica gel and characterized by AAS, FTIR and powder XRD. The optimum crystal growth condition, which is pH of gel, CaCl2 concentration and growth time, were investigated. The result shows that at optimum condition of pH 5.80, CaCl2 concentrations of 1.2 M, and growth time of 144 hours, colorless crystals with the longest size of 3 mm, were obtained (72.57%. Characterization of the synthesized crystal by AAS indicates that the obtained crystal has high purity. Meanwhile, analysis by FTIR spectra shows a Ca–F peak at 775 cm-1, and powder-XRD analysis confirms that the obtained crystal was fluorite (CaF2. © 2012 BCREC UNDIP. All rights reservedReceived: 11st April 2012; Revised: 4th June 2012; Accepted: 13rd June 2012[How to Cite: M.M. Khunur, A. Risdianto, S. Mutrofin, Y.P. Prananto. (2012. Synthesis of Fluorite (CaF2 Crystal from Gypsum Waste of Phosphoric Acid Factory in Silica Gel. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 71-77.  doi:10.9767/bcrec.7.1.3171.71-77 ][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.3171.71-77 ] | View in 

  3. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites

    Science.gov (United States)

    Xu, Tiwen; Jia, Zhixin; Luo, Yuanfang; Jia, Demin; Peng, Zheng

    2015-02-01

    The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress-strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.

  4. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tiwen [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Jia, Zhixin, E-mail: zxjia@scut.edu.cn [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Luo, Yuanfang; Jia, Demin [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Peng, Zheng [Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agriculture Sciences, Zhanjiang 524001 (China)

    2015-02-15

    Highlights: • Substantiate the ring open reaction between Si-OH of silica and epoxy groups of ENR. • ENR can act as a bridge between NR and silica to enhance the interfacial interaction. • As a modifier, ENR gets the potential to be used in the tread of green tire for improving the wet skid resistance apparently. - Abstract: The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress–strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.

  5. Long-term atmospheric wet deposition of dissolved organic nitrogen in a typical red-soil agro-ecosystem, Southeastern China.

    Science.gov (United States)

    Cui, Jian; Zhou, Jing; Peng, Ying; He, Yuan Q; Yang, Hao; Xu, Liang J; Chan, Andy

    2014-05-01

    Dissolved organic nitrogen (DON) from atmospheric deposition has been a growing concern in the world and atmospheric nitrogen (N) deposition is increasing quickly in China especially Southeastern China. In our study, DON wet deposition was estimated by collecting and analyzing rainwater samples continuously over eight years (2005-2012) in a typical red-soil farmland ecosystem, Southeast China. Results showed that the volume-weighted-average DON concentration varied from 0.2 to 3.3 mg N L(-1) with an average of 1.2 mg N L(-1). DON flux ranged from 5.7 to 71.6 kg N ha(-1) year(-1) and averaged 19.7 kg N ha(-1) year(-1) which accounted for 34.6% of the total dissolved nitrogen (TDN) in wet deposition during the eight-year period. Analysis of DON concentration and flux, contribution of DON to TDN, rainfall, rain frequency, air temperature and wind frequency and the application of pig manure revealed possible pollution sources. Significant positive linear relation of annual DON flux and usage of pig manure (Pcycle in the red-soil agro-ecosystem in the future.

  6. Dissolved methane in the Beaufort Sea and the Arctic Ocean, 1992-2009; sources and atmospheric flux

    Science.gov (United States)

    Lorenson, Thomas D.; Greinert, Jens; Coffin, Richard B.

    2016-01-01

    Methane concentration and isotopic composition was measured in ice-covered and ice-free waters of the Arctic Ocean during eleven surveys spanning the years of 1992-1995 and 2009. During ice-free periods, methane flux from the Beaufort shelf varies from 0.14 to 0.43 mg CH4 m-2 day-1. Maximum fluxes from localized areas of high methane concentration are up to 1.52 mg CH4 m-2 day-1. Seasonal buildup of methane under ice can produce short-term fluxes of methane from the Beaufort shelf that varies from 0.28 to 1.01 to mg CH4 m-2 day-1. Scaled-up estimates of minimum methane flux from the Beaufort Sea and pan-Arctic shelf for both ice-free and ice-covered periods range from 0.02 Tg CH4 yr-1 and 0.30 Tg CH4 yr-1 respectively to maximum fluxes of 0.18 Tg CH4 yr-1 and 2.2 Tg CH4 yr-1 respectively. A methane flux of 0.36 Tg CH4 yr-1from the deep Arctic Ocean was estimated using data from 1993-94. The flux can be as much as 2.35 Tg CH4 yr-1 estimated from maximum methane concentrations and wind speeds of 12 m/s, representing only 0.42% of the annual atmospheric methane budget of ~560 Tg CH4 yr-1. There were no significant changes in methane fluxes during the time period of this study. Microbial methane sources predominate with minor influxes from thermogenic methane offshore Prudhoe Bay and the Mackenzie River delta and may include methane from gas hydrate. Methane oxidation is locally important on the shelf and is a methane sink in the deep Arctic Ocean.

  7. Ultraviolet absorbance as a proxy for total dissolved mercury in streams

    International Nuclear Information System (INIS)

    Dittman, Jason A.; Shanley, James B.; Driscoll, Charles T.; Aiken, George R.; Chalmers, Ann T.; Towse, Janet E.

    2009-01-01

    Stream water samples were collected over a range of hydrologic and seasonal conditions at three forested watersheds in the northeastern USA. Samples were analyzed for dissolved total mercury (THg d ), DOC concentration and DOC composition, and UV 254 absorbance across the three sites over different seasons and flow conditions. Pooling data from all sites, we found a strong positive correlation of THg d to DOC (r 2 = 0.87), but progressively stronger correlations of THg d with the hydrophobic acid fraction (HPOA) of DOC (r 2 = 0.91) and with UV 254 absorbance (r 2 = 0.92). The strength of the UV 254 absorbance-THg d relationship suggests that optical properties associated with dissolved organic matter may be excellent proxies for THg d concentration in these streams. Ease of sample collection and analysis, the potential application of in-situ optical sensors, and the possibility for intensive monitoring over the hydrograph make this an effective, inexpensive approach to estimate THg d flux in drainage waters. - Ultraviolet absorbance measurements are a cost-effective proxy to estimate dissolved mercury concentration in stream water.

  8. Can pelagic net heterotrophy account for carbon fluxes from eastern Canadian lakes?

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, Kristal, E-mail: kristal.dubois@gmail.com [Ottawa-Carleton Geoscience Center, University of Ottawa, 140 Louis Pasteur, Ottawa, Ontario, K1N 6N5 (Canada); Carignan, Richard [Departement des Sciences Biologiques, Universite de Montreal C.P. 6128, succ. Centre-Ville, Montreal, Quebec, H3C 3J7 (Canada); Veizer, Jan [Ottawa-Carleton Geoscience Center, University of Ottawa, 140 Louis Pasteur, Ottawa, Ontario, K1N 6N5 (Canada)

    2009-05-15

    Lakes worldwide are commonly oversaturated with CO{sub 2}, however the source of this CO{sub 2} oversaturation is not well understood. To examine the magnitude of the C flux to the atmosphere and determine if an excess of respiration (R) over gross primary production (GPP) is sufficient to account for this C flux, metabolic parameters and stable isotopes of dissolved O{sub 2} and C were measured in 23 Quebec lakes. All of the lakes sampled were oversaturated with CO{sub 2} over the sampling period, on average 221 {+-} 25%. However, little evidence was found to conclude that this CO{sub 2} oversaturation was the result of an excess of pelagic R over GPP. In lakes Croche and a l'Ours, where CO{sub 2} flux, R and GPP were measured weekly, the annual difference between pelagic GPP and R, or net primary production (NPP), was not sufficient to account for the size of the CO{sub 2} flux to the atmosphere. In Lac Croche average annual NPP was 14.4 mg C m{sup -2} d{sup -1} while the average annual flux of CO{sub 2} to the atmosphere was 34 mg C m{sup -2} d{sup -1}. In Lac a l'Ours average annual NPP was -9.1 mg C m{sup -2} d{sup -1} while the average annual flux of CO{sub 2} to the atmosphere was 55 mg C m{sup -2} d{sup -1}. In all of the lakes sampled, O{sub 2} saturation averaged 104.0 {+-} 1.7% during the ice-free season and the isotopic composition of dissolved O{sub 2} ({delta}{sup 18}O{sub DO}) was 22.9 {+-} 0.3 per mille , lower than atmospheric values and indicative of net autotrophy. Carbon evasion was not a function of R, nor did the isotopic signature of dissolved CO{sub 2} in the lakes present evidence of excess R over GPP. External inputs of C must therefore subsidize the lake to explain the continued CO{sub 2} oversaturation. The isotopic composition of dissolved inorganic C ({delta}{sup 13}C{sub DIC}) indicates that the CO{sub 2} oversaturation cannot be attributed to in situ aerobic respiration. {delta}{sup 13}C{sub DIC} reveals a source of excess

  9. Massive production of heavy metals in the Ganga (Hooghly) River estuary, India: Global importance of solute-particle interaction and enhanced metal fluxes to the oceans

    Science.gov (United States)

    Samanta, Saumik; Dalai, Tarun K.

    2018-05-01

    The Ganga River System is a major contributor to the global sediment and water discharge to the oceans. The estuary of Ganga (Hooghly) River in India is under increasing influence of anthropogenic contributions via discharge of the industrial and urban effluents. Here we document, based on the investigation of water and suspended sediment samples collected during six periods over two years, that there is extensive production of heavy metals (Co, Ni and Cu) in the estuary such that the annual dissolved fluxes of metals from the Hooghly River are enhanced by up to 230-1770%. Furthermore, the estuarine dissolved metal fluxes, when normalized with water fluxes, are the highest among estuaries of the major rivers in the world. Our simultaneous data on the dissolved, suspended particulate and exchangeable phases allow us to identify the ion-exchange process (coupled adsorption and desorption) as the dominant contributor to the generation of heavy metals in the middle and lower estuary where the estimated anthropogenic contribution is negligible. The estimated contributions from the groundwater are also insufficient to explain the measured metal concentrations in the estuary. A strong positive correlation that is observed between the dissolved heavy metal fluxes and the suspended particulate matter (SPM) fluxes, after normalizing them with the water fluxes, for estuaries of the major global rivers imply that the solute-particle interaction is a globally significant process in the estuarine production of metals. Based on this correlation that is observed for major estuaries around the world, we demonstrate that the South Asian Rivers which supply only ∼9% of the global river water discharge but carry elevated SPM load, contribute a far more significant proportion (∼40 ± 2% Ni and 15 ± 1% Cu) to the global supply of the dissolved metals from the rivers.

  10. Linking variability in soil solution dissolved organic carbon to climate, soil type, and vegetation type

    NARCIS (Netherlands)

    Camino-Serrano, Marta; Gielen, Bert; Luyssaert, Sebastiaan; Ciais, Philippe; Vicca, Sara; Guenet, Bertrand; Vos, Bruno De; Cools, Nathalie; Ahrens, Bernhard; Altaf Arain, M.; Borken, Werner; Clarke, Nicholas; Clarkson, Beverley; Cummins, Thomas; Don, Axel; Pannatier, Elisabeth Graf; Laudon, Hjalmar; Moore, Tim; Nieminen, Tiina M.; Nilsson, Mats B.; Peichl, Matthias; Schwendenmann, Luitgard; Siemens, Jan; Janssens, Ivan

    2014-01-01

    Lateral transport of carbon plays an important role in linking the carbon cycles of terrestrial and aquatic ecosystems. There is, however, a lack of information on the factors controlling one of the main C sources of this lateral flux, i.e., the concentration of dissolved organic carbon (DOC) in

  11. Reinforcement of Natural Rubber with Core-Shell Structure Silica-Poly(Methyl Methacrylate Nanoparticles

    Directory of Open Access Journals (Sweden)

    Qinghuang Wang

    2012-01-01

    Full Text Available A highly performing natural rubber/silica (NR/SiO2 nanocomposite with a SiO2 loading of 2 wt% was prepared by combining similar dissolve mutually theory with latex compounding techniques. Before polymerization, double bonds were introduced onto the surface of the SiO2 particles with the silane-coupling agent. The core-shell structure silica-poly(methyl methacrylate, SiO2-PMMA, nanoparticles were formed by grafting polymerization of MMA on the surface of the modified SiO2 particles via in situ emulsion, and then NR/SiO2 nanocomposite was prepared by blending SiO2-PMMA and PMMA-modified NR (NR-PMMA. The Fourier transform infrared spectroscopy results show that PMMA has been successfully introduced onto the surface of SiO2, which can be well dispersed in NR matrix and present good interfacial adhesion with NR phase. Compared with those of pure NR, the thermal resistance and tensile properties of NR/SiO2 nanocomposite are significantly improved.

  12. Organic matter sources, fluxes and greenhouse gas exchange in the Oubangui River (Congo River basin

    Directory of Open Access Journals (Sweden)

    S. Bouillon

    2012-06-01

    Full Text Available The Oubangui is a major tributary of the Congo River, draining an area of ~500 000 km2 mainly consisting of wooded savannahs. Here, we report results of a one year long, 2-weekly sampling campaign in Bangui (Central African Republic since March 2010 for a suite of physico-chemical and biogeochemical characteristics, including total suspended matter (TSM, bulk concentration and stable isotope composition of particulate organic carbon (POC and δ13CPOC, particulate nitrogen (PN and δ15NPN, dissolved organic carbon (DOC and δ13CDOC, dissolved inorganic carbon (DIC and δ13CDIC, dissolved greenhouse gases (CO2, CH4 and N2O, and dissolved lignin composition. δ13C signatures of both POC and DOC showed strong seasonal variations (−30.6 to −25.8‰, and −31.8 to −27.1‰, respectively, but their different timing indicates that the origins of POC and DOC may vary strongly over the hydrograph and are largely uncoupled, differing up to 6‰ in δ13C signatures. Dissolved lignin characteristics (carbon-normalised yields, cinnamyl:vanillyl phenol ratios, and vanillic acid to vanillin ratios showed marked differences between high and low discharge conditions, consistent with major seasonal variations in the sources of dissolved organic matter. We observed a strong seasonality in pCO2, ranging between 470 ± 203 ppm for Q < 1000 m3 s−1 (n=10 to a maximum of 3750 ppm during the first stage of the rising discharge. The low POC/PN ratios, high %POC and low and variable δ13CPOC signatures during low flow conditions suggest that the majority of the POC pool during this period consists of in situ produced phytoplankton, consistent with concurrent pCO2 (partial pressure of CO2 values only slightly

  13. Temporal Dynamics in the Concentration, Flux, and Optical Properties of Tree-derived Dissolved Organic Matter (Tree-DOM) in an Epiphyte-laden Oak-cedar Forest.

    Science.gov (United States)

    Whitetree, A.; Van Stan, J. T., II; Wagner, S.; Guillemette, F.; Lewis, J.; Silva, L.; Stubbins, A.

    2017-12-01

    Studies on the fate and transport of dissolved organic matter (DOM) along the rainfall-to-discharge flow pathway typically begin in streams or soils, neglecting the initial enrichment of rainfall with DOM during contact with plant canopies. However, rain water can gather significant amounts of tree-derived DOM (tree-DOM) when it drains from the canopy, as throughfall, and down the stem, as stemflow. We examined the temporal variability of event-scale tree-DOM concentrations, yield, and optical (light absorbance and fluorescence) characteristics from an epiphyte-laden Quercus virginiana-Juniperus virginiana forest on Skidaway Island, Savannah, Georgia (USA). All tree-DOM fluxes were highly enriched compared to rainfall and epiphytes further increased concentrations. Stemflow DOC concentrations were greater than throughfall across study species, yet larger throughfall water yields produced greater DOC yields versus stemflow. Tree-DOM optical characteristics indicate it is aromatic-rich with FDOM dominated by humic-like fluorescence, containing 10-20% protein-like (tryptophan-like) fluorescence. Storm size was the only storm condition that strongly correlated with tree-DOM concentration and flux; however, throughfall and stemflow optical characteristics varied little across a wide range of storm conditions (from low magnitude events to intense tropical storms). Annual tree-DOM yields from the study forest (0.8-46 g-C m-2 yr-1) compared well to other yields along the rainfall-to- discharge flow pathway, exceeding DOM yields from some river watersheds.

  14. Optical Proxies for Dissolved Organic Matter in Estuaries and Coastal Waters

    Science.gov (United States)

    Osburn, C. L.; Montgomery, M. T.; Boyd, T. J.; Bianchi, T. S.; Coffin, R. B.; Paerl, H. W.

    2016-02-01

    The flux of terrestrial dissolved organic carbon (DOC) into the coastal ocean from rivers and estuaries is a major part of the ocean's carbon cycle. Absorbing and fluorescing properties of chromophoric dissolved organic matter (CDOM) often are used to fingerprint its sources and to track fluxes of terrestrial DOM into the ocean. They also are used as proxies for organic matter to calibrate remote sensing observations from air and space and from in situ platforms. In general, strong relationships hold for large river dominated estuaries (e.g., the Mississippi River) but little is known about how widely such relationships can be developed in estuaries that have relatively small or multiple riverine inputs. Results are presented from a comparison of six diverse estuarine systems: the Atchafalaya River (ARE), the Mackenzie River (MRE), the Chesapeake Bay (CBE), Charleston Harbor (CHE), Puget Sound (PUG), and the Neuse River (NRE). Mean DOM concentrations ranged from 100 to 700 µM and dissolved lignin concentrations ranged from ca. 3-30 µg L-1. Overall trends were linear between CDOM measured at 350 nm (a350) and DOC concentration (R2=0.77) and between a350 and lignin (R2=0.87). Intercepts of a350 vs lignin were not significantly different from zero (P=0.43) suggesting that most of the CDOM was terrestrial in nature. Deviations from these regressions were strongest in the Neuse River Estuary, the most eutrophic of the six estuaries studied. After this calibration procedure, fluorescence modeling via parallel factor analysis (PARAFAC) was used to make estimates of terrigenous and planktonic DOC in these estuaries.

  15. CO2 volume fluxes outgassing from champagne glasses: the impact of champagne ageing.

    Science.gov (United States)

    Liger-Belair, Gérard; Villaume, Sandra; Cilindre, Clara; Jeandet, Philippe

    2010-02-15

    It was demonstrated that CO(2) volume fluxes outgassing from a flute poured with a young champagne (elaborated in 2007) are much higher than those outgassing from the same flute poured with an older champagne (elaborated in the early 1990s). The difference in dissolved-CO(2) concentrations between the two types of champagne samples was found to be a crucial parameter responsible for differences in CO(2) volume fluxes outgassing from one champagne to another. Nevertheless, it was shown that, for a given identical dissolved-CO(2) concentration in both champagne types, the CO(2) volume flux outgassing from the flute poured with the old champagne is, in average, significantly lower than that outgassing from the flute poured with the young one. Therefore, CO(2) seems to "escape" more easily from the young champagne than from the older one. The diffusion coefficient of CO(2) in both champagne types was pointed as a key parameter to thoroughly determine in the future, in order to unravel our experimental observation. Copyright 2009 Elsevier B.V. All rights reserved.

  16. Vertical divergence of fogwater fluxes above a spruce forest

    Science.gov (United States)

    Burkard, R.; Eugster, W.; Wrzesinsky, T.; Klemm, O.

    Two almost identical eddy covariance measurement setups were used to measure the fogwater fluxes to a forest ecosystem in the "Fichtelgebirge" mountains (Waldstein research site, 786 m a.s.l.) in Germany. During the first experiment, an intercomparison was carried out with both setups running simultaneously at the same measuring height on a meteorological tower, 12.5 m above the forest canopy. The results confirmed a close agreement of the turbulent fluxes between the two setups, and allowed to intercalibrate liquid water content (LWC) and gravitational fluxes. During the second experiment, the setups were mounted at a height of 12.5 and 3 m above the canopy, respectively. For the 22 fog events, a persistent negative flux divergence was observed with a greater downward flux at the upper level. To extrapolate the turbulent liquid water fluxes measured at height z to the canopy of height hc, a conversion factor 1/[1+0.116( z- hc)] was determined. For the fluxes of nonvolatile ions, no such correction is necessary since the net evaporation of the fog droplets appears to be the primary cause of the vertical flux divergence. Although the net evaporation reduces the liquid water flux reaching the canopy, it is not expected to change the absolute amount of ions dissolved in fogwater.

  17. Methane and Carbon Dioxide Concentrations and Fluxes in Amazon Floodplains

    Science.gov (United States)

    Melack, J. M.; MacIntyre, S.; Forsberg, B.; Barbosa, P.; Amaral, J. H.

    2016-12-01

    Field studies on the central Amazon floodplain in representative aquatic habitats (open water, flooded forests, floating macrophytes) combine measurements of methane and carbon dioxide concentrations and fluxes to the atmosphere over diel and seasonal times with deployment of meteorological sensors and high-resolution thermistors and dissolved oxygen sondes. A cavity ringdown spectrometer is used to determine gas concentrations, and floating chambers and bubble collectors are used to measure fluxes. To further understand fluxes, we measured turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. These results allow calculations of vertical mixing within the water column and of air-water exchanges using surface renewal models. Methane and carbon dioxide fluxes varied as a function of season, habitat and water depth. High CO2 fluxes at high water are related to high pCO2; low pCO2 levels at low water result from increased phytoplankton uptake. CO2 fluxes are highest at turbulent open water sites, and pCO2 is highest in macrophyte beds. Fluxes and pCH4 are high in macrophyte beds.

  18. Gas Separation through Bilayer Silica, the Thinnest Possible Silica Membrane.

    Science.gov (United States)

    Yao, Bowen; Mandrà, Salvatore; Curry, John O; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Schrier, Joshua

    2017-12-13

    Membrane-based gas separation processes can address key challenges in energy and environment, but for many applications the permeance and selectivity of bulk membranes is insufficient for economical use. Theory and experiment indicate that permeance and selectivity can be increased by using two-dimensional materials with subnanometer pores as membranes. Motivated by experiments showing selective permeation of H 2 /CO mixtures through amorphous silica bilayers, here we perform a theoretical study of gas separation through silica bilayers. Using density functional theory calculations, we obtain geometries of crystalline free-standing silica bilayers (comprised of six-membered rings), as well as the seven-, eight-, and nine-membered rings that are observed in glassy silica bilayers, which arise due to Stone-Wales defects and vacancies. We then compute the potential energy barriers for gas passage through these various pore types for He, Ne, Ar, Kr, H 2 , N 2 , CO, and CO 2 gases, and use the data to assess their capability for selective gas separation. Our calculations indicate that crystalline bilayer silica, which is less than a nanometer thick, can be a high-selectivity and high-permeance membrane material for 3 He/ 4 He, He/natural gas, and H 2 /CO separations.

  19. Measuring and understanding total dissolved gas pressure in groundwater

    Science.gov (United States)

    Ryan, C.; Roy, J. W.; Randell, J.; Castellon, L.

    2009-05-01

    Since dissolved gases are important to a number of aspects of groundwater (e.g. age dating, active or passive bioremediation, greenhouse gas fluxes, understanding biogeochemical processes involving gases, assessing potential impacts of coal bed methane activities), accurate concentration measurements, and understanding of their subsurface behaviour are important. Researchers have recently begun using total dissolved gas pressure (TGP) sensor measurements, more commonly applied for surface water monitoring, in concert with gas composition analyses to estimate more accurate groundwater gas concentrations in wells. We have used hydraulic packers to isolate the well screens where TDP is being measured, and pump tests to indicate that in-well degassing may reduce TDG below background groundwater levels. Thus, in gas-charged groundwater zones, TGPs can be considerably underestimated in the absence of pumping or screen isolation. We have also observed transient decreased TGPs during pumping that are thought to result from ebullition induced when the water table or water level in the well is lowered below a critical hydrostatic pressure.

  20. Long-Term Experimental Acidification Drives Watershed Scale Shift in Dissolved Organic Matter Composition and Flux

    Science.gov (United States)

    Michael D. SanClements; Ivan J. Fernandez; Robert H. Lee; Joshua A. Roberti; Mary Beth Adams; Garret A. Rue; Diane M. McKnight

    2018-01-01

    Over the last several decades dissolved organic carbon concentrations (DOC) in surface waters have increased throughout much of the northern hemisphere. Several hypotheses have been proposed regarding the drivers of this phenomenon including decreased sulfur (S) deposition working via an acidity- change mechanism. Using fluorescence spectroscopy and data from two long-...

  1. Synthesis of uniform carbon at silica nanocables and luminescent silica nanotubes with well controlled inner diameters

    International Nuclear Information System (INIS)

    Qian Haisheng; Yu Shuhong; Ren Lei; Yang Yipeng; Zhang Wei

    2006-01-01

    Uniform carbon at silica nanocables and silica nanotubes with well-controlled inner diameters can be synthesized in an easy way by a sacrificial templating method. This was performed using carbon nanofibres as hard templates that were synthesized previously by a hydrothermal carbonization process. Silica nanotubes with well-controlled inner diameters were synthesized from carbon at silica core-shell nanostructures by removal of the core carbon component. The inner diameters of the as-prepared silica nanotubes can be well controlled from several nanometres to hundreds of nanometres by adjusting the diameters of the carbon nanofibres. The silica nanotubes synthesized by this method display strong photoluminescence in ultraviolet at room temperature. Such uniform silica nanotubes might find potential applications in many fields such as encapsulation, catalysis, chemical/biological separation, and sensing

  2. Biosilicification Drives a Decline of Dissolved Si in the Oceans through Geologic Time

    Directory of Open Access Journals (Sweden)

    Daniel J. Conley

    2017-12-01

    Full Text Available Biosilicification has driven variation in the global Si cycle over geologic time. The evolution of different eukaryotic lineages that convert dissolved Si (DSi into mineralized structures (higher plants, siliceous sponges, radiolarians, and diatoms has driven a secular decrease in DSi in the global ocean leading to the low DSi concentrations seen today. Recent studies, however, have questioned the timing previously proposed for the DSi decreases and the concentration changes through deep time, which would have major implications for the cycling of carbon and other key nutrients in the ocean. Here, we combine relevant genomic data with geological data and present new hypotheses regarding the impact of the evolution of biosilicifying organisms on the DSi inventory of the oceans throughout deep time. Although there is no fossil evidence for true silica biomineralization until the late Precambrian, the timing of the evolution of silica transporter genes suggests that bacterial silicon-related metabolism has been present in the oceans since the Archean with eukaryotic silicon metabolism already occurring in the Neoproterozoic. We hypothesize that biological processes have influenced oceanic DSi concentrations since the beginning of oxygenic photosynthesis.

  3. Silica/Perfluoropolymer nanocomposites fabricated by direct melt-compounding: a novel method without surface modification on nano-silica.

    Science.gov (United States)

    Tanahashi, Mitsuru; Hirose, Masaki; Watanabe, Yusuke; Lee, Jeong-Chang; Takeda, Kunihiko

    2007-07-01

    A novel method for the fabrication of silica/perfluoropolymer nanocomposites was investigated, whereby nano-sized silica particles without surface modification were dispersed uniformly through mechanical breakdown of loosely packed agglomerates of silica nanoparticles with low fracture strength in a polymer melt during direct melt-compounding. The method consists of two stages. The first stage involves preparation of the loose silica agglomerate, and the second stage involves melt-compounding of a completely hydrophobic perfluoropolymer, poly(tetrafluoroethyleneco-perfluoropropylvinylether), with the loose silica agglomerates prepared in the first stage. In the first stage, the packing structure and the fracture strength of the silica agglomerate were controlled by destabilizing an aqueous colloidal silica solution with a mean primary diameter of 190 nm via pH control and salt addition. In the next stage, the silica/perfluoropolymer nanocomposite was fabricated by breaking down the prepared loose silica agglomerates with low fracture strength by means of a shear force inside the polymer melt during melt-compounding.

  4. Quantifying silica reactivity in subsurface environments: Reaction affinity and solute matrix controls on quartz and SiO2 glass. 1997 annual progress report

    International Nuclear Information System (INIS)

    Dove, P.M.

    1997-01-01

    'The author reports the preliminary results of the experiments on the dissolution behavior of vitreous silica (v-SiO 2 ) into aqueous solutions of variable pH and ionic strength. The experiments are being conducted in mixed flow reactors with a high circulation rate that simulates constant-stirred conditions, the efficacy of which the authors discuss below. The preliminary results indicate that v-SiO 2 dissolves into aqueous solutions approximately two orders of magnitude more quickly than crystalline silica (e.g., quartz). With additional experiments, they will utilize the dissolution rate data as a framework for understanding the behavior of waste glass compositions in the subsurface. In other work related to the studies of glass reactivity, the author has written one book chapter that will be published as part of a proceedings for the CEA/VALRHO international nuclear waste disposal conference held in Mejannes le Clap, France. In separate work, she is presently writing a second book chapter for the volume entitled Adsorption on Silica Surfaces.'

  5. Stormwater infrastructure controls runoff and dissolved material export from arid urban watersheds.

    OpenAIRE

    Hale, R.L.; Turnbull, L.; Earl, S.R.; Childers, D.L.; Grimm, N.B.

    2015-01-01

    Urbanization alters watershed ecosystem functioning, including nutrient budgets and processes of nutrient retention. It is unknown, however, how variation in stormwater infrastructure design affects the delivery of water and materials from urban watersheds. In this study, we asked: (1) How does stormwater infrastructure design vary over time and space in an arid city (Phoenix, Arizona, USA)?, and (2) How does variation in infrastructure design affect fluxes of dissolved nitrogen (N), phosphor...

  6. Annual suspended sediment and trace element fluxes in the Mississippi, Columbia, Colorado, and Rio Grande drainage basins

    Science.gov (United States)

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2001-01-01

    Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes

  7. Formation of plasma induced surface damage in silica glass etching for optical waveguides

    International Nuclear Information System (INIS)

    Choi, D.Y.; Lee, J.H.; Kim, D.S.; Jung, S.T.

    2004-01-01

    Ge, B, P-doped silica glass films are widely used as optical waveguides because of their low losses and inherent compatibility with silica optical fibers. These films were etched by ICP (inductively coupled plasma) with chrome etch masks, which were patterned by reactive ion etching (RIE) using chlorine-based gases. In some cases, the etched surfaces of silica glass were very rough (root-mean square roughness greater than 100 nm) and we call this phenomenon plasma induced surface damage (PISD). Rough surface cannot be used as a platform for hybrid integration because of difficulty in alignment and bonding of active devices. PISD reduces the etch rate of glass and it is very difficult to remove residues on a rough surface. The objective of this study is to elucidate the mechanism of PISD formation. To achieve this goal, PISD formation during different etching conditions of chrome etch mask and silica glass was investigated. In most cases, PISD sources are formed on a glass surface after chrome etching, and metal compounds are identified in theses sources. Water rinse after chrome etching reduces the PISD, due to the water solubility of metal chlorides. PISD is decreased or even disappeared at high power and/or low pressure in glass etching, even if PISD sources were present on the glass surface before etching. In conclusion, PISD sources come from the chrome etching process, and polymer deposition on these sources during the silica etching cause the PISD sources to grow. In the area close to the PISD source there is a higher ion flux, which causes an increase in the etch rate, and results in the formation of a pit

  8. Sonochemical coating of magnetite nanoparticles with silica.

    Science.gov (United States)

    Dang, Feng; Enomoto, Naoya; Hojo, Junichi; Enpuku, Keiji

    2010-01-01

    Magnetite nanoparticles were coated with silica through the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) under ultrasonic irradiation. The ultrasonic irradiation was used to prevent the agglomeration of the magnetite particles and accelerate the hydrolysis and condensation of TEOS. TEM, DLS, XRF, VSM, TG and sedimentation test were used to characterize the silica-coated magnetite particles. The dispersibility of silica-coated magnetite particles in aqueous solution was improved significantly and the agglomerate particle size was decreased to 110 nm. It was found that the agglomerate particle size of silica-coated magnetite particles was mainly decided by the coating temperature and the pH value in the silica-coating process. The weight ratio of silica in silica-coated magnetite particles was mainly decided by the pH value in the silica-coating process. The dispersibility of silica-coated magnetite particles was mainly decided by the agglomerate particle size of the suspension. The oxidation of magnetite particles in air was limited through the coated silica. The magnetism of silica-coated magnetite particles decreased slightly after silica-coating.

  9. Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment - Effect of sampling frequency

    International Nuclear Information System (INIS)

    Rabiet, M.; Margoum, C.; Gouy, V.; Carluer, N.; Coquery, M.

    2010-01-01

    This study reports on the occurrence and behaviour of six pesticides and one metabolite in a small stream draining a vineyard catchment. Base flow and flood events were monitored in order to assess the variability of pesticide concentrations according to the season and to evaluate the role of sampling frequency on the evaluation of fluxes estimates. Results showed that dissolved pesticide concentrations displayed a strong temporal and spatial variability. A large mobilisation of pesticides was observed during floods, with total dissolved pesticide fluxes per event ranging from 5.7 x 10 -3 g/Ha to 0.34 g/Ha. These results highlight the major role of floods in the transport of pesticides in this small stream which contributed to more than 89% of the total load of diuron during August 2007. The evaluation of pesticide loads using different sampling strategies and method calculation, showed that grab sampling largely underestimated pesticide concentrations and fluxes transiting through the stream. - This work brings new insights about the fluxes of pesticides in surface water of a vineyard catchment, notably during flood events.

  10. Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment - Effect of sampling frequency

    Energy Technology Data Exchange (ETDEWEB)

    Rabiet, M., E-mail: marion.rabiet@unilim.f [Cemagref, UR QELY, 3bis quai Chauveau, CP 220, F-69336 Lyon (France); Margoum, C.; Gouy, V.; Carluer, N.; Coquery, M. [Cemagref, UR QELY, 3bis quai Chauveau, CP 220, F-69336 Lyon (France)

    2010-03-15

    This study reports on the occurrence and behaviour of six pesticides and one metabolite in a small stream draining a vineyard catchment. Base flow and flood events were monitored in order to assess the variability of pesticide concentrations according to the season and to evaluate the role of sampling frequency on the evaluation of fluxes estimates. Results showed that dissolved pesticide concentrations displayed a strong temporal and spatial variability. A large mobilisation of pesticides was observed during floods, with total dissolved pesticide fluxes per event ranging from 5.7 x 10{sup -3} g/Ha to 0.34 g/Ha. These results highlight the major role of floods in the transport of pesticides in this small stream which contributed to more than 89% of the total load of diuron during August 2007. The evaluation of pesticide loads using different sampling strategies and method calculation, showed that grab sampling largely underestimated pesticide concentrations and fluxes transiting through the stream. - This work brings new insights about the fluxes of pesticides in surface water of a vineyard catchment, notably during flood events.

  11. Different effects of silica added internal or external on in vitro dissolution of indomethacin hot-melt extrudates.

    Science.gov (United States)

    Xia, Yulong; Yuan, Meng; Deng, Yueyang; Ke, Xue; Ci, Tianyuan

    2017-12-20

    The purpose of this work was to investigate the effect on the dissolution behavior when silica was added in different ways. The solid dispersion was prepared by hot-melt extrusion (HME) using indomethacin (IND) as a model drug and Kollidon VA64 as a carrier. In order to change the dissolution behavior, the silica was added during or after the HME respectively, to obtain the corresponding silica internal-added solid dispersion (InSD) and silica external-added solid dispersion (ExSD). According to the results, the internal-added silicon dioxide could reduce the dissolution rate from 66.91%/h to 24.12%/h and the water infiltration rate from 0.37mm/h to 0.16mm/h in the phosphate buffer solution (PBS) of pH 6.8, so the formulation of InSD had a significant sustained release effect. But the infiltration rate of the ExSD was increased to 13.22mm/h when silica was added external, and the density of VA64 in the powder was decreased from 541.87mg/cm3 to 141.87mg/cm3, leading to a weak resistance to the external force, and the powder was easy to be dispersed after wetted by water so that the formulation of ExSD had a relatively higher dissolution rate. This phenomenon was more visible when the phosphate buffer solution was changed to pH 5.6 in which the API was more difficult to be dissolved. Accordingly, different addition ways of aerosil would change release behavior of the HME preparation. Copyright © 2017. Published by Elsevier B.V.

  12. Silica reinforced triblock copolymer gels

    DEFF Research Database (Denmark)

    Theunissen, E.; Overbergh, N.; Reynaers, H.

    2004-01-01

    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...

  13. Effect of silica concentration on electrical conductivity of epoxy resin-carbon black-silica nanocomposites

    International Nuclear Information System (INIS)

    Zhang Wei; Blackburn, Richard S.; Dehghani-Sanij, Abbas A.

    2007-01-01

    Electrical properties of nanocomposites are determined by the conductive paths of carbon black and influenced by a 'network' of silica. With increasing content of silica, carbon black (CB) particles are optimally dispersed, contributing to the generation of a conductive network between CB particles via direct particle contact and a tunneling effect; maximum conductivity for the epoxy resin-CB-silica nanocomposite described herein occurs at a ratio of 0.6:1.0 (SiO 2 :CB). As a non-conductive component, excessive silica will prevent electron flow, giving rise to low conductivity

  14. Crustacean zooplankton release copious amounts of dissolved organic matter as taurine in the ocean.

    Science.gov (United States)

    Clifford, Elisabeth L; Hansell, Dennis A; Varela, Marta M; Nieto-Cid, Mar; Herndl, Gerhard J; Sintes, Eva

    2017-11-01

    Taurine (Tau), an amino acid-like compound, is present in almost all marine metazoans including crustacean zooplankton. It plays an important physiological role in these organisms and is released into the ambient water throughout their life cycle. However, limited information is available on the release rates by marine organisms, the concentrations and turnover of Tau in the ocean. We determined dissolved free Tau concentrations throughout the water column and its release by abundant crustacean mesozooplankton at two open ocean sites (Gulf of Alaska and North Atlantic). At both locations, the concentrations of dissolved free Tau were in the low nM range (up to 15.7 nM) in epipelagic waters, declining sharply in the mesopelagic to about 0.2 nM and remaining fairly stable throughout the bathypelagic waters. Pacific amphipod-copepod assemblages exhibited lower dissolved free Tau release rates per unit biomass (0.8 ± 0.4 μmol g -1 C-biomass h -1 ) than Atlantic copepods (ranging between 1.3 ± 0.4 μmol g -1 C-biomass h -1 and 9.5 ± 2.1 μmol g -1 C-biomass h -1 ), in agreement with the well-documented inverse relationship between biomass-normalized excretion rates and body size. Our results indicate that crustacean zooplankton might contribute significantly to the dissolved organic matter flux in marine ecosystems via dissolved free Tau release. Based on the release rates and assuming steady state dissolved free Tau concentrations, turnover times of dissolved free Tau range from 0.05 d to 2.3 d in the upper water column and are therefore similar to those of dissolved free amino acids. This rapid turnover indicates that dissolved free Tau is efficiently consumed in oceanic waters, most likely by heterotrophic bacteria.

  15. On-line dosing of Ammonium Biflouride for reduction of silica scaling on RO membranes

    Directory of Open Access Journals (Sweden)

    Ehab A. Rashed

    2016-08-01

    The primary goal of this research is to investigate the effectiveness of using Ammonium Biflouride (ABF as an anti-scaling agent in improving the performance of the RO membranes. ABF was used as on-line dosing with different doses for mitigation of scaling caused by silica (SiO2 on RO membranes. To study the efficiency of the anti-scaling agent, Scanning Electron Microscopy & Energy Dispersive X-ray Spectroscopy (SEM–EDS were performed for all phases before and after using the anti-scaling agent on the used RO membrane surface. The main parameters measured were: silica, TDS. Flux loss was observed for the cross-flow RO membrane after filtration. ABF doses used were: 2, 4, and 6 mg/l at constant pH = 6 and the optimum dose was found to be 4 mg/l.

  16. Silica particles and method of preparation thereof

    NARCIS (Netherlands)

    2015-01-01

    The invention is in the field of silica products. More in particular, the invention is in the field of amorphous silica particles. The invention is directed to amorphous silica particles and related products including clusters of said silica particles, a suspension of said silica particles, and an

  17. Preliminary estimation of Vulcano of CO2 budget and continuous monitoring of summit soil CO2 flux

    OpenAIRE

    Inguaggiato, S.; Mazot, A.; Diliberto, I. S.; Rouwet, D.; Vita, F.; Capasso, G.; Bobrowski, N.; Inguaggiato, C.; Grassa, F.

    2008-01-01

    Total CO2 output from fumaroles, soil gases, bubbling and water dissolved gases were estimated at Vulcano Island, Italy. The fumaroles output has been estimated from SO2 plume flux, while soil flux emission has been carried out through 730 CO2 fluxes measured on the island surface, performed by means of accumulation chamber method. Vulcano Island, located in the Aeolian Archipelago, is an active volcano that has been in state of solphataric activity, since the last eru...

  18. COOH-functionalisation of silica particles

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, Peter, E-mail: peter.majewski@unisa.edu.au [School of Advanced Manufacturing and Mechanical Engineering, Mawson Institute, University of South Australia, Adelaide (Australia); Albrecht, Trent [Ian Wark Research Institute, University of South Australia, Adelaide (Australia); Weber, Siegfried [Department of Biotechnology, University of Applied Sciences, Mannheim (Germany)

    2011-09-01

    In this study COOH-functionalised silica is synthesised using phosphonateN-(phosphonomethyl)iminodiacetic acid (PMIDA) in an aqueous solution. The presence of PMIDA on the silica particles was verified using Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy and titration. Experimentally, surface concentrations of COOH functional groups of up to about 3 mmol/g{sub silica} were achieved, whereas theoretical calculation of the maximum COOH functional group concentration gave about 1 mmol/g{sub silica}. The discrepancy may be caused by PMIDA multilayer formation on the particle.

  19. Experimental Evidence for Abiotic Sulfurization of Marine Dissolved Organic Matter

    Directory of Open Access Journals (Sweden)

    Anika M. Pohlabeln

    2017-11-01

    Full Text Available Dissolved organic sulfur (DOS is the largest pool of organic sulfur in the oceans, and as such it is an important component of the global sulfur cycle. DOS in the ocean is resistant against microbial degradation and turns over on a millennium time scale. However, sources and mechanisms behind its stability are largely unknown. Here, we hypothesize that in sulfate-reducing sediments sulfur is abiotically incorporated into dissolved organic matter (DOM and released to the ocean. We exposed natural seawater and the filtrate of a plankton culture to sulfidic conditions. Already after 1-h at 20°C, DOS concentrations had increased 4-fold in these experiments, and 14-fold after 4 weeks at 50°C, indicating that organic matter does not need long residence times in natural sulfidic environments to be affected by sulfurization. Molecular analysis via ultrahigh-resolution mass spectrometry showed that sulfur was covalently and unselectively bound to DOM. Experimentally produced and natural DOS from sediments were highly similar on a molecular and structural level. By combining our data with published benthic DOC fluxes we estimate that 30–200 Tg DOS are annually transported from anaerobic and sulfate reducing sediments to the oceans. Uncertainties in this first speculative assessment are large. However, this first attempt illustrates that benthic DOS flux is potentially one order of magnitude larger than that via rivers indicating that this could balance the estimated global net removal of refractory DOS.

  20. Evaluation of high-frequency mean streamwater transit-time estimates using groundwater age and dissolved silica concentrations in a small forested watershed

    Science.gov (United States)

    Peters, Norman E.; Burns, Douglas A.; Aulenbach, Brent T.

    2014-01-01

    Many previous investigations of mean streamwater transit times (MTT) have been limited by an inability to quantify the MTT dynamics. Here, we draw on (1) a linear relation (r 2 = 0.97) between groundwater 3H/3He ages and dissolved silica (Si) concentrations, combined with (2) predicted streamwater Si concentrations from a multiple-regression relation (R 2 = 0.87) to estimate MTT at 5-min intervals for a 23-year time series of streamflow [water year (WY) 1986 through 2008] at the Panola Mountain Research Watershed, Georgia. The time-based average MTT derived from the 5-min data was ~8.4 ± 2.9 years and the volume-weighted (VW) MTT was ~4.7 years for the study period, reflecting the importance of younger runoff water during high flow. The 5-min MTTs are normally distributed and ranged from 0 to 15 years. Monthly VW MTTs averaged 7.0 ± 3.3 years and ranged from 4 to 6 years during winter and 8–10 years during summer. The annual VW MTTs averaged 5.6 ± 2.0 years and ranged from ~5 years during wet years (2003 and 2005) to >10 years during dry years (2002 and 2008). Stormflows are composed of much younger water than baseflows, and although stormflow only occurs ~17 % of the time, this runoff fraction contributed 39 % of the runoff during the 23-year study period. Combining the 23-year VW MTT (including stormflow) with the annual average baseflow for the period (~212 mm) indicates that active groundwater storage is ~1,000 mm. However, the groundwater storage ranged from 1,040 to 1,950 mm using WY baseflow and WY VW MTT. The approach described herein may be applicable to other watersheds underlain by granitoid bedrock, where weathering is the dominant control on Si concentrations in soils, groundwater, and streamwater.

  1. Seasonal air-water exchange fluxes of polychlorinated biphenyls in the Hudson River Estuary

    International Nuclear Information System (INIS)

    Yan Shu; Rodenburg, Lisa A.; Dachs, Jordi; Eisenreich, Steven J.

    2008-01-01

    Polychlorinated biphenyls (PCBs) were measured in the air and water over the Hudson River Estuary during six intensive field campaigns from December 1999 to April 2001. Over-water gas-phase ΣPCB concentrations averaged 1100 pg/m 3 and varied with temperature. Dissolved-phase ΣPCB concentrations averaged 1100 pg/L and displayed no seasonal trend. Uncertainty analysis of the results suggests that PCBs with 5 or fewer chlorines exhibited net volatilization. The direction of net air/water exchange could not be determined for PCBs with 6 or more chlorines. Instantaneous net fluxes of ΣPCBs ranged from +0.2 to +630 ng m -2 d -1 . Annual fluxes of ΣPCBs were predicted from modeled gas-phase concentrations, measured dissolved-phase concentrations, daily surface water temperatures and wind speeds. The net volatilization flux was +62 μg m -2 yr -1 , corresponding to an annual loss of +28 kg/yr of ΣPCBs from the Hudson River Estuary for the year of 2000. - Investigation of the air-water exchange of PCBs in the Hudson River Estuary suggests that PCBs with 5 or fewer chlorines undergo net volatilization

  2. Assessing the Role of Dissolved Organic Phosphate on Rates of Microbial Phosphorus Cycling

    Science.gov (United States)

    Gonzalez, A. C.; Popendorf, K. J.; Duhamel, S.

    2016-02-01

    Phosphorus (P) is an element crucial to life, and it is limiting in many parts of the ocean. In oligotrophic environments, the dissolved P pool is cycled rapidly through the activity of microbes, with turnover times of several hours or less. The overarching aim of this study was to assess the flux of P from picoplankton to the dissolved pool and the role this plays in fueling rapid P cycling. To determine if specific microbial groups are responsible for significant return of P to the dissolved pool during cell lifetime, we compared the rate of cellular P turnover (cell-Pτ, the rate of cellular P uptake divided by cellular P content) to the rate of cellular biomass turnover (cellτ). High rates of P return to the dissolved pool during cell lifetime (high cell-Pτ/cellτ) indicate significant P regeneration, fueling more rapid turnover of the dissolved P pool. We hypothesized that cell-Pτ/cellτ varies widely across picoplankton groups. One factor influencing this variation may be each microbial group's relative uptake of dissolved organic phosphorus (DOP) versus dissolved inorganic phosphorus (DIP). As extracellular hydrolysis is necessary for P incorporation from DOP, this process may return more P to the dissolved pool than DIP incorporation. This leads to the question: does a picoplankton's relative uptake of DOP (versus DIP) affect the rate at which it returns phosphorus to the dissolved pool? To address this question, we compared the rate of cellular P turnover based on uptake of DOP and uptake DIP using cultured representatives of three environmentally significant picoplankton groups: Prochlorococcus, Synechococcus, and heterotrophic bacteria. These different picoplankton groups are known to take up different ratios of DOP to DIP, and may in turn make significantly different contributions to the regeneration and cycling phosphorus. These findings have implications towards our understanding of the timeframes of biogeochemical cycling of phosphorus in the

  3. Metal-silica sol-gel materials

    Science.gov (United States)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  4. Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary

    Science.gov (United States)

    Santos, Isaac R.; Burnett, William C.; Dittmar, Thorsten; Suryaputra, I. G. N. A.; Chanton, Jeffrey

    2009-03-01

    We hypothesize that nutrient cycling in a Gulf of Mexico subterranean estuary (STE) is fueled by oxygen and labile organic matter supplied by tidal pumping of seawater into the coastal aquifer. We estimate nutrient production rates using the standard estuarine model and a non-steady-state box model, separate nutrient fluxes associated with fresh and saline submarine groundwater discharge (SGD), and estimate offshore fluxes from radium isotope distributions. The results indicate a large variability in nutrient concentrations over tidal and seasonal time scales. At high tide, nutrient concentrations in shallow beach groundwater were low as a result of dilution caused by seawater recirculation. During ebb tide, the concentrations increased until they reached a maximum just before the next high tide. The dominant form of nitrogen was dissolved organic nitrogen (DON) in freshwater, nitrate in brackish waters, and ammonium in saline waters. Dissolved organic carbon (DOC) production was two-fold higher in the summer than in the winter, while nitrate and DON production were one order of magnitude higher. Oxic remineralization and denitrification most likely explain these patterns. Even though fresh SGD accounted for only ˜5% of total volumetric additions, it was an important pathway of nutrients as a result of biogeochemical inputs in the mixing zone. Fresh SGD transported ˜25% of DOC and ˜50% of total dissolved nitrogen inputs into the coastal ocean, with the remainder associated with a one-dimensional vertical seawater exchange process. While SGD volumetric inputs are similar seasonally, changes in the biogeochemical conditions of this coastal plain STE led to higher summertime SGD nutrient fluxes (40% higher for DOC and 60% higher for nitrogen in the summer compared to the winter). We suggest that coastal primary production and nutrient dynamics in the STE are linked.

