WorldWideScience

Sample records for dissolved nitrogen transformations

  1. Nitrogen transformation under different dissolved oxygen levels by the anoxygenic phototrophic bacterium Marichromatium gracile.

    Science.gov (United States)

    Hong, Xuan; Chen, Zhongwei; Zhao, Chungui; Yang, Suping

    2017-06-01

    Marichromatium gracile: YL28 (M. gracile YL28) is an anoxygenic phototrophic bacterial strain that utilizes ammonia, nitrate, or nitrite as its sole nitrogen source during growth. In this study, we investigated the removal and transformation of ammonium, nitrate, and nitrite by M. gracile YL28 grown in a combinatorial culture system of sodium acetate-ammonium, sodium acetate-nitrate and sodium acetate-nitrite in response to different initial dissolved oxygen (DO) levels. In the sodium acetate-ammonium system under aerobic conditions (initial DO = 7.20-7.25 mg/L), we detected a continuous accumulation of nitrate and nitrite. However, under semi-anaerobic conditions (initial DO = 4.08-4.26 mg/L), we observed a temporary accumulation of nitrate and nitrite. Interestingly, under anaerobic conditions (initial DO = 0.36-0.67 mg/L), there was little accumulation of nitrate and nitrite, but an increase in nitrous oxide production. In the sodium acetate-nitrite system, nitrite levels declined slightly under aerobic conditions, and nitrite was completely removed under semi-anaerobic and anaerobic conditions. In addition, M. gracile YL28 was able to grow using nitrite as the sole nitrogen source in situations when nitrogen gas produced by denitrification was eliminated. Taken together, the data indicate that M. gracile YL28 performs simultaneous heterotrophic nitrification and denitrification at low-DO levels and uses nitrite as the sole nitrogen source for growth. Our study is the first to demonstrate that anoxygenic phototrophic bacteria perform heterotrophic ammonia-oxidization and denitrification under anaerobic conditions.

  2. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities.

    Science.gov (United States)

    Fan, Lu; Brett, Michael T; Jiang, Wenju; Li, Bo

    2017-10-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L -1 . Nitrate (NO 3 - ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 -  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities

    International Nuclear Information System (INIS)

    Fan, Lu; Brett, Michael T.; Jiang, Wenju; Li, Bo

    2017-01-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L −1 . Nitrate (NO 3 − ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 −  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. - Highlights: • DIN was the dominated N pool for most of the tested effluent samples. • DON bioavailability considerably varied depending on the WWTP assessed.

  4. Effects of floodgates operation on nitrogen transformation in a lake based on structural equation modeling analysis.

    Science.gov (United States)

    Zhu, Longji; Zhou, Haixuan; Xie, Xinyu; Li, Xueke; Zhang, Duoying; Jia, Liming; Wei, Qingbin; Zhao, Yue; Wei, Zimin; Ma, Yingying

    2018-08-01

    Floodgates operation is one of the primary means of flood control in lake development. However, knowledge on the linkages between floodgates operation and nitrogen transformation during the flood season is limited. In this study, water samples from six sampling sites along Lake Xingkai watershed were collected before and after floodgates operation. The causal relationships between environmental factors, bacterioplankton community composition and nitrogen fractions were determined during flood season. We found that concentrations of nitrogen fractions decreased significantly when the floodgates were opened, while the concentrations of total nitrogen (TN) and NO 3 - increased when the floodgates had been shut for a period. Further, we proposed a possible mechanism that the influence of floodgates operation on nitrogen transformation was largely mediated through changes in dissolved organic matter, dissolved oxygen and bacterioplankton community composition as revealed by structural equation modeling (SEM). We conclude that floodgates operation has a high risk for future eutrophication of downstream watershed, although it can reduce nitrogen content temporarily. Therefore, the environmental impacts of floodgates operation should be carefully evaluated before the floodwaters were discharged into downstream watershed. Copyright © 2018. Published by Elsevier B.V.

  5. Leaching of dissolved organic and inorganic nitrogen from legume-based grasslands

    DEFF Research Database (Denmark)

    Kusliene, Gedrime; Eriksen, Jørgen; Rasmussen, Jim

    2015-01-01

    Leaching of dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) is a considerable loss pathway in grassland soils. We investigated the white clover (Trifolium repens) contribution to N transport and temporal N dynamics under a pure stand of white clover and white clover...

  6. Dissolved nitrogen in rivers: comparing pristine and impacted regions of Brazil

    Directory of Open Access Journals (Sweden)

    LA Martinelli

    Full Text Available Riverine nitrogen distribution is increasingly controlled by anthropogenic activities in their watersheds, regardless of spatial scale, climate, and geographical zone. Consequently, modelling efforts to predict the export of nitrogen from rivers worldwide have used attributes such as population density, land use, urbanization and sanitation. These models have greatly enhanced our understanding of the sources and fate of nitrogen added to terrestrial systems and transported to rivers and streams, especially for developed countries of the North temperate zone. However, much of the world's population lives in developing countries of the tropics, where the effects of human activities on riverine N exports are still poorly understood. In an effort to close this gap, we compare riverine nitrogen data from 32 Brazilian rivers draining two contrasting regions in this tropical country in terms of economic development - the State of São Paulo and the Amazon. Our data include nitrogen in different dissolved forms, such as Dissolved Inorganic Nitrogen (DIN and Dissolved Organic Nitrogen (DON. The results show that nitrogen concentrations decreased as river runoff increased in both study areas, and that concentrations were significantly higher in rivers draining the most economically developed region. The relationships between nitrogen concentrations and fluxes with demographic parameters such as population density were also determined and compared to those in temperate systems. In contrast to temperate watersheds, we found that nitrogen fluxes increased only after population densities were higher than 10 individuals per km².

  7. Dissolved nitrogen in liquid lithium - a problem in fusion reactor chemistry

    International Nuclear Information System (INIS)

    Hubberstey, P.

    1984-01-01

    When dissolved in liquid lithium, nitrogen adopts the role filled by oxygen in liquid sodium systems, reacting readily with stainless steel containment materials to form Li 9 CrN 5 as a surface product; extended reaction leads to pronounced corrosion and embrittlement problems. It also interacts with both carbon and silicon impurities forming Li 2 NCN and Li 5 SiN 3 , respectively; it is inert, however, to oxygen impurity. Although dissolved nitrogen reacts with neither the tritium generated in the breeding process nor the lead added to act as a neutron multiplier, its presence may seriously influence tritium recovery processes since it reacts with and hence may poison the majority of the transition metals (Y,Ti,Zr) presently being considered as tritium getter materials. Its reactivity with these metals forms the basis of the hot trapping technique used to remove dissolved nitrogen from liquid lithium systems; cold trapping is ineffective because of its large solubility even at temperatures just above the melting point of pure lithium (453.6K). Whenever possible, the chemistry of nitrogen dissolved in liquid lithium is rationalised using the thermodynamic concepts and its significance to fusion reactor technology stressed. (author)

  8. Transformation of fertilizer nitrogen in soil

    International Nuclear Information System (INIS)

    Soechting, H.

    1980-01-01

    Pot experiments are described in which the transformations between nitrogen added as fertilizer urea, plant-assimilated nitrogen, and different chemical fractions of soil or added straw nitrogen were studied with 15 N as a tracer. The data indicated that: (a) The transformation of added fertilizer nitrogen to immobilized amide nitrogen is decreased with added decomposable organic carbon. The transformation to immobilized α-amino N is increased, on the other hand, by the addition of decomposable organic carbon. (b) The freshly immobilized amide nitrogen is more readily remineralized than the α-amino form. The immobilization of added nitrogen continues in the presence of growing plants. (c) Mineralization of nitrogen added as 15 N-labelled straw is also increased with increasing fertilizer-nitrogen additions. (author)

  9. Nitrogen transformations in wetlands: Effects of water flow patterns

    Energy Technology Data Exchange (ETDEWEB)

    Davidsson, T.

    1997-11-01

    In this thesis, I have studied nitrogen turnover processes in water meadows. A water meadow is a wetland where water infiltrates through the soil of a grassland field. It is hypothesized that infiltration of water through the soil matrix promotes nutrient transformations compared to surface flow of water, by increasing the contact between water, nutrients, soil organic matter and bacteria. I have studied how the balance between nitrogen removal (denitrification, assimilative uptake, adsorption) and release (mineralization, desorption) processes are affected by water flow characteristics. Mass balance studies and direct denitrification measurements at two field sites showed that, although denitrification was high, net nitrogen removal in the water meadows was poor. This was due to release of ammonium and dissolved organic nitrogen (DON) from the soils. In laboratory studies, using {sup 15}N isotope techniques, I have shown that nitrogen turnover is considerably affected by hydrological conditions and by soil type. Infiltration increased virtually all the nitrogen processes, due to deeper penetration of nitrate and oxygen, and extended zones of turnover processes. On the contrary, soils and sediments with surface water flow, diffusion is the main transfer mechanism. The relation between release and removal processes sometimes resulted in shifts towards net nitrogen production. This occurred in infiltration treatments when ammonium efflux was high in relation to denitrification. It was concluded that ammonium and DON was of soil origin and hence not a product of dissimilatory nitrate reduction to ammonium. Both denitrification potential and mineralization rates were higher in peaty than in sandy soil. Vertical or horizontal subsurface flow is substantial in many wetland types, such as riparian zones, tidal salt marshes, fens, root-zone systems and water meadows. Moreover, any environment where aquatic and terrestrial ecosystems meet, and where water level fluctuates

  10. Nitrogen fixation in the activated sludge treatment of thermomechanical pulping wastewater: effect of dissolved oxygen.

    Science.gov (United States)

    Slade, A H; Anderson, S M; Evans, B G

    2003-01-01

    N-ViroTech, a novel technology which selects for nitrogen-fixing bacteria as the bacteria primarily responsible for carbon removal, has been developed to treat nutrient limited wastewaters to a high quality without the addition of nitrogen, and only minimal addition of phosphorus. Selection of the operating dissolved oxygen level to maximise nitrogen fixation forms a key component of the technology. Pilot scale activated sludge treatment of a thermomechanical pulping wastewater was carried out in nitrogen-fixing mode over a 15 month period. The effect of dissolved oxygen was studied at three levels: 14% (Phase 1), 5% (Phase 2) and 30% (Phase 3). The plant was operated at an organic loading of 0.7-1.1 kg BOD5/m3/d, a solids retention time of approximately 10 d, a hydraulic retention time of 1.4 d and a F:M ratio of 0.17-0.23 mg BOD5/mg VSS/d. Treatment performance was very stable over the three dissolved oxygen operating levels. The plant achieved 94-96% BOD removal, 82-87% total COD removal, 79-87% soluble COD removal, and >99% total extractives removal. The lowest organic carbon removals were observed during operation at 30% DO but were more likely to be due to phosphorus limitation than operation at high dissolved oxygen, as there was a significant decrease in phosphorus entering the plant during Phase 3. Discharge of dissolved nitrogen, ammonium and oxidised nitrogen were consistently low (1.1-1.6 mg/L DKN, 0.1-0.2 mg/L NH4+-N and 0.0 mg/L oxidised nitrogen). Discharge of dissolved phosphorus was 2.8 mg/L, 0.1 mg/L and 0.6 mg/L DRP in Phases 1, 2 and 3 respectively. It was postulated that a population of polyphosphate accumulating bacteria developed during Phase 1. Operation at low dissolved oxygen during Phase 2 appeared to promote biological phosphorus uptake which may have been affected by raising the dissolved oxygen to 30% in Phase 3. Total nitrogen and phosphorus discharge was dependent on efficient secondary clarification, and improved over the course of

  11. Dissolved nitrogen in drinking water resources of farming ...

    African Journals Online (AJOL)

    Dissolved nitrogen in drinking water resources of farming communities in Ghana. ... African Journal of Environmental Science and Technology ... Concentrations of these potentially toxic substances were below WHO acceptable limits for surface and groundwaters, indicating these water resources appear safe for drinking ...

  12. THE ROLE OF NITROGEN IN CHROMOPHORIC AND FLUORESCENT DISSOLVED ORGANIC MATTER FORMATION

    Science.gov (United States)

    Microbial and photochemical processes affect chromophoric dissolved organic matter (CDOM) dynamics in the ocean. Some evidence suggests that dissolved nitrogen plays a role in CDOM formation, although this has received little systematic attention in marine ecosystems. Coastal sea...

  13. Remote Sensing of Dissolved Oxygen and Nitrogen in Water Using Raman Spectroscopy

    Science.gov (United States)

    Ganoe, Rene; DeYoung, Russell J.

    2013-01-01

    The health of an estuarine ecosystem is largely driven by the abundance of dissolved oxygen and nitrogen available for maintenance of plant and animal life. An investigation was conducted to quantify the concentration of dissolved molecular oxygen and nitrogen in water by means of Raman spectroscopy. This technique is proposed for the remote sensing of dissolved oxygen in the Chesapeake Bay, which will be utilized by aircraft in order to survey large areas in real-time. A proof of principle system has been developed and the specifications are being honed to maximize efficiency for the final application. The theoretical criteria of the research, components of the experimental system, and key findings are presented in this report

  14. Fate of dissolved organic nitrogen in two stage trickling filter process.

    Science.gov (United States)

    Simsek, Halis; Kasi, Murthy; Wadhawan, Tanush; Bye, Christopher; Blonigen, Mark; Khan, Eakalak

    2012-10-15

    Dissolved organic nitrogen (DON) represents a significant portion of nitrogen in the final effluent of wastewater treatment plants (WWTPs). Biodegradable portion of DON (BDON) can support algal growth and/or consume dissolved oxygen in the receiving waters. The fate of DON and BDON has not been studied for trickling filter WWTPs. DON and BDON data were collected along the treatment train of a WWTP with a two-stage trickling filter process. DON concentrations in the influent and effluent were 27% and 14% of total dissolved nitrogen (TDN). The plant removed about 62% and 72% of the influent DON and BDON mainly by the trickling filters. The final effluent BDON values averaged 1.8 mg/L. BDON was found to be between 51% and 69% of the DON in raw wastewater and after various treatment units. The fate of DON and BDON through the two-stage trickling filter treatment plant was modeled. The BioWin v3.1 model was successfully applied to simulate ammonia, nitrite, nitrate, TDN, DON and BDON concentrations along the treatment train. The maximum growth rates for ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria, and AOB half saturation constant influenced ammonia and nitrate output results. Hydrolysis and ammonification rates influenced all of the nitrogen species in the model output, including BDON. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Determination of the Fate of Dissolved Organic Nitrogen in the Three Wastewater Treatment Plants, Jordan

    Science.gov (United States)

    Wedyan, Mohammed; Al Harahsheh, Ahmed; Qnaisb, Esam

    2016-01-01

    This research aimed to assess the composition of total dissolved nitrogen (TDN) species, particularly dissolved organic nitrogen (DON), over the traditional wastewater treatment operations in three biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Jordan. It had been found that the DON percentage was up to 30% of TDN within…

  16. Dissolved nitrogen transformations and microbial community structure in the organic layer of forest soils in Olkiluoto in 2006

    International Nuclear Information System (INIS)

    Potila, H.; Sarjala, T.; Aro, L.

    2007-02-01

    Carbon (C) and nitrogen (N) cycles in the ecosystem are strongly coupled. Biomass, structure and activity of the bacterial and fungal community are the key factors influencing C and N cycles. Changes in the function of soil microbial community can be a signal of plant responses to environmental changes. Dissolved N compounds, microbial biomass, microbial activity, fungal community structure and functional diversity of microbial communities were measured in September 2006 from five monitoring plots on Olkiluoto to assess information about soil microbial community structure and activity. High within and between variation in the studied plots were detected. However, in this study the values and their variation in the level of N mineralisation, dissolved N compounds, fungal biomass and microbial community structure in the studied plots were within a normal range in comparison with other published data of similar forest types in Finland. (orig.)

  17. Predicting nitrogen and acidity effects on long-term dynamics of dissolved organic matter

    International Nuclear Information System (INIS)

    Rowe, E.C.; Tipping, E.; Posch, M.; Oulehle, F.; Cooper, D.M.; Jones, T.G.; Burden, A.; Hall, J.; Evans, C.D.

    2014-01-01

    Increases in dissolved organic carbon (DOC) fluxes may relate to changes in sulphur and nitrogen pollution. We integrated existing models of vegetation growth and soil organic matter turnover, acid–base dynamics, and organic matter mobility, to form the ‘MADOC’ model. After calibrating parameters governing interactions between pH and DOC dissolution using control treatments on two field experiments, MADOC reproduced responses of pH and DOC to additions of acidifying and alkalising solutions. Long-term trends in a range of acid waters were also reproduced. The model suggests that the sustained nature of observed DOC increases can best be explained by a continuously replenishing potentially-dissolved carbon pool, rather than dissolution of a large accumulated store. The simulations informed the development of hypotheses that: DOC increase is related to plant productivity increase as well as to pH change; DOC increases due to nitrogen pollution will become evident, and be sustained, after soil pH has stabilised. -- Highlights: • A model of dissolved organic carbon (DOC) was developed by integrating simple models • MADOC simulates effects of sulphur and nitrogen deposition and interactions with pH. • Responses of DOC and pH to experimental acidification and alkalisation were reproduced. • The persistence of DOC increases will depend on continued supply of potential DOC. • DOC fluxes are likely determined by plant productivity as well as soil solution pH. -- Effects of changes in sulphur and nitrogen pollution on dissolved organic carbon fluxes are predicted by simulating soil organic matter cycling, the release of potentially-dissolved carbon, and interactions with soil pH

  18. Coupling loss characteristics of runoff-sediment-adsorbed and dissolved nitrogen and phosphorus on bare loess slope.

    Science.gov (United States)

    Wu, Lei; Qiao, Shanshan; Peng, Mengling; Ma, Xiaoyi

    2018-05-01

    Soil and nutrient loss is a common natural phenomenon but it exhibits unclear understanding especially on bare loess soil with variable rainfall intensity and slope gradient, which makes it difficult to design control measures for agricultural diffuse pollution. We employ 30 artificial simulated rainfalls (six rainfall intensities and five slope gradients) to quantify the coupling loss correlation of runoff-sediment-adsorbed and dissolved nitrogen and phosphorus on bare loess slope. Here, we show that effects of rainfall intensity on runoff yield was stronger than slope gradient with prolongation of rainfall duration, and the effect of slope gradient on runoff yield reduced gradually with increased rainfall intensity. But the magnitude of initial sediment yield increased significantly from an average value of 6.98 g at 5° to 36.08 g at 25° with increased slope gradient. The main factor of sediment yield would be changed alternately with the dual increase of slope gradient and rainfall intensity. Dissolved total nitrogen (TN) and dissolved total phosphorus (TP) concentrations both showed significant fluctuations with rainfall intensity and slope gradient, and dissolved TP concentration was far less than dissolved TN. Under the double influences of rainfall intensity and slope gradient, adsorbed TN concentration accounted for 7-82% of TN loss concentration with an average of 58.6% which was the main loss form of soil nitrogen, adsorbed TP concentration accounted for 91.8-98.7% of TP loss concentration with an average of 96.6% which was also the predominant loss pathway of soil phosphorus. Nitrate nitrogen (NO 3 - -N) accounted for 14.59-73.92% of dissolved TN loss, and ammonia nitrogen (NH 4 + -N) accounted for 1.48-18.03%. NO 3 - -N was the main loss pattern of TN in runoff. Correlation between dissolved TN, runoff yield, and rainfall intensity was obvious, and a significant correlation was also found between adsorbed TP, sediment yield, and slope gradient. Our

  19. Growth response of four freshwater algal species to dissolved organic nitrogen of different concentration and complexity

    DEFF Research Database (Denmark)

    Fiedler, Dorothea; Graeber, Daniel; Badrian, Maria

    2015-01-01

    1. Dissolved organic nitrogen (DON) compounds dominate the nitrogen pool of many lakes, but their importance as nitrogen sources for freshwater phytoplankton is not fully understood. Previous growth experiments demonstrated the availability of urea and amino acids but often at unnaturally high...... (DCAA), natural organic matter (NOM)) or with nitrate as the sole nitrogen source. Monocultures of Chlamydomonas spp., Cyclotella meneghiniana, Microcystis aeruginosa and Anabaena flos-aquae were incubated with dissolved nitrogen compounds at concentrations ranging from 0.01 to 0.5 mg N L−1, which...... and their compound preferences. Therefore, DON composition can influence biomass and structure of phytoplankton communities. 6. These experiments demonstrate the importance of the main DON compounds for phytoplankton growth when no inorganic nitrogen is available. DON should in future be included in nitrogen budget...

  20. Technical Note: Comparison between a direct and the standard, indirect method for dissolved organic nitrogen determination in freshwater environments with high dissolved inorganic nitrogen concentrations

    DEFF Research Database (Denmark)

    Graeber, Daniel; Gelbrecht, Jörg; Kronvang, Brian

    2012-01-01

    Research on dissolved organic nitrogen (DON) in aquatic systems with high dissolved inorganic nitrogen (DIN, the sum of NO3–, NO2– and NH4+) concentrations is often hampered by high uncertainties regarding the determined DON concentration. The reason is that DON is determined indirectly...... accuracy at high DIN : TDN ratios, we investigated the DON measurement accuracy of this standard approach according to the DIN : TDN ratio and compared it to the direct measurement of DON by size-exclusion chromatography (SEC) for freshwater systems. For this, we used standard compounds and natural samples...... separation of DON from DIN. For SEC, DON recovery rates were 91–108% for five pure standard compounds and 89–103% for two standard compounds, enriched with DIN. Moreover, SEC resulted in 93–108% recovery rates for DON concentrations of natural samples at a DIN : TDN ratio of 0.8 and the technique...

  1. Dynamics of dissolved and extractable organic nitrogen upon soil amendment with crop residues

    NARCIS (Netherlands)

    Ros, G.H.; Hoffland, E.

    2010-01-01

    Dissolved organic nitrogen (DON) is increasingly recognized as a pivotal pool in the soil nitrogen (N) cycle. Numerous devices and sampling procedures have been used to estimate its size, varying from in situ collection of soil solution to extraction of dried soil with salt solutions. Extractable

  2. [Effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter in soil solution in a young Cunninghamia lanceolata plantation.

    Science.gov (United States)

    Yuan, Xiao Chun; Chen, Yue Min; Yuan, Shuo; Zheng, Wei; Si, You Tao; Yuan, Zhi Peng; Lin, Wei Sheng; Yang, Yu Sheng

    2017-01-01

    To study the effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter (DOM) in the forest soil solution from the subtropical Cunninghamia lanceolata plantation, using negative pressure sampling method, the dynamics of DOM in soil solutions from 0-15 and 15-30 cm soil layer was monitored for two years and the spectroscopic features of DOM were analyzed. The results showed that nitrogen deposition significantly reduced the concentration of dissolved organic carbon (DOC), and increased the aromatic index (AI) and the humic index (HIX), but had no significant effect on dissolved organic nitrogen (DON) concentration in both soil layers. There was obvious seasonal variation in DOM concentration of the soil solution, which was prominently higher in summer and autumn than in spring and winter.Fourier-transform infrared (FTIR) absorption spectrometry indicated that the DOM in forest soil solution had absorption peaks in the similar position of six regions, being the highest in wave number of 1145-1149 cm -1 . Three-dimensional fluorescence spectra indicated that DOM was mainly consisted of protein-like substances (Ex/Em=230 nm/300 nm) and microbial degradation products (Ex/Em=275 nm/300 nm). The availability of protein-like substances from 0-15 cm soil layer was reduced in the nitrogen treatments. Nitrogen deposition significantly reduced the concentration of DOC in soil solution, maybe largely by reducing soil pH, inhibiting soil carbon mineralization and stimulating plant growth. In particular, the decline of DOC concentration in the surface layer was due to the production inhibition of the protein-like substances and carboxylic acids. Short-term nitrogen deposition might be beneficial to the maintenance of soil fertility, while the long-term accumulation of nitrogen deposition might lead to the hard utilization of soil nutrients.

  3. Bioavailability of dissolved organic nitrogen (DON) in wastewaters from animal feedlots and storage lagoons

    Science.gov (United States)

    Dissolved organic nitrogen (DON) transport from animal agriculture to surface waters can lead to eutrophication and dissolved oxygen depletion. Biodegradable DON (BDON) is a portion of DON that is mineralized by bacteria while bioavailable DON (ABDON) is utilized by bacteria and/or algae. This stu...

  4. Bioavailability of autochthonous dissolved organic nitrogen in marine plankton communities

    DEFF Research Database (Denmark)

    Knudsen, Helle; Markager, Svend Stiig; Søndergaard, Morten

    The purpose of this study was to investigate the bioavailability of dissolved organic nitrogen (DON) produced during a phytoplankton bloom. The experiments were conducted with natural plankton communities as batch growth experiments over approximately 30 days with nitrogen limitation. Five to six...... times during the exponential and stationary phases of each experimental bloom the bioavailability of DON was measured over 60 days together with DOC and oxygen consumption. The overall aim was to quantify remineralization of the added nitrate. The results showed that maximum 33 % of the added nitrate...

  5. Seasonal photochemical transformations of nitrogen species in a forest stream and lake.

    Directory of Open Access Journals (Sweden)

    Petr Porcal

    Full Text Available The photochemical release of inorganic nitrogen from dissolved organic matter is an important source of bio-available nitrogen (N in N-limited aquatic ecosystems. We conducted photochemical experiments and used mathematical models based on pseudo-first-order reaction kinetics to quantify the photochemical transformations of individual N species and their seasonal effects on N cycling in a mountain forest stream and lake (Plešné Lake, Czech Republic. Results from laboratory experiments on photochemical changes in N speciation were compared to measured lake N budgets. Concentrations of organic nitrogen (Norg; 40-58 µmol L-1 decreased from 3 to 26% during 48-hour laboratory irradiation (an equivalent of 4-5 days of natural solar insolation due to photochemical mineralization to ammonium (NH4+ and other N forms (Nx; possibly N oxides and N2. In addition to Norg mineralization, Nx also originated from photochemical nitrate (NO3- reduction. Laboratory exposure of a first-order forest stream water samples showed a high amount of seasonality, with the maximum rates of Norg mineralization and NH4+ production in winter and spring, and the maximum NO3- reduction occurring in summer. These photochemical changes could have an ecologically significant effect on NH4+ concentrations in streams (doubling their terrestrial fluxes from soils and on concentrations of dissolved Norg in the lake. In contrast, photochemical reactions reduced NO3- fluxes by a negligible (<1% amount and had a negligible effect on the aquatic cycle of this N form.

  6. Evaluation of leachate dissolved organic nitrogen discharge effect on wastewater effluent quality.

    Science.gov (United States)

    Bolyard, Stephanie C; Reinhart, Debra R

    2017-07-01

    Nitrogen is limited more and more frequently in wastewater treatment plant (WWTP) effluents because of the concern of causing eutrophication in discharge waters. Twelve leachates from eight landfills in Florida and California were characterized for total nitrogen (TN) and dissolved organic nitrogen (DON). The average concentration of TN and DON in leachate was approximately 1146mg/L and 40mg/L, respectively. Solid-phase extraction was used to fractionate the DON based on hydrophobic (recalcitrant fraction) and hydrophilic (bioavailable fraction) chemical properties. The average leachate concentrations of bioavailable (bDON) and recalcitrant (rDON) DON were 16.5mg/L and 18.4mg/L, respectively. The rDON fraction was positively correlated, but with a low R 2 , with total leachate apparent color dissolved UV 254 , chemical oxygen demand (COD), and humic acid (R 2 equals 0.38, 0.49, and 0.40, respectively). The hydrophobic fraction of DON (rDON) was highly colored. This fraction was also associated with over 60% of the total leachate COD. Multiple leachate and wastewater co-treatment simulations were carried out to assess the effects of leachate on total nitrogen wastewater effluent quality using removals for four WWTPs under different scenarios. The calculated pass through of DON suggests that leachate could contribute to significant amounts of nitrogen discharged to aquatic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Dissolved organic nitrogen dynamics in the North Sea: A time series analysis (1995-2005)

    NARCIS (Netherlands)

    Van Engeland, T.; Soetaert, K.E.R.; Knuijt, A.; Laane, R.W.P.M.; Middelburg, J.J.

    2010-01-01

    Dissolved organic nitrogen (DON) dynamics in the North Sea was explored by means of long-term time series of nitrogen parameters from the Dutch national monitoring program. Generally, the data quality was good with little missing data points. Different imputation methods were used to verify the

  8. Sources and transformation of dissolved and particulate organic nitrogen in the North Pacific Subtropical Gyre indicated by compound-specific δ15N analysis of amino acids

    Science.gov (United States)

    Yamaguchi, Yasuhiko T.; McCarthy, Matthew D.

    2018-01-01

    This study explores the use of compound-specific nitrogen isotopes of amino acids (δ15NAA) of coupled dissolved and particulate organic nitrogen (DON, PON) samples as a new approach to examine relative sources, transformation processes, and the potential coupling of these two major forms of N cycle in the ocean water column. We measured δ15NAA distributions in high-molecular-weight dissolved organic nitrogen (HMW DON) and suspended PON in the North Pacific Subtropical Gyre (NPSG) from surface to mesopelagic depths. A new analytical approach achieved far greater δ15NAA measurement precision for DON than earlier work, allowing us to resolve previously obscured differences in δ15NAA signatures, both with depth and between ON pools. We propose that δ15N values of total hydrolysable amino acids (THAA) represents a proxy for proteinaceous ON δ15N values in DON and PON. Together with bulk δ15N values, this allows δ15N values and changes in bulk, proteinaceous, and ;other-N; to be directly evaluated. These novel measurements suggest three main conclusions. First, the δ15NAA signatures of both surface and mesopelagic HMW DON suggest mainly heterotrophic bacterial sources, with mesopelagic HMW DON bearing signatures of far more degraded material compared to surface material. These results contrast with a previous proposal that HMW DON δ15NAA patterns are essentially ;pre-formed; by cyanobacteria in the surface ocean, undergo little change with depth. Second, different δ15NAA values and patterns of HMW DON vs. suspended PON in the surface NPSG suggest that sources and cycling of these two N reservoirs are surpisingly decoupled. Based on molecular δ15N signatures, we propose a new hypothesis that production of surface HMW DON is ultimately derived from subsurface nitrate, while PON in the mixed layer is strongly linked to N2 fixation and N recycling. In contrast, the comparative δ15NAA signatures of HMW DON vs. suspended PON in the mesopelagic also suggest a

  9. Restoration and Purification of Dissolved Organic Nitrogen by Bacteria and Phytoremediation in Shallow Eutrophic Lakes Sediments

    Science.gov (United States)

    Li, Xin; Yue, Yi

    2018-06-01

    Endogenous organic nitrogen loadings in lake sediments have increased with human activity in recent decades. A 6-month field study from two disparate shallow eutrophic lakes could partly reveal these issues by analysing seasonal variations of biodegradation and phytoremediation in the sediment. This paper describes the relationship between oxidation reduction potential, temperature, microbial activity and phytoremediation in nitrogen cycling by calculation degradative index of dissolved organic nitrogen and amino acid decomposition. The index was being positive in winter and negative in summer while closely positive correlated with biodegradation. Our analysis revealed that rather than anoxic condition, biomass is the primary factor to dissolved organic nitrogen distribution and decomposition. Some major amino acids statistics also confirm the above view. The comparisons of organic nitrogen and amino acid in abundance and seasons in situ provides that demonstrated plants cue important for nitrogen removal by their roots adsorption and immobilization. In conclusion, enhanced microbial activity and phytoremediation with the seasons will reduce the endogenous nitrogen loadings by the coupled mineralization and diagenetic process.

  10. Dissolved organic carbon and dissolved organic nitrogen data collected using bottle in a world wide distribution from 02 September 1998 to 02 November 2003 (NODC Accession 0002403)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) data were collected using bottle casts in a world wide distribution. Data were collected from 02...

  11. Quantifying the production of dissolved organic nitrogen in headwater streams using 15N tracer additions

    Science.gov (United States)

    Laura T. Johnson; Jennifer L. Tank; Robert O. Hall; Patrick J. Mullholland; Stephen K. Hamilton; H. Maurice Valett; Jackson R. Webster; Melody J. Bernot; William H. McDowell; Bruce J. Peterson; Suzanne M. Thomas

    2013-01-01

    Most nitrogen (N) assimilation in lake and marine ecosystems is often subsequently released via autochthonous dissolved organic nitrogen (DON) production, but autochthonous DON production has yet to be quantified in flowing waters. We measured in-stream DON production following 24 h 15N-nitrate (NO3-...

  12. Dissolved organic nitrogen and carbon release by a marine unicellular diazotrophic cyanobacterium

    NARCIS (Netherlands)

    Benavides, M.; Agawin, N.S.R.; Aristegui, J.; Peene, J.; Stal, L.J.

    2013-01-01

    Dinitrogen (N-2) fixation rates may be underestimated when recently fixed N2 is released as dissolved organic nitrogen (DON). DON release (DONr) is substantial in the filamentous cyanobacterium Trichodesmium but has never been reported in unicellular diazotrophic cyanobacteria. We used axenic

  13. Dissolved organic nitrogen and carbon release by a marine unicellular diazotrophic cyanobacterium

    NARCIS (Netherlands)

    Benavides, M.; Agawin, N.S.R.; Aristegui, J.; Peene, J.; Stal, L.J.

    2013-01-01

    Dinitrogen (N2) fixation rates may be underestimated when recently fixed N2 is released as dissolved organic nitrogen (DON). DON release (DONr) is substantial in the filamentous cyanobacterium Trichodesmium but has never been reported in unicellular diazotrophic cyanobacteria. We used axenic

  14. Total dissolved atmospheric nitrogen deposition in the anoxic Cariaco basin

    Science.gov (United States)

    Rasse, R.; Pérez, T.; Giuliante, A.; Donoso, L.

    2018-04-01

    Atmospheric deposition of total dissolved nitrogen (TDN) is an important source of nitrogen for ocean primary productivity that has increased since the industrial revolution. Thus, understanding its role in the ocean nitrogen cycle will help assess recent changes in ocean biogeochemistry. In the anoxic Cariaco basin, the place of the CARIACO Ocean Time-Series Program, the influence of atmospherically-deposited TDN on marine biogeochemistry is unknown. In this study, we measured atmospheric TDN concentrations as dissolved organic (DON) and inorganic (DIN) nitrogen (TDN = DIN + DON) in atmospheric suspended particles and wet deposition samples at the northeast of the basin during periods of the wet (August-September 2008) and dry (March-April 2009) seasons. We evaluated the potential anthropogenic N influences by measuring wind velocity and direction, size-fractionated suspended particles, chemical traces and by performing back trajectories. We found DIN and DON concentration values that ranged between 0.11 and 0.58 μg-N m-3 and 0.11-0.56 μg-N m-3 in total suspended particles samples and between 0.08 and 0.54 mg-N l-1 and 0.02-1.3 mg-N l-1 in wet deposition samples, respectively. Continental air masses increased DON and DIN concentrations in atmospheric suspended particles during the wet season. We estimate an annual TDN atmospheric deposition (wet + particles) of 3.6 × 103 ton-N year-1 and concluded that: 1) Atmospheric supply of TDN plays a key role in the C and N budget of the basin because replaces a fraction of the C (20% by induced primary production) and N (40%) removed by sediment burial, 2) present anthropogenic N could contribute to 30% of TDN atmospheric deposition in the basin, and 3) reduced DON (gas + particles) should be a significant component of bulk N deposition.

  15. Export of dissolved carbonaceous and nitrogenous substances in rivers of the "Water Tower of Asia".

    Science.gov (United States)

    Qu, Bin; Sillanpää, Mika; Kang, Shichang; Yan, Fangping; Li, Zhiguo; Zhang, Hongbo; Li, Chaoliu

    2018-03-01

    Rivers are critical links in the carbon and nitrogen cycle in aquatic, terrestrial, and atmospheric environments. Here riverine carbon and nitrogen exports in nine large rivers on the Tibetan Plateau - the "Water Tower of Asia" - were investigated in the monsoon season from 2013 to 2015. Compared with the world average, concentrations of dissolved inorganic carbon (DIC, 30.7mg/L) were high in river basins of the plateau due to extensive topographic relief and intensive water erosion. Low concentrations of dissolved organic carbon (DOC, 1.16mg/L) were likely due to the low temperature and unproductive land vegetation environments. Average concentrations of riverine DIN (0.32mg/L) and DON (0.35 mg/L) on the Tibetan Plateau were close to the world average. However, despite its predominantly pristine environment, discharge from agricultural activities and urban areas of the plateau has raised riverine N export. In addition, DOC/DON ratio (C/N, ~6.5) in rivers of the Tibetan Plateau was much lower than the global average, indicating that dissolved organic carbon in the rivers of this region might be more bioavailable. Therefore, along with global warming and anthropogenic activities, increasing export of bioavailable riverine carbon and nitrogen from rivers of the Tibetan Plateau can be expected in the future, which will possibly influence the regional carbon and nitrogen cycle. Copyright © 2017. Published by Elsevier B.V.

  16. Spatial distribution of soils determines export of nitrogen and dissolved organic carbon from an intensively managed agricultural landscape

    DEFF Research Database (Denmark)

    Wohlfart, T; Exbrayat, J-F; Schelde, Kirsten

    2012-01-01

    nitrogen (TDN), nitrate (NO3−), ammonium nitrogen and dissolved organic carbon (DOC) concentrations were measured, and dissolved organic nitrogen (DON) was calculated for each grabbed sample. Electrical conductivity, pH and flow velocity were measured during sampling. Statistical analyses showed...... significant differences between the northern, southern and converged stream parts, especially for NO3− concentrations with average values between 1.4 mg N l−1 and 9.6 mg N l−1. Furthermore, throughout the sampling period DON concentrations increased to 2.8 mg N l−1 in the northern stream contributing up to 81...

  17. Modeling of nitrogen transformation in an integrated multi-trophic aquaculture (IMTA)

    Science.gov (United States)

    Silfiana; Widowati; Putro, S. P.; Udjiani, T.

    2018-03-01

    The dynamic model of nitrogen transformation in IMTA (Integrated Multi-Trophic Aquaculture) is purposed. IMTA is a polyculture with several biotas maintained in it to optimize waste recycling as a food source. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in IMTA consisting of ammonia (NH3), Nitrite (NO2) and Nitrate (NO3). Nitrogen transformation of several processes, nitrification, assimilation, and volatilization. Numerical simulations are performed by providing initial parameters and values based on a review of previous research. The numerical results show that the rate of change in nitrogen concentration in IMTA decrease and reaches stable at different times.

  18. Natural abundances of /sup 15/N as a source indicator for near-shore marine sedimentary and dissolved nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, R E; Kaplan, I R [California Univ., Los Angeles (USA). Inst. of Geophysics and Planetary Physics

    1980-04-01

    The nitrogen isotope ratios of 42 sediment samples of total nitrogen and 38 dissolved pore-water ammonium samples from Santa Barbara Basin sediment cores were measured. The range of delta/sup 15/N values for total nitrogen was +2.89 to +9.4 per thousand with a mean of +6.8 per thousand and for pore water ammonium, +8.2 to +12.4 per thousand with a mean of 10.2 per thousand. The results suggest that the dissolved ammonium in the pore water is produced from bacterial degradation of marine organic matter. The range of delta /sup 15/N values for total nitrogen in the sediment is interpreted as resulting from an admixture of nitrogen derived from marine (+10 per thousand) and terrestrial (+2 per thousand) cores. The marine component of this mixture, composed principally of calcium carbonate with smaller amounts of opal and organic matter, contains approximately 1.0% nitrogen. The terrestrial component, which comprises over 80% of the sediment, contains approximately 0.1% organically bound nitrogen and accounts for > 25% of the total nitrogen in Santa Barbara Basin sediment.

  19. A Ni-Doped Carbon Nanotube Sensor for Detecting Oil-Dissolved Gases in Transformers.

    Science.gov (United States)

    Lu, Jia; Zhang, Xiaoxing; Wu, Xiaoqing; Dai, Ziqiang; Zhang, Jinbin

    2015-06-09

    C2H2, C2H4, and C2H6 are important oil-dissolved gases in power transformers. Detection of the composition and content of oil-dissolved gases in transformers is very significant in the diagnosis and assessment of the state of transformer operations. The commonly used oil-gas analysis methods have many disadvantages, so this paper proposes a Ni-doped carbon nanotube (Ni-CNT) gas sensor to effectively detect oil-dissolved gases in a transformer. The gas-sensing properties of the sensor to C2H2, C2H4, and C2H6 were studied using the test device. Based on the density functional theory (DFT) the adsorption behaviors of the three gases on intrinsic carbon nanotubes (CNTs) and Ni-CNTs were calculated. The adsorption energy, charge transfer, and molecular frontier orbital of the adsorption system were also analyzed. Results showed that the sensitivity of the CNT sensor to the three kinds of gases was in the following order: C2H2 > C2H4 > C2H6. Moreover, the doped Ni improved the sensor response, and the sensor response and gas concentration have a good linear relationship.

  20. Nitrogen transformations in stratified aquatic microbial ecosystems

    DEFF Research Database (Denmark)

    Revsbech, Niels Peter; Risgaard-Petersen, N.; Schramm, Andreas

    2006-01-01

    Abstract  New analytical methods such as advanced molecular techniques and microsensors have resulted in new insights about how nitrogen transformations in stratified microbial systems such as sediments and biofilms are regulated at a µm-mm scale. A large and ever-expanding knowledge base about n...... performing dissimilatory reduction of nitrate to ammonium have given new dimensions to the understanding of nitrogen cycling in nature, and the occurrence of these organisms and processes in stratified microbial communities will be described in detail.......Abstract  New analytical methods such as advanced molecular techniques and microsensors have resulted in new insights about how nitrogen transformations in stratified microbial systems such as sediments and biofilms are regulated at a µm-mm scale. A large and ever-expanding knowledge base about...... nitrogen fixation, nitrification, denitrification, and dissimilatory reduction of nitrate to ammonium, and about the microorganisms performing the processes, has been produced by use of these techniques. During the last decade the discovery of anammmox bacteria and migrating, nitrate accumulating bacteria...

  1. Sources and transformations of anthropogenic nitrogen along an urban river–estuarine continuum

    Directory of Open Access Journals (Sweden)

    M. J. Pennino

    2016-11-01

    Full Text Available Urbanization has altered the fate and transport of anthropogenic nitrogen (N in rivers and estuaries globally. This study evaluates the capacity of an urbanizing river–estuarine continuum to transform N inputs from the world's largest advanced (e.g., phosphorus and biological N removal wastewater treatment facility. Effluent samples and surface water were collected monthly along the Potomac River estuary from Washington D.C. to the Chesapeake Bay over a distance of 150 km. In conjunction with box model mass balances, nitrate stable isotopes and mixing models were used to trace the fate of urban wastewater nitrate. Nitrate concentrations and δ15N-NO3− values were higher down-estuary from the Blue Plains wastewater outfall in Washington D.C. (2.25 ± 0.62 mg L−1 and 25.7 ± 2.9 ‰, respectively compared to upper-estuary concentrations (1.0 ± 0.2 mg L−1 and 9.3 ± 1.4 ‰, respectively. Nitrate concentration then decreased rapidly within 30 km down-estuary (to 0.8 ± 0.2 mg L−1, corresponding to an increase in organic nitrogen and dissolved organic carbon, suggesting biotic uptake and organic transformation. TN loads declined down-estuary (from an annual average of 48 000 ± 5000 kg day−1 at the sewage treatment plant outfall to 23 000 ± 13 000 kg day−1 at the estuary mouth, with the greatest percentage decrease during summer and fall. Annually, there was a 70 ± 31 % loss in wastewater NO3− along the estuary, and 28 ± 6 % of urban wastewater TN inputs were exported to the Chesapeake Bay, with the greatest contribution of wastewater TN loads during the spring. Our results suggest that biological transformations along the urban river–estuary continuum can significantly transform wastewater N inputs from major cities globally, and more work is necessary to evaluate the potential of organic nitrogen and carbon to contribute to eutrophication and hypoxia.

  2. Higher molecular weight dissolved organic nitrogen turnover as affected by soil management history

    DEFF Research Database (Denmark)

    Lønne Enggrob, Kirsten

    of different management histories on the turnover of high Mw DON. Further, we distinguished between several classes of high Mw DON, i.e., 1-10 kDa and >10 kDa. 3. Materials and methods With the use of micro-lysimeters, the turnover of triple-labeled (15N, 14C and 13C) high Mw DON was studied in a sandy soil......High molecular weight dissolved organic nitrogen turnover as affected by soil management history *Kirsten Lønne Enggrob,1 Lars Elsgaard,1 and Jim Rasmussen1 1Aarhus University, Dept. of Agroecology, Foulum, Denmark 1. Introduction Dissolved organic nitrogen (DON) play an important role in soil N...... are presented for 14CO2 evolution during 14 days of incubation. 4. Results and conclusion Results showed that the turnover rate of high Mw DON was dependent on both the Mw size of DON and on the soil liming history. Evidence showing where in the DON Mw sizes the bottleneck lies will be presented....

  3. Characteristic of riverine dissolved inorganic nitrogen export in subtropic high-standing island, Taiwan

    Science.gov (United States)

    Lee, Li-Chin; Huang, -Chuan, Jr.; Lee, Tsung-Yu; Shih, Yu-Ting

    2015-04-01

    Extreme increase of anthropogenic nitrogen (e.g. fertilizer and excretion) has altered the nitrogen cycling and terrestrial ecosystems. Taiwan located between eastern Asia and Oceania is the hotspot of global riverine DIN (dissolved inorganic nitrogen, including NH4, NO3, and NO2) export, but rarely documented comprehensively. Totally 50 catchments, covering 2/3 of this island, with different anthropogenic activities are involved in this study. The monthly sampling for NH4 and seasonal sampling for NO3 and NO2 supplemented with daily discharge are used to estimate the riverine DIN export. Meanwhile, the landscape characteristics, land-use, and population density are also used to discriminate the characteristics of riverine DIN export. Results showed that the observed riverine DIN concentration and yield vary from 17.7-603.5 μM and 575.0-15588.9 kg-N km-2 yr-1 corresponding to the increase of anthropogenic activities. The arithmetic mean of DIN concentration and yield are 126.7μM and 3594.7 kg-N km-2 yr-1, respectively. The unexpected high yields can attribute to abundant precipitation, heavy fertilizer application, and high population. For concentration variation, no significant variation can be found in the pristine and agriculture-dominated catchments, whereas the strong dilution effect in the wet season is characterized in the intensively-disturbed catchments. Although there are some seasonal variations in concentration, the yields in wet season are almost doubled than that in dry season indicating the strong control of streamflow. For speciation, NH4 is the dominant species in intensively-disturbed catchment, but NO3 dominates the DIN composition for the pristine and agriculture-dominated catchments. Our result can provide a strong basis for supplementary estimation for regional to global study and DIN export control which is the aim of the Kampala Declaration on global nitrogen management. Keywords: dissolved inorganic nitrogen, anthropogenic nitrogen

  4. A Ni-Doped Carbon Nanotube Sensor for Detecting Oil-Dissolved Gases in Transformers

    Directory of Open Access Journals (Sweden)

    Jia Lu

    2015-06-01

    Full Text Available C2H2, C2H4, and C2H6 are important oil-dissolved gases in power transformers. Detection of the composition and content of oil-dissolved gases in transformers is very significant in the diagnosis and assessment of the state of transformer operations. The commonly used oil-gas analysis methods have many disadvantages, so this paper proposes a Ni-doped carbon nanotube (Ni-CNT gas sensor to effectively detect oil-dissolved gases in a transformer. The gas-sensing properties of the sensor to C2H2, C2H4, and C2H6 were studied using the test device. Based on the density functional theory (DFT the adsorption behaviors of the three gases on intrinsic carbon nanotubes (CNTs and Ni-CNTs were calculated. The adsorption energy, charge transfer, and molecular frontier orbital of the adsorption system were also analyzed. Results showed that the sensitivity of the CNT sensor to the three kinds of gases was in the following order: C2H2 > C2H4 > C2H6. Moreover, the doped Ni improved the sensor response, and the sensor response and gas concentration have a good linear relationship.

  5. Dissolved organic nitrogen dynamics in the North Sea: A time series analysis (1995-2005)

    Science.gov (United States)

    Van Engeland, T.; Soetaert, K.; Knuijt, A.; Laane, R. W. P. M.; Middelburg, J. J.

    2010-09-01

    Dissolved organic nitrogen (DON) dynamics in the North Sea was explored by means of long-term time series of nitrogen parameters from the Dutch national monitoring program. Generally, the data quality was good with little missing data points. Different imputation methods were used to verify the robustness of the patterns against these missing data. No long-term trends in DON concentrations were found over the sampling period (1995-2005). Inter-annual variability in the different time series showed both common and station-specific behavior. The stations could be divided into two regions, based on absolute concentrations and the dominant times scales of variability. Average DON concentrations were 11 μmol l -1 in the coastal region and 5 μmol l -1 in the open sea. Organic fractions of total dissolved nitrogen (TDN) averaged 38 and 71% in the coastal zone and open sea, respectively, but increased over time due to decreasing dissolved inorganic nitrogen (DIN) concentrations. In both regions intra-annual variability dominated over inter-annual variability, but DON variation in the open sea was markedly shifted towards shorter time scales relative to coastal stations. In the coastal zone a consistent seasonal DON cycle existed with high values in spring-summer and low values in autumn-winter. In the open sea seasonality was weak. A marked shift in the seasonality was found at the Dogger Bank, with DON accumulation towards summer and low values in winter prior to 1999, and accumulation in spring and decline throughout summer after 1999. This study clearly shows that DON is a dynamic actor in the North Sea and should be monitored systematically to enable us to understand fully the functioning of this ecosystem.

  6. In-situ study of migration and transformation of nitrogen in groundwater based on continuous observations at a contaminated desert site

    Science.gov (United States)

    Zuo, Rui; Jin, Shuhe; Chen, Minhua; Guan, Xin; Wang, Jinsheng; Zhai, Yuanzheng; Teng, Yanguo; Guo, Xueru

    2018-04-01

    The objective of this study was to explore the controlling factors on the migration and transformation of nitrogenous wastes in groundwater using long-term observations from a contaminated site on the southwestern edge of the Tengger Desert in northwestern China. Contamination was caused by wastewater discharge rich in ammonia. Two long-term groundwater monitoring wells (Wells 1# and 2#) were constructed, and 24 water samples were collected. Five key indicators were tested: ammonia, nitrate, nitrite, dissolved oxygen, and manganese. A numerical method was used to simulate the migration process and to determine the migration stage of the main pollutant plume in groundwater. The results showed that at Well 1# the nitrogenous waste migration process had essentially been completed, while at Well 2# ammonia levels were still rising and gradually transitioning to a stable stage. The differences for Well 1# and Well 2# were primarily caused by differences in groundwater flow. The change in ammonia concentration was mainly controlled by the migration of the pollution plume under nitrification in groundwater. The nitrification rate was likely affected by changes in dissolved oxygen and potentially manganese.

  7. Molecular composition and bioavailability of dissolved organic nitrogen in a lake flow-influenced river in south Florida, USA

    Science.gov (United States)

    Dissolved organic nitrogen (DON) represents a large percentage of the total nitrogen in rivers and estuaries, and can contribute to coastal eutrophication and hypoxia. This study reports on the composition and bioavailability of DON along the Caloosahatchee River (Florida), a heavily managed system ...

  8. Identification of Reactive and Refractory Components of Dissolved Organic Nitrogen by FT-ICR Mass Spectrometry

    Science.gov (United States)

    Cooper, W. T.; Podgorski, D. C.; Osborne, D. M.; Corbett, J.; Chanton, J.

    2010-12-01

    Dissolved organic nitrogen is an often overlooked but potentially significant bioavailable component of dissolved organic matter. Studies of bulk DON turnover have been reported, but the compositions of the reactive and refractory components of DON are largely unknown. Here we show the unique ability of atmospheric pressure photoionization (APPI) coupled to ultrahigh resolution mass spectrometry to identify the reactive and refractory components of DON. Figure 1 is an isolated 0.30 m/z window from an ultrahigh resolution APPI FT-ICR mass spectrum of DON in surface waters draining an agricultural area in South Florida. Using this optimized, negative-ion APPI strategy we have been able to identify the reactive and refractory components of DON in these nitrogen-rich waters. Similar results were observed with samples from soil porewaters in sedge-dominated fens and sphagnum-dominated bogs within the Glacial Lake Agassiz Peatlands (GLAP) of northern Minnesota. Surprisingly, microbes appear to initially use similar enzymatic pathways to degrade DON and DOC, often with little release of nitrogen. Figure 1. Isolated 0.30 m/z window at nominal mass 432 from negative-ion APPI FT-ICR mass spectrum of DOM from waters draining an agricultural area in South Florida. Peaks marked contain nitrogen.

  9. Reducing dissolved inorganic nitrogen in surface runoff water from sugarcane production systems.

    Science.gov (United States)

    Webster, A J; Bartley, R; Armour, J D; Brodie, J E; Thorburn, P J

    2012-01-01

    Nitrogen (N) lost from farms, especially as the highly bioavailable dissolved inorganic form, may be damaging Australia's Great Barrier Reef (GBR). As sugarcane is the dominant cropping system in GBR catchments, its N management practises are coming under increasing scrutiny. This study measured dissolved inorganic N lost in surface runoff water and sugarcane productivity over 3 years. The experiment compared the conventional fertiliser N application rate to sugarcane (average 180kg N/ha/year) and a rate based on replacing N exported in the previous crop (average 94kg N/ha/year). Dissolved inorganic N losses in surface water were 72%, 48% and 66% lower in the three monitored years in the reduced N fertiliser treatment. There was no significant difference in sugarcane yield between the two fertiliser N treatments, nor any treatment difference in soil mineral N - both of these results are indicators of the sustainability of the lower fertiliser N applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Bubble growth as a means to measure dissolved nitrogen concentration in aerated water

    Science.gov (United States)

    Ando, Keita; Yamashita, Tatsuya

    2017-11-01

    Controlling the amount of dissolved gases in water is important, for example, to food processing; it is essential to quantitatively evaluate dissolved gas concentration. The concentration of dissolved oxygen (DO) can be measured by commercial DO meters, but that of dissolved nitrogen (DN) cannot be obtained easily. Here, we propose a means to measure DN concentration based on Epstein-Plesset-type analysis of bubble growth under dissolved gas supersaturation. DO supersaturation in water is produced by oxygen microbubble aeration. The diffusion-driven growth of bubbles nucleated at glass surfaces in contact with the aerated water is first observed. The observed growth is then compared to the extended Epstein-Plesset theory that considers Fick's mass transfer of both DO and DN across bubble interfaces; in this comparison, the unknown DN concentration is treated as a fitting parameter. Comparisons between the experiment and the theory suggest, as expected, that DN can be effectively purged by oxygen microbubble aeration. This study was supported in part by the Mizuho Foundation for the Promotion of Science and by a MEXT Grant-in-Aid for the Program for Leading Graduate Schools.

  11. Nitrogen Transformation and Microbial Spatial Distribution in Drinking Water Biofilter

    Science.gov (United States)

    Qian, Yongxing; Zhang, Huining; Jin, Huizheng; Wu, Chengxia

    2018-02-01

    Well understanding the rule of nitrogen mutual transformation in biofilters is important for controlling the DBPs formation in the subsequent disinfection process. Ammonia nitrogen removal effect and nitrogen transformation approach in biofilter of drinking water was researched in the study. The biofilter removed ammonia of 48.5% and total phosphorus of 72.3%. And the removal rate of TN, NO3 --N, DON were 37.1%, 33.1%, 46.9%, respectively. Biomass and bioactivity of different depth of the biofilter were determined, too. The overall distribution of biomass showed a decreasing trend from top to bottom. The bioactivity in lower layer gradually increased. Especially the bioactivity of heterotrophic microorganisms showed a gradual increase trend. The amount of the nitrogen loss was 3.06mg/L. Non-nitrification pathway of “nitrogen loss” phenomenon in biofilter might exist assimilation, nitrification and denitrification in autotrophic.

  12. The transformation of nitrogen during pressurized entrained-flow pyrolysis of Chlorella vulgaris.

    Science.gov (United States)

    Maliutina, Kristina; Tahmasebi, Arash; Yu, Jianglong

    2018-08-01

    The transformation of nitrogen in microalgae during entrained-flow pyrolysis of Chlorella vulgaris was systematically investigated at the temperatures of 600-900 °C and pressures of 0.1-4.0 MPa. It was found that pressure had a profound impact on the transformation of nitrogen during pyrolysis. The nitrogen retention in bio-char and its content in bio-oil reached a maximum value at 1.0 MPa. The highest conversion of nitrogen (50.25 wt%) into bio-oil was achieved at 1.0 MPa and 800 °C, which was about 7 wt% higher than that at atmospheric pressure. Higher pressures promoted the formation of pyrrolic-N (N-5) and quaternary-N (N-Q) compounds in bio-oil at the expense of nitrile-N and pyridinic-N (N-6) compounds. The X-Ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results on bio-chars clearly evidenced the transformation of N-5 structures into N-6 and N-Q structures at elevated pressures. The nitrogen transformation pathways during pyrolysis of microalgae were proposed and discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Tracing Acetylene Dissolved in Transformer Oil by Tunable Diode Laser Absorption Spectrum.

    Science.gov (United States)

    Ma, Guo-Ming; Zhao, Shu-Jing; Jiang, Jun; Song, Hong-Tu; Li, Cheng-Rong; Luo, Ying-Ting; Wu, Hao

    2017-11-02

    Dissolved gas analysis (DGA) is widely used in monitoring and diagnosing of power transformer, since the insulation material in the power transformer decomposes gases under abnormal operation condition. Among the gases, acetylene, as a symbol of low energy spark discharge and high energy electrical faults (arc discharge) of power transformer, is an important monitoring parameter. The current gas detection method used by the online DGA equipment suffers from problems such as cross sensitivity, electromagnetic compatibility and reliability. In this paper, an optical gas detection system based on TDLAS technology is proposed to detect acetylene dissolved in transformer oil. We selected a 1530.370 nm laser in the near infrared wavelength range to correspond to the absorption peak of acetylene, while using the wavelength modulation strategy and Herriott cell to improve the detection precision. Results show that the limit of detection reaches 0.49 ppm. The detection system responds quickly to changes of gas concentration and is easily to maintenance while has no electromagnetic interference, cross-sensitivity, or carrier gas. In addition, a complete detection process of the system takes only 8 minutes, implying a practical prospect of online monitoring technology.

  14. Prediction of Dissolved Gas Concentrations in Transformer Oil Based on the KPCA-FFOA-GRNN Model

    Directory of Open Access Journals (Sweden)

    Jun Lin

    2018-01-01

    Full Text Available The purpose of analyzing the dissolved gas in transformer oil is to determine the transformer’s operating status and is an important basis for fault diagnosis. Accurate prediction of the concentration of dissolved gas in oil can provide an important reference for the evaluation of the state of the transformer. A combined predicting model is proposed based on kernel principal component analysis (KPCA and a generalized regression neural network (GRNN using an improved fruit fly optimization algorithm (FFOA to select the smooth factor. Firstly, based on the idea of using the dissolved gas ratio of oil to diagnose the transformer fault, gas concentration ratios are also used as characteristic parameters. Secondly, the main parameters are selected from the feature parameters using the KPCA method, and the GRNN is then used to predict the gas concentration in the transformer oil. In the training process of the network, the FFOA is used to select the smooth factor of the neural network. Through a concrete example, it is shown that the method proposed in this paper has better data fitting ability and more accurate prediction ability compared with the support vector machine (SVM and gray model (GM methods.

  15. Amount, composition and seasonality of dissolved organic carbon and nitrogen export from agriculture in contrasting climates

    DEFF Research Database (Denmark)

    Graeber, Daniel; Meerhof, Mariana; Zwirnmann, Elke

    2014-01-01

    Agricultural catchments are potentially important but often neglected sources of dissolved organic matter (DOM), of which a large part is dissolved organic carbon (DOC) and nitrogen (DON). DOC is an important source of aquatic microbial respiration and DON may be an important source of nitrogen...... to aquatic ecosystems. However, there is still a lack of comprehensive studies on the amount, composition and seasonality of DOM export from agricultural catchments in different climates. The aim of our study was to assess the amount, composition and seasonality of DOM in a total of four streams in the wet......-temperate and subtropical climate of Denmark and Uruguay, respectively. In each climate, we investigated one stream with extensive agriculture (mostly pasture) and one stream with intensive agriculture (mostly intensively used arable land) in the catchment. We sampled each stream taking grab samples fortnightly for two...

  16. EQUILIBRIUM AND KINETIC NITROGEN AND OXYGEN-ISOTOPE FRACTIONATIONS BETWEEN DISSOLVED AND GASEOUS N2O

    NARCIS (Netherlands)

    INOUE, HY; MOOK, WG

    1994-01-01

    Experiments were performed to determine the equilibrium as well as kinetic stable nitrogen and oxygen isotope fractionations between aqueous dissolved and gaseous N2O. The equilibrium fractionations, defined as the ratio of the isotopic abundance ratios (15R and 18R, respectively) of gaseous and

  17. Factors influencing export of dissolved inorganic nitrogen by major rivers: A new seasonal, global-scale model

    Science.gov (United States)

    Understanding sub-annual patterns of catchment dissolved inorganic nitrogen (DIN) export is critical for predicting and mitigating impacts of coastal eutrophication, such as algal blooms and hypoxic areas, which are often seasonal phenomena. We developed the first calibrated glob...

  18. Stable Isotopic Composition of Dissolved Organic Nitrogen Fueling Brown Tide in a Semi-Arid Texas Estuary

    Science.gov (United States)

    Campbell, J.; Felix, J. D. D.; Wetz, M.; Cira, E.

    2017-12-01

    Harmful algal blooms (HABs) have the potential to adversely affect the water quality of estuaries and, consequently, their ability to support healthy and diverse ecosystems. Since the early 1990s, Baffin Bay, a semi-arid south Texas estuary, has progressively experienced harmful algal blooms. The primary species of HAB native to the Baffin Bay region, Aureoumbra lagunensis, is unable to utilize nitrate as a nutrient source, but instead relies on forms of reduced nitrogen (such as dissolved organic nitrogen (DON) and ammonium (NH4+)) for survival. DON levels in Baffin Bay (77 ± 10 µM) exceed the DON concentrations of not only typical Texas estuaries, but estuaries worldwide. Additionally, DON accounts for 90% of the total dissolved nitrogen (TDN) in Baffin Bay, followed by NH4+ at 8%, and NO3-+NO2- contributing 2%. Due to the dependence of A. lagunensis on the reduced forms of nitrogen as an energy source and the elevated concentrations of DON throughout the bay, it is important to identify the origin of this nitrogen as well as how it's being processed as it cycles through the ecosystem. The presented work investigates the stable isotopic composition of reactive nitrogen (Nr) (δ15N-DON, δ15N-NH4+, and δ15N-NO3-) in Baffin Bay samples collected monthly at nine stations over the period of one year. The work provides preliminary evidence of Nr sources and mechanisms driving favorable conditions for HAB proliferation. This information can be useful and applicable to estuarine ecosystems in various settings, advancing scientific progress towards mitigating blooms. Additionally, since the elevated concentrations of DON make Baffin Bay uniquely suited to investigate its sources and processing, this project will aid in characterizing the role of this largely unstudied form of Nr, which could provide insight and change perceptions about the role of DON in nitrogen dynamics.

  19. Dissolved organic nitrogen (DON) losses from nested artificially drained lowland catchments with contrasting soil types

    Science.gov (United States)

    Tiemeyer, Bärbel; Kahle, Petra; Lennartz, Bernd

    2010-05-01

    Artificial drainage is a common practice to improve moisture and aeration conditions of agricultural land. It shortens the residence time of water in the soil and may therefore contribute to the degradation of peatlands as well as to the still elevated level of diffuse pollution of surface water bodies, particularly if flow anomalies like preferential flow cause a further acceleration of water and solute fluxes. Especially in the case of nitrate, artificially drained sub-catchments are found to control the catchment-scale nitrate losses. However, it is frequently found that nitrate losses and nitrogen field balances do not match. At the same time, organic fertilizers are commonly applied and, especially in lowland catchments, organic soils have been drained for agricultural use. Thus, the question arises whether dissolved organic nitrogen (DON) forms an important component of the nitrogen losses from artificially drained catchments. However, in contrast to nitrate and even to dissolved organic carbon (DOC), this component is frequently overlooked, especially in nested catchment studies with different soil types and variable land use. Here, we will present data from a hierarchical water quantity and quality measurement programme in the federal state Mecklenburg-Vorpommern (North-Eastern Germany). The monitoring programme in the pleistocene lowland catchment comprises automatic sampling stations at a collector drain outlet (4.2 ha catchment), at a ditch draining arable land on mineral soils (179 ha), at a ditch mainly draining grassland on organic soils (85 ha) and at a brook with a small rural catchment (15.5 km²) of mixed land use and soil types. At all sampling stations, daily to weekly composite samples were taken, while the discharge and the meteorological data were recorded continuously. Water samples were analyzed for nitrate-nitrogen, ammonium-nitrogen and total nitrogen. We will compare two years: 2006/07 was a very wet year (P = 934 mm) with a high summer

  20. The simulation research of dissolved nitrogen and phosphorus non-point source pollution in Xiao-Jiang watershed of Three Gorges Reservoir area.

    Science.gov (United States)

    Wu, Lei; Long, Tian-Yu; Li, Chong-Ming

    2010-01-01

    Xiao-jiang, with a basin area of almost 5,276 km(2) and a length of 182.4 km, is located in the center of the Three Gorges Reservoir Area, and is the largest tributary of the central section in Three Gorges Reservoir Area, farmland accounts for a large proportion of Xiao-jiang watershed, and the hilly cropland of purple soil is much of the farmland of the watershed. After the second phase of water storage in the Three Gorges Reservoir, the majority of sub-rivers in the reservoir area experienced eutrophication phenomenon frequently, and non-point source (NPS) pollution has become an important source of pollution in Xiao-jiang Watershed. Because dissolved nitrogen and phosphorus non-point source pollution are related to surface runoff and interflow, using climatic, topographic and land cover data from the internet and research institutes, the Semi-Distributed Land-use Runoff Process (SLURP) hydrological model was introduced to simulate the complete hydrological cycle of the Xiao-jiang Watershed. Based on the SLURP distributed hydrological model, non-point source pollution annual output load models of land use and rural residents were respectively established. Therefore, using GIS technology, considering the losses of dissolved nitrogen and phosphorus in the course of transport, a dissolved non-point source pollution load dynamic model was established by the organic coupling of the SLURP hydrological model and land-use output model. Through the above dynamic model, the annual dissolved non-point source nitrogen and phosphorus pollution output as well as the load in different types were simulated and quantitatively estimated from 2001 to 2008, furthermore, the loads of Xiao-jiang Watershed were calculated and expressed by temporal and spatial distribution in the Three Gorges Reservoir Area. The simulation results show that: the temporal changes of dissolved nitrogen and phosphorus load in the watershed are close to the inter-annual changes of rainfall runoff, and the

  1. Nitrogen transformations in stratified aquatic microbial ecosystems

    DEFF Research Database (Denmark)

    Revsbech, N. P.; Risgaard-Petersen, N.; Schramm, A.

    2006-01-01

    Abstract  New analytical methods such as advanced molecular techniques and microsensors have resulted in new insights about how nitrogen transformations in stratified microbial systems such as sediments and biofilms are regulated at a µm-mm scale. A large and ever-expanding knowledge base about n...

  2. Predicting nitrogen and acidity effects on long-term dynamics of dissolved organic matter

    OpenAIRE

    Rowe, E.C.; Tipping, E.; Posch, M.; Oulehle, Filip; Cooper, D.M.; Jones, T.G.; Burden, A.; Hall, J.; Evans, C.D.

    2014-01-01

    Increases in dissolved organic carbon (DOC) fluxes may relate to changes in sulphur and nitrogen pollution. We integrated existing models of vegetation growth and soil organic matter turnover, acid-base dynamics, and organic matter mobility, to form the ‘MADOC’ model. After calibrating parameters governing interactions between pH and DOC dissolution using control treatments on two field experiments, MADOC reproduced responses of pH and DOC to additions of acidifying and alkalising solutions. ...

  3. State factor relationships of dissolved organic carbon and nitrogen losses from unpolluted temperate forest watersheds

    Science.gov (United States)

    Perakis, S.S.; Hedin, L.O.

    2007-01-01

    We sampled 100 unpolluted, old-growth forested watersheds, divided among 13 separate study areas over 5 years in temperate southern Chile and Argentina, to evaluate relationships among dominant soil-forming state factors and dissolved carbon and nitrogen concentrations in watershed streams. These watersheds provide a unique opportunity to examine broad-scale controls over carbon (C) and nitrogen (N) biogeochemistry in the absence of significant human disturbance from chronic N deposition and land use change. Variations in the ratio dissolved organic carbon (DOC) to nitrogen (DON) in watershed streams differed by underlying soil parent material, with average C:N = 29 for watersheds underlain by volcanic ash and basalt versus C:N = 73 for sedimentary and metamorphic parent materials, consistent with stronger adsorption of low C:N hydrophobic materials by amorphous clays commonly associated with volcanic ash and basalt weathering. Mean annual precipitation was related positively to variations in both DOC (range: 0.2-9.7 mg C/L) and DON (range: 0.008-0.135 mg N/L) across study areas, suggesting that variations in water volume and concentration may act synergistically to influence C and N losses across dry to wet gradients in these forest ecosystems. Dominance of vegetation by broadleaf versus coniferous trees had negligible effects on organic C and N concentrations in comparison to abiotic factors. We conclude that precipitation volume and soil parent material are important controls over chemical losses of dissolved organic C and N from unpolluted temperate forest watersheds. Our results raise the possibility that biotic imprints on watershed C and N losses may be less pronounced in naturally N-poor forests than in areas impacted by land use change and chronic N deposition. Copyright 2007 by the American Geophysical Union.

  4. Modeling Nitrogen Decrease in Water Lettuce Ponds from Waste Stabilization Ponds

    Science.gov (United States)

    Putri, Gitta Agnes; Sunarsih

    2018-02-01

    This paper presents about the dynamic modeling of the Water Lettuce ponds as a form of improvement from the Water Hyacinth ponds. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in Water Lettuce ponds integrated with Waste Stabilization Ponds. The model consists of 4 mass balances, namely Dissolved Organic Nitrogen (DON), Particulate Organic Nitrogen (PON), ammonium (NH4+), Nitrate and Nitrite (NOx). The process of nitrogen transformation which considered in a Water Lettuce ponds, namely hydrolysis, mineralization, nitrification, denitrification, plant and bacterial uptake processes. Numerical simulations are performed by giving the values of parameters and the initial values of nitrogen compounds based on a review of previous studies. Numerical results show that the rate of change in the concentration of nitrogen compounds in the integration ponds of waste stabilization and water lettuce decreases and reaches stable at different times.

  5. ASSESSMENT OF CARBON, NITROGEN AND PHOSPHORUS TRANSFORMATIONS DURING MUNICIPAL WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Lucyna Bogumiła Przywara

    2017-08-01

    Full Text Available Proper exploitation of waste water treatment plant is strictly connected with monitoring of basic parameters and effectiveness of particular its stages. Legal requirements include not only organic compounds (BOD5, COD and general suspensions but also highly effective removal of nutrients: nitrogen and phosphorus. Effectiveness of removal of biogenic compounds interferes with temperature fluctuations, effluent quality, problems of active sediment. The aim of this study was to show changes in concentrations of organic compounds, nitrogen and phosphorus in the municipal wastewater after subsequent stages of mechanical-biological treatment. During researches samples were taken down by the wastewater treatment line: raw wastewater, after mechanical treatment, pre-denitrification, dephosphatation, denitrification, nitrification and treated wastewater. Another aspect of this study was determination of COD fractions, and their changes in the municipal wastewater, after the successive stages of mechanical-biological treatment. It allows separation of dissolved and non-dissolved organic substances, taking into account also their biodegradability and the lack of susceptibility to biological decomposition. It can also be a very important method of the processes control during wastewater treatment.

  6. Sources and transformations of dissolved lignin phenols and chromophoric dissolved organic matter in Otsuchi Bay, Japan

    Directory of Open Access Journals (Sweden)

    Chia-Jung eLu

    2016-06-01

    Full Text Available Dissolved lignin phenols and optical properties of dissolved organic matter (DOM were measured to investigate the sources and transformations of terrigenous DOM (tDOM in Otsuchi Bay, Japan. Three rivers discharge into the bay, and relatively high values of syringyl:vanillyl phenols (0.73 ± 0.07 and cinnamyl:vanillyl phenols (0.33 ± 0.10 indicated large contributions of non-woody angiosperm tissues to lignin and tDOM. The physical mixing of river and seawater played an important role in controlling the concentrations and distributions of lignin phenols and chromophoric DOM (CDOM optical properties in the bay. Lignin phenol concentrations and the CDOM absorption coefficient at 350 nm, a(350, were strongly correlated in river and bay waters. Measurements of lignin phenols and CDOM in bay waters indicated a variety of photochemical and biological transformations of tDOM, including oxidation reactions, photobleaching and a decrease in molecular weight. Photodegradation and biodegradation of lignin and CDOM were investigated in decomposition experiments with river water and native microbial assemblages exposed to natural sunlight or kept in the dark. There was a rapid and substantial removal of lignin phenols and CDOM during the first few days in the light treatment, indicating transformations of tDOM and CDOM can occur soon after discharge of buoyant river water into the bay. The removal of lignin phenols was slightly greater in the dark (34% than in the light (30% during the remaining 59 days of the incubation. Comparison of the light and dark treatments indicated biodegradation was responsible for 67% of total lignin phenol removal during the 62-day incubation exposed to natural sunlight, indicating biodegradation is a dominant removal process in Otsuchi Bay.

  7. Long-term atmospheric wet deposition of dissolved organic nitrogen in a typical red-soil agro-ecosystem, Southeastern China.

    Science.gov (United States)

    Cui, Jian; Zhou, Jing; Peng, Ying; He, Yuan Q; Yang, Hao; Xu, Liang J; Chan, Andy

    2014-05-01

    Dissolved organic nitrogen (DON) from atmospheric deposition has been a growing concern in the world and atmospheric nitrogen (N) deposition is increasing quickly in China especially Southeastern China. In our study, DON wet deposition was estimated by collecting and analyzing rainwater samples continuously over eight years (2005-2012) in a typical red-soil farmland ecosystem, Southeast China. Results showed that the volume-weighted-average DON concentration varied from 0.2 to 3.3 mg N L(-1) with an average of 1.2 mg N L(-1). DON flux ranged from 5.7 to 71.6 kg N ha(-1) year(-1) and averaged 19.7 kg N ha(-1) year(-1) which accounted for 34.6% of the total dissolved nitrogen (TDN) in wet deposition during the eight-year period. Analysis of DON concentration and flux, contribution of DON to TDN, rainfall, rain frequency, air temperature and wind frequency and the application of pig manure revealed possible pollution sources. Significant positive linear relation of annual DON flux and usage of pig manure (Pcycle in the red-soil agro-ecosystem in the future.

  8. Factors influencing export of dissolved inorganic nitrogen by major rivers: A new, seasonal, spatially explicit, global model

    Science.gov (United States)

    Substantial effort has focused on understanding spatial variation in dissolved inorganic nitrogen (DIN) export to the coastal zone and specific basins have been studied in depth. Much less is known, however, about seasonal patterns and controls of coastal DIN delivery across larg...

