WorldWideScience

Sample records for dissolution minimizing groundwater

  1. Simfuel dissolution studies in granitic groundwater

    International Nuclear Information System (INIS)

    Casas, I.; Caceci, M.S.; Bruno, J.; Sandino, A.; Ollila, K.

    1991-09-01

    The dissolution behavior of an unirradiated chemical analogue of spent nuclear fuel (SIMFUEL) has been studied in the presence of two different synthetic groundwater at 25 deg C and under both oxic and anoxic conditions. The release of U, Mo, Ba, Y and Sr was monitored during static (batch) leaching experiments of long duration (about 250 days). Preliminary results from continuous flow-through reactor experiments are also reported. The results obtained indicate the usefulness and limitations of SIMFUEL in the study of the kinetics and mechanism of dissolution of the minor components of spent nuclear fuel. Molybdenum, barium and strontium have shown a trend to congruent dissolution with the SIMFUEL matrix after a higher initial fractional release. Yttrium release has been found to be solubility controlled under the experimental conditions. A clear dependence on the partial pressure of O 2 of the rates of dissolution of uranium has been observed

  2. SIMFUEL dissolution studies in granitic groundwater

    International Nuclear Information System (INIS)

    Casas, I.; Caceci, M.S.; Bruno, J; Sandino, A.

    1991-09-01

    The dissolution behavior of an unirradiated chemical analogue of spent nuclear fuel (SIMFUEL) has been studied in the presence of two different synthetic groundwaters at 25 degrees C and under both oxic and anoxic conditions. The release of U, Mo, Ba, Y and Sr was monitored during static (batch) leaching experiments of long duration (about 250 days). Preliminary results from continuous flow-through reactor experiments are also reported. The results obtained indicate the usefulness and limitations of SIMFUEL in the study of the kinetics and mechanism of dissolution of the minor components of spent nuclear fuel. Molybdenum, barium and strontium have shown a trend of congruent dissolution with the SIMFUEL matrix after a higher initial fractional release has been found to be solubility controlled under the experimental conditions. A clear dependence on the partial pressure of O 2 of the rate of dissolution of uranium has been observed. (au)

  3. Simfuel dissolution studies in granitic groundwater leaching experiments at VTT

    International Nuclear Information System (INIS)

    Ollila, K.

    1992-12-01

    The dissolution behaviour of an irradiated analogue of spent nuclear fuel, SIMFUEL, was studied in synthetic granitic groundwater. The release of uranium and the minor components was monitored during static (bach) leaching experiments in oxic and anoxic (N 2 ) atmosphere at 25 deg C. Molybdenum, ruthenium, barium and zirconium showed a trend to congruent dissolution behaviour with UO 2 matrix towards the end of the experimental time (540 days) under anoxic conditions. Under oxic conditions, molybdenum and strontium had higher release rates relative to the matrix (the exp. time of 220 days). The presence of particulate material in the leachates in anoxic atmosphere was shown by SEM/EDX and XRD analyses. The material retained on membrane after filtration consisted of Ca-rich and U-rich particles in addition to finely divided material. Calcite (CaCO 3 ) and uranium oxide were identified. (orig.)

  4. Dissolution rate of alpha-doped UO2 in natural groundwater

    International Nuclear Information System (INIS)

    Ollila, Kaija; Myllykylä, Emmi; Tanhua-Tyrkkö, Merja; Lavonen, Tiina

    2013-01-01

    The objective of this work is to determine whether the presence of trace elements in natural groundwaters affects the dissolution rate of uranium dioxide in the presence of alpha radiation that causes radiolysis of water. The study is a part of the project Reducing Uncertainty in Performance Prediction (REDUPP) under the Seventh Framework Programme of the European Atomic Energy Community (EURATOM). The project aims to reduce uncertainties related to the extrapolation of the results of laboratory experiments to the conditions expected under geologic disposal. Thus far, synthetic groundwater has been normally used in the experiments. The synthetic groundwaters used do not contain all of the chemical elements that occur in natural groundwaters. Three natural groundwaters were chosen for the dissolution experiments with 0%, 5%, and 10% 233 U-doped UO 2 samples. These include a brackish groundwater, a saline groundwater and a low ionic strength groundwater. At the time of writing this paper, the dissolution experiments have been finished in the first groundwater, which was a moderately saline, brackish groundwater. The groundwater samples for the experiments were taken from a borehole in the Olkiluoto site in Finland. The measurements for dissolution rates were conducted under reducing conditions established using metallic iron in solution and an argon atmosphere in the glove box. The isotope dilution method was used to decrease uncertainties due to precipitation and sorption effects. The resulting dissolution rates in OL-KR6 natural groundwater were generally somewhat higher than the rates measured previously in synthetic groundwaters under similar redox conditions. No clear effect of alpha radiolysis could be seen for tests with lower SA/V, while those for higher SA/V indicated that the dissolution rate was higher for the 10% 233 U-doped UO 2 , suggesting the effect of alpha radiolysis under these conditions

  5. Groundwater flow and its effect on salt dissolution in Gypsum Canyon watershed, Paradox Basin, southeast Utah, USA

    Science.gov (United States)

    Reitman, Nadine G.; Ge, Shemin; Mueller, Karl

    2014-09-01

    Groundwater flow is an important control on subsurface evaporite (salt) dissolution. Salt dissolution can drive faulting and associated subsidence on the land surface and increase salinity in groundwater. This study aims to understand the groundwater flow system of Gypsum Canyon watershed in the Paradox Basin, Utah, USA, and whether or not groundwater-driven dissolution affects surface deformation. The work characterizes the groundwater flow and solute transport systems of the watershed using a three-dimensional (3D) finite element flow and transport model, SUTRA. Spring samples were analyzed for stable isotopes of water and total dissolved solids. Spring water and hydraulic conductivity data provide constraints for model parameters. Model results indicate that regional groundwater flow is to the northwest towards the Colorado River, and shallow flow systems are influenced by topography. The low permeability obtained from laboratory tests is inconsistent with field observed discharges, supporting the notion that fracture permeability plays a significant role in controlling groundwater flow. Model output implies that groundwater-driven dissolution is small on average, and cannot account for volume changes in the evaporite deposits that could cause surface deformation, but it is speculated that dissolution may be highly localized and/or weaken evaporite deposits, and could lead to surface deformation over time.

  6. Dissolution of unirradiated UO{sub 2} fuel in synthetic groundwater. Final report (1996-1998)

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, K. [VTT Chemical Technology, Espoo (Finland)

    1999-05-01

    This study was a part of the EU R and D programme 1994-1998: Nuclear Fission Safety, entitled `Source term for performance assessment of spent fuel as a waste form`. The research carried out at VTT Chemical Technology was focused on the effects of granitic groundwater composition and redox conditions on UO{sub 2} solubility and dissolution mechanisms. The synthetic groundwater compositions simulated deep granitic fresh and saline groundwaters, and the effects of the near-field material, bentonite, on very saline groundwater. Additionally, the Spanish granite/bentonite water was used. The redox conditions (Eh), which are obviously the most important factors that influence on UO{sub 2} solubility under the disposal conditions of spent fuel, varied from strongly oxidising (air-saturated), anaerobic (N{sub 2}, O{sub 2} < l ppm) to reducing (N{sub 2}, low Eh). The objective of the air-saturated dissolution experiments was to yield the maximum solution concentrations of U, and information on the formation of secondary phases that control the concentrations, with different groundwater compositions. The static batch solubility experiments of long duration (up to 1-2 years) were performed using unirradiated UO{sub 2} pellets and powder. Under anaerobic and reducing conditions, the solubilities were also approached from oversaturation. The results of the oxic, air-saturated dissolution experiments with UO{sub 2} powder showed that the increase in the salinity (< 1.7 M) had a minor effect on the measured steady-state concentrations of U. The concentrations, (1.2 ...2.5) x 10{sup -5} M, were at the level of the theoretical solubility of schoepite or another uranyl oxide hydrate, e.g. becquerelite (possibly Na-polyuranate). The higher alkalinity of the fresh (Allard) composition increased the aqueous U concentration. Only some kind of oxidised U-phase (U{sub 3}O{sub 8}-UO{sub 3}) was identified with XRD when studying possible secondary phases after the contact time of one year

  7. Dissolution of unirradiated UO2 fuel in synthetic groundwater. Final report (1996-1998)

    International Nuclear Information System (INIS)

    Ollila, K.

    1999-05-01

    This study was a part of the EU R and D programme 1994-1998: Nuclear Fission Safety, entitled 'Source term for performance assessment of spent fuel as a waste form'. The research carried out at VTT Chemical Technology was focused on the effects of granitic groundwater composition and redox conditions on UO 2 solubility and dissolution mechanisms. The synthetic groundwater compositions simulated deep granitic fresh and saline groundwaters, and the effects of the near-field material, bentonite, on very saline groundwater. Additionally, the Spanish granite/bentonite water was used. The redox conditions (Eh), which are obviously the most important factors that influence on UO 2 solubility under the disposal conditions of spent fuel, varied from strongly oxidising (air-saturated), anaerobic (N 2 , O 2 2 , low Eh). The objective of the air-saturated dissolution experiments was to yield the maximum solution concentrations of U, and information on the formation of secondary phases that control the concentrations, with different groundwater compositions. The static batch solubility experiments of long duration (up to 1-2 years) were performed using unirradiated UO 2 pellets and powder. Under anaerobic and reducing conditions, the solubilities were also approached from oversaturation. The results of the oxic, air-saturated dissolution experiments with UO 2 powder showed that the increase in the salinity ( -5 M, were at the level of the theoretical solubility of schoepite or another uranyl oxide hydrate, e.g. becquerelite (possibly Na-polyuranate). The higher alkalinity of the fresh (Allard) composition increased the aqueous U concentration. Only some kind of oxidised U-phase (U 3 O 8 -UO 3 ) was identified with XRD when studying possible secondary phases after the contact time of one year with all groundwater compositions. Longer contact times are needed to identify secondary phases predicted by modelling (EQ3/6). In the anoxic dissolution experiments with UO 2 pellets, the

  8. Groundwater flow and potential effects on evaporite dissolution in the Paradox Basin, SE Utah

    Science.gov (United States)

    Reitman, N.; Ge, S.; Mueller, K. J.