  5. Using High Spatio-Temporal Optical Remote Sensing to Monitor Dissolved Organic Carbon in the Arctic River Yenisei

    Directory of Open Access Journals (Sweden)

    Pierre-Alexis Herrault

    2016-09-01

    Full Text Available In Arctic regions, a major concern is the release of carbon from melting permafrost that could greatly exceed current human carbon emissions. Arctic rivers drain these organic-rich watersheds (Ob, Lena, Yenisei, Mackenzie, Yukon but field measurements at the outlets of these great Arctic rivers are constrained by limited accessibility of sampling sites. In particular, the highest dissolved organic carbon (DOC fluxes are observed throughout the ice breakup period that occurs over a short two to three-week period in late May or early June during the snowmelt-generated peak flow. The colored fraction of dissolved organic carbon (DOC which absorbs UV and visible light is designed as chromophoric dissolved organic matter (CDOM. It is highly correlated to DOC in large arctic rivers and streams, allowing for remote sensing to monitor DOC concentrations from satellite imagery. High temporal and spatial resolutions remote sensing tools are highly relevant for the study of DOC fluxes in a large Arctic river. The high temporal resolution allows for correctly assessing this highly dynamic process, especially the spring freshet event (a few weeks in May. The high spatial resolution allows for assessing the spatial variability within the stream and quantifying DOC transfer during the ice break period when the access to the river is almost impossible. In this study, we develop a CDOM retrieval algorithm at a high spatial and a high temporal resolution in the Yenisei River. We used extensive DOC and DOM spectral absorbance datasets from 2014 and 2015. Twelve SPOT5 (Take5 and Landsat 8 (OLI images from 2014 and 2015 were examined for this investigation. Relationships between CDOM and spectral variables were explored using linear models (LM. Results demonstrated the capacity of a CDOM algorithm retrieval to monitor DOC fluxes in the Yenisei River during a whole open water season with a special focus on the peak flow period. Overall, future Sentinel2/Landsat8

  6. Role of alkyl alcohol on viscosity of silica-based chemical gels for decontamination of highly radioactive nuclear facilities

    International Nuclear Information System (INIS)

    Choi, B. S.; Yoon, S. B.; Jung, C. H.; Lee, K. W.; Moon, J. K.

    2012-01-01

    Silica-based chemical gel for the decontamination of nuclear facilities was prepared by using fumed silica as a viscosifier, a 0.5 M Ce (IV) solution dissolved in concentrated nitric acid as a chemical decontamination agent, and tripropylene glycol butyl ether (TPGBE) as a co-viscosifier. A new effective strategy for the preparation of the chemical gel was investigated by introducing the alkyl alcohols as organic solvents to effectively dissolve the co-viscosifier. The mixture solution of the co-viscosifier and alkyl alcohols was more effective in the control of viscosity than that of the co-viscosifier only in gel. Here, the alkyl alcohols played a key role as an effective dissolution solvent for the co-viscosifier in the preparation of the chemical gel, resulting in a reducing of the amount of the co-viscosifier and gel time compared with that of the chemical gel prepared without the alkyl alcohols. It was considered that the alkyl alcohols contributed to the effective dissolution of the co-viscosifier as well as the homogeneous mixing in the formation of the gel, while the co-viscosifier in an aqueous media of the chemical decontamination agent solution showed a lower solubility. The decontamination efficiency of the chemical gels prepared in this work using a multi-channel analyzer (MCA) showed a high decontamination efficiency of over ca. 94% and ca. 92% for Co-60 and Cs-137 contaminated on surface of the stainless steel 304, respectively. (authors)

  7. Silica aerogel Cerenkov counter

    International Nuclear Information System (INIS)

    Yasumi, S.; Masaike, A.; Yamamoto, A.; Yoshimura, Y.; Kawai, H.

    1984-03-01

    In order to obtain silica aerogel radiators of good quality, the prescription used by Saclay group has been developed. We have done several experiments using beams from KEK.PS to test the performance of a Cerenkov counter with aerogel modules produced in KEK. It turned out that these modules had excellent quality. The production rate of silica aerogel in KEK is 15 -- 20 litres a week. Silica aerogel modules of 20 x 10 x 3 cm 3 having the refractive index of 1.058 are successfully being used by Kyoto University group in the KEK experiment E92 (Σ). Methodes to produce silica aerogel with higher refractive index than 1.06 has been investigated both by heating an module with the refractive index of 1.06 and by hydrolyzing tetraethyl silicate. (author)

  8. Chromophoric dissolved organic matter export from U.S. rivers

    Science.gov (United States)

    Spencer, Robert G. M.; Aiken, George R.; Dornblaser, Mark M.; Butler, Kenna D.; Holmes, R. Max; Fiske, Greg; Mann, Paul J.; Stubbins, Aron

    2013-04-01

    Chromophoric dissolved organic matter (CDOM) fluxes and yields from 15 major U.S. rivers draining an assortment of terrestrial biomes are presented. A robust relationship between CDOM and dissolved organic carbon (DOC) loads is established (e.g., a350 versus DOC; r2 = 0.96, p CDOM yields are also correlated to watershed percent wetland (e.g. a350; r2 = 0.81, p CDOM export from ungauged watersheds. A large variation in CDOM yields was found across the rivers. The two rivers in the north-eastern U.S. (Androscoggin and Penobscot), the Edisto draining into the South Atlantic Bight, and some rivers draining into the Gulf of Mexico (Atchafalaya and Mobile) exhibit the highest CDOM yields, linked to extensive wetlands in these watersheds. If the Edisto CDOM yield is representative of other rivers draining into the South Atlantic Bight, this would result in a CDOM load equivalent to that of the Mississippi from a region of approximately 10% of the Mississippi watershed, indicating the importance of certain regions with respect to the role of terrigenous CDOM in ocean color budgets.

  9. Melt flow and mechanical properties of silica/perfluoropolymer nanocomposites Fabricated by direct melt-compounding without surface modification on nano-silica.

    Science.gov (United States)

    Tanahashi, Mitsuru; Watanabe, Yusuke; Lee, Jeong-Chang; Takeda, Kunihiko; Fujisawa, Toshiharu

    2009-01-01

    The authors have previously developed a novel method for the fabrication of silica/perfluoropolymer nanocomposites, wherein nano-sized silica particles without surface modification were dispersed uniformly through breakdown of loosely packed agglomerates of silica nanoparticles with low fracture strength in a polymer melt during direct melt-compounding. The method consists of two stages; the first stage involves preparation of the loose silica agglomerate, and the second stage involves melt-compounding of a completely hydrophobic perfluoropolymer, PFA (poly(tetrafluoroethylene-co-perfluoropropylvinylether)), with the loose silica agglomerates. By using this simple method without any lipophilic treatment of the silica surfaces, silica nanoparticles with a primary diameter of 190 nm could be dispersed uniformly into the PFA matrix. The main purpose of the present study is to evaluate the melt flow and tensile properties of silica/PFA nanocomposites fabricated by the above method. In order to elucidate the effects of the size of the dispersed silica in the PFA matrix on the properties of the composites, silica/PFA composite samples exhibiting the dispersion of larger-sized silica particle-clusters were fabricated as negative controls of the silica dispersion state. The results obtained under the present experimental conditions showed that the size of the dispersed silica in the PFA matrix exerts a strong influence on the ultimate tensile properties, such as tensile strength and elongation at break, and the melt flow rate (MFR) of the composite materials. The MFR of the silica/PFA nanocomposite became higher than that of the pure PFA without silica addition, although the MFR of the PFA composites containing larger silica particle-clusters became much lower than that of the pure PFA. Furthermore, uniform dispersion of isolated silica nanoparticles was found to improve not only the Young's modulus but also the ultimate tensile properties of the composite.

  10. Multifunctional nanomedicine with silica: Role of silica in nanoparticles for theranostic, imaging, and drug monitoring.

    Science.gov (United States)

    Chen, Fang; Hableel, Ghanim; Zhao, Eric Ruike; Jokerst, Jesse V

    2018-07-01

    The idea of multifunctional nanomedicine that enters the human body to diagnose and treat disease without major surgery is a long-standing dream of nanomaterials scientists. Nanomaterials show incredible properties that are not found in bulk materials, but achieving multi-functionality on a single material remains challenging. Integrating several types of materials at the nano-scale is critical to the success of multifunctional nanomedicine device. Here, we describe the advantages of silica nanoparticles as a tool for multifunctional nano-devices. Silica nanoparticles have been intensively studied in drug delivery due to their biocompatibility, degradability, tunable morphology, and ease of modification. Moreover, silica nanoparticles can be integrated with other materials to obtain more features and achieve theranostic capabilities and multimodality for imaging applications. In this review, we will first compare the properties of silica nanoparticles with other well-known nanomaterials for bio-applications and describe typical routes to synthesize and integrate silica nanoparticles. We will then highlight theranostic and multimodal imaging application that use silica-based nanoparticles with a particular interest in real-time monitoring of therapeutic molecules. Finally, we will present the challenges and perspective on future work with silica-based nanoparticles in medicine. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Nd-Sr isotopic compositions of dissolved and particulate material transported by the Parana and Uruguay rivers during high (december 1993) and low (september 1994) water periods

    International Nuclear Information System (INIS)

    Henry, F.; Thouron, D.; Garcon, V.; Henry, F.; Probst, J.L.

    1996-01-01

    Our motivation is to better constrain the neodymium and strontium isotopic signatures of the closest continental riverine source (Parana and Uruguay rivers) to the Brazil/Malvinas Confluence zone in the Southwest Atlantic Ocean. We thus present new isotopic data on the Nd and Sr of the dissolved and suspended loads of the Parana and Uruguay rivers for two water periods forming the Rio de la Plata whose drainage basin is the second largest one in South America. The Parana dissolved material shows less radiogenic (ε Nd (0) ranging between -12.1 and -8.2) than the Uruguay one with a mean ε Nd (0) value of -6.3 ± 0.3. Suspended particulates display the same isotopic trend (mean ε Nd (0) value of -10.3 and -6.0 for the Parana and Uruguay rivers, respectively). Dissolved load 87 Sr/ 86 Sr in the Parana (0.7123) is found to be more radiogenic than the Uruguay one (0.7097); the suspended load follows the same trend with 87 Sr/ 86 Sr ratios of 0.7247 and 0.7115 in the Parana and Uruguay rivers, respectively. The relatively radiogenic Nd and non radiogenic Sr of the Uruguay River as compared to the Parana River could be attributed to a predominance of tholeiitic basalts in the drainage basin. A revisited estimation of the fluxes of Nd considering all South American rivers delivering into the western South and Tropical Atlantic Ocean yields a Nd particulate flux to estuarine water two orders of magnitude higher than the Nd dissolved flux. Considering the net dissolved and suspended fluxes of Nd reaching the Rio de la Plata, we have calculated a resulting ε Nd (0) equal to -10.2. The computation of ε Nd (0) of the Rio de la Plata outflow waters gives a value of -8.3, taking into account various removal processes within the estuary. (authors)

  12. Study of the pluronic-silica interaction in synthesis of mesoporous silica under mild acidic conditions.

    Science.gov (United States)

    Sundblom, Andreas; Palmqvist, Anders E C; Holmberg, Krister

    2010-02-02

    The interaction between silica and poly(ethylene oxide) (PEO) in water may appear trivial and it is generally stated that hydrogen bonding is responsible for the attraction. However, a literature search shows that there is not a consensus with respect to the mechanism behind the attractive interaction. Several papers claim that only hydrogen bonding is not sufficient to explain the binding. The silica-PEO interaction is interesting from an academic perspective and it is also exploited in the preparation of mesoporous silica, a material of considerable current interest. This study concerns the very early stage of synthesis of mesoporous silica under mild acidic conditions, pH 2-5, and the aim is to shed light on the interaction between silica and the PEO-containing structure directing agent. The synthesis comprises two steps. An organic silica source, tetraethylorthosilicate (TEOS), is first hydrolyzed and Pluronic P123, a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer, is subsequently added at different time periods following the hydrolysis of TEOS. It is shown that the interaction between the silica and the Pluronic is dependent both on the temperature and on the time between onset of TEOS hydrolysis and addition of the copolymer. The results show that the interaction is mainly driven by entropy. The effect of the synthesis temperature and of the time between hydrolysis and addition of the copolymer on the final material is also studied. The material with the highest degree of mesoorder was obtained when the reaction was performed at 20 degrees C and the copolymer was added 40 h after the start of TEOS hydrolysis. It is claimed that the reason for the good ordering of the silica is that whereas particle formation under these conditions is fast, the rate of silica condensation is relatively low.

  13. Silica coatings on clarithromycin.

    Science.gov (United States)

    Bele, Marjan; Dmitrasinovic, Dorde; Planinsek, Odon; Salobir, Mateja; Srcic, Stane; Gaberscek, Miran; Jamnik, Janko

    2005-03-03

    Pre-crystallized clarithromycin (6-O-methylerythromycin A) particles were coated with silica from the tetraethyl orthosilicate (TEOS)-ethanol-aqueous ammonia system. The coatings had a typical thickness of 100-150 nm and presented about 15 wt.% of the silica-drug composite material. The properties of the coatings depended on reactant concentration, temperature and mixing rate and, in particular, on the presence of a cationic surfactant (cetylpyridinium chloride). In the presence of cetylpyridinium chloride the silica coatings slightly decreased the rate of pure clarithromycin dissolution.

  14. Oxygen configurations in silica

    International Nuclear Information System (INIS)

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-01-01

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O 2 bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society

  15. The Effect of Various Acids to the Gelation Process to the Silica Gel Characteristic Using Organic Silica

    Science.gov (United States)

    Rahman, NA; Widiyastuti, W.; Sigit, D.; Ajiza, M.; Sujana, W.

    2018-01-01

    Bagasse ash is solid waste of cane sugar industry which contain of silica more than 51%. Some previous study of silica gel from bagasse ash have been conducted often and been applied. This study concerns about the effect of various acid used in the process of gelation to the characteristic of silica gel produced. Then, this silica gel will be used as adsorbent. As that, the silica gel must fulfill the requirements of adsorbent, as have good pores characteristics, fit in mesoporous size so that adsorbent diffusion process is not disturbed. A fitted pores size of silica gel can be prepared by managing acid concentration used. The effect of acid, organic acid (tartaric acid) and inorganic acid (hydrochloric acid), is investigated in detail. The acid is added into sodium silicate solution in that the gel is formed, the pores structures can be investigated with BET, the crystal form is analyzed with XRD and the pore structure is analyzed visually with SEM. By managing the acid concentration added, it gets the effect of acid to the pore structure of silica gel. The bigger concentration is, the bigger the pore’s size of silica gel produced.

  16. Thermogravimetric study on the hydration of reactive magnesia and silica mixture at room temperature

    International Nuclear Information System (INIS)

    Jin, Fei; Al-Tabbaa, Abir

    2013-01-01

    Highlights: • The characteristics of reactive MgO vary significantly in terms of their impurity content and reactivity depending on their sources and calcination conditions. • The synthesis of magnesium silicate hydrate (MSH) is affected by the characteristics of the precursors, i.e., MgO and silica. • The reaction process in the MgO–SiO 2 –H 2 O system can be followed by TGA, and is essential to develop MSH-based materials. - Abstract: The synthesis of magnesium silicate hydrate (MSH), which has wide applications in both construction and environmental fields, has been studied for decades. However, it is known that the characteristics of magnesia (MgO) vary significantly depending on their calcination conditions, which is expected to affect their performance in the MgO–SiO 2 –H 2 O system. This paper investigated the effect of different MgO and silica sources on the formation of magnesium silicate hydrate (MSH) at room temperature. The hydration process was studied by mixing commercial reactive MgO and silica powders with water and curing for 1, 7 and 28 days. The hydration products were analysed with the help of X-ray diffraction (XRD) and thermogravimatric analysis (TGA). The results showed the continuous consumption of MgO and the existence of MSH and brucite and other minor phases such as magnesite and calcite. It is found that the Mg and Si sources have significant effect on the hydration process of MgO–SiO 2 –H 2 O system. The reaction degree is controlled by the availability of dissolved Mg and Si in the solution. The former is determined by the reactivity of MgO and the latter is related to the reactivity of the silica as well as the pH of the system

  17. Distribution of dissolved and particulate 226Ra, 210Pb and 210Po in the Bismarck Sea and western equatorial Pacific Ocean

    International Nuclear Information System (INIS)

    Peck, G.A.; Smith, J.D

    2000-01-01

    The distribution of the radionuclides 226 Ra, 210 Pb and 210 Po in the dissolved ( 210 Pb and 210 Po in the particulate (>0.45 μm) phases was measured in the upper 300 m of the Bismarck Sea off the Sepik River and along the equator from 143 deg E to 152 deg E in the western equatorial Pacific Ocean. 210 Pb and 210 Po occurred principally in the dissolved phase with a 210 Po/ 210 Pb ratio 210 Po/ 210 Pb ratios greater than 1.0. Box model calculations yielded an average atmospheric flux of 210 Pb of 4.5 mBq cm -2 year -1 to the ocean surface. The average residence times for dissolved 210 Po and dissolved 210 Pb were 0.27 years and 8.0 years respectively (in the mixed layer) and 1.45 years and 170 years (in the deeper layer). With an average residence time of 0.08 ± 0.03 years, particulate 210 Po varied little between the layers. The difference in 210 Po and 210 Pb residence times reflects the greater particle reactivity of 210 Po. The flux of particulate organic carbon was calculated to be 104 ± 21 mg m -2 day -1 from the upper 100 m and 180 ± 22 mg m -2 day -1 from 100-300 m. Copyright (2000) CSIRO Publishing

  18. Tidally driven export of dissolved organic carbon, total mercury, and methylmercury from a mangrove-dominated estuary

    Science.gov (United States)

    Bergamaschi, B.A.; Krabbenhoft, D.P.; Aiken, G.R.; Patino, E.; Rumbold, D.G.; Orem, W.H.

    2012-01-01

    The flux of dissolved organic carbon (DOC) from mangrove swamps accounts for 10% of the global terrestrial flux of DOC to coastal oceans. Recent findings of high concentrations of mercury (Hg) and methylmercury (MeHg) in mangroves, in conjunction with the common co-occurrence of DOC and Hg species, have raised concerns that mercury fluxes may also be large. We used a novel approach to estimate export of DOC, Hg, and MeHg to coastal waters from a mangrove-dominated estuary in Everglades National Park (Florida, USA). Using in situ measurements of fluorescent dissolved organic matter as a proxy for DOC, filtered total Hg, and filtered MeHg, we estimated the DOC yield to be 180 (??12.6) g C m -2 yr -1, which is in the range of previously reported values. Although Hg and MeHg yields from tidal mangrove swamps have not been previously measured, our estimated yields of Hg species (28 ?? 4.5 ??g total Hg m -2 yr -1 and 3.1 ?? 0.4 ??g methyl Hg m -2 yr -1) were five times greater than is typically reported for terrestrial wetlands. These results indicate that in addition to the well documented contributions of DOC, tidally driven export from mangroves represents a significant potential source of Hg and MeHg to nearby coastal waters. ?? 2011 American Chemical Society.

  19. Diffusive flux of methane from warm wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Barber, T.R.; Burke, R.A.; Sackett, W.M. (Univ. of South Florida, St. Petersburg (USA))

    1988-12-01

    Diffusion of methane across the air-water interface from several wetland environments in south Florida was estimated from measured surface water concentrations using an empirically derived gas exchange model. The flux from the Everglades sawgrass marsh system varied widely, ranging from 0.18 + or{minus}0.21 mol CH{sub 4}/sq m/yr for densely vegetated regions to 2.01 + or{minus}0.88 for sparsely vegetated, calcitic mud areas. Despite brackish salinities, a strong methane flux, 1.87 + or{minus}0.63 mol CH{sub 4}/sq m/yr, was estimated for an organic-rich mangrove pond near Florida Bay. The diffusive flux accounted for 23, 36, and 13% of the total amount of CH{sub 4} emitted to the atmosphere from these environments, respectively. The average dissolved methane concentration for an organic-rich forested swamp was the highest of any site at 12.6 microM; however, the calculated diffusive flux from this location, 2.57 + or{minus}1.88 mol CH{sub 4}/sq m/yr, was diminished by an extensive plant canopy that sheltered the air-water interface from the wind. The mean diffusive flux from four freshwater lakes, 0.77 + or{minus}0.73 mol CH{sub 4}/sq m/yr, demonstrated little temperature dependence. The mean diffusive flux for an urbanized, subtropical estuary was 0.06 + or{minus}0.05 mol CH{sub 4}/sq m/yr.

  20. Silica nanoparticles containing 159-Gadolinium as potential system for cancer treatment

    International Nuclear Information System (INIS)

    Oliveira, Andre Felipe de; Ferreira, Tiago Hilario; Sousa, Edesia Martins Barros de; Lacerda, Marco Aurelio

    2013-01-01

    Ordered silica nanoparticles are compounds highly organized which have very interesting textural characteristics, such as high thermal stability, well defined pore size, narrow size distribution and high area surface. Among the various types of nano materials ordered, the SBA-16 have a meso structure that can be considered very interesting due to the fact of the arrangement of mesoporous (tri dimensional as a cage) and spherical morphology, which make it in a promising material for a range of bioapplications such as incorporation of drugs and radioisotopes. In this study Gadodiamide® (Omniscan-General Electric Healthcare Company), a frequently non-ionic gadolinium complex contrasting used in MRI's was incorporated in the silica matrix SBA-16 as a carrier. From this gadolinium it is possible to obtain the isotope 159 Gd by neutron irradiation, wherein the isotope 158 Gd captures a neutron and becomes 159 Gd [ 15 '8Gd(n,c) 1 '5 9 Gd]. The 159 Gd is a beta (endpoint energy of 970.6 keV) and gamma (main energy: 363.54 keV) emitter with a half-life of 18.59 hours. These characteristics are similar to that of other isotopes already used in nuclear medicine such as 90 Y. In this work, the 158 Gd incorporated in the Gd-silica was activated by the neutron flux generated by the cyclotron located in the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) during the production of the 18 FDG. Atomic emission spectroscopy (ICP-AES) and infrared spectroscopy (FTIR) were used to confirm the presence of the gadolinium complex in the silica matrix. The antitumor activity of the complex after the irradiation was evaluated through cytotoxicity assay with T98 cell lines derived from a human glioblastoma multiform tumor. (author)

  1. Preparation and characterization of hybrid Nafion/silica and Nafion/silica/PTA membranes for redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Glibin, V.; Pupkevich, V.; Svirko, L.; Karamanev, D. [Western Ontario Univ., London, ON (Canada). Dept. of Biochemical and Chemical Engineering

    2008-07-01

    Redox flow batteries are both efficient and cost-effective. However, the long-term stability of most ion-exchange membranes is limited as a result of the high oxidation rates of ions with high redox potentials. A method of synthesizing multi-component Nafion-silica and Nafion-silica-PTA membranes was presented in this study, which also investigated the electrochemical and ion transport properties of the membranes. Membranes were cast from dimethylformamide (DMFA) solution. The iron ion diffusion kinetics of the Nafion-silica and Nafion-silica PTA membranes were studied by dialysis. Results of the investigation demonstrated that the introduction of silica and phosphotungstic acid (PTA) into the Nafion membrane composition resulted in a significant decrease of ion transfer through the membrane. The addition of PTA also increased membrane permeability to ferric ions. The low iron diffusion coefficient and high ionic conductivity of the Nafion-silica membrane makes it a promising material for use in redox flow batteries. 4 refs., 1 tab., 1 fig.

  2. Predicting nitrogen and acidity effects on long-term dynamics of dissolved organic matter

    OpenAIRE

    Rowe, E.C.; Tipping, E.; Posch, M.; Oulehle, Filip; Cooper, D.M.; Jones, T.G.; Burden, A.; Hall, J.; Evans, C.D.

    2014-01-01

    Increases in dissolved organic carbon (DOC) fluxes may relate to changes in sulphur and nitrogen pollution. We integrated existing models of vegetation growth and soil organic matter turnover, acid-base dynamics, and organic matter mobility, to form the ‘MADOC’ model. After calibrating parameters governing interactions between pH and DOC dissolution using control treatments on two field experiments, MADOC reproduced responses of pH and DOC to additions of acidifying and alkalising solutions. ...

  3. Silica-Coated Liposomes for Insulin Delivery

    Directory of Open Access Journals (Sweden)

    Neelam Dwivedi

    2010-01-01

    Full Text Available Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evident from Confocal Micro-Raman spectroscopy. Silica coat enhances the stability of insulin-loaded delivery vehicles. In vivo study shows that these silica coated formulations were biologically active in reducing glucose levels.

  4. Fluorescent magnetic nanoparticles for cell labeling: flux synthesis of manganite particles and novel functionalization of silica shell

    Czech Academy of Sciences Publication Activity Database

    Kačenka, Michal; Kaman, Ondřej; Kikerlová, S.; Pavlů, B.; Jirák, Zdeněk; Jirák, D.; Herynek, Vít; Černý, J.; Chaput, F.; Laurent, S.; Lukeš, I.

    2015-01-01

    Roč. 47, Jun (2015), s. 97-106 ISSN 0021-9797 R&D Projects: GA ČR(CZ) GAP108/11/0807; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378271 ; RVO:68378041 Keywords : manganites * magnetic nanoparticles * molten salt synthesis * silica coating * dual probes * MRI * cell labeling Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.782, year: 2015

  5. Evasion of CO2 and dissolved carbon in river waters of three small catchments in an area occupied by small family farms in the eastern Amazon

    Directory of Open Access Journals (Sweden)

    Maria Beatriz Silva da Rosa

    2017-08-01

    Full Text Available CO2 effluxes from streams and rivers have been hypothesized to be a critical pathway of carbon flow from the biosphere back to the atmosphere. This study was conducted in three small Amazonian catchments to evaluate carbon evasion and dynamics, where land-use change has occurred on small family-farms. Monthly field campaigns were conducted from June 2006 to May 2007 in the Cumaru (CM, Pachibá (PB and São João (SJ streams. Electrical conductivity, pH, temperature, and dissolved oxygen measurements were done in situ, while water samples were collected to determine dissolved organic carbon (DOC and dissolved inorganic carbon (DIC concentrations, as well as carbon dioxide partial pressures (pCO2 and CO2 evasion fluxes. Instantaneous discharge measured by a current meter was used to calculate DOC fluxes. Considering all the sites, DOC, DIC, pCO2, and CO2 flux measurements ranged as follows, respectively: 0.27 - 12.13 mg L-1; 3.5 - 38.9 mg L-1; 2,265 - 26,974 ppm; and 3.39 - 75.35 μmol m-2 s-1. DOC annual flux estimates for CM, SJ and PB were, respectively, 281, 245, and 169 kg C ha-1. CO2 evasion fluxes had an average of 22.70 ± 1.67 μmol m-2 s-1. These CO2 evasion fluxes per unit area were similar to those measured for major Amazonian rivers, thus confirming our hypothesis that small streams can evade substantial quantities of CO2. As secondary vegetation is abundant as a result of family farming management in the region, we conclude that this vegetation can be a major driver of an abundant carbon cycle.

  6. Fluxes of dissolved aluminum and manganese to the Weddell Sea and indications for manganese co-limitation

    NARCIS (Netherlands)

    Middag, R.; de Baar, H.J.W.; Klunder, M.B.; Laan, P.

    2013-01-01

    The trace metals aluminum (Al) and manganese (Mn) were studied in the Weddell Sea in March 2008. Concentrations of dissolved Al ([Al]) were slightly elevated (0.23-0.35 nmol L-1) in the surface layer compared to the subsurface minimum (0.07-0.21 nmol L-1) observed in the winter water. Atmospheric

  7. Silica artificial opal incorporated with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li Wenjiang, E-mail: wjli@zju.edu.cn [Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Zijingang Campus, Room 210, East Building 5, Hangzhou 310058 (China); Sun Tan [Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Zijingang Campus, Room 210, East Building 5, Hangzhou 310058 (China)

    2009-07-15

    The silica artificial opal with a three-dimensional (3D) periodic structure was prepared using highly monodispersed silica microspheres by a force packing method in ITO glass cell. The silica artificial opal incorporated with silver nanoparticles was fabricated by the electroplating technique. The optical microscope images of the synthetic sample and the corresponding optical properties were measured after each treatment of electroplating-washing-drying circle. The transmission and reflection spectra presented a red shift, showing that the effective refractive index of the complex silver/silica opal increased after each electroplating. Combining the SEM images, it was seen that the silver nanoparticles could be directly deposited on the surface of silica spheres in the opaline structure. The silver/silica complex opal film could provide a simple way to tune the opal properties by controlling silver nanoparticles in the silica opal. The silver/silica opal crystal structures could be used for nano-photonic circuits, white-light LEDs or as photocatalysts.

  8. Silica artificial opal incorporated with silver nanoparticles

    International Nuclear Information System (INIS)

    Li Wenjiang; Sun Tan

    2009-01-01

    The silica artificial opal with a three-dimensional (3D) periodic structure was prepared using highly monodispersed silica microspheres by a force packing method in ITO glass cell. The silica artificial opal incorporated with silver nanoparticles was fabricated by the electroplating technique. The optical microscope images of the synthetic sample and the corresponding optical properties were measured after each treatment of electroplating-washing-drying circle. The transmission and reflection spectra presented a red shift, showing that the effective refractive index of the complex silver/silica opal increased after each electroplating. Combining the SEM images, it was seen that the silver nanoparticles could be directly deposited on the surface of silica spheres in the opaline structure. The silver/silica complex opal film could provide a simple way to tune the opal properties by controlling silver nanoparticles in the silica opal. The silver/silica opal crystal structures could be used for nano-photonic circuits, white-light LEDs or as photocatalysts.

  9. Silica nanoparticle stability in biological media revisited.

    Science.gov (United States)

    Yang, Seon-Ah; Choi, Sungmoon; Jeon, Seon Mi; Yu, Junhua

    2018-01-09

    The stability of silica nanostructure in the core-silica shell nanomaterials is critical to understanding the activity of these nanomaterials since the exposure of core materials due to the poor stability of silica may cause misinterpretation of experiments, but unfortunately reports on the stability of silica have been inconsistent. Here, we show that luminescent silver nanodots (AgNDs) can be used to monitor the stability of silica nanostructures. Though relatively stable in water and phosphate buffered saline, silica nanoparticles are eroded by biological media, leading to the exposure of AgNDs from AgND@SiO 2 nanoparticles and the quenching of nanodot luminescence. Our results reveal that a synergistic effect of organic compounds, particularly the amino groups, accelerates the erosion. Our work indicates that silica nanostructures are vulnerable to cellular medium and it may be possible to tune the release of drug molecules from silica-based drug delivery vehicles through controlled erosion.

  10. Thermally stable silica-coated hydrophobic gold nanoparticles.

    Science.gov (United States)

    Kanehara, Masayuki; Watanabe, Yuka; Teranishi, Toshiharu

    2009-01-01

    We have successfully developed a method for silica coating on hydrophobic dodecanethiol-protected Au nanoparticles with coating thickness ranging from 10 to 40 nm. The formation of silica-coated Au nanoparticles could be accomplished via the preparation of hydrophilic Au nanoparticle micelles by cationic surfactant encapsulation in aqueous phase, followed by hydrolysis of tetraethylorthosilicate on the hydrophilic surface of gold nanoparticle micelles. Silica-coated Au nanoparticles exhibited quite high thermal stability, that is, no agglomeration of the Au cores could be observed after annealing at 600 degrees C for 30 min. Silica-coated Au nanoparticles could serve as a template to derive hollow nanoparticles. An addition of NaCN solution to silica-coated Au nanoparticles led the formation of hollow silica nanoparticles, which were redispersible in deionized water. The formation of the hollow silica nanoparticles results from the mesoporous structures of the silica shell and such a mesoporous structure is applicable to both catalyst support and drug delivery.

  11. KOMBINASI ULTRAFILTRASI DAN DISSOLVED AIR FLOTATION UNTUK PEMEKATAN MIKROALGA

    Directory of Open Access Journals (Sweden)

    I Nyoman Widiasa

    2014-05-01

    study is aimed to investigate the potential of combination of ultrafiltration (UF and dissolved air flotation  (DAF for concentration of microalgae in laboratory scale. The experimental results showed that fluxes of the UF membrane decreased sharply due to deposition of microalgae biomass during first 20 minutes of filtration. Periodically backwash using the UF permeate (backwash  interval = 20 minutes;  backwash duration = 10 seconds;  backwash pressure = 1 bar gave an effective fouling control to maintain reasonable stable fluxes. In addition,  the UF membrane gave separation of microalgae biomass ~ 100%. Permeate quality is strongly stable in which turbidity < 0.5 NTU, organic content < 10 mg/L, and color < 10 PCU.  Moreover, concentration of the UF retentate by DAF under saturation pressure of 6 bars was able to produced microalgae feedstock having 20 g/L dry microalgae. PAC is required for DAF feed with dosage of 1.3–1.6 mg PAC/mg suspended solids.

  12. Ultraviolet absorbance as a proxy for total dissolved mercury in streams

    Science.gov (United States)

    Dittman, J.A.; Shanley, J.B.; Driscoll, C.T.; Aiken, G.R.; Chalmers, A.T.; Towse, J.E.

    2009-01-01

    Stream water samples were collected over a range of hydrologic and seasonal conditions at three forested watersheds in the northeastern USA. Samples were analyzed for dissolved total mercury (THgd), DOC concentration and DOC composition, and UV254 absorbance across the three sites over different seasons and flow conditions. Pooling data from all sites, we found a strong positive correlation of THgd to DOC (r2 = 0.87), but progressively stronger correlations of THgd with the hydrophobic acid fraction (HPOA) of DOC (r2 = 0.91) and with UV254 absorbance (r2 = 0.92). The strength of the UV254 absorbance-THgd relationship suggests that optical properties associated with dissolved organic matter may be excellent proxies for THgd concentration in these streams. Ease of sample collection and analysis, the potential application of in-situ optical sensors, and the possibility for intensive monitoring over the hydrograph make this an effective, inexpensive approach to estimate THgd flux in drainage waters. ?? 2009 Elsevier Ltd.

  13. Amorphous silica from rice husk at various temperatures

    International Nuclear Information System (INIS)

    Javed, S.J.; Feroze, N.; Tajwar, S.

    2008-01-01

    Rice husk is being used as a source of energy in many heat generating system because of its high calorific value and its availability in many rice producing areas. Rice husk contains approximately 20% silica which is presented in hydrated form. This hydrated silica can be retrieved as amorphous silica under controlled thermal conditions. Uncontrolled burning of rice husk produces crystalline silica which is not reactive silica but can be used as filler in many applications. Amorphous silica is reactive silica which has better market value due to its reactive nature in process industry. The present study deals with the production of amorphous silica at various temperatures from rice husk. Various ashes were prepared in tube furnace by changing the burning temperatures for fixed time intervals and analyzed by XRD. It has been observed that for two hours calculation's of rice husk renders mostly amorphous silica at 650 degree C where as at higher temperatures crystalline silica was obtained. (author)

  14. Dissolution flowsheet for high flux isotope reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Foster, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the

  15. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  16. Synthesis of Various Silica Nanoparticles for Foam Stability

    International Nuclear Information System (INIS)

    Yoon, Suk Bon; Yoon, Inho; Jung, Chonghun; Kim, Chorong; Choi, Wangkyu; Moon, Jeikwon

    2013-01-01

    The synthesis of the non-porous silica nanoparticles with uniform sizes has been reported through the Sto ber method, the synthesis of meso porous silica nanoparticles with a specific morphology such as core-shell, rod-like, and hexagonal shapes is not so common. As a synthetic strategy for controlling the particle size, shape, and porosity, the synthesis of core-shell silicas with meso porous shells formed on silica particle cores through the self-assembly of silica precursor and organic templates or spherical meso porous silicas using modified Sto ber method was also reported. Recently, in an effort to reduce the amount of radioactive waste and enhance the decontamination efficiency during the decontamination process of nuclear facilities contaminated with radionuclides, a few research for the preparation of the decontamination foam containing solid nanoparticles has been reported. In this work, the silica nanoparticles with various sizes, shapes, and structures were synthesized based on the previous literatures. The resulting silica nanoparticles were used to investigate the effect of the nanoparticles on the foam stability. In a study on the foam stability using various silica nanoparticles, the results showed that the foam volume and liquid volume in foam was enhanced when using a smaller size and lower density of the silica nanoparticles. Silica nanoparticles with various sizes, shapes, and structures such as a non-porous, meso porous core-shell, and meso porous silica were synthesized to investigate the effect of the foam stability. The sizes and structural properties of the silica nanoparticles were easily controlled by varying the amount of silica precursor, surfactant, and ammonia solution as a basic catalyst. The foam prepared using various silica nanoparticles showed that foam the volume and liquid volume in the foam were enhanced when using a smaller size and lower density of the silica nanoparticles

  17. Silica removal in industrial effluents with high silica content and low hardness.

    Science.gov (United States)

    Latour, Isabel; Miranda, Ruben; Blanco, Angeles

    2014-01-01

    High silica content of de-inked paper mill effluents is limiting their regeneration and reuse after membrane treatments such as reverse osmosis (RO). Silica removal during softening processes is a common treatment; however, the effluent from the paper mill studied has a low hardness content, which makes the addition of magnesium compounds necessary to increase silica removal. Two soluble magnesium compounds (MgCl₂∙6H₂O and MgSO₄∙7H₂O) were tested at five dosages (250-1,500 mg/L) and different initial pH values. High removal rates (80-90%) were obtained with both products at the highest pH tested (11.5). With these removal efficiencies, it is possible to work at high RO recoveries (75-85%) without silica scaling. Although pH regulation significantly increased the conductivity of the waters (at pH 11.5 from 2.1 to 3.7-4.0 mS/cm), this could be partially solved by using Ca(OH)₂ instead of NaOH as pH regulator (final conductivity around 3.0 mS/cm). Maximum chemical oxygen demand (COD) removal obtained with caustic soda was lower than with lime (15 vs. 30%). Additionally, the combined use of a polyaluminum coagulant during the softening process was studied; the coagulant, however, did not significantly improve silica removal, obtaining a maximum increase of only 10%.

  18. Experimental study on the basic characteristics of a novel silica-based CMPO adsorbent

    International Nuclear Information System (INIS)

    Wei, Yuezhou; Arai, Tsuyoshi; Zhang, Anyun; Hoshi, Harutaka; Koma, Yoshikazu; Watanabe, Masayuki

    2002-01-01

    In order to establish the extraction chromatography process for recovery of minor actinides from HLLW with a novel silica-based CMPO (octyl(phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide) adsorbent, some basic characteristics, such as dissolving behavior of CMPO from the adsorbent, thermal decomposition of the adsorbent and treatment method of organic wastes, were examined. It was found that the leakage of CMPO from the adsorbent in contact with an aqueous solution is the result of the solubility of CMPO in the solution. About 40-50 ppm of CMPO constantly leaked into the effluent from the adsorbent packed column using 0.01 M (M=mol/dm 3 ) HNO 3 as a mobile phase. The leakage of CMPO from the adsorbent could be effectively depressed with the utilization of the aqueous solution saturated by CMPO. TG-DTA thermal analysis results indicate that CMPO in the adsorbent decomposed at 20degC and the SDB-polymer at 290degC. The impregnated CMPO could be completely dissolved out from the support with acetone. Furthermore, the organic wastes such as CMPO, oxalic acid and DTPA those come from the elution procedure could be effectively decomposed with the Fenton reagent. (author)

  19. Methanethiol Concentrations and Sea-Air Fluxes in the Subarctic NE Pacific Ocean

    Science.gov (United States)

    Kiene, R. P.; Williams, T. E.; Esson, K.; Tortell, P. D.; Dacey, J. W. H.

    2017-12-01

    Exchange of volatile organic sulfur from the ocean to the atmosphere impacts the global sulfur cycle and the climate system and is thought to occur mainly via the gas dimethylsulfide (DMS). DMS is produced during degradation of the abundant phytoplankton osmolyte dimethylsulfoniopropionate (DMSP) but bacteria can also convert dissolved DMSP into the sulfur gas methanethiol (MeSH). MeSH has been difficult to measure in seawater because of its high chemical and biological reactivity and, thus, information on MeSH concentrations, distribution and sea-air fluxes is limited. We measured MeSH in the northeast subarctic Pacific Ocean in July 2016, along transects with strong phytoplankton abundance gradients. Water samples obtained with Niskin bottles were analyzed for MeSH by purge-and-trap gas chromatography. Depth profiles showed that MeSH concentrations were high near the surface and declined with depth. Surface waters (5 m depth) had an average MeSH concentration of 0.75 nM with concentrations reaching up to 3nM. MeSH concentrations were correlated (r = 0.47) with microbial turnover of dissolved DMSP which ranged up to 236 nM per day. MeSH was also correlated with total DMSP (r = 0.93) and dissolved DMS (r = 0.63), supporting the conclusion that DMSP was a major precursor of MeSH. Surface water MeSH:DMS concentration ratios averaged 0.19 and ranged up to 0.50 indicating that MeSH was a significant fraction of the volatile sulfur pool in surface waters. Sea-air fluxes of MeSH averaged 15% of the combined DMS+MeSH flux, therefore MeSH contributed an important fraction of the sulfur emitted to the atmosphere from the subarctic NE Pacific Ocean.

  20. The Pozzolanic reaction of silica fume

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2012-01-01

    Silica fume is a very important supplementary cementitious binder in High-Performance and Ultra High-Performance Concretes. Through its pozzolanic reaction the silica fume densifies the concrete micro-structure, in particular it strengthens the paste-aggregate interfacial transition zone. In the ......Silica fume is a very important supplementary cementitious binder in High-Performance and Ultra High-Performance Concretes. Through its pozzolanic reaction the silica fume densifies the concrete micro-structure, in particular it strengthens the paste-aggregate interfacial transition zone....... In the present paper different aspects of the pozzolanic reaction of silica fume are investigated. These include chemical shrinkage, isothermal heat development and strength development. Key data for these are given and compared with theoretical calculations, and based on presented measurements the energy...

  1. Effects of wind farm construction on concentrations and fluxes of dissolved organic carbon and suspended sediment from peat catchments at Braes of Doune, central Scotland

    Directory of Open Access Journals (Sweden)

    I. Grieve

    2008-07-01

    Full Text Available This paper assesses the impacts of disturbance associated with the construction of a wind farm on fluxes of dissolved organic carbon (DOC and suspended sediment from a blanket peat catchment in central Scotland during the period immediately following completion of construction. Six streams draining the site were sampled on six dates from October 2006, when construction was completed, and an additional three control streams to the west of the site were sampled on the same dates. Turbidity and stage were recorded semi-continuously in the two largest streams (one disturbed and one control, which were also sampled during storm events. Absorbance (400 nm and DOC concentrations were determined on all samples, and suspended sediment was determined on the event samples. Absorbance and DOC were closely correlated in both the disturbed and undisturbed streams, with slightly greater absorbance per unit DOC in the disturbed streams. DOC concentrations in disturbed tributaries were always greater than those in undisturbed streams, with mean differences ranging from 2 to around 5 mg L-1. DOC and stage were positively correlated during events with maximum concentrations in excess of 30 mg L 1 at peak flow. Suspended sediment concentrations were markedly elevated in the disturbed stream with maximum concentrations at peak flow some 4–5 times greater than in the control. The colour of the sediment suggested that it was highly organic in nature at peak flow, and suspended particulate organic carbon represented a further loss of C from the site. Using flow-weighted mean DOC concentrations calculated for the storms monitored in autumn 2007, dissolved carbon losses can be estimated for the catchments of the disturbed and control streams. From these data the additional DOC loss related to disturbance associated with the wind farm is estimated at 5 g m-2.

  2. 21 CFR 584.700 - Hydrophobic silicas.

    Science.gov (United States)

    2010-04-01

    ...) Product. Amorphous fumed hydrophobic silica or precipitated hydrophobic silica (CAS Reg. No. 68611-0944... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrophobic silicas. 584.700 Section 584.700 Food... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE IN FEED AND...

  3. Time series measurements of carbon fluxes from a mangrove-dominated estuary

    Science.gov (United States)

    Volta, C.; Ho, D. T.; Friederich, G.; Del Castillo, C. E.; Engel, V. C.; Bhat, M.

    2017-12-01

    Mangrove ecosystems are among the most important and productive coastal ecosystems globally, and due to their high productivity and rapid carbon cycling, these ecosystems are important modulators of carbon fluxes from the land to the ocean and between the water and the atmosphere. Therefore, they may play a crucial role in the global carbon cycle and climate. Nonetheless, to date, estimates of carbon fluxes in mangrove-dominated estuaries are associated with large uncertainties, because studies have typically focused on limited spatial and temporal scales. For the first time, continuous time series measurements of temperature, salinity, CDOM, pH and pCO2 covering both the dry and the wet seasons were made in Shark River, a tidal estuary in the largest contiguous mangrove forest in North America. The measurements were made at two permanent stations along the estuarine domain, and allowed estimates of net dissolved carbon export from the Shark River to the Gulf of Mexico, as well as the CO2 emissions to the atmosphere to be made at seasonal and annual timescales. Results reveal that, compared to the dry season, the wet season was characterized by higher dissolved carbon export and CO2 emissions, due to meteorological, hydrological, and biogeochemical processes. Additionally, an analysis of relationships between hydrodynamic control factors (i.e. water discharge and water level) in the upstream freshwater marsh and carbon fluxes in the Shark River highlighted the importance of developing good water management strategies in the future. Finally, the study estimated the social cost of carbon fluxes in the Shark River estuary as a contribution to carbon accounting in mangrove ecosystems.

  4. A new parameter-free soft-core potential for silica and its application to simulation of silica anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Izvekov, Sergei, E-mail: sergiy.izvyekov.civ@mail.mil; Rice, Betsy M. [Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)

    2015-12-28

    A core-softening of the effective interaction between oxygen atoms in water and silica systems and its role in developing anomalous thermodynamic, transport, and structural properties have been extensively debated. For silica, the progress with addressing these issues has been hampered by a lack of effective interaction models with explicit core-softening. In this work, we present an extension of a two-body soft-core interatomic force field for silica recently reported by us [S. Izvekov and B. M. Rice, J. Chem. Phys. 136(13), 134508 (2012)] to include three-body forces. Similar to two-body interaction terms, the three-body terms are derived using parameter-free force-matching of the interactions from ab initio MD simulations of liquid silica. The derived shape of the O–Si–O three-body potential term affirms the existence of repulsion softening between oxygen atoms at short separations. The new model shows a good performance in simulating liquid, amorphous, and crystalline silica. By comparing the soft-core model and a similar model with the soft-core suppressed, we demonstrate that the topology reorganization within the local tetrahedral network and the O–O core-softening are two competitive mechanisms responsible for anomalous thermodynamic and kinetic behaviors observed in liquid and amorphous silica. The studied anomalies include the temperature of density maximum locus and anomalous diffusivity in liquid silica, and irreversible densification of amorphous silica. We show that the O–O core-softened interaction enhances the observed anomalies primarily through two mechanisms: facilitating the defect driven structural rearrangements of the silica tetrahedral network and modifying the tetrahedral ordering induced interactions toward multiple characteristic scales, the feature which underlies the thermodynamic anomalies.

  5. Export and retention of dissolved inorganic nutrients in the Cachoeira River, Ilhéus, Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Maria A.M. SILVA

    2010-02-01

    Full Text Available Dissolved inorganic nutrient concentrations and physical-chemical variables were determined in the lower reaches of the Cachoeira River watershed, from November 2003 to October 2004. Concentration of nutrients were high and highly variable. Mean concentrations and standard deviation of ammonium, nitrite, nitrate, phosphate and silicate were 25.4 ± 25.1; 3.9 ± 3.9; 62.2 ± 54.9; 15.8 ± 9.0 and 129.0 ± 5.6 (μmol L-1, respectively. Nutrient retention was observed mainly during the dry season. Chlorophyll-a concentrations were especially high in those periods. The Cachoeira River can be considered eutrophicated, and such condition becomes more intense with low fluvial flow during the dry months. Despite the spatial/temporal changes of the species of inorganic nitrogen, a removal of dissolved inorganic nitrogen was observed in relation to dissolved silicon and to phosphorus, with consequences for estuarine biogeochemistry. The basin exports annually about 3.5, 2.2 and 0.3 t y-1 of dissolved silicon, nitrogen, and phosphate to the estuary, respectively. The eutrophication and growth of macrophytes is responsible for most of these changes in nutrient fluxes to the estuary and coastal waters.