  9. Sources of dissolved inorganic nitrogen in a coastal lagoon adjacent to a major metropolitan area, Miami Florida (USA)

    International Nuclear Information System (INIS)

    Swart, Peter K.; Anderson, William T.; Altabet, Mark A.; Drayer, Courtney; Bellmund, Sarah

    2013-01-01

    Highlights: • A range of biota (algae and sea grasses) shows enriched δ 15 N close to the coast. • Enriched signals are evident in the particulate and sedimentary organic material. • δ 15 N signals are correlated with high inputs of dissolved inorganic matter. • The enriched values support the presence of a sewage related component. • The δ 15 N could arise from the local landfill, injected wastewater, or septic systems. - Abstract: Between 2006 and 2007, a study was carried out to determine the relative importance of natural and anthropogenic input of nitrogen into Biscayne Bay (South Florida, USA) using δ 13 C and δ 15 N values of algae, seagrasses, and particulate organic material, δ 18 O and δ 15 N of the NO 3 - and δ 13 C of the dissolved inorganic carbon. The δ 15 N values of all components showed a strong east to west gradient approaching more positive values (+7 to +10‰) close to the land-sea interface. The nitrogen could have emanated from the local waste water treatment plant, septic systems within the region, or nitrogen which had been affected by denitrification and leached from the local landfill, wastewater which had been injected into the Floridan aquifer and leaked back to the surface, and/or some other as yet unidentified source. The measured NO 3 - δ 15 N and δ 18 O values indicated that the dissolved nitrate originated from anthropogenic sources and was fractionated during assimilation

  10. Factors influencing export of dissolved inorganic nitrogen by major rivers: A new seasonal, spatially explicit, global model - 2012

    Science.gov (United States)

    Background/Question/Methods Substantial effort has focused on understanding spatial variation in dissolved inorganic nitrogen (DIN) export to the coastal zone and specific basins have been studied in some depth. Much less is known, however, about seasonal patterns and zone and ...

  11. Investigating the Role of Hydrologic Residence Time in Nitrogen Transformations at the Sediment-Water Interface using Controlled Variable Head Experiments

    Science.gov (United States)

    Hampton, T. B.; Zarnetske, J. P.; Briggs, M. A.; Singha, K.; Day-Lewis, F. D.

    2017-12-01

    Many important biogeochemical processes governing both carbon and nitrogen dynamics in streams take place at the sediment-water interface (SWI). This interface is highly variable in biogeochemical function, with stream stage often influencing the magnitude and direction of water and solute exchange through the SWI. It is well known that the SWI can be an important location for carbon and nitrogen transformations, including denitrification and greenhouse gas production. The degree of mixing of carbon and nitrate, along with oxygen from surface waters, is strongly influenced by hydrologic exchange at the SWI. We hypothesize that hydrologic residence time, which is also determined by the magnitude of exchange, is a key control on the fate of nitrate at the SWI and on the end products of denitrification. Previous studies in the headwaters of the Ipswich River in MA as part of the Lotic Intersite Nitrogen Experiments (LINX II) and other long-term monitoring suggest that the Ipswich River SWI represents an important source of nitrous oxide, a potent greenhouse gas. Using a novel constant-head infiltrometer ring embedded in the stream sediments, we created four unique controlled down-welling (i.e., recharge) conditions, and tested how varying this hydrologic flux and thus the residence time distribution influenced biogeochemical function of the Ipswich River SWI. Specifically, we added isotopically-labelled 15N-nitrate to stream water during each controlled hydrologic flux experiment to quantify nitrate transformation rates, including denitrification end products, under the different hydrologic conditions. We also measured a suite of carbon and nitrogen solutes, along with dissolved oxygen conditions throughout each experiment to characterize the broader residence timescale and biogeochemical responses to the hydrologic manipulations. Initial results show that the oxic conditions of the SWI were strongly responsive to changes in hydrologic flux rates, thereby changing the

  12. Freshwater and Saline Loads of Dissolved Inorganic Nitrogen to Hood Canal and Lynch Cove, Western Washington

    Science.gov (United States)

    Paulson, Anthony J.; Konrad, Christopher P.; Frans, Lonna M.; Noble, Marlene; Kendall, Carol; Josberger, Edward G.; Huffman, Raegan L.; Olsen, Theresa D.

    2006-01-01

    Hood Canal is a long (110 kilometers), deep (175 meters) and narrow (2 to 4 kilometers wide) fjord of Puget Sound in western Washington. The stratification of a less dense, fresh upper layer of the water column causes the cold, saltier lower layer of the water column to be isolated from the atmosphere in the late summer and autumn, which limits reaeration of the lower layer. In the upper layer of Hood Canal, the production of organic matter that settles and consumes dissolved oxygen in the lower layer appears to be limited by the load of dissolved inorganic nitrogen (DIN): nitrate, nitrite, and ammonia. Freshwater and saline loads of DIN to Hood Canal were estimated from available historical data. The freshwater load of DIN to the upper layer of Hood Canal, which could be taken up by phytoplankton, came mostly from surface and ground water from subbasins, which accounts for 92 percent of total load of DIN to the upper layer of Hood Canal. Although DIN in rain falling on land surfaces amounts to about one-half of the DIN entering Hood Canal from subbasins, rain falling directly on the surface of marine waters contributed only 4 percent of the load to the upper layer. Point-source discharges and subsurface flow from shallow shoreline septic systems contributed less than 4 percent of the DIN load to the upper layer. DIN in saline water flowing over the sill into Hood Canal from Admiralty Inlet was at least 17 times the total load to the upper layer of Hood Canal. In September and October 2004, field data were collected to estimate DIN loads to Lynch Cove - the most inland marine waters of Hood Canal that routinely contain low dissolved-oxygen waters. Based on measured streamflow and DIN concentrations, surface discharge was estimated to have contributed about one-fourth of DIN loads to the upper layer of Lynch Cove. Ground-water flow from subbasins was estimated to have contributed about one-half of total DIN loads to the upper layer. In autumn 2004, the relative

  13. Microbial nitrogen transformation potential in surface run-off leachate from a tropical landfill

    International Nuclear Information System (INIS)

    Mangimbulude, Jubhar C.; Straalen, Nico M. van; Röling, Wilfred F.M.

    2012-01-01

    Highlights: ► Microbial nitrogen transformations can alleviate toxic ammonium discharge. ► Aerobic ammonium oxidation was rate-limiting in Indonesian landfill leachate. ►Organic nitrogen ammonification was most dominant. ► Anaerobic nitrate reduction and ammonium oxidation potential were also high. ► A two-stage aerobic-anaerobic nitrogen removal system needs to be implemented. - Abstract: Ammonium is one of the major toxic compounds and a critical long-term pollutant in landfill leachate. Leachate from the Jatibarang landfill in Semarang, Indonesia, contains ammonium in concentrations ranging from 376 to 929 mg N L −1 . The objective of this study was to determine seasonal variation in the potential for organic nitrogen ammonification, aerobic nitrification, anaerobic nitrate reduction and anaerobic ammonium oxidation (anammox) at this landfilling site. Seasonal samples from leachate collection treatment ponds were used as an inoculum to feed synthetic media to determine potential rates of nitrogen transformations. Aerobic ammonium oxidation potential ( −1 h −1 ) was more than a hundred times lower than the anaerobic nitrogen transformation processes and organic nitrogen ammonification, which were of the same order of magnitude. Anaerobic nitrate oxidation did not proceed beyond nitrite; isolates grown with nitrate as electron acceptor did not degrade nitrite further. Effects of season were only observed for aerobic nitrification and anammox, and were relatively minor: rates were up to three times higher in the dry season. To completely remove the excess ammonium from the leachate, we propose a two-stage treatment system to be implemented. Aeration in the first leachate pond would strongly contribute to aerobic ammonium oxidation to nitrate by providing the currently missing oxygen in the anaerobic leachate and allowing for the growth of ammonium oxidisers. In the second pond the remaining ammonium and produced nitrate can be converted by a

  14. Effect of phosphate additive on the nitrogen transformation during pig manure composting.

    Science.gov (United States)

    Wu, Juan; He, Shengzhou; Liang, Ying; Li, Guoxue; Li, Song; Chen, Shili; Nadeem, Faisal; Hu, Jingwei

    2017-07-01

    Previous studies revealed that phosphate, as an additive to composting, could significantly reduce NH 3 emission and nitrogen loss through change of pH and nitrogen fixation to form ammonium phosphate. However, few studies have explored the influence of pH change and phosphate additive on NO x - -N, NH 4 + -N, NH 3 , and N 2 O, which are dominate forms of nitrogen in composting. In this study, the equimolar H 3 PO 4 , H 2 SO 4 , and K 2 HPO 4 were added into pig manure composting to evaluate the effect of H + and PO 4 3- on nitrogen transformation. As a result, we reached the conclusion that pH displays significant influence on adsorption from PO 4 3- to NH 4 + . The NH 4 + -N concentration in H 3 PO 4 treatment kept over 3 g kg -1 DM (dry matter) which is obviously higher than that in H 2 SO 4 treatment, and NH 4 + -N concentration in K 2 HPO 4 treatment (pH>8.5) is lower than 0.5 g kg -1 DM because adsorption capacity of PO 4 3- is greatly weakened and NH 4 + -N rapidly transformed to NH 3 -N influenced by high pH value. The N 2 O emission of composting is significantly correlated with incomplete denitrification of NO x - -N, and PO 4 3- addition could raise NO x - -N contents to restrict denitrification and further to promote N 2 O emission. The study reveals the influence mechanism of phosphate additive to nitrogen transformation during composting, presents theoretical basis for additive selection in nitrogen fixation, and lays foundation for study about nitrogen circulation mechanism during composting.

  15. Transformation of nitrogen and distribution of nitrogen-related bacteria in a polluted urban stream.

    Science.gov (United States)

    Jiao, Y; Jin, W B; Zhao, Q L; Zhang, G D; Yan, Y; Wan, J

    2009-01-01

    Most researchers focused on either nitrogen species or microbial community for polluted urban stream while ignoring the interaction between them and its effect on nitrogen transformation, which restricted the rational selection of an effective and feasible remediation technology. Taking Buji stream in Shenzhen (China) as target stream, the distribution of nitrogen-related bacteria was investigated by most probable number (MPN) besides analysis of nitrogen species etc. The nitrogen-related bacteria in sediment were 10(2) times richer than those in water. Owing to their faster growth, the MPN of ammonifying bacteria and denitrifying bacteria were 10(5) and 10(2) times higher than those of nitrifying bacteria, respectively. The ammonifying bacteria numbers were significantly related to BOD5 in water, while nitrifying bacteria in sediment correlated well with nitrate in water. Thus, nitrification occurred mainly in sediment surface and was limited by low proportion of nitrifying bacteria. The denitrifying bacteria in sediment had good relationship with BOD5 and nitrite and nitrate in water. Low DO and rich organic compounds were beneficial to denitrification but unfavourable to nitrification. Denitrification was restricted by low nitrite and nitrate concentration. These results could be served as a reference for implementing the remediation scheme of nitrogen polluted urban stream.

  16. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates.

    Science.gov (United States)

    Klawonn, Isabell; Bonaglia, Stefano; Brüchert, Volker; Ploug, Helle

    2015-06-01

    Colonies of N(2)-fixing cyanobacteria are key players in supplying new nitrogen to the ocean, but the biological fate of this fixed nitrogen remains poorly constrained. Here, we report on aerobic and anaerobic microbial nitrogen transformation processes that co-occur within millimetre-sized cyanobacterial aggregates (Nodularia spumigena) collected in aerated surface waters in the Baltic Sea. Microelectrode profiles showed steep oxygen gradients inside the aggregates and the potential for nitrous oxide production in the aggregates' anoxic centres. (15)N-isotope labelling experiments and nutrient analyses revealed that N(2) fixation, ammonification, nitrification, nitrate reduction to ammonium, denitrification and possibly anaerobic ammonium oxidation (anammox) can co-occur within these consortia. Thus, N. spumigena aggregates are potential sites of nitrogen gain, recycling and loss. Rates of nitrate reduction to ammonium and N(2) were limited by low internal nitrification rates and low concentrations of nitrate in the ambient water. Presumably, patterns of N-transformation processes similar to those observed in this study arise also in other phytoplankton colonies, marine snow and fecal pellets. Anoxic microniches, as a pre-condition for anaerobic nitrogen transformations, may occur within large aggregates (⩾1 mm) even when suspended in fully oxygenated waters, whereas anoxia in small aggregates (1.5 μM), O(2)-depleted water layers, for example, in the chemocline of the Baltic Sea or the oceanic mesopelagic zone, aggregates may promote N-recycling and -loss processes.

  17. Nitrogen Fate in a Phreatic Fluviokarst Watershed: a Stable Isotope, Sediment Tracing, and Numerical Modeling Approach

    Science.gov (United States)

    Husic, A.; Fox, J.; Ford, W. I., III; Agouridis, C.; Currens, J. C.; Taylor, C. J.

    2017-12-01

    Sediment tracing tools provide an insight into provenance, fate, and transport of sediment and, when coupled to stable isotopes, can elucidate in-stream biogeochemical processes. Particulate nitrogen fate in fluviokarst systems is a relatively unexplored area of research partially due to the complex hydrodynamics at play in karst systems. Karst topography includes turbulent conduits that transport groundwater and contaminants at speeds more typical of open channel flows than laminar Darcian flows. While it is accepted that karst hydro-geomorphology represents a hybrid surface-subsurface system for fluid, further investigation is needed to determine whether, and to what extent, karst systems behave like surface agricultural streams or porous media aquifers with respect to their role in nitrogen cycling. Our objective is to gain an understanding of in-conduit nitrogen processes and their effect on net nitrogen-exports from karst springs to larger waterbodies. The authors apply water, sediment, carbon, and nitrogen tracing techniques to analyze water for nitrate, sediment carbon and nitrogen, and stable sediment nitrogen isotope (δ15N). Thereafter, a new numerical model is formulated that: simulates dissolved inorganic nitrogen and sediment nitrogen transformations in the phreatic karst conduit; couples carbon turnover and nitrogen transformations in the model structure; and simulates the nitrogen stable isotope mass balance for the dissolved and sediment phases. Nitrogen tracing data results show a significant increase in δ15N of sediment nitrogen at the spring outlet relative to karst inputs indicating the potential for isotope fractionation during dissolved N uptake by bed sediments in the conduit and during denitrification within bed sediments. The new numerical modeling structure is then used to reproduce the data results and provide an estimate of the relative dominance of N uptake and denitrification within the surficial sediments of the karst conduit system

  18. Cellulose decomposition in a 50 MVA transformer

    International Nuclear Information System (INIS)

    Piechalak, B.W.

    1992-01-01

    Dissolved gas-in-oil analysis for carbon monoxide and carbon dioxide has been used for years to predict cellulose decomposition in a transformer. However, the levels at which these gases become significant have not been widely agreed upon. This paper evaluates the gas analysis results from the nitrogen blanket and the oil of a 50 MVA unit auxiliary transformer in terms of whether accelerated thermal breakdown or normal aging of the paper is occurring. Furthermore, this paper presents additional data on carbon monoxide and carbon dioxide levels in unit and system auxiliary transformers at generating stations and explains why their levels differ

  19. New approaches to improve the removal of dissolved organic matter and nitrogen in aquaculture

    DEFF Research Database (Denmark)

    von Ahnen, Mathis

    further due to the lack of cost-effective and easy applicable treatment methods for removing dissolved N and OM. The purpose of this PhD thesis was to assess the problem of removing dissolved N and OM in the context of the large differences in system intensity between farms, and to devise new, simple...... at increasing long-term waste loadings. The second part examined the potential of using anoxic denitrifying woodchip bioreactors for removal of nitrate from aquaculture effluent (Paper III-V). Investigations within the first part showed that the effectiveness of biofilters, as determined by their areal removal......-term biofilter loading up to a certain threshold. The latter indicated that the removal capacity of biofilters operated at lower loadings is easily exceeded, and that they may not respond very well to sudden increases in total ammonia nitrogen (TAN) concentrations. In the second part of the thesis, a field study...

  20. Application of Raman Spectroscopy for the Detection of Acetone Dissolved in Transformer Oil

    Science.gov (United States)

    Gu, Z.; Chen, W.; Du, L.; Shi, H.; Wan, F.

    2018-05-01

    The CLRS detection characteristics of acetone dissolved in transformer oil were analyzed. Raman spectral peak at 780 cm-1 was used as the characteristic spectral peak for qualitative and quantitative analyses. The effect of the detection depth and the temperature was investigated in order to obtain good Raman signals. The optimal detection depth and temperature were set as 3 mm and room temperature. A quantitative model relation between concentration and the Raman peak intensity ratio I 780/I 893 was constructed via the least-squares method. The results demonstrated that CLRS can quantitatively detect the concentration of acetone in transformer oil and CLRS has potential as a useful alternative for accelerating the in-situ analysis of the concentration of acetone in transformer oil.

  1. Application of Raman Spectroscopy for the Detection of Acetone Dissolved in Transformer Oil

    Science.gov (United States)

    Gu, Z.; Chen, W.; Du, L.; Shi, H.; Wan, F.

    2018-05-01

    The CLRS detection characteristics of acetone dissolved in transformer oil were analyzed. Raman spectral peak at 780 cm-1 was used as the characteristic spectral peak for qualitative and quantitative analyses. The effect of the detection depth and the temperature was investigated in order to obtain good Raman signals. The optimal detection depth and temperature were set as 3 mm and room temperature. A quantitative model relation between concentration and the Raman peak intensity ratio I 780/ I 893 was constructed via the least-squares method. The results demonstrated that CLRS can quantitatively detect the concentration of acetone in transformer oil and CLRS has potential as a useful alternative for accelerating the in-situ analysis of the concentration of acetone in transformer oil.

  2. Dissolved organic nitrogen in wet deposition in a coastal city (Keelung) of the southern East China Sea: Origin, molecular composition and flux

    Science.gov (United States)

    Chen, You-Xin; Chen, Hung-Yu; Wang, Wei; Yeh, Jun-Xian; Chou, Wen-Chen; Gong, Gwo-Ching; Tsai, Fu-Jung; Huang, Shih-Jen; Lin, Cheng-Ting

    2015-07-01

    In this study, we collected and analyzed rainwater samples from Keelung, Taiwan, which is a coastal city located south of the East China Sea (ECS). From January 2012 until June 2013, 78 rainwater samples were collected over an 18-month period and were analyzed to examine the total dissolved nitrogen (TDN) and major ions in the rainwater. TDN can be divided into dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON). This study, which focused on the composition of DON, is the first study to employ ultrafiltration to separate DON in wet deposition into low molecular weight-DON (LMW-DON) and high molecular weight-DON (HMW-DON). The concentrations of dissolved nitrogen species observed in the research area between November 2012 and April 2013 were relatively high, whereas those observed between May 2013 and October 2012 were relatively low. The patterns of changes over time were similar to those of non-sea-salt (nss) ions. The concentration of nss-ions was high during months in which the total dissolved nitrogen concentration was also high, which occur frequently during the spring and winter. In addition, the concentration of nss-ions was low during months in which the TDN concentration was low, which primarily occurs during the summer. The amounts of DIN and DON accounted for 63 ± 5% and 37 ± 5% of the TDN, respectively, and the percentage of the DIN was higher during the spring and winter. The concentrations of LMW-DON and HMW-DON, which accounted for 84 ± 3% and 16 ± 3% of the DON, respectively, were both high in the winter and low in the summer. The percentage of LMW-DON increased in the summer, possibly because of the numerous oceanic air masses and typhoons. Furthermore, the percentage of HMW-DON increased in the spring, potentially due to biomass burning during agricultural activities. Regarding the wet deposition fluxes, the DIN (197 ± 10.27 mmol m-2 yr-1) and DON (129 ± 6.82 mmol m-2 yr-1) accounted for approximately 64% and 36% of the

  3. Examining the role of dissolved organic nitrogen in stream ecosystems across biomes and Critical Zone gradients

    Science.gov (United States)

    Wymore, A.; Rodriguez-Cardona, B.; Coble, A. A.; Potter, J.; Lopez Lloreda, C.; Perez Rivera, K.; De Jesus Roman, A.; Bernal, S.; Martí Roca, E.; Kram, P.; Hruska, J.; Prokishkin, A. S.; McDowell, W. H.

    2016-12-01

    Watershed nitrogen exports are often dominated by dissolved organic nitrogen (DON); yet, little is known about the role ambient DON plays in ecosystems. As an organic nutrient, DON may serve as either an energy source or as a nutrient source. One hypothesized control on DON is nitrate (NO3-) availability. Here we examine the interaction of NO3- and DON in streams across temperate forests, tropical rainforests, and Mediterranean and taiga biomes. Experimental streams also drain contrasting Critical Zones which provide gradients of vegetation, soil type and lithology (e.g. volcaniclastic, granitic, ultramafic, Siberian Traps Flood Basalt) in which to explore how the architecture of the Critical Zone affects microbial biogeochemical reactions. Streams ranged in background dissolved organic carbon (DOC) concentration (1-50 mg C/L) and DOC: NO3- ratios (10-2000). We performed a series of ecosystem-scale NO3- additions in multiple streams within each environment and measured the change in DON concentration. Results demonstrate that there is considerable temporal and spatial variation across systems with DON both increasing and decreasing in response to NO3- addition. Ecologically this suggests that DON can serve as both a nutrient source and an energy source to aquatic microbial communities. In contrast, DOC concentrations rarely changed in response to NO3- additions suggesting that the N-rich fraction of the ambient dissolved organic matter pool is more bioreactive than the C-rich fraction. Contrasting responses of the DON and DOC pools indicate different mechanisms controlling their respective cycling. It is likely that DON plays a larger role in ecosystems than previously recognized.

  4. Dissolved carbon and nitrogen leaching following variable logging-debris retention and competing-vegetation control in Douglas-fir plantations of western Oregon and Washington

    Science.gov (United States)

    Robert A. Slesak; Stephen H. Schoenholtz; Timothy B. Harrington; Brian D. Strahm

    2009-01-01

    We examined the effect of logging-debris retention and competing-vegetation control (CCC, initial or annual applications) on dissolved organic carbon (DOC), dissolved organic nitrogen, and nitrate-N leaching to determine the relative potential of these practices to contribute to soil C and N loss at two contrasting sites. Annual CVC resulted in higher soil water...

  5. Bioavailability of wastewater derived dissolved organic nitrogen to green microalgae Selenastrum capricornutum, Chlamydomonas reinhardtii, and Chlorella vulgaris with/without presence of bacteria.

    Science.gov (United States)

    Sun, Jingyi; Simsek, Halis

    2017-07-01

    Effluent dissolved organic nitrogen (DON) is problematic in nutrient sensitive surface waters and needs to be reduced to meet demanding total dissolved nitrogen discharge limits. Bioavailable DON (ABDON) is a portion of DON utilized by algae or algae+bacteria, while biodegradable DON (BDON) is a portion of DON decomposable by bacteria. ABDON and BDON in a two-stage trickling filter (TF) wastewater treatment plant was evaluated using three different microalgal species, Selenastrum capricornutum, Chlamydomonas reinhardtii and Chlorella vulgaris and mixed cultured bacteria. Results showed that up to 80% of DON was bioavailable to algae or algae+bacteria inoculum while up to 60% of DON was biodegradable in all the samples. Results showed that C. reinhardtii and C. vulgaris can be used as a test species the same as S. capricornutum since there were no significant differences among these three algae species based on their ability to remove nitrogen species. Copyright © 2017. Published by Elsevier B.V.

  6. Emiliania Huxleyi (Prymnesiophyceae): Nitrogen-metabolism genes and their expression in response to external nitrogen souces

    DEFF Research Database (Denmark)

    Bruhn, Annette; LaRoche, Julie; Richardson, Katherine

    2010-01-01

    The availability and composition of dissolved nitrogen in ocean waters are factors that influence species composition in natural phytoplankton communities. The same factors affect the ratio of organic to inorganic carbon incorporation in calcifying species, such as the coccolithophore Emiliania...... huxleyi (Lohman) W. W. Hay et H. Mohler. E. huxleyi has been shown to thrive on various nitrogen sources, including dissolved organic nitrogen. Nevertheless, assimilation of dissolved nitrogen under nitrogen-replete and -limited conditions is not well understood in this ecologically important species....... In this study, the complete amino acid sequences for three functional genes involved in nitrogen metabolism in E. huxleyi were identified: a putative formamidase, a glutamine synthetase (GSII family), and assimilatory nitrate reductase. Expression patterns of the three enzymes in cells grown on inorganic...

  7. Influence of natural zeolite and nitrification inhibitor on organics degradation and nitrogen transformation during sludge composting.

    Science.gov (United States)

    Zhang, Junya; Sui, Qianwen; Li, Kun; Chen, Meixue; Tong, Juan; Qi, Lu; Wei, Yuansong

    2016-01-01

    Sludge composting is one of the most widely used treatments for sewage sludge resource utilization. Natural zeolite and nitrification inhibitor (NI) are widely used during composting and land application for nitrogen conservation, respectively. Three composting reactors (A--the control, B--natural zeolite addition, and C--3,4-dimethylpyrazole phosphate (DMPP) addition) were established to investigate the influence of NI and natural zeolite addition on organics degradation and nitrogen transformation during sludge composting conducted at the lab scale. The results showed that, in comparison with the control, natural zeolite addition accelerated organics degradation and the maturity of sludge compost was higher, while the DMPP addition slowed down the degradation of organic matters. Meanwhile, the nitrogen transformation functional genes including those responses for nitrification (amoA and nxrA) and denitrification (narG, nirS, nirK, and nosZ) were quantified through quantitative PCR (qPCR) to investigate the effects of natural zeolites and DMPP addition on nitrogen transformation. Although no significant difference in the abundance of nitrogen transformation functional genes was observed between treatments, addition of both natural zeolite and DMPP increases the final total nitrogen content by 48.6% and 23.1%, respectively. The ability of natural zeolite for nitrogen conservation was due to the absorption of NH3 by compost, and nitrogen conservation by DMPP was achieved by the source reduction of denitrification. Besides, it was assumed that the addition of natural zeolite and DMPP may affect the activity of these genes instead of the abundance.

  8. Enhanced Indirect Photochemical Transformation of Histidine and Histamine through Association with Chromophoric Dissolved Organic Matter.

    Science.gov (United States)

    Chu, Chiheng; Lundeen, Rachel A; Remucal, Christina K; Sander, Michael; McNeill, Kristopher

    2015-05-05

    Photochemical transformations greatly affect the stability and fate of amino acids (AAs) in sunlit aquatic ecosystems. Whereas the direct phototransformation of dissolved AAs is well investigated, their indirect photolysis in the presence of chromophoric dissolved organic matter (CDOM) is poorly understood. In aquatic systems, CDOM may act both as sorbent for AAs and as photosensitizer, creating microenvironments with high concentrations of photochemically produced reactive intermediates, such as singlet oxygen (1O2). This study provides a systematic investigation of the indirect photochemical transformation of histidine (His) and histamine by 1O2 in solutions containing CDOM as a function of solution pH. Both His and histamine showed pH-dependent enhanced phototransformation in the CDOM systems as compared to systems in which model, low-molecular-weight 1O2 sensitizers were used. Enhanced reactivity resulted from sorption of His and histamine to CDOM and thus exposure to elevated 1O2 concentrations in the CDOM microenvironment. The extent of reactivity enhancement depended on solution pH via its effects on the protonation state of His, histamine, and CDOM. Sorption-enhanced reactivity was independently supported by depressed rate enhancements in the presence of a cosorbate that competitively displaced His and histamine from CDOM. Incorporating sorption and photochemical transformation processes into a reaction rate prediction model improved the description of the abiotic photochemical transformation rates of His in the presence of CDOM.

  9. Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska

    Science.gov (United States)

    Wickland, Kimberly P.; Waldrop, Mark P.; Aiken, George R.; Koch, Joshua C.; Torre Jorgenson, M.; Striegl, Robert G.

    2018-06-01

    Permafrost (perennially frozen) soils store vast amounts of organic carbon (C) and nitrogen (N) that are vulnerable to mobilization as dissolved organic carbon (DOC) and dissolved organic and inorganic nitrogen (DON, DIN) upon thaw. Such releases will affect the biogeochemistry of permafrost regions, yet little is known about the chemical composition and source variability of active-layer (seasonally frozen) and permafrost soil DOC, DON and DIN. We quantified DOC, total dissolved N (TDN), DON, and DIN leachate yields from deep active-layer and near-surface boreal Holocene permafrost soils in interior Alaska varying in soil C and N content and radiocarbon age to determine potential release upon thaw. Soil cores were collected at three sites distributed across the Alaska boreal region in late winter, cut in 15 cm thick sections, and deep active-layer and shallow permafrost sections were thawed and leached. Leachates were analyzed for DOC, TDN, nitrate (NO3 ‑), and ammonium (NH4 +) concentrations, dissolved organic matter optical properties, and DOC biodegradability. Soils were analyzed for C, N, and radiocarbon (14C) content. Soil DOC, TDN, DON, and DIN yields increased linearly with soil C and N content, and decreased with increasing radiocarbon age. These relationships were significantly different for active-layer and permafrost soils such that for a given soil C or N content, or radiocarbon age, permafrost soils released more DOC and TDN (mostly as DON) per gram soil than active-layer soils. Permafrost soil DOC biodegradability was significantly correlated with soil Δ14C and DOM optical properties. Our results demonstrate that near-surface Holocene permafrost soils preserve greater relative potential DOC and TDN yields than overlying seasonally frozen soils that are exposed to annual leaching and decomposition. While many factors control the fate of DOC and TDN, the greater relative yields from newly thawed Holocene permafrost soils will have the largest

  10. Functional evaluation of pollutant transformation in sediment from combined sewer system.

    Science.gov (United States)

    Shi, Xuan; Ngo, Huu Hao; Sang, Langtao; Jin, Pengkang; Wang, Xiaochang C; Wang, Guanghua

    2018-07-01

    In this study, a pilot combined sewer system was constructed to characterize the pollutant transformation in sewer sediment. The results showed that particulate contaminants deposited from sewage could be transformed into dissolved matter by distinct pollutant transformation pathways. Although the oxidation-reduction potential (ORP) was varied from -80 mV to -340 mV in different region of the sediment, the fermentation was the dominant process in all regions of the sediment, which induced hydrolysis and decomposition of particulate contaminants. As a result, the accumulation of dissolved organic matter and the variation of ORP values along the sediment depth led to the depth-dependent reproduction characteristics of methanogens and sulfate-reducing bacteria, which were existed in the middle and deep layer of the sediment respectively. However, the diversity of nitrifying and polyphosphate-accumulating bacteria was low in sewer sediment and those microbial communities showed a non-significant correlation with nitrogen and phosphorus contaminants, which indicated that the enrichment of nitrogen and phosphorus contaminants was mainly caused by physical deposition process. Thus, this study proposed a promising pathway to evaluate pollutant transformation and can help provide theoretical foundation for urban sewer improvement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Dissolved organic carbon and nitrogen release from Holocene permafrost and seasonally frozen soils

    Science.gov (United States)

    Wickland, K.; Waldrop, M. P.; Koch, J. C.; Jorgenson, T.; Striegl, R. G.

    2017-12-01

    Permafrost (perennially frozen) soils store vast amounts of carbon (C) and nitrogen (N) that are vulnerable to mobilization to the atmosphere as greenhouse gases and to terrestrial and aquatic ecosystems as dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) upon thaw. Such releases will affect the biogeochemistry of arctic and boreal regions, yet little is known about active layer (seasonally frozen) and permafrost source variability that determines DOC and TDN mobilization. We quantified DOC and TDN leachate yields from a range of active layer and permafrost soils in Alaska varying in age and C and N content to determine potential release upon thaw. Soil cores from the upper 1 meter were collected in late winter, when soils were frozen, from three locations representing a range in geographic position, landscape setting, permafrost depth, and soil types across interior Alaska. Two 15 cm-thick segments were extracted from each core: a deep active-layer horizon and a shallow permafrost horizon. Soils were thawed and leached for DOC and TDN yields, dissolved organic matter optical properties, and DOC biodegradability; soils were analyzed for C and N content, and radiocarbon content. Soils had wide-ranging C and N content (<1-44% C, <0.1-2.3% N), and varied in radiocarbon age from 450-9200 years before present - thus capturing typical ranges of boreal and arctic soils. Soil DOC and TDN yields increased linearly with soil C and N content, and decreased with increasing radiocarbon age. However, across all sites DOC and TDN yields were significantly greater from permafrost soils (0.387 ± 0.324 mg DOC g-1 soil; 0.271 ± 0.0271 mg N g-1 soil) than from active layer soils (0.210 ± 0.192 mg DOC g-1 soil; 0.00716 ± 0.00569 mg N g-1 soil). DOC biodegradability increased with increasing radiocarbon age, and was statistically similar for active layer and permafrost soils. Our findings suggest that the continuously frozen state of permafrost soils has preserved

  12. Fertiliser management effects on dissolved inorganic nitrogen in runoff from Australian sugarcane farms.

    Science.gov (United States)

    Fraser, Grant; Rohde, Ken; Silburn, Mark

    2017-08-01

    Dissolved inorganic nitrogen (DIN) movement from Australian sugarcane farms is believed to be a major cause of crown-of-thorns starfish outbreaks which have reduced the Great Barrier Reef coral cover by ~21% (1985-2012). We develop a daily model of DIN concentration in runoff based on >200 field monitored runoff events. Runoff DIN concentrations were related to nitrogen fertiliser application rates and decreased after application with time and cumulative rainfall. Runoff after liquid fertiliser applications had higher initial DIN concentrations, though these concentrations diminished more rapidly in comparison to granular fertiliser applications. The model was validated using an independent field dataset and provided reasonable estimates of runoff DIN concentrations based on a number of modelling efficiency score results. The runoff DIN concentration model was combined with a water balance cropping model to investigate temporal aspects of sugarcane fertiliser management. Nitrogen fertiliser application in December (start of wet season) had the highest risk of DIN movement, and this was further exacerbated in years with a climate forecast for 'wet' seasonal conditions. The potential utility of a climate forecasting system to predict forthcoming wet months and hence DIN loss risk is demonstrated. Earlier fertiliser application or reducing fertiliser application rates in seasons with a wet climate forecast may markedly reduce runoff DIN loads; however, it is recommended that these findings be tested at a broader scale.

  13. Transformation of nitrogenous fertilizers of surface and deep application in calcareous soil

    International Nuclear Information System (INIS)

    Zuo Dongfeng

    1990-01-01

    The transformations of 15 N labelled fertilizer N in calcareous soil were studied under greennhouse conditions. The experimental results indicate that the ratio of fixed ammonium is closely related to the methods of fertilizer application to the soil. When fertilizer N applied as deep dressing the fixation of nitrogen by clay minerals and microorganisms may markedly reduce the losses of nitrogen, but the amount of nitrogen fixed by the clay minerals and that by microorganisms showed negative correlation (r = -0.9185 ** ). The more the amount of fixed nitrogen by clay minerals, the less by microorganisms. No obvious interrelation between the residual utilization of urea, ammonium bicarbonate, ammonium sulfate and the ammount of nitrogen fixed by organisms can be observed, but the residual utilization of these fertilizers by the succeeding crop has been related to the total amount of mineral nitrogen

  14. A measurement of the absorption of liquid argon scintillation light by dissolved nitrogen at the part-per-million level

    International Nuclear Information System (INIS)

    Jones, B J P; Chiu, C S; Conrad, J M; Ignarra, C M; Katori, T; Toups, M

    2013-01-01

    We report on a measurement of the absorption length of scintillation light in liquid argon due to dissolved nitrogen at the part-per-million (ppm) level. We inject controlled quantities of nitrogen into a high purity volume of liquid argon and monitor the light yield from an alpha source. The source is placed at different distances from a cryogenic photomultiplier tube assembly. By comparing the light yield from each position we extract the absorption cross section of nitrogen. We find that nitrogen absorbs argon scintillation light with strength of (1.51±0.15) × 10 −4 cm −1 ppm −1 , corresponding to an absorption cross section of (4.99±0.51) × 10 −21 cm 2 molecule −1 . We obtain the relationship between absorption length and nitrogen concentration over the 0 to 50 ppm range and discuss the implications for the design and data analysis of future large liquid argon time projection chamber (LArTPC) detectors. Our results indicate that for a current-generation LArTPC, where a concentration of 2 parts per million of nitrogen is expected, the attenuation length due to nitrogen will be 30±3 meters

  15. Investigating Marine Dissolved Organic Matter Fluorescence Transformations with Organic Geochemical Proxies in a Growth and Degradation Experiment using Amino Acids, Amino Sugars, and Phenols

    Science.gov (United States)

    Shields, M. R.; Bianchi, T. S.; Osburn, C. L.; Kinsey, J. D.; Ziervogel, K.; Schnetzer, A.

    2017-12-01

    The origin and mechanisms driving the formation of fluorescent dissolved organic matter (FDOM) in the open ocean remain unclear. Although recent studies have attempted to deconvolve the chemical composition and source of marine FDOM, these studies have been qualitative in nature. Here, we investigate these transformations using a more quantitative biomarker approach in a controlled growth and degradation experiment. In this experiment, a natural assemblage of phytoplankton was collected off the coast of North Carolina and incubated within roller bottles containing 0.2 µm-filtered North Atlantic surface water amended with f/2 nutrients. Samples were collected at the beginning (day 0), during exponential growth (day 13), stationary (day 20), and degradation (day 62) phases of the phytoplankton incubation. Amino acids, amino sugars, and phenolic compounds of the dissolved (DOM) were measured in conjunction with enzyme assays and bacterial counts to track shifts in OM quality as FDOM formed and was then transformed throughout the experiment. The results from the chemical analyses showed that the OM composition changed significantly from the initial and exponential phases to the stationary and degradation phases of the experiment. The percentage of aromatic amino acids to the total amino acid pool increased significantly during the exponential phase of phytoplankton growth, but then decreased significantly during the stationary and degradation phases. This increase was positively correlated to the fractional contribution of the protein-like peak in fluorescence to the total FDOM fluorescence. An increase in the concentration of amino acid degradation products during the stationary and degradation phases suggests that compositional changes in OM were driven by microbial transformation. This was further supported by a concurrent increase in total enzyme activity and increase in "humic-like" components of the FDOM. These findings link the properties and formation of FDOM

  16. A study on the migration and transformation law of nitrogen in urine in municipal wastewater transportation and treatment.

    Science.gov (United States)

    Wuang, Ren; Pengkang, Jin; Chenggang, Liang; Xiaochang, Wang; Lei, Zhang

    2013-01-01

    Many studies suggest that the total nitrogen (TN) in urine is around 9,000 mg/L and about 80% of nitrogen in municipal wastewater comes from urine, because nitrogen mainly occurs in the form of urea in fresh human urine. Based on this fact, the study on the migration and transformation law of nitrogen in urine and its influencing factors was carried out. It can be seen from the experimental results that the transformation rate of urea in urine into ammonia nitrogen after standing for 20 days is only about 18.2%, but the urea in urine can be hydrolyzed into ammonia nitrogen rapidly after it is catalyzed directly with free urease or indirectly with microorganism. Adding respectively a certain amount of urease, activated sludge and septic-tank sludge to urine samples can make the maximum transformation rate achieve 85% after 1 day, 2 days and 6 days, respectively. In combination with some corresponding treatment methods, recycling of nitrogen in urine can be achieved. The results are of great significance in guiding denitrification in municipal wastewater treatment.

  17. NitroScape: A model to integrate nitrogen transfers and transformations in rural landscapes

    Energy Technology Data Exchange (ETDEWEB)

    Duretz, S. [INRA-AgroParisTech, UMR 1091 Environnement et Grandes Cultures (EGC), 78850 Thiverval-Grignon (France); Drouet, J.L., E-mail: Jean-Louis.Drouet@grignon.inra.fr [INRA-AgroParisTech, UMR 1091 Environnement et Grandes Cultures (EGC), 78850 Thiverval-Grignon (France); Durand, P. [INRA-AgroCampus, UMR 1069 Sol Agro et hydrosysteme Spatialisation (SAS), 35042 Rennes cedex (France); Hutchings, N.J. [Department of Agroecology, Faculty of Agricultural Sciences, University of Aarhus (AU), Blichers Alle, 8830 Tjele (Denmark); Theobald, M.R. [Department of Chemistry and Agricultural Analysis, Technical University of Madrid (UPM), 28040 Madrid (Spain); Centre for Ecology and Hydrology (CEH), Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Salmon-Monviola, J. [INRA-AgroCampus, UMR 1069 Sol Agro et hydrosysteme Spatialisation (SAS), 35042 Rennes cedex (France); Dragosits, U. [Centre for Ecology and Hydrology (CEH), Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Maury, O. [INRA-AgroParisTech, UMR 1091 Environnement et Grandes Cultures (EGC), 78850 Thiverval-Grignon (France); Sutton, M.A. [Centre for Ecology and Hydrology (CEH), Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Cellier, P. [INRA-AgroParisTech, UMR 1091 Environnement et Grandes Cultures (EGC), 78850 Thiverval-Grignon (France)

    2011-11-15

    Modelling nitrogen transfer and transformation at the landscape scale is relevant to estimate the mobility of the reactive forms of nitrogen (N{sub r}) and the associated threats to the environment. Here we describe the development of a spatially and temporally explicit model to integrate N{sub r} transfer and transformation at the landscape scale. The model couples four existing models, to simulate atmospheric, farm, agro-ecosystem and hydrological N{sub r} fluxes and transformations within a landscape. Simulations were carried out on a theoretical landscape consisting of pig-crop farms interspersed with unmanaged ecosystems. Simulation results illustrated the effect of spatial interactions between landscape elements on N{sub r} fluxes and losses to the environment. More than 10% of the total N{sub 2}O emissions were due to indirect emissions. The nitrogen budgets and transformations of the unmanaged ecosystems varied considerably, depending on their location within the landscape. The model represents a new tool for assessing the effect of changes in landscape structure on N{sub r} fluxes. - Highlights: > The landscape scale is relevant to study how spatial interactions affect N{sub r} fate. > The NitroScape model integrates N{sub r} transfer and transformation at landscape scale. > NitroScape couples existing atmospheric, farm, agro-ecosystem and hydrological models. > Data exchanges within NitroScape are dynamic and spatially distributed. > More than 10% of the simulated N{sub 2}O emissions are due to indirect emissions. - A model integrating terrestrial, hydrological and atmospheric processes of N{sub r} transfer and transformation at the landscape scale has been developed to simulate the effect of spatial interactions between landscape elements on N{sub r} fate.

  18. NitroScape: A model to integrate nitrogen transfers and transformations in rural landscapes

    International Nuclear Information System (INIS)

    Duretz, S.; Drouet, J.L.; Durand, P.; Hutchings, N.J.; Theobald, M.R.; Salmon-Monviola, J.; Dragosits, U.; Maury, O.; Sutton, M.A.; Cellier, P.

    2011-01-01

    Modelling nitrogen transfer and transformation at the landscape scale is relevant to estimate the mobility of the reactive forms of nitrogen (N r ) and the associated threats to the environment. Here we describe the development of a spatially and temporally explicit model to integrate N r transfer and transformation at the landscape scale. The model couples four existing models, to simulate atmospheric, farm, agro-ecosystem and hydrological N r fluxes and transformations within a landscape. Simulations were carried out on a theoretical landscape consisting of pig-crop farms interspersed with unmanaged ecosystems. Simulation results illustrated the effect of spatial interactions between landscape elements on N r fluxes and losses to the environment. More than 10% of the total N 2 O emissions were due to indirect emissions. The nitrogen budgets and transformations of the unmanaged ecosystems varied considerably, depending on their location within the landscape. The model represents a new tool for assessing the effect of changes in landscape structure on N r fluxes. - Highlights: → The landscape scale is relevant to study how spatial interactions affect N r fate. → The NitroScape model integrates N r transfer and transformation at landscape scale. → NitroScape couples existing atmospheric, farm, agro-ecosystem and hydrological models. → Data exchanges within NitroScape are dynamic and spatially distributed. → More than 10% of the simulated N 2 O emissions are due to indirect emissions. - A model integrating terrestrial, hydrological and atmospheric processes of N r transfer and transformation at the landscape scale has been developed to simulate the effect of spatial interactions between landscape elements on N r fate.

  19. Alternative futures of dissolved inorganic nitrogen export from the Mississippi River Basin: influence of crop management, atmospheric deposition, and population growth

    Science.gov (United States)

    Nitrogen (N) export from the Mississippi River Basin contributes to seasonal hypoxia in the Gulf of Mexico (GOM). We explored monthly dissolved inorganic N (DIN) export to the GOM for a historical year (2002) and two future scenarios (year 2022) by linking macroeonomic energy, ag...

  20. Molecular signatures of biogeochemical transformations in dissolved organic matter from ten World Rivers

    Directory of Open Access Journals (Sweden)

    Thomas Riedel

    2016-09-01

    Full Text Available Rivers carry large amounts of dissolved organic matter (DOM to the oceans thereby connecting terrestrial and marine element cycles. Photo-degradation in conjunction with microbial turnover is considered a major pathway by which terrigenous DOM is decomposed. To reveal globally relevant patterns behind this process, we performed photo-degradation experiments and year-long bio-assays on DOM from ten of the largest world rivers that collectively account for more than one-third of the fresh water discharge to the global ocean. We furthermore tested the hypothesis that the terrigenous component in deep ocean DOM may be far higher than biomarker studies suggest, because of the selective photochemical destruction of characteristic biomolecules from vascular plants. DOM was molecularly characterized by a combination of non-targeted ultrahigh-resolution mass spectrometry and quantitative molecular tracer analyses. We show that the reactivity of DOM is globally related to broad catchment properties. Basins that are dominated by forest and grassland export more photo-degradable DOM than other rivers. Chromophoric compounds are mainly vascular plant-derived polyphenols, and partially carry a pyrogenic signature from vegetation fires. These forest and grassland dominated rivers lost up to 50% of dissolved organic carbon (DOC during irradiation, and up to 85% of DOC was lost in total if subsequently bio-incubated for one year. Basins covered by cropland, on the other hand, export DOM with a higher proportion of photo-resistant and bio-available DOM which is enriched in nitrogen. In these rivers, 30% or less of DOC was photodegraded. Consistent with previous studies, we found that riverine DOM resembled marine DOM in its broad molecular composition after extensive degradation, mainly due to almost complete removal of aromatics. More detailed molecular fingerprinting analysis (based on the relative abundance of >4000 DOM molecular formulae, however, revealed

  1. Nitrogen transport, transformation, and retention in the Three Gorges Reservoir : A mass balance approach

    NARCIS (Netherlands)

    Ran, Xiangbin; Bouwman, Lex; Yu, Zhigang; Beusen, Arthur; Chen, Hongtao; Yao, Qingzhen

    2017-01-01

    Dam construction in river systems affects the biogeochemistry of nitrogen (N), yet most studies on N cycling in reservoirs do not consider the transformations and retention of the different N species. This study addresses the N inputs, transport, transformations, and retention in the Three Gorges

  2. Method to Estimate the Dissolved Air Content in Hydraulic Fluid

    Science.gov (United States)

    Hauser, Daniel M.

    2011-01-01

    In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated

  3. Dissolved organic carbon and nitrogen mineralization strongly affect co2 emissions following lime application to acidic soil

    International Nuclear Information System (INIS)

    Shaaban, M.; Peng, Q.; Lin, S.; Wu, Y.

    2014-01-01

    Emission of greenhouse gases from agricultural soils has main contribution to the climatic change and global warming. Dynamics of dissolved organic carbon (DOC) and nitrogen mineralization can affect CO/sub 2/ emission from soils. Influence of DOC and nitrogen mineralization on CO/sub 2/ emissions following lime application to acidic soil was investigated in current study. Laboratory experiment was conducted under aerobic conditions with 25% moisture contents (66% water-filled pore space) at 25 degree C in the dark conditions. Different treatments of lime were applied to acidic soil as follows: CK (control), L (low rate of lime: 0.2g lime / 100 g soil) and H (high rate of lime: 0.5g lime /100g soil). CO/sub 2/ emissions were measured by gas chromatography and dissolved organic carbon, NH4 +-N, NO/sub 3/ --N and soil pH were measured during incubation study. Addition of lime to acidic soil significantly increased the concentration of DOC and N mineralization rate. Higher concentrations of DOC and N mineralization, consequently, increased the CO/sub 2/ emissions from lime treated soils. Cumulative CO/sub 2/ emission was 75% and 71% higher from L and H treatments as compared to CK. The results of current study suggest that DOC and N mineralization are critical in controlling gaseous emissions of CO/sub 2/ from acidic soils following lime application. (author)

  4. Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Sheng-wei; Wang, Ming-Jun; Miao, Yu-bin; Tu, Jun; Liu, Cheng-liang [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

    2009-06-15

    Forecasting of dissolved gases content in power transformer oil is a complicated problem due to its nonlinearity and the small quantity of training data. Support vector machine (SVM) has been successfully employed to solve regression problem of nonlinearity and small sample. However, the practicability of SVM is effected due to the difficulty of selecting appropriate SVM parameters. Particle swarm optimization (PSO) is a new optimization method, which is motivated by social behaviour of organisms such as bird flocking and fish schooling. The method not only has strong global search capability, but also is very easy to implement. Thus, the proposed PSO-SVM model is applied to forecast dissolved gases content in power transformer oil in this paper, among which PSO is used to determine free parameters of support vector machine. The experimental data from several electric power companies in China is used to illustrate the performance of proposed PSO-SVM model. The experimental results indicate that the PSO-SVM method can achieve greater forecasting accuracy than grey model, artificial neural network under the circumstances of small sample. (author)

  5. Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil

    Energy Technology Data Exchange (ETDEWEB)

    Fei Shengwei [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)], E-mail: feishengwei@sohu.com; Wang Mingjun; Miao Yubin; Tu Jun; Liu Chengliang [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

    2009-06-15

    Forecasting of dissolved gases content in power transformer oil is a complicated problem due to its nonlinearity and the small quantity of training data. Support vector machine (SVM) has been successfully employed to solve regression problem of nonlinearity and small sample. However, the practicability of SVM is effected due to the difficulty of selecting appropriate SVM parameters. Particle swarm optimization (PSO) is a new optimization method, which is motivated by social behaviour of organisms such as bird flocking and fish schooling. The method not only has strong global search capability, but also is very easy to implement. Thus, the proposed PSO-SVM model is applied to forecast dissolved gases content in power transformer oil in this paper, among which PSO is used to determine free parameters of support vector machine. The experimental data from several electric power companies in China is used to illustrate the performance of proposed PSO-SVM model. The experimental results indicate that the PSO-SVM method can achieve greater forecasting accuracy than grey model, artificial neural network under the circumstances of small sample.

  6. Alternative futures of dissolved inorganic nitrogen export from ...

    Science.gov (United States)

    Nitrogen (N) export from the Mississippi River Basin contributes to seasonal hypoxia in the Gulf of Mexico (GOM). We explored monthly dissolved inorganic N (DIN) export to the GOM for a historical year (2002) and two future scenarios (year 2022) by linking macroeonomic energy, agriculture market, air quality, and agriculture land management models to a DIN export model. Future scenarios considered policies aimed at encouraging bioenergy crop production and reducing atmospheric N-emissions, as well as the effect of population growth and the states’ infrastructure plans on sewage fluxes. Model-derived DIN export decreased by about 9% (from 279 to 254 kg N km−2 year−1) between 2002 and 2022 due to a 28% increase in area planted with corn, 24% improvement in crop N-recovery efficiency (NRE, to 0.52), 22% reduction in atmospheric N deposition, and 23% increase in sewage inputs. Changes in atmospheric and sewage inputs had a relatively small effect on DIN export and the effect of bioenergy crop production depended on nutrient management practices. Without improved NRE, increased production of corn would have increased DIN export by about 14% (to 289 kg N km−2 year−1) between 2002 and 2022. Model results suggest that meeting future crop demand while reducing the areal extent of hypoxia could require aggressive actions, such improving basin-level crop NRE to 0.62 or upgrading N-removal capabilities in waste water treatment plants beyond current plans. Tile-dra

  7. [Transformation Regularity of Nitrogen in Aqueous Product Derived from Hydrothermal Liquefaction of Sewage Sludge in Subcritical Water].

    Science.gov (United States)

    Sun, Yan-qing; Sun, Zhen; Zhang, Jing-lai

    2015-06-01

    Hydrothermal liquefaction in subcritical water is a potential way to treat sewage sludge as a resource rather than a waste. This study focused on the transformation regularity of nitrogen in aqueous product which was derived from hydrothermal liquefaction of sewage sludge under different operating conditions. Results showed, within the studied temperature scope and time span, the concentration of total nitrogen (TN) fluctuated in the range of 2867.62 mg x L(-1) to 4171.30 mg x L(-1). The two major exiting formation of nitrogen in aqueous product was ammonia nitrogen (NH4+ -N) and organic nitrogen (Org-N). NH4+ -N possessed 54.6%-90.7% of TN, while Org-N possessed 7.4%-44.5%. The concentration of nitrate nitrogen (NO- -N) was far more less than NH4+ -N and Org-N. Temperature had a great influence on the transformation regularity of nitrogen. Both the concentration of TN and Org-N increased accordingly to the increase of reaction temperature. With the reaction time prolonging, the concentration of TN and Org-N increased, while the concentration of NH4+ -N increased first, then became stationary, and then decreased slightly.

  8. Dissolution and Release of Gaseous Nitrogen (N2, N2O) in the Source Region of the Yellow River

    Science.gov (United States)

    Zhang, L.; Xia, X.; Wang, J.

    2017-12-01

    Nitrogen is an important biogenic element. The migration and transformation of nitrogen in rivers is an important process affecting global nitrogen cycling and greenhouse gas emissions. However, there is a lack of research on nitrogen removal and greenhouse gas emission characteristics of high altitude rivers. In this work, the spatial and temporal variations of dissolved nitrogen (N2 and N2O) concentrations, saturation, and release flux as well as their responses to environmental factors were studied in the Yellow River source area, a typical high altitude river. The results showed that the dissolved concentrations of N2 and N2O in the rivers were 8.24-137.75 μmol.L-1 and 2.57-31.94 nmol.L-1, respectively. N2 and N2O saturation were greater than 100% for all the sampling sites, indicating that the river is a release source for atmosphere N2 and N2O. Correspondingly, the fluxes of N2 and N2O from river water to atmosphere were 24.12-1606.57 mmol (m2.d) -1 and 12.96-276.81 μmol (m2.d) -1, respectively. Generally, the dissolution concentration and release flux of N2 and N2O in July were larger than that in May. The concentrations of N2 and N2O in river water were related to the environmental factors, and the dissolved concentration of N2 in the surface water was significantly positively correlated with water temperature, NH4+-N and total inorganic nitrogen (DIN) (p<0.01). The dissolved concentration of N2O was significantly positively correlated with the content of suspended particulates, DO, and DIN (p<0.01). Thus, DIN is a key factor in the process of N2 and N2O formation. This study can help to understand the nitrogen cycling in high-altitude rivers and provide basic data for a comprehensive assessment of global river nitrogen loss. Key Words: Source Region of the Yellow River; Gaseous Nitrogen; Nitrogen loss; High altitude river

  9. State of dissolved water in triglycerides as determined by Fourier transform infrared and near infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kurashige, J. (Ajinomoto Co. Inc., Tokyo (Japan)); Takaoka, K.; Takasago, M.; Taru, Y.; Kobayashi, K. (Musashi Institute of Technology, Tokyo (Japan))

    1991-07-20

    The states of dissolved water in triglycerides (TG) such as tristearin, triolein, trilinolein and trilinolenin were analyzed by Fourier transform infrared (FT-IR) and near infrared (FT-NIR) spectroscopy, and compared with those of water itself. In the case of water, its states were considered to be mainly polymer clusters larger than dimer ones at 20{degree}C, and mostly monomer or dimer clusters at 120{degree}C. In TG, the states varied widely from monomer to polymer clusters at 20{degree}C. The distribution ratios of the water clusters observed in TG depended on the kinds of fatty acids of TG, and the water state was noted to change due to the interaction between unsaturated bonds and dissolved water. Although the states of dissolved water in trilinolein were similar to those of original water at 20{degree}C, the ratio of monomer water decreased and polymer clusters bigger than those in original water increased with an increase in number of unsaturated bonds of TG. 9 refs., 6 figs., 3 tabs.

  10. Experience of application of the general-purpose pressure and pressure drop transformers on nitrogen tetroxide

    International Nuclear Information System (INIS)

    Grishchuk, M.Kh.

    1979-01-01

    An experience of application of the general-purpose pressure and pressure drop transformers at the Nuclear Power Engineering Institute of the BSSR Academy of Sciences for measurements on nitrogen tetroxide has been described. The concrete recommendations on the types of transformers and the volume of preparational work before putting them into operation have been given

  11. The fate of fixed nitrogen in marine sediments with low organic loading: an in situ study

    DEFF Research Database (Denmark)

    Bonaglia, Stefano; Hylén, Astrid; Rattray, Jane E.

    2017-01-01

    Given the increasing impacts of human activities on global nitrogen (N) cycle, investigations on N transformation processes in the marine environment have drastically increased in the last years. Benthic N cycling has mainly been studied in anthropogenically impacted estuaries and coasts, while its...... sediments worldwide (range 34–344 µmol N m−2 d−1). Anammox accounted for 18–26 % of the total N2 production. Absence of free hydrogen sulfide and low concentrations of dissolved iron in sediment pore waters suggested that denitrification and DNRA were driven by organic matter oxidation rather than...... chemolithotrophy. DNRA was as important as denitrification at a shallow, coastal station situated in the northern Bothnian Bay. At this pristine and fully oxygenated site, ammonium regeneration through DNRA contributed more than one third to the total dissolved nitrogen (TDN) diffusing from the sediment...

  12. Effect of Nitrogen Fertilizer on Combined Forms and Transformation of Fluorine in Tea Garden Soil

    Directory of Open Access Journals (Sweden)

    ZHANG Yong-li

    2015-10-01

    Full Text Available In order to investigate the effect of nitrogen fertilizer on combined forms and transformation of fluorine in tea garden soil, soil pot experiment was carried out. The research object was red-yellow soil in Shizipu tea plantation in the south of Anhui Province. Five treatments were N0P0K0 (CK, N0P1K1 (N0, N1P1K1 (N1, N2P1K1 (N2, N3P1K1 (N3. Water-soluble fluorine content, exchangeable fluorine content, Fe/Mn oxide-bound fluorine content, organic matter-bound fluorine content, ammonium nitrogen content and soil pH value in 0~15 cm soil layer were analyzed in 10, 20, 30, 50, 70, 90 days after fertilization. The results showed that compared with CK, in the short term (10 or 20 days after applying NPK, the content of water-soluble fluorine in 0~15 cm soil layer was decreased and the content of exchangeable fluorine, Fe/Mn oxide-bound fluorine and organic matter-bound fluorine were increased. After 20 days, the content of soil water-soluble fluorine was increased and the content of soil exchangeable fluorine, Fe/Mn oxide-bound fluorine and organic matter-bound fluorine were reduced. The effect on water-soluble fluorine and exchangeable fluorine increased with time and the application rate of nitrogen. The content of water-soluble fluorine in tea garden soil had a moderately positive correlation with the application rate of nitrogen while the content of exchangeable fluorine had a moderately or highly negative correlation with the application rate of nitrogen. The content of water-soluble fluorine had a quite highly negative correlation with the soil pH (P<0.01, but the content of exchangeable fluorine had a moderately or highly negative correlation with the soil pH (P<0.01. Therefore, nitrogen fertilizer changed the soil pH during its form transformation and thus affected the transformation and the availability of fluorine in soil.

  13. Carbon and nitrogen stoichiometry across stream ecosystems

    Science.gov (United States)

    Wymore, A.; Kaushal, S.; McDowell, W. H.; Kortelainen, P.; Bernhardt, E. S.; Johnes, P.; Dodds, W. K.; Johnson, S.; Brookshire, J.; Spencer, R.; Rodriguez-Cardona, B.; Helton, A. M.; Barnes, R.; Argerich, A.; Haq, S.; Sullivan, P. L.; López-Lloreda, C.; Coble, A. A.; Daley, M.

    2017-12-01

    Anthropogenic activities are altering carbon and nitrogen concentrations in surface waters globally. The stoichiometry of carbon and nitrogen regulates important watershed biogeochemical cycles; however, controls on carbon and nitrogen ratios in aquatic environments are poorly understood. Here we use a multi-biome and global dataset (tropics to Arctic) of stream water chemistry to assess relationships between dissolved organic carbon (DOC) and nitrate, ammonium and dissolved organic nitrogen (DON), providing a new conceptual framework to consider interactions between DOC and the multiple forms of dissolved nitrogen. We found that across streams the total dissolved nitrogen (TDN) pool is comprised of very little ammonium and as DOC concentrations increase the TDN pool shifts from nitrate to DON dominated. This suggests that in high DOC systems, DON serves as the primary source of nitrogen. At the global scale, DOC and DON are positively correlated (r2 = 0.67) and the average C: N ratio of dissolved organic matter (molar ratio of DOC: DON) across our data set is approximately 31. At the biome and smaller regional scale the relationship between DOC and DON is highly variable (r2 = 0.07 - 0.56) with the strongest relationships found in streams draining the mixed temperate forests of the northeastern United States. DOC: DON relationships also display spatial and temporal variability including latitudinal and seasonal trends, and interactions with land-use. DOC: DON ratios correlated positively with gradients of energy versus nutrient limitation pointing to the ecological role (energy source versus nutrient source) that DON plays with stream ecosystems. Contrary to previous findings we found consistently weak relationships between DON and nitrate which may reflect DON's duality as an energy or nutrient source. Collectively these analyses demonstrate how gradients of DOC drive compositional changes in the TDN pool and reveal a high degree of variability in the C: N ratio

  14. Coupled hydrological and biogeochemical processes controlling variability of nitrogen species in streamflow during autumn in an upland forest

    Science.gov (United States)

    Sebestyen, Stephen D.; Shanley, James B.; Boyer, Elizabeth W.; Kendall, Carol; Doctor, Daniel H.

    2014-01-01

    Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this critical period, we studied (1) the timing, duration, and magnitude of changes to stream nitrate, dissolved organic nitrogen (DON), and ammonium concentrations; (2) changes in nitrate sources and cycling; and (3) source areas of the landscape that most influence stream nitrogen. We collected samples at higher temporal resolution for a longer duration than typical studies of stream nitrogen during autumn. This sampling scheme encompassed the patterns and extremes that occurred during base flow and stormflow events of autumn. Base flow nitrate concentrations decreased by an order of magnitude from 5.4 to 0.7 µmol L−1 during the week when most leaves fell from deciduous trees. Changes to rates of biogeochemical transformations during autumn base flow explained the low nitrate concentrations; in-stream transformations retained up to 72% of the nitrate that entered a stream reach. A decrease of in-stream nitrification coupled with heterotrophic nitrate cycling were primary factors in the seasonal nitrate decline. The period of low nitrate concentrations ended with a storm event in which stream nitrate concentrations increased by 25-fold. In the ensuing weeks, peak stormflow nitrate concentrations progressively decreased over closely spaced, yet similarly sized events. Most stormflow nitrate originated from nitrification in near-stream areas with occasional, large inputs of unprocessed atmospheric nitrate, which has rarely been reported for nonsnowmelt events. A maximum input of 33% unprocessed atmospheric nitrate to the stream occurred during one event. Large inputs of unprocessed atmospheric nitrate

  15. Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow.

    Science.gov (United States)

    Liao, Shu; Yang, Wanqin; Tan, Yu; Peng, Yan; Li, Jun; Tan, Bo; Wu, Fuzhong

    2015-01-01

    Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN) in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage) and the growing season (early and late). After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes.

  16. The impact of four decades of annual nitrogen addition on dissolved organic matter in a boreal forest soil

    Science.gov (United States)

    Rappe-George, M. O.; Gärdenäs, A. I.; Kleja, D. B.

    2013-03-01

    Addition of mineral nitrogen (N) can alter the concentration and quality of dissolved organic matter (DOM) in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in Stråsan experimental forest (Norway spruce) in central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity but a longer duration (43 yr) of N addition than the shorter N2 treatment (24 yr). N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n = 6), and tension lysimeters were installed in the underlying B horizon (n = 4): soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C) and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B horizon leachates, the N1 treatment approximately doubled leachate concentrations of DOC and DON. DON returned to control levels, but DOC remained elevated in B horizon leachates in N2 plots nineteen years after termination of N addition. We propose three possible explanations for the increased DOC in mineral soil: (i) the result of decomposition of a larger amount of root litter, either directly producing DOC or (ii) indirectly via priming of old SOM, and/or (iii) a suppression of extracellular oxidative enzymes.

  17. The impact of four decades of annual nitrogen addition on dissolved organic matter in a boreal forest soil

    Directory of Open Access Journals (Sweden)

    M. O. Rappe-George

    2013-03-01

    Full Text Available Addition of mineral nitrogen (N can alter the concentration and quality of dissolved organic matter (DOM in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC and dissolved organic nitrogen (DON in Stråsan experimental forest (Norway spruce in central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity but a longer duration (43 yr of N addition than the shorter N2 treatment (24 yr. N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n = 6, and tension lysimeters were installed in the underlying B horizon (n = 4: soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B horizon leachates, the N1 treatment approximately doubled leachate concentrations of DOC and DON. DON returned to control levels, but DOC remained elevated in B horizon leachates in N2 plots nineteen years after termination of N addition. We propose three possible explanations for the increased DOC in mineral soil: (i the result of decomposition of a larger amount of root litter, either directly producing DOC or (ii indirectly via priming of old SOM, and/or (iii a suppression of extracellular oxidative enzymes.

  18. Dissolved organic nitrogen (DON) profile during backwashing cycle of drinking water biofiltration.

    Science.gov (United States)

    Liu, Bing; Gu, Li; Yu, Xin; Yu, Guozhong; Zhang, Huining; Xu, Jinli

    2012-01-01

    A comprehensive investigation was made in this study on the variation of dissolved organic nitrogen (DON) during a whole backwashing cycle of the biofiltration for drinking water treatment. In such a cycle, the normalized DON concentration (C(effluent)/C(influent)) was decreased from 0.98 to 0.90 in the first 1.5h, and then gradually increased to about 1.5 in the following 8h. Finally, it remained stable until the end of this 24-hour cycle. This clearly 3-stage profile of DON could be explained by three aspects as follows: (1) the impact of the backwashing on the biomass and the microbial activity; (2) the release of soluble microbial products (SMPs) during the biofiltration; (3) the competition between heterotrophic bacteria and nitrifying bacteria. All the facts supported that more DON was generated during later part of the backwashing cycle. The significance of the conclusion is that the shorter backwashing intervals between backwashing for the drinking water biofilter should further decrease the DON concentration in effluent of biofilter. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  19. Biogeochemical reactive transport of carbon, nitrogen and iron in the hyporheic zone

    Science.gov (United States)

    Dwivedi, D.; Steefel, C. I.; Newcomer, M. E.; Arora, B.; Spycher, N.; Hammond, G. E.; Moulton, J. D.; Fox, P. M.; Nico, P. S.; Williams, K. H.; Dafflon, B.; Carroll, R. W. H.

    2017-12-01

    To understand how biogeochemical processes in the hyporheic zone influence carbon and nitrogen cycling as well as stream biogeochemistry, we developed a biotic and abiotic reaction network and integrated it into a reactive transport simulator - PFLOTRAN. Three-dimensional reactive flow and transport simulations were performed to describe the hyporheic exchange of fluxes from and within an intra-meander region encompassing two meanders of East River in the East Taylor watershed, Colorado. The objectives of this study were to quantify (1) the effect of transience on the export of carbon, nitrogen, and iron; and (2) the biogeochemical transformation of nitrogen and carbon species as a function of the residence time. The model was able to capture reasonably well the observed trends of nitrate and dissolved oxygen values that decreased as well as iron (Fe (II)) values that increased along the meander centerline away from the stream. Hyporheic flow paths create lateral redox zonation within intra-meander regions, which considerably impact nitrogen export into the stream system. Simulation results further demonstrated that low water conditions lead to higher levels of dissolved iron in groundwater, which (Fe (II)> 80%) is exported to the stream on the downstream side during high water conditions. An important conclusion from this study is that reactive transport models representing spatial and temporal heterogeneities are required to identify important factors that contribute to the redox gradients at riverine scales.

  20. Runoff load estimation of particulate and dissolved nitrogen in Lake Inba watershed using continuous monitoring data on turbidity and electric conductivity.

    Science.gov (United States)

    Kim, J; Nagano, Y; Furumai, H

    2012-01-01

    Easy-to-measure surrogate parameters for water quality indicators are needed for real time monitoring as well as for generating data for model calibration and validation. In this study, a novel linear regression model for estimating total nitrogen (TN) based on two surrogate parameters is proposed based on evaluation of pollutant loads flowing into a eutrophic lake. Based on their runoff characteristics during wet weather, electric conductivity (EC) and turbidity were selected as surrogates for particulate nitrogen (PN) and dissolved nitrogen (DN), respectively. Strong linear relationships were established between PN and turbidity and DN and EC, and both models subsequently combined for estimation of TN. This model was evaluated by comparison of estimated and observed TN runoff loads during rainfall events. This analysis showed that turbidity and EC are viable surrogates for PN and DN, respectively, and that the linear regression model for TN concentration was successful in estimating TN runoff loads during rainfall events and also under dry weather conditions.

  1. Modelling nitrogen transformation and removal in mara river basin wetlands upstream of lake Victoria

    Science.gov (United States)

    Mayo, Aloyce W.; Muraza, Marwa; Norbert, Joel

    2018-06-01

    Lake Victoria, the largest lake in Africa, is a resource of social-economic potential in East Africa. This lake receives water from numerous tributaries including Mara River, which contributes about 4.8% of the total Lake water inflow. Unfortunately, Mara River basin faces environmental problems because of intensive settlement, agriculture, overgrazing in the basin and mining activities, which has lead to water pollution in the river, soil erosion and degradation, decreased soil fertility, loss of vegetation cover, decreased water infiltration capacity and increased sedimentation. One of the pollutants carried by the river includes nitrogen, which has contributed to ecological degradation of the Lake Victoria. Therefore this research work was intended to determine the effectiveness of Mara River wetland for removal of nitrogen and to establish nitrogen removal mechanisms in the wetland. To predict nitrogen removal in the wetland, the dynamics of nitrogen transformation was studied using a conceptual numerical model that takes into account of various processes in the system using STELLA II version 9.0®2006 software. Samples of model input from water, plants and sediments were taken for 45 days and were analyzed for pH, temperature, and DO in situ and chemical parameters such as NH3-N, Org-N, NO2-N, and NO3-N were analyzed in the laboratory in accordance with Standard methods. For plants, the density, dominance, biomass productivity and TN were determined and for sediments TN was analyzed. Inflow into the wetland was determined using stage-discharge relationship and was found to be 734,400 m3/day and the average wetland volume was 1,113,500 m3. Data collected by this study were used for model calibration of nitrogen transformation in this wetland while data from another wetland were used for model validation. It was found that about 37.8% of total nitrogen was removed by the wetland system largely through sedimentation (26.6%), plant uptake (6.6%) and

  2. INFLUENCE OF TECHNOGENIC LANDSCAPES RECULTIVATION ON FUNCTIONING OF SOIL MICROORGANISMS COMMUNITIES WHICH TAKE PART IN TRANSFORMATION OF NITROGEN COMPOUNDS

    Directory of Open Access Journals (Sweden)

    O. V. Syshchykova

    2014-04-01

    Full Text Available It is established that mining recultivation of tailings dams slimes promotes restoration of numerical structure of soil microorganisms community which take part in processes of nitrogen compounds transformation. The certificate of that is number restoration of the organotrophic bacteria of a nitrogen cycle to 0.3 million CFU/g of soil and increase by 2-3 times of streptomycetes quantity in blankets. The received results of quantitative structure of the microorganisms which are taking part in processes of nitrogen mineral compounds transformation in the chernozem usual allow to claim that in blankets the number of microorganisms makes 3.89 and 2.33 million CFU/g soil. It should be noted that the best conditions for microflora development are formed on slime with drawing 50 cm of loess-like loam and 30 cm of a fertile layer. The microorganism quantity on the specified monitoring area increases by 3-4 times in the soil of a fertile layer and by 1.3-1.6 times in loess-like loam in comparison with slime without recultivation. Increase of microbiological processes intensity, extremely important, considering strengthening of ecosystems self-regulation functions. It is established high level of microbiological transformation of organic substance, the indicator is made 7.3-11.1 in the edatopes of the recultivated slimes. Increasing indicators of microbiological transformation and mineralization of organic compounds in the technozems confirm restoration of a slimes biogenity at carrying out of recultivation that promotes an intensification of mineralization processes and assimilation by plants nitrogen compounds in the soil. Keywords: microorganisms, nitrogen compounds, technozems, mining recultivation.

  3. Dissolved organic nitrogen and its biodegradable portion in a water treatment plant with ozone oxidation.

    Science.gov (United States)

    Wadhawan, Tanush; Simsek, Halis; Kasi, Murthy; Knutson, Kristofer; Prüβ, Birgit; McEvoy, John; Khan, Eakalak

    2014-05-01

    Biodegradability of dissolved organic nitrogen (DON) has been studied in wastewater, freshwater and marine water but not in drinking water. Presence of biodegradable DON (BDON) in water prior to and after chlorination may promote formation of nitrogenous disinfectant by-products and growth of microorganisms in the distribution system. In this study, an existing bioassay to determine BDON in wastewater was adapted and optimized, and its application was tested on samples from four treatment stages of a water treatment plant including ozonation and biologically active filtration. The optimized bioassay was able to detect BDON in 50 μg L(-1) as N of glycine and glutamic solutions. BDON in raw (144-275 μg L(-1) as N), softened (59-226 μg L(-1) as N), ozonated (190-254 μg L(-1) as N), and biologically filtered (17-103 μg L(-1) as N) water samples varied over a sampling period of 2 years. The plant on average removed 30% of DON and 68% of BDON. Ozonation played a major role in increasing the amount of BDON (31%) and biologically active filtration removed 71% of BDON in ozonated water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    Science.gov (United States)

    Velescu, Andre; Valarezo, Carlos; Wilcke, Wolfgang

    2016-05-01

    In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM) by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth. In 2007, we established a nutrient manipulation experiment (NUMEX) to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N), 10 kg ha-1 a-1 of phosphorus (P), 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca) in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes. Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC) and dissolved organic nitrogen (DON) concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments. Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N and P

  5. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    Directory of Open Access Journals (Sweden)

    Andre eVelescu

    2016-05-01

    Full Text Available In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth.In 2007, we established a nutrient manipulation experiment (NUMEX to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N, 10 kg ha-1 a-1 of phosphorus (P, 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes.Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC and dissolved organic nitrogen (DON concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments.Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N

  6. Dissolved gases

    International Nuclear Information System (INIS)

    Heaton, T.H.E.

    1981-01-01

    The concentrations of gaseous nitrogen, argon, oxygen and helium dissolved in groundwater are often different from their concentrations in rain and surface waters. These differences reflect changes in the gas content occurring after rain or surface water, having infiltrated into the ground, become isolated from equilibrium contact with the atmosphere. A study of these changes can give insight into the origin and subsequent subsurface history of groundwater. Nitrogen and argon concentrations for many groundwaters in southern Africa indicate that excess air is added to water during infiltration. The amount of excess air is believed to reflect the physical structure of the unsaturated zone and the climate of the recharge area. Since nitrogen and argon are essentially conservative in many aquifer environments in South Africa, their concentrations can be used in distinguishing grondwaters of different recharge origins. In some areas the high helium content of the groundwater suggests that much of the helium is derived through migration from a source outside (e.g. below) the aquifer itself. Radiogenic helium concentrations nevertheless show, in two artesian aquifers, a close linear relationship to the radiocarbon age of the groundwater. This indicates a uniformity in the factors responsible for the accumulation of helium, and suggests that in these circumstances helium data can be used to give information on the age of very old groundwater. In some groundwater dissolved oxygen concentrations are found to decrease with increasing groundwater age. Whilst the rate of decrease may be very different for different aquifers, the field measurement of oxygen may be useful in preliminary surveys directed toward the location of recharge areas

  7. Recent studies of the ocean nitrogen cycle

    Science.gov (United States)

    Eppley, R. W.