    2012-12-01

    A hydrogeologic study was conducted in the portion of the Paradox Basin south of the Needles District of Canyonlands National Park, Utah. Geology of the study area comprises fractured and faulted Paleozoic sandstone, limestone, and shale, which are underlain by evaporite cycles of the Paradox Formation. The evaporite deposits deform and dissolve when they come in contact with groundwater, generating land subsidence, saline groundwater, and salt input to the Colorado River. Active faults in the region slip at a rate of approximately 2 mm/year, likely due to evaporite dissolution. The objective of this study is to better understand groundwater flow and solute transport dynamics and to help determine the rate and timing of subsurface salt dissolution, which is an important control on the salt tectonics in the region. Study methods include hydrologic fieldwork, laboratory tests, and numerical modeling. No groundwater wells exist in the study area. Water samples from springs and seeps were collected throughout the study area. Analysis of total dissolved solids (TDS), stable oxygen (δ18O) and deuterium (δD) isotopes, spring and seep locations, and prior data are used to gain a preliminary understanding of the shallow groundwater flow in the region. Stable isotope ratios of oxygen (18O/16O) and deuterium (D/H) are used to constrain the source of spring water. Measured δ values are compared to predicted δ values for precipitation from WaterIsotopes.org for each sample site. Measured isotopic values range from -14.9 ‰ to -10.7 ‰ for δ18O and -108 ‰ to -78 ‰ for δD. The majority of samples from above 2000 m match predicted isotopic values for precipitation. Most samples taken below 2000 m are lighter than predicted isotopic values for precipitation. The TDS of spring samples measured in the lab show they range from 184 mg/L to 1552 mg/L with the majority of samples between 220 - 430 mg/L. TDS shows a weak correlation (R2 = 0.54) with altitude, where lower TDS

  9. Arsenic mineral dissolution and possible mobilization in mineral-microbe-groundwater environment.

    Science.gov (United States)

    Islam, A B M R; Maity, Jyoti Prakash; Bundschuh, Jochen; Chen, Chien-Yen; Bhowmik, Bejon Kumar; Tazaki, Kazue

    2013-11-15

    Arsenic (As) is widely distributed in the nature as ores or minerals. It has been attracted much attention for the global public health issue, especially for groundwater As contamination. The aim of this study was to elucidate the characteristics of microbes in groundwater where As-minerals were dissolved. An ex situ experiment was conducted with 7 standard As-minerals in bacteria-free groundwater and stored in experimental vessels for 1 year without supplementary nutrients. The pH (6.7-8.4) and EhS.H.E. (24-548 mV) changed between initial (0 day) and final stages (365 days) of experiment. The dissolution of As was detected higher from arsenolite (4240 ± 8.69 mg/L) and native arsenic (4538 ± 9.02 mg/L), whereas moderately dissolved from orpiment (653 ± 3.56 mg/L) and realgar (319 ± 2.56 mg/L) in compare to arsenopyrite (85 ± 1.25mg/L) and tennantite (3 ± 0.06 mg/L). Optical microscopic, scanning electron microscopic observations and flurometric enumeration revealed the abundance of As-resistant bacillus, coccus and filamentous types of microorganisms on the surface of most of As-mineral. 4'-6-Diamidino-2-phenylindole (DAPI)-stained epifluorescence micrograph confirmed the presence of DNA and carboxyfluorescein diacetate (CFDA) staining method revealed the enzymatically active bacteria on the surface of As-minerals such as in realgar (As4S4). Therefore, the microbes enable to survive and mobilize the As in groundwater by dissolution/bioweathering of As-minerals. Copyright © 2012. Published by Elsevier B.V.

  10. Modelling of the UO2 dissolution mechanisms in synthetic groundwater solutions. Dissolution experiments carried out under oxic conditions

    International Nuclear Information System (INIS)

    Cera, E.; Grive, M.; Bruno, J.; Ollila, K.

    2001-02-01

    The analytical data generated during the last three years within the 4th framework program of the European Community at VTT Chemical Technology concerning UO 2 dissolution under oxidising conditions have been modelled in the present work. The modelling work has been addressed to perform a kinetic study of the dissolution data generated by Ollila (1999) under oxidising conditions by using unirradiated uranium dioxide as solid sample. The average of the normalised UO 2 dissolution rates determined by using the initial dissolution data generated in all the experimental tests is (6.06 ± 3.64)* 10 -7 mol m -2 d -1 . This dissolution rate agrees with most of the dissolution rates reported in the literature under similar experimental conditions. The results obtained in this modelling exercise show that the same bicarbonate promoted oxidative dissolution processes operate for uranium dioxide, as a chemical analogue of the spent fuel matrix, independently of the composition of the aqueous solution used. (orig.)

  11. Arsenic mineral dissolution and possible mobilization in mineral–microbe–groundwater environment

    International Nuclear Information System (INIS)

    Islam, A.B.M.R.; Maity, Jyoti Prakash; Bundschuh, Jochen; Chen, Chien-Yen; Bhowmik, Bejon Kumar; Tazaki, Kazue

    2013-01-01

    Highlights: ► Bacteria use arsenic minerals for their growth without supplementary nutrient. ► Enzymatically active bacteria survive in the arsenic contaminated environment. ► Mostly bacillus, coccus and filamentous dissolves the arsenic mineral. ► Except enargite, soluble-As was detected with respect to other arsenic mineral. ► Dissolution: native-As > arsenolite > orpiment > realgar > arsenopyrite > tennantite. -- Abstract: Arsenic (As) is widely distributed in the nature as ores or minerals. It has been attracted much attention for the global public health issue, especially for groundwater As contamination. The aim of this study was to elucidate the characteristics of microbes in groundwater where As-minerals were dissolved. An ex situ experiment was conducted with 7 standard As-minerals in bacteria-free groundwater and stored in experimental vessels for 1 year without supplementary nutrients. The pH (6.7–8.4) and Eh S.H.E. (24–548 mV) changed between initial (0 day) and final stages (365 days) of experiment. The dissolution of As was detected higher from arsenolite (4240 ± 8.69 mg/L) and native arsenic (4538 ± 9.02 mg/L), whereas moderately dissolved from orpiment (653 ± 3.56 mg/L) and realgar (319 ± 2.56 mg/L) in compare to arsenopyrite (85 ± 1.25 mg/L) and tennantite (3 ± 0.06 mg/L). Optical microscopic, scanning electron microscopic observations and flurometric enumeration revealed the abundance of As-resistant bacillus, coccus and filamentous types of microorganisms on the surface of most of As-mineral. 4′-6-Diamidino-2-phenylindole (DAPI)-stained epifluorescence micrograph confirmed the presence of DNA and carboxyfluorescein diacetate (CFDA) staining method revealed the enzymatically active bacteria on the surface of As-minerals such as in realgar (As 4 S 4 ). Therefore, the microbes enable to survive and mobilize the As in groundwater by dissolution/bioweathering of As-minerals

  12. Arsenic mineral dissolution and possible mobilization in mineral–microbe–groundwater environment

    Energy Technology Data Exchange (ETDEWEB)

    Islam, A.B.M.R., E-mail: uttambangla@yahoo.com [Department of Human Ecology, School of International Health, Graduate School of Medicine, The University of Tokyo,7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); ITO Public Nuisance Research Institute, 1-26-8, Omori Kita, Otaku, Tokyo 142-0016 (Japan); Maity, Jyoti Prakash, E-mail: jyoti_maity@yahoo.com [Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan (China); Bundschuh, Jochen [Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland 435 (Australia); KTH-International Groundwater Arsenic Research Group, Department of Land and Water Resources Engineering, Royal Institute of Technology (KTH) Teknikringen 76,SE-10044 Stockholm (Sweden); Department of Earth Sciences, National Cheng Kung University, University Road, Tainan, 70101, Taiwan (China); Chen, Chien-Yen [Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan (China); Bhowmik, Bejon Kumar [Department of Biotechnology, Graduate School of Agriculture and Life science, The University of Tokyo, 1-1-1,Yayoi, Bunkyo-ku, Tokyo 113-0033 (Japan); Tazaki, Kazue [Department of Earth Sciences, Faculty of Science, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192 (Japan)

    2013-11-15

    Highlights: ► Bacteria use arsenic minerals for their growth without supplementary nutrient. ► Enzymatically active bacteria survive in the arsenic contaminated environment. ► Mostly bacillus, coccus and filamentous dissolves the arsenic mineral. ► Except enargite, soluble-As was detected with respect to other arsenic mineral. ► Dissolution: native-As > arsenolite > orpiment > realgar > arsenopyrite > tennantite. -- Abstract: Arsenic (As) is widely distributed in the nature as ores or minerals. It has been attracted much attention for the global public health issue, especially for groundwater As contamination. The aim of this study was to elucidate the characteristics of microbes in groundwater where As-minerals were dissolved. An ex situ experiment was conducted with 7 standard As-minerals in bacteria-free groundwater and stored in experimental vessels for 1 year without supplementary nutrients. The pH (6.7–8.4) and Eh{sub S.H.E.} (24–548 mV) changed between initial (0 day) and final stages (365 days) of experiment. The dissolution of As was detected higher from arsenolite (4240 ± 8.69 mg/L) and native arsenic (4538 ± 9.02 mg/L), whereas moderately dissolved from orpiment (653 ± 3.56 mg/L) and realgar (319 ± 2.56 mg/L) in compare to arsenopyrite (85 ± 1.25 mg/L) and tennantite (3 ± 0.06 mg/L). Optical microscopic, scanning electron microscopic observations and flurometric enumeration revealed the abundance of As-resistant bacillus, coccus and filamentous types of microorganisms on the surface of most of As-mineral. 4′-6-Diamidino-2-phenylindole (DAPI)-stained epifluorescence micrograph confirmed the presence of DNA and carboxyfluorescein diacetate (CFDA) staining method revealed the enzymatically active bacteria on the surface of As-minerals such as in realgar (As{sub 4}S{sub 4}). Therefore, the microbes enable to survive and mobilize the As in groundwater by dissolution/bioweathering of As-minerals.

  13. Modeling dissolution and volatilization of LNAPL sources migrating on the groundwater table.

    Science.gov (United States)

    Kim, Jeongkon; Corapcioglu, M Yavuz

    2003-08-01

    A vertically averaged two-dimensional model was developed to describe areal spreading and migration of light nonaqueous-phase liquids (LNAPLs) introduced into the subsurface by spills or leaks from underground storage tanks. The NAPL transport model was coupled with two-dimensional contaminant transport models to predict contamination of soil gas and groundwater resulting from a LNAPL migrating on the water table. Numerical solutions were obtained by using the finite-difference method. Simulations and sensitivity analyses were conducted with a LNAPL of pure benzene to study LNAPL migration and groundwater contamination. The model was applied to subsurface contamination by jet fuel. Results indicated that LNAPL migration were affected mostly by volatilization. The generation and movement of the dissolved plume was affected by the geology of the site and the free-product plume. Most of the spilled mass remained as a free LNAPL phase 20 years after the spill. The migration of LNAPL for such a long period resulted in the contamination of both groundwater and a large volume of soil.

  14. Formulation strategy towards minimizing viscosity mediated negative food effect on disintegration and dissolution of immediate release tablets.