  6. Silica frit formulation for low temperature co-fired ceramic tapes (LTCC)

    International Nuclear Information System (INIS)

    Nor Hayati Alias; Che Seman Mahmood

    2006-01-01

    Glassifier agents or so called fluxes could function to lower down the melting temperature of a ceramic material. Two types of silica based glass frits have been formulated to undergo vitrification at temperature lower than 1000 degree C. Frit A powder is composing of 11% Sodium Carbonate, 11% Calcium Oxide,15% Plumbum Oxide and 10% MgO while Frit B is composing of 12% Boron Oxide, 5% Ceria, 11% Sodium Carbonate and 2% Magnesium Oxide as glassifier agent in Silica powder. Two different ceramic slurries were made from a-alumina powder with addition of either Frit A or Frit B and also dispersant, binder and plasticizers, followed by casting into 0.04 mm thickness alumina green tapes. The tapes were then fired at temperature 1000 degree C to burn out plastic binder system and to vitrify the glass frits. Scanning Electron Microscopy (SEM)/EDX techniques were carried out to observe the changes in microstructure of the tape due to vitrication of glass frits. Comparisons were made with alumina green tapes without any glass frit component and with Commercial LTCC DuPont 951 tape. (Author)

  7. Chromophoric dissolved organic matter export from U.S. rivers

    Science.gov (United States)

    Spencer, Robert G. M.; Aiken, George R.; Dornblaser, Mark M.; Butler, Kenna D.; Holmes, R. Max; Fiske, Greg; Mann, Paul J.; Stubbins, Aron

    2013-01-01

    Chromophoric dissolved organic matter (CDOM) fluxes and yields from 15 major U.S. rivers draining an assortment of terrestrial biomes are presented. A robust relationship between CDOM and dissolved organic carbon (DOC) loads is established (e.g., a350 versus DOC; r2 = 0.96, p CDOM yields are also correlated to watershed percent wetland (e.g. a350; r2 = 0.81, p CDOM export from ungauged watersheds. A large variation in CDOM yields was found across the rivers. The two rivers in the north-eastern U.S. (Androscoggin and Penobscot), the Edisto draining into the South Atlantic Bight, and some rivers draining into the Gulf of Mexico (Atchafalaya and Mobile) exhibit the highest CDOM yields, linked to extensive wetlands in these watersheds. If the Edisto CDOM yield is representative of other rivers draining into the South Atlantic Bight, this would result in a CDOM load equivalent to that of the Mississippi from a region of approximately 10% of the Mississippi watershed, indicating the importance of certain regions with respect to the role of terrigenous CDOM in ocean color budgets.

  8. [Sediment-water flux and processes of nutrients and gaseous nitrogen release in a China River Reservoir].

    Science.gov (United States)

    Chen, Zhu-hong; Chen, Neng-wang; Wu, Yin-qi; Mo, Qiong-li; Zhou, Xing-peng; Lu, Ting; Tian, Yun

    2014-09-01

    The key processes and fluxes of nutrients (N and P) and gaseous N (N2 and N2O) across the sediment-water interface in a river reservoir (Xipi) of the Jiulong River watershed in southeast China were studied. Intact core sediment incubation of nutrients exchange, in-situ observation and lab incubation of excess dissolved N2 and N2O (products of nitrification, denitrification and Anammox), and determination of physiochemical and microbe parameters were carried out in 2013 for three representative sites along the lacustrine zone of the reservoir. Results showed that ammonium and phosphate were generally released from sediment to overlying water [with averaged fluxes of N (479.8 ± 675.4) mg. (m2. d)-1 and P (4. 56 ± 0.54) mg. (m2 d) -1] , while nitrate and nitrite diffused into the sediment. Flood events in the wet season could introduce a large amount of particulate organic matter that would be trapped by the dam reservoir, resulting in the high release fluxes of ammonium and phosphate observed in the following low-flow season. No clear spatial variation of sediment nutrient release was found in the lacustrine zone of the reservoir. Gaseous N release was dominated by excess dissolved N2 (98% of total), and the N2 flux from sediment was (15.8 ± 12. 5) mg (m2. d) -1. There was a longitudinal and vertical variation of excess dissolved N2, reflecting the combined results of denitrification and Anammox occurring in anoxic sediment and fluvial transport. Nitrification mainly occurred in the lower lacustrine zone, and the enrichment of N2O was likely regulated by the ratio of ammonium to DIN in water.

  9. Concentration, flux, and trend estimates with uncertainty for nutrients, chloride, and total suspended solids in tributaries of Lake Champlain, 1990–2014

    Science.gov (United States)

    Medalie, Laura

    2016-12-20

    The U.S. Geological Survey, in cooperation with the New England Interstate Water Pollution Control Commission and the Vermont Department of Environmental Conservation, estimated daily and 9-month concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids from 1990 (or first available date) through 2014 for 18 tributaries of Lake Champlain. Estimates of concentration and flux, provided separately in Medalie (2016), were made by using the Weighted Regressions on Time, Discharge, and Season (WRTDS) regression model and update previously published WRTDS model results with recent data. Assessment of progress towards meeting phosphorus-reduction goals outlined in the Lake Champlain management plan relies on annual estimates of phosphorus flux. The percent change in annual concentration and flux is provided for two time periods. The R package EGRETci was used to estimate the uncertainty of the trend estimate. Differences in model specification and function between this study and previous studies that used WRTDS to estimate concentration and flux using data from Lake Champlain tributaries are described. Winter data were too sparse and nonrepresentative to use for estimates of concentration and flux but were sufficient for estimating the percentage of total annual flux over the period of record. Median winter-to-annual fractions ranged between 21 percent for total suspended solids and 27 percent for dissolved phosphorus. The winter contribution was largest for all constituents from the Mettawee River and smallest from the Ausable River. For the full record (1991 through 2014 for total and dissolved phosphorus and chloride and 1993 through 2014 for nitrogen and total suspended solids), 6 tributaries had decreasing trends in concentrations of total phosphorus, and 12 had increasing trends; concentrations of dissolved phosphorus decreased in 6 and increased in 8 tributaries; fluxes of total phosphorus decreased in 5 and

  10. Synthesis and application of silica gel modified with alkoxyalcohols. Alkoxyalcohol shushoku silica gel no gosei to riyo

    Energy Technology Data Exchange (ETDEWEB)

    Moriguchi, T.; Ishiguro, H.; Matsubara, Y.; Yoshihara, M.; Maeshima, T.; Ito, S. (Kinki University, Osaka (Japan). Faculty of Science and Engineering)

    1991-08-20

    Several kinds of silica gel modified by alkoxyalcohols were synthesized by refluxing and dehyration and the organic reactions were studied when these silica gels were used as the catalyst. It could be confirmed by FT-IR spectra, DTA and elementary analysis that alkoxylalcohols adhere to the surface of silica gels without any decomposition. The acetate was produced by using alkyl halides. It was found that the modified silica gels had clearly the catalytic action for the reaction with n-hexyl bromide and dibromoethane although unmodified silica gels did not show the catalytic action. The reducing reaction of carbonyl compounds was carried out. The reaction proceeded at 25 centigrade for acetophenone, cyclohexanone, 1-indanone and 2-octanone to produce the corresponding reduction products. 11 refs., 5 figs., 4 tabs.

  11. Effects of long-term land use change on dissolved carbon characteristics in the permafrost streams of northeast China.

    Science.gov (United States)

    Guo, Yuedong; Song, Changchun; Wan, Zhongmei; Tan, Wenwen; Lu, Yongzheng; Qiao, Tianhua

    2014-11-01

    Permafrost soils act as large sinks of organic carbon but are highly sensitive to interference such as changes in land use, which can greatly influence dissolved carbon loads in streams. This study examines the effects of long-term land reclamation on seasonal concentrations of dissolved carbons in the upper reaches of the Nenjiang River, northeast China. A comparison of streams in natural and agricultural systems shows that the dissolved organic carbon (DOC) concentration is much lower in the agricultural stream (AG) than in the two natural streams (WAF, wetland dominated; FR, forest dominated), suggesting that land use change is associated with reduced DOC exporting capacity. Moreover, the fluorescence indexes and the ratio of dissolved carbon to nitrogen also differ greatly between the natural and agricultural streams, indicating that the chemical characteristics and the origin of the DOC released from the whole reaches are also altered to some extent. Importantly, the exporting concentration of dissolved inorganic carbon (DIC) and its proportion of total dissolved carbon (TDC) substantially increase following land reclamation, which would largely alter the carbon cycling processes in the downstream fluvial system. Although the strong association between the stream discharge and the DOC concentration was unchanged, the reduction in total soil organic carbon following land reclamation led to remarkable decline of the total flux and exporting coefficient of the dissolved carbons. The results suggest that dissolved carbons in permafrost streams have been greatly affected by changes in land use since the 1970s, and the changes in the concentration and chemical characteristics of dissolved carbons will last until the alteration in both the traditional agriculture pattern and the persistent reclamation activities.

  12. Determining Near-Bottom Fluxes of Passive Tracers in Aquatic Environments

    Science.gov (United States)

    Bluteau, Cynthia E.; Ivey, Gregory N.; Donis, Daphne; McGinnis, Daniel F.

    2018-03-01

    In aquatic systems, the eddy correlation method (ECM) provides vertical flux measurements near the sediment-water interface. The ECM independently measures the turbulent vertical velocities w' and the turbulent tracer concentration c' at a high sampling rate (> 1 Hz) to obtain the vertical flux w'c'¯ from their time-averaged covariance. This method requires identifying and resolving all the flow-dependent time (and length) scales contributing to w'c'¯. With increasingly energetic flows, we demonstrate that the ECM's current technology precludes resolving the smallest flux-contributing scales. To avoid these difficulties, we show that for passive tracers such as dissolved oxygen, w'c'¯ can be measured from estimates of two scalar quantities: the rate of turbulent kinetic energy dissipation ɛ and the rate of tracer variance dissipation χc. Applying this approach to both laboratory and field observations demonstrates that w'c'¯ is well resolved by the new method and can provide flux estimates in more energetic flows where the ECM cannot be used.

  13. Terrestrial dissolved organic matter distribution in the North Sea.

    Science.gov (United States)

    Painter, Stuart C; Lapworth, Dan J; Woodward, E Malcolm S; Kroeger, Silke; Evans, Chris D; Mayor, Daniel J; Sanders, Richard J

    2018-07-15

    The flow of terrestrial carbon to rivers and inland waters is a major term in the global carbon cycle. The organic fraction of this flux may be buried, remineralized or ultimately stored in the deep ocean. The latter can only occur if terrestrial organic carbon can pass through the coastal and estuarine filter, a process of unknown efficiency. Here, data are presented on the spatial distribution of terrestrial fluorescent and chromophoric dissolved organic matter (FDOM and CDOM, respectively) throughout the North Sea, which receives organic matter from multiple distinct sources. We use FDOM and CDOM as proxies for terrestrial dissolved organic matter (tDOM) to test the hypothesis that tDOM is quantitatively transferred through the North Sea to the open North Atlantic Ocean. Excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC) revealed a single terrestrial humic-like class of compounds whose distribution was restricted to the coastal margins and, via an inverse salinity relationship, to major riverine inputs. Two distinct sources of fluorescent humic-like material were observed associated with the combined outflows of the Rhine, Weser and Elbe rivers in the south-eastern North Sea and the Baltic Sea outflow to the eastern central North Sea. The flux of tDOM from the North Sea to the Atlantic Ocean appears insignificant, although tDOM export may occur through Norwegian coastal waters unsampled in our study. Our analysis suggests that the bulk of tDOM exported from the Northwest European and Scandinavian landmasses is buried or remineralized internally, with potential losses to the atmosphere. This interpretation implies that the residence time in estuarine and coastal systems exerts an important control over the fate of tDOM and needs to be considered when evaluating the role of terrestrial carbon losses in the global carbon cycle. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  14. Dissolved Organic Matter Land-Ocean Linkages in the Arctic

    Science.gov (United States)

    Mann, P. J.; Spencer, R. M.; Hernes, P. J.; Tank, S. E.; Striegl, R.; Dyda, R. Y.; Peterson, B. J.; McClelland, J. W.; Holmes, R. M.

    2012-04-01

    Rivers draining into the Arctic Ocean exhibit high concentrations of terrigenous dissolved organic carbon (DOC), and recent studies indicate that DOC export is changing due to climatic warming and alteration in permafrost condition. The fate of exported DOC in the Arctic Ocean is important for understanding the regional carbon cycle and remains a point of discussion in the literature. As part of the NSF funded Arctic Great Rivers Observatory (Arctic-GRO) project, samples were collected for DOC, chromophoric and fluorescent dissolved organic matter (CDOM & FDOM) and lignin phenols from the Ob', Yenisey, Lena, Kolyma, Mackenzie and Yukon rivers in 2009 - 2010. DOC and lignin concentrations were elevated during the spring freshet and measurements related to DOC composition indicated an increasing contribution from terrestrial vascular plant sources at this time of year (e.g. lignin carbon-normalized yield, CDOM spectral slope, SUVA254, humic-like fluorescence). CDOM absorption was found to correlate strongly with both DOC (r2=0.83) and lignin concentration (r2=0.92) across the major arctic rivers. Lignin composition was also successfully modeled using FDOM measurements decomposed using PARAFAC analysis. Utilizing these relationships we modeled loads for DOC and lignin export from high-resolution CDOM measurements (daily across the freshet) to derive improved flux estimates, particularly from the dynamic spring discharge maxima period when the majority of DOC and lignin export occurs. The new load estimates for DOC and lignin are higher than previous evaluations, emphasizing that if these are more representative of current arctic riverine export, terrigenous DOC is transiting through the Arctic Ocean at a faster rate than previously thought. It is apparent that higher resolution sampling of arctic rivers is exceptionally valuable with respect to deriving accurate fluxes and we highlight the potential of CDOM in this role for future studies and the applicability of in

  15. SCC modification by use of amorphous nano-silica

    NARCIS (Netherlands)

    Quercia Bianchi, G.; Spiesz, P.R.; Hüsken, G.; Brouwers, H.J.H.

    2014-01-01

    In this study two different types of nano-silica (nS) were applied in self-compacting concrete (SCC), both having similar particle size distributions (PSD), but produced through two different processes: fumed powder silica and precipitated silica in colloidal suspension. The influence of nano-silica

  16. Agmatine attenuates silica-induced pulmonary fibrosis.

    Science.gov (United States)

    El-Agamy, D S; Sharawy, M H; Ammar, E M

    2014-06-01

    There is a large body of evidence that nitric oxide (NO) formation is implicated in mediating silica-induced pulmonary fibrosis. As a reactive free radical, NO may not only contribute to lung parenchymal tissue injury but also has the ability to combine with superoxide and form a highly reactive toxic species peroxynitrite that can induce extensive cellular toxicity in the lung tissues. This study aimed to explore the effect of agmatine, a known NO synthase inhibitor, on silica-induced pulmonary fibrosis in rats. Male Sprague Dawley rats were treated with agmatine for 60 days following a single intranasal instillation of silica suspension (50 mg in 0.1 ml saline/rat). The results revealed that agmatine attenuated silica-induced lung inflammation as it decreased the lung wet/dry weight ratio, protein concentration, and the accumulation of the inflammatory cells in the bronchoalveolar lavage fluid. Agmatine showed antifibrotic activity as it decreased total hydroxyproline content of the lung and reduced silica-mediated lung inflammation and fibrosis in lung histopathological specimen. In addition, agmatine significantly increased superoxide dismutase (p Agmatine also reduced silica-induced overproduction of pulmonary nitrite/nitrate as well as tumor necrosis factor α. Collectively, these results demonstrate the protective effects of agmatine against the silica-induced lung fibrosis that may be attributed to its ability to counteract the NO production, lipid peroxidation, and regulate cytokine effects. © The Author(s) 2014.

  17. Groundwater-derived nutrient inputs to the Upper Gulf of Thailand

    Science.gov (United States)

    Burnett, William C.; Wattayakorn, Gullaya; Taniguchi, Makoto; Dulaiova, Henrieta; Sojisuporn, Pramot; Rungsupa, Sompop; Ishitobi, Tomotoshi

    2007-01-01

    We report here the first direct measurements of nutrient fluxes via groundwater discharge into the Upper Gulf of Thailand. Nutrient and standard oceanographic surveys were conducted during the wet and dry seasons along the Chao Phraya River, Estuary and out into the Upper Gulf of Thailand. Additional measurements in selected near-shore regions of the Gulf included manual and automatic seepage meter deployments, as well as nutrient evaluations of seepage and coastal waters. The river transects characterized the distribution of biogeochemical parameters in this highly contaminated urban environment. Seepage flux measurements together with nutrient analyses of seepage fluids were used to estimate nutrient fluxes via groundwater pathways for comparison to riverine fluxes. Our findings show that disseminated seepage of nutrient-rich mostly saline groundwater into the Upper Gulf of Thailand is significant. Estimated fluxes of dissolved inorganic nitrogen (DIN) supplied via groundwater discharge were 40-50% of that delivered by the Chao Phraya River, inorganic phosphate was 60-70%, and silica was 15-40%. Dissolved organic nitrogen (DON) and phosphorus (DOP) groundwater fluxes were also high at 30-40% and 30-130% of the river inputs, respectively. These observations are especially impressive since the comparison is being made to the river that is the largest source of fresh water into the Gulf of Thailand and flows directly through the megacity of Bangkok with high nutrient loadings from industrial and domestic sources.

  18. Changes in opal flux and the rain ratio during the last 50,000 years in the equatorial Pacific

    Science.gov (United States)

    Richaud, Mathieu; Loubere, Paul; Pichat, Sylvain; Francois, Roger

    2007-03-01

    Changes in the orgC/CaCO 3 ratio in particles sinking from the surface to the deep ocean have the potential to alter the atmospheric pCO 2 over the span of a glacial/interglacial cycle. Recent paleoceanographic and modern observational studies suggest that silica is a key factor in the global carbon biogeochemical cycle that can influence the flux ratio, especially at low latitudes, through "silicic acid leakage" [Brzezinski, M., Pride, C., Franck, M., Sigman, D., Sarmiento, J., Matsumoto, K., Gruber, N., Rau, R., Coale, K., 2002. A switch from Si(OH) 4 to NO3- depletion in the glacial Southern Ocean. Geophysical Research Letters 29, 5]. To test this hypothesis, we reconstruct biogenic fluxes of CaCO 3, orgC and Si for three equatorial Pacific cores. We find evidence that a floral shift from a SiO 2-based community to a CaCO 3-based occurred, starting in mid-marine isotope stage (MIS) 3 (24-59 cal. ka) and declining toward MIS 2 (19-24 cal. ka). This could reflect the connection of the Peru upwelling system to the subantarctic region, and we postulate that excess silica was transported from the subantarctic via the deep Equatorial Undercurrent to the eastern equatorial Pacific. In the eastern equatorial Pacific only, we document a significant decrease in rain ratio starting mid-MIS 3 toward MIS 2. This decrease is concomitant with a significant decrease in silica accumulation rates at the seabed. This pattern is not observed in the Pacific influenced by equatorial divergence and shallow upwelling, where all reconstructed fluxes (CaCO 3, orgC, and opal) increase during MIS 2. We conclude that the overall calcium carbonate pump weakened in the EEP under Peru upwelling influence.

  19. Bromine species fluxes from Lake Constance’s catchment, and a preliminary lake mass balance

    Science.gov (United States)

    Gilfedder, B. S.; Petri, M.; Wessels, M.; Biester, H.

    2011-06-01

    Bromine was historically termed a cyclic salt in terrestrial freshwater environments due to its perceived conservative cycling between the oceans and the continents. This basic assumption has been challenged recently, with evidence that bromine is involved in dynamic chemical cycles in soils and freshwaters. We present here a study on dissolved bromine species (bromide, organically bound bromine, DOBr) concentrations and fluxes as well as sediment trap bromine levels and fluxes in Lake Constance, a large lake in southern Germany. Water samples were obtained from all major and some minor inflows and outflows over one year, where-after dissolved bromine species were measured by a combination of ICP-MS and ion chromatography coupled to an ICP-MS (IC-ICP-MS). Sediment traps were deployed at two locations for two years with Br, Ti and Zr levels being measured by μ-XRF. 190 t yr -1 of total dissolved bromine (TDBr) was delivered to the lake via 14 rivers and precipitation, with the rivers Alpenrhein (84 t TDBr yr -1) and the Schussen (50 t TDBr yr -1) providing the largest sources. The estimated particulate bromine flux contributed an extra 24-26 t Br yr -1. In comparison, only 40 t TDBr yr -1 was deposited to the lake's catchment by precipitation, and thus ˜80% of the riverine TDBr flux came from soils and rocks. Bromide was the dominant species accounting for, on average, 78% of TDBr concentrations and 93% of TDBr flux to the lake. Despite some high concentrations in the smaller lowland rivers, DOBr was only a minor component of the total riverine bromine flux (˜12 t yr -1, 7%), most of which came from the rivers Schussen, Bregenzer Ach and Argen. In contrast, most of the bromine in the sediment traps was bound to organic matter, and showed a clear seasonal pattern in concentrations, with a maximum in winter and minimum in summer. The summer minimum is thought to be due to dilution of a high Br autochthonous component by low bromine mineral and organic material from

  20. Element fluxes from Copahue Volcano, Argentina

    Science.gov (United States)

    Varekamp, J. C.

    2003-12-01

    Copahue volcano in Argentina has an active volcano-magmatic hydrothermal system that emits fluids with pH=0.3 that feed a river system. River flux measurements and analytical data provide element flux data from 1997 to 2003, which includes the eruptive period of July to December 2000. The fluids have up to 6.5 percent sulfate, 1 percent Cl and ppm levels of B, As, Cu, Zn and Pb. The hydrothermal system acts as a perfect scrubber for magmatic gases during the periods of passive degassing, although the dissolved magmatic gases are modified through water rock interaction and mineral precipitation. The magmatic SO2 disproportionates into sulfate and liquid elemental sulfur at about 300 C; the sulfate is discharged with the fluids, whereas the liquid sulfur is temporarily retained in the reservoir but ejected during phreatic and hydrothermal eruptions. The intrusion and chemical attack of new magma in the hydrothermal reservoir in early 2000 was indicated by strongly increased Mg concentrations and Mg fluxes, and higher Mg/Cl and Mg/K values. The hydrothermal discharge has acidified a large glacial lake (0.5 km3) to pH=2 and the lake effluents acidify the exiting river. Even more than 100 km downstream, the effects of acid pulses from the lake are evident from red coated boulders and fish die-offs. The river-bound sulfate fluxes from the system range from 70 to 200 kilotonnes/year. The equivalent SO2 output of the whole volcanic system ranges from 150 to 500 tonnes/day, which includes the fraction of native sulfur that formed inside the mountain but does not include the release of SO2 into the atmosphere during the eruptions. Trace element fluxes of the river will be scaled up and compared with global element fluxes from meteoric river waters (subterranean volcanic weathering versus watershed weathering).

  1. All-silica nanofluidic devices for DNA-analysis fabricated by imprint of sol-gel silica with silicon stamp

    DEFF Research Database (Denmark)

    Mikkelsen, Morten Bo Lindholm; Letailleur, Alban A; Søndergård, Elin

    2011-01-01

    We present a simple and cheap method for fabrication of silica nanofluidic devices for single-molecule studies. By imprinting sol-gel materials with a multi-level stamp comprising micro- and nanofeatures, channels of different depth are produced in a single process step. Calcination of the imprin......We present a simple and cheap method for fabrication of silica nanofluidic devices for single-molecule studies. By imprinting sol-gel materials with a multi-level stamp comprising micro- and nanofeatures, channels of different depth are produced in a single process step. Calcination...... of the imprinted hybrid sol-gel material produces purely inorganic silica, which has very low autofluorescence and can be fusion bonded to a glass lid. Compared to top-down processing of fused silica or silicon substrates, imprint of sol-gel silica enables fabrication of high-quality nanofluidic devices without...

  2. Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles

    KAUST Repository

    Croissant, Jonas G.

    2017-01-13

    The biorelated degradability and clearance of siliceous nanomaterials have been questioned worldwide, since they are crucial prerequisites for the successful translation in clinics. Typically, the degradability and biocompatibility of mesoporous silica nanoparticles (MSNs) have been an ongoing discussion in research circles. The reason for such a concern is that approved pharmaceutical products must not accumulate in the human body, to prevent severe and unpredictable side-effects. Here, the biorelated degradability and clearance of silicon and silica nanoparticles (NPs) are comprehensively summarized. The influence of the size, morphology, surface area, pore size, and surface functional groups, to name a few, on the degradability of silicon and silica NPs is described. The noncovalent organic doping of silica and the covalent incorporation of either hydrolytically stable or redox- and enzymatically cleavable silsesquioxanes is then described for organosilica, bridged silsesquioxane (BS), and periodic mesoporous organosilica (PMO) NPs. Inorganically doped silica particles such as calcium-, iron-, manganese-, and zirconium-doped NPs, also have radically different hydrolytic stabilities. To conclude, the degradability and clearance timelines of various siliceous nanomaterials are compared and it is highlighted that researchers can select a specific nanomaterial in this large family according to the targeted applications and the required clearance kinetics.

  3. Effects of salt pond restoration on benthic flux: Sediment as a source of nutrients to the water column

    Science.gov (United States)

    Topping, Brent R.; Kuwabara, James S.; Carter, James L.; Garrettt, Krista K.; Mruz, Eric; Piotter, Sarah; Takekawa, John Y.

    2016-01-01

    Understanding nutrient flux between the benthos and the overlying water (benthic flux) is critical to restoration of water quality and biological resources because it can represent a major source of nutrients to the water column. Extensive water management commenced in the San Francisco Bay, Beginning around 1850, San Francisco Bay wetlands were converted to salt ponds and mined extensively for more than a century. Long-term (decadal) salt pond restoration efforts began in 2003. A patented device for sampling porewater at varying depths, to calculate the gradient, was employed between 2010 and 2012. Within the former ponds, the benthic flux of soluble reactive phosphorus and that of dissolved ammonia were consistently positive (i.e., moving out of the sediment into the water column). The lack of measurable nitrate or nitrite concentration gradients across the sediment-water interface suggested negligible fluxes for dissolved nitrate and nitrite. The dominance of ammonia in the porewater indicated anoxic sediment conditions, even at only 1 cm depth, which is consistent with the observed, elevated sediment oxygen demand. Nearby openestuary sediments showed much lower benthic flux values for nutrients than the salt ponds under resortation. Allochthonous solute transport provides a nutrient advective flux for comparison to benthic flux. For ammonia, averaged for all sites and dates, benthic flux was about 80,000 kg/year, well above the advective flux range of −50 to 1500 kg/year, with much of the variability depending on the tidal cycle. By contrast, the average benthic flux of soluble reactive phosphorus was about 12,000 kg/year, of significant magnitude, but less than the advective flux range of 21,500 to 30,000 kg/year. These benthic flux estimates, based on solute diffusion across the sediment-water interface, reveal a significant nutrient source to the water column of the pond which stimulates algal blooms (often autotrophic). This benthic source may be

  4. Functionalization of silica nanoparticles for polypropylene nanocomposites applications

    International Nuclear Information System (INIS)

    Bracho, Diego; Palza, Humberto; Quijada, Raul; Dougnac, Vivianne

    2011-01-01

    Synthetic silica nanospheres of different diameters produced via the sol-gel method were used in order to enhance the barrier properties of the polypropylene-silica nanocomposites. Modification of the silica surface by reaction with organic chlorosilanes was performed in order to improve the particles interaction with the polypropylene matrix and its dispersion. Unmodified and modified silica nanoparticles were characterized using electronic microscopy (TEM), elemental analysis, thermo gravimetric analysis (TGA), and solid state nuclear magnetic resonance (NMR) spectroscopy. Preliminary permeability tests of the polymer-silica nanocomposite films showed no significant change at low particles load (3 wt%) regardless its size or surface functionality, mainly because of the low aspect ratio of the silica nanospheres. However, it is expected that at a higher concentration of silica particles differences will be observed. (author)

  5. Toughening Mechanisms in Silica-Filled Epoxy Nanocomposites

    Science.gov (United States)

    Patel, Binay S.

    Epoxies are widely used as underfill resins throughout the microelectronics industry to mechanically couple and protect various components of flip-chip assemblies. Generally rigid materials largely surround underfill resins. Improving the mechanical and thermal properties of epoxy resins to better match those of their rigid counterparts can help extend the service lifetime of flip-chip assemblies. Recently, researchers have demonstrated that silica nanoparticles are effective toughening agents for lightly-crosslinked epoxies. Improvements in the fracture toughness of silica-filled epoxy nanocomposites have primarily been attributed to two toughening mechanisms: particle debonding with subsequent void growth and matrix shear banding. Various attempts have been made to model the contribution of these toughening mechanisms to the overall fracture energy observed in silica-filled epoxy nanocomposites. However, disparities still exist between experimental and modeled fracture energy results. In this dissertation, the thermal, rheological and mechanical behavior of eight different types of silica-filled epoxy nanocomposites was investigated. Each nanocomposite consisted of up to 10 vol% of silica nanoparticles with particle sizes ranging from 20 nm to 200 nm, with a variety of surface treatments and particle structures. Fractographical analysis was conducted with new experimental approaches in order to accurately identify morphological evidence for each proposed toughening mechanism. Overall, three major insights into the fracture behavior of real world silica-filled epoxy nanocomposites were established. First, microcracking was observed as an essential toughening mechanism in silica-filled epoxy nanocomposites. Microcracking was observed on the surface and subsurface of fractured samples in each type of silica-filled epoxy nanocomposite. The additional toughening contribution of microcracking to overall fracture energy yielded excellent agreement between experimental

  6. Polar silica-based stationary phases. Part II- Neutral silica stationary phases with surface bound maltose and sorbitol for hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Rathnasekara, Renuka; El Rassi, Ziad

    2017-07-28

    Two neutral polyhydroxylated silica bonded stationary phases, namely maltose-silica (MALT-silica) and sorbitol-silica (SOR-silica), have been introduced and chromatographically characterized in hydrophilic interaction liquid chromatography (HILIC) for a wide range of polar compounds. The bonding of the maltose and sorbitol to the silica surface was brought about by first converting bare silica to an epoxy-activated silica surface via reaction with γ-glycidoxypropyltrimethoxysilane (GPTMS) followed by attaching maltose and sorbitol to the epoxy surface in the presence of the Lewis acid catalyst BF 3 .ethereate. Both silica based columns offered the expected retention characteristics usually encountered for neutral polar surface. The retention mechanism is majorly based on solute' differential partitioning between an organic rich hydro-organic mobile phase (e.g., ACN rich mobile phase) and an adsorbed water layer on the surface of the stationary phase although additional hydrogen bonding was also responsible in some cases for solute retention. The MALT-silica column proved to be more hydrophilic and offered higher retention, separation efficiency and resolution than the SOR-silica column among the tested polar solutes such as derivatized mono- and oligosaccharides, weak phenolic acids, cyclic nucleotide monophosphate and nucleotide-5'-monophosphates, and weak bases, e.g., nucleobases and nucleosides. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. BOREAS TGB-5 Dissolved Organic Carbon Data from NSA Beaver Ponds

    Science.gov (United States)

    Bourbonniere, Rick; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-5) team collected several data sets related to carbon and trace gas fluxes and concentrations in the Northern Study Area (NSA). This data set contains concentrations of dissolved organic and inorganic carbon species from water samples collected at various NSA sites. In particular, this set covers the NSA Tower Beaver Pond Site and the NSA Gillam Road Beaver Pond Site, including data from all visits to open water sampling locations during the BOREAS field campaigns from April to September 1994. The data are provided in tabular ASCII files.

  8. Magnetic core-shell silica particles

    NARCIS (Netherlands)

    Claesson, E.M.

    2007-01-01

    This thesis deals with magnetic silica core-shell colloids and related functionalized silica structures. Synthesis routes have been developed and optimized. The physical properties of these colloids have been investigated, such as the magnetic dipole moment, dipolar structure formation and

  9. Biogenic silica dissolution in diatom aggregates: insights from reactive transport modelling

    KAUST Repository

    Moriceau, B

    2014-12-15

    © Inter-Research 2014. Diatom aggregates contribute significantly to the vertical sinking flux of particulate matter in the ocean. These fragile structures form a specific microhabitat for the aggregated cells, but their internal chemical and physical characteristics remain largely unknown. Studies on the impact of aggregation on the Si cycle led to apparent inconsistency. Despite a lower biogenic silica (bSiO2) dissolution rate and diffusion of the silicic acid (dSi) being similar in aggregates and in sea-water, dSi surprisingly accumulates in aggregates. A reaction-diffusion model helps to clarify this incoherence by reconstructing dSi accumulation measured during batch experiments with aggregated and non-aggregated Skeletonema marinoi and Chaetoceros decipiens. The model calculates the effective bSiO2 dissolution rate as opposed to the experimental apparent bSiO2 dissolution rate, which is the results of the effective dissolution of bSiO2 and transport of dSi out of the aggregate. In the model, dSi transport out of the aggregate is modulated by alternatively considering retention (decrease of the dSi diffusion constant) and adsorption (reversible chemical bonds between dSi and the aggregate matrix) processes. Modelled bSiO2 dissolution is modulated by the impact of dSi concentration inside aggregates and diatom viability, as enhanced persistence of metabolically active diatoms has been observed in aggregates. Adsorption better explains dSi accumulation within and outside aggregates, raising the possible importance of dSi travelling within aggregates to the deep sea (potentially representing 20% of the total silica flux). The model indicates that bSiO2 dissolution is effectively decreased in aggregates mainly due to higher diatom viability but also to other parameters discussed herein.

  10. Anthropogenic and climatic influences on carbon fluxes from eastern North America to the Atlantic Ocean: A process-based modeling study

    Science.gov (United States)

    Tian, Hanqin; Yang, Qichun; Najjar, Raymond G.; Ren, Wei; Friedrichs, Marjorie A. M.; Hopkinson, Charles S.; Pan, Shufen

    2015-04-01

    The magnitude, spatiotemporal patterns, and controls of carbon flux from land to the ocean remain uncertain. Here we applied a process-based land model with explicit representation of carbon processes in streams and rivers to examine how changes in climate, land conversion, management practices, atmospheric CO2, and nitrogen deposition affected carbon fluxes from eastern North America to the Atlantic Ocean, specifically the Gulf of Maine (GOM), Middle Atlantic Bight (MAB), and South Atlantic Bight (SAB). Our simulation results indicate that the mean annual fluxes (±1 standard deviation) of dissolved organic carbon (DOC), particulate organic carbon (POC), and dissolved inorganic carbon (DIC) in the past three decades (1980-2008) were 2.37 ± 0.60, 1.06 ± 0.20, and 3.57 ± 0.72 Tg C yr-1, respectively. Carbon export demonstrated substantial spatial and temporal variability. For the region as a whole, the model simulates a significant decrease in riverine DIC fluxes from 1901 to 2008, whereas there were no significant trends in DOC or POC fluxes. In the SAB, however, there were significant declines in the fluxes of all three forms of carbon, and in the MAB subregion, DIC and POC fluxes declined significantly. The only significant trend in the GOM subregion was an increase in DIC flux. Climate variability was the primary cause of interannual variability in carbon export. Land conversion from cropland to forest was the primary factor contributing to decreases in all forms of C export, while nitrogen deposition and fertilizer use, as well as atmospheric CO2 increases, tended to increase DOC, POC, and DIC fluxes.

  11. A preliminary study of the Hg flux from selected Ohio watersheds to Lake Erie

    International Nuclear Information System (INIS)

    Fitzgibbon, T.O.; Berry Lyons, W.; Gardner, Christopher B.; Carey, Anne E.

    2008-01-01

    New measurements of riverine dissolved and particulate Hg fluxes into Lake Erie from 12 northern Ohio watersheds have been determined from samples collected in April 2002 and analyzed using ultra-clean techniques with cold-vapor atomic fluorescence spectrometry. Total Hg concentrations ranged through 2.5-18.5 ng L -1 , with a mean of 10.4 ng L -1 with most Hg in particulate form. Dissolved Hg concentrations ranged through 0.8-4.3 ng L -1 , with a mean of 2.5 ng L -1 . Highest total Hg concentrations were observed in western rivers with primarily agricultural land use and eastern rivers with mixed land use in their watersheds. Total suspended solid concentrations ranged through 10-180 mg L -1 with particulate Hg concentrations ranging through 47-170 ng g -1 , with a mean of 99 ng g -1 . Particulate Hg was similar to published data for central Lake Erie bottom sediments but much lower than for bottom sediments in western Lake Erie. Total Hg concentrations were positively correlated with suspended sediment concentrations and negatively with dissolved NO 3 - concentrations. The total estimated annual Hg fluxes from these rivers into Lake Erie is estimated to be 85 kg, but because only one event was sampled during high flow conditions, this may be an overestimate. This is much lower than previous published estimates of riverine Hg input into Lake Erie

  12. HAV-1-A multipurpose multimonitor for reactor neutron flux characterization

    International Nuclear Information System (INIS)

    Diaz Rizo, O.; Alvarez, I.; Herrera, E.; Lima, L.; Tores, J.; Lopez, M.C.; Ixquiac, M.

    1996-01-01

    A simple method non-solid multi monitor HAV-1 for the systematic evaluation of reactor neutron flux parameters for K o neutron activation analysis is presented. Solution of Au, Zr, Co, Zn, Sn, U and Th (deposited in filter paper) are used to study the parameters alpha and f. Dissolved Lu is used to neutron temperature (Tn) determination, according to the Wescott's formalism. A multipurpose multi monitor HAV-1 preparation, certification and evaluations presented

  13. Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jacques, D.; Jessen, S.

    2014-01-01

    The efflux of carbon dioxide (CO2) from soils influences atmospheric CO2 concentrations and thereby climate change. The partitioning of inorganic carbon (C) fluxes in the vadose zone between emission to the atmosphere and to the groundwater was investigated to reveal controlling underlying...... mechanisms. Carbon dioxide partial pressure in the soil gas (pCO(2)), alkalinity, soil moisture and temperature were measured over depth and time in unplanted and planted (barley) mesocosms. The dissolved inorganic carbon (DIC) percolation flux was calculated from the pCO(2), alkalinity and the water flux...... to calculate the soil CO2 production. Carbon dioxide fluxes were modeled using the HP1 module of the Hydrus 1-D software. The average CO2 effluxes to the atmosphere from unplanted and planted mesocosm ecosystems during 78 days of experiment were 0.1 +/- 0.07 and 4.9 +/- 0.07 mu mol Cm-2 s(-1), respectively...

  14. The Influence of Surface Alumina and Silica on the Photocatalytic Degradation of Organic Pollutants

    Directory of Open Access Journals (Sweden)

    Terry A. Egerton

    2013-03-01

    Full Text Available Practical photocatalysis for degradation of organic pollutants must take into account the influence of other chemicals. Significant Al deposition on titania can occur at naturally occurring concentrations of dissolved Al. This paper reviews the author’s work on the influence of deliberately deposited hydrous oxides of aluminium on the behavior of a ~130 m2 g−1 rutile TiO2, and then compares the behavior of deposited alumina with that of deposited silica. On rutile some adsorbed nitrogen is infrared-active. Alumina and silica deposited on the rutile reduce, and ultimately eliminate, this infrared-active species. They also reduce photocatalytic oxidation of both propan-2-ol and dichloroacetate ion and the photocatalytic reduction of diphenyl picryl hydrazine. The surface oxides suppress charge transfer and may also reduce reactant adsorption. Quantitative measurement of TiO2 photogreying shows that the adsorbed inorganics also reduce photogreying, attributed to the capture of photogenerated conduction band electrons by Ti4+ to form Ti3+. The influence of adsorbed phosphate on photocatalysis is briefly considered, since phosphate reduces photocatalytic disinfection. In the context of classical colloid studies, it is concluded that inorganic species in water can significantly reduce photoactivity from the levels that measured in pure water.

  15. Small scale variability of transport and composition of dissolved organic matter in the subsoil

    Science.gov (United States)

    Leinemann, T.; Mikutta, R.; Kalbitz, K.; Guggenberger, G.

    2016-12-01

    Dissolved organic matter (DOM) is the most mobile fraction of carbon in the soil and connects the carbon-rich topsoil with the subsoil where translocated OM may get stabilized. The water flux in soil is highly heterogeneous, both temporarily and spatially. We, therefore, hypothesize that at high flow velocities, DOM can bypass possible mineral binding sites and microorganisms, thus leading to less degraded DOM under high flow velocities. To address this question, we investigated water and DOM fluxes in situ using segmented suction plates (4 x 4 segments on 24 x 24 cm) installed into three soil observatories at three depths (10 cm, 50 cm, and 150 cm) in a Dystric Cambisol under Beech (Fagus sylvatica) near Hannover, Germany. To follow the transport of carbon from the litter layer through the soil, an in situ 13C-labelling experiment has been conducted in January 2015. Concentration of dissolved organic carbon (DOC) and DOM composition was analyzed using high temperature combustion and photometric methods. The amount of transported DOC decreased by ca. 80 % from 10 to 50 cm depth and by 40 % from 50 to 150 cm depth. Different flow patterns existed at the centimeter scale, which were stable over time for individual suction plate segments. The specific UV280 nm absorbance of DOM decreased with increasing soil depth. This indicates a selective loss of aromatic compounds. The influence of different flow regimes on the DOM quality became apparent in the subsoil samples (>50 cm depth) showing a correlation of increasing UV280 nm absorbance with increasing water flux. The 13C-labelling experiment showed that after 10 month just 0.3 % of the DOC in 150 cm depth was derived from fresh litter. The transport of leaf litter carbon seemed to be controlled by the flow regime as the DO13C ratio and the water flux correlated positively. This can be an indication for the importance of preferential flow on carbon transport to the subsoil.

  16. Anomalous enthalpy relaxation in vitreous silica

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    2015-01-01

    scans. It is known that the liquid fragility (i.e., the speed of the viscous slow-down of a supercooled liquid at its Tg during cooling) has impact on enthalpy relaxation in glass. Here, we find that vitreous silica (as a strong system) exhibits striking anomalies in both glass transition and enthalpy...... relaxation compared to fragile oxide systems. The anomalous enthalpy relaxation of vitreous silica is discovered by performing the hyperquenching-annealing-calorimetry experiments. We argue that the strong systems like vitreous silica and vitreous Germania relax in a structurally cooperative manner, whereas...... the fragile ones do in a structurally independent fashion. We discuss the origin of the anomalous enthalpy relaxation in the HQ vitreous silica....

  17. Statistical modelling of variability in sediment-water nutrient and oxygen fluxes

    Science.gov (United States)

    Serpetti, Natalia; Witte, Ursula; Heath, Michael

    2016-06-01

    Organic detritus entering, or produced, in the marine environment is re-mineralised to inorganic nutrient in the seafloor sediments. The flux of dissolved inorganic nutrient between the sediment and overlying water column is a key process in the marine ecosystem, which binds the biogeochemical sub-system to the living food web. These fluxes are potentially affected by a wide range of physical and biological factors and disentangling these is a significant challenge. Here we develop a set of General Additive Models (GAM) of nitrate, nitrite, ammonia, phosphate, silicate and oxygen fluxes, based on a year-long campaign of field measurements off the north-east coast of Scotland. We show that sediment grain size, turbidity due to sediment re-suspension, temperature, and biogenic matter content were the key factors affecting oxygen consumption, ammonia and silicate fluxes. However, phosphate fluxes were only related to suspended sediment concentrations, whilst nitrate fluxes showed no clear relationship to any of the expected drivers of change, probably due to the effects of denitrification. Our analyses show that the stoichiometry of nutrient regeneration in the ecosystem is not necessarily constant and may be affected by combinations of processes. We anticipate that our statistical modelling results will form the basis for testing the functionality of process-based mathematical models of whole-sediment biogeochemistry.

  18. Lithogenic fluxes in the Bay of Bengal measured by sediment traps

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.; VijayKumar, B.; Parthiban, G.; Ittekkot, V.; Nair, R.R.

    -Sea Research I, Vol. 44, No. 5, pp. 793410, 1997 0 1997 Elsevier Science Ltd PII: S0967-0637(96)00117-3 All tights reserved. Printed in Great Britain 09674x37/97 917.00+0.00 Lithogenic fluxes in the Bay of Bengal measured by sediment traps V. RAMASWAMY,* B... of amorphous silica in marine sediments. Journal of Sedimentary Petrology, 50, 215-225. Emmel, F. J. and Curray, J. R. (1984) The Bengal submarine fan, northeastern Indian Ocean. Geo-Marine Letters, 3, 119-124. Goldberg, E. D. and Griffin, J. J. (1970...

  19. Mesoporous Silica from Rice Husk Ash

    Directory of Open Access Journals (Sweden)

    S.A. Mandavgane

    2010-12-01

    Full Text Available Mesoporous silica is used as a raw material in several areas: in preparation of catalysts, in inks, as aconcrete hardening accelerator, as a component of detergents and soaps, as a refractory constituent etc.Sodium silicate is produced by reacting rice hull ash (RHA with aqueous NaOH and silica is precipitatedfrom the sodium silicate by acidification. In the present work, conversion of about 90% of silica containedin RHA into sodium silicate was achieved in an open system at temperatures of about 100 °C. The resultsshowed that silica obtained from RHA is mesoporous, has a large surface area and small particle size.Rice Husk is usually mixed with coal and this mixture is used for firing boilers. The RHA therefore, usuallycontains carbon particles. Activated carbon embedded on silica has been prepared using the carbon alreadypresent in RHA. This carbon shows good adsorption capacity. ©2010 BCREC UNDIP. All rights reserved(Received: 25th April 2010, Revised: 17th June 2010, Accepted: 24th June 2010[How to Cite: V.R. Shelke, S.S. Bhagade, S.A. Mandavgane. (2010. Mesoporous Silica from Rice Husk Ash. Bulletin of Chemical Reaction Engineering and Catalysis, 5 (2: 63-67. doi:10.9767/bcrec.5.2.793.63-67

  20. Practical Hydrogen Loading of Air Silica Fibres

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Jensen, Jesper Bevensee; Jensen, Jesper Bo Damm

    2005-01-01

    A method for hydrogen-loading air-silica optical fibres has been developed allowing out-diffusion times comparable to standard step-index fibres. Examples of the first grating written in Ge-doped air-silica fibres using a 266nm UV-laser are shown.......A method for hydrogen-loading air-silica optical fibres has been developed allowing out-diffusion times comparable to standard step-index fibres. Examples of the first grating written in Ge-doped air-silica fibres using a 266nm UV-laser are shown....

  1. Effect of support on hydro-metathesis of propene: A comparative study of W(CH 3 ) 6 anchored to silica vs. silica-alumina

    KAUST Repository

    Tretiakov, Mykyta; Samantaray, Manoja; Saidi, Aya; Basset, Jean-Marie

    2018-01-01

    Hydro-metathesis of propene was carried out by using well-defined W(CH3)6 supported on silica and silica-alumina. It was observed that W(CH3)6 supported silica-alumina catalyst is much better (TON 4577) than the silica supported catalyst (TON 2104

  2. Altering the concentration of silica tunes the functional properties of collagen-silica composite scaffolds to suit various clinical requirements.

    Science.gov (United States)

    Perumal, Sathiamurthi; Ramadass, Satiesh Kumar; Gopinath, Arun; Madhan, Balaraman; Shanmugam, Ganesh; Rajadas, Jayakumar; Mandal, Asit Baran

    2015-12-01

    The success of a tissue engineering scaffold depends on a fine balance being achieved between the physicochemical and biological properties. This study attempts to understand the influence of silica concentration on the functional properties of collagen-silica (CS) composite scaffolds for soft tissue engineering applications. Increasing the ratio of silica to collagen (0.25, 0.5, 0.75, 1.0, 1.25, 1.5 and 2.0 w/w) gave a marked advantage in terms of improving the water uptake and compressive modulus of the CS scaffolds, while also enhancing the biological stability and the turnover time. With increase in silica concentration the water uptake and compressive modulus increased concurrently, whereas it was not so for surface porous architecture and biocompatibility which are crucial for cell adhesion and infiltration. Silica:collagen ratio of ≤1 exhibits favourable surface biocompatibility, and any further increase in silica concentration has a detrimental effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Riverine and wet atmospheric inputs of materials to a North Africa coastal site (Annaba Bay, Algeria)

    Science.gov (United States)

    Ounissi, Makhlouf; Amira, Aicha Beya; Dulac, François

    2018-07-01

    This study simultaneously assesses for the first time the relative contributions of riverine and wet atmospheric inputs of materials into the Algerian Annaba Bay on the Mediterranean coast of North Africa. Surface water sampling and water discharge estimates were performed weekly in 2014 at the outlets of the Mafragh River (MR) and Seybouse River (SR). Riverine samples were analyzed for dissolved nutrients and particulate matter (suspended particulate matter: SPM; particulate organic carbon: POC; biogenic silica: BSi; chlorophyll a: Chl a; particulate organic nitrogen: PON and particulate organic phosphorus (POP). Rainwater samples were jointly collected at a close weather station on a daily basis and analyzed for dissolved nutrients. The rainwater from the Annaba region was characterized by high concentrations of phosphate (PO4) and silicic acid (Si(OH)4) that are several times the average Mediterranean values, and by strong deposition fluxes. Conversely, the levels of dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) and associated fluxes were remarkably low. The dissolved nutrient fluxes for the two catchments were low following the lowering of the river flows, but those of particulate matter (POC, Chl a, BSi) displayed significant amounts, especially for the MR catchment. BSi and POP represented approximately a third of the total silicon and total phosphorus fluxes, respectively. The levels of dissolved N and P in the MR water were comparable to those in rainwater. MR appeared to be a nearly pristine ecosystem with low nutrient levels and almost balanced N:P and Si:N ratios. SR water had low Si(OH)4 levels but was highly charged with NH4 and PO4 and showed unbalanced N:P and Si:N ratios in almost all samples. These conditions have resulted in large phytoplankton biomasses, which may lead to eutrophication. More importantly, the rainwater was identified as a relevant source of fertilizers for marine waters and agricultural land in the

  4. Silica-Coated Liposomes for Insulin Delivery

    OpenAIRE

    Neelam Dwivedi; M. A. Arunagirinathan; Somesh Sharma; Jayesh Bellare

    2010-01-01

    Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evid...

  5. Vertical nitrogen flux from the oceanic photic zone by diel migrant zooplankton and nekton

    Science.gov (United States)

    Longhurst, Alan R.; Glen Harrison, W.

    1988-06-01

    Where the photic zone is a biological steady-state, the downward flux of organic material across the pycnocline to the interior of the ocean is thought to be balanced by upward turbulent flux of inorganic nitrogen across the nutricline. This model ignores a significant downward dissolved nitrogen flux caused by the diel vertical migration of interzonal zooplankton and nekton that feed in the photic zone at night and excrete nitrogenous compounds at depth by day. In the oligotrophic ocean this flux can be equivalent to the flux of particulate organic nitrogen from the photic zone in the form of faecal pellets and organic flocculates. Where nitrogen is the limiting plant nutrient, and the flux by diel migration of interzonal plankton is significant compared to other nitrogen exports from the photic zone, there must be an upward revision of previous estimates for the ratio of new to total primary production in the photic zone if a nutrient balance is to be maintained. This upward revision is of the order 5-100% depending on the oceanographic regime.