    1984-01-01

    The nitrogen cycle in the ocean is dominated by the activities of organisms. External nitrogen inputs from land and from the atmosphere are small compared with rates of consumption and production by organisms and with rates of internal rearrangements of nitrogen pools within the ocean. The chief reservoirs of nitrogen are, in decreasing order of size: nitrogen in sediments, dissolved N2, nitrate, dissolved organic nitrogen (DON), particulate organic nitrogen (PON) (mostly organisms and their by-products). The biogenic fluxes of nitrogen were reviewed. The rate of PON decomposition in the surface layer must be comparable to the rate of ammonium consumption; and at the same time the nitrate consumption rate will be similar to the rates of: (1) sinking of PON out of the surface layer and its decompositon at depth, (2) the rate of nitrification at depth, and (3) the rate of nitrate return to the surface layer by upwelling.

  8. Effects of pH on nitrogen transformations in media-based aquaponics.

    Science.gov (United States)

    Zou, Yina; Hu, Zhen; Zhang, Jian; Xie, Huijun; Guimbaud, Christophe; Fang, Yingke

    2016-06-01

    To investigate the effects of pH on performance and nitrogen transformations in aquaponics, media-based aquaponics operated at pH 6.0, 7.5 and 9.0 were systematically examined and compared in this study. Results showed that nitrogen utilization efficiency (NUE) reached its maximum of 50.9% at pH 6.0, followed by 47.3% at pH 7.5 and 44.7% at pH 9.0. Concentrations of nitrogen compounds (i.e., TAN, NO2(-)-N and NO3(-)-N) in three pH systems were all under tolerable levels. pH had significant effect on N2O emission and N2O conversion ratio decreased from 2.0% to 0.6% when pH increased from 6.0 to 9.0, mainly because acid environment would inhibit denitrifiers and lead to higher N2O emission. 75.2-78.5% of N2O emission from aquaponics was attributed to denitrification. In general, aquaponics was suggested to maintain pH at 6.0 for high NUE, and further investigations on N2O mitigation strategy are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Martensitic transformations, structure, and strengthness of processed high-nitrogen and high-carbon ferrous alloys

    Science.gov (United States)

    Kaputkina, L. M.; Prokoshkina, V. G.

    2003-10-01

    Structures and properties of metastable austenitic alloys Fe-18Cr-16Ni-I2Mn-(0.17 to 0. 50)N, Fe-18Cr-12Mn-(0.48 to 1.12)N, Fe-18Cr-(0.1 to 1.18)N, and Fe-(12 to 20)Ni-(0.6 to 1.3)C, Fe-(6 to 8)Mn-(0.6 to 1.0)C, Fe-(5 to 6)Cr-(4 to 5)Mn-(0.6 to 0.8)C, Fe-6Cr-(1.0 to 1.3)C resulting from martensitic transformations under cooling and cold deformation (CD), as well as following tempering processes, were studied by magnetometry, X-ray and electron microscopy analyses, hardness measurements and mechanical properties tests. Martensite with a b.c.t. lattice was formed in all alloys with M_s{>}-196^circC during cooling. Under CD transformations of γ{to}α, γ{to}\\varepsilon{to}α, or γ{to}\\varepsilon types were realized depending on the alloy composition. Carbon increased but nitrogen decreased stacking fault energy. Thus carbon assists α-martensite formation but nitrogen promotese. As CD level and/or concentration of carbon and nitrogen increase residual stresses resulting from the CD also increase. The martensitic transformation during CD can decrease the residual stresses. Kinetic of tempering of b.c.t. thermal martensite differs from those of CD-induced martensite. In the second case, deformation aging, texture, and residual stresses are more visible. The maximal strengthening under CD takes place in (Mn+N)-steels. (Cr+N) and (Cr+Mn+N)-steels are high-strength, non-magnetic and corrosion resistant and are easily hardened by a low level of plastic deformation.

  10. Assessing dissolved carbon transport and transformation along an estuarine river with stable isotope analyses

    Science.gov (United States)

    He, Songjie; Xu, Y. Jun

    2017-10-01

    Estuaries play an important role in the dynamics of dissolved carbon from rivers to coastal oceans. However, our knowledge of dissolved carbon transport and transformation in mixing zones of the world's coastal rivers is still limited. This study aims to determine how dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) concentrations and stable isotopes (δ13CDIC and δ13CDOC) change along an 88-km long estuarine river, the Calcasieu River in Louisiana, southern USA, with salinity ranging from 0.02 to 21.92. The study is expected to elucidate which processes most likely control carbon dynamics in a freshwater-saltwater mixing system, and to evaluate the net metabolism of this estuary. Between May 2015 and February 2016, water samples were collected and in-situ measurements on ambient water conditions were performed during five field trips at six sites from upstream to downstream of the Calcasieu River, which enters the Northern Gulf of Mexico (NGOM). The DIC concentration and δ13CDIC increased rapidly with increasing salinity in the mixing zone. The average DIC concentration and δ13CDIC at the site closest to the NGOM (site 6) were 1.31 mM and -6.34‰, respectively, much higher than those at the site furthest upstream (site 1, 0.42 mM and -20.83‰). The DIC concentrations appeared to be largely influenced by conservative mixing, while high water temperature may have played a role in deviating DIC concentration from the conservative line due likely to increased respiration and decomposition. The δ13CDIC values were close to those suggested by the conservative mixing model for May, June and November, but lower than those for July and February, suggesting that an estuarine river can fluctuate from a balanced to a heterotrophic system (i.e., production/respiration (P/R) aquatic photosynthesis from carbon produced by terrestrial photosynthesis in a river-ocean continuum.

  11. Evaluating hillslope and riparian contributions to dissolved nitrogen (N) export from a boreal forest catchment

    Science.gov (United States)

    Blackburn, M.; Ledesma, José L. J.; Näsholm, Torgny; Laudon, Hjalmar; Sponseller, Ryan A.

    2017-02-01

    Catchment science has long held that the chemistry of small streams reflects the landscapes they drain. However, understanding the contribution of different landscape units to stream chemistry remains a challenge which frequently limits our understanding of export dynamics. For limiting nutrients such as nitrogen (N), an implicit assumption is that the most spatially extensive landscape units (e.g., uplands) act as the primary sources to surface waters, while near-stream zones function more often as sinks. These assumptions, based largely on studies in high-gradient systems or in regions with elevated inputs of anthropogenic N, may not apply to low-gradient, nutrient-poor, and peat-rich catchments characteristic of many northern ecosystems. We quantified patterns of N mobilization along a hillslope transect in a northern boreal catchment to assess the extent to which organic matter-rich riparian soils regulate the flux of N to streams. Contrary to the prevailing view of riparian functioning, we found that near-stream, organic soils supported concentrations and fluxes of ammonium (NH4+) and dissolved organic nitrogen that were much higher than the contributing upslope forest soils. These results suggest that stream N chemistry is connected to N mobilization and mineralization within the riparian zone rather than the wider landscape. Results further suggest that water table fluctuation in near-surface riparian soils may promote elevated rates of net N mineralization in these landscapes.

  12. Highly selective transformation of ammonia nitrogen to N2 based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions system.

    Science.gov (United States)

    Ji, Youzhi; Bai, Jing; Li, Jinhua; Luo, Tao; Qiao, Li; Zeng, Qingyi; Zhou, Baoxue

    2017-11-15

    A highly selective method for transforming ammonia nitrogen to N 2 was proposed, based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions (PEC-chlorine) system. The PEC-chlorine system was facilitated by a visible light response WO 3 nanoplate array (NPA) electrode in an ammonia solution containing chloride ions (Cl - ). Under illumination, photoholes from WO 3 promote the oxidation of Cl - to chlorine radical (Cl). This radical can selectively transform ammonia nitrogen to N 2 (79.9%) and NO 3 - (19.2%), similar to the breakpoint chlorination reaction. The ammonia nitrogen removal efficiency increased from 10.6% (PEC without Cl - ) to 99.9% with the PEC-chlorine system within 90 min operation, which can be attributed to the cyclic reactions between Cl - /Cl and the reaction intermediates (NH 2 , NHCl, etc.) that expand the degradation reactions from the surface of the electrodes to the whole solution system. Moreover, Cl is the main radical species contributing to the transformation of ammonia nitrogen to N 2 , which is confirmed by the tBuOH capture experiment. Compared to conventional breakpoint chlorination, the PEC-chlorine system is a more economical and efficient means for ammonia nitrogen degradation because of the fast removal rate, no additional chlorine cost, and its use of clean energy (since it is solar-driven). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Modeling phytoremediation of nitrogen-polluted water using water hyacinth (Eichhornia crassipes)

    Science.gov (United States)

    Mayo, Aloyce W.; Hanai, Emmanuel E.

    2017-08-01

    Water hyacinth (Eichhornia crassipes) has a great potential for purification of wastewater through physical, chemical and biological mechanisms. In an attempt to improve the quality of effluents discharged from waste stabilization ponds at the University of Dar es Salaam, a pilot plant was constructed to experiment the effectiveness of this plants for transformation and removal of nitrogen. Samples of wastewater were collected and examined for water quality parameters, including pH, temperature, dissolved oxygen, and various forms of nitrogen, which were used as input parameters in a kinetic mathematical model. A conceptual model was then developed to model various processes in the system using STELLA 6.0.1 software. The results show that total nitrogen was removed by 63.9%. Denitrification contributed 73.8% of the removed nitrogen. Other dominant nitrogen removal mechanisms are net sedimentation and uptake by water hyacinth, which contributed 16.7% and 9.5% of the removed nitrogen, respectively. The model indicated that in presence of water hyacinth biofilm about 1.26 g Nm-2day-1 of nitrogen was removed. However, in the absence of biofilm in water hyacinth pond, the permanent nitrogen removal was only 0.89 g Nm-2day-1. This suggests that in absence of water hyacinth, the efficiency of nitrogen removal would decrease by 29.4%.

  14. Detection of Dissolved Carbon Monoxide in Transformer Oil Using 1.567 μm Diode Laser-Based Photoacoustic Spectroscopy

    Directory of Open Access Journals (Sweden)

    Qu Zhou

    2015-01-01

    Full Text Available Carbon monoxide (CO is one of the most important fault characteristic gases dissolved in power transformer oil. With the advantages of high sensitivity and accuracy, long-term stability, and short detection time, photoacoustic spectroscopy (PAS has been proven to be one promising sensing technology for trace gas recognition. In this investigation, a tunable PAS experimental system based on a distributed-feedback (DFB diode laser was proposed for recognizing dissolved CO in transformer oil. The molecular spectral line of CO gas detection was selected at 1.567 μm in the whole experiment. Relationships between the photoacoustic (PA signal and gas pressure, temperature, laser power, and CO gas concentration were measured and discussed in detail, respectively. Finally, based on the least square regression theory, a novel quantitative identification method for CO gas detection with the PAS experimental system was proposed. And a comparative research about the gas detection performances performed by the PAS system and gas chromatography (GC measurement was presented. All results lay a solid foundation for exploring a portable and tunable CO gas PAS detection device for practical application in future.

  15. INFLUENCE OF TECHNOGENIC LANDSCAPES RECULTIVATION ON FUNCTIONING OF SOIL MICROORGANISMS COMMUNITIES WHICH TAKE PART IN TRANSFORMATION OF NITROGEN COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Syshchykova Oksana Vitalyevna

    2014-04-01

    Full Text Available It is established that mining recultivation of tailings dams slimes promotes restoration of numerical structure of soil microorganisms community which take part in processes of nitrogen compounds transformation. The certificate of that is number restoration of the organotrophic bacteria of a nitrogen cycle to 0.3 million CFU/g of soil and increase by 2-3 times of streptomycetes quantity in blankets. The received results of quantitative structure of the microorganisms which are taking part in processes of nitrogen mineral compounds transformation in the chernozem usual allow to claim that in blankets the number of microorganisms makes 3.89 and 2.33 million CFU/g soil. It should be noted that the best conditions for microflora development are formed on slime with drawing 50 cm of loess-like loam and 30 cm of a fertile layer. The microorganism quantity on the specified monitoring area increases by 3-4 times in the soil of a fertile layer and by 1.3-1.6 times in loess-like loam in comparison with slime without recultivation. Increase of microbiological processes intensity, extremely important, considering strengthening of ecosystems self-regulation functions. It is established high level of microbiological transformation of organic substance, the indicator is made 7.3-11.1 in the edatopes of the recultivated slimes. Increasing indicators of microbiological transformation and mineralization of organic compounds in the technozems confirm restoration of a slimes biogenity at carrying out of recultivation that promotes an intensification of mineralization processes and assimilation by plants nitrogen compounds in the soil.

  16. Contributing factors in foliar uptake of dissolved inorganic nitrogen at leaf level

    Energy Technology Data Exchange (ETDEWEB)

    Wuyts, Karen, E-mail: karen.wuyts@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Forest and Nature Lab (ForNaLab), Dept. Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode-Melle (Belgium); Adriaenssens, Sandy, E-mail: adriaenssens@irceline.be [Belgian Interregional Environment Agency (IRCEL-CELINE), Kunstlaan 10–11, B-1210 Brussels (Belgium); Staelens, Jeroen, E-mail: jeroen_staelens@yahoo.com [Flemish Environment Agency (VMM), Kronenburgstraat 45, B-2000 Antwerp (Belgium); Wuytack, Tatiana, E-mail: tatiana.wuytack@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van Wittenberghe, Shari, E-mail: shari.vanwittenberghe@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Boeckx, Pascal, E-mail: pascal.boeckx@ugent.be [Isotope Bioscience Laboratory (ISOFYS), Dept. Applied Analytical and Physical Chemistry, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Samson, Roeland, E-mail: roeland.samson@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Verheyen, Kris, E-mail: kris.verheyen@ugent.be [Forest and Nature Lab (ForNaLab), Dept. Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode-Melle (Belgium)

    2015-02-01

    We investigated the influence of leaf traits, rainwater chemistry, and pedospheric nitrogen (N) fertilisation on the aqueous uptake of inorganic N by physiologically active tree leaves. Leaves of juvenile silver birch and European beech trees, supplied with NH{sub 4}NO{sub 3} to the soil at rates from 0 to 200 kg N ha{sup −1} y{sup −1}, were individually exposed to 100 μl of artificial rainwater containing {sup 15}NH{sub 4}{sup +} or {sup 15}NO{sub 3}{sup −} at two concentration levels for one hour. In the next vegetative period, the experiment was repeated with NH{sub 4}{sup +} at the highest concentration only. The N form and the N concentration in the applied rainwater and, to a lesser extent, the pedospheric N treatment and the leaf traits affected the aqueous foliar N uptake. The foliar uptake of NH{sub 4}{sup +} by birch increased when leaves were more wettable. High leaf N concentration and leaf mass per area enhanced the foliar N uptake, and NO{sub 3}{sup −} uptake in particular, by birch. Variation in the foliar N uptake by the beech trees could not be explained by the leaf traits considered. In the first experiment, N fertilisation stimulated the foliar N uptake in both species, which was on average 1.42–1.78 times higher at the highest soil N dose than at the zero dose. However, data variability was high and the effect was not appreciable in the second experiment. Our data suggest that next to rainwater chemistry (N form and concentration) also forest N status could play a role in the partitioning of N entering the ecosystem through the soil and the canopy. Models of canopy uptake of aqueous N at the leaf level should take account of leaf traits such as wettability and N concentration. - Highlights: • Foliar uptake of dissolved inorganic nitrogen (N) by potted trees was studied. • Leaves were individually exposed to rainwater drops containing {sup 15}NH{sub 4}{sup +} or {sup 15}NO{sub 3}{sup −}. • Foliar N uptake efficiency depended on

  17. Gross Nitrogen Mineralization in Surface Sediments of the Yangtze Estuary

    Science.gov (United States)

    Liu, Min; Li, Xiaofei; Yin, Guoyu; Zheng, Yanling; Deng, Fengyu

    2016-01-01

    Nitrogen mineralization is a key biogeochemical process transforming organic nitrogen to inorganic nitrogen in estuarine and coastal sediments. Although sedimentary nitrogen mineralization is an important internal driver for aquatic eutrophication, few studies have investigated sedimentary nitrogen mineralization in these environments. Sediment-slurry incubation experiments combined with 15N isotope dilution technique were conducted to quantify the potential rates of nitrogen mineralization in surface sediments of the Yangtze Estuary. The gross nitrogen mineralization (GNM) rates ranged from 0.02 to 5.13 mg N kg-1 d-1 in surface sediments of the study area. The GNM rates were generally higher in summer than in winter, and the relative high rates were detected mainly at sites near the north branch and frontal edge of this estuary. The spatial and temporal distributions of GNM rates were observed to depend largely on temperature, salinity, sedimentary organic carbon and nitrogen contents, and extracellular enzyme (urease and L-glutaminase) activities. The total mineralized nitrogen in the sediments of the Yangtze Estuary was estimated to be about 6.17 × 105 t N yr-1, and approximately 37% of it was retained in the estuary. Assuming the retained mineralized nitrogen is totally released from the sediments into the water column, which contributed 12–15% of total dissolved inorganic nitrogen (DIN) sources in this study area. This result indicated that the mineralization process is a significant internal nitrogen source for the overlying water of the Yangtze Estuary, and thus may contribute to the estuarine and coastal eutrophication. PMID:26991904

  18. Distribution patterns of nitrogen micro-cycle functional genes and their quantitative coupling relationships with nitrogen transformation rates in a biotrickling filter.

    Science.gov (United States)

    Wang, Honglei; Ji, Guodong; Bai, Xueyuan

    2016-06-01

    The present study explored the distribution patterns of nitrogen micro-cycle genes and the underlying mechanisms responsible for nitrogen transformation at the molecular level (genes) in a biotrickling filter (biofilter). The biofilter achieved high removal efficiencies for ammonium (NH4(+)-N) (80-94%), whereas nitrate accumulated at different levels under a progressive NH4(+)-N load. Combined analyses revealed the anammox, nas, napA, narG, nirS, and nxrA genes were the dominant enriched genes in different treatment layers. The presence of simultaneous nitrification, ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) were the primary factors accounted for the robust NH4(+)-N treatment performance. The presence of DNRA, nitrification, and denitrification was determined to be a pivotal pathway that contributed to the nitrate accumulation in the biofilter. The enrichment of functional genes at different depth gradients and the multi-path coupled cooperation at the functional gene level are conducive to achieving complete nitrogen removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Characterizing the transformation and transfer of nitrogen during the aerobic treatment of organic wastes and digestates

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Yang, E-mail: yang.zeng@irstea.fr [Irstea, UR GERE, 17 avenue de Cucille, CS 64427, F-35044 Rennes Cedex (France); Universite Europeenne de Bretagne, F-35000 Rennes (France); Guardia, Amaury de; Daumoin, Mylene; Benoist, Jean-Claude [Irstea, UR GERE, 17 avenue de Cucille, CS 64427, F-35044 Rennes Cedex (France)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Ammonia emissions varied depending on the nature of wastes and the treatment conditions. Black-Right-Pointing-Pointer Nitrogen losses resulted from ammonia emissions and nitrification-denitrification. Black-Right-Pointing-Pointer Ammonification can be estimated from biodegradable carbon and carbon/nitrogen ratio. Black-Right-Pointing-Pointer Ammonification was the main process contributing to N losses. Black-Right-Pointing-Pointer Nitrification rate was negatively correlated to stripping rate of ammonia nitrogen. - Abstract: The transformation and transfer of nitrogen during the aerobic treatment of seven wastes were studied in ventilated air-tight 10-L reactors at 35 Degree-Sign C. Studied wastes included distinct types of organic wastes and their digestates. Ammonia emissions varied depending on the kind of waste and treatment conditions. These emissions accounted for 2-43% of the initial nitrogen. Total nitrogen losses, which resulted mainly from ammonia emissions and nitrification-denitrification, accounted for 1-76% of the initial nitrogen. Ammonification was the main process responsible for nitrogen losses. An equation which allows estimating the ammonification flow of each type of waste according to its biodegradable carbon and carbon/nitrogen ratio was proposed. As a consequence of the lower contribution of storage and leachate rates, stripping and nitrification rates of ammonia nitrogen were negatively correlated. This observation suggests the possibility of promotingnitrification in order to reduce ammonia emissions.

  20. Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation

    Science.gov (United States)

    2018-01-01

    Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site. PMID:29370230

  1. Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation.

    Directory of Open Access Journals (Sweden)

    Hazlee Azil Illias

    Full Text Available Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM with modified evolutionary particle swarm optimisation (EPSO algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO-Time Varying Acceleration Coefficient (TVAC technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site.

  2. Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation.

    Science.gov (United States)

    Illias, Hazlee Azil; Zhao Liang, Wee

    2018-01-01

    Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site.

  3. Use of a dissolved-gas measurement system for reducing the dissolved oxygen at St. Lucie Unit 2

    International Nuclear Information System (INIS)

    Snyder, D.T.; Coit, R.L.

    1993-02-01

    When the dissolved oxygen in the condensate at St. Lucie Unit 2 could not be reduced below the administrative limit of 10 ppB, EPRI cooperated with Florida Power and Light to find the cause and develop remedies. Two problems were identified with the assistance of a dissolved gas measurement system (DGMS) that can detect leaks into condensate when used with argon blanketing. Drain piping from the air ejection system had flooded which decreased its performance, and leaks were found at a strainer flange and a couple expansion joints. Initially the dissolved oxygen content was reduced to about 9 ppB; owever, the dissolved oxygen from Condenser A was consistently higher than that from condenser B. Injection of about 0.4 cubic per minute (CFM) of argon above the hotwell considerably improved the ventilation of Condenser A, reducing the dissolved oxygen about 30% to about 6 ppB. The use of nitrogen was equally effective. While inert gas injection is helpful, it may be better to have separate air ejectors for each condenser. Several recommendations for improving oxygen removal are given

  4. Nitrogen isotope tracing of dissolved inorganic nitrogen behaviour in tidal estuaries

    NARCIS (Netherlands)

    Middelburg, J.J.; Nieuwenhuize, J.

    2001-01-01

    Concentration versus salinity diagrams are the most widely used method to derive estuarine sources and sinks of nitrogen. This method can not distinguish conservative mixing due to a lack of activity, from that due to an approximate balance of sources and sinks. The combined study of concentration

  5. Unveiling the transformation and bioavailability of dissolved organic matter in contrasting hydrothermal vents using fluorescence EEM-PARAFAC.

    Science.gov (United States)

    Yang, Liyang; Zhuang, Wan-E; Chen, Chen-Tung Arthur; Wang, Bing-Jye; Kuo, Fu-Wen

    2017-03-15

    The submarine hydrothermal systems are extreme environments where active cycling of dissolved organic matter (DOM) may occur. However, little is known about the optical properties and bioavailability of hydrothermal DOM, which could provide valuable insights into its transformation processes and biogeochemical reactivity. The quantity, quality, and bioavailability of DOM were investigated for four very different hydrothermal vents east of Taiwan, using dissolved organic carbon (DOC), absorption spectroscopy, and fluorescence excitation-emission matrices-parallel factor analysis (EEM-PARAFAC). The DOC and absorption coefficient a 280 were both lower in the two hydrothermal vents off the Orchid Island and on the Green Island than in the surrounding seawater and the two vents off the Kueishantao Island, indicating effective removals of DOM in the former two hydrothermal systems owing to possible adsorption/co-precipitation and thermal degradation respectively. The four hydrothermal DOM showed notable differences in the absorption spectral slope S 275-295 , humification index HIX, biological index BIX, EEM spectra, and the relative distributions of seven PARAFAC components. The results demonstrated a high diversity of chemical composition and transformation history of DOM under contrasting hydrothermal conditions. The little change in the hydrothermal DOC after 28-day microbial incubations indicated a low bioavailability of the bulk DOM, and different PARAFAC components showed contrasting bioavailability. The results have profound implications for understanding the biogeochemical cycling and environmental effects of hydrothermal DOM in the marine environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Influence of carbohydrate addition on nitrogen transformations and greenhouse gas emissions of intensive aquaculture system.

    Science.gov (United States)

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Sharma, Keshab; Khanal, Samir Kumar

    2014-02-01

    Aquaculture is one of the fastest-growing segments of the food economy in modern times. It is also being considered as an important source of greenhouse gas (GHG) emissions. To date, limited studies have been conducted on GHG emissions from aquaculture system. In this study, daily addition of fish feed and soluble starch at a carbon-to-nitrogen (C/N) ratio of 16:1 (w/w) was used to examine the effects of carbohydrate addition on nitrogen transformations and GHG emissions in a zero-water exchange intensive aquaculture system. The addition of soluble starch stimulated heterotrophic bacterial growth and denitrification, which led to lower total ammonia nitrogen, nitrite and nitrate concentrations in aqueous phase. About 76.2% of the nitrogen output was emitted in the form of gaseous nitrogen (i.e., N2 and N2O) in the treatment tank (i.e., aquaculture tank with soluble starch addition), while gaseous nitrogen accounted for 33.3% of the nitrogen output in the control tank (i.e., aquaculture tank without soluble starch addition). Although soluble starch addition reduced daily N2O emissions by 83.4%, it resulted in an increase of daily carbon dioxide (CO2) emissions by 91.1%. Overall, starch addition did not contribute to controlling the GHG emissions from the aquaculture system. © 2013.

  7. Transformation and precipitation in vanadium treated steels

    Science.gov (United States)

    Vassiliou, Andreas D.

    A series of carbon manganese steels containing varying amounts of carbon, vanadium and nitrogen was investigated in relation to the solubility of VC and VN in austenite, the grain coarsening characteristics of austenite, the tempering of martensite and other structures, the transformation during continuous cooling, the effect of vanadium addition and increasing nitrogen content on the thermo-mechanical processing of austenite, and the transformation of various morphologies of austenite to ferrite.The sites for preferential nucleation and growth of ferrite were identified and the effect of ferrite grain size inhomogeneity was investigated with a view to minimising it.The C/N ratio in the V(CN) precipitates was largely controlled by C/N ratio in the steel and it was also influenced by the austenitising treatment. As expected, the solubility of VN was less than that of VC.A systematic investigation of austenitising time and temperature on the grain coarsening characteristics was carried out showing the effects of vanadium, carbon and nitrogen. It was tentatively suggested that C-C and N-N clustering in the vanadium free steels controlled the grain growth whereas in the presence of vanadium, it was shown that VN and VC pinned the austenite grain boundaries and restricted grain growth. However coarsening or solution of VC and VN allowed the grain bondaries to migrate and grain coarsening occurred. The grain coarsening temperature was controlled predominantly by VN, whilst the VC dissolved frequently below the grain coarsening temperature.In the as quenched martensite, increasing nitrogen progressively increased the as quenched hardness, and the hardness also greatly increased with increasing carbon and vanadium added together. Examining the precipitation strengthening in tempered martensite showed that in the absence of vanadium, martensite softened progressively with increasing temperature and time. Vanadium additions increased the hardness level during low temperature

  8. Evaluation of wastewater nitrogen transformation in a natural wetland (Ulaanbaatar, Mongolia) using dual-isotope analysis of nitrate

    International Nuclear Information System (INIS)

    Itoh, Masayuki; Takemon, Yasuhiro; Makabe, Akiko; Yoshimizu, Chikage; Kohzu, Ayato; Ohte, Nobuhito; Tumurskh, Dashzeveg; Tayasu, Ichiro; Yoshida, Naohiro; Nagata, Toshi

    2011-01-01

    The Tuul River, which provides water for the daily needs of many residents of Ulaanbaatar, Mongolia, has been increasingly polluted by wastewater from the city's sewage treatment plant. Information on water movement and the transformation of water-borne materials is required to alleviate the deterioration of water quality. We conducted a synoptic survey of general water movement, water quality including inorganic nitrogen concentrations, and isotopic composition of nitrogen (δ 15 N-NO 3 - , δ 18 O-NO 3 - , and δ 15 N-NH 4 + ) and water (δ 18 O-H 2 O) in a wetland area that receives wastewater before it enters the Tuul River. We sampled surface water, groundwater, and spring water along the two major water routes in the wetland that flow from the drain of the sewage treatment plant to the Tuul River: a continuous tributary and a discontinuous tributary. The continuous tributary had high ammonium (NH 4 + ) concentrations and nearly stable δ 15 N-NH 4 + , δ 15 N-NO 3 - , and δ 18 O-NO 3 - concentrations throughout its length, indicating that nitrogen transformation (i.e., nitrification and denitrification) during transit was small. In contrast, NH 4 + concentrations decreased along the discontinuous tributary and nitrate (NO 3 - ) concentrations were low at many points. Values of δ 15 N-NH 4 + , δ 15 N-NO 3 - , and δ 18 O-NO 3 - increased with flow along the discontinuous route. Our results indicate that nitrification and denitrification contribute to nitrogen removal in the wetland area along the discontinuous tributary with slow water transport. Differences in hydrological pathways and the velocity of wastewater transport through the wetland area greatly affect the extent of nitrogen removal. - Research Highlights: → Dual-isotope analysis of nitrate was used to assess wastewater nitrogen status. → Wetland that receives the wastewater contributed to nitrogen removal. → Differences in hydrological pathways greatly affect the extent of nitrogen removal.

  9. Nitrogen and phosphorus removed from a subsurface flow multi-stage filtration system purifying agricultural runoff.

    Science.gov (United States)

    Zhao, Yaqi; Huang, Lei; Chen, Yucheng

    2018-07-01

    Agricultural nonpoint source pollution has been increasingly serious in China since the 1990s. The main causes were excessive inputs of nitrogen fertilizer and pesticides. A multi-stage filtration system was built to test the purification efficiencies and removal characteristics of nitrogen and phosphorus when treating agricultural runoff. Simulated runoff pollution was prepared by using river water as source water based on the monitoring of local agricultural runoff. Experimental study had been performed from September to November 2013, adopting 12 h for flooding and 12 h for drying. The results showed that the system was made adaptive to variation of inflow quality and quantity, and had good removal for dissolved total nitrogen, total nitrogen, dissolved total phosphorus (DTP), and total phosphorus, and the average removal rate was 27%, 36%, 32%, and 48%, respectively. Except nitrate ([Formula: see text]), other forms of nitrogen and phosphorus all decreased with the increase of stages. Nitrogen was removed mainly in particle form the first stage, and mostly removed in dissolved form the second and third stage. Phosphorus was removed mainly in particulate during the first two stages, but the removal of particulate phosphorus and DTP were almost the same in the last stage. An approximate logarithmic relationship between removal loading and influent loading to nitrogen and phosphorus was noted in the experimental system, and the correlation coefficient was 0.78-0.94. [Formula: see text]: ammonium; [Formula: see text]: nitrite; [Formula: see text]: nitrate; DTN: dissolved total nitrogen; TN: total nitrogen; DTP: dissolved total phosphorus; TP: total phosphorus; PN: particulate nitrogen; PP: particulate phosphorus.

  10. Photonic crystal fiber modal interferometer with Pd/WO3 coating for real-time monitoring of dissolved hydrogen concentration in transformer oil.

    Science.gov (United States)

    Zhang, Ya-Nan; Wu, Qilu; Peng, Huijie; Zhao, Yong

    2016-12-01

    A highly-sensitive and temperature-robust photonic crystal fiber (PCF) modal interferometer coated with Pd/WO 3 film was fabricated and studied, aiming for real-time monitoring of dissolved hydrogen concentration in transformer oil. The sensor probe was fabricated by splicing two segments of a single mode fiber (SMF) with both ends of the PCF. Since the collapse of air holes in the PCF in the interfaces between SMF and PCF, a SMF-PCF-SMF interferometer structure was formed. The Pd/WO 3 film was fabricated by sol-gel method and coated on the surface of the PCF by dip-coating method. When the Pd/WO 3 film is exposed to hydrogen, both the length and cladding refractive index of the PCF would be changed, resulting in the resonant wavelength shift of the interferometer. Experimental results showed that the hydrogen measurement sensitivity of the proposed sensor can reach 0.109 pm/(μl/l) in the transformer oil, with the measurement range of 0-10 000 μl/l and response time less than 33 min. Besides, the proposed sensor was temperature-insensitive without any compensation process, easy to fabricate without any tapering, polishing, or etching process, low cost and quickly response without any oil-gas separation device. All these performances satisfy the actual need of real-time monitoring of dissolved hydrogen concentration in the transformer oil.

  11. Concentration and flux of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids for monitored tributaries of Lake Champlain, 1990-2012

    Science.gov (United States)

    Medalie, Laura

    2014-01-01

    Annual and daily concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids were estimated for 18 monitored tributaries to Lake Champlain by using the Weighted Regressions on Time, Discharge, and Seasons regression model. Estimates were made for 21 or 23 years, depending on data availability, for the purpose of providing timely and accessible summary reports as stipulated in the 2010 update to the Lake Champlain “Opportunities for Action” management plan. Estimates of concentration and flux were provided for each tributary based on (1) observed daily discharges and (2) a flow-normalizing procedure, which removed the random fluctuations of climate-related variability. The flux bias statistic, an indicator of the ability of the Weighted Regressions on Time, Discharge, and Season regression models to provide accurate representations of flux, showed acceptable bias (less than ±10 percent) for 68 out of 72 models for total and dissolved phosphorus, total nitrogen, and chloride. Six out of 18 models for total suspended solids had moderate bias (between 10 and 30 percent), an expected result given the frequently nonlinear relation between total suspended solids and discharge. One model for total suspended solids with a very high bias was influenced by a single extreme value; however, removal of that value, although reducing the bias substantially, had little effect on annual fluxes.

  12. Transformation of methylparaben during water chlorination: Effects of bromide and dissolved organic matter on reaction kinetics and transformation pathways.

    Science.gov (United States)

    Yoom, Hoonsik; Shin, Jaedon; Ra, Jiwoon; Son, Heejong; Ryu, Dongchoon; Kim, Changwon; Lee, Yunho

    2018-09-01

    The reaction kinetics, products, and pathways of methylparaben (MeP) during water chlorination with and without bromide (Br - ) were investigated to better understand the fate of parabens in chlorinated waters. During the chlorination of MeP-spiked waters without Br - , MeP was transformed into mono-Cl-MeP and di-Cl-MeP with apparent second-order rate constants (k app ) of 64M -1 s -1 and 243M -1 s -1 at pH7, respectively, while further chlorination of di-Cl-MeP was relatively slower (k app =1.3M -1 s -1 at pH7). With increasing Br - concentration, brominated MePs, such as mono-Br-MeP, Br-Cl-MeP, and di-Br-MeP, became major transformation products. The di-halogenated MePs (di-Cl-MeP, Br,Cl-MeP, and di-Br-MeP) showed relatively low reactivity to chlorine at pH7 (k app =1.3-4.6M -1 s -1 ) and bromine (k app =32-71M -1 s -1 ), which explains the observed high stability of di-halogenated MePs in chlorinated waters. With increasing pH from 7 to 8.5, the transformation of di-halogenated MePs was further slowed due to the decreasing reactivity of di-MePs to chlorine. The formation of the di-halogenated MePs and their further transformation become considerably faster at Br - concentrations higher than 0.5μM (40μg/L). Nonetheless, the accelerating effect of Br - diminishes in the presence of dissolved organic matter (DOM) extract (Suwannee River humic acid (SRHA)) due to a more rapid consumption of bromine by DOM than chlorine. The effect of Br - on the fate of MeP was less in the tested real water matrices, possibly due to a more rapid bromine consumption by the real water DOM compared to SRHA. A kinetic model was developed based on the determined species-specific second-order rate constants for chlorination/bromination of MeP and its chlorinated and brominated MePs and the transformation pathway information, which could reasonably simulate the transformation of MePs during the chlorination of water in the presence of Br - and selected DOM. Copyright © 2017 Elsevier B

  13. Deepwater Horizon oil in Gulf of Mexico waters after 2 years: transformation into the dissolved organic matter pool.

    Science.gov (United States)

    Bianchi, Thomas S; Osburn, Christopher; Shields, Michael R; Yvon-Lewis, Shari; Young, Jordan; Guo, Laodong; Zhou, Zhengzhen

    2014-08-19

    Recent work has shown the presence of anomalous dissolved organic matter (DOM), with high optical yields, in deep waters 15 months after the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico (GOM). Here, we continue to use the fluorescence excitation-emission matrix (EEM) technique coupled with parallel factor analysis (PARAFAC) modeling, measurements of bulk organic carbon, dissolved inorganic carbon (DIC), oil indices, and other optical properties to examine the chemical evolution and transformation of oil components derived from the DWH in the water column of the GOM. Seawater samples were collected from the GOM during July 2012, 2 years after the oil spill. This study shows that, while dissolved organic carbon (DOC) values have decreased since just after the DWH spill, they remain higher at some stations than typical deep-water values for the GOM. Moreover, we continue to observe fluorescent DOM components in deep waters, similar to those of degraded oil observed in lab and field experiments, which suggest that oil-related fluorescence signatures, as part of the DOM pool, have persisted for 2 years in the deep waters. This supports the notion that some oil-derived chromophoric dissolved organic matter (CDOM) components could still be identified in deep waters after 2 years of degradation, which is further supported by the lower DIC and partial pressure of carbon dioxide (pCO2) associated with greater amounts of these oil-derived components in deep waters, assuming microbial activity on DOM in the current water masses is only the controlling factor of DIC and pCO2 concentrations.

  14. Organic Nitrogen in Atmospheric Drops and Particles: Concentrations, (Limited) Speciation, and Chemical Transformations

    Science.gov (United States)

    Anastasio, C.; Zhang, Q.

    2003-12-01

    While quite a bit is known of the concentrations, speciation, and chemistry of inorganic forms of nitrogen in the atmosphere, the same cannot be said for organic forms. Despite this, there is growing evidence that organic N (ON) is ubiquitous in the atmosphere, especially in atmospheric condensed phases such as fog/cloud drops and aerosol particles. Although the major compounds that make up organic N are generally unknown, as are the sources of these compounds, it is clear that there are significant fluxes of ON between the atmosphere and ecosystems. It also appears that organic N can have significant effects in both spheres. The goal of our recent work in this area has been to better describe the atmospheric component of the biogeochemistry of organic nitrogen. Based on particle, gas, and fogwater samples from Northern California we have made three major findings: 1) Organic N represents a significant component, approximately 20%, of the total atmospheric N loading in these samples. This is broadly consistent with studies from other locations. 2) Amino compounds, primarily as combined amino acids, account for approximately 20% of the measured ON in our condensed phase samples. Given the properties of amino acids, these compounds could significantly affect the chemical and physical properties of atmospheric particles. 3) Organic nitrogen in atmospheric particles and drops is transformed to inorganic forms - primarily ammonium, nitrate, and nitrogen oxides (NOx) - during exposure to sunlight and/or ozone. These chemical reactions likely increase the bioavailability of the condensed phase nitrogen pool and enhance its biological effects after deposition to ecosystems.

  15. Variation of dissolved organic nitrogen concentration during the ultrasonic pretreatment to Microcystis aeruginosa.

    Science.gov (United States)

    Liu, Cheng; Wang, Jie; Cao, Zhen; Chen, Wei; Bi, Hongkai

    2016-03-01

    Algae cells were the main sources of dissolved organic nitrogen (DON) in raw water with plenty of algae, and ultrasonic pretreatment was one of the algae-controlling methods through the damage of algae cells. However, the variation of DON concentration during the ultrasonic treatment process was not confirmed. Variation of DON concentration during the processes of low frequency ultrasound treatment of Microcystis aeruginosa was investigated. In addition, the effect of sonication on the metabolite concentration, algae cellar activity and the subsequent coagulation performance were discussed. The results showed that after a long duration of ultrasonic (60 s), nearly 90% of the algal cells were damaged and the maximum concentration of DON attained more than 3 mg/L. In order to control the leakage extent of DON, the sonication time should be less than 30 s with power intensity of more than 1.0 W/cm(3). In the mean time, ultrasonic treatment could inhibit the reactivation and the proliferation of algal, keep the algae cell wall integrity and enhance coagulation effectively under the same condition. However, ultrasound frequency had little effect on DON at the frequency range used in this study (20-150 kHz). Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Subcooled boiling effect on dissolved gases behaviour

    International Nuclear Information System (INIS)

    Zmitko, M.; Sinkule, J.; Linek, V.

    1999-01-01

    A model describing dissolved gasses (hydrogen, nitrogen) and ammonia behaviour in subcooled boiling conditions of WWERs was developed. Main objective of the study was to analyse conditions and mechanisms leading to formation of a zone with different concentration of dissolved gases, eg. a zone depleted in dissolved hydrogen in relation to the bulk of coolant. Both, an equilibrium and dynamic approaches were used to describe a depletion of the liquid surrounding a steam bubble in the gas components. The obtained results show that locally different water chemistry conditions can be met in the subcooled boiling conditions, especially, in the developed subcooled boiling regime. For example, a 70% hydrogen depletion in relation to the bulk of coolant takes about 1 ms and concerns a liquid layer of 1 μn surrounding the steam bubble. The locally different concentration of dissolved gases can influence physic-chemical and radiolytic processes in the reactor system, eg. Zr cladding corrosion, radioactivity transport and determination of the critical hydrogen concentration. (author)

  17. Transformations of Nitrogen from Secondary Treated Wastewater when Infiltrated in Managed Aquifer Recharge Schemes

    Science.gov (United States)

    Silver, Matthew; Wefer-Roehl, Annette; Kübeck, Christine; Schüth, Christoph

    2016-04-01

    The EU FP7 project MARSOL seeks to address water scarcity challenges in arid regions, where managed aquifer recharge (MAR) is an upcoming technology to recharge depleted aquifers using alternative water sources. Within this framework, we conduct column experiments to investigate transformations of nitrogen species when secondary treated wastewater (STWW) is infiltrated through two natural soils being considered for managed aquifer recharge. The soils vary considerably in organic matter content, with total organic matter determined by loss on ignition of 6.8 and 2.9 percent by mass for Soil 1 and Soil 2, respectively. Ammonium (NH4+) concentrations as high as 8.6 mg/L have been measured in pore water samples from Soil #1, indicating that ammonium could be a contaminant of concern in MAR applications using STWW, with consideration of the EU limit of 0.5 mg/L for NH4+. The two forms of nitrogen with the highest concentrations in the secondary treated wastewater are nitrate (NO3-) and dissolved organic nitrogen (DON). In water samples taken from the soil columns, a mass balance of measured ions shows a deficit of nitrogen in ionic form in the upper to middle depths of the soil, suggesting the presence of unmeasured species. These are likely nitrous oxide or dinitrogen gas, which would signify that denitrification is occurring. Measurements of N2O from water samples will verify its presence and spatial variation. The ammonium concentrations increase slowly in the upper parts of the soil but then increase more sharply at greater depth, after NO3- is depleted, suggesting that DON is the source of the produced NH4+. The production of NH4+ is presumed to be facilitated microbiologically. It is hypothesized that at higher organic carbon to total nitrogen (C:N) ratios, more NH4+ will be formed. To test this, in the experiments with Soil #2, three different inflow waters are used, listed in order of decreasing C:N ratio: STWW, STWW with NO3- added to a concentration of 80 mg

  18. Role of plants in nitrogen and sulfur transformations in floating hydroponic root mats: A comparison of two helophytes.

    Science.gov (United States)

    Saad, Rania A B; Kuschk, Peter; Wiessner, Arndt; Kappelmeyer, Uwe; Müller, Jochen A; Köser, Heinz

    2016-10-01

    Knowledge about the roles helophytes play in constructed wetlands (CWs) is limited, especially regarding their provision of organic rhizodeposits. Here, transformations of inorganic nitrogen and sulfur were monitored in a CW variety, floating hydroponic root mat (FHRM), treating synthetic wastewater containing low concentration of organic carbon. Two helophytes, Phragmites australis and Juncus effusus, were compared in duplicates. Striking differences were found between the FHRM of the two helophytes. Whereas ammonium was removed in all FHRMs to below detection level, total nitrogen of 1.15 ± 0.4 g m(-2) d(-1) was removed completely only in P. australis systems. The mats with J. effusus displayed effective nitrification but incomplete denitrification as 77% of the removed ammonium-nitrogen accumulated as nitrate. Furthermore, the P. australis treatment units showed on average 3 times higher sulfate-S removal rates (1.1 ± 0.45 g m(-2) d(-1)) than the systems planted with J. effusus (0.37 ± 0.29 g m(-2) d(-1)). Since the influent organic carbon was below the stoichiometric requirement for the observed N and S transformation processes, helophytes' organic rhizodeposits apparently contributed to these transformations, while P. australis provided about 6 times higher bioavailable organic rhizodeposits than J. effusus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Hydrogen and nitrogen control in ladle and casting operations

    Energy Technology Data Exchange (ETDEWEB)

    Fruehan, R. J. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Misra, Siddhartha [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2005-01-15

    In recent years there has been an increasing demand to reduce and control the amount of dissolved gases in steel. Hydrogen and nitrogen are two of the most important gases which when dissolved in liquid steel affect its properties significantly.

  20. Effect of Photochemical Transformation on Dissolved Organic Carbon Concentration and Bioavailability from Watersheds with Varying Landcover

    Science.gov (United States)

    Vermilyea, A.; Sanders, A.; Vazquez, E.

    2017-12-01

    The transformation of freshwater dissolved organic carbon (DOC) can have important implications for water quality, aquatic ecosystem health, and our climate. DOC is an important nutrient for heterotrophic microorganisms near the base of the aquatic food chain and the extent of conversion of DOC to CO2 is a critical piece of the global carbon cycle. Photochemical pathways have the potential to transform recalcitrant DOC into more labile forms that can then be converted to smaller DOC molecules and eventually be completely mineralized to CO2. This may lead to a DOC pool with different bioavailability depending on the structural composition of the original DOC pool and the mechanistic pathways undergone during transformation. This study aimed to measure the changes in DOC concentration and bioavailability due solely to photochemical processes in three watersheds of northern Vermont, USA that have varied land cover, land use (LCLU) attributes. Our hypothesis was that photochemical transformations will lead to (1) an overall loss of DOC due to mineralization to CO2 and (2) a relative increase in the bioavailable fraction of DOC. Additionally, the influence of LCLU and base flow versus storm flow on both mineralization rates and changes in DOC bioavailability was investigated. Irradiation of filtered samples in quartz vessels under sunlight led to small changes in DOC concentration over time, but significant changes in DOC bioavailability. In general, fluorescence excitation-emission matrices (EEMs) showed a shift from an initially more humic-like DOC pool, to a more protein-like (bioavailable) DOC pool. Specific UV index (SUVA) along with bioavailable DOC (BDOC) incubations were also used to characterize DOC and its bioavailability. There were only small differences in the DOC transformation that took place among sites, possibly due to only small differences in the initial bioavailability and fluorescent properties between water samples. Photochemical transformation

  1. Isotopic composition of dissolved inorganic nitrogen in high mountain lakes: variation with altitude in the Pyrenees

    Science.gov (United States)

    Bartrons, M.; Camarero, L.; Catalan, J.

    2010-05-01

    Nitrogen deposition in remote areas has increased, but the effect on ecosystems is still poorly understood. For aquatic systems, knowledge of the main processes driving the observed variation is limited, as is knowledge of how changes in nitrogen supply affect lake biogeochemical and food web processes. Differences in dissolved inorganic nitrogen (DIN) between lakes cannot be understood without considering catchment characteristics. In mountains, catchment features (e.g., thermal conditions, land cover) vary considerably with elevation. The isotopic composition of nitrogen (δ15N) is increasingly used to study aquatic ecosystem dynamics. Here we explore the variability of δ15N in DIN in high mountain lakes and show that environmental conditions that change with altitude can affect the isotopic ratio. We measured ammonium and nitrate δ15N values in atmospheric deposition, epilimnetic water, deep chlorophyll maximum water (DCMW) and sediment pore water (SPW) from eight mountain lakes in the Pyrenees, both above and below the treeline. Lakes showed relatively uniform δ15N-NH4+ values in SPW (2.2±1.6‰), with no variation corresponding to catchment or lake characteristics. We suggest that organic matter diagenesis under similar sediment conditions is responsible for the low variation between the lakes. In the water column, the range of δ15N values was larger for ammonium (-9.4‰ to 7.4‰) than for nitrate (-11.4‰ to -3.4‰), as a result of higher variation both between and within lakes (epilimnetic vs. DCM water). For both compounds part of the difference correlated with altitude or catchment features (e.g., scree proportion). Based on concentration, chemical and isotopic tendencies, we suggest that patterns arise from the distinct relative contributions of two types of water flow paths to the lakes: one from snowpack melting, with little soil interaction; and another highly influenced by soil conditions. The snow-type flow path contributes low DIN

  2. Inputs and internal cycling of nitrogen to a causeway influenced, hypersaline lake, Great Salt Lake, Utah, USA

    Science.gov (United States)

    Naftz, David L.

    2017-01-01

    Nitrogen inputs to Great Salt Lake (GSL), located in the western USA, were quantified relative to the resident nitrogen mass in order to better determine numeric nutrient criteria that may be considered at some point in the future. Total dissolved nitrogen inputs from four surface-water sources entering GSL were modeled during the 5-year study period (2010–2014) and ranged from 1.90 × 106 to 5.56 × 106 kg/year. The railroad causeway breach was a significant conduit for the export of dissolved nitrogen from Gilbert to Gunnison Bay, and in 2011 and 2012, net losses of total nitrogen mass from Gilbert Bay via the Causeway breach were 9.59 × 105 and 1.51 × 106 kg. Atmospheric deposition (wet + dry) was a significant source of nitrogen to Gilbert Bay, exceeding the dissolved nitrogen load contributed via the Farmington Bay causeway surface-water input by >100,000 kg during 2 years of the study. Closure of two railroad causeway culverts in 2012 and 2013 likely initiated a decreasing trend in the volume of the higher density Deep Brine Layer and associated declines in total dissolved nitrogen mass contained in this layer. The large dissolved nitrogen pool in Gilbert Bay relative to the amount of nitrogen contributed by surface-water inflow sources is consistent with the terminal nature of GSL and the predominance of internal nutrient cycling. The opening of the new railroad causeway breach in 2016 will likely facilitate more efficient bidirectional flow between Gilbert and Gunnison Bays, resulting in potentially substantial changes in nutrient pools within GSL.

  3. Short-term dynamics of North Sea bacterioplankton-dissolved organic matter coherence on molecular level

    Directory of Open Access Journals (Sweden)

    Judith eLucas

    2016-03-01

    Full Text Available Remineralisation and transformation of dissolved organic matter (DOM by marine microbes shape the DOM composition and thus, have large impact on global carbon and nutrient cycling. However, information on bacterioplankton-DOM interactions on a molecular level is limited. We examined the variation of bacterial community composition at Helgoland Roads (North Sea in relation to variation of molecular DOM composition and various environmental parameters on short-time scales. Surface water samples were taken daily over a period of twenty days. Bacterial community and molecular DOM composition were assessed via 16S rRNA gene tag sequencing and ultrahigh resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS, respectively. Environmental conditions were driven by a coastal water influx during the first half of the sampling period and the onset of a summer phytoplankton bloom towards the end of the sampling period. These phenomena led to a distinct grouping of bacterial communities and DOM composition which was particularly influenced by total dissolved nitrogen concentration, temperature and salinity, as revealed by distance-based linear regression analyses. Bacterioplankton-DOM interaction was demonstrated in strong correlations between specific bacterial taxa and particular DOM molecules, thus, suggesting potential specialization on particular substrates. We propose that a combination of high resolution techniques, as used in this study, may provide substantial information on substrate generalists and specialists and thus, contribute to prediction of bacterial community composition variation.

  4. Export and retention of dissolved inorganic nutrients in the Cachoeira River, Ilhéus, Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Maria A.M. SILVA

    2010-02-01

    Full Text Available Dissolved inorganic nutrient concentrations and physical-chemical variables were determined in the lower reaches of the Cachoeira River watershed, from November 2003 to October 2004. Concentration of nutrients were high and highly variable. Mean concentrations and standard deviation of ammonium, nitrite, nitrate, phosphate and silicate were 25.4 ± 25.1; 3.9 ± 3.9; 62.2 ± 54.9; 15.8 ± 9.0 and 129.0 ± 5.6 (μmol L-1, respectively. Nutrient retention was observed mainly during the dry season. Chlorophyll-a concentrations were especially high in those periods. The Cachoeira River can be considered eutrophicated, and such condition becomes more intense with low fluvial flow during the dry months. Despite the spatial/temporal changes of the species of inorganic nitrogen, a removal of dissolved inorganic nitrogen was observed in relation to dissolved silicon and to phosphorus, with consequences for estuarine biogeochemistry. The basin exports annually about 3.5, 2.2 and 0.3 t y-1 of dissolved silicon, nitrogen, and phosphate to the estuary, respectively. The eutrophication and growth of macrophytes is responsible for most of these changes in nutrient fluxes to the estuary and coastal waters.

  5. Sliding mode control of dissolved oxygen in an integrated nitrogen removal process in a sequencing batch reactor (SBR).

    Science.gov (United States)

    Muñoz, C; Young, H; Antileo, C; Bornhardt, C

    2009-01-01

    This paper presents a sliding mode controller (SMC) for dissolved oxygen (DO) in an integrated nitrogen removal process carried out in a suspended biomass sequencing batch reactor (SBR). The SMC performance was compared against an auto-tuning PI controller with parameters adjusted at the beginning of the batch cycle. A method for cancelling the slow DO sensor dynamics was implemented by using a first order model of the sensor. Tests in a lab-scale reactor showed that the SMC offers a better disturbance rejection capability than the auto-tuning PI controller, furthermore providing reasonable performance in a wide range of operation. Thus, SMC becomes an effective robust nonlinear tool to the DO control in this process, being also simple from a computational point of view, allowing its implementation in devices such as industrial programmable logic controllers (PLCs).

  6. Water, Rather than Temperature, Dominantly Impacts How Soil Fauna Affect Dissolved Carbon and Nitrogen Release from Fresh Litter during Early Litter Decomposition

    Directory of Open Access Journals (Sweden)

    Shu Liao

    2016-10-01

    Full Text Available Longstanding observations suggest that dissolved materials are lost from fresh litter through leaching, but the role of soil fauna in controlling this process has been poorly documented. In this study, a litterbag experiment employing litterbags with different mesh sizes (3 mm to permit soil fauna access and 0.04 mm to exclude fauna access was conducted in three habitats (arid valley, ecotone and subalpine forest with changes in climate and vegetation types to evaluate the effects of soil fauna on the concentrations of dissolved organic carbon (DOC and total dissolved nitrogen (TDN during the first year of decomposition. The results showed that the individual density and community abundance of soil fauna greatly varied among these habitats, but Prostigmata, Isotomidae and Oribatida were the dominant soil invertebrates. At the end of the experiment, the mass remaining of foliar litter ranged from 58% for shrub litter to 77% for birch litter, and the DOC and TDN concentrations decreased to 54%–85% and increased to 34%–269%, respectively, when soil fauna were not present. The effects of soil fauna on the concentrations of both DOC and TDN in foliar litter were greater in the subalpine forest (wetter but colder during the winter and in the arid valley (warmer but drier during the growing season, and this effect was positively correlated with water content. Moreover, the effects of fauna on DOC and TDN concentrations were greater for high-quality litter and were related to the C/N ratio. These results suggest that water, rather than temperature, dominates how fauna affect the release of dissolved substances from fresh litter.

  7. Nitrogen Removal in Greywater Living Walls: Insights into the Governing Mechanisms

    Directory of Open Access Journals (Sweden)

    Harsha S. Fowdar

    2018-04-01

    Full Text Available Nitrogen is a pollutant of great concern when present in excess in surface waters. Living wall biofiltration systems that employ ornamentals and climbing plants are an emerging green technology that has recently demonstrated significant potential to reduce nitrogen concentrations from greywater before outdoor domestic re-use. However, there still exists a paucity of knowledge around the mechanisms governing this removal, particularly in regards to the fate of dissolved organic nitrogen (DON within these systems. Understanding the fate of nitrogen in living wall treatment systems is imperative both to optimise designs and to predict the long-term viability of these systems, more so given the growing interest in adopting green infrastructure within urban cities. A laboratory study was undertaken to investigate the transformation and fate of nitrogen in biofilters planted with different climbing plants and ornamental species. An isotropic tracer (15N-urea was applied to quantify the amount removed through coupled nitrification-denitrification. The results found that nitrification-denitrification formed a minor removal pathway in planted systems, comprising only 0–15% of added 15N. DON and ammonium were effectively reduced by all biofilter designs, indicating effective mineralisation and nitrification rates. However, in designs with poor nitrogen removal, the effluent was enriched with nitrate, suggesting limited denitrification rates. Given the likely dominance of plant assimilation in removal, this indicates that plant selection is a critical design parameter, as is maintaining healthy plant growth for optimal nitrogen removal in greywater living wall biofilters in their early years of operation.

  8. The Role of Water Movement and Spatial Scaling for Measurement of Dissolved Inorganic Nitrogen Fluxes in Intertidal Sediments

    Science.gov (United States)

    Asmus, R. M.; Jensen, M. H.; Jensen, K. M.; Kristensen, E.; Asmus, H.; Wille, A.

    1998-02-01

    Fluxes of dissolved inorganic nitrogen (ammonium and nitrate) across the sediment-water interface were determined at intertidal locations in Königshafen, northern Wadden Sea, North Sea. Three different incubation techniques were compared: closed sediment cores (small scale), closed bell jars (medium scale) and an open flow system (Sylt flume, large scale). Water movement in the two closed systems was maintained below the resuspension limit by spinning magnets (cores, incubated in the laboratory) or by transfer of wave action through flexible plastic foil (bell jars,in situ), whereas in the flume system (in situ) water movement was unidirectional, driven by currents and waves. Data sets from several years of core measurements (1992-94), bell jar measurements (1980) and flume campaigns (1990-93) served as the basis for a comparison of dissolved inorganic nitrogen fluxes. Fluxes of ammonium and nitrate were within the same order of magnitude in closed cores and bell jars, while flume rates of ammonium were considerably higher. The high flume rates were caused by advective flushing due to tidal water movement and wave action. The release of ammonium increased significantly with current velocity between 1 and 13 cm s-1. Fluxes of ammonium were higher in sediments withArenicola marinacompared to those without this bioturbating species. The influence of benthic microalgae was evident only in the small and medium scale core and bell jar systems as reduced ammonium release during light exposure. Nitrate was consumed by sediments in both closed systems at a rate proportional to the nitrate concentration in the overlying water. Nitrate fluxes in the large scale Sylt flume were low with an average of only 7% of the ammonium fluxes, probably due to low concentrations in tidal waters during measurements (summer). Both closed, small scale or open, large scale techniques can be applied successfully for benthic flux studies, but the actual choice depends on the purpose of the

  9. Isotopic composition of dissolved inorganic nitrogen in high mountain lakes: variation with altitude in the Pyrenees

    Directory of Open Access Journals (Sweden)

    M. Bartrons

    2010-05-01

    Full Text Available Nitrogen deposition in remote areas has increased, but the effect on ecosystems is still poorly understood. For aquatic systems, knowledge of the main processes driving the observed variation is limited, as is knowledge of how changes in nitrogen supply affect lake biogeochemical and food web processes. Differences in dissolved inorganic nitrogen (DIN between lakes cannot be understood without considering catchment characteristics. In mountains, catchment features (e.g., thermal conditions, land cover vary considerably with elevation. The isotopic composition of nitrogen15N is increasingly used to study aquatic ecosystem dynamics. Here we explore the variability of δ15N in DIN in high mountain lakes and show that environmental conditions that change with altitude can affect the isotopic ratio.

    We measured ammonium and nitrate δ15N values in atmospheric deposition, epilimnetic water, deep chlorophyll maximum water (DCMW and sediment pore water (SPW from eight mountain lakes in the Pyrenees, both above and below the treeline. Lakes showed relatively uniform δ15N-NH4+ values in SPW (2.2±1.6‰, with no variation corresponding to catchment or lake characteristics. We suggest that organic matter diagenesis under similar sediment conditions is responsible for the low variation between the lakes.

    In the water column, the range of δ15N values was larger for ammonium (−9.4‰ to 7.4‰ than for nitrate (−11.4‰ to −3.4‰, as a result of higher variation both between and within lakes (epilimnetic vs. DCM water. For both compounds part of the difference correlated with altitude or catchment features (e.g., scree proportion. Based on concentration, chemical and isotopic tendencies, we suggest that patterns arise from the distinct relative contributions of two types of water flow paths to the lakes: one from snowpack melting, with little soil

  10. Agrobacterium rhizogenes transformed soybean roots differ in their nodulation and nitrogen fixation response to genistein and salt stress.

    Science.gov (United States)

    Dolatabadian, Aria; Modarres Sanavy, Seyed Ali Mohammad; Ghanati, Faezeh; Gresshoff, Peter M

    2013-07-01

    We evaluated response differences of normal and transformed (so-called 'hairy') roots of soybean (Glycine max L. (Merr.), cv L17) to the Nod-factor inducing isoflavone genistein and salinity by quantifying growth, nodulation, nitrogen fixation and biochemical changes. Composite soybean plants were generated using Agrobacterium rhizogenes-mediated transformation of non-nodulating mutant nod139 (GmNFR5α minus) with complementing A. rhizogenes K599 carrying the wild-type GmNFR5α gene under control of the constitutive CaMV 35S promoter. We used genetic complementation for nodulation ability as only nodulated roots were scored. After hairy root emergence, primary roots were removed and composite plants were inoculated with Bradyrhizobium japonicum (strain CB1809) pre-induced with 10 μM genistein and watered with NaCl (0, 25, 50 and 100 mM). There were significant differences between hairy roots and natural roots in their responses to salt stress and genistein application. In addition, there were noticeable nodulation and nitrogen fixation differences. Composite plants had better growth, more root volume and chlorophyll as well as more nodules and higher nitrogenase activity (acetylene reduction) compared with natural roots. Decreased lipid peroxidation, proline accumulation and catalase/peroxidase activities were found in 'hairy' roots under salinity stress. Genistein significantly increased nodulation and nitrogen fixation and improved roots and shoot growth. Although genistein alleviated lipid peroxidation under salinity stress, it had no significant effect on the activity of antioxidant enzymes. In general, composite plants were more competitive in growth, nodulation and nitrogen fixation than normal non-transgenic even under salinity stress conditions.

  11. Transformation and Deposition of Sulphur and Nitrogen Compounds in the Marine Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, O

    1995-10-01

    In this thesis the author performs a model study of the transformation and deposition of sulphur and nitrogen compounds in the marine boundary layer, including source-receptor relationships. The central part of the study is the development and testing of a variable scale trajectory model for Europe, with special emphasis on modelling the concentrations of gases and aerosols in the marine atmosphere and the deposition to sea. A one-dimensional version of the model was developed to model the chemical degradation of dimethyl sulphide (DMS) in the marine boundary layer. Although the model reproduces the observed levels of DMS and methane sulphonic acid (MSA) well, the calculated DMS concentration is not always in phase with observed levels, probably because of a local coastal emission that is correlated with the shifting tide. Another version of the trajectory model, Atmospheric Chemistry and Deposition model (ACDEP), was developed to study the deposition of nitrogen compounds to the Danish sea waters. This model uses a new numerical scheme, the Eulerian Backward Iterative method. The model is able to reproduce observations of air concentrations and wet deposition fairly well; data for dry deposition were not available. The model was also used for calculation of deposition of nitrogen compounds to the Kattegat. Finally, a sensitivity study was performed on the model. 175 refs., 87 figs., 32 tabs.

  12. Microbial Nitrogen Transformations in the Oxygen Minimum Zone off Peru, 01 February 1985 to 05 March 1985 (NODC Accession 9200026)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NITROP - 85 was the major field of experiment of an N.S.F. funded program entitled "Microbial Nitrogen Transformations in the Oxygen Minimum Zone off Peru". this...

  13. Transformations and Fates of Terrigenous Dissolved Organic Matter in River-influenced Ocean Margins

    Science.gov (United States)

    Fichot, Cedric G.

    Rivers contribute about 0.25 Pg of terrigenous dissolved organic carbon (tDOC) to the ocean each year. The fate and transformations of this material have important ramifications for the metabolic state of the ocean, air-sea CO2 exchange, and the global carbon cycle. Stable isotopic compositions and terrestrial biomarkers suggest tDOC must be efficiently mineralized in ocean margins. Nonetheless, the extent of tDOC mineralization in these environments remains unknown, as no quantitative estimate is available. The complex interplay of biogeochemical and physical processes in these systems compounded by the limited practicality of chemical proxies (organic biomarkers, isotopic compositions) make the quantification of tDOC mineralization in these dynamic systems particularly challenging. In this dissertation, new optical proxies were developed (Chapters 1 and 2) and facilitated the first quantitative assessment of tDOC mineralization in a dynamic river-influenced ocean margin (Chapter 3) and the monitoring of continental runoff distributions in the coastal ocean using remote sensing (Chapter 4). The optical properties of chromophoric dissolved organic matter (CDOM) were used as optical proxies for dissolved organic carbon concentration ([DOC]) and %tDOC. In both proxies, the CDOM spectral slope coefficient ( S275-295) was exploited for its informative properties on the chemical nature and composition of dissolved organic matter. In the first proxy, a strong relationship between S275-295 and the ratio of CDOM absorption to [DOC] facilitated accurate retrieval (+/- 4%) of [DOC] from CDOM. In the second proxy, the existence of a strong relationship between S275-295 and the DOC-normalized lignin yield facilitated the estimation of the %tDOC from S 275-295. Using the proxies, the tDOC concentration can be retrieved solely from CDOM absorption coefficients (lambda = 275-295 nm) in river-influenced ocean margins. The practicality of optical proxies facilitated the calculation

  14. Production and degradation of fluorescent dissolved organic matter in surface waters of the eastern north Atlantic ocean

    NARCIS (Netherlands)

    Lønborg, C.; Yokokawa, T.; Herndl, G.J.; Alvarez-Salgado, X.A.

    2015-01-01

    The distribution and fate of coloured dissolved organic matter (CDOM) in the epipelagic Eastern North Atlantic was investigated during a cruise in the summer 2009 by combining field observations and culture experiments. Dissolved organic carbon (DOC) and nitrogen (DON), the absorption spectra of

  15. Effects of pH and H2O2 on ammonia, nitrite, and nitrate transformations during UV254nm irradiation: Implications to nitrogen removal and analysis.

    Science.gov (United States)

    Wang, Junli; Song, Mingrui; Chen, Baiyang; Wang, Lei; Zhu, Rongshu

    2017-10-01

    In order to achieve better removal and analyses of three dissolved inorganic nitrogen (DIN) species via ultraviolet-activated hydrogen peroxide (UV/H 2 O 2 ) process, this study systematically investigated the rates of photo-oxidations of ammonia/ammonium (NH 3 /NH 4 + ) and nitrite (NO 2 - ) as well as the photo-reduction of nitrate (NO 3 - ) at varying pH and H 2 O 2 conditions. The results showed that the mass balances of nitrogen were maintained along irradiation despite of interconversions of DIN species, suggesting that no nitrogen gas (N 2 ) or other nitrogen-containing compound was formed. NH 3 was more reactive than NH 4 + with hydroxyl radical (OH), and by a stepwise H 2 O 2 addition method NH 3 /NH 4 + can be completely converted to NO x - ; NO 2 - underwent rapid oxidation to form NO 3 - when H 2 O 2 was present, suggesting that it is an intermediate compound linking NH 3 /NH 4 + and NO 3 - ; but once H 2 O 2 was depleted, NO 3 - can be gradually photo-reduced back to NO 2 - at high pH conditions. Other than H 2 O 2 , the transformation kinetics of DINs were all dependent on pH, but to varying aspects and extents: the NH 3 photo-oxidation favored a pH of 10.3, which fell within the pK a values of NH 4 + (9.24) and H 2 O 2 (11.6); the NO 3 - photo-reduction increased with increasing pH provided that it exceeds the pK a of peroxynitrous acid (6.8); while the NO 2 - photo-oxidation remained stable unless the pH neared the pK a of H 2 O 2 (11.6). The study thereby demonstrates a picture of the evolutions of DIN species together during UV/H 2 O 2 irradiation process, and for the first time presents a method to achieve complete conversion of NH 4 + to NO 3 - with UV/H 2 O 2 process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Nitrogen dynamics model for a pilot field-scale novel dewatered alum sludge cake-based constructed wetland system.

    Science.gov (United States)

    Kumar, J L G; Zhao, Y Q; Hu, Y S; Babatunde, A O; Zhao, X H

    2015-01-01

    A model simulating the effluent nitrogen (N) concentration of treated animal farm wastewater in a pilot on-site constructed wetland (CW) system, using dewatered alum sludge cake (DASC) as wetland substrate, is presented. The N-model was developed based on the Structural Thinking Experiential Learning Laboratory with Animation software and is considering organic nitrogen, ammonia nitrogen (NH3) and nitrate nitrogen (NO3-N) as the major forms of nitrogen involved in the transformation chains. Ammonification (AMM), ammonia volatilization, nitrification (NIT), denitrification, plant uptake, plant decaying and uptake of inorganic nitrogen by algae and bacteria were considered in this model. pH, dissolved oxygen, temperature, precipitation, solar radiation and nitrogen concentrations were considered as forcing functions in the model. The model was calibrated by observed data with a reasonable agreement prior to its applications. The simulated effluent detritus nitrogen, NH4-N, NO3-N and TN had a considerably good agreement with the observed results. The mass balance analysis shows that NIT accounts for 65.60%, adsorption (ad) (11.90%), AMM (8.90%) followed by NH4-N (Plants) (5.90%) and NO3-N (Plants) (4.40%). The TN removal was found 52% of the total influent TN in the CW. This study suggested an improved overall performance of a DASC-based CW and efficient N removal from wastewater.

  17. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    Science.gov (United States)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  18. Relationships between Molecular Composition and Optical Properties of Dissolved Organic Matter

    Science.gov (United States)

    Cooper, W. T.; Tfaily, M.; Osborne, D.; Paul, A.; Podgorski, D. C.; Corbett, J.; Chanton, J.

    2009-12-01

    Our focus is on the relationships between the optical properties of dissolved organic matter (DOM) and its molecular composition. For example, we demonstrated that changes in the absorption and fluorescence characteristics of DOM in outwelling from Brazilian mangrove forests correlated with decreases in highly unsaturated organic compounds as DOM was transported from mangrove porewaters to the continental shelf. In that work we combined ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) that provided detailed compositional information with absorption and Excitation/Emission Matrix (EEM) spectroscopy This presentation will highlight new results utilizing the combination of optical spectroscopy and FT-ICR mass spectrometry to illuminate the processes which control DOM cycling. Our focus will be on the contributions of the heteroatom components of DOM (i.e. organic sulfur and organic nitrogen) to its optical properties and how changes in optical properties correlate with important environmental processes like humification and bioavailability. Figure 1 below includes a narrow 0.20 Dalton window from a mass spectrum which demonstrates the ability of ultrahigh resolution mass spectrometry to resolve and identify nitrogen heteroatom compounds in DOM. Our study sites include the Glacial Lake Agassiz Peatlands (GLAP) in northern Minnesota and wetlands in the Caloosahatchee River basin in South Florida. Figure 1. Isolated 0.20 Da window of an ESI-FT-ICR mass spectrum of DOM from a GLAP bog. Labels identify N1 (d,e,f) and N3 classes of nitrogen heteroatoms. The 0.0031 Da mass spacing is used to confirm the N3 class.

  19. Dissolved nutrient exports from natural and human-impacted Neotropical catchments

    DEFF Research Database (Denmark)

    Gücker, Björn; Silva, Ricky C. S.; Graeber, Daniel

    2016-01-01

    Aim Neotropical biomes are highly threatened by land-use changes, but the catchment-wide biogeochemical effects are poorly understood. Here, we aim to compare exports of dissolved nitrogen (N) and phosphorus (P) from natural and human-impacted catchments in the Neotropics. Location Neotropics. Me...

  20. Storage effects on quantity and composition of dissolved organic carbon and nitrogen of lake water, leaf leachate and peat soil water.

    Science.gov (United States)

    Heinz, Marlen; Zak, Dominik

    2018-03-01

    This study aimed to evaluate the effects of freezing and cold storage at 4 °C on bulk dissolved organic carbon (DOC) and nitrogen (DON) concentration and SEC fractions determined with size exclusion chromatography (SEC), as well as on spectral properties of dissolved organic matter (DOM) analyzed with fluorescence spectroscopy. In order to account for differences in DOM composition and source we analyzed storage effects for three different sample types, including a lake water sample representing freshwater DOM, a leaf litter leachate of Phragmites australis representing a terrestrial, 'fresh' DOM source and peatland porewater samples. According to our findings one week of cold storage can bias DOC and DON determination. Overall, the determination of DOC and DON concentration with SEC analysis for all three sample types were little susceptible to alterations due to freezing. The findings derived for the sampling locations investigated here may not apply for other sampling locations and/or sample types. However, DOC size fractions and DON concentration of formerly frozen samples should be interpreted with caution when sample concentrations are high. Alteration of some optical properties (HIX and SUVA 254 ) due to freezing were evident, and therefore we recommend immediate analysis of samples for spectral analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Dissolved organic carbon biodegradability from thawing permafrost stimulated by sunlight rather than inorganic nitrogen

    Science.gov (United States)

    Liu, F.; Chen, L.; Zhang, B.; Wang, G.; Qin, S.; Yang, Y.

    2017-12-01

    Permafrost thaw could result in a large portion of frozen carbon being laterally transferred to aquatic ecosystems as dissolved organic carbon (DOC). During this delivery process, the size of biodegradable DOC (BDOC) determines the proportion of DOC mineralized by microorganisms and associated carbon loss to the atmosphere, which may further trigger positive carbon-climate feedback. Thermokarst is an abrupt permafrost thaw process that can enhance DOC export and also impact DOC processing through increased inorganic nitrogen (N) and sunlight exposure. However, it remains unclear how thermokarst-impacted BDOC responds to inorganic N addition and ultraviolet (UV) light irradiation. Here we explored the responses of DOC concentration, composition and its biodegradability to inorganic N and UV light in a typical thermokarst on the Tibetan Plateau, by combining field observation and laboratory incubation with spectra analyses (UV-visible absorption and three-dimensional fluorescence spectra) and parallel factor analyses. Our results showed that BDOC in thermokarst feature outflows was significantly higher than in reference water. Furthermore, inorganic N addition had no influence on thermokarst-impacted BDOC, whereas exposure to UV light significantly increased BDOC by as much as 2.3 times higher than the dark-control. Moreover, N addition and UV irradiation did not generate additive effects on BDOC. These results imply that sunlight rather than inorganic N can increase thermokarst-derived BDOC, potentially strengthening the positive permafrost carbon-climate feedback.

  2. Impacts of aeration management and polylactic acid addition on dissolved organic matter characteristics in intensified aquaponic systems.

    Science.gov (United States)

    Wu, Haiming; Zou, Yina; Lv, Jialong; Hu, Zhen

    2018-08-01

    Aquaponics as a potential alternative for conventional aquaculture industry has increasingly attracted worldwide attention in recent years. However, the sustainable application of aquaponics is facing a growing challenge. In particular, there is a pressing need to better understand and control the accumulation of dissolved organic matter (DOM) in aquaponics with the aim of optimizing nitrogen utilization efficiency. This study was aiming for assessing the characteristics of DOM in the culture water and the relationship with the nitrogen transformations in different intensified aquaponic systems with hydroponic aeration supplement and polylactic acid (PLA) addition. Two enhancing attempts altered the quantity of DOM in aquaponic systems significantly with a varying DOM content of 21.98-45.65 mg/L. The DOM could be represented by four identified fluorescence components including three humic -like materials (83-86%) and one tryptophan-like substance (14-17%). The fluorescence intensities of humic acid-like components were decreased significantly after the application of intensifying strategies, which indicating that two enhancing attempts possibly affected humic acid-like fluorescence. Variation of optical indices also suggested the reductions of water DOM which could be impacted by the enhancing nitrogen treatment processes. These findings will benefit the potential applications and sustainable operation of these strategies in aquaponics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Characterizing Dissolved Gases in Cryogenic Liquid Fuels

    Science.gov (United States)

    Richardson, Ian A.