    Science.gov (United States)

    Zaheer, Kamran; Langguth, Peter

    2018-03-01

    Food induced viscosity can delay disintegration and subsequent release of API from solid dosage form which may lead to severe reduction in the bioavailability of BCS type III compounds. Formulations of such tablets need to be optimized in view of this postprandial viscosity factor. In this study, three super disintegrants, croscarmellose sodium (CCS), cross-linked polyvinylpolypyrrolidone (CPD), and sodium starch glycolate (SSG) were assessed for their efficiency under simulated fed state. Tablets containing these disintegrants were compressed at 10 and 30 KN, while taking lactose as a soluble filler. In addition to other compendial tests, disintegration force of these formulations was measured by texture analysis. Comparison of parameters derived from force - time curves revealed a direct relation of maximum disintegration force (F max ) and disintegration force development rate (DFDR) with compressional force in fasted state, whereas an inverse relationship of F max and DFDR with compressional force was observed in fed state. The gelling tendency of disintegrants influenced the rate of release of API in simulated fed and fasted states when compressional force was changed. These observations recommend the evaluation of formulations in simulated fed state, in the development stage, with an objective of minimizing the negative impact of food induced viscosity on disintegration. Use of disintegrants that act without gelling or can counteract the effect of gelling is recommended for tablet formulations with reduced disintegration time (DT) and mean dissolution time (MDT) in fed state, respectively.

  15. Effect of clayey groundwater on the dissolution rate of SON68 simulated nuclear waste glass at 70 °C

    Science.gov (United States)

    De Echave, T.; Tribet, M.; Jollivet, P.; Marques, C.; Gin, S.; Jégou, C.

    2018-05-01

    To predict the long-term behavior of high-level radioactive waste glass, it is necessary to study aqueous dissolution of the glass matrix under geological repository conditions. The present article focuses on SON68 (an inactive surrogate of the R7T7 glass) glass alteration in synthetic clayey groundwater at 70 °C. Experiments in deionized water as reference were also performed in the same conditions. Results are in agreement with those of previous studies showing that magnesium present in the solution is responsible for higher glass alteration. This effect is transient and pH-dependent: Once all the magnesium is consumed, the glass alteration rate diminishes. Precipitation of magnesium silicate of the smectite group seems to be the main factor for the increased glass alteration. A pH threshold of 7.5-7.8 was found, above which precipitation of these magnesium silicates at 70 °C is possible. TEM observations reveal that magnesium silicates grow at the expense of the passivating gel, which partly dissolves, forming large pores which increase mass transfer between the reacting glass surface and the bulk solution.

  16. Improving groundwater management in rural India using simple modeling tools with minimal data requirements

    Science.gov (United States)

    Moysey, S. M.; Oblinger, J. A.; Ravindranath, R.; Guha, C.

    2008-12-01

    shortly after the start of the monsoon and villager water use is small compared to the other fluxes. Groundwater fluxes were accounted for by conceptualizing the contributing areas upstream and downstream of the reservoir as one dimensional flow tubes. This description of the flow system allows for the definition of physically-based parameters making the model useful for investigating WHS infiltration under a variety of management scenarios. To address concerns regarding the uniqueness of the model parameters, 10,000 independent model calibrations were performed using randomly selected starting parameters. Based on this Monte Carlo analysis, it was found that the mean volume of water contributed by the WHS to infiltration over the study period (Sept.-Dec., 2007) was 48.1x103m3 with a 95% confidence interval of 43.7-53.7x103m3. This volume represents 17-21% of the total natural groundwater recharge contributed by the entire watershed, which was determined independently using a surface water balance. Despite the fact that the model is easy to use and requires minimal data, the results obtained provide a powerful quantitative starting point for managing groundwater withdrawals in the dry season.

  17. Assessment of groundwater contamination by gypsum dissolution in San Luis Potosí (México) using geoelectrical characterization

    Science.gov (United States)

    Arango-Galvan, C.; Ramos-Leal, J. A.; Yáñez-Rodríguez, M. A.; Corbo-Camargo, F.

    2017-12-01

    The Cerritos and Río Verde aquifers in San Luis Potosí (central México) make up a very complex aquifer system that is seriously affected by the overexploitation and the high concentration of sulphates. Currently, it is partially closed for extraction causing a substantial decrease in per capita drinking water availability affecting to more than 50,000 inhabitants in the region. Therefore, a very comprehensive study has been proposed in order to evaluate not only the groundwater contamination distribution but also to better know the aquifer configuration and its main hydrogeological characteristics as well. These studies include a detailed geological reconnaissance, hydrogeochemical analyses and a geoelectrical characterization. The main goal is to assess the aquifer geometry and to identify the gypsum horizons causing the presence of higher concentrations of sulphates in drinking water. A total of 26 audiomagnetotelluric soundings were measured and modelled along profiles following a perpendicular direction to the NW regional trending. Two-dimensional resistivity models suggest the presence of a shallow conductive layer (C1) with resistivity values ranging from 10 to 20 Ohm.m. It is related to the upper aquifer with a very low exploitation potential. A less conductive horizon (C2; 50 Ohm.m) underlying the shallow aquifer could be related to a very fractured limestone horizon forming a confined aquifer in the middle of the valley. A very resistive layer (R1) is observed underlying C1 and C2 units. This strata shows higher resistivity values (>100 Ohm.m) and could be associated with a reefal limestone identified as El Abra Formation. Finally, a conductive layer (<100 Ohm.m) observed beneath this horizon could be related to the oldest stratigraphic unit outcropping on the region, the Guaxcamá Formation, a gypsum-enriched unit, that contributes to the presence of sulphates in the upper aquifers by dissolution processes.

  18. Minimalism

    CERN Document Server

    Obendorf, Hartmut

    2009-01-01

    The notion of Minimalism is proposed as a theoretical tool supporting a more differentiated understanding of reduction and thus forms a standpoint that allows definition of aspects of simplicity. This book traces the development of minimalism, defines the four types of minimalism in interaction design, and looks at how to apply it.

  19. Modelling of the UO2 dissolution mechanisms in synthetic groundwater. Experiments carried out under anaerobic and reducing conditions

    International Nuclear Information System (INIS)

    Cera, E.; Grive, M.; Bruno, J.; Ollila, K.

    2000-07-01

    The experimental data generated under anaerobic and reducing conditions within the EU R and D programme 1996-1998 entitled 'Source term for performance assessment of spent fuel as a waste form' and published as a POSIVA report (Ollila, 1999) have been modelled in the present work. The dissolution data available, mainly U in the aqueous phase as a function of time and redox potentials have been used to elucidate the redox pairs controlling the redox potential of the systems studied. Dissolution experiments carried out under anaerobic conditions have shown the important role of the uranium system on buffering the redox capacity of these systems. In the presence of carbonates in the system, the redox control has been given by the UO 2 (c)/U(VI) aqueous redox couple while in absence of carbonates in the system, the redox control has been governed by the UO 2 (c)/UO 2+x transition. In addition dissolution rates have been satisfactorily modelled by assuming an oxidative dissolution mechanism consisting in an initial oxidation of the surface of the uranium dioxide, binding of the HCO 3 or H+ at the U(VI) sites of the oxidised surface layer and detachment of these surface complexes. The redox controls in the experiments carried out under reducing conditions have been exerted by the different reducing agents added in the systems. Therefore, the addition of Fe 2+ lead to a redox control exerted by the Fe 2+ /Fe(OH) 3 (s) redox pair, while the addition of sulphide lead to a different redox control governed by the HS/SO 3 2- redox pair. (orig.)

  20. Modelling of the UO{sub 2} dissolution mechanisms in synthetic groundwater. Experiments carried out under anaerobic and reducing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cera, E.; Grive, M.; Bruno, J. [EnvirosQuantiSci (Spain); Ollila, K. [VTT Chemical Technology, Espoo (Finland)

    2000-07-01

    The experimental data generated under anaerobic and reducing conditions within the EU R and D programme 1996-1998 entitled 'Source term for performance assessment of spent fuel as a waste form' and published as a POSIVA report (Ollila, 1999) have been modelled in the present work. The dissolution data available, mainly U in the aqueous phase as a function of time and redox potentials have been used to elucidate the redox pairs controlling the redox potential of the systems studied. Dissolution experiments carried out under anaerobic conditions have shown the important role of the uranium system on buffering the redox capacity of these systems. In the presence of carbonates in the system, the redox control has been given by the UO{sub 2}(c)/U(VI) aqueous redox couple while in absence of carbonates in the system, the redox control has been governed by the UO{sub 2}(c)/UO{sub 2+x} transition. In addition dissolution rates have been satisfactorily modelled by assuming an oxidative dissolution mechanism consisting in an initial oxidation of the surface of the uranium dioxide, binding of the HCO{sub 3} or H+ at the U(VI) sites of the oxidised surface layer and detachment of these surface complexes. The redox controls in the experiments carried out under reducing conditions have been exerted by the different reducing agents added in the systems. Therefore, the addition of Fe{sup 2+} lead to a redox control exerted by the Fe{sup 2+}/Fe(OH){sub 3}(s) redox pair, while the addition of sulphide lead to a different redox control governed by the HS/SO{sub 3}{sup 2-} redox pair. (orig.)

  1. Effect of metallic iron on the oxidative dissolution of UO2 doped with a radioactive alpha emitter in synthetic Callovian-Oxfordian groundwater

    Science.gov (United States)

    Odorowski, Mélina; Jegou, Christophe; De Windt, Laurent; Broudic, Véronique; Jouan, Gauthier; Peuget, Sylvain; Martin, Christelle

    2017-12-01

    In the hypothesis of direct disposal of spent fuel in a geological nuclear waste repository, interactions between the fuel mainly composed of UO2 and its environment must be understood. The dissolution rate of the UO2 matrix, which depends on the redox conditions on the fuel surface, will have a major impact on the release of radionuclides into the environment. The reducing conditions expected for a geological disposal situation would appear to be favorable as regards the solubility and stability of the UO2 matrix, but may be disturbed on the surface of irradiated fuel. In particular, the local redox conditions will result from a competition between the radiolysis effects of water under alpha irradiation (simultaneously producing oxidizing species like H2O2, hydrogen peroxide, and reducing species like H2, hydrogen) and those of redox active species from the environment. In particular, Fe2+, a strongly reducing aqueous species coming from the corrosion of the iron canister or from the host rock, could influence the dissolution of the fuel matrix. The effect of iron on the oxidative dissolution of UO2 was thus investigated under the conditions of the French disposal site, a Callovian-Oxfordian clay formation chosen by the French National Radioactive Waste Management Agency (Andra), here tested under alpha irradiation. For this study, UO2 fuel pellets doped with a radioactive alpha emitter (238/239Pu) were leached in synthetic Callovian-Oxfordian groundwater (representative of the French waste disposal site groundwater) in the presence of a metallic iron foil to simulate the steel canister. The pellets had varying levels of alpha activity, in order to modulate the concentrations of species produced by water radiolysis on the surface and to simulate the activity of aged spent fuel after 50 and 10,000 years of alpha radioactivity decay. The experimental data showed that whatever the sample alpha radioactivity, the presence of iron inhibits the oxidizing dissolution of

  2. Minimal groundwater leakage restricts salinity in a hydrologically terminal basin of northwest Australia

    Science.gov (United States)