  6. Kinetics of silica-phase transitions

    International Nuclear Information System (INIS)

    Duffy, C.J.

    1993-07-01

    In addition to the stable silica polymorph quartz, several metastable silica phases are present in Yucca Mountain. The conversion of these phases to quartz is accompanied by volume reduction and a decrease in the aqueous silica activity, which may destabilize clinoptilolite and mordenite. The primary reaction sequence for the silica phases is from opal or glass to disordered opal-CT, followed by ordering of the opal-CT and finally by the crystallization of quartz. The ordering of opal-CT takes place in the solid state, whereas the conversion of opal-CT takes place through dissolution-reprecipitation involving the aqueous phase. It is proposed that the rate of conversion of opal-CT to quartz is controlled by diffusion of defects out of a disordered surface layer formed on the crystallizing quartz. The reaction rates are observed to be dependent on temperature, pressure, degree of supersaturation, and pH. Rate equations selected from the literature appear to be consistent with observations at Yucca Mountain

  7. Health hazards due to the inhalation of amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Merget, R.; Bruening, T. [Research Institute for Occupational Medicine (BGFA), Bochum (Germany); Bauer, T. [Bergmannsheil, University Hospital, Department of Internal Medicine, Division of Pneumonology, Allergology and Sleep Medicine, Bochum (Germany); Kuepper, H.U.; Breitstadt, R. [Degussa-Huels Corp., Wesseling (Germany); Philippou, S. [Department of Pathology, Augusta Krankenanstalten, Bochum (Germany); Bauer, H.D. [Research Institute for Hazardous Substances (IGF), Bochum (Germany)

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or

  8. Health hazards due to the inhalation of amorphous silica

    International Nuclear Information System (INIS)

    Merget, R.; Bruening, T.; Bauer, T.; Kuepper, H.U.; Breitstadt, R.; Philippou, S.; Bauer, H.D.

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no

  9. HAV-1-A multipurpose multimonitor for reactor neutron flux characterization

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Rizo, O; Alvarez, I; Herrera, E; Lima, L; Tores, J [Secretaria Ejecutiva para Asuntos Nucleares, Holguin (Cuba). Delegacion Territorial; Manso, M V [Centro de Isotopos, La Habana (Cuba); Lopez, M C [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico); Ixquiac, M [Universidad de San Carlos de Guatemala, Guatemala City (Guatemala)

    1997-12-31

    A simple method non-solid multi monitor HAV-1 for the systematic evaluation of reactor neutron flux parameters for K{sub o} neutron activation analysis is presented. Solution of Au, Zr, Co, Zn, Sn, U and Th (deposited in filter paper) are used to study the parameters alpha and f. Dissolved Lu is used to neutron temperature (Tn) determination, according to the Wescott`s formalism. A multipurpose multi monitor HAV-1 preparation, certification and evaluations presented.

  10. Grassy Silica Nanoribbons and Strong Blue Luminescence

    Science.gov (United States)

    Wang, Shengping; Xie, Shuang; Huang, Guowei; Guo, Hongxuan; Cho, Yujin; Chen, Jun; Fujita, Daisuke; Xu, Mingsheng

    2016-09-01

    Silicon dioxide (SiO2) is one of the key materials in many modern technological applications such as in metal oxide semiconductor transistors, photovoltaic solar cells, pollution removal, and biomedicine. We report the accidental discovery of free-standing grassy silica nanoribbons directly grown on SiO2/Si platform which is commonly used for field-effect transistors fabrication without other precursor. We investigate the formation mechanism of this novel silica nanostructure that has not been previously documented. The silica nanoribbons are flexible and can be manipulated by electron-beam. The silica nanoribbons exhibit strong blue emission at about 467 nm, together with UV and red emissions as investigated by cathodoluminescence technique. The origins of the luminescence are attributed to various defects in the silica nanoribbons; and the intensity change of the blue emission and green emission at about 550 nm is discussed in the frame of the defect density. Our study may lead to rational design of the new silica-based materials for a wide range of applications.

  11. Characterization of silica particles prepared via urease-catalyzed urea hydrolysis and activity of urease in sol–gel silica matrix

    International Nuclear Information System (INIS)

    Kato, Katsuya; Nishida, Masakazu; Ito, Kimiyasu; Tomita, Masahiro

    2012-01-01

    Highlights: ► Silica precipitation occurred via urease-catalytic reactions. ► Higher urease activity for silica synthesis enables mesostructure of silica–urease composites. ► Urease encapsulating in silica matrix retained high activity. - Abstract: Urease templated precipitation of silica synthesized by sol–gel chemistry produces a composite material allowing high urease activity. This study investigates the structural properties of the composite material that allow for the retention of the urease hydrolysis activity. Scanning (SEM) and transmission (TEM) electron microscopy reveal that the composite has a mesoporous structure composed of closely packed spherical structures ∼20–50 nm in diameter. Brunauer–Emmett–Teller (BET) analysis revealed that the surface area and pore volume of the composite prepared under the conditions of 50 mM urea and 25 °C is relatively high (324 m 2 /g and 1.0 cm 3 /g). These values are equivalent to those of usual mesoporous silica materials synthesized from the self-assembly of triblock copolymers as organic templates. In addition, after encapsulating in a sol–gel silica matrix, urease retained high activity (∼90% of the activity compared with native urease). Our results suggest a new method for synthesizing mesoporous silica materials with highly tunable pore sizes and shapes under mild conditions.

  12. Mesoporous Silica from Rice Husk Ash

    Directory of Open Access Journals (Sweden)

    V.R. Shelke

    2011-01-01

    Full Text Available Mesoporous silica is used as a raw material in several areas: in preparation of catalysts, in inks, as a concrete hardening accelerator, as a component of detergents and soaps, as a refractory constituent etc. Sodium silicate is produced by reacting rice hull ash (RHA with aqueous NaOH and silica is precipitated from the sodium silicate by acidification. In the present work, conversion of about 90% of silica contained in RHA into sodium silicate was achieved in an open system at temperatures of about 100 °C. The results showed that silica obtained from RHA is mesoporous, has a large surface area and small particle size. Rice Husk is usually mixed with coal and this mixture is used for firing boilers. The RHA therefore, usually contains carbon particles. Activated carbon embedded on silica has been prepared using the carbon already present in RHA. This carbon shows good adsorption capacity. ©2010 BCREC UNDIP. All rights reserved(Received: 25th April 2010, Revised: 17th June 2010, Accepted: 24th June 2010[How to Cite: V.R. Shelke, S.S. Bhagade, S.A. Mandavgane. (2010. Mesoporous Silica from Rice Husk Ash. Bulletin of Chemical Reaction Engineering and Catalysis, 5 (2: 63-67. doi:10.9767/bcrec.5.2.793.63-67][DOI: http://dx.doi.org/10.9767/bcrec.5.2.793.63-67

  13. Production and Application of Olivine Nano-Silica in Concrete

    Science.gov (United States)

    Mardiana, Oesman; Haryadi

    2017-05-01

    The aim of this research was to produce nano silica by synthesis of nano silica through extraction and dissolution of ground olivine rock, and applied the nano silica in the design concrete mix. The producing process of amorphous silica used sulfuric acid as the dissolution reagent. The separation of ground olivine rock occurred when the rock was heated in a batch reactor containing sulfuric acid. The results showed that the optimum mole ratio of olivine- acid was 1: 8 wherein the weight ratio of the highest nano silica generated. The heating temperature and acid concentration influenced the mass of silica produced, that was at temperature of 90 °C and 3 M acid giving the highest yield of 44.90%. Characterization using Fourier Transform Infrared (FTIR ) concluded that amorphous silica at a wavenumber of 1089 cm-1 indicated the presence of siloxane, Si-O-Si, stretching bond. Characterization using Scanning Electron Microscope - Energy Dispersive Spectroscopy (SEM-EDS) showed the surface and the size of the silica particles. The average size of silica particles was between 1-10 μm due to the rapid aggregation of the growing particles of nano silica into microparticles, caused of the pH control was not fully achieved.

  14. Sediment nitrous oxide fluxes are dominated by uptake in a temperate estuary

    Directory of Open Access Journals (Sweden)

    Sarah Quinn Foster

    2016-03-01

    Full Text Available Coastal marine ecosystems are generally considered important sources of nitrous oxide (N2O, a powerful greenhouse gas and ozone depleting substance. To date most studies have focused on the environmental factors controlling N2O production although N2O uptake has been observed in a variety of coastal ecosystems. In this study, we examined sediment fluxes of N2O during two years (2012-2013 in a shallow temperate estuary (Waquoit Bay, MA, USA. Overall sediments were a net N2O sink (-23 ±5.2 nmol m-2 h-1, mean ±SE, significantly less than zero p<0.0001. N2O fluxes were significantly correlated to water column dissolved N2O (% saturation (p<0.0001, inorganic phosphorus (DIP (p=0.0017 and nitrogen (DIN (p=0.0019, as well as to temperature (p=0.0192. Additionally, there was a positive correlation between sediment N2O uptake and both oxygen (O2 and DIP uptake (p=0.0002 and p<0.0001, O2 and DIP sediment uptake, respectively. Results from this study indicate that sediments in shallow coastal ecosystems can be a strong sink of dissolved N2O, and therefore may mitigate N2O efflux to the atmosphere and export to the coastal ocean. Establishing the nature and strength of relationships between environmental conditions and sediment N2O fluxes moves us towards better-constrained models that will improve ecosystem management strategies, N2O budgets, and our ability to predict the response of coastal ecosystems to local and global change. Establishing the nature and strength of relationships between environmental conditions and sediment N2O fluxes moves us towards better-constrained models that will improve ecosystem management strategies, N2O budgets, and our ability to predict the response of coastal ecosystems to local and global change.

  15. Effect of silica particle size on macrophage inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Toshimasa Kusaka

    Full Text Available Amorphous silica particles, such as nanoparticles (<100 nm diameter particles, are used in a wide variety of products, including pharmaceuticals, paints, cosmetics, and food. Nevertheless, the immunotoxicity of these particles and the relationship between silica particle size and pro-inflammatory activity are not fully understood. In this study, we addressed the relationship between the size of amorphous silica (particle dose, diameter, number, and surface area and the inflammatory activity (macrophage phagocytosis, inflammasome activation, IL-1β secretion, cell death and lung inflammation. Irrespective of diameter size, silica particles were efficiently internalized by mouse bone marrow-derived macrophages via an actin cytoskeleton-dependent pathway, and induced caspase-1, but not caspase-11, activation. Of note, 30 nm-1000 nm diameter silica particles induced lysosomal destabilization, cell death, and IL-1β secretion at markedly higher levels than did 3000 nm-10000 nm silica particles. Consistent with in vitro results, intra-tracheal administration of 30 nm silica particles into mice caused more severe lung inflammation than that of 3000 nm silica particles, as assessed by measurement of pro-inflammatory cytokines and neutrophil infiltration in bronchoalveolar lavage fluid of mice, and by the micro-computed tomography analysis. Taken together, these results suggest that silica particle size impacts immune responses, with submicron amorphous silica particles inducing higher inflammatory responses than silica particles over 1000 nm in size, which is ascribed not only to their ability to induce caspase-1 activation but also to their cytotoxicity.

  16. Pecan drying with silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, S.R.; Chhinnan, M.S.

    1983-07-01

    High moisture in-shell pecans were dried by keeping them in direct and indirect contact with silica gel to investigate their drying characteristics. In-shell pecans were also dried with ambient air from a controlled environment chamber and with air dehumidified by silica gel. Direct contact and dehumidified air drying seemed feasible approaches.

  17. Influence of organic solvents on interfacial water at surfaces of silica gel and partially silylated fumed silica

    International Nuclear Information System (INIS)

    Turov, V.V.; Gun'ko, V.M.; Tsapko, M.D.; Bogatyrev, V.M.; Skubiszewska-Zieba, J.; Leboda, R.; Ryczkowski, J.

    2004-01-01

    The effects of organic solvents (dimethylsulfoxide-d 6 (DMSO-d 6 ), chloroform-d, acetone-d 6 , and acetonitrile-d 3 ) on the properties of interfacial water at surfaces of silica gel Si-40 and partially silylated fumed silica A-380 were studied by means of the 1 H NMR spectroscopy with freezing-out of adsorbed water at 180 1 H NMR investigations were also analysed on the basis of the structural characteristics of silicas and quantum chemical calculations of the chemical shifts δ H and solvent effects. DMSO-d 6 and acetonitrile-d 3 are poorly miscible with water in silica gel pores in contrast to the bulk liquids. DMSO-d 6 and chloroform-d affect the structure of the interfacial water weaker than acetone-d 6 and acetonitrile-d 3 at amounts of liquids greater than the pore volume. Acetone-d 6 and acetonitrile-d 3 can displace water from pores under this condition. The chemical shift of protons in water adsorbed on silica gel is 3.5-6.5 ppm, which corresponds to the formation of two to four hydrogen bonds per molecule. Water adsorbed on partially silylated fumed silica has two 1 H NMR signals at 5 and 1.1-1.7 ppm related to different structures (droplets and small clusters) of the interfacial water

  18. Silica and lung cancer: a controversial issue.

    Science.gov (United States)

    Pairon, J C; Brochard, P; Jaurand, M C; Bignon, J

    1991-06-01

    The role of crystalline silica in lung cancer has long been the subject of controversy. In this article, we review the main experimental and epidemiological studies dealing with this problem. Some evidence for a genotoxic potential of crystalline silica has been obtained in the rare in vitro studies published to date. In vivo studies have shown that crystalline silica is carcinogenic in the rat; the tumour types appear to vary according to the route of administration. In addition, an association between carcinogenic and fibrogenic potency has been observed in various animal species exposed to crystalline silica. An excess of lung cancer related to occupational exposure to crystalline silica is reported in many epidemiological studies, regardless of the presence of silicosis. However, most of these studies are difficult to interpret because they do not correctly take into account associated carcinogens such as tobacco smoke and other occupational carcinogens. An excess of lung cancer is generally reported in studies based on silicosis registers. Overall, experimental and human studies suggest an association between exposure to crystalline silica and an excess of pulmonary malignancies. Although the data available are not sufficient to establish a clear-cut causal relationship in humans, an association between the onset of pneumoconiosis and pulmonary malignancies is probable. In contrast, experimental observations have given rise to a pathophysiological mechanism that might account for a putative carcinogenic potency of crystalline silica.

  19. Distributions of nutrients, dissolved organic carbon and carbohydrates in the western Arctic Ocean

    Science.gov (United States)

    Wang, Deli; Henrichs, Susan M.; Guo, Laodong

    2006-09-01

    Seawater samples were collected from stations along a transect across the shelf-basin interface in the western Arctic Ocean during September 2002, and analyzed for nutrients, dissolved organic carbon (DOC), and total dissolved carbohydrate (TDCHO) constituents, including monosaccharides (MCHO) and polysaccharides (PCHO). Nutrients (nitrate, ammonium, phosphate and dissolved silica) were depleted at the surface, especially nitrate. Their concentrations increased with increasing depth, with maxima centered at ˜125 m depth within the halocline layer, then decreased with increasing depth below the maxima. Both ammonium and phosphate concentrations were elevated in shelf bottom waters, indicating a possible nutrient source from sediments, and in a plume that extended into the upper halocline waters offshore. Concentrations of DOC ranged from 45 to 85 μM and had an inverse correlation with salinity, indicating that mixing is a control on DOC concentrations. Concentrations of TDCHO ranged from 2.5 to 19 μM-C, comprising 13-20% of the bulk DOC. Higher DOC concentrations were found in the upper water column over the shelf along with higher TDCHO concentrations. Within the TDCHO pool, the concentrations of MCHO ranged from 0.4 to 8.6 μM-C, comprising 20-50% of TDCHO, while PCHO concentrations ranged from 0.5 to 13.6 μM-C, comprising 50-80% of the TDCHO. The MCHO/TDCHO ratio was low in the upper 25 m of the water column, followed by a high MCHO/TDCHO ratio between 25 and 100 m, and a low MCHO/TDCHO ratio again below 100 m. The high MCHO/TDCHO ratio within the halocline layer likely resulted from particle decomposition and associated release of MCHO, whereas the low MCHO/TDCHO (or high PCHO/TDCHO) ratio below the halocline layer could have resulted from slow decomposition and additional particulate CHO sources.

  20. Cool seafloor hydrothermal springs reveal global geochemical fluxes

    Science.gov (United States)

    Wheat, C. Geoffrey; Fisher, Andrew T.; McManus, James; Hulme, Samuel M.; Orcutt, Beth N.

    2017-10-01

    We present geochemical data from the first samples of spring fluids from Dorado Outcrop, a basaltic edifice on 23 M.y. old seafloor of the Cocos Plate, eastern Pacific Ocean. These samples were collected from the discharge of a cool hydrothermal system (CHS) on a ridge flank, where typical reaction temperatures in the volcanic crust are low (2-20 °C) and fluid residence times are short. Ridge-flank hydrothermal systems extract 25% of Earth's lithospheric heat, with a global discharge rate equivalent to that of Earth's river discharge to the ocean; CHSs comprise a significant fraction of this global flow. Upper crustal temperatures around Dorado Outcrop are ∼15 °C, the calculated residence time is V, U, Mg, phosphate, Si and Li are different. Applying these observed differences to calculated global CHS fluxes results in chemical fluxes for these ions that are ≥15% of riverine fluxes. Fluxes of K and B also may be significant, but better analytical resolution is required to confirm this result. Spring fluids also have ∼50% less dissolved oxygen (DO) than bottom seawater. Calculations of an analytical model suggest that the loss of DO occurs primarily (>80%) within the upper basaltic crust by biotic and/or abiotic consumption. This calculation demonstrates that permeable pathways within the upper crust can support oxic water-rock interactions for millions of years.

  1. New Silica Magnetite Sorbent: The Influence of Variations of Sodium Silicate Concentrations on Silica Magnetite Character

    Science.gov (United States)

    Azmiyawati, C.; Pratiwi, P. I.; Darmawan, A.

    2018-04-01

    The adsorption capacity of an adsorbent is determined by the adsorbent and the adsorbate properties. The character of the adsorbent will play a major role in its ability to adsorb the corresponding adsorbate. Therefore, in this study we looked at the effects of variations of sodium silicate concentrations on the resulting magnetite silica adsorbent properties. The application of silica coating on the magnetite was carried out through a sol-gel process with sodium silicate and HCl precursors. Based on the characterization data obtained, it was found that the silica coating on magnetite can increase the resistance to acid leaching, increase the particle size, but decrease the magnetic properties of the magnetite. Based on Gas Sorption Analyzer (GSA) and X-ray Difraction (XRD) data it can successively be determined that increase in concentration of sodium silicate will increase the surface area and amorphous structure of the Silica Magnetie.

  2. Dispersibility of silica fume in mortar and its effect on properties of mortar. Silica fume no bunsan to mortar no shotokusei

    Energy Technology Data Exchange (ETDEWEB)

    Oga, H; Uomoto, T [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science

    1992-08-01

    Effect of silica fume dispersibility on concrete characteristics was discussed. Properties of mortar mixed with silica fume to exhibit compression strength varied with displacement rates, patterns, and mixing time of silica fume. In submerged curing age of 28 days, the compression strength in a mortar mixed with silica fume at 10% was affected only very little by the mixing time for both pelletizing and non-pelletizing types for up to 180 seconds. The strength increased thereafter with the mixing time. The compression strength at 1020 seconds showed higher value by about 150 kgf/cm [sup 2] than when no silica fume is added, with a difference because of patterns disappearing. In the case of a mixing time of 1020 seconds, neutralization depth receives very little effect from a pattern difference, and decreases with increasing displacement rate. Neutralization coefficient of the mortar mixed with silica fume at 10% decreased with the mixing time, and it was possible to suppress the neutralization coefficient to 25% of the case without silica fume addition in a 1020-second mixing. 7 refs., 8 figs., 1 tab.

  3. Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nano composites-A Review

    International Nuclear Information System (INIS)

    Ismail, A.R.; Vejayakumaran, P.

    2012-01-01

    Application of silica nanoparticles as fillers in the preparation of nano composite of polymers has drawn much attention, due to the increased demand for new materials with improved thermal, mechanical, physical, and chemical properties. Recent developments in the synthesis of monodispersed, narrow-size distribution of nanoparticles by sol-gel method provide significant boost to development of silica-polymer nano composites. This paper is written by emphasizing on the synthesis of silica nanoparticles, characterization on size-dependent properties, and surface modification for the preparation of homogeneous nano composites, generally by sol-gel technique. The effect of nano silica on the properties of various types of silica-polymer composites is also summarized.

  4. Silica sol as grouting material: a physio-chemical analysis.

    Science.gov (United States)

    Sögaard, Christian; Funehag, Johan; Abbas, Zareen

    2018-01-01

    At present there is a pressing need to find an environmentally friendly grouting material for the construction of tunnels. Silica nanoparticles hold great potential of replacing the organic molecule based grouting materials currently used for this purpose. Chemically, silica nanoparticles are similar to natural silicates which are essential components of rocks and soil. Moreover, suspensions of silica nanoparticles of different sizes and desired reactivity are commercially available. However, the use of silica nanoparticles as grouting material is at an early stage of its technological development. There are some critical parameters such as long term stability and functionality of grouted silica that need to be investigated in detail before silica nanoparticles can be considered as a reliable grouting material. In this review article we present the state of the art regarding the chemical properties of silica nanoparticles commercially available, as well as experience gained from the use of silica as grouting material. We give a detailed description of the mechanisms underlying the gelling of silica by different salt solutions such as NaCl and KCl and how factors such as particle size, pH, and temperature affect the gelling and gel strength development. Our focus in this review is on linking the chemical properties of silica nanoparticles to the mechanical properties to better understand their functionality and stability as grouting material. Along the way we point out areas which need further research.

  5. Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process

    Directory of Open Access Journals (Sweden)

    Benjamin Baumgärtner

    2017-05-01

    Full Text Available A facile method to coat carbon fibers with a silica shell is presented in this work. By immobilizing linear polyamines on the carbon fiber surface, the high catalytic activity of polyamines in the sol–gel-processing of silica precursors is used to deposit a silica coating directly on the fiber’s surface. The surface localization of the catalyst is achieved either by attaching short-chain polyamines (e.g., tetraethylenepentamine via covalent bonds to the carbon fiber surface or by depositing long-chain polyamines (e.g., linear poly(ethylenimine on the carbon fiber by weak non-covalent bonding. The long-chain polyamine self-assembles onto the carbon fiber substrate in the form of nanoscopic crystallites, which serve as a template for the subsequent silica deposition. The silicification at close to neutral pH is spatially restricted to the localized polyamine and consequently to the fiber surface. In case of the linear poly(ethylenimine, silica shells of several micrometers in thickness can be obtained and their morphology is easily controlled by a considerable number of synthesis parameters. A unique feature is the hierarchical biomimetic structure of the silica coating which surrounds the embedded carbon fiber by fibrillar and interconnected silica fine-structures. The high surface area of the nanostructured composite fiber may be exploited for catalytic applications and adsorption purposes.

  6. Ordered nanoporous silica as carriers for improved delivery of water insoluble drugs: a comparative study between three dimensional and two dimensional macroporous silica

    Directory of Open Access Journals (Sweden)

    Wang Y

    2013-10-01

    Full Text Available Ying Wang, Qinfu Zhao, Yanchen Hu, Lizhang Sun, Ling Bai, Tongying Jiang, Siling WangDepartment of Pharmaceutics, Shenyang Pharmaceutical University, Liaoning Province, People’s Republic of ChinaAbstract: The goal of the present study was to compare the drug release properties and stability of the nanoporous silica with different pore architectures as a matrix for improved delivery of poorly soluble drugs. For this purpose, three dimensional ordered macroporous (3DOM silica with 3D continuous and interconnected macropores of different sizes (200 nm and 500 nm and classic mesoporous silica (ie, Mobil Composition of Matter [MCM]-41 and Santa Barbara Amorphous [SBA]-15 with well-ordered two dimensional (2D cylindrical mesopores were successfully fabricated and then loaded with the model drug indomethacin (IMC via the solvent deposition method. Scanning electron microscopy (SEM, N2 adsorption, differential scanning calorimetry (DSC, and X-ray diffraction (XRD were applied to systematically characterize all IMC-loaded nanoporous silica formulations, evidencing the successful inclusion of IMC into nanopores, the reduced crystallinity, and finally accelerated dissolution of IMC. It was worth mentioning that, in comparison to 2D mesoporous silica, 3DOM silica displayed a more rapid release profile, which may be ascribed to the 3D interconnected pore networks and the highly accessible surface areas. The results obtained from the stability test indicated that the amorphous state of IMC entrapped in the 2D mesoporous silica (SBA-15 and MCM-41 has a better physical stability than in that of 3DOM silica. Moreover, the dissolution rate and stability of IMC loaded in 3DOM silica was closely related to the pore size of macroporous silica. The colorimetric 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT and Cell Counting Kit (CCK-8 assays in combination with direct morphology observations demonstrated the good biocompatibility of nanoporous

  7. Convective mass transfer around a dissolving bubble

    Science.gov (United States)

    Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric

    2017-11-01

    Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.

  8. Measurement and modelization of silica opal optical properties

    OpenAIRE

    Avoine , Amaury; Ngoc Hong , Phan; Frederich , Hugo; Aregahegn , Kifle; Bénalloul , Paul; Coolen , Laurent; Schwob , Catherine; Thu Nga , Pham; Gallas , Bruno; Maître , Agnès

    2014-01-01

    International audience; We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflect...

  9. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    International Nuclear Information System (INIS)

    Alyoshina, Nonna A.; Parfenyuk, Elena V.

    2013-01-01

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N 2 adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica

  10. Dissolving method for nuclear fuel oxide

    International Nuclear Information System (INIS)

    Tomiyasu, Hiroshi; Kataoka, Makoto; Asano, Yuichiro; Hasegawa, Shin-ichi; Takashima, Yoichi; Ikeda, Yasuhisa.

    1996-01-01

    In a method of dissolving oxides of nuclear fuels in an aqueous acid solution, the oxides of the nuclear fuels are dissolved in a state where an oxidizing agent other than the acid is present together in the aqueous acid solution. If chlorate ions (ClO 3 - ) are present together in the aqueous acid solution, the chlorate ions act as a strong oxidizing agent and dissolve nuclear fuels such as UO 2 by oxidation. In addition, a Ce compound which generates Ce(IV) by oxidation is added to the aqueous acid solution, and an ozone (O 3 ) gas is blown thereto to dissolve the oxides of nuclear fuels. Further, the oxides of nuclear fuels are oxidized in a state where ClO 2 is present together in the aqueous acid solution to dissolve the oxides of nuclear fuels. Since oxides of the nuclear fuels are dissolved in a state where the oxidizing agent is present together as described above, the oxides of nuclear fuels can be dissolved even at a room temperature, thereby enabling to use a material such as polytetrafluoroethylene and to dissolve the oxides of nuclear fuels at a reduced cost for dissolution. (T.M.)

  11. Synthesis and Gas Transport Properties of Hyperbranched Polyimide–Silica Hybrid/Composite Membranes

    Directory of Open Access Journals (Sweden)

    Masako Miki

    2013-12-01

    Full Text Available Hyperbranched polyimide–silica hybrids (HBPI–silica HBDs and hyperbranched polyimide–silica composites (HBPI–silica CPTs were prepared, and their general and gas transport properties were investigated to clarify the effect of silica sources and preparation methods. HBPI–silica HBDs and HBPI–silica CPTs were synthesized by two-step polymerization of A2 + B3 monomer system via polyamic acid as precursor, followed by hybridizing or blending silica sources. Silica components were incorporated by the sol-gel reaction with tetramethoxysilane (TMOS or the addition of colloidal silica. In HBPI-silica HBDs, the aggregation of silica components is controlled because of the high affinity of HBPI and silica caused by the formation of covalent bonds between HBPI and silica. Consequently, HBPI-silica HBDs had good film formability, transparency, and mechanical properties compared with HBPI-silica CPTs. HBPI-silica HBD and CPT membranes prepared via the sol-gel reaction with TMOS showed specific gas permeabilities and permselectivities for CO2/CH4 separation, that is, both CO2 permeability and CO2/CH4 selectivity increased with increasing silica content. This result suggests that gas transport can occur through a molecular sieving effect of the porous silica network derived from the sol-gel reaction and/or through the narrow interfacial region between the silica networks and the organic matrix.

  12. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils

    Science.gov (United States)

    Ma, Jie; Wang, Zhong-Yuan; Stevenson, Bryan A.; Zheng, Xin-Jun; Li, Yan

    2013-01-01

    An ‘anomalous' negative flux, in which carbon dioxide (CO2) enters rather than is released from the ground, was studied in a saline/alkaline soil. Soil sterilization disclosed an inorganic process of CO2 dissolution into (during the night) and out of (during the day) the soil solution, driven by variation in soil temperature. Experimental and modeling analysis revealed that pH and soil moisture were the most important determinants of the magnitude of this inorganic CO2 flux. In the extreme cases of air-dried saline/alkaline soils, this inorganic process was predominant. While the diurnal flux measured was zero sum, leaching of the dissolved inorganic carbon in the soil solution could potentially effect net carbon ecosystem exchange. This finding implies that an inorganic module should be incorporated when dealing with the CO2 flux of saline/alkaline land. Neglecting this inorganic flux may induce erroneous or misleading conclusions in interpreting CO2 fluxes of these ecosystems. PMID:23778238

  13. Functionalized Mesoporous Silica Membranes for CO2 Separation Applications

    Directory of Open Access Journals (Sweden)

    Hyung-Ju Kim

    2015-01-01

    Full Text Available Mesoporous silica molecular sieves are emerging candidates for a number of potential applications involving adsorption and molecular transport due to their large surface areas, high pore volumes, and tunable pore sizes. Recently, several research groups have investigated the potential of functionalized mesoporous silica molecular sieves as advanced materials in separation devices, such as membranes. In particular, mesoporous silica with a two- or three-dimensional pore structure is one of the most promising types of molecular sieve materials for gas separation membranes. However, several important challenges must first be addressed regarding the successful fabrication of mesoporous silica membranes. First, a novel, high throughput process for the fabrication of continuous and defect-free mesoporous silica membranes is required. Second, functionalization of mesopores on membranes is desirable in order to impart selective properties. Finally, the separation characteristics and performance of functionalized mesoporous silica membranes must be further investigated. Herein, the synthesis, characterization, and applications of mesoporous silica membranes and functionalized mesoporous silica membranes are reviewed with a focus on CO2 separation.

  14. Fluvial organic carbon flux from an eroding peatland catchment, southern Pennines, UK

    Directory of Open Access Journals (Sweden)

    R. R. Pawson

    2008-03-01

    Full Text Available This study investigates for the first time the relative importance of dissolved organic carbon (DOC and particulate organic carbon (POC in the fluvial carbon flux from an actively eroding peatland catchment in the southern Pennines, UK. Event scale variability in DOC and POC was examined and the annual flux of fluvial organic carbon was estimated for the catchment. At the event scale, both DOC and POC were found to increase with discharge, with event based POC export accounting for 95% of flux in only 8% of the time. On an annual cycle, exports of 35.14 t organic carbon (OC are estimated from the catchment, which represents an areal value of 92.47 g C m−2 a−1. POC was the most significant form of organic carbon export, accounting for 80% of the estimated flux. This suggests that more research is required on both the fate of POC and the rates of POC export in eroding peatland catchments.

  15. Molecular Dynamics Simulations of Water Droplets On Hydrophilic Silica Surfaces

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.

    2009-01-01

    and DNA microarrays technologies.Although extensive experimental, theoretical and computational work has been devoted to study the nature of the interaction between silica and water, at the molecular level a complete understanding of silica-water systems has not been reached. Contact angle computations...... dynamics (MD) simulations of a hydrophilic air-water-silica system using the MD package FASTTUBE. We employ quantum chemistry calculation to obtain air-silica interaction parameters for the simulations. Our simulations are based in the following force fields: i) The silica-silica interaction is based...... of water droplets on silica surfaces offers a useful fundamental and quantitative measurement in order to study chemical and physical properties of water-silica systems. For hydrophobic systems the static and dynamic properties of the fluid-solid interface are influenced by the presence of air. Hence...

  16. Influence of organic solvents on interfacial water at surfaces of silica gel and partially silylated fumed silica

    Energy Technology Data Exchange (ETDEWEB)

    Turov, V.V.; Gun' ko, V.M.; Tsapko, M.D.; Bogatyrev, V.M.; Skubiszewska-Zieba, J.; Leboda, R.; Ryczkowski, J

    2004-05-15

    The effects of organic solvents (dimethylsulfoxide-d{sub 6} (DMSO-d{sub 6}), chloroform-d, acetone-d{sub 6}, and acetonitrile-d{sub 3}) on the properties of interfacial water at surfaces of silica gel Si-40 and partially silylated fumed silica A-380 were studied by means of the {sup 1}H NMR spectroscopy with freezing-out of adsorbed water at 180silicas and quantum chemical calculations of the chemical shifts {delta}{sub H} and solvent effects. DMSO-d{sub 6} and acetonitrile-d{sub 3} are poorly miscible with water in silica gel pores in contrast to the bulk liquids. DMSO-d{sub 6} and chloroform-d affect the structure of the interfacial water weaker than acetone-d{sub 6} and acetonitrile-d{sub 3} at amounts of liquids greater than the pore volume. Acetone-d{sub 6} and acetonitrile-d{sub 3} can displace water from pores under this condition. The chemical shift of protons in water adsorbed on silica gel is 3.5-6.5 ppm, which corresponds to the formation of two to four hydrogen bonds per molecule. Water adsorbed on partially silylated fumed silica has two {sup 1}H NMR signals at 5 and 1.1-1.7 ppm related to different structures (droplets and small clusters) of the interfacial water.

  17. A study on variation in dissolved silica concentration in groundwater of hard rock aquifers in Southeast coast of India

    International Nuclear Information System (INIS)

    Pradeep, K; Nepolian, M; Anandhan, P; Chandran; Kaviyarasan, R; Chidambaram, S; Prasanna, M V

    2016-01-01

    Ground water of hard rock aquifers due to its lesser permeability results in the increased residence time, which leads to the higher concentration of ions. Hence in order to understand the hydro-geochemistry of the groundwater of a hard rock aquifer in India, 23 groundwater samples were collected from different locations of the study area and subjected to analysis of major cations and anions. The results of silica showed different range of concentration and was plotted in different groups. In order to understand the reason for this variation, different techniques like Thermodynamics, Statistics and GIS were adopted and it was inferred that the concentration was mainly governed by lithology and land use pattern of the study area. (paper)

  18. Peak distortion in the column liquid chromatographic determination of omeprazole dissolved in borax buffer.

    Science.gov (United States)

    Arvidsson, T; Collijn, E; Tivert, A M; Rosén, L

    1991-11-22

    Injection of a sample containing omeprazole dissolved in borax buffer (pH 9.2) into a reversed-phase liquid chromatographic system consisting of a mixture of acetonitrile and phosphate buffer (pH 7.6) as the mobile phase and a C18 surface-modified silica as the solid phase resulted under special conditions in split peaks of omeprazole. The degree of peak split and the retention time of omeprazole varied with the concentration of borax in the sample solution and the ionic strength of the mobile phase buffer as well as with the column used. Borax is eluted from the column in a broad zone starting from the void volume of the column. The retention is probably due to the presence of polyborate ions. The size of the zone varies with the concentration of borax in the sample injected. In the borax zone the pH is increased compared with the pH of the mobile phase, and when omeprazole (a weak acid) is co-eluting in the borax zone its retention is affected. In the front part and in the back part of the borax zone, pH gradients are formed, and these gradients can induce the peak splitting. When the dissolving medium is changed to a phosphate buffer or an ammonium buffer at pH 9 no peak distortion of omeprazole is observed.

  19. Hydrothermal element fluxes from Copahue, Argentina: A "beehive" volcano in turmoil

    Science.gov (United States)

    Varekamp, J.C.; Ouimette, A.P.; Herman, S.W.; Bermudez, A.; Delpino, D.

    2001-01-01

    Copahue volcano erupted altered rock debris, siliceous dust, pyroclastic sulfur, and rare juvenile fragments between 1992 and 1995, and magmatic eruptions occurred in July-October 2000. Prior to 2000, the Copahue crater lake, acid hot springs, and rivers carried acid brines with compositions that reflected close to congruent rock dissolution. The ratio between rock-forming elements and chloride in the central zone of the volcano-hydrothermal system has diminished over the past few years, reflecting increased water/rock ratios as a result of progressive rock dissolution. Magmatic activity in 2000 provided fresh rocks for the acid fluids, resulting in higher ratios between rock-forming elements and chloride in the fluids and enhanced Mg fluxes. The higher Mg fluxes started several weeks prior to the eruption. Model data on the crater lake and river element flux determinations indicate that Copahue volcano was hollowed out at a rate of about 20 000-25 000 m3/yr, but that void space was filled with about equal amounts of silica and liquid elemental sulfur. The extensive rock dissolution has weakened the internal volcanic structure, making flank collapse a volcanic hazard at Copahue.

  20. Natural uranium-series radionuclide inventories in coastal and oceanic waters of the south-western Pacific - insights into trace metal flux and removal pathway analysis

    International Nuclear Information System (INIS)

    Szymczak, R.; Jeffree, R.A.; Peck, G.A.

    2003-01-01

    Participate scavenging of trace metals plays a major role in determining their ecosystem flux and incident dissolved concentrations. Differences in the half-lives and biogeochemical behaviour of natural uranium series radioisotope pairs (eg. 238 U/ 234 Th, 210 Pb/ 210 Po) allow their application as oceanic process tracers. Coincidental measurements of dissolved and particulate trace element concentrations and inventories of radionuclides in the Noumea coral lagoon and adjacent offshore waters were used to quantify water column flux rates and provide insights on removal pathway analysis. Understanding prevailing pathways and respective flux rates of pollutants in specific coastal and oceanic systems will assist to establish the fate and consequence of pollutants and allow sustainable management strategies to be developed. Both natural and pollutant chemical species introduced to the marine environment may either remain benign in solution or undergo physiological uptake by biota, but most often associate with colloids and fine particles, which subsequent undergo aggregation, sedimentation and removal to the sea floor

  1. Surface characterization of polyethylene terephthalate/silica nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Parvinzadeh, Mazeyar, E-mail: mparvinzadeh@gmail.com [Department of Textile, Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of); Moradian, Siamak [Department of Polymer and Color Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Rashidi, Abosaeed [Department of Textile, Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of); Yazdanshenas, Mohamad-Esmail [Department of Textile, Islamic Azad University, Yazd Branch, Yazd (Iran, Islamic Republic of)

    2010-02-15

    Poly(ethylene terephthalate) (PET) based nanocomposites containing hydrophilic (i.e. Aerosil 200 or Aerosil TT 600) or hydrophobic (i.e. Aerosil R 972) nano-silica were prepared by melt compounding. Influence of nano-silica type on surface properties of the resultant nanocomposites was investigated by the use of Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), contact angle measurement (CAM), scanning electron microscopy (SEM) and reflectance spectroscopy (RS). The possible interaction between nano-silica particles and PET functional groups at bulk and surface were elucidated by transmission FTIR and FTIR-ATR spectroscopy, respectively. AFM studies of the resultant nanocomposites showed increased surface roughness compared to pure PET. Contact angle measurements of the resultant PET composites demonstrated that the wettability of such composites depends on surface treatment of the particular nano-silica particles used. SEM images illustrated that hydrophilic nano-silica particles tended to migrate to the surface of the PET matrix.

  2. New insight into silica deposition in horsetail (Equisetum arvense

    Directory of Open Access Journals (Sweden)

    Exley Christopher

    2011-07-01

    Full Text Available Abstract Background The horsetails (Equisetum sp are known biosilicifiers though the mechanism underlying silica deposition in these plants remains largely unknown. Tissue extracts from horsetails grown hydroponically and also collected from the wild were acid-digested in a microwave oven and their silica 'skeletons' visualised using the fluor, PDMPO, and fluorescence microscopy. Results Silica deposits were observed in all plant regions from the rhizome through to the stem, leaf and spores. Numerous structures were silicified including cell walls, cell plates, plasmodesmata, and guard cells and stomata at varying stages of differentiation. All of the major sites of silica deposition in horsetail mimicked sites and structures where the hemicellulose, callose is known to be found and these serendipitous observations of the coincidence of silica and callose raised the possibility that callose might be templating silica deposition in horsetail. Hydroponic culture of horsetail in the absence of silicic acid resulted in normal healthy plants which, following acid digestion, showed no deposition of silica anywhere in their tissues. To test the hypothesis that callose might be templating silica deposition in horsetail commercially available callose was mixed with undersaturated and saturated solutions of silicic acid and the formation of silica was demonstrated by fluorimetry and fluorescence microscopy. Conclusions The initiation of silica formation by callose is the first example whereby any biomolecule has been shown to induce, as compared to catalyse, the formation of silica in an undersaturated solution of silicic acid. This novel discovery allowed us to speculate that callose and its associated biochemical machinery could be a missing link in our understanding of biosilicification.

  3. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Alyoshina, Nonna A.; Parfenyuk, Elena V., E-mail: evp@iscras.ru

    2013-09-15

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N{sub 2} adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica.

  4. The truth is out there: measured, calculated and modelled benthic fluxes.

    Science.gov (United States)

    Pakhomova, Svetlana; Protsenko, Elizaveta

    2016-04-01

    In a modern Earth science there is a great importance of understanding the processes, forming the benthic fluxes as one of element sources or sinks to or from the water body, which affects the elements balance in the water system. There are several ways to assess benthic fluxes and here we try to compare the results obtained by chamber experiments, calculated from porewater distributions and simulated with model. Benthic fluxes of dissolved elements (oxygen, nitrogen species, phosphate, silicate, alkalinity, iron and manganese species) were studied in the Baltic and Black Seas from 2000 to 2005. Fluxes were measured in situ using chamber incubations (Jch) and at the same time sediment cores were collected to assess the porewater distribution at different depths to calculate diffusive fluxes (Jpw). Model study was carried out with benthic-pelagic biogeochemical model BROM (O-N-P-Si-C-S-Mn-Fe redox model). It was applied to simulate biogeochemical structure of the water column and upper sediment and to assess the vertical fluxes (Jmd). By the behaviour at the water-sediment interface all studied elements can be divided into three groups: (1) elements which benthic fluxes are determined by the concentrations gradient only (Si, Mn), (2) elements which fluxes depend on redox conditions in the bottom water (Fe, PO4, NH4), and (3) elements which fluxes are strongly connected with organic matter fate (O2, Alk, NH4). For the first group it was found that measured fluxes are always higher than calculated diffusive fluxes (1.5disadvantages and the main facing us question is - which value should be taken for calculation the balance? This research is funded by VISTA - a basic research program and collaborative partnership between the Norwegian Academy of Science and Letters and Statoil.

  5. Reinforcement of natural rubber hybrid composites based on marble sludge/Silica and marble sludge/rice husk derived silica

    Directory of Open Access Journals (Sweden)

    Khalil Ahmed

    2014-03-01

    Full Text Available A research has been carried out to develop natural rubber (NR hybrid composites reinforced with marble sludge (MS/Silica and MS/rice husk derived silica (RHS. The primary aim of this development is to scrutinize the cure characteristics, mechanical and swelling properties of such hybrid composite. The use of both industrial and agricultural waste such as marble sludge and rice husk derived silica has the primary advantage of being eco-friendly, low cost and easily available as compared to other expensive fillers. The results from this study showed that the performance of NR hybrid composites with MS/Silica and MS/RHS as fillers is extremely better in mechanical and swelling properties as compared with the case where MS used as single filler. The study suggests that the use of recently developed silica and marble sludge as industrial and agricultural waste is accomplished to provide a probable cost effective, industrially prospective, and attractive replacement to the in general purpose used fillers like china clay, calcium carbonate, and talc.

  6. Non-conservative behavior of fluorescent dissolved organic matter (FDOM) within a subterranean estuary

    Science.gov (United States)

    Suryaputra, I. G. N. A.; Santos, I. R.; Huettel, M.; Burnett, W. C.; Dittmar, T.

    2015-11-01

    The role of submarine groundwater discharge (SGD) in releasing fluorescent dissolved organic matter (FDOM) to the coastal ocean and the possibility of using FDOM as a proxy for dissolved organic carbon (DOC) was investigated in a subterranean estuary in the northeastern Gulf of Mexico (Turkey Point, Florida). FDOM was continuously monitored for three weeks in shallow beach groundwater and in the adjacent coastal ocean. Radon (222Rn) was used as a natural groundwater tracer. FDOM and DOC correlated in groundwater and seawater samples, implying that FDOM may be a proxy of DOC in waters influenced by SGD. A mixing model using salinity as a seawater tracer revealed FDOM production in the high salinity region of the subterranean estuary. This production was probably a result of infiltration and transformation of labile marine organic matter in the beach sediments. The non-conservative FDOM behavior in this subterranean estuary differs from most surface estuaries where FDOM typically behaves conservatively. At the study site, fresh and saline SGD delivered about 1800 mg d-1 of FDOM (quinine equivalents) to the coastal ocean per meter of shoreline. About 11% of this input was related to fresh SGD, while 89% were related to saline SGD resulting from FDOM production within the shallow aquifer. If these fluxes are representative of the Florida Gulf Coast, SGD-derived FDOM fluxes would be equivalent to at least 18% of the potential regional riverine FDOM inputs. To reduce uncertainties related to the scarcity of FDOM data, further investigations of river and groundwater FDOM inputs in Florida and elsewhere are necessary.

  7. Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review

    Directory of Open Access Journals (Sweden)

    J.-T. Cornelis

    2011-01-01

    Full Text Available Silicon (Si released as H4SiO4 by weathering of Si-containing solid phases is partly recycled through vegetation before its land-to-rivers transfer. By accumulating in terrestrial plants to a similar extent as some major macronutrients (0.1–10% Si dry weight, Si becomes largely mobile in the soil-plant system. Litter-fall leads to a substantial reactive biogenic silica pool in soil, which contributes to the release of dissolved Si (DSi in soil solution. Understanding the biogeochemical cycle of silicon in surface environments and the DSi export from soils into rivers is crucial given that the marine primary bio-productivity depends on the availability of H4SiO4 for phytoplankton that requires Si. Continental fluxes of DSi seem to be deeply influenced by climate (temperature and runoff as well as soil-vegetation systems. Therefore, continental areas can be characterized by various abilities to transfer DSi from soil-plant systems towards rivers. Here we pay special attention to those processes taking place in soil-plant systems and controlling the Si transfer towards rivers. We aim at identifying relevant geochemical tracers of Si pathways within the soil-plant system to obtain a better understanding of the origin of DSi exported towards rivers. In this review, we compare different soil-plant systems (weathering-unlimited and weathering-limited environments and the variations of the geochemical tracers (Ge/Si ratios and δ30Si in DSi outputs. We recommend the use of biogeochemical tracers in combination with Si mass-balances and detailed physico-chemical characterization of soil-plant systems to allow better insight in the sources and fate of Si in these biogeochemical systems.

  8. Modified silica sol coatings for surface enhancement of leather.

    Science.gov (United States)

    Mahltig, Boris; Vossebein, Lutz; Ehrmann, Andrea; Cheval, Nicolas; Fahmi, Amir

    2012-06-01

    The presented study reports on differently modified silica sols for coating applications on leather. Silica sols are prepared by acidic hydrolysis of tetraethoxysilane and modified by silane compounds with fluorinated and non-fluorinated alkylgroups. In contrast to many earlier investigations regarding sol-gel applications on leather, no acrylic resin is used together with the silica sols when applying on leather. The modified silica particles are supposed to aggregate after application, forming thus a modified silica coating on the leather substrate. Scanning electron microscopy investigation shows that the applied silica coatings do not fill up or close the pores of the leather substrate. However, even if the pores of the leather are not sealed by this sol-gel coating, an improvement of the water repellent and oil repellent properties of the leather substrates are observed. These improved properties of leather by application of modified silica sols can provide the opportunity to develop sol-gel products for leather materials present in daily life.

  9. Synthesis and Characterizations of Fine Silica Powder from Rice Husk Ash

    International Nuclear Information System (INIS)

    Khin Muyar Latt

    2011-12-01

    The silica content of rice husk ash obtained from the uncontrolled burning temperature of gasifier was 90.4%. The obtained rice husk ash was an amorphous form of silica with low crystallization by XRD. The sodium hydroxide solution, 1.5N, 2N, 2.5N and 3N, respectively was used to prepare sodium silicate solution by extraction method. The product silica was produced by acid precipitation method used 4.5N, 5.5N and 6.5N sulphuric acid solution. The highest yield percent of product silica extraced by 2.5N sodium hydroxide solution at 5N sulphuric acid solution was 88.84%. The crystallize size of product silica containing silicalite as a source of silica was 86nm at this condition. The fine silica powder was produced by acid refluxing mothod used 5.5N, 6N and 6.5N hydrochloric acid solution. 98% of pure fine silica powder can be produced from the product silica by refluxing method. The crystallize size of fine silica powder was 54nm. The distribution of the crystallize size of product silica powder could be found uniform in size and agglomeration. The Fourier Transform Infrared Spectra indicate the hydrogen bonded silinol groups and siloxane groups in product silica and fine silica powder.

  10. Niobia-silica and silica membranes for gas separation

    NARCIS (Netherlands)

    Boffa, V.