    Pressure-Density-Temperature-Composition (PrhoT-x) measurements of cryogenic fuel mixtures are a historical challenge due to the difficulties of maintaining cryogenic temperatures and precision isolation of a mixture sample. For decades NASA has used helium to pressurize liquid hydrogen propellant tanks to maintain tank pressure and reduce boil off. This process causes helium gas to dissolve into liquid hydrogen creating a cryogenic mixture with thermodynamic properties that vary from pure liquid hydrogen. This can lead to inefficiencies in fuel storage and instabilities in fluid flow. As NASA plans for longer missions to Mars and beyond, small inefficiencies such as dissolved helium in liquid propellant become significant. Traditional NASA models are unable to account for dissolved helium due to a lack of fundamental property measurements necessary for the development of a mixture Equation Of State (EOS). The first PrhoT-x measurements of helium-hydrogen mixtures using a retrofitted single-sinker densimeter, magnetic suspension microbalance, and calibrated gas chromatograph are presented in this research. These measurements were used to develop the first multi-phase EOS for helium-hydrogen mixtures which was implemented into NASA's Generalized Fluid System Simulation Program (GFSSP) to determine the significance of mixture non-idealities. It was revealed that having dissolved helium in the propellant does not have a significant effect on the tank pressurization rate but does affect the rate at which the propellant temperature rises. PrhoT-x measurements are conducted on methane-ethane mixtures with dissolved nitrogen gas to simulate the conditions of the hydrocarbon seas of Saturn's moon Titan. Titan is the only known celestial body in the solar system besides Earth with stable liquid seas accessible on the surface. The PrhoT-x measurements are used to develop solubility models to aid in the design of the Titan Submarine. NASA is currently designing the submarine

  4. Nitrogen waste from rainbow trout (Oncorhynchus mykiss) with particular focus on urea

    DEFF Research Database (Denmark)

    Dalsgaard, Anne Johanne Tang; Larsen, Bodil Katrine; Pedersen, Per Bovbjerg

    2015-01-01

    a laboratory, mass-balance approach, the current study examined the effects of commercially applied feeding levels on the loading of different N waste forms, including daily fluctuations in dissolved total nitrogen (TN), total ammonia nitrogen (TAN), urea-N, and non-characterized, dissolved N deriving from...... juvenile rainbow trout (Oncorhynchus mykiss). In addition, the study examined whether there was a removal of urea-N across a moving bed biofilter operated as end-of-pipe under commercial conditions. The laboratory, mass-balance study showed that there were no effects of feeding levels (1.3, 1.5 or 1....../nitrogen. Results from the commercially operated, nitrifying biofilter showed that urea-N was removed at a rate of 0.014 g N m2 day−1. Compared to the removal of TAN (0.208 g N m2 day−1), the moving bed biofilter was 1.07 times more active in removing dissolved N than immediately expected when only considering TAN...

  5. Simulation of dissolved nutrient export from the Dongjiang river basin with a grid-based NEWS model

    Science.gov (United States)

    Rong, Qiangqiang; Su, Meirong; Yang, Zhifeng; Cai, Yanpeng; Yue, Wencong; Dang, Zhi

    2018-06-01

    In this research, a grid-based NEWS model was proposed through coupling the geographic information system (GIS) with the Global NEWS model framework. The model was then applied to the Dongjiang River basin to simulate the dissolved nutrient export from this area. The model results showed that the total amounts of the dissolved nitrogen and phosphorus exported from the Dongjiang River basin were approximately 27154.87 and 1389.33 t, respectively. 90 % of the two loads were inorganic forms (i.e. dissolved inorganic nitrogen and phosphorus, DIN and DIP). Also, the nutrient export loads did not evenly distributed in the basin. The main stream watershed of the Dongjiang River basin has the largest DIN and DIP export loads, while the largest dissolved organic nitrogen and phosphorus (DON and DOP) loads were observed in the middle and upper stream watersheds of the basin, respectively. As for the nutrient exported from each subbasin, different sources had different influences on the output of each nutrient form. For the DIN load in each subbasin, fertilization application, atmospheric deposition and biological fixation were the three main contributors, while eluviation was the most important source for DON. In terms of DIP load, fertilizer application and breeding wastewater were the main contributors, while eluviation and fertilizer application were the two main sources for DOP.

  6. Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases

    Science.gov (United States)

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%–30.91%, 83.29%–90.51%, and 61.54–68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff. PMID:23935444

  7. Characterization of urban runoff pollution between dissolved and particulate phases.

    Science.gov (United States)

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%-30.91%, 83.29%-90.51%, and 61.54-68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff.

  8. Nitrogen transformation of reclaimed wastewater in a pipeline by oxygen injection.

    Science.gov (United States)

    Rodríguez-Gómez, L E; Alvarez, M; Rodríguez-Sevilla, J; Marrero, M C; Hernández, A

    2009-06-01

    A study of oxygen injection was performed in a completely filled gravity pipe, which is part of the South Tenerife reclaimed wastewater reuse scheme (Spain), in order to inhibit the appearance of anaerobic conditions by a nitrification-denitrification process. The pipe was 0.6 m in diameter and 62 km long and made of cast iron with a concrete inner coating, A high-pressure oxygen injection system was installed at 16 km from the pipe inlet, where severe anaerobic conditions appear. Experiments on oxygen injection were carried out with three different concentrations (7, 15 and 30 mg l(-1) O2). In all experiments, oxygen dissolved properly after injection, and no gas escapes were detected during water transportation. Most oxygen was consumed in the nitrification process, due to the low COD/NH4-N ratio, leading to a maximum production of oxidized nitrogen compounds of 7.5 mg l(-1) NO(x)-N with the 30 mg l(-1) O2 dose. Nitrification occured with nitrite accumulation, attributed to the presence of free ammonia within the range 1.2-1.4 mg l(-). Once the oxygen had been consumed, an apparent half-order denitrification took place, with limitation of biodegradable organic matter. The anoxic conditions led to a complete inhibition of sulphide generation.

  9. Inside Story of Gas Processes within Stormwater Biofilters: Does Greenhouse Gas Production Tarnish the Benefits of Nitrogen Removal?

    Science.gov (United States)

    Payne, Emily G I; Pham, Tracey; Cook, Perran L M; Deletic, Ana; Hatt, Belinda E; Fletcher, Tim D

    2017-04-04

    Stormwater biofilters are dynamic environments, supporting diverse processes that act to capture and transform incoming pollutants. However, beneficial water treatment processes can be accompanied by undesirable greenhouse gas production. This study investigated the potential for nitrous oxide (N 2 O) and methane (CH 4 ) generation in dissolved form at the base of laboratory-scale stormwater biofilter columns. The influence of plant presence, species, inflow frequency, and inclusion of a saturated zone and carbon source were studied. Free-draining biofilters remained aerobic with negligible greenhouse gas production during storm events. Designs with a saturated zone were oxygenated at their base by incoming stormwater before anaerobic conditions rapidly re-established, although extended dry periods allowed the reintroduction of oxygen by evapotranspiration. Production of CH 4 and N 2 O in the saturated zone varied significantly in response to plant presence, species, and wetting and drying. Concentrations of N 2 O typically peaked rapidly following stormwater inundation, associated with limited plant root systems and poorer nitrogen removal from biofilter effluent. Production of CH 4 also commenced quickly but continued throughout the anaerobic interevent period and lacked clear relationships with plant characteristics or nitrogen removal performance. Dissolved greenhouse gas concentrations were highly variable, but peak concentrations of N 2 O accounted for nitrogen load. While further work is required to measure surface emissions, the potential for substantial release of N 2 O or CH 4 in biofilter effluent appears relatively low.

  10. Photochemical Reactivity of Dissolved Organic Matter in Boreal Lakes

    Science.gov (United States)

    Gu, Y.; Vuorio, K.; Tiirola, M.; Perämäki, S.; Vahatalo, A.

    2016-12-01

    Boreal lakes are rich in dissolved organic matter (DOM) that terrestrially derived from forest soil and wetland, yet little is known about potential for photochemical transformation of aquatic DOM in boreal lakes. Transformation of chromophoric dissolved organic matter (CDOM) can decrease water color and enhance microbial mineralization, affecting primary production and respiration, which both affect the CO2 balance of the lakes. We used laboratory solar radiation exposure experiments with lake water samples collected from 54 lakes located in Finland and Sweden, representing different catchment composition and watershed location to assess photochemical reactivity of DOM. The pH of water samples ranged from 5.4 to 8.3, and the concentrations of dissolved iron (Fe) were between samples received simulated solar radiation corresponding to a daily dose of sunlight, and photomineralization of dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC) was measured for determination of spectral apparent quantum yields (AQY). During irradiation, photobleaching decreased the absorption coefficients of CDOM at 330 nm between 4.9 and 79 m-1 by 0.5 to 11 m-1. Irradiation generated DIC from 2.8 to 79 μmol C L-1. The AQY at 330 nm ranged between 31 and 273 ×10-6 mol C mol photons-1 h-1, which was correlated positively with concentration of dissolved Fe, and negatively with pH. Further statistical analyze indicated that the interaction between pH and Fe may explain much of the photochemical reactivity of DOM in the examined lakes, and land cover concerns main catchment areas also can have impact on the photoreaction process. This study may suggest how environmental conditions regulate DOM photomineralization in boreal lakes.

  11. [Effects of two submerged macrophytes on dissolved inorganic nitrogen in overlying water and interstitial water].

    Science.gov (United States)

    Yang, Wen-Bin; Li, Yang; Sun, Gong-Xian

    2014-06-01

    Ceratophyllum demersum (C. demersum) and Vallisneria spiralis L. (V. spiralis L.) were studied as model submerged macrophytes. The effects of the submerged macrophytes on the forms and concentration of the dissolved inorganic nitrogen (DIN) in the overlying water and the interstitial water, as well as the diffusion flux of DIN in the water-sediment interface were investigated by batch simulation experiment. The results indicated that the removal effect of DIN in the overlying water was better than that in the interstitial water by submerged macrophytes. The removal efficiency of DIN in the overlying water and the interstitial water followed the order of NO2(-) -N > NH4(+) -N > NO3(-) -N. The removal rate of DIN by C. demersum was higher than that of V. spiralis L. in the overlying water, while the result was converse in the interstitial water. C. demersum and V. spiralis L. decreased the diffusion flux of NH4(+) -N and NO2(-) -N, and increased the diffusion flux of NO3(-) -N significantly. Consequently, NO3(-) -N replaced NH4(+) -N and became the main form of DIN, which diffused from the interstitial water to the overlying water. The impact of the diffusion flux of NO3(-) -N between C. demersum and V. spiralis L. showed no significant difference, and the result was the same for NH4(+) -N. C. demersum and V. spiralis L. increased the width of variation of the three nitrogen forms to total DIN in the overlying water and the interstitial water, the influence on the ratio of DIN by C. demersum was greater than that of V. spiralis L. in the overlying water, while the result was opposite in the interstitial water. In general, C. demersum had more influence in the overlying water, while V. spiralis L. had more influence in the interstitial water, and the influence of DIN diffusion flux was not significant.

  12. Nitrogen Chemistry and Coke Transformation of FCC Coked Catalyst during the Regeneration Process

    Science.gov (United States)

    Shi, Junjun; Guan, Jianyu; Guo, Dawei; Zhang, Jiushun; France, Liam John; Wang, Lefu; Li, Xuehui

    2016-06-01

    Regeneration of the coked catalyst is an important process of fluid catalytic cracking (FCC) in petroleum refining, however, this process will emit environmentally harmful gases such as nitrogen and carbon oxides. Transformation of N and C containing compounds in industrial FCC coke under thermal decomposition was investigated via TPD and TPO to examine the evolved gaseous species and TGA, NMR and XPS to analyse the residual coke fraction. Two distinct regions of gas evolution are observed during TPD for the first time, and they arise from decomposition of aliphatic carbons and aromatic carbons. Three types of N species, pyrrolic N, pyridinic N and quaternary N are identified in the FCC coke, the former one is unstable and tends to be decomposed into pyridinic and quaternary N. Mechanisms of NO, CO and CO2 evolution during TPD are proposed and lattice oxygen is suggested to be an important oxygen resource. Regeneration process indicates that coke-C tends to preferentially oxidise compared with coke-N. Hence, new technology for promoting nitrogen-containing compounds conversion will benefit the in-situ reduction of NO by CO during FCC regeneration.

  13. Influence of Channel Geomorphology on Retention of Dissolved and Particulate Matter in a Cascade Mountain Stream

    Science.gov (United States)

    Gary A. Lamberti; Stan V. Gregory; Linda R. Ashkenas; Randall C. Wildman; Alan G. Steinman

    1989-01-01

    Retention of particulate and dissolved nutrients in streams is a major determinant of food avail-ability to stream biota. Retention of particulate matter (leaves) and dissolved nutrients (nitrogen) was studied experimentally during summer 1987 in four 300-500 m reaches of Lookout Creek, a fifth-order stream in the Cascade Mountains of Oregon. Constrained (narrow valley...

  14. Nitrogenous air pollutants: Chemical and biological implications

    International Nuclear Information System (INIS)

    Grosjean, D.

    1979-01-01

    Theoretical and experimental studies on the health effects and chemistry of gaseous and particulate nitrogenous air pollutants are presented. Specific topics include Fourier transform infrared studies of nitrogenous compounds, the mechanism of peroxynitric acid formation, N-nitroso compounds in the air, the chemical transformations of nitrogen oxides during the sampling of combustion products, the atmospheric chemistry of peroxy nitrates, and the effects of nitrogen dioxide on lung metabolism. Attention is also given to the interaction of nitrogen oxides and aromatic hydrocarbons under simulated atmospheric conditions, the characterization of particulate amines, the role of ammonia in atmospheric aerosol chemistry, the relationship between sulfates and nitrates and tropospheric measurements of nitric acid vapor and particulate nitrates

  15. Efficient Transdermal Delivery of Alendronate, a Nitrogen-Containing Bisphosphonate, Using Tip-Loaded Self-Dissolving Microneedle Arrays for the Treatment of Osteoporosis.

    Science.gov (United States)

    Katsumi, Hidemasa; Tanaka, Yutaro; Hitomi, Kaori; Liu, Shu; Quan, Ying-Shu; Kamiyama, Fumio; Sakane, Toshiyasu; Yamamoto, Akira

    2017-08-17

    To improve the transdermal bioavailability and safety of alendronate (ALN), a nitrogen-containing bisphosphonate, we developed self-dissolving microneedle arrays (MNs), in which ALN is loaded only at the tip portion of micron-scale needles by a dip-coating method (ALN(TIP)-MN). We observed micron-scale pores in rat skin just after application of ALN(TIP)-MN, indicating that transdermal pathways for ALN were created by MN. ALN was rapidly released from the tip of MNs as observed in an in vitro release study. The tip portions of MNs completely dissolved in the rat skin within 5 min after application in vivo. After application of ALN(TIP)-MN in mice, the plasma concentration of ALN rapidly increased, and the bioavailability of ALN was approximately 96%. In addition, the decrease in growth plate was effectively suppressed by this efficient delivery of ALN in a rat model of osteoporosis. Furthermore, no skin irritation was observed after application of ALN(TIP)-MN and subcutaneous injection of ALN, while mild skin irritation was induced by whole-ALN-loaded MN (ALN-MN)-in which ALN is contained in the whole of the micron-scale needles fabricated from hyaluronic acid-and intradermal injection of ALN. These findings indicate that ALN(TIP)-MN is a promising transdermal formulation for the treatment of osteoporosis without skin irritation.

  16. C-H functionalization directed by transformable nitrogen heterocycles: synthesis of ortho-oxygenated arylnaphthalenes from arylphthalazines.

    Science.gov (United States)

    Rastogi, Shiva K; Medellin, Derek C; Kornienko, Alexander

    2014-01-21

    Two protocols for oxygenation of aromatic C-H bonds ortho-positioned to the phthalazine ring were developed. The transannulation of the phthalazine ring to a naphthalene moiety by an Inverse Electron Demand Diels-Alder (IEDDA) reaction led to the synthesis of naphtho[2,1-c]chromenes, 1-(ortho-hydroxyaryl)naphthalenes and 6,7-dihydrobenzo[b]naphtho[1,2-d]oxepine. This new strategy based on the utilization of transformable nitrogen heterocycles in C-H functionalization chemistry can be potentially applicable to the synthesis of a broad range of biaryl compounds.

  17. Dissolved Nitrogen and Phosphorus Dynamics in the Lower Portion of the Paraiba do Sul River, Campos dos Goytacazes, RJ, Brazil

    Directory of Open Access Journals (Sweden)

    Mônica Aparecida Leite Silva

    2001-12-01

    Full Text Available The Paraíba do Sul river lower reach was monitored monthly between August 1995 and July 1996. This study was aimed at evaluating the temporal dynamics of dissolved nitrogen and phosphorus and its main controlling factors. Minimum and maximum observed values were as follows: N-NO2- - 0.08/0.51; N-NO3- - 21/57; N-NH4+ - 1.4/6.7; DON - 4.9/86.0; DIN -24.5/60.9; P-PO4(3- - 0.43/1.66; DOP - 0.05/0.92; pH - 6.2/7.8; Dissolved Oxygen - 6.4/10.1; Conductivity - 48/74; Temperature - 20.5/31.1 (Nutrients - µM; Dissolved Oxygen - mg/l; Conductivity - µS/cm; Temperature - °C. Discharge presented a characteristic seasonal variation, showing a peak in January. Increasing P-PO4(3-, DOP, N-NH4+ and N-NO2- concentrations with increasing discharges could be associated to the partial flooding of inumerous fluvial islands and floodplains and to the agricultural practices of sugar cane crops that during the wet season could transfer nitrogen and phosphorus compounds to the fluvial channel.O Rio Paraíba do Sul foi monitorado mensalmente na sua porção inferior, entre agosto de 1995 e julho de 1996, objetivando estudar a dinâmica temporal de nitrogênio e fósforo dissolvidos e avaliar seus principais fatores controladores. Os valores mínimos e máximos observados para os parâmetros analisados foram os seguintes: N-NO2- - 0,08/0,51; N-NO3- - 21/57; N-NH4+ - 1,4/6,7; Nitrogênio Orgânico Dissolvido (NOD - 4,9/86,0; Nitrogênio Inorgânico Dissolvido (NID - 24,5/60,9; P-PO4(3 - - 0,43/1,66; Fósforo Orgânico Dissolvido (POD - 0,05/0,92; pH - 6,2/7,8; Oxigênio Dissolvido - 6,4/10,1; Condutividade - 48/74; Temperatura - 20,5/31,1 (Nutrientes - µM; Oxigênio Dissolvido - mg/l; Condutividade - µS/cm; Temperatura - °C. A vazão apresentou uma variação sazonal característica, com pico de descarga em janeiro. A elevação das concentrações de P-PO4(3 -, POD, N-NH4+ e N-NO2- com o aumento da vazão pode estar associada à inundação parcial de numerosas

  18. Linking the Molecular Signature of Heteroatomic Dissolved Organic Matter to Watershed Characteristics in World Rivers.

    Science.gov (United States)

    Wagner, Sasha; Riedel, Thomas; Niggemann, Jutta; Vähätalo, Anssi V; Dittmar, Thorsten; Jaffé, Rudolf

    2015-12-01

    Large world rivers are significant sources of dissolved organic matter (DOM) to the oceans. Watershed geomorphology and land use can drive the quality and reactivity of DOM. Determining the molecular composition of riverine DOM is essential for understanding its source, mobility and fate across landscapes. In this study, DOM from the main stem of 10 global rivers covering a wide climatic range and land use features was molecularly characterized via ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). FT-ICR mass spectral data revealed an overall similarity in molecular components among the rivers. However, when focusing specifically on the contribution of nonoxygen heteroatomic molecular formulas (CHON, CHOS, CHOP, etc.) to the bulk molecular signature, patterns relating DOM composition and watershed land use became apparent. Greater abundances of N- and S-containing molecular formulas were identified as unique to rivers influenced by anthropogenic inputs, whereas rivers with primarily forested watersheds had DOM signatures relatively depleted in heteroatomic content. A strong correlation between cropland cover and dissolved black nitrogen was established when focusing specifically on the pyrogenic class of compounds. This study demonstrated how changes in land use directly affect downstream DOM quality and could impact C and nutrient cycling on a global scale.

  19. Carbon and nitrogen dynamics and greenhouse gases emissions in constructed wetlands: a review

    Science.gov (United States)

    Jahangir, M. M. R.; Fenton, O.; Gill, L.; Müller, C.; Johnston, P.; Richards, K. G.

    2014-07-01

    The nitrogen (N) removal efficiency of constructed wetlands (CWs) is very inconsistent and does not alone explain if the removed species are reduced by physical attenuation or if they are transformed to other reactive forms (pollution swapping). There are many pathways for the removed N to remain in the system: accumulation in the sediments, leaching to groundwater (nitrate-NO3- and ammonium-NH4+), emission to atmosphere via nitrous oxide- N2O and ammonia and/or conversion to N2 gas and adsorption to sediments. The kinetics of these pathways/processes varies with CWs management and therefore needs to be studied quantitatively for the sustainable use of CWs. For example, the quality of groundwater underlying CWs with regards to the reactive N (Nr) species is largely unknown. Equally, there is a dearth of information on the extent of Nr accumulation in soils and discharge to surface waters and air. Moreover, CWs are rich in dissolved organic carbon (DOC) and produce substantial amounts of CO2 and CH4. These dissolved carbon (C) species drain out to ground and surface waters and emit to the atmosphere. The dynamics of dissolved N2O, CO2 and CH4 in CWs is a key "missing piece" in our understanding of global greenhouse gas budgets. In this review we provide an overview of the current knowledge and discussion about the dynamics of C and N in CWs and their likely impacts on aquatic and atmospheric environments. We suggest that the fate of various N species in CWs and their surface emissions and subsurface drainage fluxes need to be evaluated in a holistic way to better understand their potential for pollution swapping. Research on the process based N removal and balancing the end products into reactive and benign forms are critical to assess environmental impacts of CWs. Thus we strongly suggest that in situ N transformation and fate of the transformation products with regards to pollution swapping requires further detailed examination.

  20. Assessment of the fate of anthropogenic nitrogen in large watersheds by isotopic techniques

    International Nuclear Information System (INIS)

    Mayer, B.

    1999-01-01

    Human activity has greatly altered the nitrogen cycle in terrestrial and aquatic ecosystems and increased the nitrogen flow in many rivers. Preliminary work of the International SCOPE Nitrogen Project indicates that only 20% of the human-controlled nitrogen inputs to large watersheds are exported to the oceans in riverine flow (Howarth, 1998). Therefore, approximately 80% of the anthropogenic nitrogen inputs are either stored or denitrified in the catchments. Anthropogenic nitrogen can be retained in forests (possibly as a result of increased productivity) or in agricultural soils. It can also be stored in groundwater. These sinks are, however, often not large enough to account for the 'missing' nitrogen. It is, therefore, assumed that the majority of the human-controlled nitrogen inputs to large watersheds is denitrified in soils, riparian zones, wetlands, lakes, and rivers. Within the SCOPE Nitrogen Project, preliminary isotope analyses were performed on dissolved nitrates from several streams draining into the North Atlantic Ocean. Both δ 15 N nitrate and δ 18 O nitrate values were determined in order to identify nitrate sources. A further objective was to test, whether the isotopic composition of dissolved nitrate provides a measure for the extent to which denitrification occurs in the respective watersheds

  1. Dissolved Gas Analysis of Insulating Transformer Oil Using Optical Fiber

    OpenAIRE

    Overby, Alan Bland

    2014-01-01

    The power industry relies on high voltage transformers as the backbone of power distribution networks. High voltage transformers are designed to handle immense electrical loads in hostile environments. Long term placement is desired, however by being under constant heavy load transformers face mechanical, thermal, and electrical stresses which lead to failures of the protection systems in place. The service life of a transformer is often limited by the life time of its insulati...

  2. Nitrogen cycling in a turbid, tidal estuary

    NARCIS (Netherlands)

    Andersson, M.G.I.

    2007-01-01

    In this thesis I investigated nitrification, dissolved inorganic and organic nitrogen uptake, and the relative importance of nitrification and ammonium assimilation. I have also investigated exchange with marshes and sediments. Nitrification, oxidation of ammonium to nitrate is the first step for

  3. Nitrogen recycling through the gut and the nitrogen economy of ruminants: An asynchronous symbiosis

    DEFF Research Database (Denmark)

    Reynolds, C K; Kristensen, Niels Bastian

    2007-01-01

    The extensive development of the ruminant forestomach sets apart their nitrogen (N) economy from that of nonruminants in a number of respects. Extensive pre-gastric fermentation alters the profile of protein reaching the small intestine, largely through the transformation of nitrogenous compounds...

  4. Distribution of nitrogen in nature and its separation

    International Nuclear Information System (INIS)

    Nitzsche, H.M.; Haendel, D.; Muehle, K.

    1981-01-01

    Proceeding from a survey on nitrogen in the atmosphere, biosphere, hydrosphere, and lithosphere and nitrogen determination methods, a detailed review is given of procedures that allow to transform any nitrogen-containing starting material into molecular nitrogen for mass spectroscopic isotope analysis

  5. Seasonal Variation and Sources of Dissolved Nutrients in the Yellow River, China

    Directory of Open Access Journals (Sweden)

    Yao Gong

    2015-08-01

    Full Text Available The rapid growth of the economy in China has caused dramatic growth in the industrial and agricultural development in the Yellow River (YR watershed. The hydrology of the YR has changed dramatically due to the climate changes and water management practices, which have resulted in a great variation in the fluxes of riverine nutrients carried by the YR. To study these changes dissolved nutrients in the YR were measured monthly at Lijin station in the downstream region of the YR from 2002 to 2004. This study provides detailed information on the nutrient status for the relevant studies in the lower YR and the Bohai Sea. The YR was enriched in nitrate (average 314 μmol·L−1 with a lower concentration of dissolved silicate (average 131 μmol·L−1 and relatively low dissolved phosphate (average 0.35 μmol·L−1. Nutrient concentrations exhibited substantial seasonal and yearly variations. The annual fluxes of dissolved inorganic nitrogen, phosphate, and silicate in 2004 were 5.3, 2.5, and 4.2 times those in 2002, respectively, primarily due to the increase in river discharge. The relative contributions of nutrient inputs to nitrogen in the YR were: wastewater > fertilizer > atmospheric deposition > soil; while to phosphorus were: wastewater > fertilizer > soil > atmospheric deposition. The ratios of N, P and Si suggest that the YR at Lijin is strongly P-limited with respect to potential phytoplankton growth.

  6. A novel microalgal system for energy production with nitrogen cycling

    Energy Technology Data Exchange (ETDEWEB)

    Minowa, T.; Sawayama, S. [National Institute for Resources and Environment, Tsukuba (Japan)

    1999-08-01

    A microalga, Chlorella vulgaris, could grow in the recovered solution from the low temperature catalytic gasification of itself, by which methane rich fuel gas was obtained. All nitrogen in the microalga was converted to ammonia during the gasification, and the recovered solution, in which ammonia was dissolved, could be used as nitrogen nutrient. The result of the energy evaluation indicated that the novel microalgal system for energy production with nitrogen cycling could be created. 9 refs., 3 tabs.

  7. Nitrogen transformations and greenhouse gas emissions from a riparian wetland soil: An undisturbed soil column study

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Leoz, Borja [Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU, E-48013 Bilbao (Spain); Antigueedad, Inaki [Department of Geodynamic, University of the Basque Country, UPV/EHU, E-48940 Leioa (Spain); Garbisu, Carlos [Department of Ecosystems, NEIKER-Tecnalia, E-48160 Derio (Spain); Ruiz-Romera, Estilita, E-mail: estilita.ruiz@ehu.es [Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU, E-48013 Bilbao (Spain)

    2011-01-15

    Riparian wetlands bordering intensively managed agricultural fields can act as biological filters that retain and transform agrochemicals such as nitrate and pesticides. Nitrate removal in wetlands has usually been attributed to denitrification processes which in turn imply the production of greenhouse gases (CO{sub 2} and N{sub 2}O). Denitrification processes were studied in the Salburua wetland (northern Spain) by using undisturbed soil columns which were subsequently divided into three sections corresponding to A-, Bg- and B2g-soil horizons. Soil horizons were subjected to leaching with a 200 mg NO{sub 3}{sup -} L{sup -1} solution (rate: 90 mL day{sup -1}) for 125 days at two different temperatures (10 and 20 {sup o}C), using a new experimental design for leaching assays which enabled not only to evaluate leachate composition but also to measure gas emissions during the leaching process. Column leachate samples were analyzed for NO{sub 3}{sup -} concentration, NH{sub 4}{sup +} concentration, and dissolved organic carbon. Emissions of greenhouse gases (CO{sub 2} and N{sub 2}O) were determined in the undisturbed soil columns. The A horizon at 20 {sup o}C showed the highest rates of NO{sub 3}{sup -} removal (1.56 mg N-NO{sub 3}{sup -} kg{sup -1} DW soil day{sup -1}) and CO{sub 2} and N{sub 2}O production (5.89 mg CO{sub 2} kg{sup -1} DW soil day{sup -1} and 55.71 {mu}g N-N{sub 2}O kg{sup -1} DW soil day{sup -1}). For the Salburua wetland riparian soil, we estimated a potential nitrate removal capacity of 1012 kg N-NO{sub 3}{sup -} ha{sup -1} year{sup -1}, and potential greenhouse gas emissions of 5620 kg CO{sub 2} ha{sup -1} year{sup -1} and 240 kg N-N{sub 2}O ha{sup -1} year{sup -1}. - Research Highlights: {yields}A new experimental design is proposed for leaching assays to simulate nitrogen transformations in riparian wetland soil. {yields}Denitrification is the main process responsible for nitrate removal in the riparian zone of Salburua wetland. {yields

  8. Concentration, composition, bioavailability, and N-nitrosodimethylamine formation potential of particulate and dissolved organic nitrogen in wastewater effluents: A comparative study

    International Nuclear Information System (INIS)

    Hu, Haidong; Ma, Haijun; Ding, Lili; Geng, Jinju; Xu, Ke; Huang, Hui; Zhang, Yingying; Ren, Hongqiang

    2016-01-01

    Wastewater-derived organic nitrogen (org-N) can act as both nutrients and carcinogenic nitrogenous disinfection byproduct precursors. In this study, the concentration, composition, bioavailability, and N-nitrosodimethylamine (NDMA) formation potential of particulate organic nitrogen (PON) from three different municipal wastewater treatment plants were characterized and compared with that of effluent dissolved organic nitrogen (DON). The average effluent PON and DON concentrations ranged from 0.09 to 0.55 mg N/L and from 0.91 to 1.88 mg N/L, respectively. According to principal component analysis, org-N composition and characterization differed in PON and DON samples (n = 20). Compared with DON, PON tended to be enriched in protein and nucleic acids, and showed a more proteinaceous character. Composition of org-N functional groups estimated from the X-ray photoelectron spectroscopy N 1s spectra indicate no significant differences in the molecular weight distribution of the protein-like materials between PON and DON. Moreover, PON exhibited a significantly higher bioavailability (61.0 ± 13.3%) compared to DON (38.5 ± 12.4%, p < 0.05, t-test) and a significantly higher NDMA yields (791.4 ± 404.0 ng/mg-N) compared to DON (374.8 ± 62.5 ng/mg-N, p < 0.05, t-test). Accordingly, PON contributed to approximately 12.3–41.7% of the total bioavailable org-N and 22.0–38.4% of the total NDMA precursors in wastewater effluents. Thus, the potential adverse effects of PON on wastewater discharge and reuse applications should not be overlooked, even though it only accounted for 7.4–26.8% of the total effluent org-N. - Highlights: • The concentration, composition, bioavailability, and NDMA FP of PON and DON in wastewater effluents are compared. • PON is enriched in protein and nucleic acids. • PON is more bioavailable and shows higher NDMA yields compared to DON. • PON contributes12–42% of total bioavailable org-N and 22–38% of total NDMA precursors.

  9. Concentration, composition, bioavailability, and N-nitrosodimethylamine formation potential of particulate and dissolved organic nitrogen in wastewater effluents: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Haidong; Ma, Haijun; Ding, Lili; Geng, Jinju; Xu, Ke; Huang, Hui; Zhang, Yingying; Ren, Hongqiang, E-mail: hqren@nju.edu.cn

    2016-11-01

    Wastewater-derived organic nitrogen (org-N) can act as both nutrients and carcinogenic nitrogenous disinfection byproduct precursors. In this study, the concentration, composition, bioavailability, and N-nitrosodimethylamine (NDMA) formation potential of particulate organic nitrogen (PON) from three different municipal wastewater treatment plants were characterized and compared with that of effluent dissolved organic nitrogen (DON). The average effluent PON and DON concentrations ranged from 0.09 to 0.55 mg N/L and from 0.91 to 1.88 mg N/L, respectively. According to principal component analysis, org-N composition and characterization differed in PON and DON samples (n = 20). Compared with DON, PON tended to be enriched in protein and nucleic acids, and showed a more proteinaceous character. Composition of org-N functional groups estimated from the X-ray photoelectron spectroscopy N 1s spectra indicate no significant differences in the molecular weight distribution of the protein-like materials between PON and DON. Moreover, PON exhibited a significantly higher bioavailability (61.0 ± 13.3%) compared to DON (38.5 ± 12.4%, p < 0.05, t-test) and a significantly higher NDMA yields (791.4 ± 404.0 ng/mg-N) compared to DON (374.8 ± 62.5 ng/mg-N, p < 0.05, t-test). Accordingly, PON contributed to approximately 12.3–41.7% of the total bioavailable org-N and 22.0–38.4% of the total NDMA precursors in wastewater effluents. Thus, the potential adverse effects of PON on wastewater discharge and reuse applications should not be overlooked, even though it only accounted for 7.4–26.8% of the total effluent org-N. - Highlights: • The concentration, composition, bioavailability, and NDMA FP of PON and DON in wastewater effluents are compared. • PON is enriched in protein and nucleic acids. • PON is more bioavailable and shows higher NDMA yields compared to DON. • PON contributes12–42% of total bioavailable org-N and 22–38% of total NDMA precursors.

  10. Quantification of the contribution of nitrogen from septic tanks to ground water in Spanish Springs Valley, Nevada

    Science.gov (United States)

    Rosen, Michael R.; Kropf, Christian; Thomas, Karen A.

    2006-01-01

    Analysis of total dissolved nitrogen concentrations from soil water samples collected within the soil zone under septic tank leach fields in Spanish Springs Valley, Nevada, shows a median concentration of approximately 44 milligrams per liter (mg/L) from more than 300 measurements taken from four septic tank systems. Using two simple mass balance calculations, the concentration of total dissolved nitrogen potentially reaching the ground-water table ranges from 25 to 29 mg/L. This indicates that approximately 29 to 32 metric tons of nitrogen enters the aquifer every year from natural recharge and from the 2,070 houses that use septic tanks in the densely populated portion of Spanish Springs Valley. Natural recharge contributes only 0.25 metric tons because the total dissolved nitrogen concentration of natural recharge was estimated to be low (0.8 mg/L). Although there are many uncertainties in this estimate, the sensitivity of these uncertainties to the calculated load is relatively small, indicating that these values likely are accurate to within an order of magnitude. The nitrogen load calculation will be used as an input function for a ground-water flow and transport model that will be used to test management options for controlling nitrogen contamination in the basin.

  11. Laser Calorimetry Spectroscopy for ppm-level Dissolved Gas Detection and Analysis.

    Science.gov (United States)

    K S, Nagapriya; Sinha, Shashank; R, Prashanth; Poonacha, Samhitha; Chaudhry, Gunaranjan; Bhattacharya, Anandaroop; Choudhury, Niloy; Mahalik, Saroj; Maity, Sandip

    2017-02-20

    In this paper we report a newly developed technique - laser calorimetry spectroscopy (LCS), which is a combination of laser absorption spectroscopy and calorimetry - for the detection of gases dissolved in liquids. The technique involves determination of concentration of a dissolved gas by irradiating the liquid with light of a wavelength where the gas absorbs, and measuring the temperature change caused by the absorbance. Conventionally, detection of dissolved gases with sufficient sensitivity and specificity was done by first extracting the gases from the liquid and then analyzing the gases using techniques such as gas chromatography. Using LCS, we have been able to detect ppm levels of dissolved gases without extracting them from the liquid. In this paper, we show the detection of dissolved acetylene in transformer oil in the mid infrared (MIR) wavelength (3021 nm) region.

  12. Role of dissolved oxygen on the degradation mechanism of Reactive Green 19 and electricity generation in photocatalytic fuel cell.

    Science.gov (United States)

    Lee, Sin-Li; Ho, Li-Ngee; Ong, Soon-An; Wong, Yee-Shian; Voon, Chun-Hong; Khalik, Wan Fadhilah; Yusoff, Nik Athirah; Nordin, Noradiba

    2018-03-01

    In this study, a membraneless photocatalytic fuel cell with zinc oxide loaded carbon photoanode and platinum loaded carbon cathode was constructed to investigate the impact of dissolved oxygen on the mechanism of dye degradation and electricity generation of photocatalytic fuel cell. The photocatalytic fuel cell with high and low aeration rate, no aeration and nitrogen purged were investigated, respectively. The degradation rate of diazo dye Reactive Green 19 and the electricity generation was enhanced in photocatalytic fuel cell with higher dissolved oxygen concentration. However, the photocatalytic fuel cell was still able to perform 37% of decolorization in a slow rate (k = 0.033 h -1 ) under extremely low dissolved oxygen concentration (approximately 0.2 mg L -1 ) when nitrogen gas was introduced into the fuel cell throughout the 8 h. However, the change of the UV-Vis spectrum indicates that the intermediates of the dye could not be mineralized under insufficient dissolved oxygen level. In the aspect of electricity generation, the maximum short circuit current (0.0041 mA cm -2 ) and power density (0.00028 mW cm -2 ) of the air purged photocatalytic fuel cell was obviously higher than that with nitrogen purging (0.0015 mA cm -2 and 0.00008 mW cm -2 ). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Transformation of saturated nitrogen-containing heterocyclic compounds by microorganisms.

    Science.gov (United States)

    Parshikov, Igor A; Silva, Eliane O; Furtado, Niege A J C

    2014-02-01

    The saturated nitrogen-containing heterocyclic compounds include many drugs and compounds that may be used as synthons for the synthesis of other pharmacologically active substances. The need for new derivatives of saturated nitrogen-containing heterocycles for organic synthesis, biotechnology and the pharmaceutical industry, including optically active derivatives, has increased interest in microbial synthesis. This review provides an overview of microbial technologies that can be valuable to produce new derivatives of saturated nitrogen-containing heterocycles, including hydroxylated derivatives. The chemo-, regio- and enantioselectivity of microbial processes can be indispensable for the synthesis of new compounds. Microbial processes carried out with fungi, including Beauveria bassiana, Cunninghamella verticillata, Penicillium simplicissimum, Aspergillus niger and Saccharomyces cerevisiae, and bacteria, including Pseudomonas sp., Sphingomonas sp. and Rhodococcus erythropolis, biotransform many substrates efficiently. Among the biological activities of saturated nitrogen-containing heterocyclic compounds are antimicrobial, antitumor, antihypertensive and anti-HIV activities; some derivatives are effective for the treatment and prevention of malaria and trypanosomiasis, and others are potent glycosidase inhibitors.

  14. Seasonal Changes in the Character and Nitrogen Content of Dissolved Organic Matter in an Alpine/Subalpine Headwater Catchment

    Directory of Open Access Journals (Sweden)

    Eran W. Hood

    2001-01-01

    Full Text Available We are studying the chemical quality of dissolved organic nitrogen (DON in a high-elevation watershed in the Colorado Front Range. Samples were collected over the 2000 snowmelt runoff season at two sites across an alpine/subalpine ecotone to understand how the transition between the lightly vegetated alpine and forested reaches of the catchment influences the chemical character of DON. Samples were analyzed approximately weekly for dissolved organic material (DOM content and chemical character. A subset of samples was analyzed for the elemental content of fulvic and hydrophilic acids. Concentrations of DON at both sites were highest in the spring at the initiation of snowmelt, decreased during snowmelt, and increased again during the late summer and fall. In contrast, concentrations of dissolved organic carbon (DOC peaked on the ascending limb of the hydrograph and declined to seasonal minima on the descending limb of the hydrograph. The ratio of DOC:DON showed a seasonal shift at both sites with high values (40 to 55 during peak runoff in early summer and lower values (15 to 25 during low flows late in the runoff season. These results indicate that there was a seasonal change in the relative N content of DOM at both sites. Chemical fractionation of DOC showed that there were temporal and longitudinal changes in the chemical character of DOC. At the alpine site, the fulvic acid content of DOC decreased from 57% in June to 35% in September. The change in fulvic acid was less pronounced at the forested site, from 66% in June to 54% in September. Elemental analysis of fulvic and hydrophilic acids indicated that hydrophilic acids were N rich compared to fulvic acids. Additionally, fulvic and hydrophilic acids isolated at the alpine site had a lower C:N ratio than those isolated at the forested site. Similarly, the C:N ratio of organic acids at both sites was lower in September than in June during peak runoff. These differences appear to be a result

  15. [Vermicomposting of different organic materials and three-dimensional excitation emission matrix fluorescence spectroscopic characterization of their dissolved organic matter].

    Science.gov (United States)

    Yang, Wei; Wang, Dong-sheng; Liu, Man-qiang; Hu, Feng; Li, Hui-xin; Huang, Zhong-yang; Chang, Yi-jun; Jiao, Jia-guo

    2015-10-01

    In this experiment, different proportions of the cattle manure, tea-leaf, herb and mushroom residues, were used as food for earthworm (Eisenia fetida) to study the growth of the earth-worm. Then the characteristics and transformation of nutrient content and three-dimensional excitation emission matrix fluorescence (3DEEM) of dissolved organic matter (DOM) during vermistabilization were investigated by means of chemical and spectroscopic methods. The result showed that the mixture of different ratios of cattle manure with herb residue, and cattle manure with tea-leaf were conducive to the growth of earthworm, while the materials compounded with mushroom residue inhibited the growth of earthworm. With the increasing time of verimcomposting, the pH in vermicompost tended to be circumneutral and weakly acidic, and there were increases in electrical conductivity, and the contents of total nitrogen, total phosphorus, available nitrogen, and available phosphorus, while the total potassium and available potassium increased first and then decreased, and the organic matter content decreased. 3DEEM and fluorescence regional integration results indicated that, the fluorescence of protein-like fluorescence peaks declined significantly, while the intensity of humic-like fluorescence peak increased significantly in DOM. Vermicomposting process might change the compositions of DOM with elevated concentrations of humic acid and fulvic acid in the organics. In all, this study suggested the suitability of 3DEEM for monitoring the organics transformation and assessing the maturity in the vermicomposting.

  16. δ15N, δ13C and radiocarbon in dissolved organic carbon as indicators of environmental change

    International Nuclear Information System (INIS)

    Geyer, S.; Kalbitz, K.

    2002-01-01

    Decomposition, humification, and stabilization of soil organic matter are closely related to the dynamics of dissolved organic matter. Enhanced peat decomposition results in increasing aromatic structures and polycondensation of dissolved organic molecules. Although recent studies support the concept that DOM can serve as an indicator for processes driven by changing environmental processes in soils affecting the C and N cycle (like decomposition and humification) and also permit insight in former conditions some 1000 years ago, it is unknown whether dissolved organic carbon (DOC) and nitrogen (DON) have an equal response to these processes. (author)

  17. [Sources of dissolved organic carbon and the bioavailability of dissolved carbohydrates in the tributaries of Lake Taihu].

    Science.gov (United States)

    Ye, Lin-Lin; Wu, Xiao-Dong; Kong, Fan-Xiang; Liu, Bo; Yan, De-Zhi

    2015-03-01

    Surface water samples of Yincungang and Chendonggang Rivers were collected from September 2012 to August 2013 in Lake Taihu. Water temperature, Chlorophyll a and bacterial abundance were analyzed, as well as dissolved organic carbon (DOC) concentrations, stable carbon isotope of DOC (Δ13C(DOC)), specific UV absorbance (SUVA254 ) and dissolved carbohydrates concentrations. Δ13C(DOC) ranged from -27.03% per thousand ± 0.30% per thousand to -23.38%per thousand ± 0.20% per thousand, indicating a terrestrial source. Both the autochthonous and allochthonous sources contributed to the carbohydrates pool in the tributaries. Significant differences in PCHO (polysaccharides) and MCHO (monosaccharides) concentrations were observed between spring-summer and autumn-winter (P carbohydrates. PCHO contributed a major fraction to TCHO (total dissolved carbohydrates) in autumn and winter, which could be explained by the accumulation of undegradable PCHO limited by the low water temperature; MCHO contributed a major fraction to TCHO in spring and summer, which might be caused by the transformation from PCHO by microbes at high water temperature.

  18. Tropical montane forest conversion affects spatial and temporal nitrogen dynamics in Kenyan headwater catchment

    Science.gov (United States)

    Jacobs, Suzanne; Weeser, Björn; Breuer, Lutz; Butterbach-Bahl, Klaus; Guzha, Alphonce; Rufino, Mariana

    2017-04-01

    Deforestation and land use change (LUC) are often stated as major contributors to changes in water quality, although other catchment characteristics such as topography, geology and climate can also play a role. Understanding how stream water chemistry is affected by LUC is essential for sustainable water management and land use planning. However, there is often a lack of reliable data, especially in less studied regions such as East Africa. This study focuses on three sub-catchments (27-36 km2) with different land use types (natural forest, smallholder agriculture and tea/tree plantations) nested in a 1023 km2 headwater catchment in the Mau Forest Complex, Kenya's largest closed-canopy indigenous tropical montane forest. In the past decades approx. 25% of the natural forest was lost due to land use change. We studied seasonal, diurnal and spatial patterns of total dissolved nitrogen (TDN), nitrate (NO3-N) and dissolved organic nitrogen (DON) using a combination of high-resolution in-situ measurements, bi-weekly stream water samples and spatial sampling campaigns. Multiple linear regression analysis of the spatial data indicates that land use shows a strong influence on TDN and nitrate, while DON is more influenced by precipitation. Highest TDN and nitrate concentrations are found in tea plantations, followed by smallholder agriculture and natural forest. This ranking does not change throughout the year, though concentrations of TDN and nitrate are respectively 27.6 and 25.4% lower in all catchments during the dry season. Maximum Overlap Discrete Wavelet Transform (MODWT) analysis of the high resolution nitrate data revealed a seasonal effect on diurnal patterns in the natural forest catchment, where the daily peak shifts from early morning in the wet season to mid-afternoon in the dry season. The smallholder and tea catchment do not exhibit clear diurnal patterns. The results suggest that land use affects dissolved nitrogen concentrations, leading to higher N

  19. A simple and rapid gas chromatographic method for the determination of dissolved deuterium and nitrogen in heavy water coolant of a nuclear reactor

    International Nuclear Information System (INIS)

    Nair, B.K.S.

    1976-01-01

    A known volume of a heavy water sample is equilibrated with a known volume of pure helium gas at atmospheric pressure in a sample tube. The dissolved gases evolve into the helium and distribute themselves between the gaseous and liquid phases according to their equilibrium partial pressures. These partial pressures of the gases in the equilibrium gas mixture are determined by analysing it gas-chromatographically. From these analytical data and the absorption coefficients of deuterium and nitrogen, their original concentrations in heavy water are calculated. Corrections for the increase in the total pressure of the gaseous phase owing to evolved gases are calculated and found to be negligible. Air contamination during sampling and analysis can be detected by the presence of the oxygen peak in the chromatogram and corrected for. The calculation is facilitated by programming it on an electronic calculator. The method is much simpler and faster than the vacuum method usually applied for this analysis. One determination can be completed in about an hour. The average deviation and standard deviation have been estimated at 0.19 ml/litre heavy water and 0.25 ml/litre heavy water respectively in deuterium, and 0.36 and 0.68 ml/litre in nitrogen. (author)

  20. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model.

    Science.gov (United States)

    Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo

    2012-12-01

    In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. [Effects of snow pack on soil nitrogen transformation enzyme activities in a subalpine Abies faxioniana forest of western Sichuan, China].

    Science.gov (United States)

    Xiong, Li; Xu, Zhen-Feng; Wu, Fu-Zhong; Yang, Wan-Qin; Yin, Rui; Li, Zhi-Ping; Gou, Xiao-Lin; Tang, Shi-Shan

    2014-05-01

    This study characterized the dynamics of the activities of urease, nitrate reductase and nitrite reductase in both soil organic layer and mineral soil layer under three depths of snow pack (deep snowpack, moderate snowpack and shallow snowpack) over the three critical periods (snow formed period, snow stable period, and snow melt period) in the subalpine Abies faxoniana forest of western Sichuan in the winter of 2012 and 2013. Throughout the winter, soil temperature under deep snowpack increased by 46.2% and 26.2%, respectively in comparison with moderate snowpack and shallow snowpack. In general, the three nitrogen-related soil enzyme activities under shallow snowpack were 0.8 to 3.9 times of those under deep snowpack during the winter. In the beginning and thawing periods of seasonal snow pack, shallow snowpack significantly increased the activities of urease, nitrate and nitrite reductase enzyme in both soil organic layer and mineral soil layer. Although the activities of the studied enzymes in soil organic layer and mineral soil layer were observed to be higher than those under deep- and moderate snowpacks in deep winter, no significant difference was found under the three snow packs. Meanwhile, the effects of snowpack on the activities of the measured enzymes were related with season, soil layer and enzyme type. Significant variations of the activities of nitrogen-related enzymes were found in three critical periods over the winter, and the three measured soil enzymes were significantly higher in organic layer than in mineral layer. In addition, the activities of the three measured soil enzymes were closely related with temperature and moisture in soils. In conclusion, the decrease of snow pack induced by winter warming might increase the activities of soil enzymes related with nitrogen transformation and further stimulate the process of wintertime nitrogen transformation in soils of the subalpine forest.

  2. Nitrogen utilization and transformation in red soil fertilized with urea and ryegrass

    International Nuclear Information System (INIS)

    Wu Gang; Zhang Qinzheng; Ye Qingfu; Zhu Zhujun; Xi Haifu; He Zhenli

    1998-01-01

    The influence of fertilization with urea and ryegrass on nitrogen utilization and transformation in red soil has been studied by using 15 N tracer method. When urea and ryegrass were applied alone or in combination, the percentage of N uptaken by ryegrass for labelled urea was 3 and 1.7 times that from labelled ryegrass for the application rate of 200 mgN·kg -1 and 100 mgN·kg -1 , respectively; combining application of ryegrass and urea reduced uptake of urea N and increased uptake of ryegrass N by ryegrass plant, but the percentage of N residue in soil increased for urea and decreased for ryegrass; when urea and ryegrass were applied alone, the percentage of N residue in soil from labelled ryegrass was more than 69% while that from labelled urea was less than 25%, and much more ryegrass N was incorporated into humus than urea N

  3. Carbon-nitrogen-water interactions: is model parsimony fruitful?

    Science.gov (United States)

    Puertes, Cristina; González-Sanchis, María; Lidón, Antonio; Bautista, Inmaculada; Lull, Cristina; Francés, Félix

    2017-04-01

    It is well known that carbon and nitrogen cycles are highly intertwined and both should be explained through the water balance. In fact, in water-controlled ecosystems nutrient deficit is related to this water scarcity. For this reason, the present study compares the capability of three models in reproducing the interaction between the carbon and nitrogen cycles and the water cycle. The models are BIOME-BGCMuSo, LEACHM and a simple carbon-nitrogen model coupled to the hydrological model TETIS. Biome-BGCMuSo and LEACHM are two widely used models that reproduce the carbon and nitrogen cycles adequately. However, their main limitation is that these models are quite complex and can be too detailed for watershed studies. On the contrary, the TETIS nutrient sub-model is a conceptual model with a vertical tank distribution over the active soil depth, dividing it in two layers. Only the input of the added litter and the losses due to soil respiration, denitrification, leaching and plant uptake are considered as external fluxes. Other fluxes have been neglected. The three models have been implemented in an experimental plot of a semi-arid catchment (La Hunde, East of Spain), mostly covered by holm oak (Quercus ilex). Plant transpiration, soil moisture and runoff have been monitored daily during nearly two years (26/10/2012 to 30/09/2014). For the same period, soil samples were collected every two months and taken to the lab in order to obtain the concentrations of dissolved organic carbon, microbial biomass carbon, ammonium and nitrate. In addition, between field trips soil samples were placed in PVC tubes with resin traps and were left incubating (in situ buried cores). Thus, mineralization and nitrification accumulated fluxes for two months, were obtained. The ammonium and nitrate leaching accumulated for two months were measured using ion-exchange resin cores. Soil respiration was also measured every field trip. Finally, water samples deriving from runoff, were collected

  4. ANALISIS GAS TERLARUT PADA MINYAK ISOLASI TRANSFORMATOR TENAGA AKIBAT PEMBEBANAN DAN PENUAAN

    Directory of Open Access Journals (Sweden)

    Hermawan Hermawan

    2012-02-01

    Full Text Available The lifetime of transformers and its equipments are highly dependent on the quality of insulation system.Insulation is one important component in a transformer because generally, insulations used liquid and solidinsulation in accordance with its function as an insulating material and cooling media. At the time there usedtransformer oil aging and damage caused by several things such as impurities, water content, dissolved gases(Dissolved Gas Analysis-DGA, acidity and heating the oil. Transformers loading will cause a decrease in thequality of the transformers insulation system that resulted in the decreasing age of insulating oil.This paper explained the influence of aging on the rate of degradation of Dissolved Gases of power transformersinsulating oil. This research was conducted using sample data loading and maintenance of transformers byobtained directly with investigations into the transformers which is operating. There are three method todetermine quality of oil transformer i.e. Total Combustible Gases (TCG, Roger Ratio, Key Gas and DuvalTriangle Methods.Based on analysis result by using samples from a variety of loading conditions of the transformers with differentlevels we can conclude the quality and worthiness of insulation oil and the estimated the effective remaining lifeof transformers insulation system.

  5. Photochemical Transformation and Bacterial Utilization of Dissolved Organic Matter and Disinfection Byproduct Precursors from Foliar Litter

    Science.gov (United States)

    Chow, A. T.; Wong, P.; O'Geen, A. T.; Dahlgren, R. A.

    2009-12-01

    Foliar litter is an important terrestrial source of dissolved organic matter (DOM) in surface water. DOM is a public health concern since it is a precursor of carcinogenic disinfection byproducts (DBPs) during drinking water treatment. Chemical characterization of in-situ water samples for their impact on water treatment may be misleading because DOM characteristics can be altered from their original composition during downstream transport to water treatment plants. In this study, we collected leachate from four fresh litters and decomposed duffs from four dominant vegetation components of California oak woodlands: blue oak (Quercus douglassi), live oak (Quercus wislizenii), foothill pine (Pinus sabiniana), and annual grasses to evaluate their DOM degradability and the reactivity of altered DOM towards DBP formation. Samples were filtered through a sterilized membrane (0.2 micron) and exposed to natural sunlight and Escherichia coli K-12 independently for 14 days. Generally speaking, leachate from decomposed duff was relatively resistant towards biodegradation compared to that from fresh litter, but the former was more susceptible to photo-transformation. Photo-bleaching caused a 30% decrease in ultra-violet absorbance at 254 nm (UVA) but no significant changes in dissolved organic carbon (DOC) concentration. This apparent loss of aromatic carbon in DOM, in terms of specific UVA, did not result in a decrease of specific trihalomethane (THM) formation potential, although aromatic carbon is considered as a major reactive site for THM formation. In addition, there were significant increases (p < 0.05) of chloral hydrate after the 14-day exposure, suggesting that the photolytic products could be a precursor of chloral hydrate. In contrast, samples inoculated with E. coli did not show a significant effect on the DOC concentration, UVA or DBP formation, although the colony counts indicated a 2-log cell growth during the 14-day incubation. Results suggest photolysis is a

  6. A study on the photocatalytic decomposition reactions of organics dissolved in water (II)

    International Nuclear Information System (INIS)

    Sung, K. W.; Na, J. W.; Cho, Y. H.; Chung, H. H.

    2001-01-01

    Experiments on aqueous TiO 2 photocatalytic reaction characteristics of 4 nitrogen-containing and 12 aromatic organic compounds were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photocatalytic decomposition were estimated. It was shown that the dependence of decomposition of the N-containing compounds were linearly proportional to their nitrogen atomic charge values, while that of the aromatic compounds were inversely proportional. The effects of aqueous pH, oxygen content and concentration on the TiO 2 photocatalytic characteristics of EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5∼3.0 and with more dissolved oxygen. These results could be applied to a unit process for removal of organic impurities dissolved in a source water of the system water, and for treatment of EDTA-containing liquid waste produced by chemical cleaning process in the domestic NPPs

  7. A study on the photocatalytic decomposition reactions of organics dissolved in water (II)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K. W.; Na, J. W.; Cho, Y. H.; Chung, H. H

    2001-01-01

    Experiments on aqueous TiO{sup 2} photocatalytic reaction characteristics of 4 nitrogen-containing and 12 aromatic organic compounds were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photocatalytic decomposition were estimated. It was shown that the dependence of decomposition of the N-containing compounds were linearly proportional to their nitrogen atomic charge values, while that of the aromatic compounds were inversely proportional. The effects of aqueous pH, oxygen content and concentration on the TiO{sup 2} photocatalytic characteristics of EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5{approx}3.0 and with more dissolved oxygen. These results could be applied to a unit process for removal of organic impurities dissolved in a source water of the system water, and for treatment of EDTA-containing liquid waste produced by chemical cleaning process in the domestic NPPs.

  8. The stream subsurface: nitrogen cycling and the cleansing function of hyporheic zones

    Science.gov (United States)

    Rhonda Mazza; Steve Wondzell; Jay Zarnetske

    2014-01-01

    Nitrogen is an element essential to plant growth and ecosystem productivity. Excess nitrogen, however, is a common water pollutant. It can lead to algal blooms that deplete the water's dissolved oxygen, creating "dead zones" devoid of fish and aquatic insects.Previous research showed that the subsurface area of a stream, known as the hyporheic...

  9. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory : evaluation of alkaline persulfate digestion as an alternative to Kjeldahl digestion for determination of total and dissolved nitrogen and phosphorus in water

    Science.gov (United States)

    Patton, Charles J.; Kryskalla, Jennifer R.

    2003-01-01

    Alkaline persulfate digestion was evaluated and validated as a more sensitive, accurate, and less toxic alternative to Kjeldahl digestion for routine determination of nitrogen and phosphorus in surface- and ground-water samples in a large-scale and geographically diverse study conducted by U.S. Geological Survey (USGS) between October 1, 2001, and September 30, 2002. Data for this study were obtained from about 2,100 surface- and ground-water samples that were analyzed for Kjeldahl nitrogen and Kjeldahl phosphorus in the course of routine operations at the USGS National Water Quality Laboratory (NWQL). These samples were analyzed independently for total nitrogen and total phosphorus using an alkaline persulfate digestion method developed by the NWQL Methods Research and Development Program. About half of these samples were collected during nominally high-flow (April-June) conditions and the other half were collected during nominally low-flow (August-September) conditions. The number of filtered and whole-water samples analyzed from each flow regime was about equal.By operational definition, Kjeldahl nitrogen (ammonium + organic nitrogen) and alkaline persulfate digestion total nitrogen (ammonium + nitrite + nitrate + organic nitrogen) are not equivalent. It was necessary, therefore, to reconcile this operational difference by subtracting nitrate + nitrite concentra-tions from alkaline persulfate dissolved and total nitrogen concentrations prior to graphical and statistical comparisons with dissolved and total Kjeldahl nitrogen concentrations. On the basis of two-population paired t-test statistics, the means of all nitrate-corrected alkaline persulfate nitrogen and Kjeldahl nitrogen concentrations (2,066 paired results) were significantly different from zero at the p = 0.05 level. Statistically, the means of Kjeldahl nitrogen concentrations were greater than those of nitrate-corrected alkaline persulfate nitrogen concentrations. Experimental evidence strongly

  10. Pathway and mechanism of nitrogen transformation during composting: Functional enzymes and genes under different concentrations of PVP-AgNPs.

    Science.gov (United States)

    Zeng, Guangming; Zhang, Lihua; Dong, Haoran; Chen, Yaoning; Zhang, Jiachao; Zhu, Yuan; Yuan, Yujie; Xie, Yankai; Fang, Wei

    2018-04-01

    Polyvinylpyrrolidone coated silver nanoparticles (PVP-AgNPs) were applied at different concentrations to reduce total nitrogen (TN) losses and the mechanisms of nitrogen bio-transformation were investigated in terms of the nitrogen functional enzymes and genes. Results showed that mineral N in pile 3 which was treated with AgNPs at a concentration of 10 mg/kg compost was the highest (6.58 g/kg dry weight (DW) compost) and the TN loss (47.07%) was the lowest at the end of composting. Correlation analysis indicated that TN loss was significantly correlated with amoA abundance. High throughput sequencing showed that the dominant family of ammonia-oxidizing bacteria (AOB) was Nitrosomonadaceae, and the number of Operational Taxonomic Units (OTUs) reduced after the beginning of composting when compared with day 1. In summary, treatment with AgNPs at a concentration of 10 mg/kg compost was considerable to reduce TN losses and reserve more mineral N during composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Removal of sulfur and nitrogen containing pollutants from discharge gases

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, James I. (Pittsburgh, PA)

    1986-01-01

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  12. Removal of sulfur and nitrogen containing pollutants from discharge gases

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, J.I.

    1985-02-08

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  13. The nitrogen cycle.

    Science.gov (United States)

    Stein, Lisa Y; Klotz, Martin G

    2016-02-08

    Nitrogen is the fourth most abundant element in cellular biomass, and it comprises the majority of Earth's atmosphere. The interchange between inert dinitrogen gas (N2) in the extant atmosphere and 'reactive nitrogen' (those nitrogen compounds that support, or are products of, cellular metabolism and growth) is entirely controlled by microbial activities. This was not the case, however, in the primordial atmosphere, when abiotic reactions likely played a significant role in the inter-transformation of nitrogen oxides. Although such abiotic reactions are still important, the extant nitrogen cycle is driven by reductive fixation of dinitrogen and an enzyme inventory that facilitates dinitrogen-producing reactions. Prior to the advent of the Haber-Bosch process (the industrial fixation of N2 into ammonia, NH3) in 1909, nearly all of the reactive nitrogen in the biosphere was generated and recycled by microorganisms. Although the Haber-Bosch process more than quadrupled the productivity of agricultural crops, chemical fertilizers and other anthropogenic sources of fixed nitrogen now far exceed natural contributions, leading to unprecedented environmental degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Export of nitrogen from catchments: A worldwide analysis

    International Nuclear Information System (INIS)

    Alvarez-Cobelas, M.; Angeler, D.G.; Sanchez-Carrillo, S.

    2008-01-01

    This study reviews nitrogen export rates from 946 rivers of the world to determine the influence of quantitative (runoff, rainfall, inhabitant density, catchment area, percentage of land use cover, airborne deposition, fertilizer input) and qualitative (dominant type of forest, occurrence of stagnant waterbodies, dominant land use, occurrence of point sources, runoff type) environmental factors on nitrogen fluxes. All fractions (total, nitrate, ammonia, dissolved organic and particulate organic) of nitrogen export showed a left-skewed distribution, which suggests a relatively pristine condition for most systems. Total nitrogen export showed the highest variability whereas total organic nitrogen export comprised the dominant fraction of export. Nitrogen export rates were only weakly explained by our qualitative and quantitative environmental variables. Our study suggests that the consideration of spatial and temporal scales is important for predicting nitrogen export rates using simple and easy-to-get environmental variables. Regionally based modelling approaches prove more useful than global-scale analyses. - Spatial and temporal scales are important determinants for nitrogen export from catchments and emphasis should be put on regional approaches

  15. Use of nitrogen-15 in soil-plant studies

    International Nuclear Information System (INIS)

    Sachdev, M.S.; Sachdev, P.; Subbiah, B.V.

    1996-01-01

    In this paper an overview of the selected work carried out in the country and elsewhere on the fertilizer nitrogen use efficiency, fate and balance-sheet, soil and fertilizer nitrogen transformations and biological nitrogen fixation using 15 N is given. 129 refs., 4 tabs

  16. [Interactions of straw, nitrogen fertilizer and bacterivorous nematodes on soil labile carbon and nitrogen and greenhouse gas emissions].

    Science.gov (United States)

    Zhang, Teng-Hao; Wang, Nan; Liu, Man-Qiang; Li, Fang-Hui; Zhu, Kang-Li; Li, Hui-Xin; Hu, Feng

    2014-11-01

    A 3 x 2 factorial design of microcosm experiment was conducted to investigate the interactive effects of straw, nitrogen fertilizer and bacterivorous nematodes on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), dissolved organic carbon (DOC) and nitrogen (DON), mineral nitrogen (NH(4+)-N and NO(3-)-N), and greenhouse gas (CO2, N2O and CH4) emissions. Results showed that straw amendment remarkably increased the numbers of bacterivorous nematodes and the contents of Cmic and Nmic, but Cmic and Nmic decreased with the increasing dose of nitrogen fertilization. The effects of bacterivorous nematodes strongly depended on either straw or nitrogen fertilization. The interactions of straw, nitrogen fertilization and bacterivorous nematodes on soil DOC, DON and mineral nitrogen were strong. Straw and nitrogen fertilization increased DOC and mineral nitrogen contents, but their influences on DON depended on the bacterivorous nematodes. The DOC and mineral nitrogen were negatively and positively influenced by the bacterivorous nematodes, re- spectively. Straw significantly promoted CO2 and N2O emissions but inhibited CH4 emission, while interactions between nematodes and nitrogen fertilization on emissions of greenhouse gases were obvious. In the presence of straw, nematodes increased cumulative CO2 emissions with low nitrogen fertilization, but decreased CO2 and N2O emissions with high nitrogen fertilization on the 56th day after incubation. In summary, mechanical understanding the soil ecological process would inevitably needs to consider the roles of soil microfauna.

  17. Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge: a protein model compound study.

    Science.gov (United States)

    Zhang, Jun; Tian, Yu; Cui, Yanni; Zuo, Wei; Tan, Tao

    2013-03-01

    The nitrogen transformations with attention to NH3 and HCN were investigated at temperatures of 300-800°C during microwave pyrolysis of a protein model compound. The evolution of nitrogenated compounds in the char, tar and gas products were conducted. The amine-N, heterocyclic-N and nitrile-N compounds were identified as three important intermediates during the pyrolysis. NH3 and HCN were formed with comparable activation energies competed to consume the same reactive substances at temperatures of 300-800°C. The deamination and dehydrogenation of amine-N compounds from protein cracking contributed to the formation of NH3 (about 8.9% of Soy-N) and HCN (6.6%) from 300 to 500°C. The cracking of nitrile-N and heterocyclic-N compounds from the dehydrogenation and polymerization of amine-N generated HCN (13.4%) and NH3 (31.3%) between 500 and 800°C. It might be able to reduce the HCN and NH3 emissions through controlling the intermediates production at temperatures of 500-800°C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Carbon and nitrogen dynamics in mesocosms of five different European peatlands

    Science.gov (United States)

    Blodau, Christian; Zajac, Katarzyna

    2015-04-01

    Elevated nitrogen (N) deposition, a key growth limiting nutrient in ombrotrophic peatlands, can cause various shifts in peatland N cycling. Quantification of N transformation rates and fluxes within peatlands that are induced by long-term N deposition is crucial for understanding the mechanisms and robustness of N retention. Using a 15N labeled tracer under steady state conditions at two water table levels, we investigated the fate of N in mesocosms from five European peatlands, which have a history of differing long-term N load. Peat contained the largest N pool, followed by Sphagnum (0 - 5 cm), shrubs, graminoids and the dissolved pool. We found a decline of N recovery from the peat and an increase of N recovery from shrubs and the dissolved pool across the N deposition gradient. Sphagnum mosses not only intercepted large amounts of 15N in the mesocosms (0.2 - 0.35 mg g-1) but they also retained the tracer most effectively relative to their biomass. Polluted sites (Lille Vildmose, Frölichshaier Sattelmoor) contained the largest dissolved nitrogen pools and the highest nitrate concentrations. At the same time the recoveries of their Sphagnum pools were in the range of the recovery recorded for the Sphagnum layer from the 'clean' site (Degerö Stormyr). Our experiment shows that a decline in N retention at levels above ca. 1.5 g m-2 yr-1, as expressed by elevated near-surface peat N content and increased dissolved N concentrations, might not be an evidence for Sphagnum saturation. As long as N is required for the synthesis of biomass Sphagnum species can thrive even at strongly elevated long-term N loads. A change in WT position from -28 to -8 cm influenced CO2 fluxes from mesocosms only to a small degree, which implies that small changes in water table position may be less important in controlling CO2 exchange with the atmosphere than often assumed. Although water table rise was a main driver for increase of methane emissions in all cores, short time lags (3

  19. Distribution of dissolved trace metals around the Sacrificos coral reef island, in the southwestern Gulf of Mexico.

    Science.gov (United States)

    Rosales-Hoz, L; Carranza-Edwards, A; Sanvicente-Añorve, L; Alatorre-Mendieta, M A; Rivera-Ramirez, F

    2009-11-01

    A reef system in the southwestern Gulf of Mexico is affected by anthropogenic activities, sourced by urban, fluvial, and sewage waters. Dissolved metals have higher concentrations during the rainy season. V and Pb, were derived from an industrial source and transported to the study area by rain water. On the other hand, Jamapa River is the main source for Cu and Ni, which carries dissolved elements from adjacent volcanic rocks. Principal Component Analysis shows a common source for dissolved nitrogen, phosphates, TOC, and suspended matters probably derived from a sewage treatment plant, which is situated near to the study area.

  20. Promotion Effect of Asian Dust on Phytoplankton Growth and Potential Dissolved Organic Phosphorus Utilization in the South China Sea

    Science.gov (United States)

    Chu, Qiang; Liu, Ying; Shi, Jie; Zhang, Chao; Gong, Xiang; Yao, Xiaohong; Guo, Xinyu; Gao, Huiwang

    2018-03-01

    Dust deposition is an important nutrient source to the South China Sea (SCS), but few in situ experiments were conducted on phytoplankton response to the deposition. We conducted onboard incubation experiments at three stations near Luzon Strait in the SCS, with addition of multiple dissolved inorganic nutrients, Asian dust, and rainwater. From our results, nitrogen and phosphorus were both urgently needed for phytoplankton growth in the SCS, indicated by the evident Chl a response to the addition of nitrogen and phosphorus together. Almost no evident response was observed by adding phosphorus or iron alone to incubation waters, although a delayed response of Chl a in mass concentration was observed by adding nitrogen alone. The latter implied a possible utilization of dissolved organic phosphorus because of insufficient dissolved inorganic phosphorus in incubation waters. Under such nutrient condition, Asian dust showed an apparent promotion effect on phytoplankton growth by providing sufficient amounts of nitrogen but low phosphorus. Meanwhile, it was found that large sized (> 5 μm) phytoplankton community showed different responses to dust addition at different stations. At stations A3 and A6, Chaetoceros spp. became the dominant species during the bloom period, while at station WG2, Nitzschia spp. became dominant. In combination with different initial nutrients and Chl a levels at the three stations, the different phytoplankton community evolution implied the response difference to external inputs between oligotrophic (stations A3 and A6) and ultraoligotrophic (station WG2) conditions in the SCS.

  1. Measurement of dissolved hydrogen and hydrogen gas transfer in a hydrogen-producing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shizas, I.; Bagley, D.M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2004-07-01

    This paper presents a simple method to measure dissolved hydrogen concentrations in the laboratory using standard equipment and a series of hydrogen gas transfer tests. The method was validated by measuring hydrogen gas transfer parameters for an anaerobic reactor system that was purged with 10 per cent carbon dioxide and 90 per cent nitrogen using a coarse bubble diffuser stone. Liquid samples from the reactor were injected into vials and hydrogen was allowed to partition between the liquid and gaseous phases. The concentration of dissolved hydrogen was determined by comparing the headspace injections onto a gas chromatograph and a standard curve. The detection limit was 1.0 x 10{sup -5} mol/L of dissolved hydrogen. The gas transfer rate for hydrogen in basal medium and anaerobic digester sludge was used to validate the method. Results were compared with gas transfer models. In addition to monitoring dissolved hydrogen in reactor systems, this method can help improve hydrogen production potential. 1 ref., 4 figs.

  2. Study of steam condensation in SG tubes with large amount of nitrogen to be accumulated

    Energy Technology Data Exchange (ETDEWEB)

    Logvinov, S.A.; Sitnik, Y.K. [EDO Gidropress, Podolsk (Russian Federation)

    1997-12-31

    The effect of nitrogen during SG heat transfer under SBLOCA conditions have been studied. Depressurization of the primary side leads to release of nitrogen dissolved in the hydroaccumulator water. Nitrogen can accumulate in SGs and affect adversely heat transfer under reflux condenser conditions. The main objective of the study has been to show that nitrogen does not prevent heat transfer in SGs of the VVER-640 which is reactor plant of new generation. (orig.).

  3. Study of steam condensation in SG tubes with large amount of nitrogen to be accumulated

    Energy Technology Data Exchange (ETDEWEB)

    Logvinov, S A; Sitnik, Y K [EDO Gidropress, Podolsk (Russian Federation)

    1998-12-31

    The effect of nitrogen during SG heat transfer under SBLOCA conditions have been studied. Depressurization of the primary side leads to release of nitrogen dissolved in the hydroaccumulator water. Nitrogen can accumulate in SGs and affect adversely heat transfer under reflux condenser conditions. The main objective of the study has been to show that nitrogen does not prevent heat transfer in SGs of the VVER-640 which is reactor plant of new generation. (orig.).

  4. Nitrogen-15 natural abundance of different soil N pools as a tool for assessing N transformation processes in alpine soils

    Science.gov (United States)

    Makarov, Mikhail; Malysheva, Tatiana; Tiunov, Alexei; Kadulin, Maxim; Maslov, Mikhail

    2017-04-01

    Nitrogen availability, net N mineralization, nitrification and 15N natural abundance of total soil N and small soil N pools (N-NH4+, N-NO3-, DON and microbial biomass N) were studied in a toposequence of alpine ecosystems in the Northern Caucasus. The toposequence was represented by (1) low productive alpine lichen heath (ALH) of the wind-exposed ridge and upper slope; (2) more productive Festuca varia grassland (FG) of the middle slope; (3) most productive Geranium gymnocaulon/Hedysarum caucasicum meadow (GHM) of the lower slope and (4) low productive snow bed community (SBC) of the slope bottom. Nitrogen transformation in the alpine soils produces distinct N pools with different 15N enrichment: DON/microbial biomass N > total N > N-NH4+ > N-NO3-. Grassland and meadow soils of the middle part of the toposequence are characterized by higher nitrogen transformation activities and higher δ15 values of total N and N-NH4+. Field incubation of alpine soils increased δ15N of N-NH4+ from -2.6 - +2.0‰ to +6.1 - +15.7‰. The N-NO3-produced in the incubation experiment had extremely low (negative) δ15N values (up to -14‰). We found a positive correlation between δ15N of different soil N pools (total N, N-NH4+ and N-NO3-) and net N mineralization and nitrification. Nitrification controls the formation of 15N enriched N-NH4+ pool while N mineralization probably had an important role in regulation of 15N enrichment of DON pool in alpine soils. Overall, our results support the hypothesis that 15N is more enriched in N-rich and more depleted in N-poor ecosystems. We conclude that δ15N values of different soil N pools could be a good indicator of microbial N transformation in alpine soils of the Northern Caucasus. Acknowledgement: This study was supported by Russian Science Foundation (16-14-10208).

  5. Observation and modeling of 222Rn daughters in liquid nitrogen

    International Nuclear Information System (INIS)

    Frodyma, N.; Pelczar, K.; Wójcik, M.