    Skrzypek, Grzegorz; Dogramaci, Shawan; Rouillard, Alexandra; Grierson, Pauline

    2016-04-01

    The Fortescue Marsh (FM) is one of the largest wetlands of arid northwest Australia (~1200 km2) and is thought to act as a terminal basin for the Upper Fortescue River catchment. Unlike the playa lake systems that predominate in most arid regions, where salinity is driven by inflow and evaporation of groundwater, the hydrological regime of the FM is driven by inundation from irregular cyclonic events [1]. Surface water of the FM is fresh to brackish and the salinity of the deepest groundwater (80 m b.g.l.) does not exceed 160 g/L; salt efflorescences are rarely present on the surface [2]. In this study, we tested the hypothesis that persistent but low rates of groundwater outflow have restricted the accumulation of salt in the FM over time. Using hydrological, hydrochemical data and dimensionless time evaporation modelling along with the water and salt budget, we calculated the time and the annual groundwater discharge volume that would be required to achieve and maintain the range of salinity levels observed in the Marsh. Groundwater outflow from alluvial and colluvial aquifers to the Lower Fortescue catchment is limited by an extremely low hydraulic gradient of 0.001 and is restricted to a relatively small 'alluvial window' of 0.35 km2 because of the elevation of the basement bedrock at the Marsh outflow. We show that if the Marsh was 100% "leakage free" i.e., a true terminal basin for the Upper Fortescue Catchment, the basin water would have achieved salt saturation after ~45 ka. This is not the case and only a very small outflow of saline groundwater of water volume) is needed to maintain the current salinity conditions. The minimum time required to develop the current hydrochemical composition of the water in the Marsh and the steady-state conditions for salt concentration is between 58 and 164 ka. This is a minimum age of the Marsh but it can be much older as nearly steady-state conditions could be maintained infinitely. Our approach using a combined water

  3. Dissolution processes

    International Nuclear Information System (INIS)

    Silver, G.L.

    1976-01-01

    This review contains more than 100 observations and 224 references on the dissolution phenomenon. The dissolution processes are grouped into three categories: methods of aqueous attack, fusion methods, and miscellaneous observations on phenomena related to dissolution problems

  4. Modelling of the dissolution and reprecipitation of uranium under oxidising conditions in the zone of shallow groundwater circulation.

    Science.gov (United States)

    Dutova, Ekaterina M; Nikitenkov, Aleksei N; Pokrovskiy, Vitaly D; Banks, David; Frengstad, Bjørn S; Parnachev, Valerii P

    2017-11-01

    Generic hydrochemical modelling of a grantoid-groundwater system, using the Russian software "HydroGeo", has been carried out with an emphasis on simulating the accumulation of uranium in the aqueous phase. The baseline model run simulates shallow granitoid aquifers (U content 5 ppm) under conditions broadly representative of southern Norway and southwestern Siberia: i.e. temperature 10 °C, equilibrated with a soil gas partial CO 2 pressure (P CO2 , open system) of 10 -2.5 atm. and a mildly oxidising redox environment (Eh = +50 mV). Modelling indicates that aqueous uranium accumulates in parallel with total dissolved solids (or groundwater mineralisation M - regarded as an indicator of degree of hydrochemical evolution), accumulating most rapidly when M = 550-1000 mg L -1 . Accumulation slows at the onset of saturation and precipitation of secondary uranium minerals at M = c. 1000 mg L -1 (which, under baseline modelling conditions, also corresponds approximately to calcite saturation and transition to Na-HCO 3 hydrofacies). The secondary minerals are typically "black" uranium oxides of mixed oxidation state (e.g. U 3 O 7 and U 4 O 9 ). For rock U content of 5-50 ppm, it is possible to generate a wide variety of aqueous uranium concentrations, up to a maximum of just over 1 mg L -1 , but with typical concentrations of up to 10 μg L -1 for modest degrees of hydrochemical maturity (as indicated by M). These observations correspond extremely well with real groundwater analyses from the Altai-Sayan region of Russia and Norwegian crystalline bedrock aquifers. The timing (with respect to M) and degree of aqueous uranium accumulation are also sensitive to Eh (greater mobilisation at higher Eh), uranium content of rocks (aqueous concentration increases as rock content increases) and P CO2 (low P CO2 favours higher pH, rapid accumulation of aqueous U and earlier saturation with respect to uranium minerals). Copyright © 2017 Elsevier Ltd. All rights

  5. Minimization of required model runs in the Random Mixing approach to inverse groundwater flow and transport modeling

    Science.gov (United States)

    Hoerning, Sebastian; Bardossy, Andras; du Plessis, Jaco

    2017-04-01

    Most geostatistical inverse groundwater flow and transport modelling approaches utilize a numerical solver to minimize the discrepancy between observed and simulated hydraulic heads and/or hydraulic concentration values. The optimization procedure often requires many model runs, which for complex models lead to long run times. Random Mixing is a promising new geostatistical technique for inverse modelling. The method is an extension of the gradual deformation approach. It works by finding a field which preserves the covariance structure and maintains observed hydraulic conductivities. This field is perturbed by mixing it with new fields that fulfill the homogeneous conditions. This mixing is expressed as an optimization problem which aims to minimize the difference between the observed and simulated hydraulic heads and/or concentration values. To preserve the spatial structure, the mixing weights must lie on the unit hyper-sphere. We present a modification to the Random Mixing algorithm which significantly reduces the number of model runs required. The approach involves taking n equally spaced points on the unit circle as weights for mixing conditional random fields. Each of these mixtures provides a solution to the forward model at the conditioning locations. For each of the locations the solutions are then interpolated around the circle to provide solutions for additional mixing weights at very low computational cost. The interpolated solutions are used to search for a mixture which maximally reduces the objective function. This is in contrast to other approaches which evaluate the objective function for the n mixtures and then interpolate the obtained values. Keeping the mixture on the unit circle makes it easy to generate equidistant sampling points in the space; however, this means that only two fields are mixed at a time. Once the optimal mixture for two fields has been found, they are combined to form the input to the next iteration of the algorithm. This

  6. Minimal alteration of montmorillonite following long-term interaction with natural alkaline groundwater: Implications for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Milodowski, Antoni E.; Norris, Simon; Alexander, W.Russell

    2016-01-01

    Bentonite is one of the more safety-critical components of the engineered barrier system in the disposal concepts developed for many types of radioactive waste. Bentonite is utilised because of its favourable properties which include plasticity, swelling capacity, colloid filtration, low hydraulic conductivity, high retardation of key radionuclides and stability in geological environments of relevance to waste disposal. However, bentonite is unstable under the highly alkaline conditions induced by Ordinary Portland Cement (OPC: initial porewater pH > 13) and this has driven interest in using low alkali cements (initial porewater pH9-11) as an alternative to OPC. To build a robust safety case for a repository for radioactive wastes, it is important to have supporting natural analogue data to confirm understanding of the likely long-term performance of bentonite in these lower alkali conditions. In Cyprus, the presence of natural bentonite in association with natural alkaline groundwater permits the zones of potential bentonite/alkaline water reaction to be studied as an analogy of the potential reaction between low alkali cement leachates and the bentonite buffer in the repository. Here, the results indicate that a cation diffusion front has moved some metres into the bentonite whereas the bentonite reaction front is restricted to a few millimetres into the clay. This reaction front shows minimal reaction of the bentonite (volumetrically, less than 1% of the bentonite), with production of a palygorskite secondary phase following reaction of the primary smectites over time periods of 10"5–10"6 years. - Highlights: • Alkaline porewaters from cement and concrete could destabilise bentonite buffer in a repository. • Evidence utilised to examine processes over repository timescales. • Alkaline water from the Troodos ophiolite reacts with bentonite. • Waters exchange Ca for Na on bentonite, smectite reacts to form palygorskite. • Observations indicate

  7. Dissolution experiments of unirradiated uranium dioxide pellets

    International Nuclear Information System (INIS)

    Ollila, K.

    1985-01-01

    The purpose of this study was to measure the dissolution rate of uranium from unirradiated uranium dioxide pellets in deionized water and natural groundwater. Moreover, the solubility limit of uranium in natural groundwater was measured. Two different temperatures, 25 and 60 deg C were used. The low oxygen content of deep groundwater was simulated. The dissolution rate of uranium varied from 10 -7 to 10 -8 g cm -2 d -1 . The rate in reionized water was one order of magnitude lower than in groundwater. No great difference was observed between the natural groundwaters with different composition. Temperature seems to have effect on the dissolution rate. The solubility limit of uranium in natural groundwater in reducing conditions, at 25 deg C, varied from 20 to 600 μg/l and in oxidizing conditions, at 60 deg C, from 4 to 17 mg/l

  8. Evaluation of select trade-offs between ground-water remediation and waste minimization for petroleum refining industry

    International Nuclear Information System (INIS)

    Andrews, C.D.; McTernan, W.F.; Willett, K.K.

    1996-01-01

    An investigation comparing environmental remediation alternatives and attendant costs for a hypothetical refinery site located in the Arkansas River alluvium was completed. Transport from the land's surface to and through the ground water of three spill sizes was simulated, representing a base case and two possible levels of waste minimization. Remediation costs were calculated for five alternative remediation options, for three possible regulatory levels and alternative site locations, for four levels of technology improvement, and for eight different years. It is appropriate from environmental and economic perspectives to initiate significant efforts and expenditures that are necessary to minimize the amount and type of waste produced and disposed during refinery operations; or conversely, given expected improvements in technology, is it better to wait until remediation technologies improve, allowing greater environmental compliance at lower costs? The present work used deterministic models to track a light nonaqueous phase liquid (LNAPL) spill through the unsaturated zone to the top of the water table. Benzene leaching from LNAPL to the ground water was further routed through the alluvial aquifer. Contaminant plumes were simulated over 50 yr of transport and remediation costs assigned for each of the five treatment options for each of these years. The results of these efforts show that active remediation is most cost effective after a set point or geochemical quasi-equilibrium is reached, where long-term improvements in technology greatly tilt the recommended option toward remediation. Finally, the impacts associated with increasingly rigorous regulatory levels present potentially significant penalties for the remediation option, but their likelihood of occurrence is difficult to define

  9. Dissolution of aluminium

    International Nuclear Information System (INIS)

    Uriarte Hueda, A.; Berberana Eizmendi, M.; Pereira Sanchez, G.