    2008-01-01

    This thesis describes the development of ceramic membranes suitable for hydrogen separation and CO2 recovery from gaseous streams. The research work was focused on the three different parts of which gas selective ceramic membranes are composed, i.e., the microporous gas selective silica layer, the

  11. Sonochemical synthesis of silica particles and their size control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwa-Min [Advanced Materials and Chemical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of); Lee, Chang-Hyun [Electronic and Electrical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of); Kim, Bonghwan, E-mail: bhkim@cu.ac.kr [Electronic and Electrical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of)

    2016-09-01

    Graphical abstract: - Highlights: • Silica particles were easily prepared by an ultrasound-assisted sol–gel method. • The particle size was controlled by the ammonium hydroxide/water molar ratio. • The size-controlled diameter of silica particles ranged from 40 to 400 nm. • The particles were formed in a relatively short reaction time. - Abstract: Using an ultrasound-assisted sol–gel method, we successfully synthesized very uniformly shaped, monodisperse, and size-controlled spherical silica particles from a mixture of ethanol, water, and tetraethyl orthosilicate in the presence of ammonia as catalyst, at room temperature. The diameters of the silica particles were distributed in the range from 40 to 400 nm; their morphology was well characterized by scanning electron microscopy. The silica particle size could be adjusted by choosing suitable concentrations of ammonium hydroxide and water, which in turn determined the nucleation and growth rates of the particles during the reaction. This sonochemical-based silica synthesis offers an alternative way to produce spherical silica particles in a relatively short reaction time. Thus, we suggest that this simple, low-cost, and efficient method of preparing uniform silica particles of various sizes will have practical and wide-ranging industrial applicability.

  12. Multi-proxy approach (Thorium-234, excess Barium) of export and remineralisation fluxes of carbon and biogenic elements associated with the oceanic biological pump

    International Nuclear Information System (INIS)

    Lemaitre, Nolwenn

    2017-01-01

    The main objective of this thesis is to improve our understanding of the different controls that affect the oceanic biological carbon pump. Particulate export and remineralisation fluxes were investigated using the thorium-234 ( 234 Th) and biogenic barium (Baxs) proxies. In the North Atlantic, the highest particulate organic carbon (POC) export fluxes were associated to biogenic (biogenic silica or calcium carbonate) and lithogenic minerals, ballasting the particles. Export efficiency was generally low (≤ 10%) and inversely related to primary production, highlighting a phase lag between production and export. The highest transfer efficiencies, i.e. the fraction of POC that reached 400 m, were driven by sinking particles ballasted by calcite or lithogenic minerals. The regional variation of meso-pelagic remineralisation was attributed to changes in bloom intensity, phytoplankton cell size, community structure and physical forcing (down-welling). Carbon remineralisation balanced, or even exceeded, POC export, highlighting the impact of meso-pelagic remineralisation on the biological pump with a near-zero, deep carbon sequestration for spring 2014. Export of trace metals appeared strongly influenced by lithogenic material advected from the margins. However, at open ocean stations not influenced by lithogenic matter, trace metal export rather depended on phytoplankton activity and biomass. A last part of this work focused on export of biogenic silica, particulate nitrogen and iron near the Kerguelen Island. This area is characterized by a natural iron-fertilization that increases export fluxes. Inside the fertilized area, flux variability is related to phytoplankton community composition. (author)

  13. Effect of the Silica Content of Diatoms on Protozoan Grazing

    Directory of Open Access Journals (Sweden)

    Shuwen Zhang

    2017-06-01

    Full Text Available This study examined the effect that silica content in diatom cells has on the behavior of protists. The diatoms Thalassiosira weissflogii and T. pseudonana were cultured in high or low light conditions to achieve low and high silica contents, respectively. These cells were then fed to a heterotrophic dinoflagellate Noctiluca scintillans and a ciliate Euplotes sp. in single and mixed diet experiments. Our results showed that in general, N. scintillans and Euplotes sp. both preferentially ingested the diatoms with a low silica content rather than those with a high silica content. However, Euplotes sp. seemed to be less influenced by the silica content than was N. scintillans. In the latter case, the clearance and ingestion rate of the low silica diatoms were significantly higher, both in the short (6-h and long (1-d duration grazing experiments. Our results also showed that N. scintillans required more time to digest the high silica-containing cells. As the high silica diatoms are harder to digest, this might explain why N. scintillans exhibits a strong preference for the low silica prey. Thus, the presence of high silica diatoms might limit the ability of the dinoflagellate to feed. Our findings suggest that the silica content of diatoms affects their palatability and digestibility and, consequently, the grazing activity and selectivity of protozoan grazers.

  14. Stimulated resonant scattering at stressed fused silica surface

    International Nuclear Information System (INIS)

    Bouchut, Philippe; Reymermier, Maryse

    2015-01-01

    The radiative emission in CO 2 laser heated stressed fused silica is radically modified when gold microspheres are on the surface. At high heating rates, the emission dynamics changes from thermoluminescence to stimulated resonant scattering with an emission rate that is increased tenfold and the near infrared (NIR) spectrum is red-shifted. We show that the dynamic tensile stress that rises in heated silica is coupled with a fluctuating electromagnetic field that enables electromagnetic friction between moving OH emitters from silica bulk and NIR resonant scatterers at the silica surface. (paper)

  15. Arachidonic acid metabolism in silica-stimulated bovine alveolar macrophages

    International Nuclear Information System (INIS)

    Englen, M.D.

    1989-01-01

    The in vitro production of arachidonic acid (AA) metabolites in adherent bovine alveolar macrophages (BAM) incubated with silica was investigated. BAM were pre-labelled with 3 H-AA, and lipid metabolites released into the culture medium were analyzed by high performance liquid chromatography (HPLC). Lactate dehydrogenase (LDH) release was simultaneously assayed to provide an indication of cell injury. Increasing doses of silica selectively stimulated the 5-lipoxygenase pathway of AA metabolism, while cyclooxygenase metabolite output was suppressed. LDH release increased in a linear, dose-dependent fashion over the range of silica doses used. Moreover, within 15 min following addition of a high silica dose, a shift to the production of 5-lipoxygenase metabolites occurred, accompanied by a reduction in cyclooxygenase products. This rapid alteration in AA metabolism preceded cell injury. To examine the relationship between cytotoxicity and AA metabolite release by BAM exposed to silicas with different cytotoxic and fibrogenic activities, BAM were exposed to different doses of DQ-12, Minusil-5, and Sigma silicas, and carbonyl iron beads. The median effective dose (ED 50 ) of each particulate to stimulate the release of AA metabolites and LDH was calculated. The ED 50 values for DQ-12, Minusil-5, and Sigma silica showed that the relative cytotoxicities of the different silicas for BAM corresponded to the relative potencies of the silicas to elicit 5-lipoxygenase metabolites from BAM. These results indicate that the cytotoxic, and presumed fibrogenic potential, of a silica is correlated with the potency to stimulate the release of leukotrienes from AM

  16. Three-dimensional printing of transparent fused silica glass

    Science.gov (United States)

    Kotz, Frederik; Arnold, Karl; Bauer, Werner; Schild, Dieter; Keller, Nico; Sachsenheimer, Kai; Nargang, Tobias M.; Richter, Christiane; Helmer, Dorothea; Rapp, Bastian E.

    2017-04-01

    Glass is one of the most important high-performance materials used for scientific research, in industry and in society, mainly owing to its unmatched optical transparency, outstanding mechanical, chemical and thermal resistance as well as its thermal and electrical insulating properties. However, glasses and especially high-purity glasses such as fused silica glass are notoriously difficult to shape, requiring high-temperature melting and casting processes for macroscopic objects or hazardous chemicals for microscopic features. These drawbacks have made glasses inaccessible to modern manufacturing technologies such as three-dimensional printing (3D printing). Using a casting nanocomposite, here we create transparent fused silica glass components using stereolithography 3D printers at resolutions of a few tens of micrometres. The process uses a photocurable silica nanocomposite that is 3D printed and converted to high-quality fused silica glass via heat treatment. The printed fused silica glass is non-porous, with the optical transparency of commercial fused silica glass, and has a smooth surface with a roughness of a few nanometres. By doping with metal salts, coloured glasses can be created. This work widens the choice of materials for 3D printing, enabling the creation of arbitrary macro- and microstructures in fused silica glass for many applications in both industry and academia.

  17. Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean.

    Science.gov (United States)

    Fitzsimmons, Jessica N; Boyle, Edward A; Jenkins, William J

    2014-11-25

    Until recently, hydrothermal vents were not considered to be an important source to the marine dissolved Fe (dFe) inventory because hydrothermal Fe was believed to precipitate quantitatively near the vent site. Based on recent abyssal dFe enrichments near hydrothermal vents, however, the leaky vent hypothesis [Toner BM, et al. (2012) Oceanography 25(1):209-212] argues that some hydrothermal Fe persists in the dissolved phase and contributes a significant flux of dFe to the global ocean. We show here the first, to our knowledge, dFe (Pacific Ocean, where dFe of 1.0-1.5 nmol/kg near 2,000 m depth (0.4-0.9 nmol/kg above typical deep-sea dFe concentrations) was determined to be hydrothermally derived based on its correlation with primordial (3)He and dissolved Mn (dFe:(3)He of 0.9-2.7 × 10(6)). Given the known sites of hydrothermal venting in these regions, this dFe must have been transported thousands of kilometers away from its vent site to reach our sampling stations. Additionally, changes in the size partitioning of the hydrothermal dFe between soluble (Pacific Rise only leaks 0.02-1% of total Fe vented into the abyssal Pacific, this dFe persists thousands of kilometers away from the vent source with sufficient magnitude that hydrothermal vents can have far-field effects on global dFe distributions and inventories (≥3% of global aerosol dFe input).

  18. 234Th-based measurements of particle flux in surface water of the Bransfield Strait, western Antarctica

    International Nuclear Information System (INIS)

    Gulin, S.B.; National Academy of Sciences of Ukraine, Sevastopol, Autonomous Republic of Crimea

    2014-01-01

    Measurements of particulate and dissolved 234 Th were carried out in March 2002 in the Bransfield Strait located between the Antarctic Peninsula and the South Shetland Islands. The 234 Th/ 238 U disequilibrium found in the upper water column has allowed evaluation of downward particle fluxes across a frontal zone, which divides water masses coming from the Bellingshausen Sea and the Weddell Sea. The highest particle flux has been found in this mixing zone, where it was 3-5 times greater than in the adjacent waters. Total mass fluxes in the upper 150-m water column were estimated as about 2.2 g m -2 day -1 in the eastern part of the Strait and 3.1 g m -2 day -1 in the western area. (author)

  19. Modification of silica surface by gamma ray induced Ad micellar Polymerization

    International Nuclear Information System (INIS)

    Buathong, Salukjit; Pongprayoon, Thirawudh; Suwanmala, Phiriyatorn

    2005-10-01

    Precipitated silica is often added to natural rubber compounds in order to improve performance in commercial application. A problem with using silica as filler is the poor compatibility between silica and natural rubber. In this research, polyisoprene was coated on silica surface by gamma ray induced ad micellar polymerization in order to achieve the better compatibility between silica and natural rubber. The modified silica was characterized by FT-IR, and SEM. The results show that polyisoprene was successfully coated on silica surface via gamma ray induced ad micellar polymerization

  20. Investigation of fused silica dynamic behaviour

    International Nuclear Information System (INIS)

    Malaise, F.; Chevalier, J.M.; Bertron, I.; Malka, F.

    2006-01-01

    The survivability of the fused silica shields to shrapnel impacts is a key factor for the affordable operation of the intense laser irradiation future facility Laser Mega Joule (LMJ). This paper presents experimental data and computational modelling for LMJ fused silica upon shock wave loading and unloading. Gas-gun flyer plate impact and explosively driven tests have been conducted to investigate the dynamic behaviour of this material. Hugoniot states and the Hugoniot Elastic Limit of LMJ fused silica have been obtained. These experimental data are useful for determining some constitutive model constants of the 'Crack-Model', a continuum tensile and compressive failure model with friction based. This model has been improved by taking into account nonlinear elasticity. The numerical results obtained by performing computations of the previous tests and some ballistic impact tests are discussed. The numerical comparisons with the experimental data show good agreement. Further developments to simulate the permanent densification and the solid-to-solid phase transformation of fused silica are required. (authors)

  1. Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose?

    Science.gov (United States)

    Schoelynck, Jonas; Bal, Kris; Backx, Hans; Okruszko, Tomasz; Meire, Patrick; Struyf, Eric

    2010-04-01

    *Although silica (Si) is not an essential element for plant growth in the classical sense, evidence points towards its functionality for a better resistance against (a)biotic stress. Recently, it was shown that wetland vegetation has a considerable impact on silica biogeochemistry. However, detailed information on Si uptake in aquatic macrophytes is lacking. *We investigated the biogenic silica (BSi), cellulose and lignin content of 16 aquatic/wetland species along the Biebrza river (Poland) in June 2006 and 2007. The BSi data were correlated with cellulose and lignin concentrations. *Our results show that macrophytes contain significant amounts of BSi: between 2 and 28 mg BSi g(-1). This is in the same order of magnitude as wetland species (especially grasses). Significant antagonistic correlations were found between lignin, cellulose and BSi content. Interestingly, observed patterns were opposite for wetland macrophytes and true aquatic macrophytes. *We conclude that macrophytes have an overlooked but potentially vast storage capacity for Si. Study of their role as temporal silica sinks along the land-ocean continuum is needed. This will further understanding of the role of ecosystems on land ocean transport of this essential nutrient.

  2. Mesoporous Silica: A Suitable Adsorbent for Amines

    Directory of Open Access Journals (Sweden)

    Abdollahzadeh-Ghom Sara

    2009-01-01

    Full Text Available Abstract Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices.

  3. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone

    International Nuclear Information System (INIS)

    Bachand, P.A.M.; Bachand, S.; Fleck, J.; Anderson, F.; Windham-Myers, L.

    2014-01-01

    The current state of science and engineering related to analyzing wetlands overlooks the importance of transpiration and risks data misinterpretation. In response, we developed hydrologic and mass budgets for agricultural wetlands using electrical conductivity (EC) as a natural conservative tracer. We developed simple differential equations that quantify evaporation and transpiration rates using flow rates and tracer concentrations at wetland inflows and outflows. We used two ideal reactor model solutions, a continuous flow stirred tank reactor (CFSTR) and a plug flow reactor (PFR), to bracket real non-ideal systems. From those models, estimated transpiration ranged from 55% (CFSTR) to 74% (PFR) of total evapotranspiration (ET) rates, consistent with published values using standard methods and direct measurements. The PFR model more appropriately represents these non-ideal agricultural wetlands in which check ponds are in series. Using a flux model, we also developed an equation delineating the root zone depth at which diffusive dominated fluxes transition to advective dominated fluxes. This relationship is similar to the Peclet number that identifies the dominance of advective or diffusive fluxes in surface and groundwater transport. Using diffusion coefficients for inorganic mercury (Hg) and methylmercury (MeHg) we calculated that during high ET periods typical of summer, advective fluxes dominate root zone transport except in the top millimeters below the sediment–water interface. The transition depth has diel and seasonal trends, tracking those of ET. Neglecting this pathway has profound implications: misallocating loads along different hydrologic pathways; misinterpreting seasonal and diel water quality trends; confounding Fick's First Law calculations when determining diffusion fluxes using pore water concentration data; and misinterpreting biogeochemical mechanisms affecting dissolved constituent cycling in the root zone. In addition, our understanding of

  4. Pedogenic silica accumulation in chronosequence soils, southern California

    Science.gov (United States)

    Kendrick, K.J.; Graham, R.C.

    2004-01-01

    Chronosequential analysis of soil properties has proven to be a valuable approach for estimating ages of geomorphic surfaces where no independent age control exists. In this study we examined pedogenic silica as an indicator of relative ages of soils and geomorphic surfaces, and assessed potential sources of the silica. Pedogenic opaline silica was quantified by tiron (4,5-dihydroxy-1,3-benzene-disulfonic acid [disodium salt], C6H 4Na2O8S2) extraction for pedons in two different chromosequences in southern California, one in the San Timoteo Badlands and one in Cajon Pass. The soils of hoth of these chronosequences are developed in arkosic sediments and span 11.5 to 500 ka. The amount of pedogenic silica increases with increasing duration of pedogenesis, and the depth of the maximum silica accumulation generally coincides with the maximum expression of the argillic horizon. Pedogenic silica has accumulated in all of the soils, ranging from 1.2% tiron-extractable Si (Sitn) in the youngest soil to 4.6% in the oldest. Primary Si decreases with increasing duration of weathering, particularly in the upper horizons, where weathering conditions are most intense. The loss of Si coincides with the loss of Na and K, implicating the weathering of feld-spars as the likely source of Si loss. The quantity of Si lost in the upper horizons is adequate to account for the pedogenic silica accumulation in the subsoil. Pedogenic silica was equally effective as pedogenic Fe oxides as an indicator of relative soil age in these soils.

  5. A novel method to characterize silica bodies in grasses.

    Science.gov (United States)

    Dabney, Clemon; Ostergaard, Jason; Watkins, Eric; Chen, Changbin

    2016-01-01

    The deposition of silicon into epidermal cells of grass species is thought to be an important mechanism that plants use as a defense against pests and environmental stresses. There are a number of techniques available to study the size, density and distribution pattern of silica bodies in grass leaves. However, none of those techniques can provide a high-throughput analysis, especially for a great number of samples. We developed a method utilizing the autofluorescence of silica bodies to investigate their size and distribution, along with the number of carbon inclusions within the silica bodies of perennial grass species Koeleria macrantha. Fluorescence images were analyzed by image software Adobe Photoshop CS5 or ImageJ that remarkably facilitated the quantification of silica bodies in the dry ash. We observed three types of silica bodies or silica body related mineral structures. Silica bodies were detected on both abaxial and adaxial epidermis of K. macrantha leaves, although their sizes, density, and distribution patterns were different. No auto-fluorescence was detected from carbon inclusions. The combination of fluorescence microscopy and image processing software displayed efficient utilization in the identification and quantification of silica bodies in K. macrantha leaf tissues, which should applicable to biological, ecological and geological studies of grasses including forage, turf grasses and cereal crops.

  6. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone

    Science.gov (United States)

    Bachand, P.A.M.; S. Bachand,; Fleck, Jacob A.; Anderson, Frank E.; Windham-Myers, Lisamarie

    2014-01-01

    The current state of science and engineering related to analyzing wetlands overlooks the importance of transpiration and risks data misinterpretation. In response, we developed hydrologic and mass budgets for agricultural wetlands using electrical conductivity (EC) as a natural conservative tracer. We developed simple differential equations that quantify evaporation and transpiration rates using flowrates and tracer concentrations atwetland inflows and outflows. We used two ideal reactormodel solutions, a continuous flowstirred tank reactor (CFSTR) and a plug flow reactor (PFR), to bracket real non-ideal systems. From those models, estimated transpiration ranged from 55% (CFSTR) to 74% (PFR) of total evapotranspiration (ET) rates, consistent with published values using standard methods and direct measurements. The PFR model more appropriately represents these nonideal agricultural wetlands in which check ponds are in series. Using a fluxmodel, we also developed an equation delineating the root zone depth at which diffusive dominated fluxes transition to advective dominated fluxes. This relationship is similar to the Peclet number that identifies the dominance of advective or diffusive fluxes in surface and groundwater transport. Using diffusion coefficients for inorganic mercury (Hg) and methylmercury (MeHg) we calculated that during high ET periods typical of summer, advective fluxes dominate root zone transport except in the top millimeters below the sediment–water interface. The transition depth has diel and seasonal trends, tracking those of ET. Neglecting this pathway has profound implications: misallocating loads along different hydrologic pathways; misinterpreting seasonal and diel water quality trends; confounding Fick's First Law calculations when determining diffusion fluxes using pore water concentration data; and misinterpreting biogeochemicalmechanisms affecting dissolved constituent cycling in the root zone. In addition,our understanding of internal

  7. Gas-phase acylation of aminopropyl-silica gel in the synthesis of some chemically bonded silica materials for analytical applications

    International Nuclear Information System (INIS)

    Basiuk, Vladimir; Khil'chevskaya, E.G.

    1991-01-01

    Gas-phase acylation of aminopropyl-silica gel with aliphatic dicarboxylic (succinic, adipic and sebacic) and 4-aminobenzoic acids is proposed as a rapid and efficient one-step method for the synthesis of carboxyalkyl- and 4-aminophenylamidopropyl-silica gels, usually used as zwitterion exchangers for liquid chromatography and matrices for multi-step syntheses of silica-bound aromatic azo reagents for the sorption and chromatographic separation of metal ions. Acylation degrees of 59-90% are achieved after 0.5 h. IR spectra of the acylation products and near-UV-visible spectra for bonded aromatic azo compounds, based on 4-aminobenzamidopropyl-silica gel, are presented. Some positive and negative aspects of the gas-phase acylation are discussed. (author). 34 refs.; 2 figs.; 2 tabs

  8. Measurement and modelization of silica opal reflection properties: Optical determination of the silica index

    Science.gov (United States)

    Avoine, Amaury; Hong, Phan Ngoc; Frederich, Hugo; Frigerio, Jean-Marc; Coolen, Laurent; Schwob, Catherine; Nga, Pham Thu; Gallas, Bruno; Maître, Agnès

    2012-10-01

    Self-assembled artificial opals (in particular silica opals) constitute a model system to study the optical properties of three-dimensional photonic crystals. The silica optical index is a key parameter to correctly describe an opal but is difficult to measure at the submicrometer scale and usually treated as a free parameter. Here, we propose a method to extract the silica index from the opal reflection spectra and we validate it by comparison with two independent methods based on infrared measurements. We show that this index gives a correct description of the opal reflection spectra, either by a band structure or by a Bragg approximation. In particular, we are able to provide explanations in quantitative agreement with the measurements for two features : the observation of a second reflection peak in specular direction, and the quasicollapse of the p-polarized main reflection peak at a typical angle of 54∘.

  9. Performance Evaluation of Nose Cap to Silica Tile Joint of RLV-TD under the Simulated Flight Environment using Plasma Wind Tunnel Facility

    Science.gov (United States)

    Pillai, Aravindakshan; Krishnaraj, K.; Sreenivas, N.; Nair, Praveen

    2017-12-01

    Indian Space Research Organisation, India has successfully flight tested the reusable launch vehicle through launching of a demonstration flight known as RLV-TD HEX mission. This mission has given a platform for exposing the thermal protection system to the real hypersonic flight thermal conditions and thereby validated the design. In this vehicle, the nose cap region is thermally protected by carbon-carbon followed by silica tiles with a gap in between them for thermal expansion. The gap is filled with silica fibre. Base material on which the C-C is placed is made of molybdenum. Silica tile with strain isolation pad is bonded to aluminium structure. These interfaces with a variety of materials are characterised with different coefficients of thermal expansion joined together. In order to evaluate and qualify this joint, model tests were carried out in Plasma Wind Tunnel facility under the simultaneous simulation of heat flux and shear levels as expected in flight. The thermal and flow parameters around the model are determined and made available for the thermal analysis using in-house CFD code. Two tests were carried out. The measured temperatures at different locations were benign in both these tests and the SiC coating on C-C and the interface were also intact. These tests essentially qualified the joint interface between C-C and molybdenum bracket and C-C to silica tile interface of RLV-TD.

  10. Porous silica nanoparticles as carrier for curcumin delivery

    Science.gov (United States)

    Hartono, Sandy Budi; Hadisoewignyo, Lannie; Irawaty, Wenny; Trisna, Luciana; Wijaya, Robby

    2018-04-01

    Mesoporous silica nanoparticles (MSN) with large surface areas and pore volumes show great potential as drug and gene carriers. However, there are still some challenging issues hinders their clinical application. Many types of research in the use of mesoporous silica material for drug and gene delivery involving complex and rigorous procedures. A facile and reproducible procedure to prepare combined drug carrier is required. We investigated the effect of physiochemical parameters of mesoporous silica, including structural symmetry (cubic and hexagonal), particles size (micro size: 1-2 µm and nano size: 100 -300 nm), on the solubility and release profile of curcumin. Transmission Electron Microscopy, X-Ray Powder Diffraction, and Nitrogen sorption were used to confirm the synthesis of the mesoporous silica materials. Mesoporous silica materials with different mesostructures and size have been synthesized successfully. Curcumin has anti-oxidant, anti-inflammation and anti-virus properties which are beneficial to fight various diseases such as diabetic, cancer, allergic, arthritis and Alzheimer. Curcumin has low solubility which minimizes its therapeutic effect. The use of nanoporous material to carry and release the loaded molecules is expected to enhance curcumin solubility. Mesoporous silica materials with a cubic mesostructure had a higher release profile and curcumin solubility, while mesoporous silica materials with a particle size in the range of nano meter (100-300) nm also show better release profile and solubility.

  11. Mesoporous silica formulation strategies for drug dissolution enhancement: a review.

    Science.gov (United States)

    McCarthy, Carol A; Ahern, Robert J; Dontireddy, Rakesh; Ryan, Katie B; Crean, Abina M

    2016-01-01

    Silica materials, in particular mesoporous silicas, have demonstrated excellent properties to enhance the oral bioavailability of poorly water-soluble drugs. Current research in this area is focused on investigating the kinetic profile of drug release from these carriers and manufacturing approaches to scale-up production for commercial manufacture. This review provides an overview of different methods utilized to load drugs onto mesoporous silica carriers. The influence of silica properties and silica pore architecture on drug loading and release are discussed. The kinetics of drug release from mesoporous silica systems is examined and the manufacturability and stability of these formulations are reviewed. Finally, the future prospects of mesoporous silica drug delivery systems are considered. Substantial progress has been made in the characterization and development of mesoporous drug delivery systems for drug dissolution enhancement. However, more research is required to fully understand the drug release kinetic profile from mesoporous silica materials. Incomplete drug release from the carrier and the possibility of drug re-adsorption onto the silica surface need to be investigated. Issues to be addressed include the manufacturability and regulation status of formulation approaches employing mesoporous silica to enhance drug dissolution. While more research is needed to support the move of this technology from the bench to a commercial medicinal product, it is a realistic prospect for the near future.

  12. KoFlux: Korean Regional Flux Network in AsiaFlux

    Science.gov (United States)

    Kim, J.

    2002-12-01

    AsiaFlux, the Asian arm of FLUXNET, held the Second International Workshop on Advanced Flux Network and Flux Evaluation in Jeju Island, Korea on 9-11 January 2002. In order to facilitate comprehensive Asia-wide studies of ecosystem fluxes, the meeting launched KoFlux, a new Korean regional network of long-term micrometeorological flux sites. For a successful assessment of carbon exchange between terrestrial ecosystems and the atmosphere, an accurate measurement of surface fluxes of energy and water is one of the prerequisites. During the 7th Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiment (GAME) held in Nagoya, Japan on 1-2 October 2001, the Implementation Committee of the Coordinated Enhanced Observing Period (CEOP) was established. One of the immediate tasks of CEOP was and is to identify the reference sites to monitor energy and water fluxes over the Asian continent. Subsequently, to advance the regional and global network of these reference sites in the context of both FLUXNET and CEOP, the Korean flux community has re-organized the available resources to establish a new regional network, KoFlux. We have built up domestic network sites (equipped with wind profiler and radiosonde measurements) over deciduous and coniferous forests, urban and rural rice paddies and coastal farmland. As an outreach through collaborations with research groups in Japan, China and Thailand, we also proposed international flux sites at ecologically and climatologically important locations such as a prairie on the Tibetan plateau, tropical forest with mixed and rapid land use change in northern Thailand. Several sites in KoFlux already begun to accumulate interesting data and some highlights are presented at the meeting. The sciences generated by flux networks in other continents have proven the worthiness of a global array of micrometeorological flux towers. It is our intent that the launch of KoFlux would encourage other scientists to initiate and

  13. Cathodoluminescence microcharacterization of ballen silica in impactites

    International Nuclear Information System (INIS)

    Okumura, T.; Ninagawa, K.; Toyoda, S.; Gucsik, A.; Nishido, H.

    2009-01-01

    The ballen silica shows fairly weak (faint) CL with homogeneous feature in its grain exhibiting almost same spectral pattern with two broad band peaks at around 390 and 650 nm, which might be assigned to self-trapped excitons (STE) or an intrinsic and nonbridging oxygen hole centers (NBOHC), respectively, recognized in amorphous and crystalline silica. In addition, ballen silica from Lappajaervi crater shows bright and heterogeneous CL with a broad band centered at around 410 nm, presumably attributed to [AlO 4 /M + ] 0 centers or self-trapped excitons (STE). Micro-Raman and micro-XRD analyses show that fairly homogeneous CL part is α-quartz and heterogeneous CL part is composed of α-cristobalite and α-quartz. These indicate that ballen silica could be formed in the quenching process from relatively high temperature.

  14. Hydrothermal element fluxes from Copahue, Argentina: A “beehive” volcano in turmoil

    Science.gov (United States)

    Varekamp, Johan C.; Ouimette, Andrew P.; Herman, Scott W.; Bermúdez, Adriana; Delpino, Daniel

    2001-11-01

    Copahue volcano erupted altered rock debris, siliceous dust, pyroclastic sulfur, and rare juvenile fragments between 1992 and 1995, and magmatic eruptions occurred in July October 2000. Prior to 2000, the Copahue crater lake, acid hot springs, and rivers carried acid brines with compositions that reflected close to congruent rock dissolution. The ratio between rock-forming elements and chloride in the central zone of the volcano-hydrothermal system has diminished over the past few years, reflecting increased water/rock ratios as a result of progressive rock dissolution. Magmatic activity in 2000 provided fresh rocks for the acid fluids, resulting in higher ratios between rock-forming elements and chloride in the fluids and enhanced Mg fluxes. The higher Mg fluxes started several weeks prior to the eruption. Model data on the crater lake and river element flux determinations indicate that Copahue volcano was hollowed out at a rate of about 20000 25000 m3/yr, but that void space was filled with about equal amounts of silica and liquid elemental sulfur. The extensive rock dissolution has weakened the internal volcanic structure, making flank collapse a volcanic hazard at Copahue.

  15. Effect of silica and water content on the glass transition of poly(ethylene glycol) monomethylether-silica gel-lithium perchlorate ormolytes

    International Nuclear Information System (INIS)

    Korwin, Rebecca S.; Masui, Hitoshi

    2005-01-01

    The effect of silica and water content on the glass transition temperature, T g , of MPEG2000-silica-LiClO 4 ormolytes was assessed by differential scanning calorimetry (DSC). The sol-gel synthesized ormolytes consisted of various amounts of poly(ethylene glycol) monomethylether (M.W. 2000 g/mol; i.e., MPEG2000) tethered to silica gel through the hydroxyl terminus via a urethane linkage. DSC features corresponding to physisorbed and hydrogen-bonded water, as well as the glass transition of the polyether, were identified. Both silica and LiClO 4 raise the T g and suppress crystallization of the polyether component. Water plasticizes the polyether and stoichiometrically solvates and sequesters Li + , thereby, lowering T g

  16. H2 uptake in the Li-dispersed silica nano-tubes

    International Nuclear Information System (INIS)

    Jin Bae Lee; Soon Chang Lee; Sang Moon Lee; Hae Jin Kim

    2006-01-01

    Highly ordered Li-dispersed silica nano-tubes were prepared by sol-gel template method for hydrogen storage. Isolated Li-dispersed silica nano-tubes can be easily obtained by removing the AAO template with 2M NaOH. From the XRD study, the Li-dispersed silica nano-tubes showed the amorphous phase with silica frameworks. The uniform length and diameter of Li-dispersed silica nano-tubes could be examined with the electron microscopy studies. The wall thickness and diameter of nano-tubes are about 50-60 nm and 200-400 nm, respectively. The obtained Li-dispersed silica nano-tubes have the hydrogen adsorption capacity 2.25 wt% at 77 K under 47 atm. (authors)

  17. Measurement and modelization of silica opal optical properties

    Science.gov (United States)

    Avoine, Amaury; Hong, Phan Ngoc; Frederich, Hugo; Aregahegn, Kifle; Bénalloul, Paul; Coolen, Laurent; Schwob, Catherine; Thu Nga, Pham; Gallas, Bruno; Maître, Agnès

    2014-03-01

    We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflection spectra and we validate it by comparison with two independent infrared methods for the index and, scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements for the spheres diameter.

  18. Measurement and modelization of silica opal optical properties

    International Nuclear Information System (INIS)

    Avoine, Amaury; Ngoc Hong, Phan; Frederich, Hugo; Aregahegn, Kifle; Bénalloul, Paul; Coolen, Laurent; Schwob, Catherine; Gallas, Bruno; Maître, Agnès; Thu Nga, Pham

    2014-01-01

    We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflection spectra and we validate it by comparison with two independent infrared methods for the index and, scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements for the spheres diameter. (paper)

  19. Dissolution of Material and Test reactor Fuel in an H-Canyon Dissolver

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-26

    In an amended record of decision for the management of spent nuclear fuel (SNF) at the Savannah River Site, the US Department of Energy has authorized the dissolution and recovery of U from 1000 bundles of Al-clad SNF. The SNF is fuel from domestic and foreign research reactors and is typically referred to as Material Test Reactor (MTR) fuel. Bundles of MTR fuel containing assemblies fabricated from U-Al alloys (or other U compounds) are currently dissolved using a Hg-catalyzed HNO3 flowsheet. Since the development of the existing flowsheet, improved experimental methods have been developed to more accurately characterize the offgas composition and generation rate during laboratory dissolutions. Recently, these new techniques were successfully used to develop a flowsheet for the dissolution of High Flux Isotope Reactor (HFIR) fuel. Using the data from the HFIR dissolution flowsheet development and necessary laboratory experiments, the Savannah River National Laboratory (SRNL) was requested to define flowsheet conditions for the dissolution of MTR fuels. With improved offgas characterization techniques, SRNL will be able define the number of bundles of fuel which can be charged to an H-Canyon dissolver with much less conservatism.

  20. Distribution of silica species in cooling water system in nuclear power station

    International Nuclear Information System (INIS)

    Akiba, Kenichi; Onozuka, Teruo; Shindo, Manabu.

    1995-01-01

    Distribution of silica species was examined by spectrophotometric method based on the formation of molybdosilicic acid species. Ultra-microamounts of ionic (reactive) silica were determined by collection of silicomolybdenum blue compound on a nitrocellulose membrane filter. Total concentrations of silica including nonionic (polymer and colloidal) species were also determined after decomposition of unreactive silica in alkali solutions. Water in the nuclear reactor (Onagawa BWR No.1) contained high concentration of silica (∼600 ppb) and ionic silica was found to be predominant (∼90%). In condensate system, silica contents were of a lower level (2-6 ppb), but the ionic silica contents were comparable to others (20-60%). The silica species appear to be brought and accumulated in the reactor from the condensate system, and then the silica species change to ionic species under high pressure and high temperature. (author)

  1. Distribution of silica species in cooling water system in nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Akiba, Kenichi [Tohoku Univ., Sendai (Japan). Inst. for Advanced Materials Processing; Onozuka, Teruo; Shindo, Manabu

    1995-12-01

    Distribution of silica species was examined by spectrophotometric method based on the formation of molybdosilicic acid species. Ultra-microamounts of ionic (reactive) silica were determined by collection of silicomolybdenum blue compound on a nitrocellulose membrane filter. Total concentrations of silica including nonionic (polymer and colloidal) species were also determined after decomposition of unreactive silica in alkali solutions. Water in the nuclear reactor (Onagawa BWR No.1) contained high concentration of silica ({approx}600 ppb) and ionic silica was found to be predominant ({approx}90%). In condensate system, silica contents were of a lower level (2-6 ppb), but the ionic silica contents were comparable to others (20-60%). The silica species appear to be brought and accumulated in the reactor from the condensate system, and then the silica species change to ionic species under high pressure and high temperature. (author).

  2. Thermodynamics of the silica-steam system

    Energy Technology Data Exchange (ETDEWEB)

    Krikorian, Oscar H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    In most nuclear cratering and cavity formation applications, the working fluid in the expanding cavity consists primarily of vaporized silica and steam. The chemical reaction products of silica and steam under these conditions are not known, although it is known that silica is very volatile in the presence of high-pressure steam under certain geologic conditions and in steam turbines. A review is made of work on the silica-steam system in an attempt to determine the vapor species that exist, and to establish the associated thermo-dynamic data. The review indicates that at 600-900 deg K and 1-100 atm steam pressure, Si(OH){sub 4} is the most likely silicon-containing gaseous species. At 600-900 deg. K and 100-1000 atm steam, Si{sub 2}O(OH){sub 6} is believed to predominate, whereas at 1350 deg K and 2000-9000 atm, a mixture of Si(OH){sub 4} and Si{sub 2}O(OH){sub 6} is consistent with the observed volatilities. In work at 1760 deg. K in which silica was reacted either with steam at 0.5 and 1 atm, or with gaseous mixtures of H{sub 2}/H{sub 2}O and O{sub 2}/H{sub 2}O at 1 atm total pressure, only part of the volatility could be accounted for by Si(OH){sub 4}. Hydrogen was found to greatly enhance the volatility of silica, and oxygen to suppress it. The species most likely to explain this behavior is believed to be SiO(OH). A number of other species may also be significant under these conditions. Thermodynamic data have been estimated for all species considered. The Si-OH bond dissociation energy is found to be {approx}117 kcal/mole in both Si(OH){sub 4} and Si{sub 2}O(OH){sub 6}. (author)

  3. Supramolecular structures on silica surfaces and their adsorptive properties.

    Science.gov (United States)

    Belyakov, Vladimir N; Belyakova, Lyudmila A; Varvarin, Anatoly M; Khora, Olexandra V; Vasilyuk, Sergei L; Kazdobin, Konstantin A; Maltseva, Tetyana V; Kotvitskyy, Alexey G; Danil de Namor, Angela F

    2005-05-01

    The study of adsorptive and chemical immobilization of beta-cyclodextrin on a surface of hydroxylated silicas with various porous structure is described. Using IR spectroscopy, thermal gravimetrical analysis with a programmed heating, and chemical analysis of the silica surface, it is shown that the process of adsorption-desorption of beta-cyclodextrin depends on the porous structure of the silica. The reaction of esterification was used for chemical grafting of beta-cyclodextrin on the surface of hydroxylated silicas. Hydrolytic stability of silicas chemically modified by beta-cyclodextrin apparently is explained by simultaneous formation of chemical and hydrogen bonds between surface silanol groups and hydroxyl groups of beta-cyclodextrin. The uptake of the cations Cu(II), Cd(II), and Pb(II) and the anions Cr(VI) and As(V) by silicas modified with beta-cyclodextrin is investigated as a function of equilibrium ion concentrations. The increase of ion uptake and selectivity of ion extraction in comparison with starting silicas is established. It is due to the formation of surface inclusion complexes of the "host-guest" type in which one molecule of beta-cyclodextrin interacts simultaneously with several ions.

  4. Photooxidation of ethylene over Cu-modified and unmodified silica

    OpenAIRE

    Ichihashi, Yuichi; Matsumura, Yasuyuki

    2003-01-01

    Silica catalyzes photooxidation of ethylene to carbon dioxide and modification of copper on silica results in the lower reaction rate and partial production of ethylene oxide. The reaction does not proceed by the light irradiation through a color filter (λ>280 nm). ESR measurement indicates that radical oxygen species assignable T-shape Si − O3− can be produced on silica by UV irradiation at 77 K. The same species are also found on silica modified with copper by UV irradiation whi...

  5. Silica scale prevention technology using organic additive, Geogard SX

    Energy Technology Data Exchange (ETDEWEB)

    Baltazar, Almario; Garcia, Serafin; Solis, Ramonito; Fragata, Jimmy; Ellseworth, Lucero; Llenarizas, Leonardo; Tabuena, Joseph Erwin (PNOC Energy Development Corporation, Makati City (Philippines))

    1998-09-15

    A field trial on the application of an organic additive, phosphino carboxylic acid copolymer, was conducted in a geothermal system to evaluate its effectiveness in preventing silica deposition from brine containing ultra high silica concentration (1000-1300 ppm). Low polymer concentration was applied for about five months, and treatment efficiency based on silica concentrations in various sampling points ranged from 64 to 98%. Treatment efficiency improved as a function of time. Massive silica scaling in the fluid collection and disposal system was minimized.

  6. Acid-base equilibria inside amine-functionalized mesoporous silica.

    Science.gov (United States)

    Yamaguchi, Akira; Namekawa, Manato; Kamijo, Toshio; Itoh, Tetsuji; Teramae, Norio

    2011-04-15

    Acid-base equilibria and effective proton concentration inside a silica mesopore modified with a trimethyl ammonium (TMAP) layer were studied by steady-state fluorescence experiments. The mesoporous silica with a dense TMAP layer (1.4 molecules/nm(2)) was prepared by a post grafting of N-trimethoxysilylpropyl-N,N,N-trimethylammonium at surfactant-templated mesoporous silica (diameter of silica framework =3.1 nm). The resulting TMAP-modified mesoporous silica strongly adsorbed of anionic fluorescence indicator dyes (8-hydroxypyrene-1,3,6-trisulfonate (pyranine), 8-aminopyrene-1,3,6-trisulfonate (APTS), 5,10,15,20-tetraphenyl-21H,23H-porphinetetrasulfonic acid disulfuric acid (TPPS), 2-naphthol-3,6-disulfonate (2NT)) and fluorescence excitation spectra of these dyes within TMAP-modified mesoporous silica were measured by varying the solution pH. The fluorescence experiments revealed that the acid-base equilibrium reactions of all pH indicator dyes within the TMAP-modified silica mesopore were quite different from those in bulk water. From the analysis of the acid-base equilibrium of pyranine, the following relationships between solution pH (pH(bulk)) and the effective proton concentration inside the pore (pH(pore)) were obtained: (1) shift of pH(pore) was 1.8 (ΔpH(pore)=1.8) for the pH(bulk) change from 2.1 to 9.1 (ΔpH(bulk)=7.0); (2) pH(pore) was not simply proportional to pH(bulk); (3) the inside of the TMAP-modified silica mesopore was suggested to be in a weak acidic or neutral condition when pH(bulk) was changed from 2.0 to 9.1. Since these relationships between pH(bulk) and pH(pore) could explain the acid-base equilibria of other pH indicator dyes (APTS, TPPS, 2NT), these relationships were inferred to describe the effective proton concentration inside the TMAP-modified silica mesopore. © 2011 American Chemical Society

  7. Sílica solúvel em solos Soluble silica in soils

    Directory of Open Access Journals (Sweden)

    Bernardo van Raij

    1973-01-01

    Full Text Available Determinou-se a silica solúvel nos horizontes superficial e B2 de 44 perfis de solos do Estado de São Paulo. A extração da silica com solução 0,0025M de cloreto de cálcio evitou a dispersão dos solos e forneceu resultados em média apenas 8% menores do que a silica solúvel em água. Os resultados variaram de 2,2 a 92,2 ppm de SiO2. Verificou-se que, para solos com teores semelhantes de argila, os teores de silica solúvel foram maiores para solos com horizonte B textural, quando comparados com solos de horizonte B latossólico. Dentro dos agrupamentos de solos com horizonte B textural e horizonte B latossólico, os teores de silica solúvel foram maiores para os solos mais argilosos. Não foi observada relação entre silica solúvel e o pH dos solos.The extraction of soluble silica of soils with 0.0025M calcium chloride solution avoided dispersion of clay and results were on the average only 8% lower than water soluble silica. The results for surface and B2 horizons of 44 soil profiles of the State of São Paulo varied between 2.2 and 92.9 ppm of SiO2. For soils with similar clay contents, soluble silica was higher for soil with argillic B horizons as compared with soils with oxic B horizons. Within each group of soils, higher soluble silica results were associated with higher clay contents. Soluble silica apparently was not related to soil pH.

  8. Structure and Properties of LENRA/ Silica Composite

    International Nuclear Information System (INIS)

    Mahathir Mohamed; Dahlan Mohd

    2010-01-01

    The sol-gel reaction using tetra ethoxysilane (TEOS) was conducted for modified natural rubber (NR) matrix to obtain in situ generated NR/ silica composite. The present of acrylate group in the modified NR chain turns the composite into radiation-curable. The maximum amount of silica generated in the matrix was 50 p hr by weight. During the sol-gel process the inorganic mineral was deposited in the rubber matrix forming hydrogen bonding between organic and inorganic phases. The composites obtained were characterized by various techniques including thermogravimetric analysis and infrared spectrometry to study their molecular structure. The increase in mechanical properties was observed for low silica contents ( 30 p hr) where more silica were generated, agglomerations were observed at the expense of the mechanical properties. From the DMTA data, it shows an increase of the interaction between the rubber and silica phases up to 30 p hr TEOS. Structure and morphology of the heterogeneous system were analyzed by transmission electron microscopy. The average particle sizes of between 150 nm to 300 nm were achieved for the composites that contain less than 20 p hr of TEOS. (author)

  9. Silica promoted self-assembled mesoporous aluminas. Impact of the silica precursor on the structural, textural and acidic properties

    NARCIS (Netherlands)

    Perez, Lidia Lopez; Zarubina, Valeriya; Mayoral, Alvaro; Melian-Cabrera, Ignacio

    2015-01-01

    This paper investigates the effect of silica addition on the structural, textural and acidic properties of an evaporation induced self-assembled (EISA) mesoporous alumina. Two silica addition protocols were applied while maintaining the EISA synthesis route. The first route is based on the addition

  10. HB-Line Dissolver Dilution Flows and Dissolution Capability with Dissolver Charge Chute Cover Off

    International Nuclear Information System (INIS)

    Hallman, D.F.

    2003-01-01

    A flow test was performed in Scrap Recovery of HB-Line to document the flow available for hydrogen dilution in the dissolvers when the charge chute covers are removed. Air flow through the dissolver charge chutes, with the covers off, was measured. A conservative estimate of experimental uncertainty was subtracted from the results. After subtraction, the test showed that there is 20 cubic feet per minute (cfm) air flow through the dissolvers during dissolution with a glovebox exhaust fan operating, even with the scrubber not operating. This test also showed there is 6.6 cfm air flow through the dissolvers, after subtraction of experimental uncertainty if the scrubber and the glovebox exhaust fans are not operating. Three H-Canyon exhaust fans provide sufficient motive force to give this 6.6 cfm flow. Material charged to the dissolver will be limited to chemical hydrogen generation rates that will be greater than or equal to 25 percent of the Lower Flammability Limit (LFL) during normal operations. The H-Canyon fans will maintain hydrogen below LFL if electrical power is lost. No modifications are needed in HB-Line Scrap Recovery to ensure hydrogen is maintained less that LFL if the scrubber and glovebox exhaust fans are not operating

  11. Face-specific Replacement of Calcite by Amorphous Silica Nanoparticles

    Science.gov (United States)

    Liesegang, M.; Milke, R.; Neusser, G.; Mizaikoff, B.

    2016-12-01

    Amorphous silica, composed of nanoscale spheres, is an important biomineral, alteration product of silicate rocks on the Earth's surface, and precursor material for stable silicate minerals. Despite constant progress in silica sphere synthesis, fundamental knowledge of natural silica particle interaction and ordering processes leading to colloidal crystals is absent so far. To understand the formation pathways of silica spheres in a geologic environment, we investigated silicified Cretaceous mollusk shell pseudomorphs from Coober Pedy (South Australia) using focused ion beam (FIB)-SEM tomography, petrographic microscopy, µ-XRD, and EMPA. The shells consist of replaced calcite crystals (ionic strength remain constant throughout the replacement process, permitting continuous silica nanoparticle formation and diffusion-limited colloid aggregation. Our study provides a natural example of the transformation of an atomic crystal to an amorphous, mesoscale ordered material; thus, links the research fields of natural colloidal crystal formation, carbonate-silica replacement, and crystallization by oriented particle aggregation (CPA).

  12. Phase behavior of methane hydrate in silica sand

    International Nuclear Information System (INIS)

    Sun, Shi-Cai; Liu, Chang-Ling; Ye, Yu-Guang; Liu, Yu-Feng

    2014-01-01

    Highlights: • Hydrate p-T trace in coarse-grained sediment is consistent with that in bulk water. • Fine-grained sediment affects hydrate equilibrium for the depressed water activity. • Hydrate equilibrium in sediment is related to the pore size distribution. • The application of hydrate equilibrium in sediment depends on the actual condition. -- Abstract: Two kinds of silica sand powder with different particle size were used to investigate the phase behavior of methane hydrate bearing sediment. In coarse-grained silica sand, the measured temperature and pressure range was (281.1 to 284.2) K and (5.9 to 7.8) MPa, respectively. In fine-grained silica sand, the measured temperature and pressure range was (281.5 to 289.5) K and (7.3 to 16.0) MPa, respectively. The results show that the effect of coarse-grained silica sand on methane hydrate phase equilibrium can be ignored; however, the effect of fine-grained silica sand on methane hydrate phase equilibrium is significant, which is attributed to the depression of water activity caused by the hydrophilicity and negatively charged characteristic of silica particle as well as the pore capillary pressure. Besides, the analysis of experimental results using the Gibbs–Thomson equation shows that methane hydrate phase equilibrium is related to the pore size distribution of silica sand. Consequently, for the correct application of phase equilibrium data of hydrate bearing sediment, the geological condition and engineering requirement should be taken into consideration in gas production, resource evaluation, etc

  13. Synthesis and characterization of mesoporous silica core-shell particles

    Directory of Open Access Journals (Sweden)

    Milan Nikolić

    2010-06-01

    Full Text Available Core-shell particles were formed by deposition of primary silica particles synthesized from sodium silicate solution on functionalized silica core particles (having size of ~0.5 µm prepared by hydrolysis and condensation of tetraethylortosilicate. The obtained mesoporous shell has thickness of about 60 nm and consists of primary silica particles with average size of ~21 nm. Scanning electron microscopy and zeta potential measurements showed that continuous silica shell exists around functionalized core particles which was additionally proved by FTIR and TEM results.