    2014-01-01

    The results of alpha spectrometric measurements of the activity of 222 Rn daughters dissolved in liquefied nitrogen are presented. A direct detection method of ionized alpha-emitters from the 222 Rn decay chain ( 214 Po and 218 Po) in a cryogenic liquid in the presence of an external electric field is shown. Properties of the radioactive ions are derived from a proposed model of ion production and transport in the cryogenic liquid. Ionic life-time of the ions was found to be on the order of 10 s in liquid nitrogen (4.0 purity class). The presence of positive and negative ions was observed. - Highlights: • A direct detection method of the alpha-emitters in a cryogenic liquid is shown. • We examine electrostatic drifting of the radioactive ions in liquid nitrogen. • The ions belong to the Radon-222 decay chain; Radon-222 is dissolved in the liquid. • The model of the ions production and behaviour in the liquid is proposed. • The ion production significantly depends on the nuclear decay type (alpha or beta)

  6. The Influence of Physical Forcing on Bottom-water Dissolved Oxygen within the Caloosahatchee River Estuary, FL

    Science.gov (United States)

    Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of dissolved oxygen (DO), salinity, temperature, nutrients (nitrogen and phosphorus), and chlorophyll a in the Caloosahatchee Riv...

  7. A study on the photo catalytic decomposition reactions of organics dissolved in water (II)

    International Nuclear Information System (INIS)

    Sung, K.W.; Na, J. W.; Cho, Y. H.; Chung, H. H.

    2000-01-01

    Experiments on aqueous TiO 2 photo catalytic reaction of nitrogen containing organic compounds such as ethylamine, phenylhydrazine, pyridine, urea and EDTA were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photo catalytic decomposition were estimated. It was shown that the decomposition characteristics was linearly proportional to nitrogen atomic charge value. On the other hand, the effects of aqueous pH, oxygen content and concentration on the TiO 2 photo catalytic characteristics of EDTA, EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5-3.0 and with more dissolved oxygen. These results could be applied to construction of a process for removal of organic impurities dissolved in a source of system water, or for treatment of EDTA-containing liquid waste produced by a chemical cleaning in the domestic NPPs. (author)

  8. A study on the photo catalytic decomposition reactions of organics dissolved in water (II)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K.W.; Na, J. W.; Cho, Y. H.; Chung, H. H

    2000-01-01

    Experiments on aqueous TiO{sub 2} photo catalytic reaction of nitrogen containing organic compounds such as ethylamine, phenylhydrazine, pyridine, urea and EDTA were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photo catalytic decomposition were estimated. It was shown that the decomposition characteristics was linearly proportional to nitrogen atomic charge value. On the other hand, the effects of aqueous pH, oxygen content and concentration on the TiO{sub 2} photo catalytic characteristics of EDTA, EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5-3.0 and with more dissolved oxygen. These results could be applied to construction of a process for removal of organic impurities dissolved in a source of system water, or for treatment of EDTA-containing liquid waste produced by a chemical cleaning in the domestic NPPs. (author)

  9. Hydrogen and Nitrogen Control in Ladle and Casting Operations

    Energy Technology Data Exchange (ETDEWEB)

    Richard J. Fruehan; Siddhartha Misra

    2005-01-15

    In recent years there has been an increasing demand to reduce and control the amount of dissolved gases in steel. Hydrogen and nitrogen are two of the most important gases which when dissolved in liquid steel affect its properties significantly. Several steelmaking additions have been investigated in this research for their effect on the hydrogen and nitrogen content of steels. It has been established that calcium hydroxide (hydrated lime) acts as a source of hydrogen. Carburizers, such as metallurgical coke, were found to result in no hydrogen pickup when added to liquid steel. Addition of petroleum coke, on the other hand, increased the hydrogen content of liquid steel. Ferroalloy such as medium carbon ferromanganese when added to the liquid iron was found to increase its nitrogen content, the increase being proportional to the amount of ferroalloy added. Similarly, addition of pitch coke, which had a significant nitrogen impurity, increased the nitrogen content of liquid iron. A mathematical model was developed to quantify the absorption of nitrogen and hydrogen from the air bubbles entrained during tapping of liquid steel. During the bottom stirring of liquid metal in a ladle, the inert gas escaping from the top displaces the slag layer and often forms an open eye. The absorption of atmospheric nitrogen through the spout eye was estimated for different slag thickness and gas flow rate. The ultimate goal of this research was to develop a comprehensive set of equations which could predict the nitrogen and hydrogen pickup from their various sources. Estimates of hydrogen and nitrogen pickup during the steel transfer operations such as tapping and ladle stirring and the predicted pickup from steelmaking additions were integrated into empirical equations. The comprehensive model is designed to predict the gas pickup under varying operating conditions such as the metal oxygen and sulfur content, the total tapping or stirring time, the stirring gas flow rate and the

  10. Modelling Nitrogen Transformation in Horizontal Subsurface Flow ...

    African Journals Online (AJOL)

    A mathematical model was developed to permit dynamic simulation of nitrogen interaction in a pilot horizontal subsurface flow constructed wetland receiving effluents from primary facultative pond. The system was planted with Phragmites mauritianus, which was provided with root zone depth of 75 cm. The root zone was ...

  11. The nitrogen cycle: Atmosphere interactions

    Science.gov (United States)

    Levine, J. S.

    1984-01-01

    Atmospheric interactions involving the nitrogen species are varied and complex. These interactions include photochemical reactions, initiated by the absorption of solar photons and chemical kinetic reactions, which involve both homogeneous (gas-to-gas reactions) and heterogeneous (gas-to-particle) reactions. Another important atmospheric interaction is the production of nitrogen oxides by atmospheric lightning. The nitrogen cycle strongly couples the biosphere and atmosphere. Many nitrogen species are produced by biogenic processes. Once in the atmosphere nitrogen oxides are photochemically and chemically transformed to nitrates, which are returned to the biosphere via precipitation, dry deposition and aerosols to close the biosphere-atmosphere nitrogen cycle. The sources, sinks and photochemistry/chemistry of the nitrogen species; atmospheric nitrogen species; souces and sinks of nitrous oxide; sources; sinks and photochemistry/chemistry of ammonia; seasonal variation of the vertical distribution of ammonia in the troposphere; surface and atmospheric sources of the nitrogen species, and seasonal variation of ground level ammonia are summarized.

  12. Coulometric determination of dissolved hydrogen with a multielectrolytic modified carbon felt electrode-based sensor.

    Science.gov (United States)

    Matsuura, Hiroaki; Yamawaki, Yosuke; Sasaki, Kosuke; Uchiyama, Shunichi

    2013-06-01

    A multielectrolytic modified carbon electrode (MEMCE) was fabricated by the electrolytic-oxidation/reduction processes. First, the functional groups containing nitrogen atoms such as amino group were introduced by the electrode oxidation of carbon felt electrode in an ammonium carbamate aqueous solution, and next, this electrode was electroreduced in sulfuric acid. The redox waves between hydrogen ion and hydrogen molecule at highly positive potential range appeared in the cyclic voltammogram obtained by MEMCE. A coulometric cell using MEMCE with a catalytic activity of electrooxidation of hydrogen molecule was constructed and was used for the measurement of dissolved hydrogen. The typical current vs. time curve was obtained by the repetitive measurement of the dissolved hydrogen. These curves indicated that the measurement of dissolved hydrogen was finished completely in a very short time (ca. 10 sec). A linear relationship was obtained between the electrical charge needed for the electrooxidation process of hydrogen molecule and dissolved hydrogen concentration. This indicates that the developed coulometric method can be used for the determination of the dissolved hydrogen concentration.

  13. Lipids as paleomarkers to constrain the marine nitrogen cycle

    NARCIS (Netherlands)

    Rush, Darci; Sinninghe Damsté, Jaap S

    Global climate is, in part, regulated by the effect of microbial processes on biogeochemical cycling. The nitrogen cycle, in particular, is driven by microorganisms responsible for the fixation and loss of nitrogen, and the reduction-oxidation transformations of bio-available nitrogen. Within marine

  14. Lipids as paleomarkers to constrain the marine nitrogen cycle

    NARCIS (Netherlands)

    Rush, D.; Sinninghe Damsté, J.S.

    2017-01-01

    Global climate is, in part, regulated by the effect of microbial processes on biogeochemical cycling. The nitrogen cycle, in particular, is driven by microorganisms responsible for the fixation and loss of nitrogen, and the reduction-oxidation transformations of bio-available nitrogen. Within marine

  15. Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary

    Science.gov (United States)

    Santos, Isaac R.; Burnett, William C.; Dittmar, Thorsten; Suryaputra, I. G. N. A.; Chanton, Jeffrey

    2009-03-01

    We hypothesize that nutrient cycling in a Gulf of Mexico subterranean estuary (STE) is fueled by oxygen and labile organic matter supplied by tidal pumping of seawater into the coastal aquifer. We estimate nutrient production rates using the standard estuarine model and a non-steady-state box model, separate nutrient fluxes associated with fresh and saline submarine groundwater discharge (SGD), and estimate offshore fluxes from radium isotope distributions. The results indicate a large variability in nutrient concentrations over tidal and seasonal time scales. At high tide, nutrient concentrations in shallow beach groundwater were low as a result of dilution caused by seawater recirculation. During ebb tide, the concentrations increased until they reached a maximum just before the next high tide. The dominant form of nitrogen was dissolved organic nitrogen (DON) in freshwater, nitrate in brackish waters, and ammonium in saline waters. Dissolved organic carbon (DOC) production was two-fold higher in the summer than in the winter, while nitrate and DON production were one order of magnitude higher. Oxic remineralization and denitrification most likely explain these patterns. Even though fresh SGD accounted for only ˜5% of total volumetric additions, it was an important pathway of nutrients as a result of biogeochemical inputs in the mixing zone. Fresh SGD transported ˜25% of DOC and ˜50% of total dissolved nitrogen inputs into the coastal ocean, with the remainder associated with a one-dimensional vertical seawater exchange process. While SGD volumetric inputs are similar seasonally, changes in the biogeochemical conditions of this coastal plain STE led to higher summertime SGD nutrient fluxes (40% higher for DOC and 60% higher for nitrogen in the summer compared to the winter). We suggest that coastal primary production and nutrient dynamics in the STE are linked.

  16. Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant.

    Science.gov (United States)

    Aboobakar, Amina; Cartmell, Elise; Stephenson, Tom; Jones, Mark; Vale, Peter; Dotro, Gabriela

    2013-02-01

    This paper reports findings from online, continuous monitoring of dissolved and gaseous nitrous oxide (N₂O), combined with dissolved oxygen (DO) and ammonia loading, in a full-scale nitrifying activated sludge plant. The study was conducted over eight weeks, at a 210,000 population equivalent sewage treatment works in the UK. Results showed diurnal variability in the gaseous and dissolved N₂O emissions, with hourly averages ranging from 0 to 0.00009 kgN₂O-N/h for dissolved and 0.00077-0.0027 kgN₂O-N/h for gaseous nitrous oxide emissions respectively, per ammonia loading, depending on the time of day. Similarly, the spatial variability was high, with the highest emissions recorded immediately after the anoxic zone and in the final pass of the aeration lane, where ammonia concentrations were typically below 0.5 mg/L. Emissions were shown to be negatively correlated to dissolved oxygen, which fluctuated between 0.5 and 2.5 mgO₂/L, at the control set point of 1.5 mgO₂/L. The resulting dynamic DO conditions are known to favour N₂O production, both by autotrophic and heterotrophic processes in mixed cultures. Average mass emissions from the lane were greater in the gaseous (0.036% of the influent total nitrogen) than in the dissolved (0.01% of the influent total nitrogen) phase, and followed the same diurnal and spatial patterns. Nitrous oxide emissions corresponded to over 34,000 carbon dioxide equivalents/year, adding 13% to the carbon footprint associated with the energy requirements of the monitored lane. A clearer understanding of emissions obtained from real-time data can help towards finding the right balance between improving operational efficiency and saving energy, without increasing N₂O emissions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Dissolved Gas Analysis Principle-Based Intelligent Approaches to Fault Diagnosis and Decision Making for Large Oil-Immersed Power Transformers: A Survey

    Directory of Open Access Journals (Sweden)

    Lefeng Cheng

    2018-04-01

    Full Text Available Compared with conventional methods of fault diagnosis for power transformers, which have defects such as imperfect encoding and too absolute encoding boundaries, this paper systematically discusses various intelligent approaches applied in fault diagnosis and decision making for large oil-immersed power transformers based on dissolved gas analysis (DGA, including expert system (EPS, artificial neural network (ANN, fuzzy theory, rough sets theory (RST, grey system theory (GST, swarm intelligence (SI algorithms, data mining technology, machine learning (ML, and other intelligent diagnosis tools, and summarizes existing problems and solutions. From this survey, it is found that a single intelligent approach for fault diagnosis can only reflect operation status of the transformer in one particular aspect, causing various degrees of shortcomings that cannot be resolved effectively. Combined with the current research status in this field, the problems that must be addressed in DGA-based transformer fault diagnosis are identified, and the prospects for future development trends and research directions are outlined. This contribution presents a detailed and systematic survey on various intelligent approaches to faults diagnosing and decisions making of the power transformer, in which their merits and demerits are thoroughly investigated, as well as their improvement schemes and future development trends are proposed. Moreover, this paper concludes that a variety of intelligent algorithms should be combined for mutual complementation to form a hybrid fault diagnosis network, such that avoiding these algorithms falling into a local optimum. Moreover, it is necessary to improve the detection instruments so as to acquire reasonable characteristic gas data samples. The research summary, empirical generalization and analysis of predicament in this paper provide some thoughts and suggestions for the research of complex power grid in the new environment, as

  18. DEVELOPMENT OF FUZZY NEURAL NETWORK FOR THE INTERPRETATION OF THE RESULTS OF DISSOLVED IN OIL GASES ANALYSIS

    Directory of Open Access Journals (Sweden)

    V.Е. Bondarenko

    2017-04-01

    Full Text Available Purpose. The purpose of this paper is a diagnosis of power transformers on the basis of the results of the analysis of gases dissolved in oil. Methodology. To solve this problem a fuzzy neural network has been developed, tested and trained. Results. The analysis of neural network to recognize the possibility of developing defects at an early stage of their development, or growth of gas concentrations in the healthy transformers, made after the emergency actions on the part of electric networks is made. It has been established greatest difficulty in making a diagnosis on the criterion of the boundary gas concentrations, are the results of DGA obtained for the healthy transformers in which the concentration of gases dissolved in oil exceed their limit values, as well as defective transformers at an early stage development defects. The analysis showed that the accuracy of recognition of fuzzy neural networks has its limitations, which are determined by the peculiarities of the DGA method, used diagnostic features and the selected decision rule. Originality. Unlike similar studies in the training of the neural network, the membership functions of linguistic terms were chosen taking into account the functions gas concentrations density distribution transformers with various diagnoses, allowing to consider a particular gas content of oils that are typical of a leaky transformer, and the operating conditions of the equipment. Practical value. Developed fuzzy neural network allows to perform diagnostics of power transformers on the basis of the result of the analysis of gases dissolved in oil, with a high level of reliability.

  19. Characterization of the rate and temperature sensitivities of bacterial remineralization of dissolved organic phosphorus by natural populations

    Directory of Open Access Journals (Sweden)

    Angelicque E. White

    2012-08-01

    Full Text Available Production, transformation, and degradation are the principal components of the cycling of dissolved organic matter (DOM in marine systems. Heterotrophic Bacteria (and Archaea play a large part in this cycling via enzymatic decomposition and intracellular transformations of organic material to inorganic carbon (C, nitrogen (N , and phosphorus (P. The rate and magnitude of inorganic nutrient regeneration from DOM is related to the elemental composition and lability of DOM substrates as well as the nutritional needs of the mediating organisms. While many previous efforts have focused on C and N cycling of DOM, less is known in regards to the controls of organic P utilization and remineralization by natural populations of bacteria. In order to constrain the relative time scales and degradation of select dissolved organic P (DOP compounds we have conducted a series of experiments focused on (1 assessment of the short-term lability of a range of DOP compounds, (2 characterization of labile DOP remineralization rates and (3 examination of temperature sensitivities of labile DOP remineralization for varying bacterial populations. Results reinforce previous findings of monoester and polyphosphate lability and the relative recalcitrance of a model phosphonate: 2-aminoethylphosphonate. High resolution time-series of P monoester remineralization indicates decay constants on the order of 0.67-7.04 d-1 for bacterial populations isolated from coastal and open ocean surface waters. The variability of these rates is predictably related to incubation temperature and initial concentrations of heterotrophic bacteria. Additional controls on DOP hydrolysis included seasonal shifts in bacterial populations and the physiological state of bacteria at the initiation of DOP addition experiments. Composite results indicate that bacterial hydrolysis of P-monoesters exceeds bacterial P demand and thus DOP remineralization efficiency may control P availability to autotrophs.

  20. Quantification of Humic Substances in Natural Water Using Nitrogen-Doped Carbon Dots.

    Science.gov (United States)

    Guan, Yan-Fang; Huang, Bao-Cheng; Qian, Chen; Yu, Han-Qing

    2017-12-19

    Dissolved organic matter (DOM) is ubiquitous in aqueous environments and plays a significant role in pollutant mitigation, transformation and organic geochemical circulation. DOM is also capable of forming carcinogenic byproducts in the disinfection treatment processes of drinking water. Thus, efficient methods for DOM quantification are highly desired. In this work, a novel sensor for rapid and selective detection of humic substances (HS), a key component of DOM, based on fluorescence quenching of nitrogen-doped carbon quantum dots was developed. The experimental results show that the HS detection range could be broadened to 100 mg/L with a detection limit of 0.2 mg/L. Moreover, the detection was effective within a wide pH range of 3.0 to 12.0, and the interferences of ions on the HS measurement were negligible. A good detection result for real surface water samples further validated the feasibility of the developed detection method. Furthermore, a nonradiation electron transfer mechanism for quenching the nitrogen-doped carbon-dots fluorescence by HS was elucidated. In addition, we prepared a test paper and proved its effectiveness. This work provides a new efficient method for the HS quantification than the frequently used modified Lowry method in terms of sensitivity and detection range.

  1. Lipids as paleomarkers to constrain the marine nitrogen cycle.

    Science.gov (United States)

    Rush, Darci; Sinninghe Damsté, Jaap S

    2017-06-01

    Global climate is, in part, regulated by the effect of microbial processes on biogeochemical cycling. The nitrogen cycle, in particular, is driven by microorganisms responsible for the fixation and loss of nitrogen, and the reduction-oxidation transformations of bio-available nitrogen. Within marine systems, nitrogen availability is often the limiting factor in the growth of autotrophic organisms, intrinsically linking the nitrogen and carbon cycles. In order to elucidate the state of these cycles in the past, and help envisage present and future variability, it is essential to understand the specific microbial processes responsible for transforming bio-available nitrogen species. As most microorganisms are soft-bodied and seldom leave behind physical fossils in the sedimentary record, recalcitrant lipid biomarkers are used to unravel microbial processes in the geological past. This review emphasises the recent advances in marine nitrogen cycle lipid biomarkers, underlines the missing links still needed to fully elucidate past shifts in this biogeochemically-important cycle, and provides examples of biomarker applications in the geological past. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Nitrogen fixation by cyanobacteria stimulates production in Baltic food webs.

    Science.gov (United States)

    Karlson, Agnes M L; Duberg, Jon; Motwani, Nisha H; Hogfors, Hedvig; Klawonn, Isabell; Ploug, Helle; Barthel Svedén, Jennie; Garbaras, Andrius; Sundelin, Brita; Hajdu, Susanna; Larsson, Ulf; Elmgren, Ragnar; Gorokhova, Elena

    2015-06-01

    Filamentous, nitrogen-fixing cyanobacteria form extensive summer blooms in the Baltic Sea. Their ability to fix dissolved N2 allows cyanobacteria to circumvent the general summer nitrogen limitation, while also generating a supply of novel bioavailable nitrogen for the food web. However, the fate of the nitrogen fixed by cyanobacteria remains unresolved, as does its importance for secondary production in the Baltic Sea. Here, we synthesize recent experimental and field studies providing strong empirical evidence that cyanobacterial nitrogen is efficiently assimilated and transferred in Baltic food webs via two major pathways: directly by grazing on fresh or decaying cyanobacteria and indirectly through the uptake by other phytoplankton and microbes of bioavailable nitrogen exuded from cyanobacterial cells. This information is an essential step toward guiding nutrient management to minimize noxious blooms without overly reducing secondary production, and ultimately most probably fish production in the Baltic Sea.

  3. Towards an understanding of feedbacks between plant productivity, acidity and dissolved organic matter

    Science.gov (United States)

    Rowe, Ed; Tipping, Ed; Davies, Jessica; Monteith, Don; Evans, Chris

    2014-05-01

    The recent origin of much dissolved organic carbon (DOC) (Tipping et al., 2010) implies that plant productivity is a major control on DOC fluxes. However, the flocculation, sorption and release of potentially-dissolved organic matter are governed by pH, and widespread increases in DOC concentrations observed in northern temperate freshwater systems seem to be primarily related to recovery from acidification (Monteith et al., 2007). We explore the relative importance of changes in productivity and pH using a model, MADOC, that incorporates both these effects (Rowe et al., 2014). The feedback whereby DOC affects pH is included. The model uses an annual timestep and relatively simple flow-routing, yet reproduces observed changes in DOC flux and pH in experimental (Evans et al., 2012) and survey data. However, the first version of the model probably over-estimated responses of plant productivity to nitrogen (N) deposition in upland semi-natural ecosystems. There is a strong case that plant productivity is an important regulator of DOC fluxes, and theoretical reasons for suspecting widespread productivity increases in recent years due not only to N deposition but to temperature and increased atmospheric CO2 concentrations. However, evidence that productivity has increased in upland semi-natural ecosystems is sparse, and few studies have assessed the major limitations to productivity in these habitats. In systems where phosphorus (P) limitation prevails, or which are co-limited, productivity responses to anthropogenic drivers will be limited. We present a revised version of the model that incorporates P cycling and appears to represent productivity responses to atmospheric N pollution more realistically. Over the long term, relatively small fluxes of nutrient elements into and out of ecosystems can profoundly affect productivity and the accumulation of organic matter. Dissolved organic N (DON) is less easily intercepted by plants and microbes than mineral N, and DON

  4. Transformations of dissolved organic matter induced by UV photolysis, Hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UV-Based advanced oxidation processes.

    Science.gov (United States)

    Varanasi, Lathika; Coscarelli, Erica; Khaksari, Maryam; Mazzoleni, Lynn R; Minakata, Daisuke

    2018-05-15

    Considering the increasing identification of trace organic contaminants in natural aquatic environments, the removal of trace organic contaminants from water or wastewater discharge is an urgent task. Ultraviolet (UV) and UV-based advanced oxidation processes (AOPs), such as UV/hydrogen peroxide (UV/H 2 O 2 ), UV/free chlorine and UV/persulfate, are attractive and promising approaches for the removal of these contaminants due to the high reactivity of active radical species produced in these UV-AOPs with a wide variety of organic contaminants. However, the removal efficiency of trace contaminants is greatly affected by the presence of background dissolved organic matter (DOM). In this study, we use ultrahigh resolution mass spectrometry to evaluate the transformation of a standard Suwanee River fulvic acid DOM isolate in UV photolysis and UV-AOPs. The use of probe compounds allows for the determination of the steady-state concentrations of active radical species in each UV-AOP. The changes in the H/C and O/C elemental ratios, double bond equivalents, and the low-molecular-weight transformation product concentrations of organic acids reveal that different DOM transformation patterns are induced by each UV-AOP. By comparison with the known reactivities of each radical species with specific organic compounds, we mechanistically and systematically elucidate the molecular-level DOM transformation pathways induced by hydroxyl, chlorine, and sulfate radicals in UV-AOPs. We find that there is a distinct transformation in the aliphatic components of DOM due to HO• in UV/H 2 O 2 and UV/free chlorine. Cl• induced transformation of olefinic species is also observed in the UV/free chlorine system. Transformation of aromatic and olefinic moieties by SO 4 •- are the predominant pathways in the UV/persulfate system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Distribution of dissolved manganese in the Peruvian Upwelling and Oxygen Minimum Zone

    Science.gov (United States)

    Vedamati, Jagruti; Chan, Catherine; Moffett, James W.

    2015-05-01

    The geochemistry of manganese (Mn) in seawater is dominated by its redox chemistry, as Mn(II) is soluble and Mn(IV) forms insoluble oxides, and redox transformations are mediated by a variety of processes in the oceans. Dissolved Mn (DMn) accumulates under reducing conditions and is depleted under oxidizing conditions. Thus the Peruvian upwelling region, characterized by highly reducing conditions over a broad continental shelf and a major oxygen minimum zone extending far offshore, is potentially a large source of Mn to the eastern Tropical South Pacific. In this study, DMn was determined on cruises in October 2005 and February 2010 in the Peruvian Upwelling and Oxygen Minimum Zone, to evaluate the relationship between Mn, oxygen and nitrogen cycle processes. DMn concentrations were determined using simple dilution and matrix-matched external standardization inductively coupled mass spectrometry. Surprisingly, DMn was depleted under the most reducing conditions along the Peruvian shelf. Concentrations of dissolved Mn in surface waters increased offshore, indicating that advection of Mn offshore from the Peruvian shelf is a minor source. Subsurface Mn maxima were observed within the oxycline rather than within the oxygen minimum zone (OMZ), indicating they arise from remineralization of organic matter rather than reduction of Mn oxides. The distribution of DMn appears to be dominated by non-redox processes and inputs from the atmosphere and from other regions associated with specific water masses. Lower than expected DMn concentrations on the shelf probably reflect limited fluvial inputs from the continent and efficient offshore transport. This behavior is in stark contrast to Fe, reported in a companion study which is very high on the shelf and undergoes dynamic redox cycling.

  6. Trend of dissolved inorganic nitrogen at stations downstream from the Three-Gorges Dam of Yangtze River

    International Nuclear Information System (INIS)

    Sun, C.C.; Shen, Z.Y.; Xiong, M.; Ma, F.B.; Li, Y.Y.; Chen, L.; Liu, R.M.

    2013-01-01

    The TRAMO/SEATS program, combined with the Hodrick–Prescott (HP) filter, was used to detect trends and potential change points in time series of dissolved inorganic nitrogen (DIN) at three stations along the Yangtze River. The trend components were extracted, and two change points were successfully detected. The components revealed that DIN has been increasing at all the stations since the 1990s, although variations exist. Changes visible before 2002 illustrate the differences in agriculture development among regions upstream from the stations. The Three-Gorges Dam (TGD), which began to impound in 2003, led to years of different trends. The DIN concentration, which had been trending upward prior to that date, began a slightly downward trend because of NH 4 + depletion. Readings at the Yichang station revealed this trend most strongly; those at the Hankou station less so. The Datong station was far enough away from the TGD so that no obvious effects were seen. -- Highlights: •TRAMO/SEATS program coupled with HP filter was used to find water quality trends. •Smooth trends other than step trends were separated from trend-cycle components. •DIN concentration was proved to be a reflection of agricultural development. •The three stations experienced different agricultural development since 1990s. •The impoundment of the Three-Gorges Dam can impact as far as to the Hankou station. -- DIN concentrations were reflections of agricultural development in the YRB, but the impoundment of TGD since June, 2003 also had impacts on DIN concentrations far to the Hankou station

  7. Microbial transformations of nitrogen, sulfur and iron dictate vegetation composition in wetlands: a review

    Directory of Open Access Journals (Sweden)

    Leon P.M. Lamers

    2012-04-01

    Full Text Available The majority of studies on rhizospheric interactions between microbial communities and vegetation focus on pathogens, mycorrhizal symbiosis, and/or carbon transformations. Although the biogeochemical transformations of nitrogen (N, sulfur (S and iron (Fe have profound effects on plants, these effects have received far less attention. Firstly, all three elements are plant nutrients, and microbial activity significantly changes their mobility and availability. Secondly, microbial oxidation with oxygen supplied by radial oxygen loss (ROL from roots in wetlands causes acidification, while reduction using alternative electron acceptors leads to generation of alkalinity, affecting pH in the rhizosphere and hence plant composition. Thirdly, reduced species of all three elements may become phytotoxic. In addition, Fe cycling is tightly linked to that of S and phosphorus (P. As water level fluctuations are very common in wetlands, rapid changes in the availability of oxygen and alternative terminal electron acceptors will result in strong changes in the prevalent microbial redox reactions, with significant effects on plant growth. Depending on geological and hydrological settings, these interacting microbial transformations change the conditions and resource availability for plants, which are strong drivers of vegetation development and composition by changing relative competitive strengths. Conversely, microbial composition is strongly driven by vegetation composition. Therefore, the combination of micro- and macroecological knowledge is essential to understand the biogeochemical and biological key factors driving heterogeneity and total (i.e., micro-macro community composition at different spatial and temporal scales. As N and S inputs have drastically increased due to anthropogenic forcing and Fe inputs have decreased at a global scale, this combined approach has become even more urgent.

  8. Dissolved organic matter (DOM) export to a temperate estuary: Seasonal variations and implications of land use

    DEFF Research Database (Denmark)

    Stedmon, C. A.; Markager, S.; Søndergaard, M.

    2006-01-01

    Inputs of dissolved carbon, nitrogen, and phosphorus were assessed for an estuary and its catchment (Horsens, Denmark). Seasonal patterns in the concentrations of DOM in the freshwater supply to the estuary differed depending on the soil and drainage characteristics of the area. In streams draini...

  9. Reaction between barium and nitrogen in liquid sodium

    International Nuclear Information System (INIS)

    Addison, C.C.; Pulham, R.J.; Trevillion, E.A.

    1975-01-01

    Nitrogen in increasing amounts has been added to separate solutions of barium in sodium of constant composition (ca.4.40 mol % Ba) at 300 0 C. After rendering each mixture homogenous using an electromagnetic pump, filtration, and nitrogen analysis, all the N 2 added has been found in solution up to a solution composition approximating to Ba 4 N (i.e. 1.1 mol % N) beyond which the quantity of dissolved N 2 decreases progressively due to precipitation of the nitride Ba 2 N. The solubilization is interpreted in terms of strong preferential solvation of the nitride ion by barium cations. (author)

  10. Effects of nutrient enrichment on the release of dissolved organic carbon and nitrogen by the scleractinian coral Montipora digitata

    Science.gov (United States)

    Tanaka, Y.; Ogawa, H.; Miyajima, T.

    2010-09-01

    The effects of nutrient enrichment on the release of dissolved organic carbon and nitrogen (DOC and DON, respectively) from the coral Montipora digitata were investigated in the laboratory. Nitrate (NO3 -) and phosphate (PO4 3-) were supplied to the aquarium to get the final concentrations of 10 and 0.5 μmol l-1, respectively, and the corals were incubated for 8 days. The release rate of DON per unit coral surface area significantly decreased after the nutrient enrichment, while the release rate of DOC was constant. Because the chlorophyll a (chl a) content of zooxanthellae per unit surface area increased, the release rate of DOC significantly decreased when normalized to unit chl a. These results suggested that the incorporation of NO3 - and PO4 3- stimulated the synthesis of new cellular components in the coral colonies and consequently, reduced extracellular release of DOC and DON. Actually, significant increase in N and P contents relative to C content was observed in the coral’s tissue after the nutrient enrichment. The present study has concluded that inorganic nutrient enrichment not only affects coral-algal metabolism inside the colony but also affects a microbial community around the coral because the organic matter released from corals functions as energy carrier in the coral reef ecosystem.

  11. Effects of short-term warming and nitrogen addition on the quantity and quality of dissolved organic matter in a subtropical Cunninghamia lanceolata plantation

    Science.gov (United States)

    Yuan, Xiaochun; Si, Youtao; Lin, Weisheng; Yang, Jingqing; Wang, Zheng; Zhang, Qiufang; Qian, Wei; Yang, Yusheng

    2018-01-01

    Increasing temperature and nitrogen (N) deposition are two large-scale changes projected to occur over the coming decades. The effects of these changes on dissolved organic matter (DOM) are largely unknown. This study aimed to assess the effects of warming and N addition on the quantity and quality of DOM from a subtropical Cunninghamia lanceolata plantation. Between 2014 and 2016, soil solutions were collected from 0–15, 15–30, and 30–60 cm depths by using a negative pressure sampling method. The quantity and quality of DOM were measured under six different treatments. The spectra showed that the DOM of the forest soil solution mainly consisted of aromatic protein-like components, microbial degradation products, and negligible amounts of humic-like substances. Warming, N addition, and warming + N addition significantly inhibited the concentration of dissolved organic carbon (DOC) in the surface (0–15 cm) soil solution. Our results suggested that warming reduced the amount of DOM originating from microbes. The decrease in protein and carboxylic acid contents was mostly attributed to the reduction of DOC following N addition. The warming + N addition treatment showed an interactive effect rather than an additive effect. Thus, short-term warming and warming + N addition decreased the quantity of DOM and facilitated the migration of nutrients to deeper soils. Further, N addition increased the complexity of the DOM structure. Hence, the loss of soil nutrients and the rational application of N need to be considered in order to prevent the accumulation of N compounds in soil. PMID:29360853

  12. Dissolved organic nutrients and phytoplankton production in the Mandovi estuary and coastal waters of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.

    Total organic nitrogen (TON) and dissolved organic phosphorus (DOP) in the coastal and estuarine waters of Goa, India varied from 0.6 to 47.1 mu g-at N 1-1 and 0.12 to 3.49 mu g-at P l-1 respectively. The chlorophyll content of these waters...

  13. Pd/Ag coated fiber Bragg grating sensor for hydrogen monitoring in power transformers.

    Science.gov (United States)

    Ma, G M; Jiang, J; Li, C R; Song, H T; Luo, Y T; Wang, H B

    2015-04-01

    Compared with conventional DGA (dissolved gas analysis) method for on-line monitoring of power transformers, FBG (fiber Bragg grating) hydrogen sensor represents marked advantages over immunity to electromagnetic field, time-saving, and convenience to defect location. Thus, a novel FBG hydrogen sensor based on Pd/Ag (Palladium/Silver) along with polyimide composite film to measure dissolved hydrogen concentration in large power transformers is proposed in this article. With the help of Pd/Ag composite coating, the enhanced performance on mechanical strength and sensitivity is demonstrated, moreover, the response time and sensitivity influenced by oil temperature are solved by correction lines. Sensitivity measurement and temperature calibration of the specific hydrogen sensor have been done respectively in the lab. And experiment results show a high sensitivity of 0.055 pm/(μl/l) with instant response time about 0.4 h under the typical operating temperature of power transformers, which proves a potential utilization inside power transformers to monitor the health status by detecting the dissolved hydrogen concentration.

  14. Fuel-coolant interactions: preliminary experiments on the effect of gases dissolved in the 'coolant'

    International Nuclear Information System (INIS)

    Asher, R.C.; Davies, D.; Jones, P.G.

    1976-12-01

    A simple apparatus has been used to study fuel-coolant interactions under reasonably well controlled conditions. Preliminary experiments have used water as the 'coolant' and molten tin at 800 0 C as the 'fuel' and have investigated how the violence of the interaction is affected by dissolving gases (oxygen, nitrogen, carbon dioxide and nitrous oxide) in the water. It was found that saturating the water with carbon dioxide or nitrous oxide completely suppresses the violent interaction. Experiments in which the concentrations of these gases were varied showed that a certain critical concentration was needed; below this concentration the dissolved gas has no significant effect but above it the suppression is

  15. Control of nitrogen concentration in liquid lithium by iron-titanium alloy

    International Nuclear Information System (INIS)

    Hirakane, Shinji; Yoneoka, Toshiaki; Tanaka, Satoru

    2006-01-01

    Reducing the nitrogen concentration in liquid lithium is one of the most important steps in creating a liquid lithium blanket system. In this study, in order to verify the nitrogen gettering performance of Fe-Ti alloy, the variation in the nitrogen concentration in liquid lithium, into which Fe-10 at.% Ti or Fe-5 at.% Ti getter was immersed, was examined. The results confirmed a gettering performance of Fe-Ti alloy comparable to that of V-Ti alloy, although the effects were not durable in either the Fe-Ti or the V-Ti alloy. After the immersion test, the existing states of nitrogen absorbed in the gettering material were analyzed by means of XRD, XMA and XPS. TiN and some nitrogen dissolved in α-Fe without forming TiN were observed. It was indicated that nitrogen gettering is prevented not only by the surface nitrides, but also by the internal diffusion barriers originating from the absorbed nitrogen

  16. Nitrogen deposition in precipitation to a monsoon-affected eutrophic embayment: Fluxes, sources, and processes

    Science.gov (United States)

    Wu, Yunchao; Zhang, Jingping; Liu, Songlin; Jiang, Zhijian; Arbi, Iman; Huang, Xiaoping; Macreadie, Peter Ian

    2018-06-01

    Daya Bay in the South China Sea (SCS) has experienced rapid nitrogen pollution and intensified eutrophication in the past decade due to economic development. Here, we estimated the deposition fluxes of nitrogenous species, clarified the contribution of nitrogen from precipitation and measured ions and isotopic composition (δ15N and δ18O) of nitrate in precipitation in one year period to trace its sources and formation processes among different seasons. We found that the deposition fluxes of total dissolved nitrogen (TDN), NO3-, NH4+, NO2-, and dissolved organic nitrogen (DON) to Daya Bay were 132.5, 64.4 17.5, 1.0, 49.6 mmol m-2•yr-1, respectively. DON was a significant contributor to nitrogen deposition (37% of TDN), and NO3- accounted for 78% of the DIN in precipitation. The nitrogen deposition fluxes were higher in spring and summer, and lower in winter. Nitrogen from precipitation contributed nearly 38% of the total input of nitrogen (point sources input and dry and wet deposition) in Daya Bay. The δ15N-NO3- abundance, ion compositions, and air mass backward trajectories implicated that coal combustion, vehicle exhausts, and dust from mainland China delivered by northeast monsoon were the main sources in winter, while fossil fuel combustion (coal combustion and vehicle exhausts) and dust from PRD and southeast Asia transported by southwest monsoon were the main sources in spring; marine sources, vehicle exhausts and lightning could be the potential sources in summer. δ18O results showed that OH pathway was dominant in the chemical formation process of nitrate in summer, while N2O5+ DMS/HC pathways in winter and spring.

  17. Temporal and spatial variation of nitrogen transformations in a coniferous soil.

    NARCIS (Netherlands)

    Laverman, A.M.; Zoomer, H.R.; van Verseveld, H.W.; Verhoef, H.A.

    2000-01-01

    Forest soils show a great degree of temporal and spatial variation of nitrogen mineralization. The aim of the present study was to explain temporal variation in nitrate leaching from a nitrogen-saturated coniferous forest soil by potential nitrification, mineralization rates and nitrate uptake by

  18. Molecular Dynamics Simulations on Evaporation of Droplets with Dissolved Salts

    OpenAIRE

    Jin-Liang Xu; Min Chen; Xiao-Dong Wang; Bing-Bing Wang

    2013-01-01

    Molecular dynamics simulations are used to study the evaporation of water droplets containing either dissolved LiCl, NaCl or KCl salt in a gaseous surrounding (nitrogen) with a constant high temperature of 600 K. The initial droplet has 298 K temperature and contains 1,120 water molecules, 0, 40, 80 or 120 salt molecules. The effects of the salt type and concentration on the evaporation rate are examined. Three stages with different evaporation rates are observed for all cases. In the initial...

  19. Enzymology and ecology of the nitrogen cycle.

    Science.gov (United States)

    Martínez-Espinosa, Rosa María; Cole, Jeffrey A; Richardson, David J; Watmough, Nicholas J

    2011-01-01

    The nitrogen cycle describes the processes through which nitrogen is converted between its various chemical forms. These transformations involve both biological and abiotic redox processes. The principal processes involved in the nitrogen cycle are nitrogen fixation, nitrification, nitrate assimilation, respiratory reduction of nitrate to ammonia, anaerobic ammonia oxidation (anammox) and denitrification. All of these are carried out by micro-organisms, including bacteria, archaea and some specialized fungi. In the present article, we provide a brief introduction to both the biochemical and ecological aspects of these processes and consider how human activity over the last 100 years has changed the historic balance of the global nitrogen cycle.

  20. Seasonal variations in dissolved organic matter composition using absorbance and fluorescence spectroscopy in the Dardanelles Straits - North Aegean Sea mixing zone

    Science.gov (United States)

    Pitta, Elli; Zeri, Christina; Tzortziou, Maria; Mousdis, George; Scoullos, Michael

    2017-10-01

    The Dardanelles Straits - North Aegean Sea mixing zone is the area where the less saline waters of Black Sea origin supply organic material to the oligotrophic Mediterranean Sea. The objective of this work was to assess the seasonal dynamics of dissolved organic matter (DOM) in this region based on the optical properties (absorbance and fluorescence). By combining excitation-emission fluorescence with parallel factor analysis (EEM-PARAFAC), four fluorescent components were identified corresponding to three humic - like components and one amino acid - like. The latter was dominant during all seasons. Chromophoric DOM (CDOM) and dissolved organic carbon (DOC) were found to be strongly coupled only in early spring when conservative conditions prevailed and the two water masses present (Black Sea Waters - BSW and Levantine Waters - LW) could be identified by their absorption coefficients (a300) and spectral slopes S275-295. In summer and autumn the relationships collapsed. During summer two features appear to dominate the dynamics of CDOM: i) photodegradation that acts as an important sink for both the absorbing DOM and the terrestrially derived fluorescent humic substances and ii) the release of marine humic like fluorescent substances from bacterial transformation of DOM. Autumn results revealed a source of fluorescent CDOM of high molecular weight, which was independent of water mass sources and related to particle and sedimentary processes. The removal of the amino acid-like fluorescence during autumn provided evidence that although DOC was found to accumulate under low inorganic nutrient conditions, dissolved organic nitrogenous compounds could serve as bacterial substrate.

  1. Stormwater infrastructure controls runoff and dissolved material export from arid urban watersheds.

    OpenAIRE

    Hale, R.L.; Turnbull, L.; Earl, S.R.; Childers, D.L.; Grimm, N.B.

    2015-01-01

    Urbanization alters watershed ecosystem functioning, including nutrient budgets and processes of nutrient retention. It is unknown, however, how variation in stormwater infrastructure design affects the delivery of water and materials from urban watersheds. In this study, we asked: (1) How does stormwater infrastructure design vary over time and space in an arid city (Phoenix, Arizona, USA)?, and (2) How does variation in infrastructure design affect fluxes of dissolved nitrogen (N), phosphor...

  2. Behaviour of uranium dioxide in liquid nitrogen tetraoxide

    International Nuclear Information System (INIS)

    Kobets, L.V.; Klavsut', G.N.; Dolgov, V.M.

    1983-01-01

    Interaction kinetics of uranium dioxide with liquid nitrogen tetroxide at 25-150 deg C has been studied. It is shown that in the temperature range studied NO[UO 2 (NO 3 ) 3 ] is the final product of the reaction. With the increase of specific surface of uranium dioxide and with the temperature increase the degree of oxide transformation increases. Uranium dioxide-liquid N 2 O 4 interaction proceeds in the diffusion region. Seeming activation energies and rate constants of the mentioned processes are calculated. Effect of nitrogen trioxide additions on transformation kinetics is considered

  3. Transformer fault diagnosis using continuous sparse autoencoder.

    Science.gov (United States)

    Wang, Lukun; Zhao, Xiaoying; Pei, Jiangnan; Tang, Gongyou

    2016-01-01

    This paper proposes a novel continuous sparse autoencoder (CSAE) which can be used in unsupervised feature learning. The CSAE adds Gaussian stochastic unit into activation function to extract features of nonlinear data. In this paper, CSAE is applied to solve the problem of transformer fault recognition. Firstly, based on dissolved gas analysis method, IEC three ratios are calculated by the concentrations of dissolved gases. Then IEC three ratios data is normalized to reduce data singularity and improve training speed. Secondly, deep belief network is established by two layers of CSAE and one layer of back propagation (BP) network. Thirdly, CSAE is adopted to unsupervised training and getting features. Then BP network is used for supervised training and getting transformer fault. Finally, the experimental data from IEC TC 10 dataset aims to illustrate the effectiveness of the presented approach. Comparative experiments clearly show that CSAE can extract features from the original data, and achieve a superior correct differentiation rate on transformer fault diagnosis.

  4. Nitrogen Transformation and Removal in Horizontal Surface Flow ...

    African Journals Online (AJOL)

    The potential use of Constructed Mangrove Wetlands (CMWs) as a cheaper, effective and appropriate method for Nitrogen removal from domestic sewage of coastal zone in peri-urban cities was investigated from August 2007 to. September, 2008. Field investigations were made on horizontal surface flow constructed ...

  5. Effect of martensitic phase transformation on the hardening behavior and texture evolution in a 304L stainless steel under compression at liquid nitrogen temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cakmak, Ercan [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Vogel, Sven C. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Choo, Hahn, E-mail: hchoo@utk.edu [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States)

    2014-01-01

    The martensitic phase transformation behavior and its relations with the macroscopic hardening rate and the evolutions in the crystallographic texture of the constituent phases were studied for a 304L stainless steel that exhibits the transformation induced plasticity (TRIP) phenomenon. Time-of-flight neutron diffraction was used to measure the evolutions of phase fractions and texture in terms of pole figures as a function of the applied compressive strain at the liquid nitrogen temperature (77 K). The phase transformation analyses show that the hcp-martensite phase fraction reaches a significant level of about 22 wt% at 15% applied strain and remains constant. The bcc-martensite phase fraction increases continuously with the deformation that correlates well with the macroscopic hardening behavior. Furthermore, the texture analyses show that transformation has dominant effect on the bcc-martensite texture evolution with little influence from subsequent plastic deformation at current testing conditions.

  6. Effect of martensitic phase transformation on the hardening behavior and texture evolution in a 304L stainless steel under compression at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Cakmak, Ercan; Vogel, Sven C.; Choo, Hahn

    2014-01-01

    The martensitic phase transformation behavior and its relations with the macroscopic hardening rate and the evolutions in the crystallographic texture of the constituent phases were studied for a 304L stainless steel that exhibits the transformation induced plasticity (TRIP) phenomenon. Time-of-flight neutron diffraction was used to measure the evolutions of phase fractions and texture in terms of pole figures as a function of the applied compressive strain at the liquid nitrogen temperature (77 K). The phase transformation analyses show that the hcp-martensite phase fraction reaches a significant level of about 22 wt% at 15% applied strain and remains constant. The bcc-martensite phase fraction increases continuously with the deformation that correlates well with the macroscopic hardening behavior. Furthermore, the texture analyses show that transformation has dominant effect on the bcc-martensite texture evolution with little influence from subsequent plastic deformation at current testing conditions

  7. Life cycle of transformer oil

    Directory of Open Access Journals (Sweden)

    Đurđević Ksenija R.

    2008-01-01

    Full Text Available The consumption of electric power is constantly increasing due to industrialization and population growth. This results in much more severe operating conditions of transformers, the most important electrical devices that make integral parts of power transmission and distribution systems. The designed operating life of the majority of worldwide transformers has already expired, which puts the increase of transformer reliability and operating life extension in the spotlight. Transformer oil plays a very important role in transformer operation, since it provides insulation and cooling, helps extinguishing sparks and dissolves gases formed during oil degradation. In addition to this, it also dissolves moisture and gases from cellulose insulation and atmosphere it is exposed to. Further and by no means less important functions of transformer are of diagnostic purpose. It has been determined that examination and inspection of insulation oil provide 70% of information on transformer condition, which can be divided in three main groups: dielectric condition, aged transformer condition and oil degradation condition. By inspecting and examining the application oil it is possible to determine the condition of insulation, oil and solid insulation (paper, as well as irregularities in transformer operation. All of the above-mentioned reasons and facts create ground for the subject of this research covering two stages of transformer oil life cycle: (1 proactive maintenance and monitoring of transformer oils in the course of utilization with reference to influence of transformer oil condition on paper insulation condition, as well as the condition of the transformer itself; (2 regeneration of transformer oils for the purpose of extension of utilization period and paper insulation revitalization potential by means of oil purification. The study highlights advantages of oil-paper insulation revitalization over oil replacement. Besides economic, there are

  8. Effects of land use change on soil gross nitrogen transformation rates in subtropical acid soils of Southwest China.

    Science.gov (United States)

    Xu, Yongbo; Xu, Zhihong

    2015-07-01

    Land use change affects soil gross nitrogen (N) transformations, but such information is particularly lacking under subtropical conditions. A study was carried out to investigate the potential gross N transformation rates in forest and agricultural (converted from the forest) soils in subtropical China. The simultaneously occurring gross N transformations in soil were quantified by a (15)N tracing study under aerobic conditions. The results showed that change of land use types substantially altered most gross N transformation rates. The gross ammonification and nitrification rates were significantly higher in the agricultural soils than in the forest soils, while the reverse was true for the gross N immobilization rates. The higher total carbon (C) concentrations and C / N ratio in the forest soils relative to the agricultural soils were related to the greater gross N immobilization rates in the forest soils. The lower gross ammonification combined with negligible gross nitrification rates, but much higher gross N immobilization rates in the forest soils than in the agricultural soils suggest that this may be a mechanism to effectively conserve available mineral N in the forest soils through increasing microbial biomass N, the relatively labile organic N. The greater gross nitrification rates and lower gross N immobilization rates in the agricultural soils suggest that conversion of forests to agricultural soils may exert more negative effects on the environment by N loss through NO3 (-) leaching or denitrification (when conditions for denitrification exist).

  9. Biogeochemical generation of dissolved inorganic carbon and nitrogen in the North Branch of inner Changjiang Estuary in a dry season

    Science.gov (United States)

    Zhai, Wei-Dong; Yan, Xiu-Li; Qi, Di

    2017-10-01

    We investigated the surface water carbonate system, nutrients, and relevant hydrochemical parameters in the inner Changjiang (Yangtze River) Estuary in early spring 2009 and 2010. The two surveys were carried out shortly after spring-tide days, and covered both the channel-like South Branch and the freshwater-blocked North Branch. In the North Branch, with a water residence time of approximately one month, we detected remarkable partial pressures of CO2 (pCO2) of 930-1518 μatm with a salinity range of 4.5-17.4, which were substantially higher than the South Branch pCO2 values of 700-1100 μatm at salinities of less than 0.88. The North Branch pCO2 distribution pattern is unique compared with many other estuaries where aquatic pCO2 normally declines with salinity increase. Furthermore, the biogeochemical additions of ammonium (7.4-65.7 μmol kg-1) and alkalinity (196-695 μmol kg-1) were identified in salinities between 4 and 16 in the North Branch. Based on field data analyses and simplified stoichiometric equations, we suggest that the relatively high North Branch pCO2 values and estuarine additions of dissolved inorganic nitrogen/carbon in the mid-salinity area were strongly associated with each other. These signals were primarily controlled by biogeochemical processes in the North Branch, combining biogenic organic matter decomposition (i.e. respiration), ammonia oxidation, CaCO3 dissolution, and CO2 degassing. In the upper reach of the South Branch, notable salinity values of 0.20-0.88 were detected, indicating saltwater spillover from the North Branch. These spillover waters had minor contributions (1.5-6.9%) to the springtime nutrient, dissolved inorganic carbon, and alkalinity export fluxes from Changjiang to the adjacent East China Sea. This is the first attempt to understand the biogeochemical controls of the unique pCO2 distributions in the North Branch, and to evaluate the effects of saltwater spillover from the North Branch on dry-season export fluxes

  10. Cryogenic pulsed power transformers

    International Nuclear Information System (INIS)

    Rogers, J.D.; Eckels, P.W.; Hackworth, D.T.; Shestak, E.J.; Singh, S.K.

    1988-01-01

    Three liquid nitrogen cooled transformers, two with 14.4 MJ and one with 33.5 MJ storage capacity, are being built to provide respective currents of 0.31 and 0.95 MA to drive a distributed rail gun and are designed to withstand respective voltages of 70 and 200 kV. The transformers are contained in fiberglass reinforced polyester plastic dewars to avoid eddy current coupling and lateral forces that would exist with a metal dewar. To improve the coupling between windings the secondary winding is made relatively thin and is supported structurally for magnetic loading against the outer primary winding. The coils are pool bath cooled. Normal and fault mode analyses indicated safe operation with some precautions for venting nitrogen gas provided

  11. Concentration, flux, and the analysis of trends of total and dissolved phosphorus, total nitrogen, and chloride in 18 tributaries to Lake Champlain, Vermont and New York, 1990–2011

    Science.gov (United States)

    Medalie, Laura

    2013-01-01

    Annual concentration, flux, and yield for total phosphorus, dissolved phosphorus, total nitrogen, and chloride for 18 tributaries to Lake Champlain were estimated for 1990 through 2011 using a weighted regression method based on time, tributary streamflows (discharges), and seasonal factors. The weighted regression method generated two series of daily estimates of flux and concentration during the period of record: one based on observed discharges and a second based on a flow-normalization procedure that removes random variation due to year-to-year climate-driven effects. The flownormalized estimate for a given date is similar to an average estimate of concentration or flux that would be made if all of the observed discharges for that date were equally likely to have occurred. The flux bias statistic showed that 68 of the 72 flux regression models were minimally biased. Temporal trends in the concentrations and fluxes were determined by calculating percent changes in flow-normalized annual fluxes for the full period of analysis (1990 through 2010) and for the decades 1990–2000 and 2000–2010. Basinwide, flow-normalized total phosphorus flux decreased by 42 metric tons per year (t/yr) between 1990 and 2010. This net result reflects a basinwide decrease in flux of 21 metric tons (t) between 1990 and 2000, followed by a decrease of 20 t between 2000 and 2010; both results were largely influenced by flux patterns in the large tributaries on the eastern side of the basin. A comparison of results for total phosphorus for the two separate decades of analysis found that more tributaries had decreasing concentrations and flux rates in the second decade than the first. An overall reduction in dissolved phosphorus flux of 0.7 t/yr was seen in the Lake Champlain Basin during the full period of analysis. That very small net change in flux reflects substantial reductions between 1990 and 2000 from eastern tributaries, especially in Otter Creek and the LaPlatte and Winooski

  12. Effects of wetland recovery on soil labile carbon and nitrogen in the Sanjiang Plain.

    Science.gov (United States)

    Huang, Jingyu; Song, Changchun; Nkrumah, Philip Nti

    2013-07-01

    Soil management significantly affects the soil labile organic factors. Understanding carbon and nitrogen dynamics is extremely helpful in conducting research on active carbon and nitrogen components for different kinds of soil management. In this paper, we examined the changes in microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) to assess the effect and mechanisms of land types, organic input, soil respiration, microbial species, and vegetation recovery under Deyeuxia angustifolia freshwater marshes (DAMs) and recovered freshwater marsh (RFM) in the Sanjiang Plain, Northeast China. Identifying the relationship among the dynamics of labile carbon, nitrogen, and soil qualification mechanism using different land management practices is therefore important. Cultivation and land use affect intensely the DOC, DON, MBC, and MBN in the soil. After DAM soil tillage, the DOC, DON, MBC, and MBN at the surface of the agricultural soil layer declined significantly. In contrast, their recovery was significant in the RFM surface soil. A long time was needed for the concentration of cultivated soil total organic carbon and total nitrogen to be restored to the wetland level. The labile carbon and nitrogen fractions can reach a level similar to that of the wetland within a short time. Typical wetland ecosystem signs, such as vegetation, microbes, and animals, can be recovered by soil labile carbon and nitrogen fraction restoration. In this paper, the D. angustifolia biomass attained natural wetland level after 8 years, indicating that wetland soil labile fractions can support wetland eco-function in a short period of time (4 to 8 years) for reconstructed wetland under suitable environmental conditions.

  13. Influences of observation method, season, soil depth, land use and management practice on soil dissolvable organic carbon concentrations: A meta-analysis.

    Science.gov (United States)

    Li, Siqi; Zheng, Xunhua; Liu, Chunyan; Yao, Zhisheng; Zhang, Wei; Han, Shenghui

    2018-08-01

    Quantifications of soil dissolvable organic carbon concentrations, together with other relevant variables, are needed to understand the carbon biogeochemistry of terrestrial ecosystems. Soil dissolvable organic carbon can generally be grouped into two incomparable categories. One is soil extractable organic carbon (EOC), which is measured by extracting with an aqueous extractant (distilled water or a salt solution). The other is soil dissolved organic carbon (DOC), which is measured by sampling soil water using tension-free lysimeters or tension samplers. The influences of observation methods, natural factors and management practices on the measured concentrations, which ranged from 2.5-3970 (mean: 69) mg kg -1 of EOC and 0.4-200 (mean: 12) mg L -1 of DOC, were investigated through a meta-analysis. The observation methods (e.g., extractant, extractant-to-soil ratio and pre-treatment) had significant effects on EOC concentrations. The most significant divergence (approximately 109%) occurred especially at the extractant of potassium sulfate (K 2 SO 4 ) solutions compared to distilled water. As EOC concentrations were significantly different (approximately 47%) between non-cultivated and cultivated soils, they were more suitable than DOC concentrations for assessing the influence of land use on soil dissolvable organic carbon levels. While season did not significantly affect EOC concentrations, DOC concentrations showed significant differences (approximately 50%) in summer and autumn compared to spring. For management practices, applications of crop residues and nitrogen fertilizers showed positive effects (approximately 23% to 91%) on soil EOC concentrations, while tillage displayed negative effects (approximately -17%), compared to no straw, no nitrogen fertilizer and no tillage. Compared to no nitrogen, applications of synthetic nitrogen also appeared to significantly enhance DOC concentrations (approximately 32%). However, further studies are needed in the future

  14. Soil gross nitrogen transformations in responses to land use conversion in a subtropical karst region.

    Science.gov (United States)

    Li, Dejun; Liu, Jing; Chen, Hao; Zheng, Liang; Wang, Kelin

    2018-04-15

    Gross nitrogen (N) transformations can provide important information for assessing indigenous soil N supply capacity and soil nitrate leaching potential. The current study aimed to assess the variation of gross N transformations in response to conversion of maize-soybean fields to sugarcane, mulberry, and forage grass fields in a subtropical karst region of southwest China. Mature forests were included for comparison. Gross rates of N mineralization (GNM) were highest in the forests, intermediate in the maize-soybean and forage grass fields, and lowest in the sugarcane and mulberry fields, suggesting capacity of indigenous soil N supply derived from organic N mineralization was lowered after conversion to sugarcane and mulberry fields. The relative high indigenous soil N supply capacity in the maize-soybean fields was obtained at the cost of soil organic N depletion. Gross nitrification (GN) rates were highest in the forests, intermediate in the forage grass fields and lowest in the other three agricultural land use types. The nitrate retention capacity (24.1 ± 2.0% on average) was similar among the five land use types, implying that nitrate leaching potential was not changed after land use conversion. Microbial biomass N exerted significant direct effects on the rates of N mineralization, nitrification, ammonium immobilization and nitrate immobilization. Soil organic carbon, total N and exchangeable magnesium had significant indirect effects on these N transformation rates. Our findings suggest that forage grass cultivation instead of other agricultural land uses should be recommended from the perspective of increasing indigenous soil N supply while not depleting soil organic N pool. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Utilization of natural variations in the abundance of nitrogen-15 as a tracer in hydrogeology - Initial results

    International Nuclear Information System (INIS)

    Letolle, R.; Mariotti, A.

    1974-01-01

    Nitrogen compounds dissolved in natural waters exhibit considerable variations in nitrogen-15 content (more than 10 per mille). The authors describe briefly the analytical techniques used in measuring δ 15 N, the main features of the isotopic cycle of nitrogen and the results obtained so far. A simplified model of the nitrogen cycle and its isotopic implications is presented; with this model one can deduce from a number of observed variations the physical or biological mechanism (or mechanisms) involved. Isotopic studies of nitrogen may be a useful additional tool for detecting and interpreting certain forms of pollution. (author) [fr

  16. Uptake of allochthonous dissolved organic matter from soil and salmon in coastal temperate rainforest streams

    Science.gov (United States)

    Jason B. Fellman; Eran Hood; Richard T. Edwards; Jeremy B. Jones

    2009-01-01

    Dissolved organic matter (DOM) is an important component of aquatic food webs. We compare the uptake kinetics for NH4-N and different fractions of DOM during soil and salmon leachate additions by evaluating the uptake of organic forms of carbon (DOC) and nitrogen (DON), and proteinaceous DOM, as measured by parallel factor (PARAFAC) modeling of...

  17. Biological phosphorus and nitrogen removal in sequencing batch reactors: effects of cycle length, dissolved oxygen concentration and influent particulate matter.

    Science.gov (United States)

    Ginige, Maneesha P; Kayaalp, Ahmet S; Cheng, Ka Yu; Wylie, Jason; Kaksonen, Anna H

    2013-01-01

    Removal of phosphorus (P) and nitrogen (N) from municipal wastewaters is required to mitigate eutrophication of receiving water bodies. While most treatment plants achieve good N removal using influent carbon (C), the use of influent C to facilitate enhanced biological phosphorus removal (EBPR) is poorly explored. A number of operational parameters can facilitate optimum use of influent C and this study investigated the effects of cycle length, dissolved oxygen (DO) concentration during aerobic period and influent solids on biological P and N removal in sequencing batch reactors (SRBs) using municipal wastewaters. Increasing cycle length from 3 to 6 h increased P removal efficiency, which was attributed to larger portion of N being removed via nitrite pathway and more biodegradable organic C becoming available for EBPR. Further increasing cycle length from 6 to 8 h decreased P removal efficiencies as the demand for biodegradable organic C for denitrification increased as a result of complete nitrification. Decreasing DO concentration in the aerobic period from 2 to 0.8 mg L(-1) increased P removal efficiency but decreased nitrification rates possibly due to oxygen limitation. Further, sedimented wastewater was proved to be a better influent stream than non-sedimented wastewater possibility due to the detrimental effect of particulate matter on biological nutrient removal.

  18. The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change

    NARCIS (Netherlands)

    Voss, M.; Bange, H.W.; Dippner, J.W.; Middelburg, J.J.; Montoya, J.P.; Ward, B.

    2013-01-01

    The ocean’s nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation, assimilation, nitrification, anammox and denitrification. Dinitrogen is the most abundant form of nitrogen in sea water but only accessible by nitrogen-fixing microbes. Denitrification and

  19. Laboratory Investigation of Mineralization of Refractory Nitrogen from Sewage Treatment Plants.

    Science.gov (United States)

    Benoit, Gaboury; Wang, Peng

    2017-12-01

    Laboratory studies were conducted and modeled to evaluate whether refractory organic nitrogen in tertiary-treated wastewater effluent could become bioavailable by conversion to mineral forms. Multiday incubations of effluent collected from the Branford and New Haven, Connecticut, waste water treatment plants (WWTP) revealed low but steady conversion of organic nitrogen to nitrate (NO 3 - ). In Branford, the principal form of organic nitrogen was dissolved, and in New Haven it was particulate. Modeling suggested that in both the cases conversion to NO 3 - from organic forms occurred at several per cent per day, and appeared to happen via the intermediary NH 4 + . The results suggest that organic nitrogen may be an important source of bioavailable N, contributing to the problem of hypoxia in Long Island Sound and other estuaries.

  20. Laboratory Investigation of Mineralization of Refractory Nitrogen from Sewage Treatment Plants

    Science.gov (United States)

    Benoit, Gaboury; Wang, Peng

    2017-12-01

    Laboratory studies were conducted and modeled to evaluate whether refractory organic nitrogen in tertiary-treated wastewater effluent could become bioavailable by conversion to mineral forms. Multiday incubations of effluent collected from the Branford and New Haven, Connecticut, waste water treatment plants (WWTP) revealed low but steady conversion of organic nitrogen to nitrate (NO3 -). In Branford, the principal form of organic nitrogen was dissolved, and in New Haven it was particulate. Modeling suggested that in both the cases conversion to NO3 - from organic forms occurred at several per cent per day, and appeared to happen via the intermediary NH4 +. The results suggest that organic nitrogen may be an important source of bioavailable N, contributing to the problem of hypoxia in Long Island Sound and other estuaries.

  1. Fast-freezing with liquid nitrogen preserves bulk dissolved organic matter concentrations, but not its composition

    DEFF Research Database (Denmark)

    Thieme, Lisa; Graeber, Daniel; Kaupenjohann, Martin

    2016-01-01

    -freezing with liquid nitrogen) on DOM concentrations measured as organic carbon (DOC) concentrations and on spectroscopic properties of DOM from different terrestrial ecosystems (forest and grassland). Fresh and differently frozen throughfall, stemflow, litter leachate and soil solution samples were analyzed for DOC...... concentrations, UV-vis absorption and fluorescence excitation–emission matrices combined with parallel factor analysis (PARAFAC). Fast-freezing with liquid nitrogen prevented a significant decrease of DOC concentrations observed after freezing at −18 °C. Nonetheless, the share of PARAFAC components 1 (EXmax...... component 4 (EXmax: 280 nm, EXmax: 328 nm) to total fluorescence was not affected by freezing. We recommend fast-freezing with liquid nitrogen for preservation of bulk DOC concentrations of samples from terrestrial sources, whereas immediate measuring is preferable to preserve spectroscopic properties...

  2. Fate of recovery boiler smelt nitrogen in the recovery cycle; Soodakattilan sulan typpiyhdisteitten kaeyttaeytyminen talteenottoprosessissa

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Forssen, M.; Backman, R.; Ek, P.; Hulden, S.G.; Kilpinen, P.; Kymaelaeinen, M.; Malm, H. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    The purpose of this project is to study the fate of the nitrogen bound in the inorganic smelt after it enters the dissolving tank. Of special interest is to find in what form this nitrogen can be found further down in the recovery process and especially in what form it can be removed from the process. The aim is to clarify if the nitrogen can be a potential problem in the process or if it can become a potential emission. The work is divided into choosing methods for the analysis of different nitrogen species, collection and analysis of mill samples, laboratory studies and theoretical studies on nitrogen chemistry in alkaline solutions and reporting

  3. Gas phase adsorption technology for nitrogen isotope separation and its feasibility for highly enriched nitrogen gas production

    International Nuclear Information System (INIS)

    Inoue, Masaki; Asaga, Takeo

    2000-04-01

    Highly enriched nitrogen-15 gas is favorable to reduce radioactive carbon-14 production in reactor. The cost of highly enriched nitrogen-15 gas in mass production is one of the most important subject in nitride fuel option in 'Feasibility Study for FBR and Related Fuel Cycle'. In this work gas phase adsorption technology was verified to be applicable for nitrogen isotope separation and feasible to produce highly enriched nitrogen-15 gas in commercial. Nitrogen isotopes were separated while ammonia gas flows through sodium-A type zeolite column using pressure swing adsorption process. The isotopic ratio of eight samples were measured by high resolution mass spectrometry and Fourier transform microwave spectroscopy. Gas phase adsorption technology was verified to be applicable for nitrogen isotope separation, since the isotopic ratio of nitrogen-15 and nitrogen-14 in samples were more than six times as high as in natural. The cost of highly enriched nitrogen-15 gas in mass production were estimated by the factor method. It revealed that highly enriched nitrogen-15 gas could be supplied in a few hundred yen per gram in mass production. (author)

  4. Biogeochemical spatio-temporal transformation of copper in Aspergillus niger colonies grown on malachite with different inorganic nitrogen sources.

    Science.gov (United States)

    Fomina, Marina; Bowen, Andrew D; Charnock, John M; Podgorsky, Valentin S; Gadd, Geoffrey M

    2017-03-01

    This work elucidates spatio-temporal aspects of the biogeochemical transformation of copper mobilized from malachite (Cu 2 (CO 3 )(OH) 2 ) and bioaccumulated within Aspergillus niger colonies when grown on different inorganic nitrogen sources. It was shown that the use of either ammonium or nitrate determined how copper was distributed within the colony and its microenvironment and the copper oxidation state and succession of copper coordinating ligands within the biomass. Nitrate-grown colonies yielded ∼1.7× more biomass, bioaccumulated ∼7× less copper, excreted ∼1.9× more oxalate and produced ∼1.75× less water-soluble copper in the medium in contrast to ammonium-grown colonies. Microfocus X-ray absorption spectroscopy revealed that as the mycelium matured, bioaccumulated copper was transformed from less stable and more toxic Cu(I) into less toxic Cu(II) which was coordinated predominantly by phosphate/malate ligands. With time, a shift to oxalate coordination of bioaccumulated copper occurred in the central older region of ammonium-grown colonies. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Dissolvable tattoo sensors: from science fiction to a viable technology

    Science.gov (United States)

    Cheng, Huanyu; Yi, Ning

    2017-01-01

    Early surrealistic painting and science fiction movies have envisioned dissolvable tattoo electronic devices. In this paper, we will review the recent advances that transform that vision into a viable technology, with extended capabilities even beyond the early vision. Specifically, we focus on the discussion of a stretchable design for tattoo sensors and degradable materials for dissolvable sensors, in the form of inorganic devices with a performance comparable to modern electronics. Integration of these two technologies as well as the future developments of bio-integrated devices is also discussed. Many of the appealing ideas behind developments of these devices are drawn from nature and especially biological systems. Thus, bio-inspiration is believed to continue playing a key role in future devices for bio-integration and beyond.

  6. Dissolvable tattoo sensors: from science fiction to a viable technology

    International Nuclear Information System (INIS)

    Cheng, Huanyu; Yi, Ning

    2017-01-01

    Early surrealistic painting and science fiction movies have envisioned dissolvable tattoo electronic devices. In this paper, we will review the recent advances that transform that vision into a viable technology, with extended capabilities even beyond the early vision. Specifically, we focus on the discussion of a stretchable design for tattoo sensors and degradable materials for dissolvable sensors, in the form of inorganic devices with a performance comparable to modern electronics. Integration of these two technologies as well as the future developments of bio-integrated devices is also discussed. Many of the appealing ideas behind developments of these devices are drawn from nature and especially biological systems. Thus, bio-inspiration is believed to continue playing a key role in future devices for bio-integration and beyond. (invited comment)

  7. Kinetics of irreversible thermal decomposition of dissociating nitrogen dioxide with nitrogen oxide or oxygen additions

    International Nuclear Information System (INIS)

    Gvozdev, A.A.

    1987-01-01

    The effect of NO or O 2 admixtures on kinetics of the irreversible thermal decomposition of nitrogen dioxide at temperatures 460-520 deg C and pressures 4-7 MPa has been studied. It follows from experimental data that the rate of N 2 O 4 formation reduces with the increase of partial pressure of oxygen or decrease of partial pressure of nitrogen oxide. The same regularity is seen for the rate of nitrogen formation. The rate constants of N 2 O formation in dissociating nitrogen tetroxide with oxygen or nitrogen oxide additions agree satisfactorily with previously published results, obtained in stoichiometric mixtures. The appreciable discrepancy at 520 deg C is bind with considerable degree of nitrogen oxide transformation which constitutes approximately 14%. It is determined that the kinetics of formation of the products of irreversible N 2 O and N 2 decomposition in stoichiometric and non-stoichiometric 2NO 2 ↔ 2NO+O 2 mixtures is described by identical 3NO → N 2 O+NO 2 and N 2 O+NO → N 2 +NO 2 reactions

  8. Enhancement of microbial 2,4,6-trinitrotoluene transformation with increased toxicity by exogenous nutrient amendment.

    Science.gov (United States)

    Liang, Shih-Hsiung; Hsu, Duen-Wei; Lin, Chia-Ying; Kao, Chih-Ming; Huang, Da-Ji; Chien, Chih-Ching; Chen, Ssu-Ching; Tsai, Isheng Jason; Chen, Chien-Cheng

    2017-04-01

    In this study, the bacterial strain Citrobacter youngae strain E4 was isolated from 2,4,6-trinitrotoluene (TNT)-contaminated soil and used to assess the capacity of TNT transformation with/without exogenous nutrient amendments. C. youngae E4 poorly degraded TNT without an exogenous amino nitrogen source, whereas the addition of an amino nitrogen source considerably increased the efficacy of TNT transformation in a dose-dependent manner. The enhanced TNT transformation of C. youngae E4 was mediated by increased cell growth and up-regulation of TNT nitroreductases, including NemA, NfsA and NfsB. This result indicates that the increase in TNT transformation by C. youngae E4 via nitrogen nutrient stimulation is a cometabolism process. Consistently, TNT transformation was effectively enhanced when C. youngae E4 was subjected to a TNT-contaminated soil slurry in the presence of an exogenous amino nitrogen amendment. Thus, effective enhancement of TNT transformation via the coordinated inoculation of the nutrient-responsive C. youngae E4 and an exogenous nitrogen amendment might be applicable for the remediation of TNT-contaminated soil. Although the TNT transformation was significantly enhanced by C. youngae E4 in concert with biostimulation, the 96-h LC50 value of the TNT transformation product mixture on the aquatic invertebrate Tigriopus japonicas was higher than the LC50 value of TNT alone. Our results suggest that exogenous nutrient amendment can enhance microbial TNT transformation; however, additional detoxification processes may be needed due to the increased toxicity after reduced TNT transformation. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Research on High Sensitive D-Shaped FBG Hydrogen Sensors in Power Transformer Oil.

    Science.gov (United States)

    Luo, Ying-Ting; Wang, Hong-Bin; Ma, Guo-Ming; Song, Hong-Tu; Li, Chengrong; Jiang, Jun

    2016-10-04

    Dissolved hydrogen is a symbol gas decomposed by power transformer oil for electrical faults such as overheat or partial discharges. A novel D-shaped fiber Bragg grating (D-FBG) sensor is herein proposed and was fabricated with magnetron sputtering to measure the dissolved hydrogen concentration in power transformer oil in this paper. Different from the RI (refractive index)-based effect, D-FBG in this case is sensitive to curvature caused by stress from sensing coating, leading to Bragg wavelength shifts accordingly. The relationship between the D-FBG wavelength shift and dissolved hydrogen concentration in oil was measured experimentally in the laboratory. The detected sensitivity could be as high as 1.96 μL/L at every 1-pm wavelength shift. The results proved that a simple, polished FBG-based hydrogen sensor provides a linear measuring characteristic in the range of low hydrogen concentrations in transformer oil. Moreover, the stable hydrogen sensing performance was investigated by X-ray diffraction analysis.

  10. Research on High Sensitive D-Shaped FBG Hydrogen Sensors in Power Transformer Oil

    Directory of Open Access Journals (Sweden)

    Ying-Ting Luo

    2016-10-01

    Full Text Available Dissolved hydrogen is a symbol gas decomposed by power transformer oil for electrical faults such as overheat or partial discharges. A novel D-shaped fiber Bragg grating (D-FBG sensor is herein proposed and was fabricated with magnetron sputtering to measure the dissolved hydrogen concentration in power transformer oil in this paper. Different from the RI (refractive index-based effect, D-FBG in this case is sensitive to curvature caused by stress from sensing coating, leading to Bragg wavelength shifts accordingly. The relationship between the D-FBG wavelength shift and dissolved hydrogen concentration in oil was measured experimentally in the laboratory. The detected sensitivity could be as high as 1.96 μL/L at every 1-pm wavelength shift. The results proved that a simple, polished FBG-based hydrogen sensor provides a linear measuring characteristic in the range of low hydrogen concentrations in transformer oil. Moreover, the stable hydrogen sensing performance was investigated by X-ray diffraction analysis.

  11. The production of cyanobacterial carbon under nitrogen-limited cultivation and its potential for nitrate removal.

    Science.gov (United States)

    Huang, Yingying; Li, Panpan; Chen, Guiqin; Peng, Lin; Chen, Xuechu

    2018-01-01

    Harmful cyanobacterial blooms (CyanoHABs) represent a serious threat to aquatic ecosystems. A beneficial use for these harmful microorganisms would be a promising resolution of this urgent issue. This study applied a simple method, nitrogen limitation, to cultivate cyanobacteria aimed at producing cyanobacterial carbon for denitrification. Under nitrogen-limited conditions, the common cyanobacterium, Microcystis, efficiently used nitrate, and had a higher intracellular C/N ratio. More importantly, organic carbons easily leached from its dry powder; these leachates were biodegradable and contained a larger amount of dissolved organic carbon (DOC) and carbohydrates, but a smaller amount of dissolved total nitrogen (DTN) and proteins. When applied to an anoxic system with a sediment-water interface, a significant increase of the specific NO X - -N removal rate was observed that was 14.2 times greater than that of the control. This study first suggests that nitrogen-limited cultivation is an efficient way to induce organic and carbohydrate accumulation in cyanobacteria, as well as a high C/N ratio, and that these cyanobacteria can act as a promising carbon source for denitrification. The results indicate that application as a carbon source is not only a new way to utilize cyanobacteria, but it also contributes to nitrogen removal in aquatic ecosystems, further limiting the proliferation of CyanoHABs. Copyright © 2017. Published by Elsevier Ltd.