    1968-01-01

    The dissolution of aluminum with acid solutions ( nitric acid-mercuric nitrate) and alkaline solutions (sodium hydroxide-sodium nitrate) has been studied. The instantaneous dissolution rate (IDR) has been studied in function of the concentration of the used reagents and the dissolution temperature. The complete dissolution has been included in the second part of this report, to know the total dissolution time, the consume of reagents and the stability of the resultant solutions. (Author)

  10. Affinity functions for modeling glass dissolution rates

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, W.L. [Lawrence Livermore National Lab., CA (United States)

    1997-07-01

    Glass dissolution rates decrease dramatically as glass approach ''saturation'' with respect to the leachate solution. Most repository sites are chosen where water fluxes are minimal, and therefore the waste glass is most likely to dissolve under conditions close to ''saturation''. The key term in the rate expression used to predict glass dissolution rates close to ''saturation'' is the affinity term, which accounts for saturation effects on dissolution rates. Interpretations of recent experimental data on the dissolution behaviour of silicate glasses and silicate minerals indicate the following: 1) simple affinity control does not explain the observed dissolution rate for silicate minerals or glasses; 2) dissolution rates can be significantly modified by dissolved cations even under conditions far from saturation where the affinity term is near unity; 3) the effects of dissolved species such as Al and Si on the dissolution rate vary with pH, temperature, and saturation state; and 4) as temperature is increased, the effect of both pH and temperature on glass and mineral dissolution rates decrease, which strongly suggests a switch in rate control from surface reaction-based to diffusion control. Borosilicate glass dissolution models need to be upgraded to account for these recent experimental observations. (A.C.)

  11. UO2 dissolution rates: A review

    International Nuclear Information System (INIS)

    McKenzie, W.F.

    1992-09-01

    This report reviews literature data on UO 2 dissolution kinetics and provides a framework for guiding future experimental studies as well as theoretical modeling studies. Under oxidizing conditions, UO 2 dissolution involves formation of an oxidized surface layer which is then dissolved by formation of aqueous complexes. Higher oxygen pressures or other oxidants are required at higher temperatures to have dissolution rates independent of oxygen pressure. At high oxygen pressures (1-5 atm, 25-70 C), the dissolution rate has a one-half order dependence on oxygen pressure, whereas at oxygen pressures below 0.2 atm, Grandstaff (1976), but nobody else, observed a first-order dependence on dissolution rate. Most people found a first-order dependence on carbonate concentration; Posey-Dowty (1987) found independence of carbonate at pH 7 to 8.2. Dissolution rates increase with temperature except in experiments involving granitic groundwater. Dissolution rates were generally greater under acid or basic conditions than near neutral pH

  12. Dissolution Methods Database

    Data.gov (United States)

    U.S. Department of Health & Human Services — For a drug product that does not have a dissolution test method in the United States Pharmacopeia (USP), the FDA Dissolution Methods Database provides information on...

  13. Aqueous dissolution rates of uranium oxides

    International Nuclear Information System (INIS)

    Steward, S.A.; Mones, E.T.

    1994-10-01

    An understanding of the long-term dissolution of waste forms in groundwater is required for the safe disposal of high level nuclear waste in an underground repository. The main routes by which radionuclides could be released from a geological repository are the dissolution and transport processes in groundwater flow. Because uranium dioxide is the primary constituent of spent nuclear fuel, the dissolution of its matrix in spent fuel is considered the rate-limiting step for release of radioactive fission products. The purpose of our work has been to measure the intrinsic dissolution rates of uranium oxides under a variety of well-controlled conditions that are relevant to a repository and allow for modeling. The intermediate oxide phase U 3 O 8 , triuranium octaoxide, is quite stable and known to be present in oxidized spent fuel. The trioxide, UO 3 , has been shown to exist in drip tests on spent fuel. Here we compare the results of essentially identical dissolution experiments performed on depleted U 3 O 8 and dehyrated schoepite or uranium trioxide monohydrate (UO 3 ·H 2 O). These are compared with earlier work on spent fuel and UO 2 under similar conditions

  14. Dissolution rates of DWPF glasses from long-term PCT

    International Nuclear Information System (INIS)

    Ebert, W.L.; Tam, S.W.

    1996-01-01

    We have characterized the corrosion behavior of several Defense Waste Processing Facility (DWPF) reference waste glasses by conducting static dissolution tests with crushed glasses. Glass dissolution rates were calculated from measured B concentrations in tests conducted for up to five years. The dissolution rates of all glasses increased significantly after certain alteration phases precipitated. Calculation of the dissolution rates was complicated by the decrease in the available surface area as the glass dissolves. We took the loss of surface area into account by modeling the particles to be spheres, then extracting from the short-term test results the dissolution rate corresponding to a linear decrease in the radius of spherical particles. The measured extent of dissolution in tests conducted for longer times was less than predicted with this linear dissolution model. This indicates that advanced stages of corrosion are affected by another process besides dissolution, which we believe to be associated with a decrease in the precipitation rate of the alteration phases. These results show that the dissolution rate measured soon after the formation of certain alteration phases provides an upper limit for the long-term dissolution rate, and can be used to determine a bounding value for the source term for radionuclide release from waste glasses. The long-term dissolution rates measured in tests at 20,000 per m at 90 degrees C in tuff groundwater at pH values near 12 for the Environmental Assessment glass and glasses made with SRL 131 and SRL 202 frits, respectively

  15. Dissolution of UO2 in redox conditions

    International Nuclear Information System (INIS)

    Casas, I.; Pablo de, J.; Rovira, M.

    1998-01-01

    The performance assessment of the final disposal of the spent nuclear fuel in geological formations is strongly dependent on the spent fuel matrix dissolution. Unirradiated uranium (IV) dioxide has shown to be very useful for such purposes. The stability of UO 2 is very dependent on vault redox conditions. At reducing conditions, which are expected in deep groundwaters, the dissolution of the UO 2 -matrix can be explained in terms of solubility, while under oxidizing conditions, the UO 2 is thermodynamically unstable and the dissolution is kinetically controlled. In this report the parameters which affect the uranium solubility under reducing conditions, basically pH and redox potential are discussed. Under oxidizing conditions, UO 2 dissolution rate equations as a function of pH, carbonate concentration and oxidant concentration are reported. Dissolution experiments performed with spent fuel are also reviewed. The experimental equations presented in this work, have been used to model independent dissolution experiments performed with both unirradiated and irradiated UO 2 . (Author)

  16. Dissolution mechanism of UO2 at various parametric conditions

    International Nuclear Information System (INIS)

    Ollila, K.

    1988-04-01

    The aim of this experimental study is to investigate the solubility and dissolution mechanism of uranium dioxide under simulated disposal conditions of spent fuel. Unirradiated UO 2 is used as a surrogate for spent fuel. Two types of synthetic groundwaters were used in these experiments, on simulating the natural conditions deep in granitic bedrock (synthetic groundwater I) and the other simulating the effects of bentonite on groundwater (synthetic groundwater II). The effect of carbonate concentration was investigated by following dissolution in sodium bicarbonate solution as a function of bicarbonate concentration. Deionized wate was used as a reference water. All the experiments were carried out under both air-saturated, oxidizing and anoxic, reducing conditions. A separate test series under anoxic conditions was initiated in order to study the oxidation state of uranium. The experimental uranium solubilities are compared with the solubilities obtained from theoetical calculations by applying the geochemical code PHREEQ. The theoretical solubility values of uranium under oxidizing conditions calculated by PHREEQE are higher when compared to the corresponding experimental solubility values. The reason for the lower solubility values may be the mechanism of dissolution leading for example either to a situation where low dissolution rate is a limiting factor or to formation of some solid phase of uranium with lower solubility. Formation of a surface layer was observed on the pellet after dissolution in synthetic groundwater II. The theoretical solubility values under educing conditions calculated for uranium by PHREEQE appear to be in good agreement with the experimental solubility values

  17. Hydrogeochemical and isotopic characterization of the groundwater ...

    African Journals Online (AJOL)

    POSTE7

    water for both human consumption and agriculture is. *Corresponding author. ..... groundwater of Dababa (Figure 2) shows that the highest conductivities are found in .... comes from the dissolution of CO2 by plants and micro- organisms that ...

  18. Dissolution of minerals with rough surfaces

    Science.gov (United States)

    de Assis, Thiago A.; Aarão Reis, Fábio D. A.

    2018-05-01

    We study dissolution of minerals with initial rough surfaces using kinetic Monte Carlo simulations and a scaling approach. We consider a simple cubic lattice structure, a thermally activated rate of detachment of a molecule (site), and rough surface configurations produced by fractional Brownian motion algorithm. First we revisit the problem of dissolution of initial flat surfaces, in which the dissolution rate rF reaches an approximately constant value at short times and is controlled by detachment of step edge sites. For initial rough surfaces, the dissolution rate r at short times is much larger than rF ; after dissolution of some hundreds of molecular layers, r decreases by some orders of magnitude across several time decades. Meanwhile, the surface evolves through configurations of decreasing energy, beginning with dissolution of isolated sites, then formation of terraces with disordered boundaries, their growth, and final smoothing. A crossover time to a smooth configuration is defined when r = 1.5rF ; the surface retreat at the crossover is approximately 3 times the initial roughness and is temperature-independent, while the crossover time is proportional to the initial roughness and is controlled by step-edge site detachment. The initial dissolution process is described by the so-called rough rates, which are measured for fixed ratios between the surface retreat and the initial roughness. The temperature dependence of the rough rates indicates control by kink site detachment; in general, it suggests that rough rates are controlled by the weakest microscopic bonds during the nucleation and formation of the lowest energy configurations of the crystalline surface. Our results are related to recent laboratory studies which show enhanced dissolution in polished calcite surfaces. In the application to calcite dissolution in alkaline environment, the minimal values of recently measured dissolution rate spectra give rF ∼10-9 mol/(m2 s), and the calculated rate

  19. Calcite Dissolution Kinetics

    Science.gov (United States)

    Berelson, W.; Subhas, A.; Dong, S.; Naviaux, J.; Adkins, J. F.

    2016-12-01

    A geological buffer for high atmospheric CO2 concentrations is neutralization via reaction with CaCO3. We have been studying the dissolution kinetics of carbonate minerals using labeled 13C calcite and Picarro-based measurements of 13C enrichments in solution DIC. This methodology has greatly facilitated our investigation of dissolution kinetics as a function of water carbonate chemistry, temperature and pressure. One can adjust the saturation state Omega by changing the ion activity product (e.g. adjusting carbonate ion concentration), or by changing the solubility product (e.g. adjusting temperature or pressure). The canonical formulation of dissolution rate vs. omega has been refined (Subhas et al. 2015) and shows distinct non-linear behavior near equilibrium and rates in sea water of 1-3 e-6 g/cm2day at omega = 0.8. Carbonic anhydrase (CA), an enzyme that catalyzes the hydration of dissolved CO2 to carbonic acid, was shown (in concentrations 500x. This result points to the importance of carbonic acid in enhancing dissolution at low degrees of undersaturation. CA activity and abundance in nature must be considered regarding the role it plays in catalyzing dissolution. We also have been investigating the role of temperature on dissolution kinetics. An increase of 16C yields an order of magnitude increase in dissolution rate. Temperature (and P) also change Omega critical, the saturation state where dissolution rates change substantially. Increasing pressure (achieved in a pressure reaction chamber we built) also shifts Omega critical closer to equilibrium and small pressure increases have large impact on dissolution kinetics. Dissolution rates are enhanced by an order of magnitude for a change in pressure of 1500 psi relative to the dissolution rate achieved by water chemistry effects alone for an omega of 0.8. We've shown that the thermodynamic determination of saturation state does not adequately describe the kinetics of dissolution. The interplay of mineral

  20. Examining the Conservatisms in Dissolution Rates of Commercial Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Hanson, Brady D.