  14. Fabrication of keratin-silica hydrogel for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kakkar, Prachi; Madhan, Balaraman, E-mail: bmadhan76@yahoo.co.in

    2016-09-01

    In the recent past, keratin has been fabricated into different forms of biomaterials like scaffold, gel, sponge, film etc. In lieu of the myriad advantages of the hydrogels for biomedical applications, a keratin-silica hydrogel was fabricated using tetraethyl orthosilicate (TEOS). Textural analysis shed light on the physical properties of the fabricated hydrogel, inturn enabling the optimization of the hydrogel. The optimized keratin-silica hydrogel was found to exhibit instant springiness, optimum hardness, with ease of spreadability. Moreover, the hydrogel showed excellent swelling with highly porous microarchitecture. MTT assay and DAPI staining revealed that keratin-silica hydrogel was biocompatible with fibroblast cells. Collectively, these properties make the fabricated keratin-silica hydrogel, a suitable dressing material for biomedical applications. - Highlights: • Keratin-silica hydrogel has been fabricated using sol–gel technique. • The hydrogel shows appropriate textural properties. • The hydrogel promotes fibroblast cells proliferation. • The hydrogel has potential soft tissue engineering applications like wound healing.

  15. Supercritical carbon dioxide versus toluene as reaction media in silica functionalisation: Synthesis and characterisation of bonded aminopropyl silica intermediate.

    Science.gov (United States)

    Ashu-Arrah, Benjamin A; Glennon, Jeremy D

    2017-06-09

    This research reports supercritical carbon dioxide versus toluene as reaction media in silica functionalisation for use in liquid chromatography. Bonded aminopropyl silica (APS) intermediates were prepared when porous silica particles (Exsil-pure, 3μm) were reacted with 3-aminopropyltriethoxysilane (3-APTES) or N,N-dimethylaminopropyltrimethoxysilane (DMAPTMS) using supercritical carbon dioxide (sc-CO 2 ) and toluene as reaction media. Covalent bonding to silica was confirmed using elemental microanalysis (CHN), thermogravimetric analysis (TGA), zeta potential (ξ), diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, scanning electron microscopy (SEM) and solid-state nuclear magnetic resonance (CP/MAS NMR) spectroscopy. The results demonstrate that under sc-CO 2 conditions of 100°C/414bar in a substantial reduced time of 3h, the surface coverage of APS (evaluated from%C obtained from elemental analysis) prepared with APTES (%C: 8.03, 5.26μmol/m -2 ) or DMAPTES (%C: 5.12, 4.58μmol/m 2 ) is somewhat higher when compared to organic based reactions under reflux in toluene at a temperature of 110°C in 24h with APTES (%C: 7.33, 4.71μmol/m 2 ) and DMAPTMS (%C: 4.93, 4.38μmol/m 2 ). Zeta potential measurements revealed a change in electrostatic surface charge from negative values for bare Exsil-pure silica to positive for functionalised APS materials indicating successful immobilization of the aminosilane onto the surface of silica. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Variability of biological effects of silicas: Different degrees of activation of the fifth component of complement by amorphous silicas

    International Nuclear Information System (INIS)

    Governa, Mario; Amati, Monica; Fenoglio, Ivana; Valentino, Matteo; Coloccini, Sabrina; Bolognini, Lucia; Carlo Botta, Gian; Emanuelli, Monica; Pierella, Francesca; Volpe, Anna Rita; Astolfi, Paola; Carmignani, Marco; Fubini, Bice

    2005-01-01

    A biogenic and a pyrogenic amorphous silica were incubated in normal human plasma and compared on a per unit surface basis for their ability to split C5 molecules and yield small C5a peptides. Since C5a peptides induce selective chemotactic attraction of polymorphonuclear leukocytes (PMN), measurement of PMN-induced chemotaxis was used as an index of C5 activation. Though to a lesser extent than the crystalline forms, amorphous silicas can promote the cleavage of C5 protein and generation of C5a-like fragment. The biogenic silica, which differs from the pyrogenic variety in particle shape, level of contaminants, and degree of surface hydrophilicity, besides specific surface, induced a greater response. Both silicas activated C5 through a process which seems to involve multiple events similar to those induced by crystalline silica. C5 molecules are adsorbed and hydroxyl radicals are generated through Haber Weiss cycles catalyzed by the redox-active iron present at the particle surface either as trace impurities or chelated from plasma by silanol groups. In turn, these radicals convert native C5 to an oxidized C5-like form C5(H 2 O 2 ). Finally, C5(H 2 O 2 ) is cleaved by protease enzymatic action of plasma kallikrein activated by the same silica dusts, yielding a product, C5a(H 2 O 2 ), having the same functional characteristic as C5a

  17. Effect of occupational silica exposure on pulmonary function.

    Science.gov (United States)

    Hertzberg, Vicki Stover; Rosenman, Kenneth D; Reilly, Mary Jo; Rice, Carol H

    2002-08-01

    To assess the effect of occupational silica exposure on pulmonary function. Epidemiologic evaluation based on employee interview, plant walk-through, and information abstracted from company medical records, employment records, and industrial hygiene measurements. Drawn from 1,072 current and former hourly wage workers employed before January 1, 1986. Thirty-six individuals with radiographic evidence of parenchymal changes consistent with asbestosis or silicosis were excluded. In addition, eight individuals whose race was listed as other than white or black were excluded. Analysis of spirometry data (FVC, FEV1, FEV1/FVC) only using the test results that met American Thoracic Society criteria for reproducibility and acceptability shows decreasing percent-predicted FVC and FEV1 and decreasing FEV1/FVC in relationship to increasing silica exposure among smokers. Logistic regression analyses of abnormal FVC and abnormal FEV1 values (where abnormal is defined as OSHA)-allowable level of 0.1 mg/m3. Longitudinal analyses of FVC and FEV1 measurements show a 1.6 mL/yr and 1.1 mL/yr, respectively, decline per milligram/cubic meter mean silica exposure (p = 0.011 and p = 0.001, respectively). All analyses were adjusted for weight, height, age, ethnicity, smoking status, and other silica exposures. Systematic problems leading to measurement error were possible, but would have been nondifferential in effect and not related to silica measurements. There is a consistent association between increased pulmonary function abnormalities and estimated measures of cumulative silica exposure within the current allowable OSHA regulatory level. Despite concerns about the quality control of the pulmonary function measurements use in these analyses, our results support the need to lower allowable air levels of silica and increase efforts to encourage cessation of cigarette smoking among silica-exposed workers.

  18. IMPROVEMENT OF EXPANSIVE SOIL BY USING SILICA FUME

    Directory of Open Access Journals (Sweden)

    Kawther Y. AL-Soudany

    2018-01-01

    Full Text Available Expansive soils are characterized by their considerable volumetric deformations representing a serious challenge for the stability of the engineering structures such as foundations. Consequently, the measurements of swelling properties, involving swelling and swell pressure, become extremely important in spite of their determination needs a lot of time with costly particular equipment. Thus, serious researches attempts have been tried to remedy such soils by means of additives such as cement, lime, steel fibers, stone dust, fly ash and silica fume. In this research the study of silica fume has studied to treatment expansion soil, the clay soil was brought from Al-Nahrawan in Baghdad. The soil selected for the present investigation prepared in laboratory by mixing natural soil with different percentages of bentonite (30, 50 and 70% by soil dry weight. The test program included the effect of bentonite on natural soil then study the effect of silica fume (SF on prepared soil by adding different percentage of silica fume (3, 5, and 7 by weight to the prepared soils and the influence of these admixtures was observed by comparing their results with those of untreated soils (prepared soils. The results show that both liquid limit and plasticity index decreased with the addition of silica fume, while the plastic limit is increase with its addition. As well as, a decrease in the maximum dry unit weight with an increase in the optimum water contents have been obtained with increasing the percentage of addition of the silica fume. It is also observed an improvement in the free swell, swelling pressure by using silica fume. It can be concluded that the silica fume stabilization may be used as a successful way for the treatment of expansive clay.

  19. Controls on Nitrous Oxide Production in, and Fluxes from a Coastal Aquifer in Long Island, NY, USA

    Directory of Open Access Journals (Sweden)

    Caitlin Young

    2016-11-01

    Full Text Available Nitrous oxide (N2O has 265 times greater greenhouse potential than carbon dioxide and its atmospheric concentration has increased by about 20% since industrialization; however, N2O production and emissions from aquatic systems are poorly constrained. To evaluate N2O fluxes associated with meteoric groundwater discharge to coastal zones, we measured N2O concentrations in May and October 2011 from two discharge points of the Upper Glacial aquifer on Long Island, NY, USA. One coastal zone contains only fresh water and the other contains an upper saline zone. N2O concentrations decreased by around 40% for the fresh water and a factor of two for the salt water from May to October, 2011. Fluxes were around 100 to 200 times greater from the freshwater (246 to 448 µmol/m shoreline/day than saltwater aquifer (26.1 to 26.5 µmol/m shoreline/day. N2O concentrations correlate positively with NO3− and dissolved oxygen concentrations and negatively with salinity, dissolved organic carbon (DOC and N2 denitrification concentrations. The smaller saltwater N2O export resulted from DOC enrichment in the upper saline zone, which appears to have driven denitrification to completion, removed N2O, and increased N2 denitrification. DOC concentrations should be considered in global N2O flux estimates for coastal aquifers.

  20. Ion fluxes from fog and rain to an agricultural and a forest ecosystem in Europe

    Science.gov (United States)

    Thalmann, E.; Burkard, R.; Wrzesinsky, T.; Eugster, W.; Klemm, O.

    The deposition fluxes of inorganic compounds dissolved in fog and rain were quantified for two different ecosystems in Europe. The fogwater deposition fluxes were measured by employing the eddy covariance method. The site in Switzerland that lies within an agricultural area surrounded by the Jura mountains and the Alps is often exposed to radiation fog. At the German mountain forest ecosystem, on the other hand, advection fog occurs most frequently. At the Swiss site, fogwater deposition fluxes of the dominant components SO 42- (0.027 mg S m -2 day -1), NO 3- (0.030 mg N m -2 day -1) and NH 4+ (0.060 mg N m -2 day -1) were estimated to be fogwater concentrations of all major ions if air originated from the east (i.e. the Czech Republic), which is in close agreement with earlier studies.

  1. Poly(2-aminothiazole)-silica nanocomposite particles: Synthesis and morphology control

    Science.gov (United States)

    Zou, Hua; Wu, Di; Sun, Hao; Chen, Suwu; Wang, Xia

    2018-04-01

    Synthesis of conducting polymer-silica colloidal nanocomposites has been recognized as an effective method to overcome the poor processability of heterocyclic conducting polymers prepared by chemical oxidative method. However, the morphology control of such conducting polymer-silica nanocomposites was seldomly reported in the literature. Novel poly(2-aminothiazole)(PAT)-silica nanocomposite particles can be conveniently prepared by chemical oxidative polymerization of 2-aminothiazole using CuCl2 oxidant in the presence of ∼20 nm silica nanoparticles. The effects of varying the oxidant/monomer ratio and silica sol concentration on the morphology and size of the resulting PAT-silica nanocmposites have been studied. Optimization of the oxidant/monomer molar ratio and initial silica sol concentration allows relatively round spherical particles of 150-350 nm in diameter to be achieved. The nanocomposite particles have a well-defined raspberry-like morphology with a silica-rich surface, but a significant fraction of PAT component still exists on the surface and, which is beneficial for its applications. Furthermore, the surface compositions of the colloidal nanocomposites could be regulated to some extent. Based on the above results, a possible formation mechanism of the spherical nanocomposite particles is proposed.

  2. Study of silica sol-gel materials for sensor development

    Science.gov (United States)

    Lei, Qiong

    Silica sol-gel is a transparent, highly porous silicon oxide glass made at room temperature by sol-gel process. The name of silica sol-gel comes from the observable physical phase transition from liquid sol to solid gel during its preparation. Silica sol-gel is chemically inert, thermally stable, and photostable, it can be fabricated into different desired shapes during or after gelation, and its porous structure allows encapsulation of guest molecules either before or after gelation while still retaining their functions and sensitivities to surrounding environments. All those distinctive features make silica sol-gel ideal for sensor development. Study of guest-host interactions in silica sol-gel is important for silica-based sensor development, because it helps to tailor local environments inside sol-gel matrix so that higher guest loading, longer shelf-life, higher sensitivity and faster response of silica gel based sensors could be achieved. We focused on pore surface modification of two different types of silica sol-gel by post-grafting method, and construction of stable silica hydrogel-like thin films for sensor development. By monitoring the mobility and photostability of rhodamine 6G (R6G) molecules in silica alcogel thin films through single molecule spectroscopy (SMS), the guest-host interactions altered by post-synthesis grafting were examined. While physical confinement remains the major factor that controls mobility in modified alcogels, both R6G mobility and photostability register discernable changes after surface charges are respectively reversed and neutralized by aminopropyltriethoxysilane (APTS) and methyltriethoxysilane (MTES) grafting. The change in R6G photostability was found to be more sensitive to surface grafting than that of mobility. In addition, silica film modification by 0.4% APTS is as efficient as that by pure MTES in lowering R6G photostability, which suggests that surface charge reversal is more effective than charge neutralization

  3. Characterization for Post-treatment Effect of Bagasse Ash for Silica Extraction

    OpenAIRE

    Patcharin Worathanakul; Wisaroot Payubnop; Akhapon Muangpet

    2009-01-01

    Utilization of bagasse ash for silica sources is one of the most common application for agricultural wastes and valuable biomass byproducts in sugar milling. The high percentage silica content from bagasse ash was used as silica source for sodium silicate solution. Different heating temperature, time and acid treatment were studies for silica extraction. The silica was characterized using various techniques including X-ray fluorescence, X-ray diffraction, Scanning electro...

  4. Synthesis and characterization of titanium oxide supported silica materials

    Science.gov (United States)

    Schrijnemakers, Koen

    2002-01-01

    Titania-silica materials are interesting materials for use in catalysis, both as a catalyst support as well as a catalyst itself. Titania-silica materials combine the excellent support and photocatalytic properties of titania with the high thermal and mechanical stability of silica. Moreover, the interaction of titania with silica leads to new active sites, such as acid and redox sites, that are not found on the single oxides. In this Ph.D. two recently developed deposition methods were studied and evaluated for their use to create titanium oxide supported silica materials, the Chemical Surface Coating (CSC) and the Molecular Designed Dispersion (MDD). These methods were applied to two structurally different silica supports, an amorphous silica gel and the highly ordered MCM-48. Both methods are based on the specific interaction between a titanium source and the functional groups on the silica surface. With the CSC method high amounts of titanium can be obtained. However, clustering of the titania phase is observed in most cases. The MDD method allows much lower titanium amounts to be deposited without the formation of crystallites. Only at the highest Ti loading very small crystallites are formed after calcination. MCM-48 and silica gel are both pure SiO2 materials and therefore chemically similar to each other. However, they possess a different morphology and are synthesized in a different way. As such, some authors have reported that the MCM-48 surface would be more reactive than the surface of silica gel. In our experiments however no differences could be observed that confirmed this hypothesis. In the CSC method, the same reactions were observed and similar amounts of Ti and Cl were deposited. In the case of the MDD method, no difference in the reaction mechanism was observed. However, due to the lower thermal and hydrothermal stability of the MCM-48 structure compared to silica gel, partial incorporation of Ti atoms in the pore walls of MCM-48 took place

  5. Silica coating of nanoparticles by the sonogel process.

    Science.gov (United States)

    Chen, Quan; Boothroyd, Chris; Tan, Gim Hong; Sutanto, Nelvi; Soutar, Andrew McIntosh; Zeng, Xian Ting

    2008-02-05

    A modified aqueous sol-gel route was developed using ultrasonic power for the silica coating of indium tin oxide (ITO) nanoparticles. In this approach, organosilane with an amino functional group was first used to cover the surface of as-received nanoparticles. Subsequent silica coating was initiated and sustained under power ultrasound irradiation in an aqueous mixture of surface-treated particles and epoxy silane. This process resulted in a thin but homogeneous coverage of silica on the particle surface. Particles coated with a layer of silica show better dispersability in aqueous and organic media compared with the untreated powder. Samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and the zeta potential.

  6. Multidecadal increases in the Yukon River Basin of chemical fluxes as indicators of changing flowpaths, groundwater, and permafrost

    Science.gov (United States)

    Toohey, Ryan C; Herman-Mercer, Nicole M.; Schuster, Paul F.; Mutter, Edda A.; Koch, Joshua C.

    2016-01-01

    The Yukon River Basin, underlain by discontinuous permafrost, has experienced a warming climate over the last century that has altered air temperature, precipitation, and permafrost. We investigated a water chemistry database from 1982 to 2014 for the Yukon River and its major tributary, the Tanana River. Significant increases of Ca, Mg, and Na annual flux were found in both rivers. Additionally, SO4 and P annual flux increased in the Yukon River. No annual trends were observed for dissolved organic carbon (DOC) from 2001 to 2014. In the Yukon River, Mg and SO4 flux increased throughout the year, while some of the most positive trends for Ca, Mg, Na, SO4, and P flux occurred during the fall and winter months. Both rivers exhibited positive monthly DOC flux trends for summer (Yukon River) and winter (Tanana River). These trends suggest increased active layer expansion, weathering, and sulfide oxidation due to permafrost degradation throughout the Yukon River Basin.

  7. Effect of support on hydro-metathesis of propene: A comparative study of W(CH 3 ) 6 anchored to silica vs. silica-alumina

    KAUST Repository

    Tretiakov, Mykyta

    2018-03-27

    Hydro-metathesis of propene was carried out by using well-defined W(CH3)6 supported on silica and silica-alumina. It was observed that W(CH3)6 supported silica-alumina catalyst is much better (TON 4577) than the silica supported catalyst (TON 2104). We demonstrated that the present catalysts are much better than the previously reported (tantalum hydride/KCC-1, TON 786) catalyst. For the first time, we observed the formation of n-decane from propene, which enables us to think of using cheaper raw materials and converting them to petroleum range alkanes using hydro-metathesis reaction.

  8. Dissolved black carbon along the land to ocean continuum of Paraiba do Sul River, Brazil

    Science.gov (United States)

    Marques da Silva Junior, Jomar; Dittmar, Thorsten; Niggemann, Jutta; Gomes de Almeida, Marcelo; de Rezende, Carlos Eduardo

    2016-04-01

    Rivers annually carry 25-28 Tg of pyrogenic dissolved organic matter (or dissolved black carbon, DBC) into the ocean, which is equivalent to about 10% of the entire land-ocean flux of dissolved organic carbon (Jaffé et al., Science 340, 345-347). Objective of this study was to identify the main processes behind the release and turnover of DBC on a riverine catchment scale. As model system we chose the land to ocean continuum of Paraíba do Sul River (Brazil), the only river system for which long-term DBC flux data exist (Dittmar, Rezende et al., Nature Geoscience 5, 618-622). The catchment was originally covered by Atlantic rain forest (mainly C3 plants) which was almost completely destroyed over the past centuries by slash-and-burn. As a result, large amounts of wood-derived charcoal reside in the soils. Today, fire-managed pasture and sugar cane (both dominated by C4 plants) cover most of the catchment. Water samples were collected at 24 sites along the main channel of the river, at 14 sites of the main tributaries and at 21 sites along the salinity gradient in the estuary and up to 35 km offshore. Sampling was performed in the wet seasons of 2013 and 2014, and the dry season of 2013. DBC was determined on a molecular level as benzenepolycarboxylic acids after nitric acid oxidation (Dittmar, Limnology and Oceanography: Methods 6, 230-235). Stable carbon isotopes (δ13C) were determined in solid phase extractable dissolved organic carbon (SPE-DOC) to distinguish C4 and C3 sources. Our results clearly show a relationship between hydrology and DBC concentrations in the river, with highest DBC concentrations in the wet season and lowest in the dry season. This relationship indicates that DBC is mainly mobilized from the upper soil horizons during heavy rainfalls. A significant correlation between DBC concentrations and δ13C-SPE-DOC indicated that most of DBC in the river system originates from C3 plants, i.e. from the historic burning event of the Atlantic rain

  9. Silica biomineralization via the self-assembly of helical biomolecules.

    Science.gov (United States)

    Liu, Ben; Cao, Yuanyuan; Huang, Zhehao; Duan, Yingying; Che, Shunai

    2015-01-21

    The biomimetic synthesis of relevant silica materials using biological macromolecules as templates via silica biomineralization processes attract rapidly rising attention toward natural and artificial materials. Biomimetic synthesis studies are useful for improving the understanding of the formation mechanism of the hierarchical structures found in living organisms (such as diatoms and sponges) and for promoting significant developments in the biotechnology, nanotechnology and materials chemistry fields. Chirality is a ubiquitous phenomenon in nature and is an inherent feature of biomolecular components in organisms. Helical biomolecules, one of the most important types of chiral macromolecules, can self-assemble into multiple liquid-crystal structures and be used as biotemplates for silica biomineralization, which renders them particularly useful for fabricating complex silica materials under ambient conditions. Over the past two decades, many new silica materials with hierarchical structures and complex morphologies have been created using helical biomolecules. In this review, the developments in this field are described and the recent progress in silica biomineralization templating using several classes of helical biomolecules, including DNA, polypeptides, cellulose and rod-like viruses is summarized. Particular focus is placed on the formation mechanism of biomolecule-silica materials (BSMs) with hierarchical structures. Finally, current research challenges and future developments are discussed in the conclusion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Novel bioactive materials: silica aerogel and hybrid silica aerogel/pseudowollastonite

    Directory of Open Access Journals (Sweden)

    Reséndiz-Hernández, P. J.

    2014-10-01

    Full Text Available Silica aerogel and hybrid silica aerogel/pseudowollastonite materials were synthesized by controlled hydrolysis of tetraethoxysilane (TEOS using also methanol (MeOH and pseudowollastonite particles. The gels obtained were dried using a novel process based on an ambient pressure drying. Hexane and hexamethyl-disilazane (HMDZ were the solvents used to chemically modify the surface. In order to assess bioactivity, aerogels, without and with pseudowollastonite particles, were immersed in simulated body fluid (SBF for 7 and 14 days. The hybrid silica aerogel/pseudowollastonite showed a higher bioactivity than that observed for the single silica aerogel. However, as in both cases a lower bioactivity was observed, a biomimetic method was also used to improve it. In this particular method, samples of both materials were immersed in SBF for 7 days followed by their immersion in a more concentrated solution (1.5 SBF for 14 days. A thick and homogeneous bonelike apatite layer was formed on the biomimetically treated materials. Thus, bioactivity was successfully improved even on the aerogel with no pseudowollastonite particles. As expected, the hybrid silica aerogel/pseudowollastonite particles showed a higher bioactivity.Se sintetizaron aerogel de sílice y aerogel híbrido de sílice/partículas de pseudowollastonita por hidrólisis controlada de tetraetoxisilano (TEOS usando metanol (MeOH y partículas de pseudowollastonita. Los geles obtenidos se secaron utilizando un novedoso proceso basado en una presión de secado ambiental. Hexano y hexametil-disilazano fueron los solventes usados para modificar químicamente la superficie. Para evaluar la bioactividad, los aerogeles con y sin partículas de pseudowollastonita se sumergieron en un fluido fisiológico simulado (SBF por 7 y 14 días. El aerogel híbrido de sílice/partículas de pseudowollastonita mostró más alta bioactividad que la observada por el aerogel solo. Sin embargo, en ambos casos, se

  11. Study of silica coatings degradation under laser irradiation and in controlled environment; Etude de la degradation de couches minces de silice sous flux laser et en environnement controle

    Energy Technology Data Exchange (ETDEWEB)

    Becker, S

    2006-11-15

    Performances of optical components submitted to high laser intensities are usually determined by their laser-induced damage threshold. This value represents the highest density of energy (fluence) sustainable by the component before its damage. When submitted to laser fluences far below this threshold, optical performances may also decrease with time. The degradation processes depend on laser characteristics, optical materials, and environment around the component. Silica being the most used material in optics, the aim of this study was to describe and analyse the physical-chemical mechanisms responsible for laser-induced degradation of silica coatings in controlled environment. Experimental results show that degradation is due to the growth of a carbon deposit in the irradiated zone. From these results, a phenomenological model has been proposed and validated with numerical simulations. Then, several technological solutions have been tested in order to reduce the laser-induced contamination of silica coatings. (author)

  12. CADDIS Volume 2. Sources, Stressors and Responses: Dissolved Oxygen

    Science.gov (United States)

    Introduction to the dissolved oxygen module, when to list dissolved oxygen as a candidate cause, ways to measure dissolved oxygen, simple and detailed conceptual model diagrams for dissolved oxygen, references for the dissolved oxygen module.

  13. Synthesis, characterisation and functionalisation of luminescent silica nanoparticles

    International Nuclear Information System (INIS)

    Labéguerie-Egéa, Jessica; McEvoy, Helen M.; McDonagh, Colette

    2011-01-01

    The synthesis of highly monodispersed, homogeneous and stable luminescent silica nanoparticles, synthesized using a process based on the Stöber method is reported here. These particles have been functionalised with the ruthenium and europium complexes: bis (2,2′-bipyridine)-(5-aminophenanthroline) Ru bis (hexafluorophosphate), abbreviated to (Ru(bpy) 2 (phen-5-NH 2 )(PF 6 )), and tris (dibenzoylmethane)-mono (5-aminophenanthroline) europium(III), abbreviated to (Eu:TDMAP). Both dyes have a free amino group available, facilitating the covalent conjugation of the dyes inside the silica matrix. Due to the covalent bond between the dyes and the silica, no dye leaching or nanoparticle diameter modification was observed. The generic and versatile nature of the synthesis process was demonstrated via the synthesis of both europium and ruthenium-functionalised nanoparticles. Following this, the main emphasis of the study was the characterisation of the luminescence of the ruthenium-functionalised silica nanoparticles, in particular, as a function of surface carboxyl or amino group functionalisation. It was demonstrated that the luminescence of the ruthenium dye is highly affected by the ionic environment at the surface of the nanoparticle, and that these effects can be counteracted by encapsulating the ruthenium-functionalised nanoparticles in a plain 15 nm silica layer. Moreover, the ruthenium-functionalised silica nanoparticles showed high relative brightness compared to the free dye in solution and efficient functionalisation with amino or carboxyl groups. Due to their ease of fabrication and attractive characteristics, the ruthenium-functionalised silica nanoparticles described here have the potential to be highly desirable fluorescent labels, particularly, for biological applications.

  14. High-average-power laser medium based on silica glass

    Science.gov (United States)

    Fujimoto, Yasushi; Nakatsuka, Masahiro

    2000-01-01

    Silica glass is one of the most attractive materials for a high-average-power laser. We have developed a new laser material base don silica glass with zeolite method which is effective for uniform dispersion of rare earth ions in silica glass. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action. As the main reason of bubbling is due to hydroxy species remained in the gelation same, we carefully choose colloidal silica particles, pH value of hydrochloric acid for hydrolysis of tetraethylorthosilicate on sol-gel process, and temperature and atmosphere control during sintering process, and then we get a bubble less transparent rare earth doped silica glass. The refractive index distortion of the sample also discussed.

  15. Seasonal Drivers of Dissolved Metal Transport During Infiltration of Road Runoff in an Urban Roadside Environment

    Science.gov (United States)

    Mullins, A.; Bain, D.

    2017-12-01

    Infiltration-based green infrastructure (GI) is being increasingly applied in urban areas, systems characterized by substantial legacy contamination and complicated hydrology. However, it is not clear how the application of green infrastructure changes the geochemistry of urban roadside environments. Most current research on GI focuses on small sets of chemical parameters (e.g. road salt, nitrogen and phosphorous species) over relatively short time periods, limiting comprehensive understanding of geochemical function. This work measures changes in groundwater infiltration rate and dissolved metal concentrations in two infiltration trenches in Pittsburgh, PA to evaluate function and measure dissolved metal transport from the system over time. Two distinct geochemical regimes seem to be driven by seasonality: road de-icer exchange and microbial driven summer reducing conditions. Interactions between these geochemical regimes and variability in infiltration rate control the flux of different metals, varying with metal chemistry. These findings suggest the adoption of infiltration based green infrastructure will likely create complicated patterns of legacy contamination transport to downstream receptors.

  16. Nanoporous silica membranes with high hydrothermal stability

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Magnacca, Giualiana; Yue, Yuanzheng

    to improve the stability of nanoporous silica structure. This work is a quantitative study on the impact of type and concentration of transition metal ions on the microporous structure and stability of amorphous silica-based membranes, which provides information on how to design chemical compositions...

  17. Bragg gratings in air-silica structured fibers

    NARCIS (Netherlands)

    Groothoff, N.; Canning, J.; Buckley, E.; Lyttikainen, K.; Zagari, J.

    2003-01-01

    We report on grating writing in air-silica structured optical fibers with pure silica cores by use of two-photon absorption at 193 nm. A decrease in propagation loss with irradiation was observed. The characteristic growth curves were obtained. © 2003 Optical Society of America.

  18. Preparation of silica nanoparticles through microwave-assisted acid-catalysis.

    Science.gov (United States)

    Lovingood, Derek D; Owens, Jeffrey R; Seeber, Michael; Kornev, Konstantin G; Luzinov, Igor

    2013-12-16

    Microwave-assisted synthetic techniques were used to quickly and reproducibly produce silica nanoparticle sols using an acid catalyst with nanoparticle diameters ranging from 30-250 nm by varying the reaction conditions. Through the selection of a microwave compatible solvent, silicic acid precursor, catalyst, and microwave irradiation time, these microwave-assisted methods were capable of overcoming the previously reported shortcomings associated with synthesis of silica nanoparticles using microwave reactors. The siloxane precursor was hydrolyzed using the acid catalyst, HCl. Acetone, a low-tan δ solvent, mediates the condensation reactions and has minimal interaction with the electromagnetic field. Condensation reactions begin when the silicic acid precursor couples with the microwave radiation, leading to silica nanoparticle sol formation. The silica nanoparticles were characterized by dynamic light scattering data and scanning electron microscopy, which show the materials' morphology and size to be dependent on the reaction conditions. Microwave-assisted reactions produce silica nanoparticles with roughened textured surfaces that are atypical for silica sols produced by Stöber's methods, which have smooth surfaces.

  19. Characterization and Curing Kinetics of Epoxy/Silica Nano-Hybrids

    Science.gov (United States)

    Yang, Cheng-Fu; Wang, Li-Fen; Wu, Song-Mao; Su, Chean-Cheng

    2015-01-01

    The sol-gel technique was used to prepare epoxy/silica nano-hybrids. The thermal characteristics, curing kinetics and structure of epoxy/silica nano-hybrids were studied using differential scanning calorimetry (DSC), 29Si nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM). To improve the compatibility between the organic and inorganic phases, a coupling agent was used to modify the diglycidyl ether of bisphenol A (DGEBA) epoxy. The sol-gel technique enables the silica to be successfully incorporated into the network of the hybrids, increasing the thermal stability and improving the mechanical properties of the prepared epoxy/silica nano-hybrids. An autocatalytic mechanism of the epoxy/SiO2 nanocomposites was observed. The low reaction rate of epoxy in the nanocomposites is caused by the steric hindrance in the network of hybrids that arises from the consuming of epoxide group in the network of hybrids by the silica. In the nanocomposites, the nano-scale silica particles had an average size of approximately 35 nm, and the particles were well dispersed in the epoxy matrix, according to the TEM images. PMID:28793616

  20. Colloidal titania-silica-iron oxide nanocomposites and the effect from silica thickness on the photocatalytic and bactericidal activities

    Energy Technology Data Exchange (ETDEWEB)

    Chanhom, Padtaraporn [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Charoenlap, Nisanart [Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210 (Thailand); Tomapatanaget, Boosayarat [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Insin, Numpon, E-mail: Numpon.I@chula.ac.th [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2017-04-01

    New types of colloidal multifunctional nanocomposites that combine superparamagnetic character and high photocatalytic activity were synthesized and investigated. The superparamagnetic nanocomposites composed of anatase titania, silica, and iron oxide nanoparticles (TSI) were synthesized using thermal decomposition method followed by microemulsion method, without calcination at high temperature. Different techniques including X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to characterize and confirm the structure of the nanocomposites. These nanocomposites showed high photocatalytic activity when used in the photodegradation of methylene blue under irradiation with a black light lamp. Moreover, the nanocomposites exhibited high antibacterial properties. From our study, the nanocomposites can be useful in various applications such as removal of pollutants with readily separation from the environment using an external magnetic field. These composites could effectively photo-degrade the dye at least three cycles without regeneration. The effects of silica shell thickness on the photocatalytic activity was investigated, and the thickness of 6 nm of the silica interlayer is enough for the inhibition of electron translocation between titania and iron oxide nanoparticles and maintaining the efficiency of photocatalytic activity of titania nanoparticles. - Highlights: • New colloidal nanocomposites of iron oxide-silica-titania were prepared. • The nanocomposites exhibited high photocatalytic activity with magnetic response. • The effects of silica thickness on photocatalytic activity were investigated. • Bactericidal activity of the nanocomposites was demonstrated.

  1. Investigations on the homogeneity of silica glass and on the order of X-amorphous silica by luminescence measurements

    International Nuclear Information System (INIS)

    Boden, G.

    1982-08-01

    Silica glasses melted from crystalline SiO 2 were exposed to ionizing radiation. At room temperature the spatial intensity distribution of the emitted luminescent radiation has been recorded by means of photographic or autoradiographic materials. Thereby schlieren and inhomogeneities are made visible and information is obtained on the melting process of the crystalline SiO 2 . Synthetic fused silica made from SiCl 4 shows no luminescent radiation. Depending on the penetration depth of the ionizing radiation the bulk or the surface of the sample can be studied. The decay curves of the integral luminescence intensity yield data on inhomogeneities in the silica glass leading to conclusions on order state and structure. The luminescence intensity and its half-life are a measure for the inhomogeneity of the silica glass and the existence of so-called 'preordered states'. This connection between luminescence intensity and the order state is found also with other X-amorphous SiO 2 modifications: silica gel, precipitated silicic acids, porous SiO 2 glasses, aerosil, thin SiO 2 layers, mechanically activated quartz: whereas no luminescence phenomena occur in disordered nearly ideally amorphous SiO 2 species, the luminescence increases with increasing order degree of the SiO 2 network and attains a high intensity in the case of the crystalline SiO 2 modifications quartz and cristobalite

  2. Silicosis and Silica-Induced Autoimmunity in the Diversity Outbred Mouse

    Directory of Open Access Journals (Sweden)

    Jessica M. Mayeux

    2018-04-01

    Full Text Available Epidemiological studies have confidently linked occupational crystalline silica exposure to autoimmunity, but pathogenic mechanisms and role of genetic predisposition remain poorly defined. Although studies of single inbred strains have yielded insights, understanding the relationships between lung pathology, silica-induced autoimmunity, and genetic predisposition will require examination of a broad spectrum of responses and susceptibilities. We defined the characteristics of silicosis and autoimmunity and their relationships using the genetically heterogeneous diversity outbred (DO mouse population and determined the suitability of this model for investigating silica-induced autoimmunity. Clinically relevant lung and autoimmune phenotypes were assessed 12 weeks after a transoral dose of 0, 5, or 10 mg crystalline silica in large cohorts of DO mice. Data were further analyzed for correlations, hierarchical clustering, and sex effects. DO mice exhibited a wide range of responses to silica, including mild to severe silicosis and importantly silica-induced systemic autoimmunity. Strikingly, about half of PBS controls were anti-nuclear antibodies (ANA positive, however, few had disease-associated specificities, whereas most ANAs in silica-exposed mice showed anti-ENA5 reactivity. Correlation and hierarchical clustering showed close association of silicosis, lung biomarkers, and anti-ENA5, while other autoimmune characteristics, such as ANA and glomerulonephritis, clustered separately. Silica-exposed males had more lung inflammation, bronchoalveolar lavage fluid cells, IL-6, and autoantibodies. DO mice are susceptible to both silicosis and silica-induced autoimmunity and show substantial individual variations reflecting their genetic diverseness and the importance of predisposition particularly for autoimmunity. This model provides a new tool for deciphering the relationship between silica exposure, genes, and disease.

  3. Dissolved methane concentration and flux in the coastal zone of the Southern California Bight-Mexican sector: Possible influence of wastewater

    Science.gov (United States)

    We measured dissolved methane concentrations ([CH4]) in the coastal zone of the Southern California Bight-Mexican sector (SCBMex) during two cruises: S1 in the USA–Mexico Border Area (BA) during a short rainstorm and S2 in the entire SCBMex during a drier period a few days later....

  4. Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas.

    Science.gov (United States)

    Liu, Ruili; Shi, Yifeng; Wan, Ying; Meng, Yan; Zhang, Fuqiang; Gu, Dong; Chen, Zhenxia; Tu, Bo; Zhao, Dongyuan

    2006-09-06

    Highly ordered mesoporous polymer-silica and carbon-silica nanocomposites with interpenetrating networks have been successfully synthesized by the evaporation-induced triconstituent co-assembly method, wherein soluble resol polymer is used as an organic precursor, prehydrolyzed TEOS is used as an inorganic precursor, and triblock copolymer F127 is used as a template. It is proposed for the first time that ordered mesoporous nanocomposites have "reinforced concrete"-structured frameworks. By adjusting the initial mass ratios of TEOS to resol, we determined the obtained nanocomposites possess continuous composition with the ratios ranging from zero to infinity for the two constituents that are "homogeneously" dispersed inside the pore walls. The presence of silicates in nanocomposites dramatically inhibits framework shrinkage during the calcination, resulting in highly ordered large-pore mesoporous carbon-silica nanocomposites. Combustion in air or etching in HF solution can remove carbon or silica from the carbon-silica nanocomposites and yield ordered mesoporous pure silica or carbon frameworks. The process generates plenty of small pores in carbon or/and silica pore walls. Ordered mesoporous carbons can then be obtained with large pore sizes of approximately 6.7 nm, pore volumes of approximately 2.0 cm(3)/g, and high surface areas of approximately 2470 m(2)/g. The pore structures and textures can be controlled by varying the sizes and polymerization degrees of two constituent precursors. Accordingly, by simply tuning the aging time of TEOS, ordered mesoporous carbons with evident bimodal pores at 2.6 and 5.8 nm can be synthesized.

  5. Reducing emissions from uranium dissolving

    International Nuclear Information System (INIS)

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO x emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO x fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO x emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO 2 which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered

  6. In situ-growth of silica nanowires in ceramic carbon composites

    Directory of Open Access Journals (Sweden)

    Rahul Kumar

    2017-09-01

    Full Text Available An understanding of the processing and microstructure of ceramic–carbon composites is critical to development of these composites for applications needing electrically conducting, thermal shock resistant ceramic materials. In the present study green compacts of carbon ceramic composites were prepared either by slurry processing or dry powder blending of one or more of the three — clay, glass, alumina and carbon black or graphite. The dried green compacts were sintered at 1400 °C in flowing argon. The ceramic carbon composites except the ones without clay addition showed formation of silica nanowires. The silica nanowire formation was observed in both samples prepared by slip casting and dry powder compaction containing either carbon black or graphite. TEM micrographs showed presence of carbon at the core of the silica nanowires indicating that carbon served the role of a catalyst. Selected area electron diffraction (SAED suggested that the silica nanowires are amorphous. Prior studies have reported formation of silica nanowires from silicon, silica, silicon carbide but this is the first report ever on formation of silica nanowires from clay.

  7. Spectrophotometric determination of silica in water. Low range

    International Nuclear Information System (INIS)

    Acosta L, E.

    1992-07-01

    The spectrophotometric method for the determination of the silica element in water, demineralized water, raw waters, laundry waters, waters treated with ion exchange resins and sea waters is described. This method covers the determination of the silica element in the interval from 20 to 1000 μg/l on 50 ml. of base sample. These limits its can be variable if the size of the used aliquot one is changed for the final determination of the silica element. (Author)

  8. Chemical immobilisation of humic acid on silica

    NARCIS (Netherlands)

    Koopal, L.K.; Yang, Y.; Minnaard, A.J.; Theunissen, P.L.M.; Riemsdijk, W.H. van

    1998-01-01

    Immobilisation of purified Aldrich humic acid (PAHA) on aminopropyl silica and glutaraldehyde-activated aminopropyl silica has been investigated. In general the humic acid is bound to the solid by both physical and chemical bonds. The physically adsorbed HA can be released to a large extent at high

  9. Moessbauer spectroscopic characterisation of catalysts obtained by interaction between tetra-n-butyl-tin and silica or silica supported rhodium

    International Nuclear Information System (INIS)

    Millet, J.M.M.; Toyir, J.; Didillon, B.; Candy, J.P.; Nedez, C.; Basset, J.M.

    1997-01-01

    Moessbauer spectroscopy at 78 K was used to study the interaction between tetra-n-butyl-tin and the surfaces of silica or silica supported rhodium. At room temperature, the tetra-n-butyl-tin was physically adsorbed on the surfaces. After reaction under hydrogen at 373 K, the formation of grafted organometallic fragments on the Rh surface was confirmed whereas with pure silica, ≡SiO-Sn(n-C 4 H 9 ) 3 moieties were observed. After treatment at 523 K, the rhodium grafted organometallic species was completely decomposed and there was formation of a defined bimetallic RhSn compound

  10. Examining the role of shrub expansion and fire in Arctic plant silica cycling

    Science.gov (United States)

    Carey, J.; Fetcher, N.; Parker, T.; Rocha, A. V.; Tang, J.

    2017-12-01

    All terrestrial plants accumulate silica (SiO2) to some degree, although the amount varies by species type, functional group, and environmental conditions. Silica improves overall plant fitness, providing protection from a variety of biotic and abiotic stressors. Plant silica uptake serves to retain silica in terrestrial landscapes, influencing silica export rates from terrestrial to marine systems. These export rates are important because silica is often the limiting nutrient for primary production by phytoplankton in coastal waters. Understanding how terrestrial plant processes influence silica export rates to oceanic systems is of interest on the global scale, but nowhere is this issue more important than in the Arctic, where marine diatoms rely on silica for production in large numbers and terrestrial runoff largely influences marine biogeochemistry. Moreover, the rapid rate of change occurring in the Arctic makes understanding plant silica dynamics timely, although knowledge of plant silica cycling in the region is in its infancy. This work specifically examines how shrub expansion, permafrost thaw, and fire regimes influence plant silica behavior in the Alaskan Arctic. We quantified silica accumulation in above and belowground portions of three main tundra types found in the Arctic (wet sedge, moist acidic, moist non-acidic tundra) and scaled these values to estimate how shrub expansion alters plant silica accumulation rates. Results indicate that shrub expansion via warming will increase silica storage in Arctic land plants due to the higher biomass associated with shrub tundra, whereas conversion of tussock to wet sedge tundra via permafrost thaw would produce the opposite effect in the terrestrial plant BSi pool. We also examined silica behavior in plants exposed to fire, finding that post-fire growth results in elevated plant silica uptake. Such changes in the size of the terrestrial vegetation silica reservoir could have direct consequences for the rates

  11. Molecular Dynamics Simulations of Water Nanodroplets on Silica Surfaces

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.

    2009-01-01

    and DNA microarrays technologies.4,5,6,7,8 Although extensive experimental, theoretical and computational work has been devoted to study the nature of the interaction between silica and water,2,9-16 at the molecular level a complete understanding of silica-water systems has not been reached. Contact angle...... computations of water droplets on silica surfaces offers a useful fundamental and quantitative measurement in order to study chemical and physical properties of water-silica systems.3,16,17,18 For hydrophobic systems the static and dynamic properties of the fluid-solid interface are influenced by the presence...

  12. Transparent Exopolymeric Particles (TEP Selectively Increase Biogenic Silica Dissolution From Fossil Diatoms as Compared to Fresh Diatoms

    Directory of Open Access Journals (Sweden)

    Jordan Toullec

    2018-03-01

    Full Text Available Diatom production is mainly supported by the dissolution of biogenic silica (bSiO2 within the first 200 m of the water column. The upper oceanic layer is enriched in dissolved and/or colloidal organic matter, such as exopolymeric polysaccharides (EPS and transparent exopolymeric particles (TEP excreted by phytoplankton in large amounts, especially at the end of a bloom. In this study we explored for the first time the direct influence of TEP-enriched diatom excretions on bSiO2 dissolution. Twelve dissolution experiments on fresh and fossil diatom frustules were carried out on seawater containing different concentrations of TEP extracted from diatom cultures. Fresh diatom frustules were cleaned from the organic matter by low ash temperature, and fossil diatoms were made from diatomite powder. Results confirm that newly formed bSiO2 dissolved at a faster rate than fossil diatoms due to a lower aluminum (Al content. Diatom excretions have no effect on the dissolution of the newly formed bSiO2 from Chaetoceros muelleri. Reversely, the diatomite specific dissolution rate constant and solubility of the bSiO2 were positively correlated to TEP concentrations, suggesting that diatom excretion may provide an alternative source of dSi when limitations arise.

  13. Critical flux determination by flux-stepping

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2010-01-01

    In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step...... length, step height, and.flux start level. Filtrating 8 kg/m(3) yeast cell suspensions by a vibrating 0.45 x 10(-6) m pore size microfiltration hollow fiber module, critical fluxes from 5.6 x 10(-6) to 1.2 x 10(-5) m/s have been measured using various step lengths from 300 to 1200 seconds. Thus......, such values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...

  14. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions

    Directory of Open Access Journals (Sweden)

    Flávia Bottino

    2016-06-01

    Full Text Available Abstract Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40 °C. Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days. After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic. However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity and carbon release.

  15. Mesoporous silica nanotubes hybrid membranes for functional nanofiltration

    International Nuclear Information System (INIS)

    El-Safty, Sherif A; Shahat, Ahmed; Mekawy, Moataz; Nguyen, Hoa; Warkocki, Wojciech; Ohnuma, Masato

    2010-01-01

    The development of nanofiltration systems would greatly assist in the production of well-defined particles and biomolecules with unique properties. We report a direct, simple synthesis of hexagonal silica nanotubes (NTs), which vertically aligned inside anodic alumina membranes (AAM) by means of a direct templating method of microemulsion phases with cationic surfactants. The direct approach was used as soft templates for predicting ordered assemblies of surfactant/silica composites through strong interactions within AAM pockets. Thus, densely packed NTs were successfully formed in the entirety of the AAM channels. These silica NTs were coated with layers of organic moieties to create a powerful technique for the ultrafine filtration. The resulting modified-silica NTs were chemically robust and showed affinity toward the transport of small molecular particles. The rigid silica NTs inside AAM channels had a pore diameter of ≤ 4 nm and were used as ultrafine filtration systems for noble metal nanoparticles (NM NPs) and semiconductor nanocrystals (SC NCs) fabricated with a wide range of sizes (1.0-50 nm) and spherical/pyramidal morphologies. Moreover, the silica NTs hybrid membranes were also found to be suitable for separation of biomolecules such as cytochrome c (CytC). Importantly, this nanofilter design retains high nanofiltration efficiency of NM NPs, SC NCs and biomolecules after a number of reuse cycles. Such retention is crucial in industrial applications.

  16. Enhanced microcontact printing of proteins on nanoporous silica surface

    Energy Technology Data Exchange (ETDEWEB)

    Blinka, Ellen; Hu Ye; Gopal, Ashwini; Hoshino, Kazunori; Lin, Kevin; Zhang, John X J [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78758 (United States); Loeffler, Kathryn; Liu Xuewu; Ferrari, Mauro, E-mail: John.Zhang@engr.utexas.edu [Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Service, Houston, TX 77031 (United States)

    2010-10-15

    We demonstrate porous silica surface modification, combined with microcontact printing, as an effective method for enhanced protein patterning and adsorption on arbitrary surfaces. Compared to conventional chemical treatments, this approach offers scalability and long-term device stability without requiring complex chemical activation. Two chemical surface treatments using functionalization with the commonly used 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA) were compared with the nanoporous silica surface on the basis of protein adsorption. The deposited thickness and uniformity of porous silica films were evaluated for fluorescein isothiocyanate (FITC)-labeled rabbit immunoglobulin G (R-IgG) protein printed onto the substrates via patterned polydimethlysiloxane (PDMS) stamps. A more complete transfer of proteins was observed on porous silica substrates compared to chemically functionalized substrates. A comparison of different pore sizes (4-6 nm) and porous silica thicknesses (96-200 nm) indicates that porous silica with 4 nm diameter, 57% porosity and a thickness of 96 nm provided a suitable environment for complete transfer of R-IgG proteins. Both fluorescence microscopy and atomic force microscopy (AFM) were used for protein layer characterizations. A porous silica layer is biocompatible, providing a favorable transfer medium with minimal damage to the proteins. A patterned immunoassay microchip was developed to demonstrate the retained protein function after printing on nanoporous surfaces, which enables printable and robust immunoassay detection for point-of-care applications.

  17. Short-term dissolved organic carbon dynamics reflect water management and precipitation patterns in a subtropical estuary

    Directory of Open Access Journals (Sweden)

    Peter Regier

    2016-12-01

    Full Text Available Estuaries significantly impact the global carbon cycle by regulating the exchange of organic matter, primarily in the form of dissolved organic carbon (DOC, between terrestrial and marine carbon pools. Estuarine DOC dynamics are complex as tides and other hydrological and climatic drivers can affect carbon fluxes on short and long time scales. While estuarine and coastal DOC dynamics have been well studied, variations on short time scales are less well constrained. Recent advancements in sonde technology enable autonomous in situ collection of high frequency DOC data using fluorescent dissolved organic matter (fDOM as a proxy, dramatically improving our capacity to characterize rapid changes in DOC, even in remote ecosystems. This study utilizes high-frequency fDOM measurements to untangle rapid and complex hydrologic drivers of DOC in the Shark River estuary, the main drainage of Everglades National Park, Florida. Non-conservative mixing of fDOM along the salinity gradient suggested mangrove inputs accounted for 6% of the total DOC pool. Average changes in fDOM concentrations through individual tidal cycles ranged from less than 10% to greater than 50% and multi-day trends greater than 100% change in fDOM concentration were observed. Salinity and water level both inversely correlated to fDOM at sub-hourly and daily resolutions, while freshwater controls via precipitation and water management were observed at diel to monthly time-scales. In particular, the role of water management in rapidly shifting estuarine salinity gradients and DOC export regimes at sub-weekly time-scales was evident. Additionally, sub-hourly spikes in ebb-tide fDOM indicated rapid exchange of DOC between mangrove sediments and the river channel. DOC fluxes calculated from high-resolution fDOM measurements were compared to monthly DOC measurements with high-resolution fluxes considerably improving accuracy of fluxes (thereby constraining carbon budgets. This study provides

  18. Retrogressive thaw slumps temper dissolved organic carbon delivery to streams of the Peel Plateau, NWT, Canada

    Science.gov (United States)

    Littlefair, Cara A.; Tank, Suzanne E.; Kokelj, Steven V.