  12. Temporal and spatial variation of nitrogen transformations in a coniferous forest soils.

    NARCIS (Netherlands)

    Laverman, A.M.; Zoomer, H.R.; van Verseveld, H.W.; Verhoef, H.A.

    2000-01-01

    Forest soils show a great degree of temporal and spatial variation of nitrogen mineralization. The aim of the present study was to explain temporal variation in nitrate leaching from a nitrogen-saturated coniferous forest soil by potential nitrification, mineralization rates and nitrate uptake by

  13. Differential recycling of coral and algal dissolved organic matter via the sponge loop

    NARCIS (Netherlands)

    Rix, L.; de Goeij, J.M.; van Oevelen, D.; Struck, U.; Al-Horani, F.A.; Wild, C.; Naumann, M.S.

    Corals and macroalgae release large quantities of dissolved organic matter (DOM), one of the largest sources of organic matter produced on coral reefs. By rapidly taking up DOM and transforming it into particulate detritus, coral reef sponges are proposed to play a key role in transferring the

  14. Investigation of nitrogen transformations in a southern California constructed wastewater treatment wetland

    Science.gov (United States)

    Sartoris, J.J.; Thullen, J.S.; Barber, L.B.; Salas, D.E.

    2000-01-01

    A 9.9-ha combined habitat and wastewater treatment demonstration wetland was constructed and planted in the summer of 1994, at Eastern Municipal Water District’s (EMWD) Hemet/San Jacinto Regional Water Reclamation Facility (RWRF) in southern California. From January 1996 through September 1997, the marsh–pond–marsh wetland system was operated to polish an average of 3785 m3 d−1 (1×106 gal day−1) of secondary-treated effluent from the RWRF. Nitrogen removal was a major objective of this wetland treatment. Weekly inflow/outflow water quality monitoring of the wetland was supplemented with biannual, 45-station synoptic surveys within the system to determine internal distribution patterns of the nitrogen species (total ammonia, nitrite, nitrate, and organic nitrogen), total organic carbon (TOC), and ultraviolet absorbance at 254 nm (UV254). Synoptic surveys were carried out during May 22 and September 17, 1996, and May 6 and September 25, 1997 and the results were mapped using the ARC/INFO processing package and inverse distance weighted mathematical techniques. Distribution patterns of the various nitrogen species, TOC, and UV254 within the wetland indicate that the nitrogen dynamics of the system are influenced both by variations in treatment plant loading, and, increasingly, by the degree of coverage and maturity of the emergent vegetation.

  15. Evaluation of microbial transformations of dissolved organic matter - what information can be extracted from high-field FTICR-MS elemental formula data sets?

    Science.gov (United States)

    Herzsprung, Peter; von Tümpling, Wolf; Harir, Mourad; Hertkorn, Norbert; Schmitt-Kopplin, Philippe; Norf, Helge; Weitere, Markus; Kamjunke, Norbert

    2017-04-01

    ). They were highly saturated and oxygen-poor (lipid-like). As a conclusion components of biogeochemical groups (specified by their H/C and O/C coordinates in Van Krevelen diagrams) can be allocated to DOM transformation processes by their tendency of intensity change. References 1) Lechtenfeld, O.J., Kattner, G., Flerus, R., McCallister, S.L., Schmitt-Kopplin, P., Koch, B.P., 2014. Molecular transformation and degradation of refractory dissolved organic matter in the Atlantic and Southern Ocean. Geochim. Cosmochim. Acta 126, 321-337. 2) Morling, K., Herzsprung, P., Kamjunke, N., 2017. Discharge determines production of, decomposition of and quality changes in dissolved organic carbon in pre-dams of drinking water reservoirs. Sci. Tot. Environ. 577, 329-339. 3) Ohno, T., Parr, T.B., Gruselle, M.C.I., Fernandez, I.J., Sleighter, R.L., Hatcher, P.G., 2014. Molecular Composition and Biodegradability of Soil Organic Matter: A Case Study Comparing Two New England Forest Types. Environ. Sci. Technol. 48, 7229 - 7236.

  16. Synthesis of Nitrogen-Doped Carbon Nano tubes Using Injection-Vertical Chemical Vapor Deposition: Effects of Synthesis Parameters on the Nitrogen Content

    International Nuclear Information System (INIS)

    Hachimi, A.; Hakeem, A.; Merzougui, B.; Atieh, M. A.; Merzougui, B.; Atieh, M. A.; Laoui, A.; Swain, G.M.; Chang, Q.; Shao, M.

    2015-01-01

    Nitrogen-doped CNTs (N-CNTs) were synthesized using an injection-vertical chemical vapor deposition (IV-CVD) reactor. This type of reactor is quite useful for the continuous mass production of CNTs. In this work, the optimum deposition conditions for maximizing the incorporation of nitrogen were identified. Ferrocene served as the source of the Fe catalyst and was dissolved in acetonitrile, which served as both the hydrocarbon and nitrogen sources. Different concentrations of ferrocene in acetonitrile were introduced into the top of a vertically aligned reactor at a constant flow rate with hydrogen serving as the carrier. The effects of hydrogen flow rate, growth temperature, and catalyst loading (Fe from the ferrocene) on the microstructure, elemental composition, and yield of N-CNTs were investigated. The N-CNTs possessed a bamboo-like microstructure with a nitrogen doping level as high as 14 at.% when using 2.5 to 5 mg/m L of the ferrocene/acetonitrile mixture at 800 degree under a 1000 sccm flow of hydrogen. A production rate of 100 mg/h was achieved under the optimized synthesis conditions.

  17. Heat impact caused molecular level changes in solid and dissolved soil organic matter

    Science.gov (United States)

    Hofmann, Diana; Steffen, Bernhard; Eckhardt, Kai-Uwe; Leinweber, Peter

    2015-04-01

    The ubiquitous abundance of pyrolysed, highly aromatic organic matter, called "Black Carbon" (BC), in all environmental compartments became increasingly important in different fields of research beyond intensive investigated atmospheric aerosol due to climatic relevance. Its predominant high resistance to abiotic and biotic degradation resulted in turnover times from less than a century to several millennia. This recalcitrance led to the enrichment of BC in soils, accounting for 1-6% (European forest soils) to 60% (Chernozems) of total soil organic matter (SOM). Hence, soil BC acts an important sink in the global carbon cycle. In contrast, consequences for the nitrogen cycle up to date are rather inconsistently discussed. Soil related dissolved organic matter (DOM) is a major controlling factor in soil formation, an important pathway of organic matter transport and one of the largest active carbon reservoirs on earth, if considering oceans and other bodies of water. The aim of this study was to evaluate the effects of artificially simulated wildfire by thermal treatment on the molecular composition of water extractable soil organic matter (DOM). Soils from two outdoor lysimeters with different management history were investigated. Soil samples, non-heated and heated up to 350°C were analyzed for elemental composition (carbon, nitrogen and sulfur) and for bulk molecular composition by Pyrolysis-Field Ionization Mass Spectrometry (Py-FIMS) and synchrotron-based X-ray Absorption Near-Edge Spectroscopy (XANES) at the C- and N K-edges. DOM-samples obtained by hot water extraction, desalting and concentration by solid phase extraction were subsequently analyzed by flow injection analysis in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICR-MS), equipped with an ESI source and a 7 T supra-conducting magnet (LTQ-FT Ultra, ThermoFisher Scientific). This technique is the key technique for the analysis of complex samples due to its outstanding mass

  18. The atomic and electronic structure of nitrogen- and boron-doped phosphorene.

    Science.gov (United States)

    Boukhvalov, Danil W

    2015-10-28

    First principles modeling of nitrogen- and boron-doped phosphorene demonstrates the tendency toward the formation of highly ordered structures. Nitrogen doping leads to the formation of -N-P-P-P-N- lines. Further transformation into -P-N-P-N- lines across the chains of phosphorene occurs with increasing band gap and increasing nitrogen concentration, which coincides with the decreasing chemical activity of N-doped phosphorene. In contrast to the case of nitrogen, boron atoms prefer to form -B-B- pairs with the further formation of -P-P-B-B-P-P- patterns along the phosphorene chains. The low concentration of boron dopants converts the phosphorene from a semiconductor into a semimetal with the simultaneous enhancement of its chemical activity. Co-doping of phosphorene by both boron and nitrogen starts from the formation of -B-N- pairs, which provides flat bands and further transformation of these pairs into hexagonal BN lines and ribbons across the phosphorene chains.

  19. Subtropical urban turfs: Carbon and nitrogen pools and the role of enzyme activity.

    Science.gov (United States)

    Kong, Ling; Chu, L M

    2018-03-01

    Urban grasslands not only provide a recreational venue for urban residents, but also sequester organic carbon in vegetation and soils through photosynthesis, and release carbon dioxide through respiration, which largely contribute to carbon storage and fluxes at regional and global scales. We investigated organic carbon and nitrogen pools in subtropical turfs and found that dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) were regulated by several factors including microbial activity which is indicated by soil enzymatic activity. We observed a vertical variation and different temporal patterns in both soil DOC, DON and enzyme activities, which decreased significantly with increasing soil depths. We further found that concentration of soil DON was linked with turf age. There were correlations between grass biomass and soil properties, and soil enzyme activities. In particular, soil bulk density was significantly correlated with soil moisture and soil organic carbon (SOC). In addition, DOC correlated significantly with DON. Significant negative correlations were also observed between soil total dissolved nitrogen (TDN) and grass biomass of Axonopus compressus and Zoysia matrella. Specifically, grass biomass was significantly correlated with the soil activity of urease and β-glucosidase. Soil NO 3 -N concentration also showed negative correlations with the activity of both β-glucosidase and protease but there were no significant correlations between cellulase and soil properties or grass biomass. Our study demonstrated a relationship between soil C and N dynamics and soil enzymes that could be modulated to enhance SOC pools through management and maintenance practices. Copyright © 2017. Published by Elsevier B.V.

  20. Long-term natural attenuation of carbon and nitrogen within a groundwater plume after removal of the treated wastewater source.

    Science.gov (United States)

    Repert, Deborah A; Barber, Larry B; Hess, Kathryn M; Keefe, Steffanie H; Kent, Douglas B; LeBlanc, Denis R; Smith, Richard L

    2006-02-15

    Disposal of treated wastewater for more than 60 years onto infiltration beds on Cape Cod, Massachusetts produced a groundwater contaminant plume greater than 6 km long in a surficial sand and gravel aquifer. In December 1995 the wastewater disposal ceased. A long-term, continuous study was conducted to characterize the post-cessation attenuation of the plume from the source to 0.6 km downgradient. Concentrations and total pools of mobile constituents, such as boron and nitrate, steadily decreased within 1-4 years along the transect. Dissolved organic carbon loads also decreased, but to a lesser extent, particularly downgradient of the infiltration beds. After 4 years, concentrations and pools of carbon and nitrogen in groundwater were relatively constant with time and distance, but substantially elevated above background. The contaminant plume core remained anoxic for the entire 10-year study period; temporal patterns of integrated oxygen deficit decreased slowly at all sites. In 2004, substantial amounts of total dissolved carbon (7 mol C m(-2)) and fixed (dissolved plus sorbed) inorganic nitrogen (0.5 mol N m(-2)) were still present in a 28-m vertical interval at the disposal site. Sorbed constituents have contributed substantially to the dissolved carbon and nitrogen pools and are responsible for the long-term persistence of the contaminant plume. Natural aquifer restoration at the discharge location will take at least several decades, even though groundwater flow rates and the potential for contaminant flushing are relatively high.

  1. Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds

    Science.gov (United States)

    Jason B. Fellman; Eran Hood; David V. D' Amore; Richard T. Edwards; Dan White

    2009-01-01

    The composition and biodegradability of streamwater dissolved organic matter (DOM) varies with source material and degree of transformation. We combined PARAFAC modeling of fluorescence excitation-emission spectroscopy and biodegradable dissolved organic carbon (BDOC) incubations to investigate seasonal changes in the lability of DOM along a soil-stream continuum in...

  2. Nitrogen cycling in a turbid, tidal estuary - de stikstofkringloop in een troebel getijden estuarium

    NARCIS (Netherlands)

    Andersson, M.G.I.

    2007-01-01

    In this thesis I investigated nitrification, dissolved inorganic and organic nitrogen uptake, and the relative importance of nitrification and ammonium assimilation. I have also investigated exchange with marshes and sediments. Nitrification, oxidation of ammonium to nitrate is the first step for

  3. Climate change affects key nitrogen-fixing bacterial populations on coral reefs

    NARCIS (Netherlands)

    Santos, Henrique F.; Carmo, Flavia L.; Duarte, Gustavo; Dini-Andreote, Francisco; Castro, Clovis B.; Rosado, Alexandre S.; van Elsas, Jan Dirk; Peixoto, Raquel S.

    2014-01-01

    Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean's biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study

  4. Climate change affects key nitrogen-fixing bacterial populations on coral reefs

    NARCIS (Netherlands)

    Santos, Henrique F.; Carmo, Flavia L.; Duarte, Gustavo; Dini-Andreote, Francisco; Castro, Clovis B.; Rosado, Alexandre S.; van Elsas, Jan Dirk; Peixoto, Raquel S.

    Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean's biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study

  5. Operational strategies for nitrogen removal in granular sequencing batch reactor

    International Nuclear Information System (INIS)

    Chen, Fang-yuan; Liu, Yong-Qiang; Tay, Joo-Hwa; Ning, Ping

    2011-01-01

    This study investigated the effects of different operational strategies for nitrogen removal by aerobic granules with mean granule sizes of 1.5 mm and 0.7 mm in a sequencing batch reactor (SBR). With an alternating anoxic/oxic (AO) operation mode without control of dissolve oxygen (DO), the granular sludge with different size achieved the total inorganic nitrogen (TIN) removal efficiencies of 67.8-71.5%. While under the AO condition with DO controlled at 2 mg/l at the oxic phase, the TIN removal efficiency was improved up to 75.0-80.4%. A novel operational strategy of alternating anoxic/oxic combined with the step-feeding mode was developed for nitrogen removal by aerobic granules. It was found that nitrogen removal efficiencies could be further improved to 93.0-95.9% with the novel strategy. Obviously, the alternating anoxic/oxic strategy combined with step-feeding is the optimal way for TIN removal by granular sludge, which is independent of granule size.

  6. Hydrothermal liquefaction pathways for low-nitrogen biocrude from wet algae

    Energy Technology Data Exchange (ETDEWEB)

    Tanzella, Francis [SRI International, Menlo Park, CA (United States); Lim, Jin-Ping [SRI International, Menlo Park, CA (United States)

    2016-12-13

    Our SRI International (SRI) team has developed a new two-step hydrothermal liquefaction (HTL) process to convert wet algal biomass into biocrude oil. The first step in the process (low-temperature HTL or HTL1) yields crude oil but, most importantly, it selectively dissolves nitrogen-containing compounds in the aqueous phase. Once the oil and the aqueous phase are separated, the low-nitrogen soft solids left behind can be taken to the second step (high-temperature HTL or HTL2) for full conversion to biocrude. HTL2 will hence yield low-nitrogen biocrude, which can be hydro-processed to yield transportation fuels. The expected high carbon yield and low nitrogen content can lead to a transportation fuel from algae that avoids two problems common to existing algae-to-fuel processes: (1) poisoning of the hydro-processing catalyst; and (2) inefficient conversion of algae-to-liquid fuels. The process we studied would yield a new route to strategic energy production from domestic sources.

  7. Buckminsterfullerenes: a non-metal system for nitrogen fixation.

    Science.gov (United States)

    Nishibayashi, Yoshiaki; Saito, Makoto; Uemura, Sakae; Takekuma, Shin-Ichi; Takekuma, Hideko; Yoshida, Zen-Ichi

    2004-03-18

    In all nitrogen-fixation processes known so far--including the industrial Haber-Bosch process, biological fixation by nitrogenase enzymes and previously described homogeneous synthetic systems--the direct transformation of the stable, inert dinitrogen molecule (N2) into ammonia (NH3) relies on the powerful redox properties of metals. Here we show that nitrogen fixation can also be achieved by using a non-metallic buckminsterfullerene (C60) molecule, in the form of a water-soluble C60:gamma-cyclodextrin (1:2) complex, and light under nitrogen at atmospheric pressure. This metal-free system efficiently fixes nitrogen under mild conditions by making use of the redox properties of the fullerene derivative.

  8. Direct synthesis of nitrogen-containing carbon nanotubes on carbon paper for fuel cell electrode

    Science.gov (United States)

    Yin, Wong Wai; Daud, Wan Ramli Wan; Mohamad, Abu Bakar; Kadhum, Abdul Amir Hassan; Majlan, Edy Herianto; Shyuan, Loh Kee

    2012-06-01

    Organic catalyst has recently been identified as the potential substitution for expensive platinum electrocatalyst for fuel cell application. Numerous studies have shown that the nitrogen-containing carbon nanotubes (N-CNT) can be synthesized through spray pyrolysis or floating chemical vapor deposition (CVD) technique using various type of organometallic as precursors. This paper presents the method of synthesis and the initial findings of the growth of N-CNT directly on carbon paper using a modified CVD technique. In this research, nickel (II) phthalocyanines (Ni-Pc) as precursor was dissolved in ethanol solvent, stirred and sonicated to become homogenized. The solution was poured into a bubbler and heated up to allow the mixture to vaporize. Subsequently, the solution vapor was flowed into the tubical reactor maintained at 900°C. Carbon paper sputtered with nickel nanoparticles was used as the substrate. The synthesized sample was examined through Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM) and Fourier Transform Infra-Red (FTIR). Long, entangled and compartmentalized nanotubes with tube diameter ranging 23-27 nm were found covered the carbon paper surface with approximate of 5.5-6.0 μm in thickness. EDX analysis has successfully showed the presence of nitrogen in the carbon nanotube. FTIR analysis showed the presence of the C-N bond on CNT.

  9. Stable Isotope Identification of Nitrogen Sources for United ...

    Science.gov (United States)

    We used natural abundance stable isotope data to evaluate nitrogen sources to U.S. west coast estuaries. We collected δ15N of macroalgae data and supplemented this with available data from the literature for estuaries from Mexico to Alaska. Stable isotope ratios of green macroalgae were compared to δ15N of dissolved inorganic nitrogen of oceanic and watershed end members. There was a latitudinal gradient in δ15N of macroalgae with southern estuaries being 7 per mil heavier than northern estuaries. Gradients in isotope data were compared to nitrogen sources estimated by the USGS using the SPARROW model. In California estuaries, the elevation of isotope data appeared to be related to anthropogenic nitrogen sources. In Oregon systems, the nitrogen levels of streams flowing into the estuaries are related to forest cover, rather than to developed land classes. In addition, the δ15N of macroalgae suggested that the ocean and nitrogen-fixing trees in the watersheds were the dominant nitrogen sources. There was also a strong gradient in δ15N of macroalgae with heavier sites located near the estuary mouth. In some Oregon estuaries, there was an elevation an elevation of δ15N above marine end members in the vicinity of wastewater treatment facility discharge locations, suggesting isotopes may be useful for distinguishing inputs along an estuarine gradient. Nutrients are the leading cause of water quality impairments in the United States, and as a result too

  10. Experimental setup for precise measurement of losses in high-temperature superconducting transformer

    Science.gov (United States)

    Janu, Z.; Wild, J.; Repa, P.; Jelinek, Z.; Zizek, F.; Peksa, L.; Soukup, F.; Tichy, R.

    2006-10-01

    A simple cryogenic system for testing of the superconducting power transformer was constructed. Thermal shielding is provided by additional liquid nitrogen bath instead of super-insulation. The system, together with use of a precise nitrogen liquid level meter, permitted calorimetric measurements of losses of the 8 kVA HTS transformer with a resolution of the order of 0.1 W.

  11. Contribution of waterborne nitrogen emissions to hypoxia-driven marine eutrophication: modelling of damage to ecosystems in life cycle impact assessment (LCIA)

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias

    Marine eutrophication refers to the ecosystem response to the loading of a growth limiting nutrient, typically nitrogen (N), to coastal waters, where it may cause several impacts. One of the possible impact pathways to these impacts involves the excessive depletion of dissolved oxygen hypoxia) in...... and atmospheric deposition as a consequence of fossil fuels combustion.......Marine eutrophication refers to the ecosystem response to the loading of a growth limiting nutrient, typically nitrogen (N), to coastal waters, where it may cause several impacts. One of the possible impact pathways to these impacts involves the excessive depletion of dissolved oxygen hypoxia......) in bottom waters. Hypoxia is identified as an important and widespread cause of disturbance to marine ecosystems and has been linked to the increasing anthropogenic pressure. This is driven by environmental emissions of reactive nitrogen, mainly from N-containing fertilizers used in agriculture...

  12. Quantification of transformation rates of soil amino sugars and amino acids by a novel isotope pool dilution approach via liquid chromatography/high resolution mass spectrometry (LC/HRMS)

    Science.gov (United States)

    Hu, Yuntao; Zheng, Qing; Noll, Lisa; Zhang, Shasha; Wanek, Wolfgang

    2017-04-01

    successfully investigate the production and consumption of 2 amino sugars, 18 amino acids, and 4 amino acid enantiomers in soils. We further applied this method to soils from 6 sampling sites differing in geology and land management, after short-term (1-day) temperature (5˚ C, 15˚ C, 25˚ C) pre-incubations. We found that the release of amino sugars (free glucosamine) during the decomposition of peptidoglycan and chitin accounted for approximately 5% to 15% of the total influx into the dissolved organic nitrogen pool (amino acids plus amino sugars). Muramic acid exhibited significantly longer residence times in soils, indicating that free muramic acid was not an important decomposition product of peptidoglycan in soil. We will present further results on potential controls of soil amino sugar fluxes, such as soil temperature, geology and land management, as well as soil peptidoglycan and chitin content, hydrolytic enzyme activity, and microbial community structure. These findings and further ongoing work will greatly advance our knowledge of the transformation processes of soil organic nitrogen and its major controls.

  13. Synthesis of Nitrogen-Doped Carbon Nanotubes Using Injection-Vertical Chemical Vapor Deposition: Effects of Synthesis Parameters on the Nitrogen Content

    Directory of Open Access Journals (Sweden)

    Abdouelilah Hachimi

    2015-01-01

    Full Text Available Nitrogen-doped CNTs (N-CNTs were synthesized using an injection-vertical chemical vapor deposition (IV-CVD reactor. This type of reactor is quite useful for the continuous mass production of CNTs. In this work, the optimum deposition conditions for maximizing the incorporation of nitrogen were identified. Ferrocene served as the source of the Fe catalyst and was dissolved in acetonitrile, which served as both the hydrocarbon and nitrogen sources. Different concentrations of ferrocene in acetonitrile were introduced into the top of a vertically aligned reactor at a constant flow rate with hydrogen serving as the carrier. The effects of hydrogen flow rate, growth temperature, and catalyst loading (Fe from the ferrocene on the microstructure, elemental composition, and yield of N-CNTs were investigated. The N-CNTs possessed a bamboo-like microstructure with a nitrogen doping level as high as 14 at.% when using 2.5 to 5 mg/mL of the ferrocene/acetonitrile mixture at 800°C under a 1000 sccm flow of hydrogen. A production rate of 100 mg/h was achieved under the optimized synthesis conditions.

  14. [Proteomic analysis of curdlan-producing Agrobacterium sp. ATCC 31749 in response to dissolved oxygen].

    Science.gov (United States)

    Dai, Xiaomeng; Yang, Libo; Zheng, Zhiyong; Chen, Haiqin; Zhan, Xiaobei

    2015-08-04

    Curdlan is produced by Agrobacterium sp. ATCC 31749 under nitrogen limiting condition. The biosynthesis of crudlan is a typical aerobic bioprocess, and the production of curdlan would be severely restricted under micro-aerobic and anoxic conditions. Proteomic analysis of Agrobacterium sp. was conducted to investigate the effect of dissolved oxygen on the crucial enzymes involved in curdlan biosynthesis. Two-dimensional gel electrophoresis was performed to separate and visualize the differential expression of the intracellular proteins extracted from Agrobacterium sp. ATCC 31749 cultured under various dissolved oxygen levels (75%, 50%, 25% and 5%). In addition, a comparative proteomic analysis of the intracellular proteins expression level under various dissolved oxygen levels was done. Significant differently expressed proteins were identified by MALDI-TOF/TOF. Finally, we identified 15 differently expressed proteins involved in polysaccharide synthesis, fatty acid synthesis, amino acid synthesis pathway. Among these proteins, phosphoglucomutase and orotidine 5-phosphate decarboxylase were the key metabolic enzymes directing curdlan biosynthesis. Oxygen could affect the expression of the proteins taking charge of curdlan synthesis significantly.

  15. Tidal Marsh Outwelling of Dissolved Organic Matter and Resulting Temporal Variability in Coastal Water Optical and Biogeochemical Properties

    Science.gov (United States)

    Tzortziou, Maria; Neale, Patrick J.; Megonigal, J. Patrick; Butterworth, Megan; Jaffe, Rudolf; Yamashita, Youhei

    2010-01-01

    Coastal wetlands are highly dynamic environments at the land-ocean interface where human activities, short-term physical forcings and intense episodic events result in high biological and chemical variability. Long being recognized as among the most productive ecosystems in the world, tidally-influenced coastal marshes are hot spots of biogeochemical transformation and exchange. High temporal resolution observations that we performed in several marsh-estuarine systems of the Chesapeake Bay revealed significant variability in water optical and biogeochemical characteristics at hourly time scales, associated with tidally-driven hydrology. Water in the tidal creek draining each marsh was sampled every hour during several semi-diurnal tidal cycles using ISCO automated samplers. Measurements showed that water leaving the marsh during ebbing tide was consistently enriched in dissolved organic carbon (DOC), frequently by more than a factor of two, compared to water entering the marsh during flooding tide. Estimates of DOC fluxes showed a net DOC export from the marsh to the estuary during seasons of both low and high biomass of marsh vegetation. Chlorophyll amounts were typically lower in the water draining the marsh, compared to that entering the marsh during flooding tide, suggesting that marshes act as transformers of particulate to dissolved organic matter. Moreover, detailed optical and compositional analyses demonstrated that marshes are important sources of optically and chemically distinctive, relatively complex, high molecular weight, aromatic-rich and highly colored dissolved organic compounds. Compared to adjacent estuarine waters, marsh-exported colored dissolved organic matter (CDOM) was characterized by considerably stronger absorption (more than a factor of three in some cases), larger DOC-specific absorption, lower exponential spectral slope, larger fluorescence signal, lower fluorescence per unit absorbance, and higher fluorescence at visible wavelengths

  16. Mean age distribution of inorganic soil-nitrogen

    Science.gov (United States)

    Woo, Dong K.; Kumar, Praveen

    2016-07-01

    Excess reactive nitrogen in soils of intensively managed landscapes causes adverse environmental impact, and continues to remain a global concern. Many novel strategies have been developed to provide better management practices and, yet, the problem remains unresolved. The objective of this study is to develop a model to characterize the "age" of inorganic soil-nitrogen (nitrate, and ammonia/ammonium). We use the general theory of age, which provides an assessment of the time elapsed since inorganic nitrogen has been introduced into the soil system. We analyze a corn-corn-soybean rotation, common in the Midwest United States, as an example application. We observe two counter-intuitive results: (1) the mean nitrogen age in the topsoil layer is relatively high; and (2) mean nitrogen age is lower under soybean cultivation compared to corn although no fertilizer is applied for soybean cultivation. The first result can be explained by cation-exchange of ammonium that retards the leaching of nitrogen, resulting in an increase in the mean nitrogen age near the soil surface. The second result arises because the soybean utilizes the nitrogen fertilizer left from the previous year, thereby removing the older nitrogen and reducing mean nitrogen age. Estimating the mean nitrogen age can thus serve as an important tool to disentangle complex nitrogen dynamics by providing a nuanced characterization of the time scales of soil-nitrogen transformation and transport processes.

  17. Decoupling of dissolved organic matter patterns between stream and riparian groundwater in a headwater forested catchment

    Science.gov (United States)

    Bernal, Susana; Lupon, Anna; Catalán, Núria; Castelar, Sara; Martí, Eugènia

    2018-03-01

    Streams are important sources of carbon to the atmosphere, though knowing whether they merely outgas terrestrially derived carbon dioxide or mineralize terrestrial inputs of dissolved organic matter (DOM) is still a big challenge in ecology. The objective of this study was to investigate the influence of riparian groundwater (GW) and in-stream processes on the temporal pattern of stream DOM concentrations and quality in a forested headwater stream, and whether this influence differed between the leaf litter fall (LLF) period and the remaining part of the year (non-LLF). The spectroscopic indexes (fluorescence index, biological index, humification index, and parallel factor analysis components) indicated that DOM had an eminently protein-like character and was most likely originated from microbial sources and recent biological activity in both stream water and riparian GW. However, paired samples of stream water and riparian GW showed that dissolved organic carbon (DOC) and nitrogen (DON) concentrations as well as the spectroscopic character of DOM differed between the two compartments throughout the year. A simple mass balance approach indicated that in-stream processes along the reach contributed to reducing DOC and DON fluxes by 50 and 30 %, respectively. Further, in-stream DOC and DON uptakes were unrelated to each other, suggesting that these two compounds underwent different biogeochemical pathways. During the LLF period, stream DOC and DOC : DON ratios were higher than during the non-LLF period, and spectroscopic indexes suggested a major influence of terrestrial vegetation on stream DOM. Our study highlights that stream DOM is not merely a reflection of riparian GW entering the stream and that headwater streams have the capacity to internally produce, transform, and consume DOM.

  18. Organic forms dominate hydrologic nitrogen export from a lowland tropical watershed.

    Science.gov (United States)

    Taylor, Philip G; Wieder, William R; Weintraub, Samantha; Cohen, Sagy; Cleveland, Cory C; Townsend, Alan R

    2015-05-01

    Observations of high dissolved inorganic nitrogen (DIN) concentrations in stream water have reinforced the notion that primary tropical rain forests cycle nitrogen (N) in relative excess compared to phosphorus. Here we test this notion by evaluating hydrologic N export from a small watershed on the Osa Peninsula, Costa Rica, where prior research has shown multiple indicators of conservative N cycling throughout the ecosystem. We repeatedly measured a host of factors known to influence N export for one year, including stream water chemistry and upslope litterfall, soil N availability and net N processing rates, and soil solution chemistry at the surface, 15- and 50-cm depths. Contrary to prevailing assumptions about the lowland N cycle, we find that dissolved organic nitrogen (DON) averaged 85% of dissolved N export for 48 of 52 consecutive weeks. For most of the year stream water nitrate (NO3-) export was very low, which reflected minimal net N processing and DIN leaching from upslope soils. Yet, for one month in the dry season, NO3- was the major component of N export due to a combination of low flows and upslope nitrification that concentrated NO3- in stream water. Particulate organic N (PON) export was much larger than dissolved forms at 14.6 kg N x ha(-1) x yr(-1), driven by soil erosion during storms. At this rate, PON export was slightly greater than estimated inputs from free-living N fixation and atmospheric N deposition, which suggests that erosion-driven PON export could constrain ecosystem level N stocks over longer timescales. This phenomenon is complimentary to the "DON leak" hypothesis, which postulates that the long-term accumulation of ecosystem N in unpolluted ecosystems is constrained by the export of organic N independently of biological N demand. Using an established global sediment generation model, we illustrate that PON erosion may be an important vector for N loss in tropical landscapes that are geomorphically active. This study supports an

  19. Nitrogen processing in a tidal freshwater marsh: a whole ecosystem 15N labeling study

    DEFF Research Database (Denmark)

    Gribsholt, B.; Boschker, H.T.S.; Struyf, E.

    2005-01-01

    We quantified the fate and transport of watershed-derived ammonium in a tidal freshwater marsh fringing the nutrient-rich Scheldt River in a whole-ecosystem 15N labeling experiment. 15N-NH4+ was added to the floodwater entering a 3,477 m2 tidal marsh area, and marsh ammonium processing...... and retention were traced in six subsequent tide cycles. We present data for the water phase components of the marsh system, in which changes in concentration and isotopic enrichment of NO3-, NO2- , N2O, N2, NH4+, and suspended particulate nitrogen (SPN) were measured in concert with a mass balance study....... Simultaneous addition of a conservative tracer (NaBr) confirmed that tracer was evenly distributed, and the Br2 budget was almost closed (115% recovery). All analyzed dissolved and suspended N pools were labeled, and 31% of added 15N-NH4+ was retained or transformed. Nitrate was the most important pool for 15N...

  20. Chasing after Non-cyanobacterial Nitrogen Fixation in Marine Pelagic Environments

    Directory of Open Access Journals (Sweden)

    Pia H. Moisander

    2017-09-01

    Full Text Available Traditionally, cyanobacterial activity in oceanic photic layers was considered responsible for the marine pelagic dinitrogen (N2 fixation. Other potentially N2-fixing bacteria and archaea have also been detected in the pelagic water column, however, the activity and importance of these non-cyanobacterial diazotrophs (NCDs remain poorly constrained. In this perspective we summarize the N2 fixation rates from recently published studies on photic and aphotic layers that have been attributed to NCD activity via parallel molecular measurements, and discuss the status, challenges, and data gaps in estimating non-cyanobacterial N2 fixation NCNF in the ocean. Rates attributed to NCNF have generally been near the detection limit thus far (<1 nmol N L−1 d−1. Yet, if considering the large volume of the dark ocean, even low rates of NCNF could make a significant contribution to the new nitrogen input to the ocean. The synthesis here shows that nifH transcription data for NCDs have been reported in only a few studies where N2 fixation rates were detected in the absence of diazotrophic cyanobacteria. In addition, high apparent diversity and regional variability in the NCDs complicate investigations of these communities. Future studies should focus on further investigating impacts of environmental drivers including oxygen, dissolved organic matter, and dissolved inorganic nitrogen on NCNF. Describing the ecology of NCDs and accurately measuring NCNF rates, are critical for a future evaluation of the contribution of NCNF to the marine nitrogen budget.

  1. Effects of photochemical Transformations of Dissolved Organic Matter on Bacterial Metabolism and Diversity in Three Contrasting Coastal Sites in the Northwestern Mediterranean Sea during Summer

    International Nuclear Information System (INIS)

    Abboudi, M.

    2010-01-01

    The effects of photo transformation of dissolved organic matter (DOM) on bacterial growth, production, respiration, growth efficiency, and diversity were investigated during summer in two lagoons and one oligo trophic coastal water samples from the Northwestern Mediterranean Sea, differing widely in DOM and chromophoric DOM concentrations. Exposure of 0.2μm filtered waters to full sun radiation for 1 d resulted in small changes in optical properties and concentrations of DOM, and no changes in nitrate, nitrite, and phosphate concentrations. After exposure to sunlight or dark (control) treatments, the water samples were inoculated with the original bacterial com community. Photo transformation of DOM had contrasting effects on bacterial production and respiration, depending on the water's origin, resulting in an increase of bacterial growth efficiency for the oligo trophic coastal water sample (120%) and a decrease for the lagoon waters (20 to 40%) relative to that observed in dark treatments. We also observed that bacterial growth on DOM irradiated by full sun resulted in changes in community structure of total and metabolically active bacterial cells for the three locations studied when compared to the bacteria growing on unirradiated DOM, and that changes were mainly caused by photo transformation of DOM by UV radiation for the eutrophic lagoon and the oligo trophic coastal water and by photosynthetically active radiation (PAR) for the meso eutrophic lagoon. These initial results indicate that photo transformation of DOM significantly alters both bacterial metabolism and community structure in surface water for a variety of coastal ecosystems in the Mediterranean Sea. Further studies will be necessary to elucidate a more detailed appreciation of potential temporal and spatial variations of the effects measured. (author)

  2. Characterization of waterborne nitrogen emissions for marine eutrophication modelling in life cycle impact assessment at the damage level and global scale

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Hauschild, Michael Zwicky

    2017-01-01

    Current life cycle impact assessment (LCIA) methods lack a consistent and globally applicable characterization model relating nitrogen (N, as dissolved inorganic nitrogen, DIN) enrichment of coastal waters to the marine eutrophication impacts at the endpoint level. This paper introduces a method...... to calculate spatially explicit characterization factors (CFs) at endpoint and damage to ecosystems levels, for waterborne nitrogen emissions, reflecting their hypoxia-related marine eutrophication impacts, modelled for 5772 river basins of the world....

  3. Comparison of biochar, zeolite and their mixture amendment for aiding organic matter transformation and nitrogen conservation during pig manure composting.

    Science.gov (United States)

    Wang, Quan; Awasthi, Mukesh Kumar; Ren, Xiuna; Zhao, Junchao; Li, Ronghua; Wang, Zhen; Chen, Hongyu; Wang, Meijing; Zhang, Zengqiang

    2017-12-01

    The aim of this work was to compare the impact of biochar, zeolite and their mixture on nitrogen conservation and organic matter transformation during pig manure (PM) composting. Four treatments were set-up from PM mixed with wheat straw and then applied 10% biochar (B), 10% zeolite (Z) and 10% biochar+10% zeolite (B+Z) into composting mixtures (dry weight basis), while treatment without additives applied used as control. Results indicated that adding B, Z and B+Z could obviously (pcompost quality indicated that the combined use of biochar and zeolite could be more useful for PM composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Anaerobic Nitrogen Fixers on Mars

    Science.gov (United States)

    Lewis, B. G.

    2000-07-01

    The conversion of atmospheric nitrogen gas to the protein of living systems is an amazing process of nature. The first step in the process is biological nitrogen fixation, the transformation of N2 to NH3. The phenomenon is crucial for feeding the billions of our species on Earth. On Mars, the same process may allow us to discover how life can adapt to a hostile environment, and render it habitable. Hostile environments also exist on Earth. For example, nothing grows in coal refuse piles due to the oxidation of pyrite and marcasite to sulfuric acid. Yet, when the acidity is neutralized, alfalfa and soybean plants develop root nodules typical of symbiotic nitrogen fixation with Rhizobium species possibly living in the pyritic material. When split open, these nodules exhibited the pinkish color of leghemoglobin, a protein in the nodule protecting the active nitrogen-fixing enzyme nitrogenase against the toxic effects of oxygen. Although we have not yet obtained direct evidence of nitrogenase activity in these nodules (reduction of acetylene to ethylene, for example), these findings suggested the possibility that nitrogen fixation was taking place in this hostile, non-soil material. This immediately raises the possibility that freeliving anaerobic bacteria which fix atmospheric nitrogen on Earth, could do the same on Mars.

  5. TRANSFORMER APPARATUS

    Science.gov (United States)

    Wolfgang, F.; Nicol, J.

    1962-11-01

    Transformer apparatus is designed for measuring the amount of a paramagnetic substance dissolved or suspended in a diamagnetic liquid. The apparatus consists of a cluster of tubes, some of which are closed and have sealed within the diamagnetic substance without any of the paramagnetic material. The remaining tubes are open to flow of the mix- ture. Primary and secondary conductors are wrapped around the tubes in such a way as to cancel noise components and also to produce a differential signal on the secondaries based upon variations of the content of the paramagnetic material. (AEC)

  6. Dynamics of dissolved organic matter in fjord ecosystems: Contributions of terrestrial dissolved organic matter in the deep layer

    Science.gov (United States)

    Yamashita, Youhei; McCallister, S. Leigh; Koch, Boris P.; Gonsior, Michael; Jaffé, Rudolf

    2015-06-01

    Annually, rivers and inland water systems deliver a significant amount of terrestrial organic matter (OM) to the adjacent coastal ocean in both particulate and dissolved forms; however, the metabolic and biogeochemical transformations of OM during its seaward transport remains one of the least understood components of the global carbon cycle. This transfer of terrestrial carbon to marine ecosystems is crucial in maintaining trophic dynamics in coastal areas and critical in global carbon cycling. Although coastal regions have been proposed as important sinks for exported terrestrial materials, most of the global carbon cycling data, have not included fjords in their budgets. Here we present distributional patterns on the quantity and quality of dissolved OM in Fiordland National Park, New Zealand. Specifically, we describe carbon dynamics under diverse environmental settings based on dissolved organic carbon (DOC) depth profiles, oxygen concentrations, optical properties (fluorescence) and stable carbon isotopes. We illustrate a distinct change in the character of DOC in deep waters compared to surface and mid-depth waters. Our results suggest that, both, microbial reworking of terrestrially derived plant detritus and subsequent desorption of DOC from its particulate counterpart (as verified in a desorption experiment) are the main sources of the humic-like enriched DOC in the deep basins of the studied fjords. While it has been suggested that short transit times and protection of OM by mineral sorption may ultimately result in significant terrestrial carbon burial and preservation in fjords, our data suggests the existence of an additional source of terrestrial OM in the form of DOC generated in deep, fjord water.

  7. Effect of catchment land use and soil type on the concentration, quality, and bacterial degradation of riverine dissolved organic matter

    DEFF Research Database (Denmark)

    Autio, Iida; Soinne, Helena; Helin, Janne

    2016-01-01

    We studied the effects of catchment characteristics (soil type and land use) on the concentration and quality of dissolved organic matter (DOM) in river water and on the bacterial degradation of terrestrial DOM. The share of organic soil was the strongest predictor of high concentrations...... of dissolved organic carbon, nitrogen, and phosphorus (DOC, DON, and DOP, respectively), and was linked to DOM quality. Soil type was more important than land use in determining the concentration and quality of riverine DOM. On average, 5–9 % of the DOC and 45 % of the DON were degraded by the bacterial...

  8. Comparison of the flows of nitrogen and inorganic phosphorous, dissolved in the Cienaga Grande de Santa Marta, Colombian Caribbean; obtained from incubation cameras in situ and incubation of silt nucleus in laboratory

    International Nuclear Information System (INIS)

    Navas S, Gabriel R; Zea Sven; Campos, Nestor Hernando

    2002-01-01

    This research focused on the comparison of low cost methodologies to determine ionic nitrogen and phosphorous fluxes across the soft sediment-water interface in Cienaga Grande de Santa Marta. In situ transparent incubation chambers and sediment cores for laboratory incubation were employed. It was found that inside the incubation chambers a depletion of dissolved oxygen occurred thus the incubation couldn't be extended for more than six hours, time insufficiently to detect important variations in concentration of the analyzed ions. Furthermore in addition, chambers were difficult to handle. Twenty-four hour sediment core incubation in the laboratory did not have the above-mentioned problems. Oxygen concentration could be kept constant, and ion concentration changes were generally large enough to allow quantitative estimations of the fluxes

  9. Effects of long-term land use change on dissolved carbon characteristics in the permafrost streams of northeast China.

    Science.gov (United States)

    Guo, Yuedong; Song, Changchun; Wan, Zhongmei; Tan, Wenwen; Lu, Yongzheng; Qiao, Tianhua

    2014-11-01

    Permafrost soils act as large sinks of organic carbon but are highly sensitive to interference such as changes in land use, which can greatly influence dissolved carbon loads in streams. This study examines the effects of long-term land reclamation on seasonal concentrations of dissolved carbons in the upper reaches of the Nenjiang River, northeast China. A comparison of streams in natural and agricultural systems shows that the dissolved organic carbon (DOC) concentration is much lower in the agricultural stream (AG) than in the two natural streams (WAF, wetland dominated; FR, forest dominated), suggesting that land use change is associated with reduced DOC exporting capacity. Moreover, the fluorescence indexes and the ratio of dissolved carbon to nitrogen also differ greatly between the natural and agricultural streams, indicating that the chemical characteristics and the origin of the DOC released from the whole reaches are also altered to some extent. Importantly, the exporting concentration of dissolved inorganic carbon (DIC) and its proportion of total dissolved carbon (TDC) substantially increase following land reclamation, which would largely alter the carbon cycling processes in the downstream fluvial system. Although the strong association between the stream discharge and the DOC concentration was unchanged, the reduction in total soil organic carbon following land reclamation led to remarkable decline of the total flux and exporting coefficient of the dissolved carbons. The results suggest that dissolved carbons in permafrost streams have been greatly affected by changes in land use since the 1970s, and the changes in the concentration and chemical characteristics of dissolved carbons will last until the alteration in both the traditional agriculture pattern and the persistent reclamation activities.

  10. [Spectral characteristics of dissolved organic matter released during the metabolic process of small medusa].

    Science.gov (United States)

    Guo, Dong-Hui; Yi, Yue-Yuan; Zhao, Lei; Guo, Wei-Dong

    2012-06-01

    The metabolic processes of jellyfish can produce dissolved organic matter (DOM) which will influence the functioning of the aquatic ecosystems, yet the optical properties of DOM released by jellyfish are unknown. Here we report the absorption and fluorescence properties of DOM released by a medusa species Black fordia virginica during a 24 h incubation experiment. Compared with the control group, an obvious increase in the concentrations of dissolved organic carbon (DOC), absorption coefficient (a280) and total dissolved nitrogen (TDN) was observed in incubation group. This clearly demonstrated the release of DOM, chromophoric DOM (CDOM) and dissolved nutrients by B. virginica which feed on enough of Artemia sp. before the experiment. The increase in spectral slope ratio (SR) and decrease in humification index (HIX) indicated that the released DOM was less-humified and had relatively lower molecular weight. Parallel factor analysis (PARAFAC) decomposed the fluorescence matrices of DOM into three humic-like components (C1-C3) and one protein-like component (C4). The Fmax of two components (C2: 400 nm showed little changes. Thus, we suggested a zooplankton index (ZIX) to trace and characterize the DOM excreted by metabolic activity of zooplankton, which is calculated as the ratio of the sum of Fmax of all fluorescence components with the emission wavelength 400 nm.

  11. The isotopic chemical and dissolved gas concentrations in groundwater near Venterstad, Cape Province

    International Nuclear Information System (INIS)

    Vogel, J.C.; Talma, A.S.; Heaton, T.H.E.

    1980-01-01

    Groundwater was collected for a multi parameter investigation from 27 boreholes within a radius of 120 km from Venterstad (Cape Province). The samples were analysed for the isotopes carbon-14, carbon-13, oxygen-18, tritium and radon-222, for the dissolved gases nitrogen, oxygen, argon, methane and helium and for the major ionic species. These data, with those collected during previous investigations of the flooding of the Orange Fish tunnel, are used to discuss the geohydrology of the area. Three water types of different origin were delineated

  12. Enhanced biotic and abiotic transformation of Cr(vi) by quinone-reducing bacteria/dissolved organic matter/Fe(iii) in anaerobic environment.

    Science.gov (United States)

    Huang, Bin; Gu, Lipeng; He, Huan; Xu, Zhixiang; Pan, Xuejun

    2016-09-14

    This study investigated the simultaneous transformation of Cr(vi) via a closely coupled biotic and abiotic pathway in an anaerobic system of quinone-reducing bacteria/dissolved organic matters (DOM)/Fe(iii). Batch studies were conducted with quinone-reducing bacteria to assess the influences of sodium formate (NaFc), electron shuttling compounds (DOM) and the Fe(iii) on Cr(vi) reduction rates as these chemical species are likely to be present in the environment during in situ bioremediation. Results indicated that the concentration of sodium formate and anthraquinone-2-sodium sulfonate (AQS) had apparently an effect on Cr(vi) reduction. The fastest decrease in rate for incubation supplemented with 5 mM sodium formate and 0.8 mM AQS showed that Fe(iii)/DOM significantly promoted the reduction of Cr(vi). Presumably due to the presence of more easily utilizable sodium formate, DOM and Fe(iii) have indirect Cr(vi) reduction capability. The coexisting cycles of Fe(ii)/Fe(iii) and DOM(ox)/DOM(red) exhibited a higher redox function than the individual cycle, and their abiotic coupling action can significantly enhance Cr(vi) reduction by quinone-reducing bacteria.

  13. Probing the coordination environment of Ti(3+) ions coordinated to nitrogen-containing Lewis bases.

    Science.gov (United States)

    Morra, E; Maurelli, S; Chiesa, M; Van Doorslaer, S

    2015-08-28

    Multi-frequency continuous-wave and pulsed EPR techniques are employed to investigate the coordination of nitrogen-containing ligands to Ti(3+)-chloro complexes. Frozen solutions of TiCl3 and TiCl3(Py)3 dissolved in nitrogen-containing solvents have been investigated together with the TiCl3(Py)3 solid-state complex. For these different systems, the hyperfine and nuclear quadrupole data of Ti(3+)-bound (14)N nuclei are reported and discussed in the light of DFT computations, allowing for a detailed description of the microscopic structure of these systems.

  14. Nitrogen Dynamics in the Westerschelde Estuary (Sw Netherlands) Estimated by Means of the Ecosystem Model Moses

    NARCIS (Netherlands)

    Soetaert, K.E.R.; Herman, P.M.J.

    1995-01-01

    A tentative nitrogen budget for the Westerschelde (SW Netherlands) is constructed by means of a simulation model with thirteen spatial compartments. Biochemical and chemical processes in the water column are dynamically modeled; fluxes of dissolved constituents across the water-bottom interface are

  15. Comparison of plasma generated nitrogen fertilizer to conventional fertilizers ammonium nitrate and sodium nitrate for pre-emergent and seedling growth

    Science.gov (United States)

    Andhavarapu, A.; King, W.; Lindsay, A.; Byrns, B.; Knappe, D.; Fonteno, W.; Shannon, S.

    2014-10-01

    Plasma source generated nitrogen fertilizer is compared to conventional nitrogen fertilizers in water for plant growth. Root, shoot sizes, and weights are used to examine differences between plant treatment groups. With a simple coaxial structure creating a large-volume atmospheric glow discharge, a 162 MHz generator drives the air plasma. The VHF plasma source emits a steady state glow; the high drive frequency is believed to inhibit the glow-to-arc transition for non-thermal discharge generation. To create the plasma activated water (PAW) solutions used for plant treatment, the discharge is held over distilled water until a 100 ppm nitrate aqueous concentration is achieved. The discharge is used to incorporate nitrogen species into aqueous solution, which is used to fertilize radishes, marigolds, and tomatoes. In a four week experiment, these plants are watered with four different solutions: tap water, dissolved ammonium nitrate DI water, dissolved sodium nitrate DI water, and PAW. Ammonium nitrate solution has the same amount of total nitrogen as PAW; sodium nitrate solution has the same amount of nitrate as PAW. T-tests are used to determine statistical significance in plant group growth differences. PAW fertilization chemical mechanisms are presented.

  16. Dissolved inorganic nutrients and chlorophyll on the narrow continental shelf of Eastern Brazil

    Directory of Open Access Journals (Sweden)

    Gilmara Fernandes Eça

    2014-03-01

    Full Text Available The eastern Brazilian continental shelf is narrow and subject to the influence of a western boundary current system, presenting lower biological productivity than other regions. In this study, the distribution of water masses, dissolved inorganic nutrients, chlorophyll-a and total suspended solids (TSS on the inner shelf (< 35 m depth, between Itacaré and Canavieiras, eastern Brazil, is presented. Sampling surveys were carried out in March and August 2006 and March 2007. Tropical water (TW prevailed during March 2006 and August 2007 with the lower salinity waters (< 36 found in most samples taken in March 2007, reflecting the influence of continental outflow and rain in coastal waters. Low concentrations of dissolved inorganic nutrients and Chl-a found were typical of TW and results suggested that the inner shelf waters were depleted in dissolved inorganic nitrogen in August 2006 and March 2007, and in phosphate in March 2006, potentially affecting phytoplankton growth. Stratification of the water column was observed due to differences in dissolved nutrient concentrations, chlorophyll-a and TSS when comparing surface and bottom samples, possibly the result of a colder water intrusion and mixing on the bottom shelf and a deep chlorophyll maximum and/or sediment resuspension effect. Despite this stratification, oceanographic processes such as lateral mixing driven by the Brazil Current as well as a northward alongshore drift driven by winds and tides transporting Coastal Water can lead to an enhanced mixing of these waters promoting some heterogeneity in this oligotrophic environment.

  17. Latitudinal gradients in degradation of marine dissolved organic carbon

    DEFF Research Database (Denmark)

    Arnosti, Carol; Steen, Andrew; Ziervogel, Kai

    2011-01-01

    unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars). Genomic investigations provide information......Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely...... about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76 ºS to 79 ºN to hydrolyze a range of high...

  18. Controls on inorganic nitrogen leaching from Finnish catchments assessed using a sensitivity and uncertainty analysis of the INCA-N model

    Energy Technology Data Exchange (ETDEWEB)

    Rankinen, K.; Granlund, K. [Finnish Environmental Inst., Helsinki (Finland); Futter, M. N. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden)

    2013-11-01

    The semi-distributed, dynamic INCA-N model was used to simulate the behaviour of dissolved inorganic nitrogen (DIN) in two Finnish research catchments. Parameter sensitivity and model structural uncertainty were analysed using generalized sensitivity analysis. The Mustajoki catchment is a forested upstream catchment, while the Savijoki catchment represents intensively cultivated lowlands. In general, there were more influential parameters in Savijoki than Mustajoki. Model results were sensitive to N-transformation rates, vegetation dynamics, and soil and river hydrology. Values of the sensitive parameters were based on long-term measurements covering both warm and cold years. The highest measured DIN concentrations fell between minimum and maximum values estimated during the uncertainty analysis. The lowest measured concentrations fell outside these bounds, suggesting that some retention processes may be missing from the current model structure. The lowest concentrations occurred mainly during low flow periods; so effects on total loads were small. (orig.)

  19. A microbial biogeochemistry network for soil carbon and nitrogen cycling and methane flux: model structure and application to Asia

    Science.gov (United States)

    Xu, X.; Song, C.; Wang, Y.; Ricciuto, D. M.; Lipson, D.; Shi, X.; Zona, D.; Song, X.; Yuan, F.; Oechel, W. C.; Thornton, P. E.

    2017-12-01

    A microbial model is introduced for simulating microbial mechanisms controlling soil carbon and nitrogen biogeochemical cycling and methane fluxes. The model is built within the CN (carbon-nitrogen) framework of Community Land Model 4.5, named as CLM-Microbe to emphasize its explicit representation of microbial mechanisms to biogeochemistry. Based on the CLM4.5, three new pools were added: bacteria, fungi, and dissolved organic matter. It has 11 pools and 34 transitional processes, compared with 8 pools and 9 transitional flow in the CLM4.5. The dissolve organic carbon was linked with a new microbial functional group based methane module to explicitly simulate methane production, oxidation, transport and their microbial controls. Comparing with CLM4.5-CN, the CLM-Microbe model has a number of new features, (1) microbial control on carbon and nitrogen flows between soil carbon/nitrogen pools; (2) an implicit representation of microbial community structure as bacteria and fungi; (3) a microbial functional-group based methane module. The model sensitivity analysis suggests the importance of microbial carbon allocation parameters on soil biogeochemistry and microbial controls on methane dynamics. Preliminary simulations validate the model's capability for simulating carbon and nitrogen dynamics and methane at a number of sites across the globe. The regional application to Asia has verified the model in simulating microbial mechanisms in controlling methane dynamics at multiple scales.

  20. Nitrogen sources, transport and processing in peri-urban floodplains

    International Nuclear Information System (INIS)

    Gooddy, D.C.; Macdonald, D.M.J.; Lapworth, D.J.; Bennett, S.A.; Griffiths, K.J.

    2014-01-01

    Peri-urban floodplains are an important interface between developed land and the aquatic environment and may act as a source or sink for contaminants moving from urban areas towards surface water courses. With increasing pressure from urban development the functioning of floodplains is coming under greater scrutiny. A number of peri-urban sites have been found to be populated with legacy landfills which could potentially cause pollution of adjacent river bodies. Here, a peri-urban floodplain adjoining the city of Oxford, UK, with the River Thames has been investigated over a period of three years through repeated sampling of groundwaters from existing and specially constructed piezometers. A nearby landfill has been found to have imprinted a strong signal on the groundwater with particularly high concentrations of ammonium and generally low concentrations of nitrate and dissolved oxygen. An intensive study of nitrogen dynamics through the use of N-species chemistry, nitrogen isotopes and dissolved nitrous oxide reveals that there is little or no denitrification in the majority of the main landfill plume, and neither is the ammonium significantly retarded by sorption to the aquifer sediments. A simple model has determined the flux of total nitrogen and ammonium from the landfill, through the floodplain and into the river. Over an 8 km reach of the river, which has a number of other legacy landfills, it is estimated that 27.5 tonnes of ammonium may be delivered to the river annually. Although this is a relatively small contribution to the total river nitrogen, it may represent up to 15% of the ammonium loading at the study site and over the length of the reach could increase in-stream concentrations by nearly 40%. Catchment management plans that encompass floodplains in the peri-urban environment need to take into account the likely risk to groundwater and surface water quality that these environments pose. - Highlights: • Peri-urban floodplains have been found to

  1. Nitrogen sources, transport and processing in peri-urban floodplains

    Energy Technology Data Exchange (ETDEWEB)

    Gooddy, D.C., E-mail: dcg@bgs.ac.uk [British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Macdonald, D.M.J.; Lapworth, D.J. [British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Bennett, S.A. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Griffiths, K.J. [British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB (United Kingdom)

    2014-10-01

    Peri-urban floodplains are an important interface between developed land and the aquatic environment and may act as a source or sink for contaminants moving from urban areas towards surface water courses. With increasing pressure from urban development the functioning of floodplains is coming under greater scrutiny. A number of peri-urban sites have been found to be populated with legacy landfills which could potentially cause pollution of adjacent river bodies. Here, a peri-urban floodplain adjoining the city of Oxford, UK, with the River Thames has been investigated over a period of three years through repeated sampling of groundwaters from existing and specially constructed piezometers. A nearby landfill has been found to have imprinted a strong signal on the groundwater with particularly high concentrations of ammonium and generally low concentrations of nitrate and dissolved oxygen. An intensive study of nitrogen dynamics through the use of N-species chemistry, nitrogen isotopes and dissolved nitrous oxide reveals that there is little or no denitrification in the majority of the main landfill plume, and neither is the ammonium significantly retarded by sorption to the aquifer sediments. A simple model has determined the flux of total nitrogen and ammonium from the landfill, through the floodplain and into the river. Over an 8 km reach of the river, which has a number of other legacy landfills, it is estimated that 27.5 tonnes of ammonium may be delivered to the river annually. Although this is a relatively small contribution to the total river nitrogen, it may represent up to 15% of the ammonium loading at the study site and over the length of the reach could increase in-stream concentrations by nearly 40%. Catchment management plans that encompass floodplains in the peri-urban environment need to take into account the likely risk to groundwater and surface water quality that these environments pose. - Highlights: • Peri-urban floodplains have been found to

  2. Nitrogen loading and nitrous oxide emissions from a river with multiple hydroelectric reservoirs.

    Science.gov (United States)

    Chen, Jinsong; Cao, Wenzhi; Cao, Di; Huang, Zheng; Liang, Ying

    2015-05-01

    River networks receive a large fraction of the anthropogenic nitrogen applied to river catchments. The different impacts of the stream nitrogen (N) loading on nitrous oxide (N2O) emissions from various of aquatic ecosystems are still unknown. In this study, direct measurements of water-air interface N2O exchange in different water bodies were conducted. Results showed that the water-air interface N2O exchange from tributaries, hydropower station reservoirs, a main stream, and its estuary were 10.14 ± 13.51, 15.64 ± 10.72, 27.59 ± 20.99, and 15.98 ± 12.26 µg N2O-N m(-2) h(-1), respectively, indicating the strong impacts of human activities on N2O emission rates. The water NO2 (-)-N values predicted the dissolved N2O concentrations better than did the NO3 (-)-N and NH4 (+)-N values, indicating strong denitrification and nitrification processes. The dissolved inorganic N explained 36 % of the variations in the N2O emissions for the whole river network.

  3. Isotopic Assessment of Nitrogen Cycling in River Basins: Potential and Limitations for Nutrient Management Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, B. [Department of Geoscience, University of Calgary, Calgary, Alberta (Canada); Sebilo, M. [PMC University Paris 06, UMR BIOEMCO, Paris (France); Wassenaar, L. I. [Environment Canada, Saskatoon (Canada)

    2013-05-15

    It has been proposed that the stable isotopic composition of riverine nitrate may help reveal the predominant sources of N loading of riverine systems, including inorganic fertilizers and manure derived nitrates from agricultural systems and nitrates from urban wastewater effluents. A literature review reveals that rivers in pristine and forested headwaters are generally characterized by low nitrate concentrations and {delta}{sup 15}N{sub nitrate} values <5 per mille, whereas rivers draining well developed watersheds characterized by major urban centres and/or intensive agriculture have higher nitrate concentrations and {delta}{sup 15}N{sub nitrate} values of between +5 and +15% per mille. Relating elevated {delta}{sup 15}N{sub nitrate} values to specific nitrogen sources or to estimate nutrient loading rates for management purposes, however, is challenging for a variety of reasons: (1) the nitrogen isotopic composition of agricultural derived nitrate can be variable and may overlap with the {delta}{sup 15}N value of wastewater nitrate; (2) soil zone and riparian denitrification may cause changes in the concentration and isotopic composition of riverine nitrate; and (3) in-stream nutrient uptake processes may affect the isotopic composition of dissolved nitrogen compounds. To maximize the information gained from isotopic studies of riverine nitrogen compounds we recommend that: (1) numerous sampling sites are established along a river and sampled frequently in order to capture spatial and seasonal changes; (2) the isotopic composition of nitrate (including {sup 18}O/{sup 16}O) and dissolved ammonium be determined if possible; (3) riverine nitrogen loading be determined and interpreted in context along with isotope data, and; (4) major and relevant nitrogen inputs to the watershed be identified and their isotopic values measured. This approach will help to minimize ambiguities in the interpretation of obtained isotope data and maximize the information required for

  4. The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change

    OpenAIRE

    Voss, Maren; Bange, Hermann W.; Dippner, Joachim W.; Middelburg, Jack J.; Montoya, Joseph P.; Ward, Bess

    2013-01-01

    The ocean's nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation, assimilation, nitrification, anammox and denitrification. Dinitrogen is the most abundant form of nitrogen in sea water but only accessible by nitrogen-fixing microbes. Denitrification and nitrification are both regulated by oxygen concentrations and potentially produce nitrous oxide (N2O), a climate-relevant atmospheric trace gas. The world's oceans, including the coastal areas and upwelli...

  5. Engineering Pseudomonas protegens Pf-5 for Nitrogen Fixation and its Application to Improve Plant Growth under Nitrogen-Deficient Conditions

    Science.gov (United States)

    Setten, Lorena; Soto, Gabriela; Mozzicafreddo, Matteo; Fox, Ana Romina; Lisi, Christian; Cuccioloni, Massimiliano; Angeletti, Mauro; Pagano, Elba; Díaz-Paleo, Antonio; Ayub, Nicolás Daniel

    2013-01-01

    Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops. PMID:23675499

  6. Screening for biosurfactant production by 2,4,6-trinitrotoluene-transforming bacteria.

    Science.gov (United States)

    Avila-Arias, H; Avellaneda, H; Garzón, V; Rodríguez, G; Arbeli, Z; Garcia-Bonilla, E; Villegas-Plazas, M; Roldan, F

    2017-08-01

    To isolate and identify TNT-transforming cultures from explosive-contaminated soils with the ability to produce biosurfactants. Bacteria (pure and mixed cultures) were selected based on their ability to transform TNT in minimum media with TNT as the sole nitrogen source and an additional carbon source. TNT-transforming bacteria were identified by 16S rRNA gene sequencing. TNT transformation rates were significantly lower when no additional carbon or nitrogen sources were added. Surfactant production was enabled by the presence of TNT. Fourteen cultures were able to transform the explosive (>50%); of these, five showed a high transformation capacity (>90%), and six produced surfactants. All explosive-transforming cultures contained Proteobacteria of the genera Achromobacter, Stenotrophomonas, Pseudomonas, Sphingobium, Raoultella, Rhizobium and Methylopila. These cultures transformed TNT when an additional carbon source was added. Remarkably, Achromobacter spanius S17 and Pseudomonas veronii S94 have high TNT transformation rates and are surfactant producers. TNT is a highly toxic, mutagenic and carcinogenic nitroaromatic explosive; therefore, bioremediation to eliminate or mitigate its presence in the environment is essential. TNT-transforming cultures that produce surfactants are a promising method for remediation. To the best of our knowledge, this is the first report that links surfactant production and TNT transformation by bacteria. © 2017 The Society for Applied Microbiology.

  7. Sources and sinks of nitrogen and phosphorus to a deep, oligotrophic lake, Lake Crescent, Olympic National Park, Washington

    Science.gov (United States)

    Moran, P.W.; Cox, S.E.; Embrey, S.S.; Huffman, R.L.; Olsen, T.D.; Fradkin, S.C.

    2012-01-01

    Lake Crescent, in Olympic National Park in the northwest corner of Washington State is a deep-water lake renowned for its pristine water quality and oligotrophic nature. To examine the major sources and sinks of nutrients (as total nitrogen, total phosphorus, and dissolved nitrate), a study was conducted in the Lake Crescent watershed. The study involved measuring five major inflow streams, the Lyre River as the major outflow, recording weather and climatic data, coring lake bed sediment, and analyzing nutrient chemistry in several relevant media over 14 months. Water samples for total nitrogen, total phosphorous, and dissolved nitrate from the five inflow streams, the outlet Lyre River, and two stations in the lake were collected monthly from May 2006 through May 2007. Periodic samples of shallow water from temporary sampling wells were collected at numerous locations around the lake. Concentrations of nutrients detected in Lake Crescent and tributaries were then applied to the water budget estimates to arrive at monthly and annual loads from various environmental components within the watershed. Other sources, such as leaf litter, pollen, or automobile exhaust were estimated from annual values obtained from various literature sources. This information then was used to construct a nutrient budget for total nitrogen and total phosphorus. The nitrogen budget generally highlights vehicle traffic-diesel trucks in particular-along U.S. Highway 101 as a potential major anthropogenic source of nitrogen compounds in the lake. In contrast, contribution of nitrogen compounds from onsite septic systems appears to be relatively minor related to the other sources identified.

  8. Environmental forcing of nitrogen fixation in the eastern tropical and sub-tropical North Atlantic Ocean.

    Science.gov (United States)

    Rijkenberg, Micha J A; Langlois, Rebecca J; Mills, Matthew M; Patey, Matthew D; Hill, Polly G; Nielsdóttir, Maria C; Compton, Tanya J; Laroche, Julie; Achterberg, Eric P

    2011-01-01

    During the winter of 2006 we measured nifH gene abundances, dinitrogen (N(2)) fixation rates and carbon fixation rates in the eastern tropical and sub-tropical North Atlantic Ocean. The dominant diazotrophic phylotypes were filamentous cyanobacteria, which may include Trichodesmium and Katagnymene, with up to 10(6) L(-1)nifH gene copies, unicellular group A cyanobacteria with up to 10(5) L(-1)nifH gene copies and gamma A proteobacteria with up to 10(4) L(-1)nifH gene copies. N(2) fixation rates were low and ranged between 0.032-1.28 nmol N L(-1) d(-1) with a mean of 0.30 ± 0.29 nmol N L(-1) d(-1) (1σ, n = 65). CO(2)-fixation rates, representing primary production, appeared to be nitrogen limited as suggested by low dissolved inorganic nitrogen to phosphate ratios (DIN:DIP) of about 2 ± 3.2 in surface waters. Nevertheless, N(2) fixation rates contributed only 0.55 ± 0.87% (range 0.03-5.24%) of the N required for primary production. Boosted regression trees analysis (BRT) showed that the distribution of the gamma A proteobacteria and filamentous cyanobacteria nifH genes was mainly predicted by the distribution of Prochlorococcus, Synechococcus, picoeukaryotes and heterotrophic bacteria. In addition, BRT indicated that multiple a-biotic environmental variables including nutrients DIN, dissolved organic nitrogen (DON) and DIP, trace metals like dissolved aluminum (DAl), as a proxy of dust inputs, dissolved iron (DFe) and Fe-binding ligands as well as oxygen and temperature influenced N(2) fixation rates and the distribution of the dominant diazotrophic phylotypes. Our results suggest that lower predicted oxygen concentrations and higher temperatures due to climate warming may increase N(2) fixation rates. However, the balance between a decreased supply of DIP and DFe from deep waters as a result of more pronounced stratification and an enhanced supply of these nutrients with a predicted increase in deposition of Saharan dust may ultimately determine the

  9. Modelling nitrogen and carbon interactions in composting of animal manure in naturally aerated piles.

    Science.gov (United States)

    Oudart, D; Robin, P; Paillat, J M; Paul, E

    2015-12-01

    Composting animal manure with natural aeration is a low-cost and low-energy process that can improve nitrogen recycling in millions of farms world-wide. Modelling can decrease the cost of choosing the best options for solid manure management in order to decrease the risk of loss of fertilizer value and ammonia emission. Semi-empirical models are suitable, considering the scarce data available in farm situations. Eleven static piles of pig or poultry manure were monitored to identify the main processes governing nitrogen transformations and losses. A new model was implemented to represent these processes in a pile considered as homogeneous. The model is based on four modules: biodegradation, nitrogen transformations and volatilization, thermal exchanges, and free air space evolution. When necessary, the parameters were calibrated with the data set. The results showed that microbial growth could reduce ammonia volatilization. Greatest nitrogen conservation is achieved when microbial growth was limited by nitrogen availability. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Effects of nitrogen on corrosion of stainless steels in a liquid sodium environment

    International Nuclear Information System (INIS)

    Suzuki, Tadashi; Mutoh, Isao

    1990-01-01

    The corrosion of ferritic stainless steels using sodium at 650degC in a maximum isothermal region contained in a non-isothermal sodium loop constructed of a Type 316 stainless steel has been examined. Also, previous results on corrosion of austenitic stainless steels in sodium at 700degC in the same loop have been reproduced. The selective dissolution and absorption of nickel, the selective dissolution of chromium, and the resultant increase in iron in the surface of stainless steels in the loop mainly determine the corrosion loss of the stainless steel specimens. The austenitic steels hardly decarburize, but denitride. The ferritic steels decarburize and denitride and the denitriding is more remarkable than the decarburizing. The vanadium and niobium, carbide and nitride formers, in the ferritic steels inhibit the decarburizing to some extent, but barely inhibit the denitriding. The nitrogen in the steels rapidly diffuses to the grain boundaries, and rapidly dissolves into sodium, which will lower surface energy of the steels to enhance the dissolution of other elements. The dissolved N in sodium would then be transported to the free surface of the sodium adjacent to the argon cover gas of sodium and easily be released into the cover gas. This mechanism would cause the rapid dissolution of nitrogen into sodium and the enhancement of the corrosion rate of the steels containing nitrogen. (orig.)

  11. [Effects of slopes on nitrogen transport along with runoff from sloping plots on a lateritic red soil amended with sewage sludge].

    Science.gov (United States)

    Chen, Yan-Hui; Chen, Ming-Hua; Wang, Guo; Chen, Wen-Xiang; Yang, Shun-Cheng; Chai, Peng

    2010-10-01

    The effects of different slopes on nitrogen transport along with runoff from sloping plots amended with sewage sludge on a lateritic red soil were studied under simulated rainfall conditions. When the sludge was broadcasted and mixed with surface soils (BM), the MTN (total nitrogen of mixing sample), STN (total nitrogen of settled sample), TPN (total particulate nitrogen), TSN (total suspended nitrogen), TDN (total dissolved nitrogen) and NH4(+) -N concentrations and nitrogen loss amounts in runoff of all treatments were highest at 1 day or 18 days after application. The highest concentrations and the loss amounts of MTN and STN in the slope runoff for the BM treatment increased with slope degree, showing increasing pollution risks to the surface waters. The STN concentration and loss amounts from the 25 degrees plots were 126.1 mg x L(-1) and 1788.6 mg x m(-2), respectively, being 4.6 times and 5.8 times of the corresponding values from the 10 degrees plots, respectively. Then the concentrations and the loss amounts of nitrogen (except NO3(-) -N) from the BM plots diminished rapidly first and then tended to be stable with dwindling differences between the slopes. The loss of MTN and STN in early runoff (1 day and 18 days) accounted for 68.6% -73.4% and 62.3% -66.7% of the cumulative loss amounts during the experimental period for all the broadcasted treatments. Runoff loss coefficients of MTN increased in the order of 20 degrees > 25 degrees > 15 degrees > 10 degrees. Nitrogen was largely lost in dissolved species while large portion of NH4(+) -N was lost with particulates.

  12. Organic carbon and nitrogen export from a tropical dam-impacted floodplain system

    Science.gov (United States)

    Zurbrügg, R.; Suter, S.; Lehmann, M. F.; Wehrli, B.; Senn, D. B.

    2013-01-01

    Tropical floodplains play an important role in organic matter transport, storage, and transformation between headwaters and oceans. However, the fluxes and quality of organic carbon (OC) and organic nitrogen (ON) in tropical river-floodplain systems are not well constrained. We explored the quantity and characteristics of dissolved and particulate organic matter (DOM and POM, respectively) in the Kafue River flowing through the Kafue Flats (Zambia), a tropical river-floodplain system in the Zambezi River basin. During the flooding season, > 80% of the Kafue River water passed through the floodplain, mobilizing large quantities of OC and ON, which resulted in a net export of 69-119 kg OC km-2 d-1 and 3.8-4.7 kg ON km-2 d-1, 80% of which was in the dissolved form. The elemental C : N ratio of ~ 20, the comparatively high δ13C values of -25‰ to -21‰, and its spectroscopic properties (excitation-emission matrices) showed that DOM in the river was mainly of terrestrial origin. Despite a threefold increase in OC loads due to inputs from the floodplain, the characteristics of the riverine DOM remained relatively constant along the sampled 410-km river reach. This suggests that floodplain DOM displayed properties similar to those of DOM leaving the upstream reservoir and implied that the DOM produced in the reservoir was relatively short-lived. In contrast, the particulate fraction was 13C-depleted (-29‰) and had a C : N ratio of ~ 8, which indicated that POM originated from phytoplankton production in the reservoir and in the floodplain, rather than from plant debris or resuspended sediments. While the upstream dam had little effect on the DOM pool, terrestrial particles were retained, and POM from algal and microbial sources was released to the river. A nitrogen mass balance over the 2200 km2 flooded area revealed an annual deficit of 15 500-22 100 t N in the Kafue Flats. The N isotope budget suggests that these N losses are balanced by intense N-fixation. Our

  13. Vertical nitrogen flux from the oceanic photic zone by diel migrant zooplankton and nekton

    Science.gov (United States)

    Longhurst, Alan R.; Glen Harrison, W.

    1988-06-01

    Where the photic zone is a biological steady-state, the downward flux of organic material across the pycnocline to the interior of the ocean is thought to be balanced by upward turbulent flux of inorganic nitrogen across the nutricline. This model ignores a significant downward dissolved nitrogen flux caused by the diel vertical migration of interzonal zooplankton and nekton that feed in the photic zone at night and excrete nitrogenous compounds at depth by day. In the oligotrophic ocean this flux can be equivalent to the flux of particulate organic nitrogen from the photic zone in the form of faecal pellets and organic flocculates. Where nitrogen is the limiting plant nutrient, and the flux by diel migration of interzonal plankton is significant compared to other nitrogen exports from the photic zone, there must be an upward revision of previous estimates for the ratio of new to total primary production in the photic zone if a nutrient balance is to be maintained. This upward revision is of the order 5-100% depending on the oceanographic regime.