    2008-01-01

    Most models for commercial spent nuclear fuel dissolution are based on data obtained from single-pass flow-through tests. These tests are designed to have a high water volume to fuel surface area ratio so that the concentration of radionuclides in solution are below solubility limits and thus back reactions and the formation of alteration products are minimized. While this method is ideal for determining the dependence of the dissolution rate on various parameters, it is important to examine the differences between these tests and the realistic scenarios that will exist in a geologic repository. Many of the inherent conservatisms that are part of the models are examined. These conservatisms include: limited water, short-term vs. long-term rates, groundwater effects, non-congruent release, radiolysis, and fuel chemistry effects. Each of these conservatisms has the potential to decrease the currently modeled dissolution rates by between a factor of 2 and 200. The combined effects are unknown, but, if quantified, could significantly improve the waste form performance relative to current models.

  1. Dissolution of nuclear fuels

    International Nuclear Information System (INIS)

    Uriarte Hueda, A.; Berberana Eizmendi, M.; Rainey, R.

    1968-01-01

    A laboratory study was made of the instantaneous dissolution rate (IDR) for unirradiated uranium metal rods and UO 2 , PuO 2 and PuO 2 -UO 2 pellets in boiling nitric acid alone and with additives. The uranium metal and UO 2 dissolved readily in nitric acid alone; PuO 2 dissolved slowly even with the addition of fluoride; PuO 2 -UO 2 pellets containing as much as 35% PuO 2 in UO 2 gave values of the instantaneous dissolution rate to indicate can be dissolved with nitric acid alone. An equation to calculate the time for complete dissolution has been determinate in function of the instantaneous dissolution rates. The calculated values agree with the experimental. Uranium dioxide pellets from various sources but all having a same density varied in instantaneous dissolution rate. All the pellets, however, have dissolved ved in the same time. The time for complete dissolution of PuO 2 -UO 2 pellets, having the same composition, and the concentration of the used reagents are function of the used reagents are function of the fabrication method. (Author) 8 refs

  2. The dissolution of unirradiated UO2 fuel pellets under simulated disposal conditions

    International Nuclear Information System (INIS)

    Ollila, K.; Leino-Forsman, H.

    1993-03-01

    The dissolution behaviour of unirradiated UO 2 pellets was studied as a function of water composition under oxidizing and reducing conditions at 25 deg C. The waters included deionized water as the reference water, sodium bicarbonate solutions with varying bicarbonate content, and two different synthetic groundwaters. The release of uranium was measured during static batch dissolution experiments of long duration (3-4 years)

  3. Spent fuel dissolution mechanisms

    International Nuclear Information System (INIS)

    Ollila, K.

    1993-11-01

    This study is a literature survey on the dissolution mechanisms of spent fuel under disposal conditions. First, the effects of radiolysis products on the oxidative dissolution mechanisms and rates of UO 2 are discussed. These effects have mainly been investigated by using electrochemical methods. Then the release mechanisms of soluble radionuclides and the dissolution of the UO 2 matrix including the actinides, are treated. Experimental methods have been developed for measuring the grain-boundary inventories of radionuclides. The behaviour of cesium, strontium and technetium in leaching tests shows different trends. Comparison of spent fuel leaching data strongly suggests that the release of 90 Sr into the leachant can be used as a measure of the oxidation/dissolution of the fuel matrix. Approaches to the modelling UO 2 , dissolution are briefly discussed in the next chapter. Lastly, the use of natural material, uraninite, in the evaluation of the long-term performance of spent fuel is discussed. (orig.). (81 ref., 37 figs., 8 tabs.)

  4. Dissolution studies with pilot plant and actual INTEC calcines

    International Nuclear Information System (INIS)

    Herbst, R.S.; Garn, T.G.

    1999-01-01

    The dissolution of Idaho Nuclear Technology and Engineering Center (INTEC) pilot plant calcines was examined to determine solubility of calcine matrix components in acidic media. Two representatives pilot plant calcine types were studied: Zirconia calcine and Zirconia/Sodium calcine. Dissolution of these calcines was evaluated using lower initial concentrations of nitric acid than used in previous tests to decrease the [H+] concentration in the final solutions. Lower [H+] concentrations contribute to more favorable TRUEX/SREX solvent extraction flowsheet performance. Dissolution and analytical results were also obtained for radioactive calcines produced using high sodium feeds blended with non-radioactive Al(NO 3 ) 3 solutions to dilute the sodium concentration and prevent bed agglomeration during the calcination process. Dissolution tests indicated >95 wt.% of the initial calcine mass can be dissolved using the baseline dissolution procedure, with the exception that higher initial nitric acid concentrations are required. The higher initial acid concentration is required for stoichiometric dissolution of the oxides, primarily aluminum oxide. Statistically designed experiments using pilot plant calcine were performed to determine the effect of mixing rate on dissolution efficiency. Mixing rate was determined to provide minimal effects on wt.% dissolution. The acid/calcine ratio and temperature were the predominate variables affecting the wt.% dissolution, a result consistent with previous studies using other similar types of pilot plant calcines

  5. Chemical Dissolution of Simulant FCA Cladding and Plates

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pierce, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-08

    The Savannah River Site (SRS) has received some fast critical assembly (FCA) fuel from the Japan Atomic Energy Agency (JAEA) for disposition. Among the JAEA FCA fuel are approximately 7090 rectangular Stainless Steel clad fuel elements. Each element has an internal Pu-10.6Al alloy metal wafer. The thickness of each element is either 1/16 inch or 1/32 inch. The dimensions of each element ranges from 2 inches x 1 inch to 2 inches x 4 inches. This report discusses the potential chemical dissolution of the FCA clad material or stainless steel. This technology uses nitric acid-potassium fluoride (HNO3-KF) flowsheets of H-Canyon to dissolve the FCA elements from a rack of materials. Historically, dissolution flowsheets have aimed to maximize Pu dissolution rates while minimizing stainless steel dissolution (corrosion) rates. Because the FCA cladding is made of stainless steel, this work sought to accelerate stainless steel dissolution.

  6. Iron oxides photochemical dissolution

    International Nuclear Information System (INIS)

    Blesa, M.A.; Litter, M.I.

    1987-01-01

    This work was intended to study the light irradiation influence of diverse wave-lengths on iron oxides dissolution in aqueous solutions. The objectives of this work were: the exploration of photochemical processes with the aim of its eventual application in: a) decontamination and chemical cleaning under special conditions; b) materials for solar energy conversion. (Author)

  7. 8 Dissolution Kinetics

    African Journals Online (AJOL)

    user

    Experiments measuring the dissolution rates of stilbite (NaCa [Al Si O ].14H O) in pH-buffered ... The rate law was established as R = k (a ) , where k is ... crystalline hydrated aluminosilicate minerals ..... from the crushing process, thin edges or.

  8. Plutonium oxide dissolution

    International Nuclear Information System (INIS)

    Gray, J.H.

    1992-01-01

    Several processing options for dissolving plutonium oxide (PuO 2 ) from high-fired materials have been studied. The scoping studies performed on these options were focused on PuO 2 typically generated by burning plutonium metal and PuO 2 produced during incineration of alpha contaminated waste. At least two processing options remain applicable for dissolving high-fired PuO 2 in canyon dissolvers. The options involve solid solution formation of PuO 2 With uranium oxide (UO 2 ) and alloying incinerator ash with aluminum. An oxidative dissolution process involving nitric acid solutions containing a strong oxidizing agent, such as cerium (IV), was neither proven nor rejected. This uncertainty was due to difficulty in regenerating cerium (IV) ions during dissolution. However, recent work on silver-catalyzed dissolution of PuO 2 with persulfate has demonstrated that persulfate ions regenerate silver (II). Use of persulfate to regenerate cerium (IV) or bismuth (V) ions during dissolution of PuO 2 materials may warrant further study

  9. Groundwater fluoride contamination: A reappraisal

    Directory of Open Access Journals (Sweden)

    Amlan Banerjee

    2015-03-01

    Full Text Available Dissolution of fluorite (CaF2 and/or fluorapatite (FAP [Ca5(PO43F], pulled by calcite precipitation, is thought to be the dominant mechanism responsible for groundwater fluoride (F− contamination. Here, one dimensional reactive–transport models are developed to test this mechanism using the published dissolution and precipitation rate kinetics for the mineral pair FAP and calcite. Simulation results correctly show positive correlation between the aqueous concentrations of F− and CO32− and negative correlation between F− and Ca2+. Results also show that precipitation of calcite, contrary to the present understanding, slows down the FAP dissolution by 106 orders of magnitude compared to the FAP dissolution by hydrolysis. For appreciable amount of fluoride contamination rock–water interaction time must be long and of order 106 years.

  10. Spent fuel dissolution studies FY 1991 to 1994

    International Nuclear Information System (INIS)

    Gray, W.J.; Wilson, C.N.

    1995-12-01

    Dissolution and transport as a result of groundwater flow are generally accepted as the primary mechanisms by which radionuclides from spent fuel placed in a geologic repository could be released to the biosphere. To help provide a source term for performance assessment calculations, dissolution studies on spent fuel and unirradiated uranium oxides have been conducted over the past few years at Pacific Northwest National Laboratory (PNNL) in support of the Yucca Mountain Site Characterization Project. This report describes work for fiscal years 1991 through 1994. The objectives of these studies and the associated conclusions, which were based on the limited number of tests conducted so far, are described in the following subsections

  11. Waste dissolution with chemical reaction, diffusion and advection

    International Nuclear Information System (INIS)

    Chambre, P.L.; Kang, C.H.; Lee, W.W.L.; Pigford, T.H.

    1987-06-01

    This paper extends the mass-transfer analysis to include the effect of advective transport in predicting the steady-state dissolution rate, with a chemical-reaction-rate boundary condition at the surface of a waste form of arbitrary shape. This new theory provides an analytic means of predicting the ground-water velocities at which dissolution rate in a geologic environment will be governed entirely to the chemical reaction rate. As an illustration, we consider the steady-state potential flow of ground water in porous rock surrounding a spherical waste solid. 3 refs., 2 figs

  12. Factors affecting the differences in reactivity and dissolution rates between UO2 and spent nuclear fuel

    International Nuclear Information System (INIS)

    Shoesmith, D.W.; Tait, J.C.; Sunder, S.; Steward, S.; Russo, R.E.; Rudnicki, J.D.