    2017-12-01

    In Siberia and Alaska, permafrost thaw has been associated with significant increases in the delivery of dissolved organic carbon (DOC) to recipient stream ecosystems. Here, we examine the effect of retrogressive thaw slumps (RTSs) on DOC concentration and transport, using data from eight RTS features on the Peel Plateau, NWT, Canada. Like extensive regions of northwestern Canada, the Peel Plateau is comprised of thick, ice-rich tills that were deposited at the margins of the Laurentide Ice Sheet. RTS features are now widespread in this region, with headwall exposures up to 30 m high and total disturbed areas often exceeding 20 ha. We find that intensive slumping on the Peel Plateau is universally associated with decreasing DOC concentrations downstream of slumps, even though the composition of slump-derived dissolved organic matter (DOM; assessed using specific UV absorbance and slope ratios) is similar to permafrost-derived DOM from other regions. Comparisons of upstream and downstream DOC flux relative to fluxes of total suspended solids suggest that the substantial fine-grained sediments released by RTS features may sequester DOC. Runoff obtained directly from slump rill water, above entry into recipient streams, indicates that the deepest RTS features, which thaw the greatest extent of buried, Pleistocene-aged glacial tills, release low-concentration DOC when compared to paired upstream, undisturbed locations, while shallower features, with exposures that are more limited to a relict Holocene active layer, have within-slump DOC concentrations more similar to upstream sites. Finally, fine-scale work at a single RTS site indicates that temperature and precipitation serve as primary environmental controls on above-slump and below-slump DOC flux, but it also shows that the relationship between climatic parameters and DOC flux is complex for these dynamic thermokarst features. These results demonstrate that we should expect clear variation in thermokarst

  19. Retrogressive thaw slumps temper dissolved organic carbon delivery to streams of the Peel Plateau, NWT, Canada

    Directory of Open Access Journals (Sweden)

    C. A. Littlefair

    2017-12-01

    Full Text Available In Siberia and Alaska, permafrost thaw has been associated with significant increases in the delivery of dissolved organic carbon (DOC to recipient stream ecosystems. Here, we examine the effect of retrogressive thaw slumps (RTSs on DOC concentration and transport, using data from eight RTS features on the Peel Plateau, NWT, Canada. Like extensive regions of northwestern Canada, the Peel Plateau is comprised of thick, ice-rich tills that were deposited at the margins of the Laurentide Ice Sheet. RTS features are now widespread in this region, with headwall exposures up to 30 m high and total disturbed areas often exceeding 20 ha. We find that intensive slumping on the Peel Plateau is universally associated with decreasing DOC concentrations downstream of slumps, even though the composition of slump-derived dissolved organic matter (DOM; assessed using specific UV absorbance and slope ratios is similar to permafrost-derived DOM from other regions. Comparisons of upstream and downstream DOC flux relative to fluxes of total suspended solids suggest that the substantial fine-grained sediments released by RTS features may sequester DOC. Runoff obtained directly from slump rill water, above entry into recipient streams, indicates that the deepest RTS features, which thaw the greatest extent of buried, Pleistocene-aged glacial tills, release low-concentration DOC when compared to paired upstream, undisturbed locations, while shallower features, with exposures that are more limited to a relict Holocene active layer, have within-slump DOC concentrations more similar to upstream sites. Finally, fine-scale work at a single RTS site indicates that temperature and precipitation serve as primary environmental controls on above-slump and below-slump DOC flux, but it also shows that the relationship between climatic parameters and DOC flux is complex for these dynamic thermokarst features. These results demonstrate that we should expect clear variation in

  20. Preparation and characterization of rice hull silica products

    International Nuclear Information System (INIS)

    Quirit, Leni L.; Llaguno, Elma C.; Pagdanganan, Fernando C.; Hernandez, Karen N.

    2008-01-01

    Rice hull is an abundant agricultural waste material which could be a renewable energy source when combusted. The combustion residue (called rice hull ash or RHA) contains a significant amount (20% of the hull) of potentially high grade silica. Silica gels prepared from rice hull were found to have properties comparable to two commercial desiccant silica gels (Blue Merck and FNG-A) in terms of chemical and amorphous structure, surface area, desiccant characteristics, microstructure and heats of adsorption. These properties were determined from water vapor adsorption measurements, electron microscopy, and from infrared and x-ray diffraction spectra. The acid treated rice hull gels were found to have fewer elemental impurities detected by qualitative x-ray fluorescence, compared to the commercial gels. Thermogravimetric analysis (TGA) data showed that this technique can also be used to indirectly compare impurity levels in the samples, in terms of the amorphous to crystalline phase transition. Using an improved acid treatment method, a silica gel sample was prepared from rice hull and compared to three commercial chromatographic silica gels using quantitative elemental x-ray fluorescence analysis. Elemental levels in the rice hull gel were within the range of levels or close to the detection limits of corresponding elements in the chromatographic gels. Water vapor adsorption, x-ray diffraction, infrared spectroscopy and scanning electron microscopy showed that the rice hull gel was similar to the commercial chromatographic silica gel Davison 12. Zeolites are crystalline aluminosilicates used as molecular sieves for purification and catalytic purposes. Zeolites X and Y were synthesized from rice hull silica gel and aluminum hydroxide. For comparison, controls were synthesized from commercial silica gel. The samples and controls exhibited characteristics infrared peaks corresponding to the vibrations of the TO 4 (T=Si, Al) of the zeolite framework. The x

  1. A comprehensive biogeochemical record and annual flux estimates for the Sabaki River (Kenya)

    Science.gov (United States)

    Marwick, Trent R.; Tamooh, Fredrick; Ogwoka, Bernard; Borges, Alberto V.; Darchambeau, François; Bouillon, Steven

    2018-03-01

    Inland waters impart considerable influence on nutrient cycling and budget estimates across local, regional and global scales, whilst anthropogenic pressures, such as rising populations and the appropriation of land and water resources, are undoubtedly modulating the flux of carbon (C), nitrogen (N) and phosphorus (P) between terrestrial biomes to inland waters, and the subsequent flux of these nutrients to the marine and atmospheric domains. Here, we present a 2-year biogeochemical record (October 2011-December 2013) at biweekly sampling resolution for the lower Sabaki River, Kenya, and provide estimates for suspended sediment and nutrient export fluxes from the lower Sabaki River under pre-dam conditions, and in light of the approved construction of the Thwake Multipurpose Dam on its upper reaches (Athi River). Erratic seasonal variation was typical for most parameters, with generally poor correlation between discharge and material concentrations, and stable isotope values of C (δ13C) and N (δ15N). Although high total suspended matter (TSM) concentrations are reported here (up to ˜ 3.8 g L-1), peak concentrations of TSM rarely coincided with peak discharge. The contribution of particulate organic C (POC) to the TSM pool indicates a wide biannual variation in suspended sediment load from OC poor (0.3 %) to OC rich (14.9 %), with the highest %POC occurring when discharge is Wet season flows (October-December and March-May) carried > 80 % of the total load for TSM (˜ 86 %), POC (˜ 89 %), dissolved organic carbon (DOC; ˜ 81 %), PN (˜ 89 %) and particulate phosphorus (TPP; ˜ 82 %), with > 50 % of each fraction exported during the long wet season (March-May). Our estimated sediment yield (85 Mg km-2 yr-1) is relatively low on the global scale and is considerably less than the recently reported average sediment yield of ˜ 630 Mg km-2 yr-1 for African river basins. Regardless, sediment and OC yields were all at least equivalent or greater than reported yields

  2. A technique for determining fast and thermal neutron flux densities in intense high-energy (8-30 MeV) photon fields

    International Nuclear Information System (INIS)

    Price, K.W.; Holeman, G.R.; Nath, R.

    1978-01-01

    A technique for measuring fast and thermal neutron fluxes in intense high-energy photon fields has been developed. Samples of phorphorous pentoxide are exposed to a mixed photon-neutron field. The irradiated samples are then dissolved in distilled water and their activation products are counted in a liquid scintillation spectrometer at 95-97% efficiency. The radioactive decay characteristics of the samples are then analyzed to determine fast and thermal neutron fluxes. Sensitivity of this neutron detector to high energy photons has been measured and found to be small. (author)

  3. The potential use of silica sand as nanomaterials for mortar

    Science.gov (United States)

    Setiati, N. Retno

    2017-11-01

    The development of nanotechnology is currently experiencing rapid growth. The use of the term nanotechnology is widely applied in areas such as healthcare, industrial, pharmaceutical, informatics, or construction. By the nanotechnology in the field of concrete construction, especially the mechanical properties of concrete are expected to be better than conventional concrete. This study aims to determine the effect of the potential of silica sand as a nanomaterial that is added into the concrete mix The methodology used consist of nanomaterial synthesis process of silica sand using Liquid Polishing Milling Technology (PLMT). The XRF and XRD testing were conducted to determine the composition of silica contained in the silica sand and the level of reactivity of the compound when added into the concrete mix. To determine the effect of nano silica on mortar, then made the specimen with size 50 mm x 50 mm x 50 mm. The composition of mortar is made in two variations, ie by the addition of 3% nano silica and without the addition of nanosilica. To know the mechanical properties of mortar, it is done testing of mortar compressive strength at the age of 28 days. Based on the analysis and evaluation, it is shown that compounds of silica sand in Indonesia, especially Papua reached more than 99% SiO2 and so that the amorphous character of silica sand can be used as a nanomaterial for concrete construction. The results of mechanical tests show that there is an increase of 12% compressive strength of mortar that is added with 3% nano silica.

  4. Adsorption of benzyldimethylhexadecylammonium chloride at the hydrophobic silica-water interface studied by total internal reflection Raman spectroscopy: effects of silica surface properties and metal salt addition.

    Science.gov (United States)

    Grenoble, Zlata; Baldelli, Steven

    2013-08-29

    The adsorption of the cationic surfactant benzyldimethylhexadecylammonium (BDMHA(+)) chloride was studied at an octadecyltrichlorosilane (OTS)-monolayer-modified silica-water interface by Raman spectroscopy in total internal reflection (TIR) geometry. The present study demonstrates the capabilities of this spectroscopic technique to evaluate thermodynamic and kinetic BDMHA(+)Cl(-) adsorption properties at the hydrophobic silica surface. The surface coverage of BDMHA(+) decreased by 50% at the hydrophobic OTS-silica surface relative to the surface coverage on bare silica; the dominating driving mechanisms for surfactant adsorption were identified as hydrophobic effects and head group charge screening by the electrolyte counterions. Addition of magnesium metal salt (MgCl2) to the aqueous solution (∼ neutral pH) lowered the surface coverage and moderately increased the Langmuir adsorption constants relative to those of the pure surfactant. These trends were previously observed at the hydrophilic, negatively charged silica surface but with a smaller change in the Gibbs free energy of adsorption at the hydrophobic silica surface. The hydrophobic OTS-silica surface properties resulted in shorter times for the surfactant to reach steady-state adsorption conditions compared to the slow adsorption kinetics previously seen with the surfactant at the hydrophilic surface. Adsorption isotherms, based on Raman signal intensities from spectral analysis, were developed according to the Langmuir adsorption model for the pure surfactant at the OTS-silica-water interface; the modified Langmuir model was applied to the surfactant adsorption in the presence of 5, 10, 50, and 100 mM magnesium chloride. Spectral analysis of the Raman scattering intensities and geometric considerations suggests a hemimicelle-type surface aggregate as the most likely surfactant structure at the OTS-silica surface. The different kinetics observed at the hydrophilic versus the hydrophobic silica surface

  5. Preparation and Characterization of Silica/Polyamide-imide Nanocomposite Thin Films

    Directory of Open Access Journals (Sweden)

    Hwang Jong-Sun

    2010-01-01

    Full Text Available Abstract The functional silica/polyamide-imide composite films were prepared via simple ultrasonic blending, after the silica nanoparticles were modified by cationic surfactant—cetyltrimethyl ammonium bromide (CTAB. The composite films were characterized by scanning electron microscope (SEM, thermo gravimetric analysis (TGA and thermomechanical analysis (TMA. CTAB-modified silica nanoparticles were well dispersed in the polyamide-imide matrix, and the amount of silica nanoparticles to PAI was investigated to be from 2 to 10 wt%. Especially, the coefficients of thermal expansion (CET continuously decreased with the amount of silica particles increasing. The high thermal stability and low coefficient of thermal expansion showed that the nanocomposite films can be widely used in the enamel wire industry.

  6. Experimental Investigation of Charging Properties of Interstellar Type Silica Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2013-01-01

    The dust charging by electron impact is an important dust charging processes in astrophysical and planetary environments. Incident low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grains, leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available classical theoretical models for calculations of SEE yields are generally applicable for neutral, planar, or bulk surfaces. These models, however, are not valid for calculations of the electron impact charging properties of electrostatically charged micron/submicron-size dust grains in astrophysical environments. Rigorous quantum mechanical models are not yet available, and the SEE yields have to be determined experimentally for development of more accurate models for charging of individual dust grains. At the present time, very limited experimental data are available for charging of individual micron-size dust grains, particularly for low energy electron impact. The experimental results on individual, positively charged, micron-size lunar dust grains levitated carried out by us in a unique facility at NASA-MSFC, based on an electrodynamic balance, indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (Abbas et al, 2010, 2012). In this paper, we discuss SEE charging properties of individual micron-size silica microspheres that are believed to be analogs of a class of interstellar dust grains. The measurements indicate charging of the 0.2m silica particles when exposed to 25 eV electron beams and discharging when exposed to higher energy electron beams. Relatively large size silica particles (5.2-6.82m) generally discharge to lower equilibrium potentials at both electron energies

  7. Obtaining high purity silica from rice hulls

    Directory of Open Access Journals (Sweden)

    José da Silva Júnior

    2010-01-01

    Full Text Available Many routes for extracting silica from rice hulls are based on direct calcining. These methods, though, often produce silica contaminated with inorganic impurities. This work presents the study of a strategy for obtaining silica from rice hulls with a purity level adequate for applications in electronics. The technique is based on two leaching steps, using respectively aqua regia and Piranha solutions, which extract the organic matrix and inorganic impurities. The material was characterized by Fourier-transform infrared spectroscopy (FTIR, powder x-ray diffraction (XRD, x-ray fluorescence (XRF, scanning electron microscopy (SEM, particle size analysis by laser diffraction (LPSA and thermal analysis.

  8. Method of dissolving metal ruthenium

    International Nuclear Information System (INIS)

    Tsuno, Masao; Soda, Yasuhiko; Kuroda, Sadaomi; Koga, Tadaaki.

    1988-01-01

    Purpose: To dissolve and clean metal ruthenium deposited to the inner surface of a dissolving vessel for spent fuel rods. Method: Metal ruthenium is dissolved in a solution of an alkali metal hydroxide to which potassium permanganate is added. As the alkali metal hydroxide used herein there can be mentioned potassium hydroxide, sodium hydroxide and lithium hydroxide can be mentioned, which is used as an aqueous solution from 5 to 20 % concentration in view of the solubility of metal ruthenium and economical merit. Further, potassium permanganate is used by adding to the solution of alkali metal hydroxide at a concentration of 1 to 5 %. (Yoshihara, H.)

  9. Inundation and Gas Fluxes from Amazon Lakes and Wetlands

    Science.gov (United States)

    Melack, J. M.; MacIntyre, S.; Forsberg, B. R.; Amaral, J. H.; Barbosa, P.

    2015-12-01

    Inundation areas and wetland habitats for the lowland Amazon basin derived remote sensing with synthetic aperture radar are combined with measurements of greenhouse gas evasion derived from field measurements and new formulations of atmosphere-water. On-going field studies in representative aquatic habitats on the central Amazon floodplain are combining monthly measurements of carbon dioxide and methane concentrations and fluxes to the atmosphere with deployment of meteorological sensors and high-resolution thermistors and optical dissolved oxygen sensors. A real-time cavity ringdown spectrometer is being used to determine the gas concentrations; vertical profiles were obtained by using an equilibrator to extract gases from water, and floating chambers are used to assess fluxes. Gas fluxes varied as a function of season, habitat and water depth. Greatest carbon dioxide fluxes occurred during high and falling water levels. During low water, periods with high chlorophyll, indicative of phytoplankton, the flux of carbon dioxide switched from being emitted from the lake to being taken-up by the lake some of the time. The highest pCO2 concentration (5500 μatm) was about three times higher than the median (1700 μatm). Higher CO2 fluxes were observed in open water than in areas with flooded or floating vegetation. In contrast, methane fluxes were higher in vegetated regions. We measured turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. Comparison of these measurements with those calculated from meteorological and time series measurements validated new equations for turbulent kinetic energy dissipation (TKE) rates during moderate winds and cooling and illustrated that the highest dissipation rates occurred under heating. Measured gas exchange coefficients (k600) were similar to those based on the TKE dissipation rates and are well described using the surface renewal model. These k values are several times higher than

  10. Optical constants of quartz, vitreous silica and neutron-irradiated vitreous silica. II. Analysis of the infrared spectrum of vitreous silica

    Energy Technology Data Exchange (ETDEWEB)

    Gaskell, P H [Cambridge Univ. (UK). Cavendish Lab.; Johnson, D W [Pilkington Research and Development Laboratories, Lathom, nr. Ormskirk, Lancashire, UK

    1976-03-01

    Optical constant data for vitreous silica and neutron-irradiated vitreous silica, given in part I are examined in an attempt to gain further knowledge of the structure of the glass. Strong features of the spectrum can be described by band broadening parameters, which are calculated using an extension of the Wilson GF matrix method, and are shown to be quantitatively related to the distribution of Si-O distances and oxygen bond angles obtained from X-ray scattering data. The approximation commonly used to generate the optically active vibrational spectra of glasses, namely to form the product of the vibrational density of states function and a weakly frequency-dependent intensity factor gives a relatively poor representation of the experimental spectrum. The magnitude of 'disorder-induced' absorption in regions well away from the major bands is semi-quantitatively estimated by subtracting the contributions of the major bands. Interpretation of some of the features of this difference spectrum is possible in terms of vibrations of nonbridging oxygen atoms, but if this interpretation is correct, it is necessary to postulate clustering of 'dangling' oxygen atoms, which would not be consistent with a random network model for the structure. An alternative explanation, that the vibrations are framework modes, leads to the conclusion that the preferred configuration in vitreous silica resembles the arrangement of silicon-oxygen tetrahedra in cristobalite.

  11. Silica gel matrix immobilized Chlorophyta hydrodictyon africanum ...

    African Journals Online (AJOL)

    Chlorophyta hydrodictyon africanum was immobilized on a silica gel matrix to improve its mechanical properties. The algae-silica gel adsorbent was used for batch sorption studies of a cationic dye, methylene blue (MB). Optimum adsorption was obtained with a dosage of 0.8 g bio sorbent. Results from sorption studies ...

  12. What Is Crystalline Silica?

    Science.gov (United States)

    ... and ceramic manufacturing and the tool and die, steel and foundry industries. Crystalline silica is used in manufacturing, household abrasives, adhesives, paints, soaps, and glass. Additionally, ...

  13. Chronic obstructive pulmonary disease and occupational exposure to silica.

    Science.gov (United States)

    Rushton, Lesley

    2007-01-01

    Prolonged exposure to high levels of silica has long been known to cause silicosis This paper evaluates the evidence for an increased risk of chronic obstructive pulmonary disease (COPD) in occupations and industries in which exposure to crystalline silica is the primary exposure, with a focus on the magnitude of risks and levels of exposure causing disabling health effects. The literature suggests consistently elevated risks of developing COPD associated with silica exposure in several occupations, including the construction industry; tunneling; cement industry; brick manufacturing; pottery and ceramic work; silica sand, granite and diatomaceous earth industries; gold mining; and iron and steel founding, with risk estimates being high in some, even after taking into account the effect of confounders like smoking. Average dust levels vary from about 0.5 mg.m3 to over 10 mg.m3 and average silica levels from 0.04 to over 5 mg.m3, often well above occupational standards. Factors influencing the variation from industry to industry in risks associated with exposure to silica-containing dusts include (a) the presence of other minerals in the dust, particularly when associated with clay minerals; (b) the size of the particles and percentage of quartz; (c) the physicochemical characteristics, such as whether the dust is freshly fractured. Longitudinal studies suggest that loss of lung function occurs with exposure to silica dust at concentrations of between 0.1 and 0.2 mg.m3, and that the effect of cumulative silica dust exposure on airflow obstruction is independent of silicosis. Nevertheless, a disabling loss of lung function in the absence of silicosis would not occur until between 30 and 40 years exposure.

  14. Solid-state 29Si NMR and FTIR analyses of lignin-silica coprecipitates

    DEFF Research Database (Denmark)

    Cabrera Orozco, Yohanna; Cabrera, Andrés; Larsen, Flemming Hofmann

    2016-01-01

    When agricultural residues are processed to ethanol, lignin and silica are some of the main byproducts. Separation of these two products is difficult and the chemical interactions between lignin and silica are not well described. In the present study, the effect of lignin-silica complexing has been...... investigated by characterizing lignin and silica coprecipitates by FTIR and solid state NMR. Silica particles were coprecipitated with three different lignins, three lignin model compounds, and two silanes representing silica-in-lignin model compounds. Comparison of 29Si SP/MAS NMR spectra revealed differences...

  15. Characterization of the adsorption of water vapor and chlorine on microcrystalline silica

    Science.gov (United States)

    Skiles, J. A.; Wightman, J. P.

    1979-01-01

    The characterization of water adsorption on silica is necessary to an understanding of how hydrogen chloride interacts with silica. The adsorption as a function of outgas temperatures of silica and as a function of the isotherm temperature was studied. Characterization of the silica structure by infrared analysis, X-ray diffraction and differential scanning calorimetry, surface area determinations, characterization of the sample surface by electron spectroscopy for chemical analysis (ESCA), and determinations of the heat of immersion in water of silica were investigated. The silica with a scanning electron microscope was examined.

  16. Uniform silica nanoparticles encapsulating two-photon absorbing fluorescent dye

    International Nuclear Information System (INIS)

    Wu Weibing; Liu Chang; Wang Mingliang; Huang Wei; Zhou Shengrui; Jiang Wei; Sun Yueming; Cui Yiping; Xu Chunxinag

    2009-01-01

    We have prepared uniform silica nanoparticles (NPs) doped with a two-photon absorbing zwitterionic hemicyanine dye by reverse microemulsion method. Obvious solvatochromism on the absorption spectra of dye-doped NPs indicates that solvents can partly penetrate into the silica matrix and then affect the ground and excited state of dye molecules. For dye-doped NP suspensions, both one-photon and two-photon excited fluorescence are much stronger and recorded at shorter wavelength compared to those of free dye solutions with comparative overall dye concentration. This behavior is possibly attributed to the restricted twisted intramolecular charge transfer (TICT), which reduces fluorescence quenching when dye molecules are trapped in the silica matrix. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells with low cytotoxicity. - Graphical abstract: Water-soluble silica NPs doped with a two-photon absorbing zwitterionic hemicyanine dye were prepared. They were found of enhanced one-photon and two-photon excited fluorescence compared to free dye solutions. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells.

  17. One-step synthesis of dye-incorporated porous silica particles

    Energy Technology Data Exchange (ETDEWEB)

    Liu Qing; DeShong, Philip; Zachariah, Michael R., E-mail: mrz@umd.edu [University of Maryland, Department of Chemistry and Biochemistry (United States)

    2012-07-15

    Fluorescent nanoparticles have a variety of biomedical applications as diagnostics and traceable drug delivery agents. Highly fluorescent porous silica nanoparticles were synthesized in a water/oil phase by a microemulsion method. What is unique about the resulting porous silica nanoparticles is the combination of a single-step, efficient synthesis and the high stability of its fluorescence emission in the resulting materials. The key of the success of this approach is the choice of a lipid dye that functions as a surrogate surfactant in the preparation. The surfactant dye was incorporated at the interface of the inorganic silica matrix and organic environment (pore template), and thus insures the stability of the dye-silica hybrid structure. The resulting fluorescent silica materials have a number of properties that make them attractive for biomedical applications: the availability of various color of the resulting nanoparticle from among a broad spectrum of commercially dyes, the controllablity of pore size (diameters of {approx}5 nm) and particle size (diameters of {approx}40 nm) by adjusting template monomer concentration and the water/oil ratio, and the stability and durability of particle fluorescence because of the deep insertion of surfactant's tail into the silica matrix.

  18. Molecular Organization Induced Anisotropic Properties of Perylene - Silica Hybrid Nanoparticles.

    Science.gov (United States)

    Sriramulu, Deepa; Turaga, Shuvan Prashant; Bettiol, Andrew Anthony; Valiyaveettil, Suresh

    2017-08-10

    Optically active silica nanoparticles are interesting owing to high stability and easy accessibility. Unlike previous reports on dye loaded silica particles, here we address an important question on how optical properties are dependent on the aggregation-induced segregation of perylene molecules inside and outside the silica nanoparticles. Three differentially functionalized fluorescent perylene - silica hybrid nanoparticles are prepared from appropriate ratios of perylene derivatives and tetraethyl orthosilicate (TEOS) and investigated the structure property correlation (P-ST, P-NP and P-SF). The particles differ from each other on the distribution, organization and intermolecular interaction of perylene inside or outside the silica matrix. Structure and morphology of all hybrid nanoparticles were characterized using a range of techniques such as electron microscope, optical spectroscopic measurements and thermal analysis. The organizations of perylene in three different silica nanoparticles were explored using steady-state fluorescence, fluorescence anisotropy, lifetime measurements and solid state polarized spectroscopic studies. The interactions and changes in optical properties of the silica nanoparticles in presence of different amines were tested and quantified both in solution and in vapor phase using fluorescence quenching studies. The synthesized materials can be regenerated after washing with water and reused for sensing of amines.

  19. Tailoring silver nanoparticle construction using dendrimer templated silica networks

    International Nuclear Information System (INIS)

    Liu Xiaojun; Kakkar, Ashok

    2008-01-01

    We have examined the role of the internal environment of dendrimer templated silica networks in tailoring the construction of silver nanoparticle assemblies. Silica networks from which 3,5-dihydroxybenzyl alcohol based dendrimer templates have been completely removed, slowly wet with an aqueous solution of silver acetate. The latter then reacts with internal silica silanol groups, leading to chemisorption of silver ions, followed by the growth of silver oxide nanoparticles. Silica network constructed using generation 4 dendrimer contains residual dendrimer template, and mixes with aqueous silver acetate solution easily. Upon chemisorption, silver ions get photolytically reduced to silver metal under a stabilizing dendrimer environment, leading to the formation of silver metal nanoparticles

  20. Distinct metamorphic evolution of alternating silica-saturated and silica-deficient microdomains within garnet in ultrahigh-temperature granulites: An example from Sri Lanka

    Directory of Open Access Journals (Sweden)

    P.L. Dharmapriya

    2017-09-01

    Full Text Available Here we report the occurrence of garnet porphyroblasts that have overgrown alternating silica-saturated and silica deficient microdomains via different mineral reactions. The samples were collected from ultrahigh-temperature (UHT metapelites in the Highland Complex, Sri Lanka. In some of the metapelites, garnet crystals have cores formed via a dehydration reaction, which had taken place at silica-saturated microdomains and mantle to rim areas formed via a dehydration reaction at silica-deficient microdomains. In contrast, some other garnets in the same rock cores had formed via a dehydration reaction which occurred at silica-deficient microdomains while mantle to rim areas formed via a dehydration reaction at silica-saturated microdomains. Based on the textural observations, we conclude that the studied garnets have grown across different effective bulk compositional microdomains during the prograde evolution. These microdomains could represent heterogeneous compositional layers (paleobedding/laminations in the precursor sediments or differentiated crenulation cleavages that existed during prograde metamorphism. UHT metamorphism associated with strong ductile deformation, metamorphic differentiation and crystallization of locally produced melt may have obliterated the evidence for such microdomains in the matrix. The lack of significant compositional zoning in garnet probably due to self-diffusion during UHT metamorphism had left mineral inclusions as the sole evidence for earlier microdomains with contrasting chemistry.

  1. Methane flux to the atmosphere from the Deepwater Horizon oil disaster

    Science.gov (United States)

    Yvon-Lewis, Shari A.; Hu, Lei; Kessler, John

    2011-01-01

    The sea-to-air flux of methane from the blowout at the Deepwater Horizon was measured with substantial spatial and temporal resolution over the course of seven days in June 2010. Air and water concentrations were analyzed continuously from a flowing air line and a continuously flowing seawater equilibrator using cavity ring-down spectrometers (CRDS) and a gas chromatograph with a flame ionization detector (GC-FID). The results indicate a low flux of methane to the atmosphere (0.024 μmol m-2 d-1) with atmospheric and seawater equilibrium mixing ratios averaging 1.86 ppm and 2.85 ppm, respectively within the survey area. The oil leak, which was estimated to contain 30.2% methane by weight, was not a significant source of methane to the atmosphere during this study. Most of the methane emitted from the wellhead was dissolved in the deep ocean.

  2. Pan-arctic trends in terrestrial dissolved organic matter from optical measurements

    Directory of Open Access Journals (Sweden)

    Paul James Mann

    2016-03-01

    Full Text Available Climate change is causing extensive warming across arctic regions resulting in permafrost degradation, alterations to regional hydrology, and shifting amounts and composition of dissolved organic matter (DOM transported by streams and rivers. Here, we characterize the DOM composition and optical properties of the six largest arctic rivers draining into the Arctic Ocean to examine the ability of optical measurements to provide meaningful insights into terrigenous carbon export patterns and biogeochemical cycling. The chemical composition of aquatic DOM varied with season, spring months were typified by highest lignin phenol and dissolved organic carbon (DOC concentrations with greater hydrophobic acid content, and lower proportions of hydrophilic compounds, relative to summer and winter months. Chromophoric DOM (CDOM spectral slope (S275-295 tracked seasonal shifts in DOM composition across river basins. Fluorescence and parallel factor analysis identified seven components across the six Arctic rivers. The ratios of ‘terrestrial humic-like’ versus ‘marine humic-like’ fluorescent components co-varied with lignin monomer ratios over summer and winter months, suggesting fluorescence may provide information on the age and degradation state of riverine DOM. CDOM absorbance (a350 proved a sensitive proxy for lignin phenol concentrations across all six river basins and over the hydrograph, enabling for the first time the development of a single pan-arctic relationship between a350 and terrigenous DOC (R2 = 0.93. Combining this lignin proxy with high-resolution monitoring of a350, pan-arctic estimates of annual lignin flux were calculated to range from 156 to 185 Gg, resulting in shorter and more constrained estimates of terrigenous DOM residence times in the Arctic Ocean (spanning 7 months to 2½ years. Furthermore, multiple linear regression models incorporating both absorbance and fluorescence variables proved capable of explaining much of the

  3. Pan-arctic trends in terrestrial dissolved organic matter from optical measurements

    Science.gov (United States)

    Mann, Paul; Spencer, Robert; Hernes, Peter; Six, Johan; Aiken, George; Tank, Suzanne; McClelland, James; Butler, Kenna; Dyda, Rachael; Holmes, Robert

    2016-03-01

    Climate change is causing extensive warming across arctic regions resulting in permafrost degradation, alterations to regional hydrology, and shifting amounts and composition of dissolved organic matter (DOM) transported by streams and rivers. Here, we characterize the DOM composition and optical properties of the six largest arctic rivers draining into the Arctic Ocean to examine the ability of optical measurements to provide meaningful insights into terrigenous carbon export patterns and biogeochemical cycling. The chemical composition of aquatic DOM varied with season, spring months were typified by highest lignin phenol and dissolved organic carbon (DOC) concentrations with greater hydrophobic acid content, and lower proportions of hydrophilic compounds, relative to summer and winter months. Chromophoric DOM (CDOM) spectral slope (S275-295) tracked seasonal shifts in DOM composition across river basins. Fluorescence and parallel factor analysis identified seven components across the six Arctic rivers. The ratios of 'terrestrial humic-like' versus 'marine humic-like' fluorescent components co-varied with lignin monomer ratios over summer and winter months, suggesting fluorescence may provide information on the age and degradation state of riverine DOM. CDOM absorbance (a350) proved a sensitive proxy for lignin phenol concentrations across all six river basins and over the hydrograph, enabling for the first time the development of a single pan-arctic relationship between a350 and terrigenous DOC (R2 = 0.93). Combining this lignin proxy with high-resolution monitoring of a350, pan-arctic estimates of annual lignin flux were calculated to range from 156 to 185 Gg, resulting in shorter and more constrained estimates of terrigenous DOM residence times in the Arctic Ocean (spanning 7 months to 2½ years). Furthermore, multiple linear regression models incorporating both absorbance and fluorescence variables proved capable of explaining much of the variability in

  4. Fluxes of dissolved organic carbon and nitrogen to the northern Indian Ocean from the Indian monsoonal rivers

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, M.S.; Prasad, V.R.; Sarma, V.V.S.S.; Reddy, N.P.C.; Hemalatha, K.P.J.; Rao, Y.V.

    normalized fluxes of DOC and DON were found to be higher in the estuaries located in the southwestern than the estuaries from other regions of India. It was attributed to relatively higher soil organic carbon, biomass carbon, and heavy rainfall in catchment...

  5. Multifunctional Silica Nanoparticles Modified via Silylated-Decaborate Precursors

    Directory of Open Access Journals (Sweden)

    Fatima Abi-Ghaida

    2015-01-01

    Full Text Available A new class of multifunctional silica nanoparticles carrying boron clusters (10-vertex closo-decaborate and incorporating luminescent centers (fluorescein has been developed as potential probes/carriers for potential application in boron neutron capture therapy (BNCT. These silica nanoparticles were charged in situ with silylated-fluorescein fluorophores via the Stöber method and their surface was further functionalized with decaborate-triethoxysilane precursors. The resulting decaborate dye-doped silica nanoparticles were characterized by TEM, solid state NMR, DLS, nitrogen sorption, elemental analysis, and fluorescence spectroscopy.

  6. Electrodeposition of zinc–silica composite coatings: challenges in incorporating functionalized silica particles into a zinc matrix

    Directory of Open Access Journals (Sweden)

    Tabrisur Rahman Khan, Andreas Erbe, Michael Auinger, Frank Marlow and Michael Rohwerder

    2011-01-01

    Full Text Available Zinc is a well-known sacrificial coating material for iron and co-deposition of suitable particles is of interest for further improving its corrosion protection performance. However, incorporation of particles that are well dispersible in aqueous electrolytes, such as silica particles, is extremely difficult. Here, we report a detailed study of Zn–SiO2 nanocomposite coatings deposited from a zinc sulfate solution at pH 3. The effect of functionalization of the silica particles on the electro-codeposition was investigated. The best incorporation was achieved for particles modified with SiO2–SH, dithiooxamide or cysteamine; these particles have functional groups that can strongly interact with zinc and therefore incorporate well into the metal matrix. Other modifications (SiO2–NH3+, SiO2–Cl and N,N-dimethyldodecylamine of the silica particles lead to adsorption and entrapment only.

  7. Sulphide fluxes and concentrations in the spent nuclear fuel repository at Olkiluoto

    International Nuclear Information System (INIS)

    Wersin, P.; Alt-Epping, P.; Pitkaenen, P.

    2014-01-01

    Sulphide may act as corrodant for the copper canister in the KBS-3 disposal concept. Sulphide fluxes at repository level are affected by various sources in the host rock, the backfill and the buffer. Hydrogen sulphide is effectively immobilised by Fe to form insoluble iron sulphide minerals. Thus, dissolved sulphide levels in reducing environment and also in Olkiluoto groundwaters are generally low. In zones favourable for sulphate reducing bacteria (SRB), however, temporarily more elevated sulphide concentrations are possible. The sulphate reduction and subsequent iron sulphide precipitation process depends on geochemical conditions, microbial activity and mass transfer of the reactants and is thus highly system-specific. The overall objective of the work presented in this report is to provide a thorough background for the sulphide concentrations and sulphide fluxes in the near field and the far field used in the performance assessment 2012

  8. Cr3+ and Cr4+ luminescence in glass ceramic silica

    International Nuclear Information System (INIS)

    Martines, Marco A.U.; Davolos, Marian R.; Jafelicci, Miguel Junior; Souza, Dione F. de; Nunes, Luiz A.O.

    2008-01-01

    This paper reports on the effect of glass ceramic silica matrix on [CrO 4 ] 4- and Cr 2 O 3 NIR and visible luminescence. Chromium-containing silica was obtained by precipitation from water-glass and chromium nitrate acid solution with thermal treatment at 1000 deg. C. From XRD results silica and silica-chromium samples are crystalline. The chromium emission spectrum presents two main broad bands: one in the NIR region (1.1-1.7μm) and other in the visible region (0.6-0.7μm) assigned to Cr 4+ and to Cr 3+ , respectively. This thermal treated glass ceramic silica-chromium sample stabilizes the [CrO 4 ] 4- where Cr 4+ substitutes for Si 4+ and also hexacoordinated Cr 3+ group probably as segregated phase in the system. It can be pointed out that luminescence spectroscopy is a powerful tool for detecting the two chromium optical centers in the glass ceramic silica

  9. Exposure to respirable crystalline silica in South African farm workers

    International Nuclear Information System (INIS)

    Swanepoel, Andrew; Rees, David; Renton, Kevin; Kromhout, Hans

    2009-01-01

    Although listed in some publications as an activity associated with silica (quartz) exposure, agriculture is not widely recognized as an industry with a potential for silica associated diseases. Because so many people work in agriculture; and because silica exposure and silicosis are associated with serious diseases such as tuberculosis (TB), particular in those immunological compromised by the Human immunodeficiency virus (HIV), silica exposure in agriculture is potentially very important. But in South Africa (SA) very little is known about silica exposure in this industry. The objectives of this project are: (a) to measure inhalable and respirable dust and its quartz content on two typical sandy soil farms in the Free State province of SA for all major tasks done on the farms; and (b) to characterise the mineralogy soil type of these farms. Two typical farms in the sandy soil region of the Free State province were studied. The potential health effects faced by these farm workers from exposure to respirable crystalline silica are discussed.

  10. The Effect of Photon Source on Heterogeneous Photocatalytic Oxidation of Ethanol by a Silica-Titania Composite

    Science.gov (United States)

    Coutts, Janelle L.; Levine, Lanfang H.; Richards, Jeffrey T.; Mazyck, David W.

    2011-01-01

    The objective of this study was to distinguish the effect of photon flux (i.e., photons per unit time reaching a surface) from that of photon energy (i.e., wavelength) of a photon source on the silica-titania composite (STC)-catalyzed degradation of ethanol in the gas phase. Experiments were conducted in a bench-scale annular reactor packed with STC pellets and irradiated with either a UV-A fluorescent black light blue lamp ((gamma)max=365 nm) at its maximum light intensity or a UV-C germicidal lamp ((gamma)max=254 nm) at three levels of light intensity. The STC-catalyzed oxidation of ethanol was found to follow zero-order kinetics with respect to CO2 production, regardless of the photon source. Increased photon flux led to increased EtOH removal, mineralization, and oxidation rate accompanied by lower intermediate concentration in the effluent. The oxidation rate was higher in the reactor irradiated by UV-C than by UV-A (38.4 vs. 31.9 nM/s) at the same photon flux, with similar trends for mineralization (53.9 vs. 43.4%) and reaction quantum efficiency (i.e., photonic efficiency, 63.3 vs. 50.1 nmol CO2 (mu)mol/photons). UV-C irradiation also led to decreased intermediate concentration in the effluent . compared to UV-A irradiation. These results demonstrated that STC-catalyzed oxidation is enhanced by both increased photon flux and photon energy.

  11. Reactive processing of silica-reinforced tire rubber : new insight into the time- and temperature-dependence of silica rubber interaction

    NARCIS (Netherlands)

    Mihara, S.

    2009-01-01

    In recent years, silica has become one of the most important fillers used in tire tread compounds due to its contribution to a better environment. Silica is capable of not only reducing the rolling resistance but also improving the wet skid resistance of tires, compared to carbon black as a filler.

  12. Amorphous silica in ultra-high performance concrete: First hour of hydration

    Energy Technology Data Exchange (ETDEWEB)

    Oertel, Tina, E-mail: tina.oertel@isc.fraunhofer.de [Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Chair for Inorganic Chemistry I, Universität Bayreuth, Universitätsstr. 30, 95440 Bayreuth (Germany); Hutter, Frank [Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Helbig, Uta, E-mail: uta.helbig@th-nuernberg.de [Chair for Crystallography and X-ray Methods, Technische Hochschule Nürnberg Georg Simon Ohm, Wassertorstraße 10, 90489 Nürnberg (Germany); Sextl, Gerhard [Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Chair for Chemical Technology of Advanced Materials, Julius Maximilian Universität, Röntgenring 11, 97070 Würzburg (Germany)

    2014-04-01

    Amorphous silica in the sub-micrometer size range is widely used to accelerate cement hydration. Investigations including properties of silica which differ from the specific surface area are rare. In this study, the reactivity of varying types of silica was evaluated based on their specific surface area, surface silanol group density, content of silanol groups and solubility in an alkaline suspension. Pyrogenic silica, silica fume and silica synthesized by hydrolysis and condensation of alkoxy silanes, so-called Stoeber particles, were employed. Influences of the silica within the first hour were further examined in pastes with water/cement ratios of 0.23 using in-situ X-ray diffraction, cryo scanning electron microscopy and pore solution analysis. It was shown that Stoeber particles change the composition of the pore solution. Na{sup +}, K{sup +}, Ca{sup 2+} and silicate ions seem to react to oligomers. The extent of this reaction might be highest for Stoeber particles due to their high reactivity.

  13. Fluorescent Silica Nanoparticles in the Detection and Control of the Growth of Pathogen

    International Nuclear Information System (INIS)

    Chitra, K.; Annadurai, G.

    2013-01-01

    In this present study the bio conjugated fluorescent silica nanoparticles give an efficient fluorescent-based immunoassay for the detection of pathogen. The synthesized silica nanoparticles were poly dispersed and the size of the silica nanoparticles was in the range of 114-164 nm. The energy dispersive X-ray spectrophotometer showed the presence of silica at 1.8 keV and the selected area diffractometer showed amorphous nature of silica nanoparticles. The FTIR spectrum confirmed the attachment of dye and carboxyl group onto the silica nanoparticles surface. The fluorescent silica nanoparticles showed highly efficient fluorescence and the fluorescent emission of silica nanoparticles occurred at 536 nm. The SEM image showed the aggregation of nanoparticles and bacteria. The growth of the pathogenic E. coli was controlled using silica nanoparticles; therefore silica nanoparticles could be used in food packaging material, biomedical material, and so forth. This work provides a rapid, simple, and accurate method for the detection of pathogen using fluorescent-based immunoassay.

  14. Microwave-assisted silica coating and photocatalytic activities of ZnO nanoparticles

    International Nuclear Information System (INIS)

    Siddiquey, Iqbal Ahmed; Furusawa, Takeshi; Sato, Masahide; Suzuki, Noboru

    2008-01-01

    A new and rapid method for silica coating of ZnO nanoparticles by the simple microwave irradiation technique is reported. Silica-coated ZnO nanoparticles were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HR-TEM), CHN elemental analysis and zeta potential measurements. The FT-IR spectra and XPS clearly confirmed the silica coating on ZnO nanoparticles. The results of XPS analysis showed that the elements in the coating at the surface of the ZnO nanoparticles were Zn, O and Si. HR-TEM micrographs revealed a continuous and uniform dense silica coating layer of about 3 nm in thickness on the surface of ZnO nanoparticles. In addition, the silica coating on the ZnO nanoparticles was confirmed by the agreement in the zeta potential of the silica-coated ZnO nanoparticles with that of SiO 2 . The results of the photocatalytic degradation of methylene blue (MB) in aqueous solution showed that silica coating effectively reduced the photocatalytic activity of ZnO nanoparticles. Silica-coated ZnO nanoparticles showed excellent UV shielding ability and visible light transparency

  15. Bioturbation and dissolved organic matter enhance contaminant fluxes from sediment treated with powdered and granular activated carbon

    NARCIS (Netherlands)

    Kupryianchyk, D.; Noori, A.; Rakowska, M.I.; Grotenhuis, J.T.C.; Koelmans, A.A.

    2013-01-01

    Sediment amendment with activated carbon (AC) is a promising technique for in situ sediment remediation. To date it is not clear whether this technique sufficiently reduces sediment-to-water fluxes of sediment-bound hydrophobic organic chemicals (HOCs) in the presence of bioturbators. Here, we

  16. Determination of integrated neutron flux by the measurement of the isotopic ratios of cadmium and gadolinium

    International Nuclear Information System (INIS)

    Tomiyoshi, Irene Akemy

    1982-01-01

    In this work, the possibility of the indirect determination of the integrated neutron flux, through the change of isotopic ratios of cadmium and gadolinium was investigated. The samples of cadmium we/e gadolinium were irradiated in the IEA-Rl reactor. These elements were chosen because they have high thermal neutron absorption cross section which permit the change in the isotopic composition during a short irradiation time to be measured accurately. The isotopic ratios were measured with a thermionic mass spectrometer the silica-gel technique and arrangement with single filament were used for the cadmium analysis, where as the oxi - reduction technique and arrangement with double filaments were used for gadolinium analysis. The mass fractionation effects for cadmium and gadolinium were corrected respectively by the exponential and potential expansion of the isotopic fractionation factor per atomic mass unit. The flux values supplied by the Centro de Operacao e Utilizacao do Reator de Pesquisas do IPEN were extrapolated. These values and the integrated flux values obtained experimentally were compared. (author)

  17. Method of synthesizing silica nanofibers using sound waves

    Science.gov (United States)

    Sharma, Jaswinder K.; Datskos, Panos G.

    2015-09-15

    A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up to an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.

  18. Plasma Polymerization of Acetylene onto silica: and Approach to control the distribution of silica in single elastomers and immiscible blends

    NARCIS (Netherlands)

    Tiwari, M.; Noordermeer, Jacobus W.M.; Ooij, W.J.; Dierkes, Wilma K.

    2008-01-01

    Surface modification of silica by acetylene plasma polymerization is applied in order to improve the dispersion in and compatibility with single rubbers and their blends. Silica, used as a reinforcing filler for elastomers, is coated with a polyacetylene (PA) film under vacuum conditions. Water

  19. Use of a dissolved-gas measurement system for reducing the dissolved oxygen at St. Lucie Unit 2

    International Nuclear Information System (INIS)

    Snyder, D.T.; Coit, R.L.

    1993-02-01

    When the dissolved oxygen in the condensate at St. Lucie Unit 2 could not be reduced below the administrative limit of 10 ppB, EPRI cooperated with Florida Power and Light to find the cause and develop remedies. Two problems were identified with the assistance of a dissolved gas measurement system (DGMS) that can detect leaks into condensate when used with argon blanketing. Drain piping from the air ejection system had flooded which decreased its performance, and leaks were found at a strainer flange and a couple expansion joints. Initially the dissolved oxygen content was reduced to about 9 ppB; owever, the dissolved oxygen from Condenser A was consistently higher than that from condenser B. Injection of about 0.4 cubic per minute (CFM) of argon above the hotwell considerably improved the ventilation of Condenser A, reducing the dissolved oxygen about 30% to about 6 ppB. The use of nitrogen was equally effective. While inert gas injection is helpful, it may be better to have separate air ejectors for each condenser. Several recommendations for improving oxygen removal are given

  20. Study of radon transport through concrete modified with silica fume

    International Nuclear Information System (INIS)

    Chauhan, R.P.; Kumar, Amit

    2013-01-01

    The concentration of radon in soil usually varies between a few kBq/m 3 and tens or hundreds of kBq/m 3 depending upon the geographical region. This causes the transport of radon from the soil to indoor environments by diffusion and advection through the pore space of concrete. To reduce indoor radon levels, the use of concrete with low porosity and a low radon diffusion coefficient is recommended. A method of reducing the radon diffusion coefficient through concrete and hence the indoor radon concentration by using silica fume to replace an optimum level of cement was studied. The diffusion coefficient of the concrete was reduced from (1.63 ± 0.3) × 10 −7 to (0.65 ± 0.01) × 10 −8 m 2 /s using 30% substitution of cement with silica fume. The compressive strength of the concrete increased as the silica-fume content increased, while radon exhalation rate and porosity of the concrete decreased. This study suggests a cost-effective method of reducing indoor radon levels. -- Highlights: • Radon diffusion study through silica fume modified concrete was carried out. • Radon diffusion coefficient of concrete decreased with increase of silica fume contents. • Compressive strength increased with increase of silica fume. • Radon exhalation rates and porosity of samples decreased with addition of silica fume. • Radon diffusion coefficient decreased to 2.6% by 30% silica fume substitution

  1. Nitrogen deposition in precipitation to a monsoon-affected eutrophic embayment: Fluxes, sources, and processes

    Science.gov (United States)

    Wu, Yunchao; Zhang, Jingping; Liu, Songlin; Jiang, Zhijian; Arbi, Iman; Huang, Xiaoping; Macreadie, Peter Ian

    2018-06-01

    Daya Bay in the South China Sea (SCS) has experienced rapid nitrogen pollution and intensified eutrophication in the past decade due to economic development. Here, we estimated the deposition fluxes of nitrogenous species, clarified the contribution of nitrogen from precipitation and measured ions and isotopic composition (δ15N and δ18O) of nitrate in precipitation in one year period to trace its sources and formation processes among different seasons. We found that the deposition fluxes of total dissolved nitrogen (TDN), NO3-, NH4+, NO2-, and dissolved organic nitrogen (DON) to Daya Bay were 132.5, 64.4 17.5, 1.0, 49.6 mmol m-2•yr-1, respectively. DON was a significant contributor to nitrogen deposition (37% of TDN), and NO3- accounted for 78% of the DIN in precipitation. The nitrogen deposition fluxes were higher in spring and summer, and lower in winter. Nitrogen from precipitation contributed nearly 38% of the total input of nitrogen (point sources input and dry and wet deposition) in Daya Bay. The δ15N-NO3- abundance, ion compositions, and air mass backward trajectories implicated that coal combustion, vehicle exhausts, and dust from mainland China delivered by northeast monsoon were the main sources in winter, while fossil fuel combustion (coal combustion and vehicle exhausts) and dust from PRD and southeast Asia transported by southwest monsoon were the main sources in spring; marine sources, vehicle exhausts and lightning could be the potential sources in summer. δ18O results showed that OH pathway was dominant in the chemical formation process of nitrate in summer, while N2O5+ DMS/HC pathways in winter and spring.