  14. Nitrogen sources, transport and processing in peri-urban floodplains.

    Science.gov (United States)

    Gooddy, D C; Macdonald, D M J; Lapworth, D J; Bennett, S A; Griffiths, K J

    2014-10-01

    Peri-urban floodplains are an important interface between developed land and the aquatic environment and may act as a source or sink for contaminants moving from urban areas towards surface water courses. With increasing pressure from urban development the functioning of floodplains is coming under greater scrutiny. A number of peri-urban sites have been found to be populated with legacy landfills which could potentially cause pollution of adjacent river bodies. Here, a peri-urban floodplain adjoining the city of Oxford, UK, with the River Thames has been investigated over a period of three years through repeated sampling of groundwaters from existing and specially constructed piezometers. A nearby landfill has been found to have imprinted a strong signal on the groundwater with particularly high concentrations of ammonium and generally low concentrations of nitrate and dissolved oxygen. An intensive study of nitrogen dynamics through the use of N-species chemistry, nitrogen isotopes and dissolved nitrous oxide reveals that there is little or no denitrification in the majority of the main landfill plume, and neither is the ammonium significantly retarded by sorption to the aquifer sediments. A simple model has determined the flux of total nitrogen and ammonium from the landfill, through the floodplain and into the river. Over an 8 km reach of the river, which has a number of other legacy landfills, it is estimated that 27.5 tonnes of ammonium may be delivered to the river annually. Although this is a relatively small contribution to the total river nitrogen, it may represent up to 15% of the ammonium loading at the study site and over the length of the reach could increase in-stream concentrations by nearly 40%. Catchment management plans that encompass floodplains in the peri-urban environment need to take into account the likely risk to groundwater and surface water quality that these environments pose. Crown Copyright © 2014. Published by Elsevier B.V. All

  15. Reducing equifinality using isotopes in a process-based stream nitrogen model highlights the flux of algal nitrogen from agricultural streams

    Science.gov (United States)

    Ford, William I.; Fox, James F.; Pollock, Erik

    2017-08-01

    The fate of bioavailable nitrogen species transported through agricultural landscapes remains highly uncertain given complexities of measuring fluxes impacting the fluvial N cycle. We present and test a new numerical model named Technology for Removable Annual Nitrogen in Streams For Ecosystem Restoration (TRANSFER), which aims to reduce model uncertainty due to erroneous parameterization, i.e., equifinality, in stream nitrogen cycle assessment and quantify the significance of transient and permanent removal pathways. TRANSFER couples nitrogen elemental and stable isotope mass-balance equations with existing hydrologic, hydraulic, sediment transport, algal biomass, and sediment organic matter mass-balance subroutines and a robust GLUE-like uncertainty analysis. We test the model in an agriculturally impacted, third-order stream reach located in the Bluegrass Region of Central Kentucky. Results of the multiobjective model evaluation for the model application highlight the ability of sediment nitrogen fingerprints including elemental concentrations and stable N isotope signatures to reduce equifinality of the stream N model. Advancements in the numerical simulations allow for illumination of the significance of algal sloughing fluxes for the first time in relation to denitrification. Broadly, model estimates suggest that denitrification is slightly greater than algal N sloughing (10.7% and 6.3% of dissolved N load on average), highlighting the potential for overestimation of denitrification by 37%. We highlight the significance of the transient N pool given the potential for the N store to be regenerated to the water column in downstream reaches, leading to harmful and nuisance algal bloom development.

  16. The effect of Landscape on Riverine Dissolved Inorganic Nitrogen Yield in populous watershed in the Danshui River in Taiwan

    Science.gov (United States)

    Shih, Yu-Ting; Lee, Tsung-Yu; Huang, -Chuan, Jr.

    2015-04-01

    This study combines the observed riverine DIN (dissolved inorganic nitrogen) export and the controlling factors (land-use, population and discharge) to inversely estimate the effective DIN yield factors for individual land-use and DIN per capita loading. A total of 16 sub-catchments, with different land-use compositions on the Danshui River of Taiwan, were used in this study. Observed riverine DIN concentrations and yields varied from 20 - 450 μM and 400 - 10,000 kg-N km-2 yr-1 corresponding to the increase of urbanization gradient (e.g. building and population). Meanwhile, the transport behaviors changed from hydrological enhancement to dilution with increasing urbanization as well. Our method shows that the DIN yield factors, independent of discharge, are 12.7, 63.9, and 1381.0 μM, for forest, agriculture, and building, respectively, which equals to 444.5, 2236.5, 48,335 kg-N km-2 yr-1 at the given annual runoff of 2,500 mm. The agriculture DIN yield only accounts for 10% of fertilizer application indicating the complicated N cascade and possible over fertilization. The DIN per capita loading (~0.49 kg-N Capita-1 yr-1) which is lower than the documented human N emission (1.6 - 5.5 kg-N Capita-1 yr-1) can be regarded as an effective export coefficient after treatment or retention. A conducted scenario experiment supports the observations demonstrating the capability for assessment. We therefore, can extrapolate all possible combinations of land-use, discharge, and population density for evaluation. This can provide a strong basis for watershed management and supplementary estimation for regional to global study.

  17. Inverse isolation of dissolved inorganic nitrogen yield for individual land-uses from mosaic land-use patterns within a watershed

    Science.gov (United States)

    Shih, Y.-T.; Lee, T.-Y.; Huang, J.-C.; Kao, S.-J.; Liu, K.-K.; Chang, F.-J.

    2015-01-01

    This study combines the observed riverine DIN (dissolved inorganic nitrogen) export and the controlling factors (land-use, population and discharge) to inversely estimate the effective DIN yield factors for individual land-use and DIN per capita loading. A total of 16 sub-catchments, with different land-use compositions on the Danshui River of Taiwan, were used in this study. Observed riverine DIN concentrations and yields varied from 20-450 μM and 400-10 000 kg N km-2 yr-1 corresponding to the increase of urbanization gradient (e.g. building and population). Meanwhile, the transport behaviors changed from hydrological enhancement to dilution with increasing urbanization as well. Our method shows that the DIN yield factors, independent of discharge, are 12.7, 63.9, and 1381.0 μM, for forest, agriculture, and building, respectively, which equals to 444.5, 2236.5, 48 335 kg N km-2 yr-1 at the given annual runoff of 2500 mm. The agriculture DIN yield only accounts for 10% of fertilizer application indicating the complicated N cascade and possible over fertilization. The DIN per capita loading (~0.49 kg N capita-1 yr-1) which is lower than the documented human N emission (1.6-5.5 kg N capita-1 yr-1) can be regarded as an effective export coefficient after treatment or retention. A conducted scenario experiment supports the observations demonstrating the capability for assessment. We therefore, can extrapolate all possible combinations of land-use, discharge, and population density for evaluation. This can provide a strong basis for watershed management and supplementary estimation for regional to global study.

  18. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.

    Science.gov (United States)

    Miot, J; Benzerara, K; Morin, G; Bernard, S; Beyssac, O; Larquet, E; Kappler, A; Guyot, F

    2009-06-01

    In phosphate-rich environments, vivianite (Fe(II)(3)(PO(4))(2), 8H(2)O) is an important sink for dissolved Fe(II) and is considered as a very stable mineral due to its low solubility at neutral pH. In the present study, we report the mineralogical transformation of vivianite in cultures of the nitrate-reducing iron-oxidizing bacterial strain BoFeN1 in the presence of dissolved Fe(II). Vivianite was first transformed into a greenish phase consisting mostly of an amorphous mixed valence Fe-phosphate. This precipitate became progressively orange and the final product of iron oxidation consisted of an amorphous Fe(III)-phosphate. The sub-micrometer analysis by scanning transmission X-ray microscopy of the iron redox state in samples collected at different stages of the culture indicated that iron was progressively oxidized at the contact of the bacteria and at a distance from the cells in extracellular minerals. Iron oxidation in the extracellular minerals was delayed by a few days compared with cell-associated Fe-minerals. This led to strong differences of Fe redox in between these two types of minerals and finally to local heterogeneities of redox within the sample. In the absence of dissolved Fe(II), vivianite was not significantly transformed by BoFeN1. Whereas Fe(II) oxidation at the cell contact is most probably directly catalyzed by the bacteria, vivianite transformation at a distance from the cells might result from oxidation by nitrite. In addition, processes leading to the export of Fe(III) from bacterial oxidation sites to extracellular minerals are discussed including some involving colloids observed by cryo-transmission electron microscopy in the culture medium.

  19. Developing Ecological Models on Carbon and Nitrogen in Secondary Facultative Ponds

    Directory of Open Access Journals (Sweden)

    Aponte-Reyes Alexander

    2014-07-01

    Full Text Available Ecological models formulated for TOC, CO2, NH4+, NO3- and NTK, based in literature reviewed and field work were obtained monitoring three facultative secondary stabilization ponds, FSSP, pilots: conventional pond, CP, baffled pond, BP, and baffled-meshed pond, BMP. Models were sensitive to flow inlet, solar radiation, pH and oxygen content; the sensitive parameters in Carbon Model were KCOT Ba, umax Ba, umax Al, K1OX, VAl, R1DCH4, YBh. The sensitive parameters in the Nitrogen model were KCOT Ba, umax Ba, umax Al, VAl, KOPH, KOPA, r4An. The test t–paired showed a good simulating of Carbon model refers to TOC in FSSP; on the other side, the Nitrogen model showed a good simulating of NH4+. Different topological models modify ecosystem ecology forcing different transformation pathways of Nitrogen; equal transformations of the Carbon BMP topology could be achieved using lower volumes, however, a calibration for a new model would be required. Carbon and Nitrogen models developed could be coupled to hydrodynamics models for better modeling of FSSP.

  20. Solid and suspended/dissolved waste (N, P, O) from rainbow trout (Oncorynchus mykiss)

    DEFF Research Database (Denmark)

    Dalsgaard, Anne Johanne Tang; Pedersen, Per Bovbjerg

    2011-01-01

    differences between the dietary treatment groups in the waste produced. On average, 48% of the ingestedNwas recovered in thewater (TANconstituting 64–79%of this)and7% inthesolids. In comparison, 1% of the ingested P was recovered in the water and 43% in the solids. A breakpoint value of 5.6 g standardized......Quantifying aquaculture waste into different waste fractions will make it possible to design different treatment setups for obtaining specific cleaning objectives. The aim of this study was therefore to measure “all” solid and suspended/dissolved (i.e. unsedimented) waste from juvenile rainbow...... trout (Oncorynchus mykiss) fed three commonly applied commercial diets, “all” waste referring to: total nitrogen (N), total ammonia nitrogen (TAN=NH3-N+NH4-N), total phosphorus (P), and organicmatter characterized by the chemical oxygen demand (COD) and the biological oxygen demand after 5 days (BOD5...

  1. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops

    NARCIS (Netherlands)

    Abalos, D.; Sanchez-Martin, L.; Garcia-Torres, L.; Groenigen, van J.W.; Vallejo, A.

    2014-01-01

    Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors

  2. Nitrogen spiraling in stream ecosystems spanning a gradient of chronic nitrogen loading

    OpenAIRE

    Earl, Stevan Ross

    2004-01-01

    This dissertation is a study of the relationships between nitrogen (N) availability and spiraling (the paired processes of nutrient cycling and advective transport) in stream ecosystems. Anthropogenic activities have greatly increased rates of N loading to aquatic ecosystems. However, streams may be important sites for retention, removal, and transformation of N. In order to identify controls on NO3-N spiraling in anthropogenically impacted streams, I examined relationships among NO3-N spi...

  3. Modeling the impact of iron and phosphorus limitations on nitrogen fixation in the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    R. R. Hood

    2007-07-01

    Full Text Available The overarching goal of this study is to simulate subsurface N* (sensu, Gruber and Sarmiento, 1997; GS97 anomaly patterns in the North Atlantic Ocean and determine the basin wide rates of N2-fixation that are required to do so. We present results from a new Atlantic implementation of a coupled physical-biogeochemical model that includes an explicit, dynamic representation of N2-fixation with light, nitrogen, phosphorus and iron limitations, and variable stoichiometric ratios. The model is able to reproduce nitrogen, phosphorus and iron concentration variability to first order. The latter is achieved by incorporating iron deposition directly into the model's detrital iron compartment which allows the model to reproduce sharp near surface gradients in dissolved iron concentration off the west coast of Africa and deep dissolved iron concentrations that have been observed in recent observational studies. The model can reproduce the large scale N* anomaly patterns but requires relatively high rates of surface nitrogen fixation to do so (1.8×1012 moles N yr−1 from 10° N–30° N, 3.4×1012 moles N yr−1 from 25° S–65° N. In the model the surface nitrogen fixation rate patterns are not co-located with subsurface gradients in N*. Rather, the fixed nitrogen is advected away from its source prior to generating a subsurface N* anomaly. Changes in the phosphorus remineralization rate (relative to nitrogen linearly determine the surface nitrogen fixation rate because they change the degree of phosphorus limitation, which is the dominant limitation in the Atlantic in the model. Phosphorus remineralization rate must be increased by about a factor of 2 (relative to nitrogen in order to generate subsurface N* anomalies that are comparable to the observations. We conclude that N2-fixation rate estimates for the Atlantic (and globally may need to be revised upward, which

  4. Selective elimination of chromophoric and fluorescent dissolved organic matter in a full-scale municipal wastewater treatment plant.

    Science.gov (United States)

    Yang, Xiaofang; Zhou, Zhongbo; Raju, Maddela Naga; Cai, Xiaoxuan; Meng, Fangang

    2017-07-01

    Effluent organic matter (EfOM) from municipal wastewater treatment plants potentially has a detrimental effect on both aquatic organisms and humans. This study evaluated the removal and transformation of chromophoric dissolved organic matter (CDOM) and fluorescent dissolved organic matter (FDOM) in a full-scale wastewater treatment plant under different seasons. The results showed that bio-treatment was found to be more efficient in removing bulk DOM (in term of dissolved organic carbon, DOC) than CDOM and FDOM, which was contrary to the disinfection process. CDOM and FDOM were selectively removed at various stages during the treatment. Typically, the low molecular weight fractions of CDOM and protein-like FDOM were more efficiently removed during bio-treatment process, whereas the humic-like FDOM exhibited comparable decreases in both bio-treatment and disinfection processes. Overall, the performance of the WWTP was weak in terms of CDOM and FDOM removal, resulting in enrichment of CDOM and FDOM in effluent. Moreover, the total removal of the bulk DOM (PCDOM and the humic-like FDOM showed little differences between summer and winter. In all, the results provide useful information for understanding the fate and transformation of DOM, illustrating that sub-fractions of DOM could be selectively removed depending on treatment processes and seasonality. Copyright © 2016. Published by Elsevier B.V.

  5. Determination of aluminium nitride or free nitrogen in low carbon steel

    International Nuclear Information System (INIS)

    Guetaz, V.; Soler, M.; Massardier, V.; Merlin, J.; Ravaine, D.

    2001-01-01

    As the aluminium nitrides play an important role in the manufacturing of steel sheets, a specific methodology was developed based on the thermoelectric power (TEP) technique, in order to determine the AIN nitrogen by an indirect method. The free nitrogen was determined and then the AIN nitrogen was calculated by the difference between the total nitrogen and the free nitrogen. Indeed, it is easier to determine the dissolved nitrogen, the content of which gradually decreases during the AIN precipitation, than the AIN nitrogen. A low carbon aluminium killed steel was employed with 580 ppm of aluminium and 50 ppm of nitrogen. A comparison of the results obtained by TEP with those obtained by other techniques (hot hydrogen extraction, electrochemical dissolution followed by a mineralization, electrochemical dissolution followed by a sodic decomposition and the Beeghly method) was conducted, in order to determine a reliable technique likely to quantify the amount of aluminium nitrides in aluminium killed steels. With these techniques, it is possible to determine either free nitrogen or precipitated nitrogen. From an experimental point of view, the precipitation kinetics of AIN was followed during an annealing performed at 973 K (700 C) by TEP and then different precipitation states of AIN were investigated to compare the different techniques: three annealing states (when no nitrogen, half the nitrogen and the total nitrogen has precipitated) and two soaking states (1403 and 1523 K). Thus, it was possible to compare states where the AIN precipitates are in various forms (different shapes, crystallographic structures, sizes, distributions in the matrix). This work showed that the quantification by TEP, hot hydrogen extraction and electrochemical dissolution followed by a mineralization seem reliable whereas the Beeghly method gives good results only for the precipitates formed at high temperatures. In contrast, the quantification by electrochemical dissolution followed by

  6. Source partitioning of anthropogenic groundwater nitrogen in a mixed-use landscape, Tutuila, American Samoa

    Science.gov (United States)

    Shuler, Christopher K.; El-Kadi, Aly I.; Dulai, Henrietta; Glenn, Craig R.; Fackrell, Joseph

    2017-12-01

    This study presents a modeling framework for quantifying human impacts and for partitioning the sources of contamination related to water quality in the mixed-use landscape of a small tropical volcanic island. On Tutuila, the main island of American Samoa, production wells in the most populated region (the Tafuna-Leone Plain) produce most of the island's drinking water. However, much of this water has been deemed unsafe to drink since 2009. Tutuila has three predominant anthropogenic non-point-groundwater-pollution sources of concern: on-site disposal systems (OSDS), agricultural chemicals, and pig manure. These sources are broadly distributed throughout the landscape and are located near many drinking-water wells. Water quality analyses show a link between elevated levels of total dissolved groundwater nitrogen (TN) and areas with high non-point-source pollution density, suggesting that TN can be used as a tracer of groundwater contamination from these sources. The modeling framework used in this study integrates land-use information, hydrological data, and water quality analyses with nitrogen loading and transport models. The approach utilizes a numerical groundwater flow model, a nitrogen-loading model, and a multi-species contaminant transport model. Nitrogen from each source is modeled as an independent component in order to trace the impact from individual land-use activities. Model results are calibrated and validated with dissolved groundwater TN concentrations and inorganic δ15N values, respectively. Results indicate that OSDS contribute significantly more TN to Tutuila's aquifers than other sources, and thus should be prioritized in future water-quality management efforts.

  7. Chemical characteristics of fulvic acids from Arctic surface waters: Microbial contributions and photochemical transformations

    Science.gov (United States)

    Cory, Rose M.; McKnight, Diane M.; Chin, Yu-Ping; Miller, Penney; Jaros, Chris L.

    2007-12-01

    Dissolved organic matter (DOM) originating from the extensive Arctic tundra is an important source of organic material to the Arctic Ocean. Chemical characteristics of whole water dissolved organic matter (DOM) and the fulvic acid fraction of DOM were studied from nine surface waters in the Arctic region of Alaska to gain insight into the extent of microbial and photochemical transformation of this DOM. All the fulvic acids had a strong terrestrial/higher plant signature, with uniformly depleted δ13C values of -28‰, and low fluorescence indices around 1.3. Several of the measured chemical characteristics of the Arctic fulvic acids were related to water residence time, a measure of environmental exposure to sunlight and microbial activity. For example, fulvic acids from Arctic streams had higher aromatic contents, higher specific absorbance values, lower nitrogen content, lower amino acid-like fluorescence and were more depleted in δ15N relative to fulvic acids isolated from lake and coastal surface waters. The differences in the nitrogen signature between the lake and coastal fulvic acids compared to the stream fulvic acids indicated that microbial contributions to the fulvic acid pool increased with increasing water residence time. The photo-lability of the fulvic acids was positively correlated with water residence time, suggesting that the fulvic acids isolated from source waters with larger water residence times (i.e., lakes and coastal waters) have experienced greater photochemical degradation than the stream fulvic acids. In addition, many of the initial differences in fulvic acid chemical characteristics across the gradient of water residence times were consistent with changes observed in fulvic acid photolysis experiments. Taken together, results from this study suggest that photochemical processes predominantly control the chemical character of fulvic acids in Arctic surface waters. Our findings show that hydrologic transport in addition to

  8. Synthesis of nitrogen-doped graphene via solid microwave method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li, E-mail: zhangli379@sohu.com [School of Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116024 (China); Ji, Bingcheng, E-mail: debbo.jee@outlook.com [School of Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116024 (China); Wang, Kai [School of Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116024 (China); Song, Jinyan [School of Information Engineering, Dalian Ocean University, Dalian, Liaoning 116024 (China)

    2014-07-01

    Graphical abstract: - Highlights: • A direct solid microwave method is developed to prepare nitrogen-doped graphene. • The method consists of two steps, namely the functionalization and microwave irradiation. • Melamine can serve as not only functionalizing agent but also nitrogen source. - Abstract: In this paper, we propose a solid microwave-mediated method for scalable production of nitrogen-doped graphene sheets (NGS) using low-cost industrial material melamine as functionalizing agent and nitrogen source. The strong interaction of microwaves with graphene oxide has been fully utilized to generate in situ heating that induces the decompose melamine and nitrogen doping of graphene. The morphology, structure, and components of the as-produced nitrogen-doped graphene are characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET), pore-size distribution (PSD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The results show NGS can be successfully synthesized via this strategy.

  9. Synthesis of nitrogen-doped graphene via solid microwave method

    International Nuclear Information System (INIS)

    Zhang, Li; Ji, Bingcheng; Wang, Kai; Song, Jinyan

    2014-01-01

    Graphical abstract: - Highlights: • A direct solid microwave method is developed to prepare nitrogen-doped graphene. • The method consists of two steps, namely the functionalization and microwave irradiation. • Melamine can serve as not only functionalizing agent but also nitrogen source. - Abstract: In this paper, we propose a solid microwave-mediated method for scalable production of nitrogen-doped graphene sheets (NGS) using low-cost industrial material melamine as functionalizing agent and nitrogen source. The strong interaction of microwaves with graphene oxide has been fully utilized to generate in situ heating that induces the decompose melamine and nitrogen doping of graphene. The morphology, structure, and components of the as-produced nitrogen-doped graphene are characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET), pore-size distribution (PSD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The results show NGS can be successfully synthesized via this strategy

  10. Nitrogen fixation in denitrified marine waters.

    Directory of Open Access Journals (Sweden)

    Camila Fernandez

    Full Text Available Nitrogen fixation is an essential process that biologically transforms atmospheric dinitrogen gas to ammonia, therefore compensating for nitrogen losses occurring via denitrification and anammox. Currently, inputs and losses of nitrogen to the ocean resulting from these processes are thought to be spatially separated: nitrogen fixation takes place primarily in open ocean environments (mainly through diazotrophic cyanobacteria, whereas nitrogen losses occur in oxygen-depleted intermediate waters and sediments (mostly via denitrifying and anammox bacteria. Here we report on rates of nitrogen fixation obtained during two oceanographic cruises in 2005 and 2007 in the eastern tropical South Pacific (ETSP, a region characterized by the presence of coastal upwelling and a major permanent oxygen minimum zone (OMZ. Our results show significant rates of nitrogen fixation in the water column; however, integrated rates from the surface down to 120 m varied by ∼30 fold between cruises (7.5±4.6 versus 190±82.3 µmol m(-2 d(-1. Moreover, rates were measured down to 400 m depth in 2007, indicating that the contribution to the integrated rates of the subsurface oxygen-deficient layer was ∼5 times higher (574±294 µmol m(-2 d(-1 than the oxic euphotic layer (48±68 µmol m(-2 d(-1. Concurrent molecular measurements detected the dinitrogenase reductase gene nifH in surface and subsurface waters. Phylogenetic analysis of the nifH sequences showed the presence of a diverse diazotrophic community at the time of the highest measured nitrogen fixation rates. Our results thus demonstrate the occurrence of nitrogen fixation in nutrient-rich coastal upwelling systems and, importantly, within the underlying OMZ. They also suggest that nitrogen fixation is a widespread process that can sporadically provide a supplementary source of fixed nitrogen in these regions.

  11. Nitrogen Fixation in Denitrified Marine Waters

    Science.gov (United States)

    Fernandez, Camila; Farías, Laura; Ulloa, Osvaldo

    2011-01-01

    Nitrogen fixation is an essential process that biologically transforms atmospheric dinitrogen gas to ammonia, therefore compensating for nitrogen losses occurring via denitrification and anammox. Currently, inputs and losses of nitrogen to the ocean resulting from these processes are thought to be spatially separated: nitrogen fixation takes place primarily in open ocean environments (mainly through diazotrophic cyanobacteria), whereas nitrogen losses occur in oxygen-depleted intermediate waters and sediments (mostly via denitrifying and anammox bacteria). Here we report on rates of nitrogen fixation obtained during two oceanographic cruises in 2005 and 2007 in the eastern tropical South Pacific (ETSP), a region characterized by the presence of coastal upwelling and a major permanent oxygen minimum zone (OMZ). Our results show significant rates of nitrogen fixation in the water column; however, integrated rates from the surface down to 120 m varied by ∼30 fold between cruises (7.5±4.6 versus 190±82.3 µmol m−2 d−1). Moreover, rates were measured down to 400 m depth in 2007, indicating that the contribution to the integrated rates of the subsurface oxygen-deficient layer was ∼5 times higher (574±294 µmol m−2 d−1) than the oxic euphotic layer (48±68 µmol m−2 d−1). Concurrent molecular measurements detected the dinitrogenase reductase gene nifH in surface and subsurface waters. Phylogenetic analysis of the nifH sequences showed the presence of a diverse diazotrophic community at the time of the highest measured nitrogen fixation rates. Our results thus demonstrate the occurrence of nitrogen fixation in nutrient-rich coastal upwelling systems and, importantly, within the underlying OMZ. They also suggest that nitrogen fixation is a widespread process that can sporadically provide a supplementary source of fixed nitrogen in these regions. PMID:21687726

  12. Dissolved Organic Carbon Cycling and Transformation Dynamics in A Northern Forested Peatland

    Science.gov (United States)

    Tfaily, M. M.; Lin, X.; Chanton, P. R.; Steinweg, J.; Esson, K.; Kostka, J. E.; Cooper, W. T.; Schadt, C. W.; Hanson, P. J.; Chanton, J.

    2013-12-01

    Peatlands sequester one-third of all soil carbon and currently act as major sinks of atmospheric carbon dioxide. The ability to predict or simulate the fate of stored carbon in response to climatic disruption remains hampered by our limited understanding of the controls of carbon turnover and the composition and functioning of peatland microbial communities. A combination of advanced analytical chemistry and microbiology approaches revealed that organic matter reactivity and microbial community dynamics were closely coupled in an extensive field dataset compiled at the S1 bog site established for the SPRUCE program, Marcell Experimental Forest (MEF). The molecular composition and decomposition pathways of dissolved organic carbon (DOC) were contrasted using parallel factor (PARAFAC)-modeled excitation emission fluorescence spectroscopy (EEMS) and FT-ICR MS. The specific UV absorbance (SUVA) at 254 nm was calculated as an indicator of aromaticity. Fluorescence intensity ratios (BIX and FI) were used to infer the relative contributions from solid phase decomposition and microbial production. Distributions of bulk DOC, its stable (δ13C) and radioactive (Δ14C) isotopic composition were also utilized to infer information on its dynamics and transformation processes. Strong vertical stratification was observed in organic matter composition, the distribution of mineralization products (CO2, CH4), respiration rates, and decomposition pathways, whereas smaller variations were observed between sites. A decline in the aromaticity of pore water DOC was accompanied by an increase in microbially-produced DOC. Solid phase peat, on the other hand, became more humified and highly aromatic with depth. These observations were consistent with radiocarbon data that showed that the radiocarbon signatures of microbial respiration products in peat porewaters more closely resemble those of DOC rather than solid peat, indicating that carbon from recent photosynthesis is fueling the

  13. Accession of non-nitrogenous ions dissolved in rainwater to soils in Victoria

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, J T; Leslie, T I

    1958-01-01

    Analyses of rainwater samples from 24 stations in Victoria have shown that with increasing distance from the coast there is a sharp decrease in the influence of the ocean on the nature of the dissolved ions. About 150 miles inland the ionic ratio of sodium to potassium falls below 10, that of sodium to chloride exceeds unity, and calcium becomes the dominant cation. This is considered to reflect the influence of terrestrial material such as the dry surface of soils. As soils also contain sodium and chloride ions, the common assumption that all the chloride in the rain is derived from the ocean is unjustified, hence calculations of the net accession of salts are unwarranted. In southern Australia, sulphate ions are present in much smaller amounts than in other countries and this may contribute to the observed deficiencies of sulphur in plant nutrition. Details are given of the method of collecting the rainwater and of its analysis.

  14. MOTOR 2.0: module for transformation of organic matter and nutrients in soil; user guide and technical documentation

    NARCIS (Netherlands)

    Assinck, F.B.T.; Rappoldt, C.

    2004-01-01

    MOTOR is a MOdule describing the Transformation of Organic matteR and nutrients in soil. It calculates the transformations between pools of organic matter and mineral nitrogen in soil. Pools are characterized by a carbon and nitrogen content and can be labelled. MOTOR is a flexible tool because the

  15. Quality transformation of dissolved organic carbon during water transit through lakes: contrasting controls by photochemical and biological processes

    Science.gov (United States)

    Berggren, Martin; Klaus, Marcus; Panneer Selvam, Balathandayuthabani; Ström, Lena; Laudon, Hjalmar; Jansson, Mats; Karlsson, Jan

    2018-01-01

    Dissolved organic carbon (DOC) may be removed, transformed, or added during water transit through lakes, resulting in changes in DOC composition and pigmentation (color). However, the process-based understanding of these changes is incomplete, especially for headwater lakes. We hypothesized that because heterotrophic bacteria preferentially consume noncolored DOC, while photochemical processing removes colored fractions, the overall changes in DOC color upon water passage through a lake depend on the relative importance of these two processes, accordingly. To test this hypothesis we combined laboratory experiments with field studies in nine boreal lakes, assessing both the relative importance of different DOC decay processes (biological or photochemical) and the loss of color during water transit time (WTT) through the lakes. We found that influence from photo-decay dominated changes in DOC quality in the epilimnia of relatively clear headwater lakes, resulting in systematic and selective net losses of colored DOC. However, in highly pigmented brown-water lakes (absorbance at 420 nm > 7 m-1) biological processes dominated, and there was no systematic relationship between color loss and WTT. Moreover, in situ data and dark experiments supported our hypothesis on the selective microbial removal of nonpigmented DOC, mainly of low molecular weight, leading to persistent water color in these highly colored lakes. Our study shows that brown headwater lakes may not conform to the commonly reported pattern of the selective removal of colored constituents in freshwaters, as DOC can show a sustained degree of pigmentation upon transit through these lakes.

  16. [Retaining and transformation of incoming soil N from highland to adjacent terrestrial water body in riparian buffer zone].

    Science.gov (United States)

    Wang, Qing-cheng; Yu, Hong-li; Yao, Qin; Han, Zhuang-xing; Qiao, Shu-liang

    2007-11-01

    Highland soil nitrogen can enter adjacent water body via erosion and leaching, being one of the important pollutants in terrestrial water bodies. Riparian buffer zone is a transitional zone between highland and its adjacent water body, and a healthy riparian buffer zone can retain and transform the incoming soil N through physical, biological, and biochemical processes. In this paper, the major pathways through which soil nitrogen enters terrestrial water body and the mechanisms the nitrogen was retained and transformed in riparian buffer zone were introduced systematically, and the factors governing the nitrogen retaining and transformation were analyzed from the aspects of hydrological processes, soil characters, vegetation features, and human activities. The problems existing in riparian buffer zone study were discussed, and some suggestions for the further study in China were presented.

  17. Principles of alloy design in high nitrogen 12% chromium steels

    International Nuclear Information System (INIS)

    Goecmen, A.; Ernst, P.; Holmes, P.

    1999-01-01

    12% chromium steels are hardened by a martensitic transformation and by precipitation reactions of the martensite during a subsequent tempering treatment. The original alloy design of these steels is based on the intensifying effect of C on the martensitic transformation hardening as well as on the effects of V and Mo on intensity and stability of carbide precipitation hardening reactions. Advanced alloy design of high carbon 12% chromium steels makes use of f.c.c.-MX type carbonitrides to improve grain refinement and tempering resistance, whereas alloying with about 0.05 wt.-% nitrogen already plays a decisive role. In this paper, new alloy design opportunities provided by high nitrogen are reviewed, which promise to achieve a best possible compromise between grain size limitation, particle hardening and particle stability of 12% chromium steels. The crucial effects of the solubility product of MX-type phases on grain coarsening resistance, precipitation hardening and particle stability are reviewed. The advantages of high nitrogen steels to improve these properties are rationalized to result from the lower solubility of nitrides compared with carbides. As an advantageous opportunity of the achievable higher grain coarsening resistance, the normalizing temperature in high nitrogen steels can be increased in order to increase the amount of the less soluble and thereby slow coarsening f.c.c.-nitrides. In addition, as a consequence of a higher normalizing temperature, the solubility gap of nitrides in the austenite is expanded, which in turn enables an effective precipitation hardening due to low soluble nitrides in the metastable austenite before the martensitic transformation

  18. Sedimentary and mineral dust sources of dissolved iron to the world ocean

    Directory of Open Access Journals (Sweden)

    J. K. Moore

    2008-05-01

    from sinking particles; and 3 an improved sedimentary source for dissolved iron. Most scavenged iron (90% is put on sinking particles to remineralize deeper in the water column. The model-observation differences are reduced with these modifications. The improved BEC model is used to examine the relative contributions of mineral dust and marine sediments in driving dissolved-iron distributions and marine biogeochemistry. Mineral dust and sedimentary sources of iron contribute roughly equally, on average, to dissolved iron concentrations. The sedimentary source from the continental margins has a strong impact on open-ocean iron concentrations, particularly in the North Pacific. Plumes of elevated dissolved-iron concentrations develop at depth in the Southern Ocean, extending from source regions in the SW Atlantic and around New Zealand. The lower particle flux and weaker scavenging in the Southern Ocean allows the continental iron source to be advected far from sources. Both the margin sediment and mineral dust Fe sources substantially influence global-scale primary production, export production, and nitrogen fixation, with a stronger role for the dust source. Ocean biogeochemical models that do not include the sedimentary source for dissolved iron, will overestimate the impact of dust deposition variations on the marine carbon cycle. Available iron observations place some strong constraints on ocean biogeochemical models. Model results should be evaluated against both surface and subsurface Fe observations in the waters that supply dissolved iron to the euphotic zone.

  19. The effect of alloyed nitrogen or dissolved nitrate ions on the anodic behaviour of austenitic stainless steel in hydrochloric acid

    International Nuclear Information System (INIS)

    Shahrabi, T.

    2004-01-01

    The anodic behaviour of high purity stainless steels, based on a 316L composition, has been studied at room temperature in HCl solutions from 1 to 6 M. For all acid concentrations, the presence of 0.22% nitrogen has little or no effect on the active dissolution kinetics at low over-potentials. The effect on the critical current density for passivation is also small for low HCl concentrations ( 4.5 M), no passivation occurs and again nitrogen has little effect. However, for HCl concentrations around 4 M nitrogen reversibly impedes active dissolution at a few hundred mA cm -2 . The effect does not appear to be an oxide passivation, but is more likely to be due to surface enrichment of nitrogen atoms. Implications for localized corrosion are discussed. An effect similar to that of nitrogen alloying is reproduced on a nitrogen free alloy by adding 2 M NaNO 3 to a 4M HCl solution. This effect is distinct from the passivation of salt-covered surfaces and may be preferable to the latter as an explanation of the increase in pitting potential by nitrate additions to NaCl solutions. Passivation under a salt film is retained to explain the passivation of growing pits above the inhibition potential. (authors)

  20. Extraction and quantitation of furanic compounds dissolved in oils

    International Nuclear Information System (INIS)

    Koreh, O.; Torkos, K.; Mahara, M.B.; Borossay, J.

    1998-01-01

    Furans are amongst the decomposition products which are generated by the degradation of cellulose in paper. Paper insulation is used in capacitors, cables and transformers. These furans dissolve in the impregnating mineral oil, and a method, involving liquid/liquid extraction, solid phase extraction and high performance liquid chromatography, has been developed to determine the concentration of 2-furfural the most stable compound in oil. The degradation of paper is being examined in order to find correlation between the change in dielectric and mechanical properties and the increase in concentration of 2-furfural in the oil. (author)

  1. The Influence of Leaf Fall and Organic Carbon Availability on Nitrogen Cycling in a Headwater Stream

    Science.gov (United States)

    Thomas, S. A.; Kristin, A.; Doyle, B.; Goodale, C. L.; Gurwick, N. P.; Lepak, J.; Kulkari, M.; McIntyre, P.; McCalley, C.; Raciti, S.; Simkin, S.; Warren, D.; Weiss, M.

    2005-05-01

    The study of allochthonous carbon has a long and distinguished history in stream ecology. Despite this legacy, relatively little is known regarding the influence of leaf litter on nutrient dynamics. We conducted 15N-NO3 tracer additions to a headwater stream in upstate New York before and after autumn leaf fall to assess the influence of leaf litter on nitrogen spiraling. In addition, we amended the stream with labile dissolved organic carbon (as acetate) midway through each experiment to examine whether organic carbon availability differentially stimulated nitrogen cycling. Leaf standing stocks increased from 53 to 175 g dry mass m-2 and discharge more than tripled (6 to 20 L s-1) between the pre- and post-leaf fall period. In contrast, nitrate concentration fell from approximately 50 to less then 10 ug L-1. Despite higher discharge, uptake length was shorter following leaf fall under both ambient (250 and 72 m, respectively) and DOC amended (125 and 45 m) conditions. Uptake velocity increased dramatically following leaf fall, despite a slight decline in the areal uptake rate. Dissolved N2 gas samples were also collected to estimate denitrification rates under each experimental condition. The temporal extent of increased nitrogen retention will also be explored.

  2. Seasonal dynamics and conservative mixing of dissolved organic matter in the temperate eutrophic estuary Horsens Fjord

    DEFF Research Database (Denmark)

    Markager, Stiig; Stedmon, Colin; Søndergaard, Morten

    2011-01-01

    of different DOM parameters i.e. dissolved organic carbon (DOC), nitrogen (DON), and phosphorous (DOP), light absorption and eight fluorescence components, were analysed relative to conservative mixing. Many of the parameters did not behave conservatively. For DON, DOP and absorption, more than 65......This study presents the results of a year-long study investigating the characteristics of dissolved organic matter (DOM) in the Danish estuary, Horsens Fjord. The estuary is shallow with a mean depth of 2.9 m and receives high loadings of inorganic nutrients from its catchment. The behaviour......% of the freshwater concentration was removed initially at salinities below 12. At higher salinities two general patterns were identified. Concentrations of DON, DOP and four humic fluorescent fractions were not, or only weakly, related to salinity, showing that other processes than mixing were involved. Other...

  3. Identification of dissolved organic matter in raw water supply from reservoirs and canals as precursors to trihalomethanes formation.

    Science.gov (United States)

    Musikavong, Charongpun; Wattanachira, Suraphong

    2013-01-01

    The characteristic and quantity of dissolved organic matter (DOM) as trihalomethanes precursors in water from the U-Tapao Basin, Songkhla, Thailand was investigated. The sources of water in the basin consisted of two reservoirs and the U-Tapao canal. The canal receives water discharge from reservoirs, treated and untreated wastewater from agricultural processes, communities and industries. Water downstream of the canal is utilized as a raw water supply. Water samples were collected from two reservoirs, upstream and midstream of the canal, and the raw water supply in the rainy season and summer. The DOM level in the canal water was higher than that of the reservoir water. The highest trihalomethane formation potential (THMFP) was formed in the raw water supply. Fourier-transform infrared peaks of the humic acid were detected in the reservoir and canal waters. Aliphatic hydrocarbon and organic nitrogen were the major chemical classes in the reservoir and canal water characterized by a pyrolysis gas chromatography mass spectrometer. The optimal condition of the poly aluminum chloride (PACl) coagulation was obtained at a dosage of 40 mg/L at pH 7. This condition could reduce the average UV-254 to 57%, DOC to 64%, and THMFP to 42%. In the coagulated water, peaks of O-H groups or H-bonded NH, C˭O of cyclic and acyclic compounds, ketones and quinines, aromatic C˭C, C-O of alcohols, ethers, and carbohydrates, deformation of COOH, and carboxylic acid salts were detected. The aliphatic hydrocarbon, organic nitrogen and aldehydes and ketones were the major chemical classes. These DOM could be considered as the prominent DOM for the water supply plant that utilized PACl as a coagulant.

  4. The effect of nitrogen on martensite formation in a Cr-Mn-Ni stainless steel

    International Nuclear Information System (INIS)

    Biggs, T.; Knutsen, R.D.

    1995-01-01

    The influence of nitrogen (0 to 0.27 wt%) on martensite formation in an experimental low-nickel stainless-steel alloy (Fe-17Cr-7Mn-4Ni) has been investigated. The alloys containing 0.1 wt% or more nitrogen are fully austenitic at room temperature; those containing less nitrogen consist of a mixture of austenite, martensite and δ-ferrite. The alloys containing less than 0.2 wt% nitrogen are metastable and undergo a transformation from austenite to martensite on deformation. Transmission electron microscopy investigations suggest that, within the nitrogen range considered in this investigation, the addition of nitrogen causes an increase in stacking fault energy which in turn inhibits the nucleation of martensite. As the low-nitrogen alloys (less than 0.2 wt% nitrogen) undergo deformation, ε-martensite (with the [ anti 110] γ and [ anti 12 anti 10] ε zone axes parallel) is observed at the intersection of stacking faults. With increasing strain, the presence of α'-martensite is observed in conjunction with the ε-martensite, and only α'-martensite is observed at very high strains. Both the Nishiyama-Wasserman and Kurdjumov-Sachs orientation relationships are observed between austenite and α'-martensite. The transformation to martensite during deformation causes a significant variation in room-temperature mechanical properties, despite the overall narrow range in composition considered. (orig.)

  5. Catchment features controlling nitrogen dynamics in running waters above the tree line (central Italian Alps

    Directory of Open Access Journals (Sweden)

    R. Balestrini

    2013-03-01

    Full Text Available The study of nitrogen cycling in mountain areas has a long tradition, as it was applied to better understand and describe ecosystem functioning, as well as to quantify long-distance effects of human activities on remote environments. Nonetheless, very few studies, especially in Europe, have considered catchment features controlling nitrogen dynamics above the tree line with focus on running waters. In this study, relationships between some water chemistry descriptors – including nitrogen species and dissolved organic carbon (DOC – and catchment characteristics were evaluated for a range of sites located above the tree line (1950–2650 m a.s.l. at Val Masino, in the central Italian Alps. Land cover categories as well as elevation and slope were assessed at each site. Water samples were collected during the 2007 and 2008 snow free periods, with a nearly monthly frequency. In contrast to dissolved organic nitrogen, nitrate concentrations in running waters showed a spatial pattern strictly connected to the fractional extension of tundra and talus in each basin. Exponential models significantly described the relationships between maximum NO3 and the fraction of vegetated soil cover (negative relation and talus (positive relation, explaining almost 90% of nitrate variation in running waters. Similarly to nitrate but with an opposite behavior, DOC was positively correlated with vegetated soil cover and negatively correlated with talus. Therefore, land cover can be considered one of the most important factors affecting water quality in high-elevation catchments with contrasting effects on N and C pools.

  6. Modification of Duval Triangle for Diagnostic Transformer Fault through a Procedure of Dissolved Gases Analysis

    Directory of Open Access Journals (Sweden)

    Sobhy Serry Dessouky

    2016-08-01

        The evaluation is carried out on DGA data obtained from three different groups of transformers. A Matlab program was developed to automate the evaluation of  Duval Triangle graph to numerical modification, Also the fault gases can be generated due to oil decomposing effected by transformer over excitation which increasing thetransformer exciting current lead to rising the temperature inside transformer core beside the other causes.

  7. Evaluation of Joint Performance on High Nitrogen Stainless Steel Which is Expected to Have Higher Allergy Resistance

    Science.gov (United States)

    Nakano, Kouichi

    Austenitic stainless steel, which includes nickel for stabilizing austenitic structure, is used for various purposes, for example, for structural material, corrosion-resistant material, biomaterial etc. Nickel is set as one of the rare metals and economizing on nickel as the natural resources is required. On the other hand, nickel is one of the metals that cause metallic allergy frequently. Therefore, high nitrogen stainless steel, where nitrogen stabilizes austenitic structure instead of nickel, has been developed in Japan and some of the foreign countries for the above reason. When high nitrogen stainless steel is fused and bonded, dissolved nitrogen is released to the atmospheric area, and some of the material properties will change. In this study, we bonded high nitrogen stainless steel by stud welding process, which is able to bond at short time, and we evaluate joint performance. We have got some interesting results from the other tests and examinations.

  8. High nitrogen stainless steels for nuclear industry

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.

    2016-01-01

    Nitrogen alloying in stainless steels (SS) has myriad beneficial effects, including solid solution strengthening, precipitation effects, phase control and corrosion resistance. Recent years have seen a rapid development of these alloys with improved properties owing to advances in processing technologies. Furthermore, unlimited demands for high-performance advanced steels for special use in advanced applications renewed the interest in high nitrogen steels (HNS). The combination of numbers of attractive properties such as strength, fracture toughness, wear resistance, workability, magnetic properties and corrosion resistance of HNS has given a unique advantage and offers a number of prospective applications in different industries. Based on extensive studies carried out at IGCAR, nitrogen alloyed type 304LN SS and 316LN SS have been chosen as materials of construction for many engineering components of fast breeder reactor (FBR) and associated reprocessing plants. HNS austenitic SS alloys are used as structural/reactor components, i.e., main vessel, inner vessel, control plug, intermediate heat exchanger and main sodium piping for fast breeder reactor. HNS type 304LN SS is a candidate material for continuous dissolver, nuclear waste storage tanks, pipings, etc. for nitric acid service under highly corrosive conditions. Recent developments towards the manufacturing and properties of HNS alloys for application in nuclear industry are highlighted in the presentation. (author)

  9. Effect of organic matter application and water regimes on the transformation of fertilizer nitrogen in a Philippine soil

    International Nuclear Information System (INIS)

    Yoshida, Tomio; Padre, B.C. Jr.

    1975-01-01

    Greenhouse experiments using the tracer technique showed that about 20 per cent of the fertilizer nitrogen added as basal to the Maahas clay soil was immobilized in submerged soils to which no organic material was added. The addition of organic matter to the soil increases the amount of nitrogen immobilized and the magnitude depends on the carbon to nitrogen ratio of the materials added. More fertilizer nitrogen was immobilized in the soils under upland and alternate wet-and-dry conditions than under submerged soil conditions. The uptake of fertilizer nitrogen by rice plants growing under submerged soil conditions ceased at the vegetative stage of growth because only a small amount of available nitrogen remains in the soil at this time, but the rice plant continued to absorb gradually untagged nitrogen from the soil throughout the reproductive stages of growth. Losses of fertilizer nitrogen were great under the alternate wet-and-dry conditions (submerged-upland). The loss of nitrogen from the soil-plant system was reduced by the addition of rice straw, which also reduced the uptake of fertilizer nitrogen but not the total dry matter production under the experimental conditions. Fertilizer nitrogen immobilized during the first crop remained mostly in the soil throughout the full period of the second crop. The total nitrogen uptake by rice plants was not affected by the soil moisture tension under the upland conditions used in the study but the movement of nitrogen from the leaves to the panicles during the reproductive stage seemed to decrease as the soil moisture tension increased. (auth.)

  10. Transformer oil maintenance

    Energy Technology Data Exchange (ETDEWEB)

    White, J. [A.F. White Ltd., Brantford, ON (Canada)

    2002-08-01

    Proactive treatment is required in the case of transformer oil, since the oil degrades over time, which could result in the potential failure of the transformer or costly repairs. A mineral-based oil is used for transformers because of its chemical properties and dielectric strength. Water and particulate are the main contaminants found in transformer oil, affecting the quality of the oil through reduced insulation. Acid that forms in the oil when reacting with oxygen is called oxidization. It reduces the heat dissipation of the transformer as the acid forms sludge which settles on the windings of the transformer. The first step in the preventive maintenance program associated with transformer oil is the testing of the oil. The base line is established through initial testing, and subsequent annual testing identifies any changes. The minimal requirements are: (1) dielectric breakdown, a measure of the voltage conducted by the oil; (2) neutralization/acid number, which detects the level of acid present in the oil; (3) interfacial tension, which identifies the presence of polar compounds; (4) colour, which displays quality, aging and the presence of contaminants; and (5) water, which decreases the dielectric breakdown voltage. The analysis of the gases present in the oil is another useful tool in a maintenance program for the determination of a possible fault such as arcing, corona or overheated connections and is accomplished through Dissolved Gas Analysis (DGA). Remediation treatment includes upgrading the oil. Ideally, reclamation should be performed in the early stages of the acid buildup before sludging occurs. Onsite reclamation includes Fuller's earth processing and degasification, a process briefly described by the author.

  11. Determination of dissolved gases in basalt groundwater in the Pasco Basin, Washington

    International Nuclear Information System (INIS)

    Halko, D.J.

    1986-09-01

    The determination of dissolved gases in groundwater is required for complete hydrochemical characterization of the Columbia River Basalt Group beneath the Hanford Site. A gas chromatographic method has been developed for the determination of argon, oxygen, nitrogen, carbon monoxide, carbon dioxide, and methane in groundwater. In addition to a gas chromatograph equipped with thermal conductivity and flame ionization detectors, equipment utilized consists of a purge device that strips these gases from solution for subsequent separation using Molecular Sieve 5A and porous polymer columns. This technique is capable of accommodating pressurized fluid samples collected from the deep aquifers with in situ samplers. The analysis is discussed in detail

  12. Chronic nitrogen deposition influences the chemical dynamics ...

    Science.gov (United States)

    Atmospheric nitrogen deposition induces a forest carbon sink across broad parts of the Northern Hemisphere; this carbon sink may partly result from slower litter decomposition. Although microbial responses to experimental nitrogen deposition have been well-studied, evidence linking these microbial responses to changes in the degradation of specific compounds in decaying litter is sparse. We used wet chemistry and Fourier transform infrared spectroscopy (FTIR) methodologies to study the effects of chronic simulated nitrogen deposition on leaf litter and fine root chemistry during a three-year decomposition experiment at four northern hardwood forests in the north-central USA. Leaf litter and fine roots were highly different in initial chemistry such as concentrations of acid-insoluble fraction (AIF, or Klason lignin) and condensed tannins (CTs). These initial differences persisted over the course of decomposition. Results from gravimetrically-defined AIF and lignin/carbohydrate reference IR peak ratios both provide evidence that lignin in fine roots was selectively preserved under simulated nitrogen deposition. Lignin/carbohydrate peak ratios were strongly correlated with AIF, suggesting that AIF is a good predictor of lignin. Because AIF is abundant in fine roots, slower AIF degradation was the major driver of the slower fine root decomposition under nitrogen enrichment, explaining 73.9 % of the additional root mass retention. Nitrogen enrichment also slowed the

  13. Qualitative changes of riverine dissolved organic matter at low salinities due to flocculation

    Science.gov (United States)

    Asmala, Eero; Bowers, David G.; Autio, Riitta; Kaartokallio, Hermanni; Thomas, David N.

    2014-10-01

    The flocculation of dissolved organic matter (DOM) was studied along transects through three boreal estuaries. Besides the bulk concentration parameters, a suite of DOM quality parameters were investigated, including colored DOM (CDOM), fluorescent DOM, and the molecular weight of DOM as well as associated dissolved iron concentrations. We observed significant deviations from conservative mixing at low salinities (DOC), UV absorption (a(CDOM254)), and humic-like fluorescence. The maximum deviation from conservative mixing for DOC concentration was -16%, at salinities between 1 and 2. An associated laboratory experiment was conducted where an artificial salinity gradient between 0 and 6 was created. The experiment confirmed the findings from the estuarine transects, since part of the DOC and dissolved iron pools were transformed to particulate fraction (>0.2 µm) and thereby removing them from the dissolved phase. We also measured flocculation of CDOM, especially in the UV region of the absorption spectrum. Protein-like fluorescence of DOM decreased, while humic-like fluorescence increased because of salt-induced flocculation. Additionally, there was a decrease in molecular weight of DOM. Consequently, the quantity and quality of the remaining DOM pool was significantly changed after influenced to flocculation. Based on these results, we constructed a mechanistic, two-component flocculation model. Our findings underline the importance of the coastal filter, where riverine organic matter is flocculated and exported to the sediments.

  14. Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions

    International Nuclear Information System (INIS)

    Criddle, C.S.; DeWitt, J.T.; Grbic-Galic, D.; McCarty, P.L.

    1990-01-01

    A denitrifying Pseudomonas sp. (strain KC) capable of transforming carbon tetrachloride (CT) was isolated from groundwater aquifer solids. Major products of the transformation of 14 C-labeled CT by Pseudomonas strain KC under denitrification conditions were 14 CO 2 and an unidentified water-soluble fraction. Little or no chloroform was produced. Addition of dissolved trace metals, notably, ferrous iron and cobalt, to the growth medium appeared to enhance growth of Pseudomonas strain KC while inhibiting transformation of CT. It is hypothesized that transformation of CT by this organism is associated with the mechanism of trace-metal scavenging

  15. Nitrogen delivery from the Mississippi-Atchafalaya River Basin to the Gulf of Mexico: magnitude, attribution, and uncertainty

    Science.gov (United States)

    Tian, H.; Xu, R.; Yang, J.; Zhang, B.; Yao, Y.; Pan, S.; Cai, W. J.; Lohrenz, S. E.

    2017-12-01

    The northern Gulf of Mexico (GOM), as one of the largest hypoxic zone in the world, is near the outlet of the Mississippi-Atchafalaya River Basin (MARB) that contributed to the increased fluxes of agriculturally derived nitrogen (N) since the 1950s. This increase of N exports could be primarily attributed to anthropogenic N inputs into the MARB (e.g., N fertilizer application), climate (e.g., precipitation), and land use change. A long-term data of monthly/annual dissolved inorganic nitrogen (DIN) exports from the MARB to the GOM had been released by the United States Geological Survey (USGS) since the 1970s. However, on one hand, dissolved organic nitrogen (DON) also plays an active role in supplying N for phytoplankton and bacteria in aquatic ecosystems; on the other hand, monitoring data provided by the USGS could not attribute the contributions of various factors to this N increase in the northern GOM. Here, we used a coupled hydrological-biogeochemical model, the Dynamic Land Ecosystem Model, to examine changes in DIN (ammonium and nitrate) and DON exports from the MARB to the GOM during 1901 2014. Meanwhile, we investigated how climate variability, land use change, land management, and atmospheric chemistry affected the annual and seasonal patterns of N export in the study area.

  16. New investigations in the USA into formation of nitrogen oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1983-06-01

    This paper discusses laboratory investigations in the USA on air pollution by nitrogen oxides during coal combustion. Laboratory combustors used for combustion of black coal, anthracite and brown coal are described. Measuring systems and measuring instruments used for flue gas analyses and determining nitrogen oxide, hydrocyanic acid and ammonia content in flue gas are evaluated. Effects of excess air on nitrogen oxide formation are analyzed. Analyses show that excess air influences relation between nitrogen oxides, hydrocyanic acid and ammonia. Recommendations on the optimum excess air rate are made. In the case of all coal typs, with the exception of anthracite, the optimum excess air rate is 0.7 which guarantees the highest transformation rate of nitrogen in fuel into molecular nitrogen. Effects of excess air on oxidation of hydrocyanic acid and ammonia are described. The analyses consider effects of excess air on chemical reactions during coal combustion under laboratory conditions. (4 refs.) (In Russian)

  17. Impact of Hydrologic and Micro-topographic Variabilities on Spatial Distribution of Mean Soil-Nitrogen Age

    Science.gov (United States)

    Woo, D.; Kumar, P.

    2015-12-01

    Excess reactive nitrogen in soils of intensively managed agricultural fields causes adverse environmental impact, and continues to remain a global concern. Many novel strategies have been developed to provide better management practices and, yet, the problem remains unresolved. The objective of this study is to develop a 3-dimensional model to characterize the spatially distributed ``age" of soil-nitrogen (nitrate and ammonia-ammonium) across a watershed. We use the general theory of age, which provides an assessment of the elapsed time since nitrogen is introduced into the soil system. Micro-topographic variability incorporates heterogeneity of nutrient transformations and transport associated with topographic depressions that form temporary ponds and produce prolonged periods of anoxic conditions, and roadside agricultural ditches that support rapid surface movement. This modeling effort utilizes 1-m Light Detection and Ranging (LiDAR) data. We find a significant correlation between hydrologic variability and mean nitrate age that enables assessment of preferential flow paths of nitrate leaching. The estimation of the mean nitrogen age can thus serve as a tool to disentangle complex nitrogen dynamics by providing the analysis of the time scales of soil-nitrogen transformation and transport processes without introducing additional parameters.

  18. Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain

    NARCIS (Netherlands)

    García-Díaz, Andrés; Bienes, Ramón; Sastre, Blanca; Novara, Agata; Gristina, Luciano; Cerda Bolinches, Artemio

    2017-01-01

    The soils of Mediterranean vineyards are usually managed with continuous tillage, resulting in bare soil, low infiltration and high soil erosion rates. Soil nutrients, such as nitrogen, could be lost dissolved in the runoff, causing a decrease in soil fertility on such degraded soils and producing

  19. Influence of forest disturbance on stable nitrogen isotope ratios in soil and vegetation profiles

    Science.gov (United States)

    Jennifer D. Knoepp; Scott R. Taylor; Lindsay R. Boring; Chelcy F. Miniat

    2015-01-01

    Soil and plant stable nitrogen isotope ratios (15 N) are influenced by atmospheric nitrogen (N) inputs and processes that regulate organic matter (OM) transformation and N cycling. The resulting 15N patterns may be useful for discerning ecosystem differences in N cycling. We studied two ecosystems; longleaf pine wiregrass (...

  20. Pyrite formation and mineral transformation pathways upon sulfidation of ferric hydroxides depend on mineral type and sulfide concentration

    NARCIS (Netherlands)

    Peiffer, Stefan; Behrends, Thilo; Hellige, Katrin; Larese-Casanova, Philip; Wan, Moli; Pollok, Kilian

    2015-01-01

    The reaction of ferric (hydr)oxides with dissolved sulfide does not lead to the instantaneous production of thermodynamically stable products but can induce a variety of mineral transformations including the formation of metastable intermediates. The importance of the various transformation pathways

  1. Effect of nitrogen alloying on the microstructure and abrasive wear of stainless steels

    International Nuclear Information System (INIS)

    Hawk, J.A.; Simmons, J.W.; Rawers, J.C.

    1994-01-01

    Alloying stainless steels with nitrogen has distinct advantages. Nitrogen is a strong austenite stabilizer and a potent solid-solution strengthener, and nitrogen has greater solubility than carbon iron. This study investigates the relationship among nitrogen concentration, precipitate microstructure, and abrasive wear using two high-nitrogen stainless steel alloys: Fe-19Cr-5Mn-5Ni-3Mo (SS1) and Fe-16Cr-7Mn-5Ni(SS2). Alloy SS1 contained 0.7 wt% N and was solution annealed at 1,150 C, thereby dissolving the nitrogen interstitially in the austenite. Subsequent aging, or cold work and aging, at 900 C led to the grain-boundary, cellular, and transgranular precipitation of Cr 2 N. Alloy SS2 was remelted in a high-pressure (200 MPa) N 2 atmosphere, leading to a spatial gradient of nitrogen in the alloy in the form of interstitial nitrogen and Cr 2 N and CrN precipitates. Nitrogen contents varied from a low of approximately 0.7 wt% at the bottom of the billet to a high of 3.6 wt% at the top. Nitrogen in excess of approximately 0.7 wt% formed increasingly coarser and more numerous Cr 2 N and CrN precipitates. The precipitate morphology created in alloy SS1 due to aging, or cold work and aging, had little effect on the abrasive wear of the alloy. However, a decrease in the abrasive wear rate in alloy SS2 was observed to correspond to the increase in number and size of the Cr 2 N and CrN precipitates

  2. Transformation of ammonia i biological airfilters

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Sørensen, Karen; Andersen, Mathias

    2007-01-01

    Ammonia is a major compound in ventilation air from animal houses. In biological filters it is with varying efficiency transformed by physical, biological, and chemical processes and ends up as ammonium, nitrate, and nitrite dissolved in water and as dinitrogen, nitrous oxide and nitric oxide...... emitted to the air. To identify the key regulators of these transformations we have combined data from studies of microbiology and performance in 10 experimental and full scale filters of varying design, loading, and management. Inhibition by nitrite controlled ammonium oxidation and pH, while biological...... removal without too much energy consumption, waste water production, green house gas emission, or suppression of the filters odor removal efficiency....

  3. Dissolving method for nuclear fuel oxide

    International Nuclear Information System (INIS)

    Tomiyasu, Hiroshi; Kataoka, Makoto; Asano, Yuichiro; Hasegawa, Shin-ichi; Takashima, Yoichi; Ikeda, Yasuhisa.

    1996-01-01

    In a method of dissolving oxides of nuclear fuels in an aqueous acid solution, the oxides of the nuclear fuels are dissolved in a state where an oxidizing agent other than the acid is present together in the aqueous acid solution. If chlorate ions (ClO 3 - ) are present together in the aqueous acid solution, the chlorate ions act as a strong oxidizing agent and dissolve nuclear fuels such as UO 2 by oxidation. In addition, a Ce compound which generates Ce(IV) by oxidation is added to the aqueous acid solution, and an ozone (O 3 ) gas is blown thereto to dissolve the oxides of nuclear fuels. Further, the oxides of nuclear fuels are oxidized in a state where ClO 2 is present together in the aqueous acid solution to dissolve the oxides of nuclear fuels. Since oxides of the nuclear fuels are dissolved in a state where the oxidizing agent is present together as described above, the oxides of nuclear fuels can be dissolved even at a room temperature, thereby enabling to use a material such as polytetrafluoroethylene and to dissolve the oxides of nuclear fuels at a reduced cost for dissolution. (T.M.)

  4. Understanding Nitrogen Fixation

    Energy Technology Data Exchange (ETDEWEB)

    Paul J. Chirik

    2012-05-25

    The purpose of our program is to explore fundamental chemistry relevant to the discovery of energy efficient methods for the conversion of atmospheric nitrogen (N{sub 2}) into more value-added nitrogen-containing organic molecules. Such transformations are key for domestic energy security and the reduction of fossil fuel dependencies. With DOE support, we have synthesized families of zirconium and hafnium dinitrogen complexes with elongated and activated N-N bonds that exhibit rich N{sub 2} functionalization chemistry. Having elucidated new methods for N-H bond formation from dihydrogen, C-H bonds and Broensted acids, we have since turned our attention to N-C bond construction. These reactions are particularly important for the synthesis of amines, heterocycles and hydrazines with a range of applications in the fine and commodity chemicals industries and as fuels. One recent highlight was the discovery of a new N{sub 2} cleavage reaction upon addition of carbon monoxide which resulted in the synthesis of an important fertilizer, oxamide, from the diatomics with the two strongest bonds in chemistry. Nitrogen-carbon bonds form the backbone of many important organic molecules, especially those used in the fertilizer and pharamaceutical industries. During the past year, we have continued our work in the synthesis of hydrazines of various substitution patterns, many of which are important precursors for heterocycles. In most instances, the direct functionalization of N{sub 2} offers a more efficient synthetic route than traditional organic methods. In addition, we have also discovered a unique CO-induced N{sub 2} bond cleavage reaction that simultaneously cleaves the N-N bond of the metal dinitrogen compound and assembles new C-C bond and two new N-C bonds. Treatment of the CO-functionalized core with weak Broensted acids liberated oxamide, H{sub 2}NC(O)C(O)NH{sub 2}, an important slow release fertilizer that is of interest to replace urea in many applications. The

  5. New displacement sensor for a hybrid magnetic bearing in liquid nitrogen

    International Nuclear Information System (INIS)

    Komori, M.; Kobayashi, H.; Shiraishi, C.

    1999-01-01

    This paper describes a newly developed displacement sensor. The displacement sensor is used for a hybrid magnetic bearing in liquid nitrogen. The principle of the displacement sensor is based on a differential transformer. The sensor is found to be useful in liquid nitrogen at 77 K (-196 C). Moreover, the sensor is applied to a hybrid magnetic bearing. The displacement sensor is found to be useful and promising

  6. Influence of processing-induced phase transformations on the dissolution of theophylline tablets

    OpenAIRE

    Debnath, Smita; Suryanarayanan, Raj

    2004-01-01

    The object of this investigation was to evaluate the influence of (1) processing-induced decrease in drug crystallinity and (2) phase transformations during dissolution, on the per-formance of theophylline tablet formulations. Anhydrous theophylline underwent multiple transformations (anhydrate »hydrate»anhydrate) during processing. Although the crystallinity of the anhydrate obtained finally was lower than that of the unprocessed drug, it dissolved at a slower rate. This decrease in dissolut...

  7. Creation of high density ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds

    International Nuclear Information System (INIS)

    Su, Long-Jyun; Fang, Chia-Yi; Chang, Yu-Tang; Chang, Huan-Cheng; Chen, Kuan-Ming; Yu, Yueh-Chung; Hsu, Jui-Hung

    2013-01-01

    This work explores the possibility of increasing the density of negatively charged nitrogen-vacancy centers ([NV − ]) in nanodiamonds using nitrogen-rich type Ib diamond powders as the starting material. The nanodiamonds (10–100 nm in diameter) were prepared by ball milling of microdiamonds, in which the density of neutral and atomically dispersed nitrogen atoms ([N 0 ]) was measured by diffuse reflectance infrared Fourier transform spectroscopy. A systematic measurement of the fluorescence intensities and lifetimes of the crushed monocrystalline diamonds as a function of [N 0 ] indicated that [NV − ] increases nearly linearly with [N 0 ] at 100–200 ppm. The trend, however, failed to continue for nanodiamonds with higher [N 0 ] (up to 390 ppm) but poorer crystallinity. We attribute the result to a combined effect of fluorescence quenching as well as the lower conversion efficiency of vacancies to NV − due to the presence of more impurities and defects in these as-grown diamond crystallites. The principles and practice of fabricating brighter and smaller fluorescent nanodiamonds are discussed. (paper)

  8. Creation of high density ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds.

    Science.gov (United States)

    Su, Long-Jyun; Fang, Chia-Yi; Chang, Yu-Tang; Chen, Kuan-Ming; Yu, Yueh-Chung; Hsu, Jui-Hung; Chang, Huan-Cheng

    2013-08-09

    This work explores the possibility of increasing the density of negatively charged nitrogen-vacancy centers ([NV(-)]) in nanodiamonds using nitrogen-rich type Ib diamond powders as the starting material. The nanodiamonds (10-100 nm in diameter) were prepared by ball milling of microdiamonds, in which the density of neutral and atomically dispersed nitrogen atoms ([N(0)]) was measured by diffuse reflectance infrared Fourier transform spectroscopy. A systematic measurement of the fluorescence intensities and lifetimes of the crushed monocrystalline diamonds as a function of [N(0)] indicated that [NV(-)] increases nearly linearly with [N(0)] at 100-200 ppm. The trend, however, failed to continue for nanodiamonds with higher [N(0)] (up to 390 ppm) but poorer crystallinity. We attribute the result to a combined effect of fluorescence quenching as well as the lower conversion efficiency of vacancies to NV(-) due to the presence of more impurities and defects in these as-grown diamond crystallites. The principles and practice of fabricating brighter and smaller fluorescent nanodiamonds are discussed.

  9. Isotope Tracer Methods for Investigations Of Nitrogen Deficiency In Castle Lake, California

    International Nuclear Information System (INIS)

    Axler, R.P.; Goldman, C.R.

    1981-01-01

    Castle Lake is a subalpine lake located in northern California. Thermal stratification is well developed soon after ice-thaw and persists until fall overturn. The epilimnion during the major portion of the growing season (mid-June to mid-September) is characterized by relatively constant temperature and depth (19±3°C, 5±2m respectively), high transparency (η = 0.21 m -1 ), low phytoplankton productivity (∼3 mg C m -3 hr -1 at midday), and low levels of dissolved inorganic nitrogen (≲5 μg N 1 -1 ) and phosphorus (≲1 μg P 1 -1 ). Nitrogen-fixing algae are not present in the water column and nutrient inputs derived from precipitation and surface inflow are generally negligible by early July

  10. Dating base flow in streams using dissolved gases and diurnal temperature changes

    Science.gov (United States)

    Sanford, Ward E.; Casile, Gerolamo C.; Haase, Karl B.

    2015-01-01

    A method is presented for using dissolved CFCs or SF6 to estimate the apparent age of stream base flow by indirectly estimating the mean concentration of the tracer in the inflowing groundwater. The mean value is estimated simultaneously with the mean residence times of the gas and water in the stream by sampling the stream for one or both age tracers, along with dissolved nitrogen and argon at a single location over a period of approximately 12–14 h. The data are fitted to an equation representing the temporal in-stream gas exchange as it responds to the diurnal temperature fluctuation. The efficacy of the method is demonstrated by collecting and analyzing samples at six different stream locations across parts of northern Virginia, USA. The studied streams drain watersheds with areas of between 2 and 122 km2 during periods when the diurnal stream temperature ranged between 2 and 5°C. The method has the advantage of estimating the mean groundwater residence time of discharge from the watershed to the stream without the need for the collection of groundwater infiltrating to streambeds or local groundwater sampled from shallow observation wells near the stream.

  11. Predicting major subsurface transport pathways as a key to understand spatial dynamics of reactive nitrogen in stream water

    DEFF Research Database (Denmark)

    Kraft, P.; Dalgaard, Tommy; Schelde, Kirsten

    Process based modelling of nitrogen turnover and transport is mainly focused on the plot and field scale. However, scaling up to the landscape level with sufficient topographic gradient and conductivities, Nr is relocated in the landscape through surface runoff, interflow as well as lateral...... groundwater movement. Cause and effects of Nr Approach can therefore be spatially disaggregated, i.e. leached Nr applied uphill on agricultural land can for example lead to gaseous N emissions downhill in riparian plains. In the Danish NitroEurope study landscape, lateral translocation of dissolved nitrogen...

  12. Using the soil and water assessment tool to estimate dissolved inorganic nitrogen water pollution abatement cost functions in central portugal.

    Science.gov (United States)

    Roebeling, P C; Rocha, J; Nunes, J P; Fidélis, T; Alves, H; Fonseca, S

    2014-01-01

    Coastal aquatic ecosystems are increasingly affected by diffuse source nutrient water pollution from agricultural activities in coastal catchments, even though these ecosystems are important from a social, environmental and economic perspective. To warrant sustainable economic development of coastal regions, we need to balance marginal costs from coastal catchment water pollution abatement and associated marginal benefits from coastal resource appreciation. Diffuse-source water pollution abatement costs across agricultural sectors are not easily determined given the spatial heterogeneity in biophysical and agro-ecological conditions as well as the available range of best agricultural practices (BAPs) for water quality improvement. We demonstrate how the Soil and Water Assessment Tool (SWAT) can be used to estimate diffuse-source water pollution abatement cost functions across agricultural land use categories based on a stepwise adoption of identified BAPs for water quality improvement and corresponding SWAT-based estimates for agricultural production, agricultural incomes, and water pollution deliveries. Results for the case of dissolved inorganic nitrogen (DIN) surface water pollution by the key agricultural land use categories ("annual crops," "vineyards," and "mixed annual crops & vineyards") in the Vouga catchment in central Portugal show that no win-win agricultural practices are available within the assessed BAPs for DIN water quality improvement. Estimated abatement costs increase quadratically in the rate of water pollution abatement, with largest abatement costs for the "mixed annual crops & vineyards" land use category (between 41,900 and 51,900 € tDIN yr) and fairly similar abatement costs across the "vineyards" and "annual crops" land use categories (between 7300 and 15,200 € tDIN yr). Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Organic carbon and nitrogen export from a tropical dam-impacted floodplain system

    Directory of Open Access Journals (Sweden)

    R. Zurbrügg

    2013-01-01

    Full Text Available Tropical floodplains play an important role in organic matter transport, storage, and transformation between headwaters and oceans. However, the fluxes and quality of organic carbon (OC and organic nitrogen (ON in tropical river-floodplain systems are not well constrained. We explored the quantity and characteristics of dissolved and particulate organic matter (DOM and POM, respectively in the Kafue River flowing through the Kafue Flats (Zambia, a tropical river-floodplain system in the Zambezi River basin. During the flooding season, > 80% of the Kafue River water passed through the floodplain, mobilizing large quantities of OC and ON, which resulted in a net export of 69–119 kg OC km−2 d−1 and 3.8–4.7 kg ON km−2 d−1, 80% of which was in the dissolved form. The elemental C : N ratio of ~ 20, the comparatively high δ13C values of −25‰ to −21‰, and its spectroscopic properties (excitation-emission matrices showed that DOM in the river was mainly of terrestrial origin. Despite a threefold increase in OC loads due to inputs from the floodplain, the characteristics of the riverine DOM remained relatively constant along the sampled 410-km river reach. This suggests that floodplain DOM displayed properties similar to those of DOM leaving the upstream reservoir and implied that the DOM produced in the reservoir was relatively short-lived. In contrast, the particulate fraction was 13C-depleted (−29‰ and had a C : N ratio of ~ 8, which indicated that POM originated from phytoplankton production in the reservoir and in the floodplain, rather than from plant debris or resuspended sediments. While the upstream dam had little effect on the DOM pool, terrestrial particles were retained, and POM from algal and microbial sources was released to the river. A nitrogen mass balance over the 2200 km2 flooded area revealed an annual deficit of 15 500–22 100 t N in

  14. Microbial Community Response to Terrestrially Derived Dissolved Organic Matter in the Coastal Arctic

    Directory of Open Access Journals (Sweden)

    Rachel E. Sipler

    2017-06-01

    Full Text Available Warming at nearly twice the global rate, higher than average air temperatures are the new ‘normal’ for Arctic ecosystems. This rise in temperature has triggered hydrological and geochemical changes that increasingly release carbon-rich water into the coastal ocean via increased riverine discharge, coastal erosion, and the thawing of the semi-permanent permafrost ubiquitous in the region. To determine the biogeochemical impacts of terrestrially derived dissolved organic matter (tDOM on marine ecosystems we compared the nutrient stocks and bacterial communities present under ice-covered and ice-free conditions, assessed the lability of Arctic tDOM to coastal microbial communities from the Chukchi Sea, and identified bacterial taxa that respond to rapid increases in tDOM. Once thought to be predominantly refractory, we found that ∼7% of dissolved organic carbon and ∼38% of dissolved organic nitrogen from tDOM was bioavailable to receiving marine microbial communities on short 4 – 6 day time scales. The addition of tDOM shifted bacterial community structure toward more copiotrophic taxa and away from more oligotrophic taxa. Although no single order was found to respond universally (positively or negatively to the tDOM addition, this study identified 20 indicator species as possible sentinels for increased tDOM. These data suggest the true ecological impact of tDOM will be widespread across many bacterial taxa and that shifts in coastal microbial community composition should be anticipated.

  15. Alkoxy(alkyl)silylalkyl derivatives of nitrogen-containing heterocycles

    International Nuclear Information System (INIS)

    Trofimova, Ol'ga M; Voronkov, Mikhail G; Chernov, Nikolai F

    1999-01-01

    The published data on the synthesis, properties and transformations of alkoxy(alkyl)silylalkyl derivatives of nitrogen-containing heterocycles of the general formula Het(CH 2 ) n SiX 3 are surveyed and systematised. Data on the biological activities and applications of these compounds are presented. The bibliography includes 255 references.