    1996-08-01

    Strategies for the permanent disposal of spent nuclear fuel are being investigated by the U.S. Department of Energy at the Yucca Mountain site and by Atomic Energy of Canada Limited (AECL) in plutonic rock formations in the Canadian Shield. Uranium dioxide is the primary constituent of spent nuclear fuel and dissolution of the matrix is regarded as a necessary step for the release of radionuclides to repository groundwaters. In order to develop models to describe the dissolution of the U0 2 fuel matrix and subsequent release of radionuclides, it is necessary to understand both chemical and oxidative dissolution processes and how they can be affected by parameters such as groundwater composition, pH, temperature, surface area, radiolysis and redox potential. This report summarizes both published and on-going dissolution studies of U0 2 and both LWR and CANDU spent fuels being conducted at the Pacific Northwest Laboratory, Lawrence Livermore National Laboratory and Lawrence Berkeley Laboratory in the U.S. and at AECL's Whiteshell Laboratories in Canada. The studies include both dissolution tests and electrochemical experiments to measure uranium dissolution rates. The report focuses on identifying differences in reactivity towards aqueous dissolution between U0 2 and spent fuel samples as well as estimating bounding values for uranium dissolution rates. This review also outlines the basic tenets for the development of a dissolution model that is based on electrochemical principles. (author). 49 refs., 2 tabs., 11 figs

  13. Determinants of marriage dissolution

    Science.gov (United States)

    Rahim, Mohd Amirul Rafiq Abu; Shafie, Siti Aishah Mohd; Hadi, Az'lina Abdul; Razali, Nornadiah Mohd; Azid @ Maarof, Nur Niswah Naslina

    2015-10-01

    Nowadays, the number of divorce cases among Muslim couples is very worrisome whereby the total cases reported in 2013 increased by half of the total cases reported in the previous year. The questions on the true key factors of dissolution of marriage continue to arise. Thus, the objective of this study is to reveal the factors that contribute to the dissolution of marriage. A total of 181 cases and ten potential determinants were included in this study. The potential determinants considered were age at marriage of husband and wife, educational level of husband and wife, employment status of husband and wife, income of husband and wife, the number of children and the presence at a counseling session. Logistic regression analysis was used to analyze the data. The findings revealed that four determinants, namely the income of husband and wife, number of children and the presence at a counselling session were significant in predicting the likelihood of divorce among Muslim couples.

  14. Collective dissolution of microbubbles

    Science.gov (United States)

    Michelin, Sébastien; Guérin, Etienne; Lauga, Eric

    2018-04-01

    A microscopic bubble of soluble gas always dissolves in finite time in an undersaturated fluid. This diffusive process is driven by the difference between the gas concentration near the bubble, whose value is governed by the internal pressure through Henry's law, and the concentration in the far field. The presence of neighboring bubbles can significantly slow down this process by increasing the effective background concentration and reducing the diffusing flux of dissolved gas experienced by each bubble. We develop theoretical modeling of such diffusive shielding process in the case of small microbubbles whose internal pressure is dominated by Laplace pressure. We first use an exact semianalytical solution to capture the case of two bubbles and analyze in detail the shielding effect as a function of the distance between the bubbles and their size ratio. While we also solve exactly for the Stokes flow around the bubble, we show that hydrodynamic effects are mostly negligible except in the case of almost-touching bubbles. In order to tackle the case of multiple bubbles, we then derive and validate two analytical approximate yet generic frameworks, first using the method of reflections and then by proposing a self-consistent continuum description. Using both modeling frameworks, we examine the dissolution of regular one-, two-, and three-dimensional bubble lattices. Bubbles located at the edge of the lattices dissolve first, while innermost bubbles benefit from the diffusive shielding effect, leading to the inward propagation of a dissolution front within the lattice. We show that diffusive shielding leads to severalfold increases in the dissolution time, which grows logarithmically with the number of bubbles in one-dimensional lattices and algebraically in two and three dimensions, scaling respectively as its square root and 2 /3 power. We further illustrate the sensitivity of the dissolution patterns to initial fluctuations in bubble size or arrangement in the case

  15. Chemical alteration of cement hydrates by dissolution

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari; Nakanishi, Kiyoshi

    2000-01-01

    Cementitious material is a potential waste packaging and backfilling material for the radioactive waste disposal, and is expected to provide both physical and chemical containment. In particular, the sorption of radionuclides onto cementitious material and the ability to provide a high pH condition are very important parameters when considering the release of radionuclides from radioactive wastes. For the long term, in the geological disposal environment, cement hydrates will be altered by, for example, dissolution, chemical reaction with ions in the groundwater, and hydrothermal reaction. Once the composition or crystallinity of the constituent minerals of a cement hydrate is changed by these processes, the pH of the repository buffered by cementitious material and its sorption ability might be affected. However, the mechanism of cement alteration is not yet fully understood. In this study, leaching experiments of some candidate cements for radioactive waste disposal were carried out. Hydrated Ordinary Portland Cement (OPC), Blast Furnace Slag blended cement (OPC/BFS) and Highly containing Flyash and Silicafume Cement (HFSC) samples were contacted with distilled water at liquid:solid ratios of 10:1, 100:1 and 1000:1 at room temperature for 200 days. In the case of OPC, Ca(OH) 2 dissolved at high liquid:solid ratios. The specific surface area of all cement samples increased by leaching process. This might be caused by further hydration and change of composition of constituent minerals. A model is presented which predicts the leaching of cement hydrates and the mineral composition in the hydrated cement solid phase, including the incongruent dissolution of CSH gel phases and congruent dissolution of Ca(OH) 2 , Ettringite and Hydrotalcite. Experimental results of dissolution of Ca-O-H and Ca-Si-O-H phases were well predicted by this model. (author)

  16. Solubility limits on radionuclide dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Kerrisk, J.F.

    1984-12-31

    This paper examines the effects of solubility in limiting dissolution rates of a number of important radionuclides from spent fuel and high-level waste. Two simple dissolution models were used for calculations that would be characteristics of a Yucca Mountain repository. A saturation-limited dissolution model, in which the water flowing through the repository is assumed to be saturated with each waste element, is very conservative in that it overestimates dissolution rates. A diffusion-limited dissolution model, in which element-dissolution rates are limited by diffusion of waste elements into water flowing past the waste, is more realistic, but it is subject to some uncertainty at this time. Dissolution rates of some elements (Pu, Am, Sn, Th, Zr, Sm) are always limited by solubility. Dissolution rates of other elements (Cs, Tc, Np, Sr, C, I) are never solubility limited; their release would be limited by dissolution of the bulk waste form. Still other elements (U, Cm, Ni, Ra) show solubility-limited dissolution under some conditions. 9 references, 3 tables.

  17. Biorelevant dissolution media

    DEFF Research Database (Denmark)

    Ilardia-Arana, David; Kristensen, Henning G; Müllertz, Anette

    2006-01-01

    Biorelevant dissolution media containing bile salt and lecithin at concentrations appropriate for fed and fasted state are useful when testing oral solid formulations of poorly water-soluble drugs. Dilution of amphiphile solutions affects the aggregation state of the amphiphiles because bile salt...... is partitioned between the aqueous phase and the aggregates. The aim of the investigation was to study the effect of dilution on the size distribution of aggregates and its effect on the solubilization capacity. Clear buffered solutions of four intestinal amphiphiles (sodium glycocholate, lecithin, monoolein...

  18. Dissolution of crystalline ceramics

    International Nuclear Information System (INIS)

    White, W.B.

    1982-01-01

    The present program objectives are to lay out the fundamentals of crystalline waste form dissolution. Nuclear waste ceramics are polycrystalline. An assumption of the work is that to the first order, the release rate of a particular radionuclide is the surface-weighted sum of the release rates of the radionuclide from each crystalline form that contains it. In the second order, of course, there will be synergistic effects. There will be also grain boundary and other microstructural influences. As a first approximation, we have selected crystalline phases one at a time. The sequence of investigations and measurements is: (i) Identification of the actual chemical reactions of dissolution including identification of the solid reaction products if such occur. (ii) The rates of these reactions are then determined empirically to give what may be called macroscopic kinetics. (iii) Determination of the rate-controlling mechanisms. (iv) If the rate is controlled by surface reactions, the final step would be to determine the atomic kinetics, that is the specific atomic reactions that occur at the dissolving interface. Our concern with the crystalline forms are in two areas: The crystalline components of the reference ceramic waste form and related ceramics and the alumino-silicate phases that appear in some experimental waste forms and as waste-rock interaction products. Specific compounds are: (1) Reference Ceramic Phases (zirconolite, magnetoplumbite, spinel, Tc-bearing spinel and perovskite); (2) Aluminosilicate phases (nepheline, pollucite, CsAlSi 5 O 12 , Sr-feldspar). 5 figures, 1 table

  19. A literature survey on the dissolution mechanism of spent fuel under disposal conditions

    International Nuclear Information System (INIS)

    Ollila, Kaija

    1989-06-01

    In Finland spent nuclear fuel is planned to be disposed of at large depths in crystalline bedrock. As part of the YJT (Nuclear Waste Commission of Finnish Power Companies) - program, the solubiliy and dissolution mechanisms of unirradiated UO 2 are experimentally investigated as a function of groundwater conditions. This study is a literature survey on the leaching and dissolution studies carried out with spent fuel. It consists first a review on characterization studies of spent fuel. Then the solubilities and release mechanisms of the radionuclides from spent fuel in granitic or related groundwaters are discussed, including the dissolution of UO 2 matrix, and the leaching of fission products and actinides. Lastly approaches to modelling the dissolution of spent fuel are shortly discussed

  20. Modeling of UO2 aqueous dissolution over a wide range of conditions

    International Nuclear Information System (INIS)

    Steward, S.A.; Weed, H.C.

    1993-11-01

    Previously it was not possible to predict reliably the rate at which spent fuel would react with groundwater because of conflicting data in the literature. The dissolution of the UO 2 spent fuel matrix is a necessary step for aqueous release of radioactive fission products. Statistical experimental design was used to plan a set of UO 2 dissolution experiments to examine systematically the effects of temperature (25--75C), dissolved oxygen (0.002--0.2 atm overpressure), pH (8--10) and carbonate (2-200x10 -4 molar) concentrations on UO 2 dissolution. The average uranium dissolution rate was 4.3 mg/m 2 /day. The regression fit of the data indicate an Arrhenius type activation energy of 8750 cal/mol and a half-power dependence on dissolved oxygen in the simulated groundwater

  1. Minimal surfaces

    CERN Document Server

    Dierkes, Ulrich; Sauvigny, Friedrich; Jakob, Ruben; Kuster, Albrecht

    2010-01-01

    Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently

  2. Development of Dissolution Test Method for Drotaverine ...

    African Journals Online (AJOL)

    Development of Dissolution Test Method for Drotaverine ... Methods: Sink conditions, drug stability and specificity in different dissolution media were tested to optimize a dissolution test .... test by Prism 4.0 software, and differences between ...