  2. Extraction of metal ions using chemically modified silica gel: a PIXE analysis.

    Science.gov (United States)

    Jal, P K; Dutta, R K; Sudarshan, M; Saha, A; Bhattacharyya, S N; Chintalapudi, S N; K Mishra, B

    2001-08-30

    Organic ligand with carboxyhydrazide functional group was immobilised on the surface of silica gel and the metal binding capacity of the ligand-embedded silica was investigated. The functional group was covalently bonded to the silica matrix through a spacer of methylene groups by sequential reactions of silica gel with dibromobutane, malonic ester and hydrazine in different media. Surface area value of the modified silica was determined. The changes in surface area were correlated with the structural change of the silica surface due to chemical modifications. A mixture solution of metal ions [K(I),Cr(III),Co(II),Ni(II),Cu(II),Zn(II),Hg(II) and U(VI)] was treated with the ligand-embedded silica in 10(-3) M aqueous solution. The measurement of metal extraction capacity of the silica based ligand was done by multielemental analysis of the metal complexes thus formed by using Proton Induced X-ray Emission (PIXE) technique.

  3. Hydroxylated crystalline edingtonite silica faces as models for the amorphous silica surface

    Energy Technology Data Exchange (ETDEWEB)

    Tosoni, S; Civalleri, B; Ugliengo, P [Dipartimento di Chimica IFM and NIS (Centre of Excellence), Universita di Torino, Via P. Giuria 7, 10125 Torino - ITALY (Italy); Pascale, F [Laboratoire de Cristallographie ed Modelisation des Materiaux Mineraux et Biologiques, UMR-CNRS-7036. Universite Henri Poincare - Nancy I, B.P. 239, 54506 Vandoeuvre-les-Nancy Cedex 05 - FRANCE (France)], E-mail: piero.ugliengo@unito.it

    2008-06-01

    Fully hydroxylated surfaces derived from crystalline edingtonite were adopted to model the variety of sites known to exist at the amorphous silica surface, namely isolated, geminal and interacting silanols. Structures, energetics and vibrational features of the surfaces either bare or in contact with water were modelled at DFT level using the B3LYP functional with a GTO basis set of double-zeta polarized quality using the periodic ab-initio CRYSTAL06 code. Simulated infrared spectra of both dry and water wet edingtonite surfaces were in excellent agreement with the experimental ones recorded on amorphous silica. Water interaction energies were compared with microcalorimetric differential heats of adsorption data showing good agreement, albeit computed ones being slightly underestimated due to the lack of dispersive forces in the B3LYP functional.

  4. Preparation and flow cytometry of uniform silica-fluorescent dye microspheres.

    Science.gov (United States)

    Bele, Marjan; Siiman, Olavi; Matijević, Egon

    2002-10-15

    Uniform fluorescent silica-dye microspheres have been prepared by coating preformed monodispersed silica particles with silica layers containing rhodamine 6G or acridine orange. The resulting dispersions exhibit intense fluorescent emission between 500 and 600 nm, over a broad excitation wavelength range of 460 to 550 nm, even with exceedingly small amounts of dyes incorporated into the silica particles (10-30 ppm, expressed as weight of dye relative to weight of dry particles). The fluorescent particles can be prepared in micrometer diameters suitable for analyses using flow cytometry with 488-nm laser excitation.

  5. Radiation effect on polystyrene deposited and grafted on silica gel

    International Nuclear Information System (INIS)

    Kusama, Y.; Udagawa, A.; Takehisa, M.

    1978-01-01

    The effect of radiation on polystyrene was studied in the presence and absence of silica gel by molecular weight measurement with gel permeation chromatography (GPC). Polystyrene crosslinked under vacuum in the absence of silica gel, but it either crosslinked or degraded by radiation, depending on the molecular weight of the polymer in the presence of silica gel. part of the deposited polymer bonded to silica gel by radiation; the G value for graft-chain formation is in the range of 0.01 to 0.1. Irradiation of polystyrene grafted on silica gel resulted in degradation of the graft chain because of the transfer of energy from silica gel. The G value for main chain scission was about 2 when graft polymer was irradiated in the absence of homopolymer. The degradation of graft polymer was suppressed when the polymer was irradiated in the presence of homopolymer, and the amount of unextractable polymer from silica gel increased with increasing irradiation. This adds evidence to the estimation that an increase in grafting percent coupled with a slight decrease in molecular weight at a later stage of radiation-induced polymerization of styrene adsorbed on slica gel is due to a secondary effect of radiation on the polymer

  6. In vitro effects of cisplatin-functionalized silica nanoparticles on chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmick, Tridib Kumar; Yoon, Diana [University of Maryland, Department of Chemical and Biomolecular Engineering (United States); Patel, Minal; Fisher, John [University of Maryland, Fischell Department of Bioengineering (United States); Ehrman, Sheryl, E-mail: sehrman@umd.ed [University of Maryland, Department of Chemical and Biomolecular Engineering (United States)

    2010-10-15

    In this study, we evaluated the combined effect of a known toxic molecule, cisplatin, in combination with relatively nontoxic nanoparticles, amorphous fumed silica, on chondrocyte cells. Cisplatin was attached to silica nanoparticles using aminopropyltriethoxy silane as a linker molecule, and characterized in terms of size, shape, specific surface area, as well as the dissolution of cisplatin from the silica surface. The primary particle diameter of the as-received silica nanoparticles ranged from 7.1 to 61 nm, estimated from measurements of specific surface area, and the primary particles were aggregated. The effects of cisplatin-functionalized silica particles with different specific surface areas (41, 85, 202, 237, and 297 m{sup 2}/g) were compared in vitro on chondrocytes, the parenchymal cell of hyaline cartilage. The results show that adverse effects on cell function, as evidenced by reduced metabolic activity measured by the MTT assay and increased membrane permeability observed using the Live/Dead stain, can be correlated with specific surface area of the silica. Cisplatin-functionalized silica nanoparticles with the highest specific surface area incited the greatest response, which was almost equivalent to that induced by free cisplatin. This result suggests the importance of particle specific surface area in interactions between cells and surface-functionalized nanomaterials.

  7. In vitro effects of cisplatin-functionalized silica nanoparticles on chondrocytes

    Science.gov (United States)

    Bhowmick, Tridib Kumar; Yoon, Diana; Patel, Minal; Fisher, John; Ehrman, Sheryl

    2010-10-01

    In this study, we evaluated the combined effect of a known toxic molecule, cisplatin, in combination with relatively nontoxic nanoparticles, amorphous fumed silica, on chondrocyte cells. Cisplatin was attached to silica nanoparticles using aminopropyltriethoxy silane as a linker molecule, and characterized in terms of size, shape, specific surface area, as well as the dissolution of cisplatin from the silica surface. The primary particle diameter of the as-received silica nanoparticles ranged from 7.1 to 61 nm, estimated from measurements of specific surface area, and the primary particles were aggregated. The effects of cisplatin-functionalized silica particles with different specific surface areas (41, 85, 202, 237, and 297 m2/g) were compared in vitro on chondrocytes, the parenchymal cell of hyaline cartilage. The results show that adverse effects on cell function, as evidenced by reduced metabolic activity measured by the MTT assay and increased membrane permeability observed using the Live/Dead stain, can be correlated with specific surface area of the silica. Cisplatin-functionalized silica nanoparticles with the highest specific surface area incited the greatest response, which was almost equivalent to that induced by free cisplatin. This result suggests the importance of particle specific surface area in interactions between cells and surface-functionalized nanomaterials.

  8. A comprehensive biogeochemical record and annual flux estimates for the Sabaki River (Kenya

    Directory of Open Access Journals (Sweden)

    T. R. Marwick

    2018-03-01

    Full Text Available Inland waters impart considerable influence on nutrient cycling and budget estimates across local, regional and global scales, whilst anthropogenic pressures, such as rising populations and the appropriation of land and water resources, are undoubtedly modulating the flux of carbon (C, nitrogen (N and phosphorus (P between terrestrial biomes to inland waters, and the subsequent flux of these nutrients to the marine and atmospheric domains. Here, we present a 2-year biogeochemical record (October 2011–December 2013 at biweekly sampling resolution for the lower Sabaki River, Kenya, and provide estimates for suspended sediment and nutrient export fluxes from the lower Sabaki River under pre-dam conditions, and in light of the approved construction of the Thwake Multipurpose Dam on its upper reaches (Athi River. Erratic seasonal variation was typical for most parameters, with generally poor correlation between discharge and material concentrations, and stable isotope values of C (δ13C and N (δ15N. Although high total suspended matter (TSM concentrations are reported here (up to ∼ 3.8 g L−1, peak concentrations of TSM rarely coincided with peak discharge. The contribution of particulate organic C (POC to the TSM pool indicates a wide biannual variation in suspended sediment load from OC poor (0.3 % to OC rich (14.9 %, with the highest %POC occurring when discharge is < 100 m3 s−1 and at lower TSM concentrations. The consistent 15N enrichment of the particulate nitrogen (PN pool compared to other river systems indicates anthropogenic N loading is a year-round driver of N export from the Sabaki Basin. The lower Sabaki River was consistently oversaturated in dissolved methane (CH4; from 499 to 135 111 % and nitrous oxide (N2O; 100 to 463 % relative to atmospheric concentrations. Wet season flows (October–December and March–May carried > 80 % of the total load for TSM (∼ 86 %, POC (∼ 89 %, dissolved

  9. Extracting silica from rice husk treated with potassium permanganate

    International Nuclear Information System (INIS)

    Javed, S.H.; Naveed, S.

    2008-01-01

    As an agro-waste material the rice husk is abundantly available is rice growing areas. In many areas rice husk after burning involves disposal problems because of higher quantities of silica present in it. Rice husk contains about 20 per cent silica, which is present in hydrated amorphous form. On thermal treatment the silica converts into crystobalite, which is a crystalline form of silica. However amorphous silica can be produced under controlled conditions ensuring high reactivity and large surface area. Leaching the rice husk with organic acids and alkalies removes the metallic impurities from its surface. How a dilute solution of potassium permanganate affects the rice husk is the subject of this research paper. The rice husk was treated with the dilute solution of potassium permanganate at room temperature and then analyzed by SEM, TGA and the ash by analytical treatment after burning under controlled temperature. The SEM results revealed that the protuberances of the rice husk were eaten away by the solution of potassium permanganate. Pyrolysis of rice husks showed that the thermal degradation of the treated rice husk was faster than the untreated rice husk where as analytical results confirmed the presence of more amorphous silica than untreated rice husk. (author)

  10. Studies of mobile dust in scrape-off layer plasmas using silica aerogel collectors

    Energy Technology Data Exchange (ETDEWEB)

    Bergsaker, H., E-mail: henricb@kth.se [Division of Space and Plasma Physics, Association EURATOM-VR, School of Electrical Engineering, Royal Institute of Technology KTH, SE-10044 Stockholm (Sweden); Ratynskaia, S. [Division of Space and Plasma Physics, Association EURATOM-VR, School of Electrical Engineering, Royal Institute of Technology KTH, SE-10044 Stockholm (Sweden); Litnovsky, A. [Institut fur Energieforschung - Plasmaphysik, Forschungszentrum Julich, Trilateral Euregio Cluster, Association EURATOM-FZ Julich, D-52425 Julich (Germany); Ogata, D. [Division of Space and Plasma Physics, Association EURATOM-VR, School of Electrical Engineering, Royal Institute of Technology KTH, SE-10044 Stockholm (Sweden); Sahle, W. [Functional Materials Division, KTH-Electrum 229, Isafjordsgatan 22, SE-16440 Stockholm (Sweden)

    2011-08-01

    Dust capture with ultralow density silica aerogel collectors is a new method, which allows time resolved in situ capture of dust particles in the scrape-off layers of fusion devices, without substantially damaging the particles. Particle composition and morphology, particle flux densities and particle velocity distributions can be determined through appropriate analysis of the aerogel surfaces after exposure. The method has been applied in comparative studies of intrinsic dust in the TEXTOR tokamak and in the Extrap T2R reversed field pinch. The analysis methods have been mainly optical microscopy and SEM. The method is shown to be applicable in both devices and the results are tentatively compared between the two plasma devices, which are very different in terms of edge plasma conditions, time scale, geometry and wall materials.

  11. Preparation of Mesoporous Silica-Supported Palladium Catalysts for Biofuel Upgrade

    Directory of Open Access Journals (Sweden)

    Ling Fei

    2012-01-01

    Full Text Available We report the preparation of two hydrocracking catalysts Pd/CoMoO4/silica and Pd/CNTs/CoMoO4/silica (CNTs, carbon nanotubes. The structure, morphologies, composition, and thermal stability of catalysts were studied by X-ray diffraction (XRD, scanning electron microscopy (SEM, Raman spectroscopy, transmission electron microscopy (TEM, energy-dispersive X-ray (EDX, and thermogravimetric analysis (TGA. The catalyst activity was measured in a Parr reactor with camelina fatty acid methyl esters (FAMEs as the feed. The analysis shows that the palladium nanoparticles have been incorporated onto mesoporous silica in Pd/CoMoO4/silica or on the CNTs surface in Pd/CNTs/CoMoO4/silica catalysts. The different combinations of metals and supports have selective control cracking on heavy hydrocarbons.

  12. Significance of population centers as sources of gaseous and dissolved PAHs in the lower Great Lakes.

    Science.gov (United States)

    McDonough, Carrie A; Khairy, Mohammed A; Muir, Derek C G; Lohmann, Rainer

    2014-07-15

    Polyethylene passive samplers (PEs) were used to measure concentrations of gaseous and dissolved polycyclic aromatic hydrocarbons (PAHs) in the air and water throughout the lower Great Lakes during summer and fall of 2011. Atmospheric Σ15PAH concentrations ranged from 2.1 ng/m3 in Cape Vincent (NY) to 76.4 ng/m3 in downtown Cleveland (OH). Aqueous Σ18PAH concentrations ranged from 2.4 ng/L at an offshore Lake Erie site to 30.4 ng/L in Sheffield Lake (OH). Gaseous PAH concentrations correlated strongly with population within 3-40 km of the sampling site depending on the compound considered, suggesting that urban centers are a primary source of gaseous PAHs (except retene) in the lower Great Lakes region. The significance of distant population (within 20 km) versus local population (within 3 km) increased with subcooled liquid vapor pressure. Most dissolved aqueous PAHs did not correlate significantly with population, nor were they consistently related to river discharge, wastewater effluents, or precipitation. Air-water exchange calculations implied that diffusive exchange was a source of phenanthrene to surface waters, while acenaphthylene volatilized out of the lakes. Comparison of air-water fluxes with temperature suggested that the significance of urban centers as sources of dissolved PAHs via diffusive exchange may decrease in warmer months.

  13. Benthic fluxes of oxygen and inorganic nutrients in the archipelago of Gulf of Finland, Baltic Sea - Effects of sediment resuspension measured in situ

    Science.gov (United States)

    Niemistö, Juha; Kononets, Mikhail; Ekeroth, Nils; Tallberg, Petra; Tengberg, Anders; Hall, Per O. J.

    2018-05-01

    Benthic fluxes of oxygen and dissolved inorganic nutrients; phosphate (DIP), ammonium (NH4), nitrate + nitrite (NOx), and silicate (DSi); and the effects of resuspension on these were studied in situ with the Göteborg benthic landers in the Gulf of Finland archipelago, Baltic Sea. The benthic fluxes were examined at two shallow stations at depths of 7 m and 20 m in May and August 2014. Resuspension altered benthic fluxes of oxygen and nutrients in most of the experiments in August, but not in May, which was mainly due to weaker resuspension treatments in spring. Additionally, the benthic nutrient regeneration rates were higher and redox conditions lower in August when the water was warmer. In August, resuspension increased the benthic oxygen uptake by 33-35%, which was, in addition to stronger resuspension treatment, attributed to higher amounts of dissolved reduced substances in the sediment pore water in comparison to conditions in May. Adsorption onto newly formed iron oxyhydroxides could explain the uptake of DIP by the sediment at the 20 m station and the lowering of the DSi efflux by 31% at the 7 m station during resuspension in August. In addition, resuspension promoted nitrification, as indicated by increased NOx fluxes at both stations (by 30% and 27% at the 7 m and 20 m station, respectively) and a lowered NH4 flux (by 48%) at the 7 m station. Predicted increases in the magnitude and frequency of resuspension will thus markedly affect the transport of phosphorus and silicon and the cycling of nitrogen in the shallow areas of the Gulf of Finland.

  14. Two-dimensional silica opens new perspectives

    Science.gov (United States)

    Büchner, Christin; Heyde, Markus

    2017-12-01

    In recent years, silica films have emerged as a novel class of two-dimensional (2D) materials. Several groups succeeded in epitaxial growth of ultrathin SiO2 layers using different growth methods and various substrates. The structures consist of tetrahedral [SiO4] building blocks in two mirror symmetrical planes, connected via oxygen bridges. This arrangement is called a silica bilayer as it is the thinnest 2D arrangement with the stoichiometry SiO2 known today. With all bonds saturated within the nano-sheet, the interaction with the substrate is based on van der Waals forces. Complex ring networks are observed, including hexagonal honeycomb lattices, point defects and domain boundaries, as well as amorphous domains. The network structures are highly tuneable through variation of the substrate, deposition parameters, cooling procedure, introducing dopants or intercalating small species. The amorphous networks and structural defects were resolved with atomic resolution microscopy and modeled with density functional theory and molecular dynamics. Such data contribute to our understanding of the formation and characteristic motifs of glassy systems. Growth studies and doping with other chemical elements reveal ways to tune ring sizes and defects as well as chemical reactivities. The pristine films have been utilized as molecular sieves and for confining molecules in nanocatalysis. Post growth hydroxylation can be used to tweak the reactivity as well. The electronic properties of silica bilayers are favourable for using silica as insulators in 2D material stacks. Due to the fully saturated atomic structure, the bilayer interacts weakly with the substrate and can be described as quasi-freestanding. Recently, a mm-scale film transfer under structure retention has been demonstrated. The chemical and mechanical stability of silica bilayers is very promising for technological applications in 2D heterostacks. Due to the impact of this bilayer system for glass science

  15. Silica-enriched mantle sources of subalkaline picrite-boninite-andesite island arc magmas

    Science.gov (United States)

    Bénard, A.; Arculus, R. J.; Nebel, O.; Ionov, D. A.; McAlpine, S. R. B.

    2017-02-01

    Primary arc melts may form through fluxed or adiabatic decompression melting in the mantle wedge, or via a combination of both processes. Major limitations to our understanding of the formation of primary arc melts stem from the fact that most arc lavas are aggregated blends of individual magma batches, further modified by differentiation processes in the sub-arc mantle lithosphere and overlying crust. Primary melt generation is thus masked by these types of second-stage processes. Magma-hosted peridotites sampled as xenoliths in subduction zone magmas are possible remnants of sub-arc mantle and magma generation processes, but are rarely sampled in active arcs. Published studies have emphasised the predominantly harzburgitic lithologies with particularly high modal orthopyroxene in these xenoliths; the former characteristic reflects the refractory nature of these materials consequent to extensive melt depletion of a lherzolitic protolith whereas the latter feature requires additional explanation. Here we present major and minor element data for pristine, mantle-derived, lava-hosted spinel-bearing harzburgite and dunite xenoliths and associated primitive melts from the active Kamchatka and Bismarck arcs. We show that these peridotite suites, and other mantle xenoliths sampled in circum-Pacific arcs, are a distinctive peridotite type not found in other tectonic settings, and are melting residues from hydrous melting of silica-enriched mantle sources. We explore the ability of experimental studies allied with mantle melting parameterisations (pMELTS, Petrolog3) to reproduce the compositions of these arc peridotites, and present a protolith ('hybrid mantle wedge') composition that satisfies the available constraints. The composition of peridotite xenoliths recovered from erupted arc magmas plausibly requires their formation initially via interaction of slab-derived components with refractory mantle prior to or during the formation of primary arc melts. The liquid

  16. Synthesis of Novel Mesoporous Silica Materials with Hierarchical Pore Structures

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Suk Bon; Choi, Wang Kyu; Choi, Byung Seon; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Porous materials with various pore sizes in the range of micropore (< 2 nm), mesopore (2-50 nm), and macropore (> 50 nm) are attractive due to their many emerging applications such as catalysts, separation systems, and low dielectric constant materials. The discovery of new M41S mesoporous silica families with pore sizes larger than 2 nm in diameter in 1992 extended the applications into much wider pore ranges, bringing in a new prosperous era in porous material research. The synthesis of these silica materials has been mainly accomplished through a self-assembly between surfactant molecules and inorganic species under various pH conditions. Recently, core-shell nanoparticles with a silica core and mesoporous shell under basic conditions were synthesized using the silica nanoparticles as a core, and a silica precursor (TEOS) and cationic surfactant (CTABr) as a material for the formation of the mesoporous shell. The resultant materials were very monodispersive in size and showed a narrow pore size distribution in the range of ca 2-3 nm in diameter, depending on the alkyl-chain length of the surfactants used. In this work, the mesoporous shell coated-fumed silicas (denoted as MS M-5s) were synthesized by using fumed silica instead of the silica nanoparticle as a core based on previous reports. Also, the structural properties of the MS M-5s such as the specific surface area and pore volume were easily controlled by varying the amount of the silica precursor and surfactant. The resultant materials exhibited a BET surface area of ca 279-446 m{sup 2}/g and total pore volume of ca 0.64-0.74 cm{sup 3}/g and showed a narrow pore size distribution (PSD) due to the removal of the organic surfactant molecules

  17. Preparation of Silica Nanoparticles and Its Beneficial Role in Cementitious Materials

    Directory of Open Access Journals (Sweden)

    S. Ahalawat

    2011-07-01

    Full Text Available Spherical silica nanoparticles (n‐SiO2 with controllable size have been synthesized using tetraethoxysilane as starting material and ethanol as solvent by sol‐gel method. Morphology and size of the particles was controlled through surfactants. Sorbitan monolaurate, sorbitain monopalmitate and sorbitain monostearate produced silica nanoparticles of varying sizes (80‐150 nm, indicating the effect of chain length of the surfactant. Increase in chain length of non‐ionic surfactant resulted in decreasing particle size of silica nanoparticles. Further, the size of silica particles was also controlled using NH3 as base catalyst. These silica nanoparticles were incorporated into cement paste and their role in accelerating the cementitious reactions was investigated. Addition of silica nanoparticles into cement paste improved the microstructure of the paste and calcium leaching is significantly reduced as n‐SiO2 reacts with calcium hydroxide and form additional calcium‐ silicate‐hydrate (C‐S‐H gel. It was found that calcium hydroxide content in silica nanoparticles incorporated cement paste reduced ~89% at 1 day and up to ~60% at 28 days of hydration process. Synthesized silica particles and cement paste samples were characterized using scanning electron microscopy (SEM, powder X‐ray diffraction (XRD, infrared spectroscopy (IR and thermogravimetric analysis (TGA.

  18. A novel synthesis of micrometer silica hollow sphere

    International Nuclear Information System (INIS)

    Pan Wen; Ye Junwei; Ning Guiling; Lin Yuan; Wang Jing

    2009-01-01

    Silica microcapsules (hollow spheres) were synthesized successfully by a novel CTAB-stabilized water/oil emulsion system mediated hydrothermal method. The addition of urea to a solution of aqueous phase was an essential step of the simple synthetic procedure of silica hollow spheres, which leads to the formation of silica hollow spheres with smooth shell during hydrothermal process. The intact hollow spheres were obtained by washing the as-synthesized solid products with distilled water to remove the organic components. A large amount of silanol groups were retained in the hollow spheres by this facile route without calcination. The morphologies and optical properties of the product were characterized by transmission electron microscopy, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. Furthermore, on the basis of a series of SEM observations, phenomenological elucidation of a mechanism for the growth of the silica hollow spheres has been presented

  19. Dissolved Organic Matter Composition and Export from U.S. Rivers

    Science.gov (United States)

    Aiken, G.; Butman, D. E.; Spencer, R. G.; Raymond, P.

    2012-12-01

    Dissolved organic matter (DOM) chemistry and flux are potentially useful indicators of watershed characteristics, climate influences on watershed hydrology and soils, and changes associated with water and land resource management. Organic source materials, watershed geochemistry, oxidative processes and hydrology strongly influence the nature and reactivity of DOM in aquatic systems. The molecules that comprise DOM, in turn, control a number of environmental processes important for ecosystem function including light penetration and photochemistry, microbial activity, mineral dissolution/precipitation, and the transport and reactivity of hydrophobic compounds and metals. In particular, aromatic molecules derived from higher plants exert strong controls on aquatic photochemistry, and on the transport and biogeochemistry of metals. Assessment of DOM composition and transport, therefore, can provide a basis for understanding watershed processes and biogeochemistry of rivers and streams. Here we present results of a multi-year study designed to assess the seasonal and spatial variability of DOM quantity and quality for 15 large North American river basins. Samples were collected from the mouths of the rivers using a sampling program designed to capture hydrologic and seasonal variability of DOM export. DOM concentrations and composition, based on DOM fractionation on XAD resins, chromophoric dissolved organic matter (CDOM) parameters (ultraviolet /visible absorption and fluorescence spectroscopy), specific compound analyses, and DO14C content varied greatly both between sites and seasonally within a given site. DOM in these rivers exhibited a wide range of concentration and carbon specific ultra-violet absorbance at 254 nm (SUVA254), an optical measurement that is an indicator of DOM aromatic carbon content. In almost all systems, CDOM optical parameters correlated strongly with DOC concentration and hydrophobic organic acid (HPOA) content (aquatic humic substances). In

  20. Mass balance of arsenic fluxes in rivers impacted by gold mining activities in Paracatu (Minas Gerais State, Brazil).

    Science.gov (United States)

    Bidone, Edison; Cesar, Ricardo; Santos, Maria Carla; Sierpe, Ricardo; Silva-Filho, Emmanuel Vieira; Kutter, Vinicius; Dias da Silva, Lílian I; Castilhos, Zuleica

    2018-03-01

    Arsenic (As) is a dangerous and carcinogenic element and drinking water is its main pathway of human exposure. Gold mines are widely recognized as important sources of As pollution. This work proposes the assessment of As distribution along watersheds surrounding "Morro do Ouro" gold mine (Paracatu, southeastern Brazil). A balance approach between filtered As fluxes (As river segments was applied. Ultrafiltration procedure was used to categorize As into the following classes: particulate > 0.1 μm, colloidal  10 kDa, dissolved  1 kDa, and truly dissolved river segment that suggests As accumulation in sediments along the rivers in both urban and rural areas, mainly due to SPM sedimentation and sorption by Fe oxyhydroxides. Ultrafiltration shattering showed concentrations of decreasing As with particle size; the SPM load (> 0.1 μm) was almost one order higher to dissolved load (< 1 kDa).

  1. Implications for carbon processing beneath the Greenland Ice Sheet from dissolved CO2 and CH4 concentrations of subglacial discharge

    Science.gov (United States)

    Pain, A.; Martin, J.; Martin, E. E.

    2017-12-01

    Subglacial carbon processes are of increasing interest as warming induces ice melting and increases fluxes of glacial meltwater into proglacial rivers and the coastal ocean. Meltwater may serve as an atmospheric source or sink of carbon dioxide (CO2) or methane (CH4), depending on the magnitudes of subglacial organic carbon (OC) remineralization, which produces CO2 and CH4, and mineral weathering reactions, which consume CO2 but not CH4. We report wide variability in dissolved CO2 and CH4 concentrations at the beginning of the melt season (May-June 2017) between three sites draining land-terminating glaciers of the Greenland Ice Sheet. Two sites, located along the Watson River in western Greenland, drain the Isunnguata and Russell Glaciers and contained 1060 and 400 ppm CO2, respectively. In-situ CO2 flux measurements indicated that the Isunnguata was a source of atmospheric CO2, while the Russell was a sink. Both sites had elevated CH4 concentrations, at 325 and 25 ppm CH4, respectively, suggesting active anaerobic OC remineralization beneath the ice sheet. Dissolved CO2 and CH4 reached atmospheric equilibrium within 2.6 and 8.6 km downstream of Isunnguata and Russell discharge sites, respectively. These changes reflect rapid gas exchange with the atmosphere and/or CO2 consumption via instream mineral weathering. The third site, draining the Kiagtut Sermiat in southern Greenland, had about half atmospheric CO2 concentrations (250 ppm), but approximately atmospheric CH4 concentrations (2.1 ppm). Downstream CO2 flux measurements indicated ingassing of CO2 over the entire 10-km length of the proglacial river. CO2 undersaturation may be due to more readily weathered lithologies underlying the Kiagtut Sermiat compared to Watson River sites, but low CH4 concentrations also suggest limited contributions of CO2 and CH4 from OC remineralization. These results suggest that carbon processing beneath the Greenland Ice Sheet may be more variable than previously recognized

  2. Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting

    International Nuclear Information System (INIS)

    Bhagiyalakshmi, Margandan; Yun, Lee Ji; Anuradha, Ramani; Jang, Hyun Tae

    2010-01-01

    Mesoporous MCM-41, MCM-48 and SBA-15 were synthesized using Rice husk ash (RHA) as the silica source and their defective Si-OH sites were functionalized by 3-cholropropyltrimethoxysilane (CPTMS) which was subsequently grafted with amine compounds, Tris(2-aminoethyl)amine (TREN) and Tetraethylenepentamine (TEPA). X-ray powder diffraction (XRD) and BET results of the parent mesoporous silica suggested their closeness of structural properties to those obtained from conventional silica sources. CO 2 adsorption of branched amine TREN and straight chain amine TEPA at 25, 50 and 75 deg. C was obtained by Thermogravimetric Analyser (TGA) at atmospheric pressure. TREN grafted mesoporous silica showed 7% of CO 2 adsorption while TEPA grafted mesoporous silicas showed less CO 2 adsorption, which is due to the presence of isolated amine groups in TREN. TREN grafted mesoporous silicas were also observed to be selective towards CO 2 , thermally stable and recyclable. The order of CO 2 adsorption with respect to amount of amine grafting was observed to be MCM-48/TREN > MCM-41/TREN > SBA-15/TREN.

  3. Rapid Synthesis and Characterization of Nano sodalite Synthesized using Rice Husk Ash

    International Nuclear Information System (INIS)

    Siti Haslina Ahmad Rusmili; Zainab Ramli

    2012-01-01

    Rice husk ash (RHA) which contains more than 90 percent silica is proven to be an active silica source in zeolite synthesis. In this study, nano sodalite has been successfully synthesized hydrothermally at 60 degree Celsius using RHA as silica source in alkaline medium at various crystallization times. Commercial fumed silica was used as comparison for the silica source. Analysis by XRD has shown that pure nano sodalite was formed in 3 hours and stable up to more than 24 hours when using RHA as silica source. On the other hand, fumed silica produced pure nano sodalite only at 4 hours while a mixture of zeolites was observed outside this time range. FESEM shows a worm-like morphology of nano sodalite in the size range of 50-100 nm while FTIR shows the formation of aluminosilicates bonds. Analysis on the dissolved silica in the gel reaction mixture demonstrates the decreasing mass of silica after prolong time of crystallization which indicates the consumption of the dissolved silica in crystal growth of nano sodalite. This study shows that RHA is a better silica source in stabilizing the nano sodalite phase in oxide gel reaction mixture as compared to fumed silica. (author)

  4. Refractive index dispersion law of silica aerogel

    International Nuclear Information System (INIS)

    Bellunato, T.; Calvi, M.; Matteuzzi, C.; Musy, M.; Perego, D.L.; Storaci, B.

    2007-01-01

    This paper presents measurements of the refractive index of a hygroscopic silica aerogel block at several wavelengths. The measurements, performed with a monochromator, have been compared with different parameterisations for n(λ), in order to determine the best chromaticity law for the aerogel. This is an important input for design and operation of RICH detectors with silica aerogel radiator. (orig.)

  5. Rivers of Carbon: Carbon Fluxes in a Watershed Context

    Science.gov (United States)

    Wohl, E.; Tom, B.; Hovius, N.

    2017-12-01

    Research within the past decade has identified the roles of diverse terrestrial processes in mobilizing terrestrial carbon from bedrock, soil, and vegetation and in redistributing this carbon among the atmosphere, biota, geosphere, and oceans. Rivers are central to carbon redistribution, serving as the primary initial receptor of mobilized terrestrial carbon, as well as governing the proportions of carbon sequestered within sediment, transported to oceans, or released to the atmosphere. We use a riverine carbon budget to examine how key questions regarding carbon dynamics can be addressed across diverse spatial and temporal scales from sub-meter areas over a few hours on a single gravel bar to thousands of square kilometers over millions of years across an entire large river network. The portion of the budget applying to the active channel(s) takes the form of ,in which Cs is organic carbon storage over time t. Inputs are surface and subsurface fluxes from uplands (CIupl) and the floodplain (CIfp), including fossil, soil, and biospheric organic carbon; surface and subsurface fluxes of carbon dioxide to the channel (CICO2); and net primary productivity in the channel (CINPP). Outputs occur via respiration within the channel and carbon dioxide emissions (COgas) and fluxes of dissolved and particulate organic carbon to the floodplain and downstream portions of the river network (COriver). The analogous budget for the floodplain portion of a river corridor is .

  6. Control of silicification by genetically engineered fusion proteins: Silk–silica binding peptides

    Science.gov (United States)

    Zhou, Shun; Huang, Wenwen; Belton, David J.; Simmons, Leo O.; Perry, Carole C.; Wang, Xiaoqin; Kaplan, David L.

    2014-01-01

    In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk–silica composite in two different bioinspired silicification systems: solution–solution and solution– solid. Condensed silica nanoscale particles (600–800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras [1], revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution–solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce β-sheet formation. A higher density of condensed silica formed on the films containing the lowest β-sheet content while the films with the highest β-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the β-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer–silica composites for biomaterial related needs. PMID:25462851

  7. Control of silicification by genetically engineered fusion proteins: silk-silica binding peptides.

    Science.gov (United States)

    Zhou, Shun; Huang, Wenwen; Belton, David J; Simmons, Leo O; Perry, Carole C; Wang, Xiaoqin; Kaplan, David L

    2015-03-01

    In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk-silica composite in two different bioinspired silicification systems: solution-solution and solution-solid. Condensed silica nanoscale particles (600-800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras, revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution-solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce β-sheet formation. A higher density of condensed silica formed on the films containing the lowest β-sheet content while the films with the highest β-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the β-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer-silica composites for biomaterial related needs. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Thiol-functionalized silica colloids, grains, and membranes for irreversible adsorption of metal(oxide) nanoparticles

    NARCIS (Netherlands)

    Claesson, E.M.; Philipse, A.P.

    2007-01-01

    Thiol-functionalization is described for silica surfaces from diverging origin, including commercial silica nanoparticles and St¨ober silica as well as silica structures provided by porous glasses and novel polymer-templated silica membranes. The functionalization allows in all cases for the

  9. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions.

    Science.gov (United States)

    Bottino, Flávia; Cunha-Santino, Marcela Bianchessi; Bianchini, Irineu

    2016-01-01

    Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40°C). Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively) were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days). After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic). However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity) and carbon release. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. Thermal and Mechanical Properties of Poly(butylene succinate Films Reinforced with Silica

    Directory of Open Access Journals (Sweden)

    Sangviroon Nanthaporn

    2015-01-01

    Full Text Available In recent year, bioplastics have become more popular resulting from the growing concerns on environmental issues and the rising fossil fuel price. However, their applications were limited by its mechanical and thermal properties. The aim of this research is thus to improve mechanical and thermal properties of PBS bioplastic films by reinforcing with silica. Due to the poor interfacial interaction between the PBS matrix and silica, glycidyl methacrylate grafted poly(butylene succinate (PBS-g-GMA was used as a compatibilizer in order to improve the interaction between bioplastic films and filler. PBS-g-GMA was prepared in a twin-screw extruder and analyzed by the FTIR spectrometer. PBS and silica were then mixed in a twin-screw extruder and processed into films by a chill-roll cast extruder. The effects of silica loading on thermal and mechanical properties of the prepared bioplastic films were investigated. It was found that the mechanical properties of PBS/silica composite films were improved when 1%wt of silica was added. However, the mechanical properties decreased with increasing silica loading due to the agglomeration of silica particles. The results also show that the silica/PBS films with PBS-g-GMA possessed improved mechanical properties over the films without the compatibilizer.

  11. Treatment of oil sands mature fine tailings with silica

    Energy Technology Data Exchange (ETDEWEB)

    Moffett, R.H. [DuPont Canada Inc., Mississauga, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed a method of treating mature fine tailings (MFT) with silica. Rheology modifications with silica treatments were examined. Experimental studies demonstrated a significant slump at 30 minutes after mixing. Flow properties were studied at a 2 degree angle. The MFT thin lift evaporative drying procedure was used to determine the effects of the silica treatments. Methods of using pressure to dewater MFTs were reviewed. The results of a field test conducted to determine the flow behaviour of MFTs treated with low dose silica were presented. Drying characteristics and strength gains were also evaluated. Results of the study showed that the MFTs had a tendency to channel at discharge points. After a 15 day period that included a freeze-thaw the MFTs had cracks that continued to enlarge, full depth cracking, and fine cracking. The field tests demonstrated that in-situ polymerization of silica within the water phase of fluid fine tails provides significant modifications to rheological properties, and that the onset of rheological modification can be controlled over a range of conditions and times. tabs., figs.

  12. Silver nanoprisms self-assembly on differently functionalized silica surface

    International Nuclear Information System (INIS)

    Pilipavicius, J; Chodosovskaja, A; Beganskiene, A; Kareiva, A

    2015-01-01

    In this work colloidal silica/silver nanoprisms (NPRs) composite coatings were made. Firstly colloidal silica sols were synthesized by sol-gel method and produced coatings on glass by dip-coating technique. Next coatings were silanized by (3-Aminopropyl)triethoxysilane (APTES), N-[3-(Trimethoxysilyl)propyl]ethylenediamine (AEAPTMS), (3- Mercaptopropyl)trimethoxysilane (MPTMS). Silver NPRs where synthesized via seed-mediated method and high yield of 94±15 nm average edge length silver NPRs were obtained with surface plasmon resonance peak at 921 nm. Silica-Silver NPRs composite coatings obtained by selfassembly on silica coated-functionalized surface. In order to find the most appropriate silanization way for Silver NPRs self-assembly, the composite coatings were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), water contact angle (CA) and surface free energy (SFE) methods. Results have showed that surface functionalization is necessary to achieve self-assembled Ag NPRs layer. MPTMS silanized coatings resulted sparse distribution of Ag NPRs. Most homogeneous, even distribution composite coatings obtained on APTES functionalized silica coatings, while AEAPTMS induced strong aggregation of Silver NPRs

  13. Diagenetic silica enrichment and late-stage groundwater activity in Gale crater, Mars

    Science.gov (United States)

    Frydenvang, Jens; Gasda, Patrick J.; Hurowitz, Joel A.; Grotzinger, John P.; Wiens, Roger C.; Newsom, Horton E.; Edgett, Ken S.; Watkins, Jessica; Bridges, John C.; Maurice, Sylvestre; Fisk, Martin R.; Johnson, Jeffrey R.; Rapin, William; Stein, Nathan; Clegg, Sam M.; Schwenzer, S. P.; Bedford, C.; Edwards, P.; Mangold, Nicolas; Cousin, Agnes; Anderson, Ryan; Payre, Valerie; Vaniman, David; Blake, David; Lanza, Nina L.; Gupta, Sanjeev; Van Beek, Jason; Sautter, Violaine; Meslin, Pierre-Yves; Rice, Melissa; Milliken, Ralf; Gellert, Ralf; Thompson, Lucy; Clark, Ben C.; Sumner, Dawn Y.; Fraeman, Abigail A.; Kinch, Kjartan M; Madsen, Morten B.; Mitofranov, Igor; Jun, Insoo; Calef, Fred J.; Vasavada, Ashwin R.

    2017-01-01

    Diagenetic silica enrichment in fracture-associated halos that crosscut lacustrine and unconformably overlying aeolian sedimentary bedrock is observed on the lower north slope of Aeolis Mons in Gale crater, Mars. The diagenetic silica enrichment is colocated with detrital silica enrichment observed in the lacustrine bedrock yet extends into a considerably younger, unconformably draping aeolian sandstone, implying that diagenetic silica enrichment postdates the detrital silica enrichment. A causal connection between the detrital and diagenetic silica enrichment implies that water was present in the subsurface of Gale crater long after deposition of the lacustrine sediments and that it mobilized detrital amorphous silica and precipitated it along fractures in the overlying bedrock. Although absolute timing is uncertain, the observed diagenesis likely represents some of the most recent groundwater activity in Gale crater and suggests that the timescale of potential habitability extended considerably beyond the time that the lacustrine sediments of Aeolis Mons were deposited.

  14. Selective porous gates made from colloidal silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Roberto Nisticò

    2015-11-01

    Full Text Available Highly selective porous films were prepared by spin-coating deposition of colloidal silica nanoparticles on an appropriate macroporous substrate. Silica nanoparticles very homogenous in size were obtained by sol–gel reaction of a metal oxide silica precursor, tetraethyl orthosilicate (TEOS, and using polystyrene-block-poly(ethylene oxide (PS-b-PEO copolymers as soft-templating agents. Nanoparticles synthesis was carried out in a mixed solvent system. After spin-coating onto a macroporous silicon nitride support, silica nanoparticles were calcined under controlled conditions. An organized nanoporous layer was obtained characterized by a depth filter-like structure with internal porosity due to interparticle voids. Permeability and size-selectivity were studied by monitoring the diffusion of probe molecules under standard conditions and under the application of an external stimulus (i.e., electric field. Promising results were obtained, suggesting possible applications of these nanoporous films as selective gates for controlled transport of chemical species in solution.

  15. Effect of silica nanoparticles on polyurethane foaming process and foam properties

    International Nuclear Information System (INIS)

    Francés, A B; Bañón, M V Navarro

    2014-01-01

    Flexible polyurethane foams (FPUF) are commonly used as cushioning material in upholstered products made on several industrial sectors: furniture, automotive seating, bedding, etc. Polyurethane is a high molecular weight polymer based on the reaction between a hydroxyl group (polyol) and isocyanate. The density, flowability, compressive, tensile or shearing strength, the thermal and dimensional stability, combustibility, and other properties can be adjusted by the addition of several additives. Nanomaterials offer a wide range of possibilities to obtain nanocomposites with specific properties. The combination of FPUF with silica nanoparticles could develop nanocomposite materials with unique properties: improved mechanical and thermal properties, gas permeability, and fire retardancy. However, as silica particles are at least partially surface-terminated with Si-OH groups, it was suspected that the silica could interfere in the reaction of poyurethane formation.The objective of this study was to investigate the enhancement of thermal and mechanical properties of FPUF by the incorporation of different types of silica and determining the influence thereof during the foaming process. Flexible polyurethane foams with different loading mass fraction of silica nanoparticles (0-1% wt) and different types of silica (non treated and modified silica) were synthesized. PU/SiO 2 nanocomposites were characterized by FTIR spectroscopy, TGA, and measurements of apparent density, resilience and determination of compression set. Addition of silica nanoparticles influences negatively in the density and compression set of the foams. However, resilience and thermal stability of the foams are improved. Silica nanoparticles do not affect to the chemical structure of the foams although they interfere in the blowing reaction

  16. Silica nanoparticles with a substrate switchable luminescence

    International Nuclear Information System (INIS)

    Bochkova, O D; Mustafina, A R; Fedorenko, S V; Konovalov, A I

    2011-01-01

    Silica nanoparticles with visible (Tb and Ru doped), near IR (Yb doped) and dual visible-near IR luminescence (Ru-Yb doped) were obtained by reverse w/o microemulsion procedure. Plenty of luminescent complexes (from 4900 to 10000) encapsulated into each nanoparticle ensures the intensive luminescence of nanoparticles and their applicability as biomarkers. The silica surface decoration by definite anchor groups is the required step for the gaining to these nanoparticles marking and sensing functions. Thus covalent and non-covalent surface modification of these nanoparticles was developed to provide the binding with biotargets and sensing of anions. The dicationic surfactant coating of negatively charged Tb(III)-TCAS doped silica nanoparticles was chosen as the basis for the anion responsible system. The reversible insertion of the quenching anions (namely phenol red) into the surfactant based layer at the surface of luminescent nanoparticles switches off the Tb-centered luminescence. In turn the reversible reestablishment of the luminescence results from the competitive insertion of the non-quenching anions into the surfactant layer at the silica/water interface. The hydrophobic anions exemplified by dodecylsulfates versus hydrophilic ones (hydrophosphates) are preferable in the competition with phenol red anions.

  17. Silica incorporated membrane for wastewater based filtration

    Science.gov (United States)

    Fernandes, C. S.; Bilad, M. R.; Nordin, N. A. H. M.

    2017-10-01

    Membrane technology has long been applied for waste water treatment industries due to its numerous advantages compared to other conventional processes. However, the biggest challenge in pressure driven membrane process is membrane fouling. Fouling decreases the productivity and efficiency of the filtration, reduces the lifespan of the membrane and reduces the overall efficiency of water treatment processes. In this study, a novel membrane material is developed for water filtration. The developed membrane incorporates silica nanoparticles mainly to improve its structural properties. Membranes with different loadings of silica nanoparticles were applied in this study. The result shows an increase in clean water permeability and filterability of the membrane for treating activated sludge, microalgae solution, secondary effluent and raw sewage as feed. Adding silica into the membrane matrix does not significantly alter contact angle and membrane pore size. We believe that silica acts as an effective pore forming agent that increases the number of pores without significantly altering the pore sizes. A higher number of small pores on the surface of the membrane could reduce membrane fouling because of a low specific loading imposed to individual pores.

  18. Fractal dimensions of silica gels generated using reactive molecular dynamics simulations

    International Nuclear Information System (INIS)

    Bhattacharya, Sudin; Kieffer, John

    2005-01-01

    We have used molecular dynamics simulations based on a three-body potential with charge transfer to generate nanoporous silica aerogels. Care was taken to reproduce the sol-gel condensation reaction that forms the gel backbone as realistically as possible and to thereby produce credible gel structures. The self-similarity of aerogel structures was investigated by evaluating their fractal dimension from geometric correlations. For comparison, we have also generated porous silica glasses by rupturing dense silica and computed their fractal dimension. The fractal dimension of the porous silica structures was found to be process dependent. Finally, we have determined that the effect of supercritical drying on the fractal nature of condensed silica gels is not appreciable

  19. Exploring encapsulation mechanism of DNA and mononucleotides in sol-gel derived silica.

    Science.gov (United States)

    Kapusuz, Derya; Durucan, Caner

    2017-07-01

    The encapsulation mechanism of DNA in sol-gel derived silica has been explored in order to elucidate the effect of DNA conformation on encapsulation and to identify the nature of chemical/physical interaction of DNA with silica during and after sol-gel transition. In this respect, double stranded DNA and dAMP (2'-deoxyadenosine 5'-monophosphate) were encapsulated in silica using an alkoxide-based sol-gel route. Biomolecule-encapsulating gels have been characterized using UV-Vis, 29 Si NMR, FTIR spectroscopy and gas adsorption (BET) to investigate chemical interactions of biomolecules with the porous silica network and to examine the extent of sol-gel reactions upon encapsulation. Ethidium bromide intercalation and leach out tests showed that helix conformation of DNA was preserved after encapsulation. For both biomolecules, high water-to-alkoxide ratio promoted water-producing condensation and prevented alcoholic denaturation. NMR and FTIR analyses confirmed high hydraulic reactivity (water adsorption) for more silanol groups-containing DNA and dAMP encapsulated gels than plain silica gel. No chemical binding/interaction occurred between biomolecules and silica network. DNA and dAMP encapsulated silica gelled faster than plain silica due to basic nature of DNA or dAMP containing buffer solutions. DNA was not released from silica gels to aqueous environment up to 9 days. The chemical association between DNA/dAMP and silica host was through phosphate groups and molecular water attached to silanols, acting as a barrier around biomolecules. The helix morphology was found not to be essential for such interaction. BET analyses showed that interconnected, inkbottle-shaped mesoporous silica network was condensed around DNA and dAMP molecules.

  20. Silica-Immobilized Enzyme Reactors; Application to Cholinesterase-Inhibition Studies

    National Research Council Canada - National Science Library

    Luckarift, Heather R; Johnson, Glenn R; Spain, Jim C

    2006-01-01

    ...) using silica-encapsulated equine butyrycholinestearse (BuChE) as a model system. Peptide-mediated silica formation was used to encapsulate BuChE, directly immobilizing the enzyme within a commercial pre-packed column...