  16. Morphology and crystallographic orientation relationship in isothermally transformed Fe–N austenite

    International Nuclear Information System (INIS)

    Jiao, Dongling; Luo, Chengping; Liu, Jiangwen; Zhang, Guoqing

    2014-01-01

    The 225 °C isothermal transformation of a high-nitrogen austenite with Fe–2.71 wt.% N was investigated by means of electron microscopy. It was found that the transformation products were composed of ultrafine α-Fe and γ′-Fe 4 N plus retained austenite γ, which were in two types of morphologies, namely, (i) with the retained austenite patches dispersed among the (α-Fe + γ′-Fe 4 N) packets and (ii) with the ultrafine α-Fe and γ/γ′-Fe 4 N laths interwoven with each other within a single bainitic packet. A cube–cube orientation relationship between the γ (austenite) and γ′-Fe 4 N, and a near Greninger–Troiano (G–T) one between the γ (austenite) and the bainitic α-ferrite were detected. The morphology, orientation relationship and high hardness (> 1000 HV) of the transformation products indicated that the isothermal transformation of the high nitrogen austenite was analogous to a bainitic one. - Highlights: • Isothermal transformation products consisted of nano-sized α-Fe + γ′ + γ (retained). • The hardness of transformation product exceeded 1000 HV. • The α-Fe and γ/γ′-Fe 4 N kept a near G-T OR in the grain interior

  17. Nitrogen and carbon limitation of planktonic primary production and phytoplankton–bacterioplankton coupling in ponds on the McMurdo Ice Shelf, Antarctica

    International Nuclear Information System (INIS)

    Sorrell, Brian K; Safi, Karl; Hawes, Ian

    2013-01-01

    We compared planktonic primary and secondary production across twenty meltwater ponds on the surface of the McMurdo Ice Shelf in January 2007, including some ponds with basal brines created by meromictic stratification. Primary production ranged from 1.07 to 65.72 mgC m −3 h −1 in surface waters. In stratified ponds primary production was always more than ten times higher in basal brines than in the corresponding mixolimnion. Regression tree analysis (r 2 = 0.80) identified inorganic nitrogen (as NH 4 + ) as the main factor limiting planktonic primary production. However, there was also evidence of inorganic carbon co-limitation of photosynthesis in some of the more oligotrophic waters. Neither C nor N limited carbon fixation at [NH 4 –N] > 50 mg m −3 , with photoinhibition the factor most likely limiting photosynthesis under such conditions. Primary production was the only factor significantly correlated to bacterial production and the relationship (r 2 = 0.56) was non-linear. Nitrogen limitation and tight coupling of planktonic primary and bacterial production is surprising in these ponds, as all have large pools of dissolved organic carbon (1.2–260 g m −3 ) and organic nitrogen (all >130 mg m −3 ). The dissolved pools of organic carbon and nitrogen appear to be recalcitrant and bacterial production to be constrained by limited release of labile organics from phytoplankton. (letter)

  18. Mapping soil total nitrogen of cultivated land at county scale by using hyperspectral image

    Science.gov (United States)

    Gu, Xiaohe; Zhang, Li Yan; Shu, Meiyan; Yang, Guijun

    2018-02-01

    Monitoring total nitrogen content (TNC) in the soil of cultivated land quantitively and mastering its spatial distribution are helpful for crop growing, soil fertility adjustment and sustainable development of agriculture. The study aimed to develop a universal method to map total nitrogen content in soil of cultivated land by HSI image at county scale. Several mathematical transformations were used to improve the expression ability of HSI image. The correlations between soil TNC and the reflectivity and its mathematical transformations were analyzed. Then the susceptible bands and its transformations were screened to develop the optimizing model of map soil TNC in the Anping County based on the method of multiple linear regression. Results showed that the bands of 14th, 16th, 19th, 37th and 60th with different mathematical transformations were screened as susceptible bands. Differential transformation was helpful for reducing the noise interference to the diagnosis ability of the target spectrum. The determination coefficient of the first order differential of logarithmic transformation was biggest (0.505), while the RMSE was lowest. The study confirmed the first order differential of logarithm transformation as the optimal inversion model for soil TNC, which was used to map soil TNC of cultivated land in the study area.

  19. A coupled system of half-nitritation and ANAMMOX for mature landfill leachate nitrogen removal.

    Science.gov (United States)

    Li, Yun; Li, Jun; Zhao, Baihang; Wang, Xiujie; Zhang, Yanzhuo; Wei, Jia; Bian, Wei

    2017-09-01

    A coupled system of membrane bioreactor-nitritation (MBR-nitritation) and up-flow anaerobic sludge blanket-anaerobic ammonium oxidation (UASB-ANAMMOX) was employed to treat mature landfill leachate containing high ammonia nitrogen and low C/N. MBR-nitritation was successfully realized for undiluted mature landfill leachate with initial concentrations of 900-1500 mg/L [Formula: see text] and 2000-4000 mg/L chemical oxygen demand. The effluent [Formula: see text] concentration and the [Formula: see text] accumulation efficiency were 889 mg/L and 97% at 125 d, respectively. Half-nitritation was quickly realized by adjustment of hydraulic retention time and dissolved oxygen (DO), and a low DO control strategy could allow long-term stable operation. The UASB-ANAMMOX system showed high effective nitrogen removal at a low concentration of mature landfill leachate. The nitrogen removal efficiency was inhibited at excessive influent substrate concentration and the nitrogen removal efficiency of the system decreased as the concentration of mature landfill leachate increased. The MBR-nitritation and UASB-ANAMMOX processes were coupled for mature landfill leachate treatment and together resulted in high effective nitrogen removal. The effluent average total nitrogen concentration and removal efficiency values were 176 mg/L and 83%, respectively. However, the average nitrogen removal load decreased from 2.16 to 0.77 g/(L d) at higher concentrations of mature landfill leachate.

  20. Accounting for Natural Reduction of Nitrogen

    DEFF Research Database (Denmark)

    Højberg, A L; Refsgaard, J. C.; Hansen, A.L.

    the same restriction for all areas independent on drainage schemes, hydrogeochemical conditions in the subsurface and retention in surface waters. Although significant reductions have been achieved this way, general measures are not cost-effective, as nitrogen retention (primarily as denitrification...... degradation at a sufficient small scale with adequate certainty. The development of a national model to describe nitrogen leaching, transport and degradation as well as related uncertainty revealed that a national approach, based on existing data and knowledge, would be associated with significant...... Scales” (www.nitrate.dk), aims at advancing the understanding of these processes and quantify their impact on nitrate transport and transformation. The project combines detailed field studies and model simulations and develops methodologies and tools to: i) detect drain pipe location and quantify...

  1. Climate variability and extremes, interacting with nitrogen storage, amplify eutrophication risk

    Science.gov (United States)

    Lee, Minjin; Shevliakova, Elena; Malyshev, Sergey; Milly, P.C.D.; Jaffe, Peter R.

    2016-01-01

    Despite 30 years of basin-wide nutrient-reduction efforts, severe hypoxia continues to be observed in the Chesapeake Bay. Here we demonstrate the critical influence of climate variability, interacting with accumulated nitrogen (N) over multidecades, on Susquehanna River dissolved nitrogen (DN) loads, known precursors of the hypoxia in the Bay. We used the process model LM3-TAN (Terrestrial and Aquatic Nitrogen), which is capable of capturing both seasonal and decadal-to-century changes in vegetation-soil-river N storage, and produced nine scenarios of DN-load distributions under different short-term scenarios of climate variability and extremes. We illustrate that after 1 to 3 yearlong dry spells, the likelihood of exceeding a threshold DN load (56 kt yr−1) increases by 40 to 65% due to flushing of N accumulated throughout the dry spells and altered microbial processes. Our analyses suggest that possible future increases in climate variability/extremes—specifically, high precipitation occurring after multiyear dry spells—could likely lead to high DN-load anomalies and hypoxia.

  2. Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river

    Science.gov (United States)

    Desmet, N. J. S.; Van Belleghem, S.; Seuntjens, P.; Bouma, T. J.; Buis, K.; Meire, P.

    When macrophytes are growing in the river, the vegetation induces substantial changes to the water quality. Some effects are the result of direct interactions, such as photosynthetic activity or nutrient uptake, whereas others may be attributed to indirect effects of the water plants on hydrodynamics and river processes. This research focused on the direct effect of macrophytes on oxygen dynamics and nutrient cycling. Discharge, macrophyte biomass density, basic water quality, dissolved oxygen and nutrient concentrations were in situ monitored throughout the year in a lowland river (Nete catchment, Belgium). In addition, various processes were investigated in more detail in multiple ex situ experiments. The field and aquaria measurement results clearly demonstrated that aquatic plants can exert considerable impact on dissolved oxygen dynamics in a lowland river. When the river was dominated by macrophytes, dissolved oxygen concentrations varied from 5 to 10 mg l -1. Considering nutrient retention, it was shown that the investigated in-stream macrophytes could take up dissolved inorganic nitrogen (DIN) from the water column at rates of 33-50 mg N kgdry matter-1 h. And DIN fluxes towards the vegetation were found to vary from 0.03 to 0.19 g N ha -1 h -1 in spring and summer. Compared to the measured changes in DIN load over the river stretch, it means that about 3-13% of the DIN retention could be attributed to direct nitrogen uptake from the water by macrophytes. Yet, the role of macrophytes in rivers should not be underrated as aquatic vegetation also exerts considerable indirect effects that may have a greater impact than the direct fixation of nutrients into the plant biomass.

  3. In situ measurement of solvent-mediated phase transformations during dissolution testing

    DEFF Research Database (Denmark)

    Aaltonen, Jaakko; Heinänen, Paula; Peltonen, Leena

    2006-01-01

    In this study, solvent-mediated phase transformations of theophylline (TP) and nitrofurantoin (NF) were measured in a channel flow intrinsic dissolution test system. The test set-up comprised simultaneous measurement of drug concentration in the dissolution medium (with UV-Vis spectrophotometry......) and measurement of the solid-state form of the dissolving solid (in situ with Raman spectroscopy). The solid phase transformations were also investigated off-line with scanning electron microscopy. TP anhydrate underwent a transformation to TP monohydrate, and NF anhydrate (form beta) to NF monohydrate (form II......). Transformation of TP anhydrate to TP monohydrate resulted in a clear decrease in the dissolution rate, while the transformation of NF anhydrate (form beta) to NF monohydrate (form II) could not be linked as clearly to changes in the dissolution rate. The transformation of TP was an order of magnitude faster than...

  4. Monitoring systems online of oil for transformers of nuclear power plants

    International Nuclear Information System (INIS)

    Sarandeses, S.

    2014-01-01

    The nuclear power plants are showing their concern due to the existence of recent failures related to the bulky transformers of power. These transformers are not security, but are important for the production of power as its failure can cause transient on the floor, reactor scram or shooting, that can cause interruptions in the production of energy or might force us to reduce the power of production The analysis of gases dissolved in transformer oil is recognized as a trial key to identify a submerged transformer failure in oil. With this analysis it is not possible to ensure that there is no damage in the transformer, but the probability of risk of this type of failure can be reduced. The industry recommended to equip the new large power transformers with oil online monitoring systems and in some cases also be It recommended its use in existing transformers. (Author)

  5. Coupling of microbial nitrogen transformations and climate in sclerophyll forest soils from the Mediterranean Region of central Chile.

    Science.gov (United States)

    Pérez, Cecilia A; Armesto, Juan J

    2018-06-01

    The Mediterranean region of central Chile is experiencing extensive "mega-droughts" with detrimental effects for the environment and economy of the region. In the northern hemisphere, nitrogen (N) limitation of Mediterranean ecosystems has been explained by the decoupling between N inputs and plant uptake during the dormant season. In central Chile, soils have often been considered N-rich in comparison to other Mediterranean ecosystems of the world, yet the impacts of expected intensification of seasonal drought remain unknown. In this work, we seek to disentangle patterns of microbial N transformations and their seasonal coupling with climate in the Chilean sclerophyll forest-type. We aim to assess how water limitation affects microbial N transformations, thus addressing the impact of ongoing regional climate trends on soil N status. We studied four stands of the sclerophyll forest-type in Chile. Field measurements in surface soils showed a 67% decline of free-living diazotrophic activity (DA) and 59% decrease of net N mineralization rates during the summer rainless and dormant season, accompanied by a stimulation of in-situ denitrification rates to values 70% higher than in wetter winter. Higher rates of both free-living DA and net N mineralization found during spring, provided evidence for strong coupling of these two processes during the growing season. Overall, the experimental addition of water in the field to litter samples almost doubled DA but had no effect on denitrification rates. We conclude that coupling of microbial mediated soil N transformations during the wetter growing season explains the N enrichment of sclerophyll forest soils. Expected increases in the length and intensity of the dry period, according to climate change models, reflected in the current mega-droughts may drastically reduce biological N fixation and net N mineralization, increasing at the same time denitrification rates, thereby potentially reducing long-term soil N capital

  6. Seasonal Drivers of Dissolved Metal Transport During Infiltration of Road Runoff in an Urban Roadside Environment

    Science.gov (United States)

    Mullins, A.; Bain, D.

    2017-12-01

    Infiltration-based green infrastructure (GI) is being increasingly applied in urban areas, systems characterized by substantial legacy contamination and complicated hydrology. However, it is not clear how the application of green infrastructure changes the geochemistry of urban roadside environments. Most current research on GI focuses on small sets of chemical parameters (e.g. road salt, nitrogen and phosphorous species) over relatively short time periods, limiting comprehensive understanding of geochemical function. This work measures changes in groundwater infiltration rate and dissolved metal concentrations in two infiltration trenches in Pittsburgh, PA to evaluate function and measure dissolved metal transport from the system over time. Two distinct geochemical regimes seem to be driven by seasonality: road de-icer exchange and microbial driven summer reducing conditions. Interactions between these geochemical regimes and variability in infiltration rate control the flux of different metals, varying with metal chemistry. These findings suggest the adoption of infiltration based green infrastructure will likely create complicated patterns of legacy contamination transport to downstream receptors.

  7. Parasite infection alters nitrogen cycling at the ecosystem scale.

    Science.gov (United States)

    Mischler, John; Johnson, Pieter T J; McKenzie, Valerie J; Townsend, Alan R

    2016-05-01

    Despite growing evidence that parasites often alter nutrient flows through their hosts and can comprise a substantial amount of biomass in many systems, whether endemic parasites influence ecosystem nutrient cycling, and which nutrient pathways may be important, remains conjectural. A framework to evaluate how endemic parasites alter nutrient cycling across varied ecosystems requires an understanding of the following: (i) parasite effects on host nutrient excretion; (ii) ecosystem nutrient limitation; (iii) effects of parasite abundance, host density, host functional role and host excretion rate on nutrient flows; and (iv) how this infection-induced nutrient flux compares to other pools and fluxes. Pathogens that significantly increase the availability of a limiting nutrient within an ecosystem should produce a measurable ecosystem-scale response. Here, we combined field-derived estimates of trematode parasite infections in aquatic snails with measurements of snail excretion and tissue stoichiometry to show that parasites are capable of altering nutrient excretion in their intermediate host snails (dominant grazers). We integrated laboratory measurements of host nitrogen excretion with field-based estimates of infection in an ecosystem model and compared these fluxes to other pools and fluxes of nitrogen as measured in the field. Eighteen nitrogen-limited ponds were examined to determine whether infection had a measurable effect on ecosystem-scale nitrogen cycling. Because of their low nitrogen content and high demand for host carbon, parasites accelerated the rate at which infected hosts excreted nitrogen to the water column in a dose-response manner, thereby shifting nutrient stoichiometry and availability at the ecosystem scale. Infection-enhanced fluxes of dissolved inorganic nitrogen were similar to other commonly important environmental sources of bioavailable nitrogen to the system. Additional field measurements within nitrogen-limited ponds indicated that

  8. Co-production of bio-ethanol, xylonic acid and slow-release nitrogen fertilizer from low-cost straw pulping solid residue.

    Science.gov (United States)

    Huang, Chen; Ragauskas, Arthur J; Wu, Xinxing; Huang, Yang; Zhou, Xuelian; He, Juan; Huang, Caoxing; Lai, Chenhuan; Li, Xin; Yong, Qiang

    2018-02-01

    A novel bio-refinery sequence yielding varieties of co-products was developed using straw pulping solid residue. This process utilizes neutral sulfite pretreatment which under optimal conditions (160 °C and 3% (w/v) sulfite charge) provides 64.3% delignification while retaining 90% of cellulose and 67.3% of xylan. The pretreated solids exhibited excellent enzymatic digestibility, with saccharification yields of 86.9% and 81.1% for cellulose and xylan, respectively. After pretreatment, the process of semi-simultaneous saccharification and fermentation (S-SSF) and bio-catalysis was investigated. The results revealed that decreased ethanol yields were achieved when solid loading increased from 5% to 30%. An acceptable ethanol yield of 76.8% was obtained at 20% solid loading. After fermentation, bio-catalysis of xylose remaining in fermentation broth resulted in near 100% xylonic acid (XA) yield at varied solid loadings. To complete the co-product portfolio, oxidation ammoniation of the dissolved lignin successfully transformed it into biodegradable slow-release nitrogen fertilizer with excellent agricultural properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The Dissolution of Uranium Oxides in HB-Line Phase 1 Dissolvers

    International Nuclear Information System (INIS)

    Gray, J.H.

    2003-01-01

    A series of characterization and dissolution studies has been performed to define flowsheet conditions for the dissolution of uranium oxide materials in dissolvers. The samples selected for analysis were uranium oxide materials. The selection of these uranium oxide materials for characterization and dissolution studies was based on high enriched uranium content and trace levels of plutonium. Test results from the characterization study identified ferric oxide (Fe2O3) and iron/chromium/nickel (Fe/Cr/Ni) particles as impurities along with the tri-uranium oxide (U3O8) and uranium trioxide (UO3). The weight percent uranium in this material was found to vary depending on the impurity content. The trace impurity plutonium appears to be associated with the Fe/Cr/Ni particles. A small amount of absorbed moisture and waters of hydration is present. Most of the uranium oxides easily dissolved in low-molar nitric acid solutions without fluoride within one to two hours at solution temperature s between 60-80 degrees C. A small amount of residue remained following this dissolution step. To assure complete dissolution of uranium from these oxide materials, an additional dissolution step at 90 degrees C to boiling for at least one to two hours has been suggested. Only trace amounts of iron associated with Fe2O3 and Fe/Cr/Ni particles will dissolve during the dissolution steps. Neither hydrogen nor heat will be generated during the dissolution of these uranium oxide materials in nitric acid solutions. Some brown nitrogen dioxide (NO2) fumes will be generated during the dissolution of U3O8

  10. Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW).

    Science.gov (United States)

    Morandi, Garrett D; Wiseman, Steve B; Guan, Miao; Zhang, Xiaowei W; Martin, Jonathan W; Giesy, John P

    2017-11-01

    Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to response to oxidative stress, protein stress and DNA damage were indicative of exposure to acutely toxic extracts of OSPW. Additionally, six genes were uniquely responsive to acutely toxic extracts of OSPW. Evidence presented supports a role for sulphur- and nitrogen-containing chemical classes in the toxicity of extracts of OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Incipient fault diagnosis of power transformers using optical spectro-photometric technique

    Science.gov (United States)

    Hussain, K.; Karmakar, Subrata

    2015-06-01

    Power transformers are the vital equipment in the network of power generation, transmission and distribution. Mineral oil in oil-filled transformers plays very important role as far as electrical insulation for the winding and cooling of the transformer is concerned. As transformers are always under the influence of electrical and thermal stresses, incipient faults like partial discharge, sparking and arcing take place. As a result, mineral oil deteriorates there by premature failure of the transformer occurs causing huge losses in terms of revenue and assets. Therefore, the transformer health condition has to be monitored continuously. The Dissolved Gas Analysis (DGA) is being extensively used for this purpose, but it has some drawbacks like it needs carrier gas, regular instrument calibration, etc. To overcome these drawbacks, Ultraviolet (UV) -Visible and Fourier Transform Infrared (FTIR) Spectro-photometric techniques are used as diagnostic tools for investigating the degraded transformer oil affected by electrical, mechanical and thermal stresses. The technique has several advantages over the conventional DGA technique.

  12. Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions.

    Science.gov (United States)

    Aceituno, Felipe F; Orellana, Marcelo; Torres, Jorge; Mendoza, Sebastián; Slater, Alex W; Melo, Francisco; Agosin, Eduardo

    2012-12-01

    Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations.

  13. Bulk deposition of organic and inorganic nitrogen in southwest China from 2008 to 2013

    International Nuclear Information System (INIS)

    Song, Ling; Kuang, Fuhong; Skiba, Ute; Zhu, Bo; Liu, Xuejun; Levy, Peter; Dore, Anthony; Fowler, David

    2017-01-01

    China is regarded as one of the nitrogen deposition hotspots in the world. Measurements to-date have focused mainly on the North China Plain, ignoring the fact that atmospheric chemical and physical properties vary across the country and that there may be other hotspots regions that should be investigated. For this reason we have conducted a six year study, measuring the bulk deposition of reduced (NH 4 -N), oxidized (NO 3 -N), and dissolved organic nitrogen (DON) at three contrasting sites in the Sichuan province, southwest China. The study sites were a high altitude forest in the Gongga Mountains (GG), an agriculture dominated region in Yanting (YT) and an urban site in the mega city Chengdu (CD). The annual average bulk deposition fluxes of total dissolved nitrogen (TDN) were 7.4, 23.1 and 36.6 kg N ha −1 yr −1 at GG, YT and CD sites, respectively, during the study period 2008 to 2013. The contributions of NH 4 -N, NO 3 -N and DON to the TDN were in the range of 48.4–57.8%, 28.8–43.7%, and 8.0–15.6%, respectively. DON bulk deposition was mainly dominated by agricultural activities. TDN bulk deposition fluxes showed increasing trends at the agricultural and urban sites from 2008 to 2013, but there was little change at the remote forest (GG) site. While reduced N dominated bulk N deposition at all the three sites, its contribution showed a decreasing trend, suggesting a gradual increase in the importance of oxidized N. These results reveal the value of long term monitoring in detecting changes in the atmospheric chemical composition of this rapidly changing region, and their inclusion in the policy debate regarding which sources should be controlled in order to reduce the long term impacts of N deposition, especially for southwest China, where there are few measurements of N deposition. - Highlights: • A region in southwest China was identified as a nitrogen deposition hotspot. • Agriculture was identified as the main source of organic nitrogen

  14. Nitrogen metabolism of the eutrophic Delaware River ecosystem

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    A comprehensive investigation of the nitrogen cycle in the Delaware River was carried out using 13 N tracers to measure rates for important transformations of nitrogen. Daily, depth-averaged 15 N rates for the principal inorganic nitrogen species were consistent with rates derived from longitudinal profiles of concentration in the river. The data indicated that nitrification was a rapid, irreversible sink for NH 4 + , with export of the product NO 3 - from the study area. Utilization of NO 3 - by primary producers was negligible, owing to low irradiance levels and to high NH 4 + concentrations. The oxygen sag near Philadelphia was found to result from oxygen demand in the water column, with only minor benthic influence. Reaeration provided the major oxygen input. Nitrification accounted for about 1% of the net oxygen demand near Philadelphia but as much as 25% farther downstream

  15. Particulate carbon and nitrogen determinations in tracer studies: The neglected variables

    International Nuclear Information System (INIS)

    Collos, Yves; Jauzein, Cécile; Hatey, Elise

    2014-01-01

    We address two issues in the determination of particulate carbon and nitrogen in suspended matter of aquatic environments. One is the adsorption of dissolved organic matter on filters, leading to overestimate particulate matter. The second is the material loss during filtration due to fragile algal cells breaking up. Examples from both laboratory cultures and natural samples are presented. We recommend using stacked filters in order to estimate the first and filtering different volumes of water in order to evaluate the second. - Highlights: • Adsorption of dissolved organic matter on GF/F filters saturates below 1 ml. • Such adsorption can overestimate (up to 5 fold at low volumes) particulate matter. • Plankton breakage during filtration underestimates (up to 3 fold) particulate matter. • Different volumes should be filtered to detect biases in PC and PN concentrations. • Adsorbed organic carbon is higher in surface ocean than in mid-waters

  16. [Temporal-spatial distribution of agricultural diffuse nitrogen pollution and relationship with soil respiration and nitrification].

    Science.gov (United States)

    Wei, Ouyang; Cai, Guan-Qing; Huang, Hao-Bo; Geng, Xiao-Jun

    2014-06-01

    The soil respiration, nitrification and denitrification processes play an important role on soil nitrogen transformation and diffuse nitrogen loading. These processes are also the chains for soil circle. In this study, the Zhegao watershed located north of Chaohu Lake was selected to explore the interactions of these processes with diffuse nitrogen pollution. The BaPS (Barometric Process Separation) was applied to analyze the soil respiration, nitrification and denitrification processes in farmland and forest. The SWAT (Soil and Water Assessment Tool) simulated the temporal and spatial pattern of diffuse nitrogen loading. As the expanding of farmland and higher level of fertilization, the yearly mean loading of diffuse nitrogen increased sustainably from 1980-1995 to 1996-2012. The monthly loading in 1996-2012 was also higher than that in the period of 1980-1995, which closely related to the precipitation. The statistical analysis indicated that there was a significant difference between two periods. The yearly averaged loading of the whole watershed in 1996-2012 was 10.40 kg x hm(-2), which was 8.10 kg x hm(-2) in 1980-1995. The variance analysis demonstrated that there was also a big difference between the spatial distributions of two periods. The forest soil had much higher soil respiration than the farmland soil. But the farmland had higher nitrification and denitrification rates. The more intensive nitrogen transformation in the farmland contributed to the less diffuse nitrogen loading. As the nitrification rate of farmland was higher than denitrification rate, agricultural diffuse nitrate nitrogen loading would increase and organic nitrogen loading would reduce. The analysis of soil respiration, nitrification and denitrification is helpful for the study of soil nitrogen circle form the aspect of soil biology, which also benefits the control of agricultural diffuse nitrogen pollution.

  17. [Spatiotemporal characteristics of nitrogen and phosphorus in a mountainous urban lake].

    Science.gov (United States)

    Bao, Jing-Yue; Bao, Jian-Guo; Li, Li-Qing

    2014-10-01

    Longjing Lake in Chongqing Expo Garden is a typical representative of mountainous urban lake. Based on water quality monitoring of Longjing Lake, spatiotemporal characteristics of nitrogen and phosphorus and their relations were analyzed, combined with natural and human factors considered. The results indicated that annual average concentrations of TN and TP in overall lake were (1.42 ± 0.46) mg · L(-1) and (0.09 ± 0.03) mg · L(-1), nitrogen and phosphorus concentrations fluctuated seasonally which were lower during the flooding season than those during the dry season. Nitrogen and phosphorus concentration in main water area, open water areas and bay areas of Longjing Lake were distributed with temporal and spatial heterogeneity by different regional influencing factors. The seasonal variation of the main water area was basically consistent with overall lake. Two open water areas respectively connected the main water area with the upstream region, bay areas. TN and TP concentrations were gradually reduced along the flow direction. Upstream water quality and surrounding park functional layout impacted nitrogen and phosphorus nutrient concentrations of open water areas. Nutrient concentrations of typical bay areas were higher than those of main water area and open water areas. The mean mass fraction of PN/TN and PP/TP accounted for a large proportion (51.7% and 72.8%) during the flooding season, while NO(3-)-N/TN and SRP/TP accounted for more (42.0% and 59.4%) during the dry season. The mass fraction of ammonia nitrogen and dissolved organic nitrogen in total nitrogen were relatively stable. The annual mean of N/P ratio was 18.429 ± 7.883; the period of nitrogen limitation was 5.3% while was 21.2% for phosphorus limitation.

  18. Synthesis and properties of nitrogenous heterocycles containing a spiro-fused cyclopropane fragment

    International Nuclear Information System (INIS)

    Tomilov, Yury V; Nefedov, Oleg M; Kostyuchenko, Irina V

    2000-01-01

    The published data on the methods of synthesis and chemical transformations of nitrogenous heterocyclic compounds spiro-fused with a cyclopropane fragment are described systematically and generalised. The bibliography includes 146 references.

  19. Spatially explicit fate factors of waterborne nitrogen emissions at the global scale

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Mayorga, Emilio; Hauschild, Michael Zwicky

    2017-01-01

    water. Spatial aggregation of the FFs at the continental level decreases this variation to 1 order of magnitude or less for all routes. Coastal water residence time was found to show inconsistency and scarcity of literature sources. Improvement of data quality for this parameter is suggested......Purpose: Marine eutrophication impacts due to waterborne nitrogen (N) emissions may vary significantly with their type and location. The environmental fate of dissolved inorganic nitrogen (DIN) forms is essential to understand the impacts they may trigger in receiving coastal waters. Current life...... and river basin resolution. Methods: The FF modelling work includes DIN removal processes in both inland (soil and river) and marine compartments. Model input parameters are the removal coefficients extracted from the Global NEWS 2-DIN model and residence time of receiving coastal waters. The resulting FFs...

  20. Assessing the bioavailability of dissolved organic phosphorus in pasture and cultivated soils treated with different rates of nitrogen fertiliser

    NARCIS (Netherlands)

    McDowell, R.W.; Koopmans, G.F.

    2006-01-01

    A proportion of dissolved organic phosphorus (DOP) in soil leachates is readily available for uptake by aquatic organisms and, therefore, can represent a hazard to surface water quality. A study was conducted to characterise DOP in water extracts and soil P fractions of lysimeter soils (pasture

  1. Taxonomy of Means and Ends in Aquaculture Production—Part 2: The Technical Solutions of Controlling Solids, Dissolved Gasses and pH

    Directory of Open Access Journals (Sweden)

    Bjorgvin Vilbergsson

    2016-09-01

    Full Text Available In engineering design, knowing the relationship between the means (technique and the end (desired function or outcome is essential. The means in Aquaculture are technical solutions like airlifts that are used to achive desired functionality (an end like controlling dissolved gasses. In previous work, the authors identified possible functions by viewing aquaculture production systems as transformation processes in which inputs are transformed by treatment techniques (means and produce outputs (ends. The current work creates an overview of technical solutions of treatment functions for both design and research purposes. A comprehensive literature review of all areas of technical solutions is identified and categorized into a visual taxonomy of the treatment functions for controlling solids, controlling dissolved gasses and controlling pH alkalinity and hardness. This article is the second in a sequence of four and partly presents the treatments functions in the taxonomy. The other articles in this series present complementary aspects of this research: Part 1, A transformational view on aquaculture and functions divided into input, treatment and output functions; Part 2, The current taxonomy paper; Part 3, The second part of the taxonomy; and Part 4, Mapping of the means (techniques for multiple treatment functions.

  2. Linking Seasonal Variations in the Spectral Slope of Chromophoric Dissolved Organic Matter (CDOM) with Apparent Oxygen Utilization and Excess Nitrogen (DINxs) in the North Atlantic Subtropical Gyre

    Science.gov (United States)

    McDonald, N.; Barnes, R.; Nelson, N. B.

    2016-02-01

    The optically active or chromophoric fraction of dissolved organic matter (CDOM) is a topic of much interest to researchers due to its role in many biogeochemical processes in the global oceans. As CDOM effectively regulates the underwater light field, its influences on photosynthesis and primary productivity are significant. Despite recognition of its importance in biogeochemical cycles in natural waters, its chemical composition remains nebulous, due to photochemical processes, as well as spatial and temporal variations in composition. Understanding of CDOM composition and links to ocean processes is especially complex in pelagic, oligotrophic waters such as the North Atlantic Subtropical Gyre. In this region, minimum CDOM concentrations have been observed and it is decoupled from both dissolved organic carbon (DOC) and from net primary production (NPP). As CDOM absorbance has been shown to influence estimates of NPP from remote sensing models in the subtropical gyres, and as it has the potential to serve as an invaluable tracer of ocean DOM cycling, a better understanding of links between the optical properties of CDOM and biogeochemical processes in the subtropical gyres is crucial. In this study, monthly depth profiles of CDOM absorbance (between 1m and 3000m) were measured for a period of five years at the Bermuda Atlantic Timeseries Site (BATS) in the North Atlantic Subtropical Gyre to investigate seasonal variations and periodicity in CDOM optical properties. From this data, the spectral slope ratio (Sr) was calculated according to Helms et. al, 2008. Sr can be a useful tool in eliciting information about molecular weight, diagenetic state and microbial processes affecting CDOM composition, especially when coupled with other diagnostic parameters. In this study multivariate analysis techniques were utilized to examine links between Sr and ancillary parameters including apparent oxygen utilization (AOU) and excess nitrogen (DINxs) both of which can be a

  3. Composition of dissolved organic nitrogen in rivers associated with wetlands.

    Science.gov (United States)

    Watanabe, Akira; Tsutsuki, Kiyoshi; Inoue, Yudzuru; Maie, Nagamitsu; Melling, Lulie; Jaffé, Rudolf

    2014-09-15

    As basic information for assessing reactivity and functionality of wetland-associated dissolved organic matter (DOM) based on their composition and structural properties, chemical characteristics of N in ultrafiltered DOM (UDON; >1 kD) isolated from wetland-associated rivers in three climates (cool-temperate, Hokkaido, Japan; sub-tropical, Florida, USA; tropical, Sarawak, Malaysia) were investigated. The UDON was isolated during dry and wet seasons, or during spring, summer, and autumn. The proportion of UDON present as humic substances, which was estimated as the DAX-8 adsorbed fraction, ranged from 47 to 91%, with larger values in the Sarawak than at the other sites. The yield of hydrolyzable amino acid N ranged 1.24 to 7.01 mg g(-1), which correlated positively to the total N content of UDOM and tended to be larger in the order of Florida>Hokkaido>Sarawak samples. X-ray photoelectron N1s spectra of UDON showed a strong negative correlation between the relative abundances of amide/peptide N and primary amine N. The relative abundances of amide/peptide N and primary amine N in the Sarawak samples were smaller (70-76%) and larger (20-23%) respectively compared to those (80-88% and 4-9%) in the Florida and Hokkaido samples. Assuming terminal amino groups and amide N of peptides as major constituents of primary amine N and amide/peptide N, respectively, the average molecular weight of peptides was smaller in the Sarawak samples than that in the Florida and Hokkaido samples. Seasonal variations in UDON composition were scarce in the Sarawak and Florida samples, whereas the distribution of humic substance-N and nonhumic substance-N and compositions of amino acids and N functional groups showed a clear seasonality in the Hokkaido samples. While aromatic N increased from spring to autumn, contributions from fresh proteinaceous materials were also enhanced during autumn, resulting in the highest N content of UDOM for this season. Copyright © 2014 Elsevier B.V. All rights

  4. HB-Line Dissolver Dilution Flows and Dissolution Capability with Dissolver Charge Chute Cover Off

    International Nuclear Information System (INIS)

    Hallman, D.F.

    2003-01-01

    A flow test was performed in Scrap Recovery of HB-Line to document the flow available for hydrogen dilution in the dissolvers when the charge chute covers are removed. Air flow through the dissolver charge chutes, with the covers off, was measured. A conservative estimate of experimental uncertainty was subtracted from the results. After subtraction, the test showed that there is 20 cubic feet per minute (cfm) air flow through the dissolvers during dissolution with a glovebox exhaust fan operating, even with the scrubber not operating. This test also showed there is 6.6 cfm air flow through the dissolvers, after subtraction of experimental uncertainty if the scrubber and the glovebox exhaust fans are not operating. Three H-Canyon exhaust fans provide sufficient motive force to give this 6.6 cfm flow. Material charged to the dissolver will be limited to chemical hydrogen generation rates that will be greater than or equal to 25 percent of the Lower Flammability Limit (LFL) during normal operations. The H-Canyon fans will maintain hydrogen below LFL if electrical power is lost. No modifications are needed in HB-Line Scrap Recovery to ensure hydrogen is maintained less that LFL if the scrubber and glovebox exhaust fans are not operating

  5. Structural Transformation upon Nitrogen Doping of Ultrananocrystalline Diamond Films by Microwave Plasma CVD

    Directory of Open Access Journals (Sweden)

    Chien-Chung Teng

    2009-01-01

    Full Text Available The molecular properties and surface morphology of undoped and N-doped ultra-nanocrystalline diamond (UNCD films deposited by microwave plasma CVD with addition of nitrogen are investigated with various spectroscopic techniques. The results of spatially resolved Raman scattering, ATR/FT-IR and XPS spectra show more amorphous and sp2/sp3 ratio characteristics in N-doped UNCD films. The surface morphology in AFM scans shows larger nanocrystalline diamond clusters in N-doped UNCD films. Incorporation of nitrogen into UNCD films has promoted an increase of amorphous sp2-bonded carbons in the grain boundaries and the size of nanocrystalline diamond grains that are well correlated to the reported enhancement of conductivity and structural changes of UNCD films.

  6. Determining Isotopic Composition of Dissolved Nitrate Using Bacterial Denitrification Followed by Laser Spectroscopy

    International Nuclear Information System (INIS)

    Yan Tiezhu; Lee Zhi Yi, Amelia; Heiling, Maria; Weltin, Georg; Toloza, Arsenio; Resch, Christian

    2016-01-01

    Nitrate (NO_3"-) pollution is a prevalent problem that can cause water quality degradation and eutrophication of water bodies. Quantifying the nitrogen and oxygen isotopic composition of nitrates will allow for better identification of their potential sources, which in turn will assist in remediation of contaminated water and the designing of future water management practices. In this research bacterial denitrification followed by laser spectroscopy are used to determine isotopic composition of δ"1"5N and δ"1"8O of dissolved nitrates. The objective of the project is to establish a standard operating procedure (SOP) that outlines the best practices for both methods in sequence and designed to be used as a technical guideline

  7. Determining Isotopic Composition of Dissolved Nitrate Using Bacterial Denitrification Followed by Laser Spectroscopy

    International Nuclear Information System (INIS)

    Yan Tiezhu; Lee Zhi Yi, Amelia; Heiling, Maria; Weltin, Georg; Toloza, Arsenio; Resch, Christian

    2016-01-01

    Nitrate (NO 3 - ) pollution is a prevalent problem that can cause water quality degradation and eutrophication of water bodies. Quantifying the nitrogen and oxygen isotopic composition of nitrates will allow for better identification of their potential sources, which in turn will assist in remediation of contaminated water and the designing of future water management practices. In this research bacterial denitrification followed by laser spectroscopy are used to determine isotopic composition of δ 15 N and δ 18 O of dissolved nitrates. The objective of the project is to establish a standard operating procedure (SOP) that outlines the best practices for both methods in sequence and designed to be used as a technical guideline

  8. High soil solution carbon and nitrogen concentrations in a drained Atlantic bog are reduced to natural levels by 10 years of rewetting

    Science.gov (United States)

    Frank, S.; Tiemeyer, B.; Gelbrecht, J.; Freibauer, A.

    2014-04-01

    Anthropogenic drainage of peatlands releases additional greenhouse gases to the atmosphere, and dissolved carbon (C) and nutrients to downstream ecosystems. Rewetting drained peatlands offers a possibility to reduce nitrogen (N) and C losses. In this study, we investigate the impact of drainage and rewetting on the cycling of dissolved C and N as well as on dissolved gases, over a period of 1 year and a period of 4 months. We chose four sites within one Atlantic bog complex: a near-natural site, two drained grasslands with different mean groundwater levels and a former peat cutting area rewetted 10 years ago. Our results clearly indicate that long-term drainage has increased the concentrations of dissolved organic carbon (DOC), ammonium, nitrate and dissolved organic nitrogen (DON) compared to the near-natural site. DON and ammonium contributed the most to the total dissolved nitrogen. Nitrate concentrations below the mean groundwater table were negligible. The concentrations of DOC and N species increased with drainage depth. In the deeply-drained grassland, with a mean annual water table of 45 cm below surface, DOC concentrations were twice as high as in the partially rewetted grassland with a mean annual water table of 28 cm below surface. The deeply drained grassland had some of the highest-ever observed DOC concentrations of 195.8 ± 77.3 mg L-1 with maximum values of >400 mg L-1. In general, dissolved organic matter (DOM) at the drained sites was enriched in aromatic moieties and showed a higher degradation status (lower DOC to DON ratio) compared to the near-natural site. At the drained sites, the C to N ratios of the uppermost peat layer were the same as of DOM in the peat profile. This suggests that the uppermost degraded peat layer is the main source of DOM. Nearly constant DOM quality through the profile furthermore indicated that DOM moving downwards through the drained sites remained largely biogeochemically unchanged. Unlike DOM concentration, DOM

  9. Substrate Use of Pseudovibrio sp. Growing in Ultra-Oligotrophic Seawater

    Science.gov (United States)

    Schwedt, Anne; Seidel, Michael; Dittmar, Thorsten; Simon, Meinhard; Bondarev, Vladimir; Romano, Stefano; Lavik, Gaute; Schulz-Vogt, Heide N.

    2015-01-01

    Marine planktonic bacteria often live in habitats with extremely low concentrations of dissolved organic matter (DOM). To study the use of trace amounts of DOM by the facultatively oligotrophic Pseudovibrio sp. FO-BEG1, we investigated the composition of artificial and natural seawater before and after growth. We determined the concentrations of dissolved organic carbon (DOC), total dissolved nitrogen (TDN), free and hydrolysable amino acids, and the molecular composition of DOM by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The DOC concentration of the artificial seawater we used for cultivation was 4.4 μmol C L-1, which was eight times lower compared to the natural oligotrophic seawater we used for parallel experiments (36 μmol C L -1). During the three-week duration of the experiment, cell numbers increased from 40 cells mL-1 to 2x104 cells mL -1 in artificial and to 3x105 cells mL -1 in natural seawater. No nitrogen fixation and minor CO2 fixation (seawater, using unexpected organic compounds to fuel their energy, carbon and nitrogen requirements. PMID:25826215

  10. Effect of different biochars on Nitrogen uptake in poplar trees

    Science.gov (United States)

    George, Elizabeth; Tonon, Giustino; Scandellari, Francesca

    2014-05-01

    Influence of biochar on soil nitrogen transformation and plant uptake has been reported. This paper presents preliminary results of plant N uptake in poplars by using 15N isotope tracer approach Two types of biochar were applied to two sets of pots containing only sand and each pot received a pre-rooted poplar cutting. Half of the pots were inoculated with commercial mycorrhizal gel and the other half were left without. It is intended to provide information on how biochar, mycorrhiza and root interaction mediate nitrogen uptake and organ allocation.

  11. Comparison of dialysis and solid-phase extraction for isolation and concentration of dissolved organic matter prior to Fourier transform ion cyclotron resonance mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tfaily, Malak M.; Cooper, William T. [Florida State University, Department of Chemistry and Biochemistry, Tallahassee, FL (United States); Hodgkins, Suzanne; Chanton, Jeffrey P. [Florida State University, Department of Earth, Ocean and Atmospheric Science, Tallahassee, FL (United States); Podgorski, David C. [Florida State University, Department of Chemistry and Biochemistry, Tallahassee, FL (United States); Florida State University, National High Magnetic Field Laboratory, Tallahassee, FL (United States)

    2012-08-15

    We compare two methods, solid-phase extraction (SPE) and dialysis, commonly used for extraction and concentration of dissolved organic matter (DOM) prior to molecular characterization by electrospray ionization (ESI) and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. Spectra of DOM samples from Minnesota and Sweden peatlands that were extracted with styrene divinyl benzene polymer SPE sorbents included ions with formulas that had higher oxygen to carbon (O/C) ratios than spectra of DOM from the same samples after de-salting by dialysis. The SPE method was not very effective in extracting several major classes of DOM compounds that had high ESI efficiencies, including carboxylic acids and organo-sulfur compounds, and that out-competed other less-functionalized compounds (e.g., carbohydrates) for charge in the ESI source. The large abundance of carboxylic acids in the dialysisextracted DOM, likely the result of in situ microbial production, makes it difficult to see other (mainly hydrophilic) compounds with high O/C ratios. Our results indicate that, while dialysis is generally preferable for the isolation of DOM, for samples with high microbial inputs, the use of both isolation methods is recommended for a more accurate molecular representation. (orig.)

  12. CADDIS Volume 2. Sources, Stressors and Responses: Dissolved Oxygen

    Science.gov (United States)

    Introduction to the dissolved oxygen module, when to list dissolved oxygen as a candidate cause, ways to measure dissolved oxygen, simple and detailed conceptual model diagrams for dissolved oxygen, references for the dissolved oxygen module.

  13. A nitrogen mass balance for California

    Science.gov (United States)

    Liptzin, D.; Dahlgren, R. A.

    2010-12-01

    Human activities have greatly altered the global nitrogen cycle and these changes are apparent in water quality, air quality, ecosystem and human health. However, the relative magnitude of the sources of new reactive nitrogen and the fate of this nitrogen is not well established. Further, the biogeochemical aspects of the nitrogen cycle are often studied in isolation from the economic and social implications of all the transformations of nitrogen. The California Nitrogen Assessment is an interdisciplinary project whose aim is evaluating the current state of nitrogen science, practice, and policy in the state of California. Because of the close proximity of large population centers, highly productive and diverse agricultural lands and significant acreage of undeveloped land, California is a particularly interesting place for this analysis. One component of this assessment is developing a mass balance of nitrogen as well as identifying gaps in knowledge and quantifying uncertainty. The main inputs of new reactive nitrogen to the state are 1) synthetic nitrogen fertilizer, 2) biological nitrogen fixation, and 3) atmospheric nitrogen deposition. Permanent losses of nitrogen include 1) gaseous losses (N2, N2O, NHx, NOy), 2) riverine discharge, 3) wastewater discharge to the ocean, and 4) net groundwater recharge. A final term is the balance of food, feed, and fiber to support the human and animal populations. The largest input of new reactive nitrogen to California is nitrogen fertilizer, but both nitrogen fixation and atmospheric deposition contribute significantly. Non-fertilizer uses, such as the production of nylon and polyurethane, constitutes about 5% of the synthetic N synthesized production. The total nitrogen fixation in California is roughly equivalent on the 400,000 ha of alfalfa and the approximately 40 million ha of natural lands. In addition, even with highly productive agricultural lands, the large population of livestock, in particular dairy cows

  14. Soil warming opens the nitrogen cycle at the alpine treeline.

    Science.gov (United States)

    Dawes, Melissa A; Schleppi, Patrick; Hättenschwiler, Stephan; Rixen, Christian; Hagedorn, Frank

    2017-01-01

    Climate warming may alter ecosystem nitrogen (N) cycling by accelerating N transformations in the soil, and changes may be especially pronounced in cold regions characterized by N-poor ecosystems. We investigated N dynamics across the plant-soil continuum during 6 years of experimental soil warming (2007-2012; +4 °C) at a Swiss high-elevation treeline site (Stillberg, Davos; 2180 m a.s.l.) featuring Larix decidua and Pinus uncinata. In the soil, we observed considerable increases in the NH4+ pool size in the first years of warming (by >50%), but this effect declined over time. In contrast, dissolved organic nitrogen (DON) concentrations in soil solutions from the organic layer increased under warming, especially in later years (maximum of +45% in 2012), suggesting enhanced DON leaching from the main rooting zone. Throughout the experimental period, foliar N concentrations showed species-specific but small warming effects, whereas δ 15 N values showed a sustained increase in warmed plots that was consistent for all species analysed. The estimated total plant N pool size at the end of the study was greater (+17%) in warmed plots with Pinus but not in those containing Larix, with responses driven by trees. Irrespective of plot tree species identity, warming led to an enhanced N pool size of Vaccinium dwarf shrubs, no change in that of Empetrum hermaphroditum (dwarf shrub) and forbs, and a reduction in that of grasses, nonvascular plants, and fine roots. In combination, higher foliar δ 15 N values and the transient response in soil inorganic N indicate a persistent increase in plant-available N and greater cumulative plant N uptake in warmer soils. Overall, greater N availability and increased DON concentrations suggest an opening of the N cycle with global warming, which might contribute to growth stimulation of some plant species while simultaneously leading to greater N losses from treeline ecosystems and possibly other cold biomes. © 2016 John Wiley & Sons

  15. Reducing emissions from uranium dissolving

    International Nuclear Information System (INIS)

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO x emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO x fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO x emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO 2 which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered

  16. The long-term impact of urbanization on nitrogen patterns and dynamics in Shanghai, China.

    Science.gov (United States)

    Gu, Baojing; Dong, Xiaoli; Peng, Changhui; Luo, Weidong; Chang, Jie; Ge, Ying

    2012-12-01

    Urbanization is an important process that alters the regional and global nitrogen biogeochemistry. In this study, we test how long-term urbanization (1952-2004) affects the nitrogen flows, emissions and drivers in the Greater Shanghai Area (GSA) based on the coupled human and natural systems (CHANS) approach. Results show that: (1) total nitrogen input to the GSA increased from 57.7 to 587.9 Gg N yr(-1) during the period 1952-2004, mainly attributing to fossil fuel combustion (43%), Haber-Bosch nitrogen fixation (31%), and food/feed import (26%); (2) per capita nitrogen input increased from 13.5 to 45.7 kg N yr(-1), while per gross domestic product (GDP) nitrogen input reduced from 22.2 to 0.9 g N per Chinese Yuan, decoupling of nitrogen with GDP; (3) emissions of reactive nitrogen to the environment transformed from agriculture dominated to industry and human living dominated, especially for air pollution. This study provides decision-makers a novel view of nitrogen management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Release of dissolved phosphorus from riparian wetlands: Evidence for complex interactions among hydroclimate variability, topography and soil properties.

    Science.gov (United States)

    Gu, Sen; Gruau, Gérard; Dupas, Rémi; Rumpel, Cornélia; Crème, Alexandra; Fovet, Ophélie; Gascuel-Odoux, Chantal; Jeanneau, Laurent; Humbert, Guillaume; Petitjean, Patrice

    2017-11-15

    In agricultural landscapes, establishment of vegetated buffer zones in riparian wetlands (RWs) is promoted to decrease phosphorus (P) emissions because RWs can trap particulate P from upslope fields. However, long-term accumulation of P risks the release of dissolved P, since the unstable hydrological conditions in these zones may mobilize accumulated particulate P by transforming it into a mobile dissolved P species. This study evaluates how hydroclimate variability, topography and soil properties interact and influence this mobilization, using a three-year dataset of molybdate-reactive dissolved P (MRDP) and total dissolved P (TDP) concentrations in soil water from two RWs located in an agricultural catchment in western France (Kervidy-Naizin), along with stream P concentrations. Two main drivers of seasonal dissolved P release were identified: i) soil rewetting during water-table rise after dry periods and ii) reductive dissolution of soil Fe (hydr)oxides during prolonged water saturation periods. These mechanisms were shown to vary greatly in space (according to topography) and time (according to intra- and interannual hydroclimate variability). The concentration and speciation of the released dissolved P also varied spatially depending on soil chemistry and local topography. Comparison of sites revealed a similar correlation between soil P speciation (percentage of organic P ranging from 35-70%) and the concentration and speciation of the released P (MRDP from topography and soil chemistry must be considered to decrease the risk of remobilizing legacy soil P when establishing riparian buffer zones in agricultural landscapes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Overlooked runaway feedback in the marine nitrogen cycle: the vicious cycle

    Directory of Open Access Journals (Sweden)

    A. Landolfi

    2013-03-01

    Full Text Available The marine nitrogen (N inventory is thought to be stabilized by negative feedback mechanisms that reduce N inventory excursions relative to the more slowly overturning phosphorus inventory. Using a global biogeochemical ocean circulation model we show that negative feedbacks stabilizing the N inventory cannot persist if a close spatial association of N2 fixation and denitrification occurs. In our idealized model experiments, nitrogen deficient waters, generated by denitrification, stimulate local N2 fixation activity. But, because of stoichiometric constraints, the denitrification of newly fixed nitrogen leads to a net loss of N. This can enhance the N deficit, thereby triggering additional fixation in a vicious cycle, ultimately leading to a runaway N loss. To break this vicious cycle, and allow for stabilizing negative feedbacks to occur, inputs of new N need to be spatially decoupled from denitrification. Our idealized model experiments suggest that factors such as iron limitation or dissolved organic matter cycling can promote such decoupling and allow for negative feedbacks that stabilize the N inventory. Conversely, close spatial co-location of N2 fixation and denitrification could lead to net N loss.

  19. Diel cycles in dissolved barium, lead, iron, vanadium, and nitrite in a stream draining a former zinc smelter site near Hegeler, Illinois

    Science.gov (United States)

    Kay, R.T.; Groschen, G.E.; Cygan, G.; Dupre, David H.

    2011-01-01

    Diel variations in the concentrations of a number of constituents have the potential to substantially affect the appropriate sampling regimen in acidic streams. Samples taken once during the course of the day cannot adequately reflect diel variations in water quality and may result in an inaccurate understanding of biogeochemical processes, ecological conditions, and of the threat posed by the water to human health and the associated wildlife. Surface water and groundwater affected by acid drainage were sampled every 60 to 90. min over a 48-hour period at a former zinc smelter known as the Hegeler Zinc Superfund Site, near Hegeler, Illinois. Diel variations related to water quality in the aquifer were not observed in groundwater. Diel variations were observed in the temperature, pH, and concentration of dissolved oxygen, nitrite, barium, iron, lead, vanadium, and possibly uranium in surface water. Temperature, dissolved oxygen, nitrite, barium, lead, and uranium generally attained maximum values during the afternoon and minimum values during the night. Iron, vanadium, and pH generally attained minimum values during the afternoon and maximum values during the night. Concentrations of dissolved oxygen were affected by the intensity of photosynthetic activity and respiration, which are dependent upon insolation. Nitrite, an intermediary in many nitrogen reactions, may have been formed by the oxidation of ammonium by dissolved oxygen and converted to other nitrogen species as part of the decomposition of organic matter. The timing of the pH cycles was distinctly different from the cycles found in Midwestern alkaline streams and likely was the result of the photoreduction of Fe3+ to Fe 2+ and variations in the intensity of precipitation of hydrous ferric oxide minerals. Diel cycles of iron and vanadium also were primarily the result of variations in the intensity of precipitation of hydrous ferric oxide minerals. The diel variation in the concentrations of lead, uranium

  20. Thermal expansion and phase transformations of nitrogen-expanded austenite studied with in situ synchrotron X-ray diffraction

    DEFF Research Database (Denmark)

    Brink, Bastian; Ståhl, Kenny; Christiansen, Thomas Lundin

    2014-01-01

    Nitrogen-expanded austenite, _N, with high and low nitrogen contents was produced from AISI 316 grade stainless steel powder by gaseous nitriding in ammonia/hydrogen gas mixtures. In situ synchrotron X-ray diffraction was applied to investigate the thermal expansion and thermal stability...... as a fitting parameter. The stacking fault density is constant for temperatures up to 680 K, whereafter it decreases to nil. Surprisingly, a transition phase with composition M4N (M = Fe, Cr, Ni, Mo) appears for temperatures above 770 K. The linear coefficient of thermal expansion depends on the nitrogen...

  1. Oxygen Response of the Wine Yeast Saccharomyces cerevisiae EC1118 Grown under Carbon-Sufficient, Nitrogen-Limited Enological Conditions

    Science.gov (United States)

    Aceituno, Felipe F.; Orellana, Marcelo; Torres, Jorge; Mendoza, Sebastián; Slater, Alex W.; Melo, Francisco

    2012-01-01

    Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations. PMID:23001663

  2. Nitrogen fate and Transport in Diverse Agricultural Watersheds

    Science.gov (United States)

    Essaid, H.; McCarthy, K. A.; Baker, N. T.

    2010-12-01

    Nitrogen mass budgets have been estimated for ten agricultural watersheds located in a range of hydrologic settings in order to understand the factors controlling the fate of nitrogen applied at the surface. The watersheds, study areas of the Agricultural Chemical Sources, Transport and Fate study of the U.S. Geological Survey National Water Quality Assessment Program, are located in Indiana (IN), Iowa (IA), Maryland (MD), Nebraska (NE), Mississippi (MS) and Washington (WA). They range in size from 7 to 1254 km2, with four of the watersheds nested within larger watersheds. Surface water outflow (normalized to watershed area) ranged from 4 to 83 cm/yr. Crops planted include corn, soybean, small grains, rice, cotton, orchards and vegetables. “Surplus nitrogen” was determined for each watershed by subtracting estimates of crop uptake and volatilization from estimates of nitrogen input from atmospheric deposition, plant fixation, and fertilizer and manure applications for the period from 1987 to 2004. This surplus nitrogen is transported though the watershed via surface and subsurface flow paths, while simultaneously undergoing transformations (such as denitrification and in-stream processing) that result in less export of nitrogen from the watershed. Surface-water discharge and concentration data were used to estimate the export of nitrogen from the watersheds (groundwater outflow from the watersheds was minimal). Subtracting nitrogen export from surplus nitrogen provides an estimate of the net amount of nitrogen removal occurring during internal watershed transport. Watershed average nitrogen surplus ranged from 6 to 49 kg-N/ha. The more permeable and/or greater water flux watersheds (MD, NE, and WA) tended to have larger surplus nitrogen, possibly due to less crop uptake caused by greater leaching and runoff of nitrogen. Almost all of the surplus nitrogen in the low permeability (MS) and tile drained watersheds (IA, IN) was exported from the watershed with

  3. Synthetic biology approaches to engineering the nitrogen symbiosis in cereals.

    Science.gov (United States)

    Rogers, Christian; Oldroyd, Giles E D

    2014-05-01

    Nitrogen is abundant in the earth's atmosphere but, unlike carbon, cannot be directly assimilated by plants. The limitation this places on plant productivity has been circumvented in contemporary agriculture through the production and application of chemical fertilizers. The chemical reduction of nitrogen for this purpose consumes large amounts of energy and the reactive nitrogen released into the environment as a result of fertilizer application leads to greenhouse gas emissions, as well as widespread eutrophication of aquatic ecosystems. The environmental impacts are intensified by injudicious use of fertilizers in many parts of the world. Simultaneously, limitations in the production and supply of chemical fertilizers in other regions are leading to low agricultural productivity and malnutrition. Nitrogen can be directly fixed from the atmosphere by some bacteria and Archaea, which possess the enzyme nitrogenase. Some plant species, most notably legumes, have evolved close symbiotic associations with nitrogen-fixing bacteria. Engineering cereal crops with the capability to fix their own nitrogen could one day address the problems created by the over- and under-use of nitrogen fertilizers in agriculture. This could be achieved either by expression of a functional nitrogenase enzyme in the cells of the cereal crop or through transferring the capability to form a symbiotic association with nitrogen-fixing bacteria. While potentially transformative, these biotechnological approaches are challenging; however, with recent advances in synthetic biology they are viable long-term goals. This review discusses the possibility of these biotechnological solutions to the nitrogen problem, focusing on engineering the nitrogen symbiosis in cereals.

  4. Investigation on the mechanism of nitrogen plasma modified PDMS bonding with SU-8

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chengxin; Yuan, Yong J., E-mail: yongyuan@swjtu.edu.cn

    2016-02-28

    Graphical abstract: - Highlights: • Different nitrogen plasma processes modified PDMS bonding with SU-8 had been studied. • The effect of nitrogen plasma modification would produce the best result and the recovery of PDMS hydrophobicity could be delayed. - Abstract: Polydimethylsiloxane (PDMS) and SU-8 are both widely used for microfluidic system. However, it is difficult to permanently seal SU-8 microfluidic channels using PDMS with conventional methods. Previous efforts of combining these two materials mainly employed oxygen plasma modified PDMS. The nitrogen plasma modification of PDMS bonding with SU-8 is rarely studied in recent years. In this work, the mechanism of nitrogen plasma modified PDMS bonding with SU-8 was investigated. The fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle of a water droplet were used to analyze the nitrogen plasma modified surface and the hydrophilic stability of PDMS samples. Pull-off tests were used for estimating the bonding effect of interface between nitrogen plasma modified PDMS and SU-8.

  5. SOIL NITROGEN TRANSFORMATIONS AND ROLE OF LIGHT FRACTION ORGANIC MATTER IN FOREST SOILS

    Science.gov (United States)

    Depletion of soil organic matter through cultivation may alter substrate availability for microbes, altering the dynamic balance between nitrogen (N) immobilization and mineralization. Soil light fraction (LF) organic matter is an active pool that decreases upon cultivation, and...

  6. Structural transformations in thermal treatment of carbon material based on Slantsy coke

    Energy Technology Data Exchange (ETDEWEB)

    Tyumentsev, V.A.; Semenov, P.V.; Podkopaev, S.A.; Noneshneva, N.P.; Golovin, A.V. [Chelyabinsk State University, Chelyabinsk (Russian Federation)

    2000-07-01

    Structural transformations occurring in a carbon material based on high-sulfur Slantsy coke during isothermal treatment (1200-2400{degree}C) under normal pressure in a nitrogen atmosphere were studied.

  7. U.S. Geological Survey Noble Gas Laboratory’s standard operating procedures for the measurement of dissolved gas in water samples

    Science.gov (United States)

    Hunt, Andrew G.

    2015-08-12

    This report addresses the standard operating procedures used by the U.S. Geological Survey’s Noble Gas Laboratory in Denver, Colorado, U.S.A., for the measurement of dissolved gases (methane, nitrogen, oxygen, and carbon dioxide) and noble gas isotopes (helium-3, helium-4, neon-20, neon-21, neon-22, argon-36, argon-38, argon-40, kryton-84, krypton-86, xenon-103, and xenon-132) dissolved in water. A synopsis of the instrumentation used, procedures followed, calibration practices, standards used, and a quality assurance and quality control program is presented. The report outlines the day-to-day operation of the Residual Gas Analyzer Model 200, Mass Analyzer Products Model 215–50, and ultralow vacuum extraction line along with the sample handling procedures, noble gas extraction and purification, instrument measurement procedures, instrumental data acquisition, and calculations for the conversion of raw data from the mass spectrometer into noble gas concentrations per unit mass of water analyzed. Techniques for the preparation of artificial dissolved gas standards are detailed and coupled to a quality assurance and quality control program to present the accuracy of the procedures used in the laboratory.

  8. Method of dissolving metal ruthenium

    International Nuclear Information System (INIS)

    Tsuno, Masao; Soda, Yasuhiko; Kuroda, Sadaomi; Koga, Tadaaki.

    1988-01-01

    Purpose: To dissolve and clean metal ruthenium deposited to the inner surface of a dissolving vessel for spent fuel rods. Method: Metal ruthenium is dissolved in a solution of an alkali metal hydroxide to which potassium permanganate is added. As the alkali metal hydroxide used herein there can be mentioned potassium hydroxide, sodium hydroxide and lithium hydroxide can be mentioned, which is used as an aqueous solution from 5 to 20 % concentration in view of the solubility of metal ruthenium and economical merit. Further, potassium permanganate is used by adding to the solution of alkali metal hydroxide at a concentration of 1 to 5 %. (Yoshihara, H.)

  9. Magnetic and spontaneous Barkhausen noise techniques used in investigation of a martensitic transformation

    Science.gov (United States)

    Capò Sànchez, J.; Huallpa, E.; Farina, P.; Padovese, L. R.; Goldenstein, H.

    2011-10-01

    Magnetic Barkhausen noise (MBN) was used to characterize the progress of austenite to martensite phase transformation while cooling steel specimens, using a conventional Barkhausen noise emission setup stimulated by an alternating magnetic field. The phase transformation was also followed by electrical resistivity measurements and by optical and scanning electron microscopy. MBN measurements on a AISI D2 tool steel austenitized at 1473 K and cooled to liquid nitrogen temperature presented a clear change near 225 K during cooling, corresponding to the MS (martensite start) temperature, as confirmed by resistivity measurements. Analysis of the resulting signals suggested a novel experimental technique that measures spontaneous magnetic emission during transformation, in the absence of any external field. Spontaneous magnetic noise emission measurements were registered in situ while cooling an initially austenitic sample in liquid nitrogen, showing that local microstructural changes, corresponding to an avalanche or "burst" phenomena, could be detected. This spontaneous magnetic emission (SME) can thus be considered a new experimental tool for the study of martensite transformations in ferrous alloys, at the same level as acoustic emission.

  10. Nitrogen Transformations in Broiler Litter-Amended Soils

    Directory of Open Access Journals (Sweden)

    Kokoasse Kpomblekou-A

    2012-01-01

    Full Text Available Nitrogen mineralization rates in ten surface soils amended with (200 μg N g−1 soil or without broiler litter were investigated. The soil-broiler litter mixture was incubated at 25±1∘C for 28 weeks. A nonlinear regression approach for N mineralization was used to estimate the readily mineralizable organic N pools (N0 and the first-order rate constant (k. The cumulative N mineralized in the nonamended soils did not exceed 80 mg N kg−1 soil. However, in Decatur soil amended with broiler litter 2, it exceeded 320 mg N kg−1 soil. The greatest calculated N0 of the native soils was observed in Sucarnoochee soil alone (123 mg NO3− kg−1 soil which when amended with broiler litter 1 reached 596 mg N kg−1 soil. The added broiler litter mineralized initially at a fast rate (k1 followed by a slow rate (k2 of the most resistant fraction. Half-life of organic N remaining in the soils alone varied from 33 to 75 weeks and from 43 to 15 weeks in the amended soils. When N0 was regressed against soil organic N (=0.782∗∗ and C (=0.884∗∗∗, positive linear relationships were obtained. The N0 pools increased with sand but decreased with silt and clay contents.

  11. Transformation of 15N-labelled ammonium nitrate in a pot experiment with winter wheat

    International Nuclear Information System (INIS)

    Mueller, S.; Herbst, F.; Weigert, I.

    1986-01-01

    The transformation of 15 N-ammonium nitrate in the soil-plant system was investigated in Mitscherlich pots. Single nitrogen applications at the start of the growing season resulted in a decline in dry matter content and nitrogen uptake by the plant at the end of the ripening process. Root development shows respective reductions already after ear emergence. Nitrogen fertilization leads to an additional uptake of soil nitrogen. Between 60 and 85% of the fertilizer nitrogen is taken up by the plants. Only 2% of this nitrogen is found in the roots at the time of ripeness. Already 49 and 55 %, respectively, of the second nitrogen applications at the time of shooting or at the end of ear emergence is taken up by the plants after a few days, with 75 and 80%, respectively, of the nitrogen being utilized; but the second nitrogen application at the end of ear emergence has less influence on the crop yield. (author)

  12. Substrate use of Pseudovibrio sp. growing in ultra-oligotrophic seawater.

    Directory of Open Access Journals (Sweden)

    Anne Schwedt

    Full Text Available Marine planktonic bacteria often live in habitats with extremely low concentrations of dissolved organic matter (DOM. To study the use of trace amounts of DOM by the facultatively oligotrophic Pseudovibrio sp. FO-BEG1, we investigated the composition of artificial and natural seawater before and after growth. We determined the concentrations of dissolved organic carbon (DOC, total dissolved nitrogen (TDN, free and hydrolysable amino acids, and the molecular composition of DOM by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS. The DOC concentration of the artificial seawater we used for cultivation was 4.4 μmol C L(-1, which was eight times lower compared to the natural oligotrophic seawater we used for parallel experiments (36 μmol C L(-1. During the three-week duration of the experiment, cell numbers increased from 40 cells mL(-1 to 2x10(4 cells mL(-1 in artificial and to 3x10(5 cells mL(-1 in natural seawater. No nitrogen fixation and minor CO2 fixation (< 1% of cellular carbon was observed. Our data show that in both media, amino acids were not the main substrate for growth. Instead, FT-ICR-MS analysis revealed usage of a variety of different dissolved organic molecules, belonging to a wide range of chemical compound groups, also containing nitrogen. The present study shows that marine heterotrophic bacteria are able to proliferate with even lower DOC concentrations than available in natural ultra-oligotrophic seawater, using unexpected organic compounds to fuel their energy, carbon and nitrogen requirements.

  13. Effect of nitrogen, carbon sources and agitation speed on acetoin production of Bacillus subtilis SF4-3

    Directory of Open Access Journals (Sweden)

    Yanjun Tian

    2016-01-01

    Conclusions: The results indicated acetoin production of B. subtilis SF4-3 was closely related to the medium components and dissolved oxygen concentrations. It also provided a method for acetoin production via the reversible transformation of acetoin and 2,3-butanediol.

  14. Effect of dissolved oxygen on nitrogen removal and process control in aerobic granular sludge reactor

    International Nuclear Information System (INIS)

    Yuan Xiangjuan; Gao Dawen

    2010-01-01

    A sequencing batch reactor (SBR) with aerobic granular sludge was operated to determine the effect of different DO concentrations on biological nitrogen removal process and to investigate the spatial profiles of DO, ORP and pH as online control parameters in such systems. The results showed that DO concentration had a significant effect on nitrification efficiencies and the profiles of DO, ORP and pH. The specific nitrification rate was decreased from 0.0595 mgNH 4 + -N/(gMLSS min) to 0.0251 mgNH 4 + -N/(gMLSS min) after DO concentration was dropped off from 4.5 mg/L to 1.0 mg/L. High DO concentration improved the nitrification and increased the volumetric NH 4 + -N removal. Low DO concentration enhanced TIN removal, while prolonged the nitrification duration. Also there existed a good correlation between online control parameters (ORP, pH) and nutrient (COD, NH 4 + -N, NO 2 - -N, NO 3 - -N) variations in aerobic granular sludge reactor when DO was 2.5 mg/L, 3.5 mg/L and 4.5 mg/L. However it was difficult to identify the end of nitrification and denitrification when DO was 1.0 mg/L, due to no apparent bending points on ORP and pH curves. In conclusion, the optimal DO concentration was suggested at 2.5 mg/L as it not only achieved high nitrogen removal efficiency and decreased the reaction duration, but also saved operation cost by aeration and mixing.

  15. Nitrogen transformation and nitrous oxide emissions affected by biochar amendment and fertilizer stabilizers

    Science.gov (United States)

    Biochar as a soil amendment and the use of fertilizer stabilizers (N transformation inhibitors) have been shown to reduce N2O emissions, but the mechanisms or processes involved are not well understood. The objective of this research was to investigate N transformation processes and the relationship...

  16. Evaluating the impacts of landscape positions and nitrogen fertilizer rates on dissolved organic carbon on switchgrass land seeded on marginally yielding cropland.

    Science.gov (United States)

    Lai, Liming; Kumar, Sandeep; Mbonimpa, Eric G; Hong, Chang Oh; Owens, Vance N; Neupane, Ram P

    2016-04-15

    Dissolved organic carbon (DOC) through leaching into the soils is another mechanism of net C loss. It plays an important role in impacting the environment and impacted by soil and crop management practices. However, little is known about the impacts of landscape positions and nitrogen (N) fertilizer rates on DOC leaching in switchgrass (Panicum virgatum L.). This experimental design included three N fertilizer rates [0 (low); 56 (medium); 112 (high) kg N ha(-1)] and three landscape positions (shoulder, backslope and footslope). Daily average DOC contents at backslope were significantly lower than that at shoulder and footslope. The DOC contents from the plots that received medium N rate were also significantly lower than the plots that received low N rates. The interactions of landscape and N rates on DOC contents were different in every year from 2009 to 2014, however, no significant consistent trend of DOC contents was observed over time. Annual average DOC contents from the plots managed with low N rate were higher than those with high N rate. These contents at the footslope were higher than that at the shoulder position. Data show that there is a moderate positive relationship between the total average DOC contents and the total average switchgrass biomass yields. Overall, the DOC contents from leachate in the switchgrass land were significantly influenced by landscape positions and N rates. The N fertilization reduced DOC leaching contents in switchgrass field. The switchgrass could retain soil and environment sustainability to some extent. These findings will assist in understanding the mechanism of changes in DOC contents with various parameters in the natural environment and crop management systems. However, use of long-term data might help to better assess the effects of above factors on DOC leaching contents and loss in the switchgrass field in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Numerically Based Phase Transformation Maps for Dissimilar Aluminum Alloys Joined by Friction Stir-Welding

    Directory of Open Access Journals (Sweden)

    Carter Hamilton

    2018-05-01

    Full Text Available Sheets of aluminum 2017A-T451 and 7075-T651 were friction stir-welded in a butt-weld configuration. An existing computational model of the welding process for temperature distribution and material flow was adapted to estimate the phase transformations that occur across the weld zone. Near the weld center, process temperatures are sufficient to fully dissolve the equilibrium η phase in 7075 and partially dissolve the equilibrium S phase in 2017A. Upon cooling, Guinier–Preston (GP and Guinier–Preston–Bagaryatsky (GPB zones re-precipitate, and hardness recovers. Due to the more complete dissolution of the equilibrium phase in 7075, the hardness recovery skews toward whichever side of the weld, i.e., the advancing or retreating side, represents the 7075 workpiece. Phase transformation maps generated by the numerical simulation align not only with the hardness profiles taken across the weld zone, but also with positron lifetimes obtained through positron annihilation lifetime spectroscopy (PALS. Boundaries between the aluminum matrix and the secondary phases provide open volumes to trap positrons; therefore, positron lifetimes across the weld correspond with the phase transformations that occur in 7075 and 2017A during processing.

  18. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    Science.gov (United States)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-08-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle. For our understanding of the kinetics of organic matter cycling in the ocean, it is crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids and transparent exopolymer particles (TEP) for 2 years. The molecular characterization of extracted DOM was performed by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) after 70 days and after ∼2 years of incubation. Although glucose quickly degraded, a non-labile DOC background (5-9% of the initial DOC) was generated in the glucose incubations. Only 20% of the organic carbon from the algal exudate degraded within the 2 years of incubation. The degradation rates for the non-labile DOC background in the different treatments varied between 1 and 11 μmol DOC L-1 year-1. Transparent exopolymer particles, which are released by microorganisms, were produced during glucose degradation but decreased back to half of the maximum concentration within less than 3 weeks (degradation rate: 25 μg xanthan gum equivalents L-1 d-1) and were below detection in all treatments after 2 years. Additional glucose was added after 2 years to test whether labile substrate can promote the degradation of background DOC (co-metabolism; priming effect). A priming effect was not observed but the glucose addition led to a slight increase of background DOC. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM transformed during the degradation of the algal exudates. Our

  19. Isotopic dilution methods to determine the gross transformation rates of nitrogen, phosphorus, and sulfur in soil: a review of the theory, methodologies, and limitations

    International Nuclear Information System (INIS)

    Di, H. J.; Cameron, K. C.; McLaren, R. G.

    2000-01-01

    The rates at which nutrients are released to, and removed from, the mineral nutrient pool are important in regulating the nutrient supply to plants. These nutrient transformation rates need to be taken into account when developing nutrient management strategies for economical and sustainable production. A method that is gaining popularity for determining the gross transformation rates of nutrients in the soil is the isotopic dilution technique. The technique involves labelling a soil mineral nutrient pool, e.g. NH 4 + , NO 3 - , PO 4 3- , or SO 4 2- , and monitoring the changes with time of the size of the labelled nutrient pool and the excess tracer abundance (atom %, if stable isotope tracer is used) or specific activity (if radioisotope is used) in the nutrient pool. Because of the complexity of the concepts and procedures involved, the method has sometimes been used incorrectly, and results misinterpreted. This paper discusses the isotopic dilution technique, including the theoretical background, the methodologies to determine the gross flux rates of nitrogen, phosphorus, and sulfur, and the limitations of the technique. The assumptions, conceptual models, experimental procedures, and compounding factors are discussed. Possible effects on the results by factors such as the uniformity of tracer distribution in the soil, changes in soil moisture content, substrate concentration, and aeration status, and duration of the experiment are also discussed. The influx and out-flux transformation rates derived from this technique are often contributed by several processes simultaneously, and thus cannot always be attributed to a particular nutrient transformation process. Despite the various constraints or possible compounding factors, the technique is a valuable tool that can provide important quantitative information on nutrient dynamics in the soil-plant system. Copyright (2000) CSIRO Publishing

  20. Study of ionic movements during anodic oxidation of nitrogen-implanted aluminium

    International Nuclear Information System (INIS)

    Terwagne, G.; Lucas, S.; Bodart, F.; Sorensen, G.; Jensen, H.

    1990-01-01

    In recent years there has been a considerable interest in synthesizing aluminium nitrides by ion implantation in order to modify the tribological properties of aluminium. The growth of an oxide layer by anodic process on these synthesized aluminium nitrides gives an interesting oxide-on-semiconductor material with surprising dynamic and decorative properties. During the anodic oxidation, ionic movements are involved in the near-surface region of the aluminium material; these ionic movements have been studied by Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA) on thin aluminium foils (7000 A) preimplanted with nitrogen and post-oxidized in an ammonium pentaborate solution. The growth of the oxide layer is reduced when the aluminium is preimplanted with nitrogen: the speed of oxidation depends on the implantation conditions (energy and fluence). Moreover, the aluminium nitride can be dissolved when all metallic aluminium staying between the surface and the AlN are consumed by the anodic process. (orig.)