  3. Mathematical modeling of drug dissolution.

    Science.gov (United States)

    Siepmann, J; Siepmann, F

    2013-08-30

    The dissolution of a drug administered in the solid state is a pre-requisite for efficient subsequent transport within the human body. This is because only dissolved drug molecules/ions/atoms are able to diffuse, e.g. through living tissue. Thus, generally major barriers, including the mucosa of the gastro intestinal tract, can only be crossed after dissolution. Consequently, the process of dissolution is of fundamental importance for the bioavailability and, hence, therapeutic efficacy of various pharmaco-treatments. Poor aqueous solubility and/or very low dissolution rates potentially lead to insufficient availability at the site of action and, hence, failure of the treatment in vivo, despite a potentially ideal chemical structure of the drug to interact with its target site. Different physical phenomena are involved in the process of drug dissolution in an aqueous body fluid, namely the wetting of the particle's surface, breakdown of solid state bonds, solvation, diffusion through the liquid unstirred boundary layer surrounding the particle as well as convection in the surrounding bulk fluid. Appropriate mathematical equations can be used to quantify these mass transport steps, and more or less complex theories can be developed to describe the resulting drug dissolution kinetics. This article gives an overview on the current state of the art of modeling drug dissolution and points out the assumptions the different theories are based on. Various practical examples are given in order to illustrate the benefits of such models. This review is not restricted to mathematical theories considering drugs exhibiting poor aqueous solubility and/or low dissolution rates, but also addresses models quantifying drug release from controlled release dosage forms, in which the process of drug dissolution plays a major role. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Groundwater evolution of the granite area, Korea

    International Nuclear Information System (INIS)

    Kim, C.S.; Bae, D.S.; Koh, Y.K.; Kim, K.S.; Kim, G.Y.

    2001-01-01

    The geochemistry and environmental isotopes of groundwater in the Cretaceous granite of the Yeongcheon area has been investigated. The hydrochemistry of groundwater belongs to the Ca-HCO 3 type. The oxygen-18 and deuterium data are clustered along the meteoric water line, indicating that the groundwater is of meteoric water origin. Tritium data show that the groundwaters were mostly recharged before pre-thermonuclear period and have been mixed with younger surface water flowing rapidly along fractured zones. Based on the mass balance and reaction simulation approaches using both the hydrochemistry of groundwater and the secondary mineralogy of fracture-filling materials, the low-temperature hydrogeochemical evolution of groundwater in the area has been modeled. The results of geochemical simulation show that the concentrations of Ca, Na and HCO 3 and pH of waters increase progressively owing to the dissolution of reactive minerals in flow paths. The concentrations of Mg and K first increase with the dissolution of reactant minerals, but later decrease when montmorillonite and illitic material are precipitated respectively. The continuous adding of reactive minerals, i. e. the progressively larger degrees of water/rock interaction, causes the formation of secondary minerals with the following sequence: hematite > gibbsite > kaolinite > montmorillonite > illitic material > microcline. The results of reaction simulation agree well with the observed water chemistry and secondary mineralogy, indicating the successful applicability of this simulation technique to delineate the complex hydrogeochemistry of bedrock groundwaters. (author)

  5. Dissolution of FFTF vendor fuel

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1979-08-01

    Dissolution experiments were performed on FFTF vendor fuel (both mechanically mixed and coprecipitated) during 1974, 1975, and 1976. A marked improvement was noted in the completeness of fuel dissolution from 1974 to 1976. The reason for this is unknown but may have been attributable to slight changes in fuel fabrication conditions. In general, the bulk of the fuel pellets tested dissolved to greater than 99.9% in nitric acid alone

  6. Dissolution of FFTF vendor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, R.E.

    1979-08-01

    Dissolution experiments were performed on FFTF vendor fuel (both mechanically mixed and coprecipitated) during 1974, 1975, and 1976. A marked improvement was noted in the completeness of fuel dissolution from 1974 to 1976. The reason for this is unknown but may have been attributable to slight changes in fuel fabrication conditions. In general, the bulk of the fuel pellets tested dissolved to greater than 99.9% in nitric acid alone.

  7. Dissolution glow curve in LLD

    International Nuclear Information System (INIS)

    Haverkamp, U.; Wiezorek, C.; Poetter, R.

    1990-01-01

    Lyoluminescence dosimetry is based upon light emission during dissolution of previously irradiated dosimetric materials. The lyoluminescence signal is expressed in the dissolution glow curve. These curves begin, depending on the dissolution system, with a high peak followed by an exponentially decreasing intensity. System parameters that influence the graph of the dissolution glow curve, are, for example, injection speed, temperature and pH value of the solution and the design of the dissolution cell. The initial peak does not significantly correlate with the absorbed dose, it is mainly an effect of the injection. The decay of the curve consists of two exponential components: one fast and one slow. The components depend on the absorbed dose and the dosimetric materials used. In particular, the slow component correlates with the absorbed dose. In contrast to the fast component the argument of the exponential function of the slow component is independent of the dosimetric materials investigated: trehalose, glucose and mannitol. The maximum value, following the peak of the curve, and the integral light output are a measure of the absorbed dose. The reason for the different light outputs of various dosimetric materials after irradiation with the same dose is the differing solubility. The character of the dissolution glow curves is the same following irradiation with photons, electrons or neutrons. (author)

  8. An autoclave system for uranium oxide dissolution experiments

    International Nuclear Information System (INIS)

    Nykyri, Mikko

    1985-05-01

    According to the decision in principle of the Council of State of Finland the nuclear energy producers must provide preparedness for carrying out the final disposal of spent nuclear fuel in Finland. By the present principal concept the spent fuel will be disposed deep into the granitic bedrock. A parameter needed by risk analysis models is the dissolution rate of the uranium oxide matrix in the fuel pellets. In order to approach conditions prevailing deep in the groundwater, and autoclave system for dissolution experiments was developed at the Technical Research Centre of Finland. The low oxygen content and high pressure at elevated temperatures are simulated in the system. 20 MPa and 100 deg C are the upper operation limits of pressure and temperature. Water can be changed in the experiment autoclave without remarkable pressure and temperature variations. This has been arranged by using three pressure vessels: a supply vessel, a dissolution vessel and a depletion vessel. The extreme vessels serve pressure balancing purposes during water exchange. The water is deoxygenated during a preparation phase in the supply vessel by flushing it with nitrogen gas. Polytetrafluoroethylene is the principal material in contact with the water. A redox electrode couple was developed for potential measurements inside the dissolution vessel. The reference electrode is of Ag/AgCl-type with saturated KC1 electrolyte. A platinum wire operates as a measuring electrode

  9. Dissolution of aluminium; Disolucion de aluminio

    Energy Technology Data Exchange (ETDEWEB)

    Uriarte Hueda, A; Berberana Eizmendi, M; Pereira Sanchez, G

    1968-07-01

    The dissolution of aluminum with acid solutions ( nitric acid-mercuric nitrate) and alkaline solutions (sodium hydroxide-sodium nitrate) has been studied. The instantaneous dissolution rate (IDR) has been studied in function of the concentration of the used reagents and the dissolution temperature. The complete dissolution has been included in the second part of this report, to know the total dissolution time, the consume of reagents and the stability of the resultant solutions. (Author)

  10. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China

    International Nuclear Information System (INIS)

    Li, Chengcheng; Gao, Xubo; Wang, Yanxin

    2015-01-01

    Hydrogeochemical and environmental isotope methods were integrated to delineate the spatial distribution and enrichment of fluoride in groundwater at Yuncheng Basin in northern China. One hundred groundwater samples and 10 Quaternary sediment samples were collected from the Basin. Over 69% of the shallow groundwater (with a F − concentration of up to 14.1 mg/L), 44% of groundwater samples from the intermediate and 31% from the deep aquifers had F − concentrations above the WHO provisional drinking water guideline of 1.5 mg/L. Groundwater with high F − concentrations displayed a distinctive major ion chemistry: Na-rich and Ca-poor with a high pH value and high HCO 3 − content. Hydrochemical diagrams and profiles and hydrogen and oxygen isotope compositions indicate that variations in the major ion chemistry and pH are controlled by mineral dissolution, cation exchange and evaporation in the aquifer systems, which are important for F − mobilization as well. Leakage of shallow groundwater and/or evaporite (gypsum and mirabilite) dissolution may be the major sources for F − in groundwater of the intermediate and deep aquifers. - Highlights: • High-F − groundwater widely occurs in Yuncheng Basin of northern China. • High-F − groundwater is Na and HCO 3 -rich and Ca-poor, with high pH. • Major hydrogeochemical processes are mineral dissolution, ion exchange and evaporation. • Shallow groundwater leakage/evaporite dissolution may cause F enrichment in lower aquifers

  11. Groundwater recharge and agricultural contamination

    Science.gov (United States)

    Böhlke, J.K.

    2002-01-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water–rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agricultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3–, N2, Cl, SO42–, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well as a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3–, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  12. Dissolution Threats and Legislative Bargaining

    DEFF Research Database (Denmark)

    Becher, Michael; Christiansen, Flemming Juul

    2015-01-01

    Chief executives in many parliamentary democracies have the power to dissolve the legislature. Despite a well-developed literature on the endogenous timing of parliamentary elections, political scientists know remarkably little about the strategic use of dissolution power to influence policymaking....... To address this gap, we propose and empirically evaluate a theoretical model of legislative bargaining in the shadow of executive dissolution power. The model implies that the chief executive's public support and legislative strength, as well as the time until the next constitutionally mandated election...

  13. Actor bonds after relationship dissolution

    DEFF Research Database (Denmark)

    Skaates, Maria Anne

    2000-01-01

    Most of the presented papers at the 1st NoRD Workshop can be classified as belonging to the business marketing approach to relationship dissolution. Two papers were conceptual, and the remaining six were empirical studies. The first conceptual study by Skaates (2000) focuses on the nature...... of the actor bonds that remain after a business relationship has ended. The study suggests that an interdisciplinary approach would provide a richer understanding of the phenomenon; this could be achieved by using e.g. Bourdieu's sociological concepts in dissolution research....

  14. A multiphase interfacial model for the dissolution of spent nuclear fuel

    Science.gov (United States)

    Jerden, James L.; Frey, Kurt; Ebert, William

    2015-07-01

    The Fuel Matrix Dissolution Model (FMDM) is an electrochemical reaction/diffusion model for the dissolution of spent uranium oxide fuel. The model was developed to provide radionuclide source terms for use in performance assessment calculations for various types of geologic repositories. It is based on mixed potential theory and consists of a two-phase fuel surface made up of UO2 and a noble metal bearing fission product phase in contact with groundwater. The corrosion potential at the surface of the dissolving fuel is calculated by balancing cathodic and anodic reactions occurring at the solution interfaces with UO2 and NMP surfaces. Dissolved oxygen and hydrogen peroxide generated by radiolysis of the groundwater are the major oxidizing agents that promote fuel dissolution. Several reactions occurring on noble metal alloy surfaces are electrically coupled to the UO2 and can catalyze or inhibit oxidative dissolution of the fuel. The most important of these is the oxidation of hydrogen, which counteracts the effects of oxidants (primarily H2O2 and O2). Inclusion of this reaction greatly decreases the oxidation of U(IV) and slows fuel dissolution significantly. In addition to radiolytic hydrogen, large quantities of hydrogen can be produced by the anoxic corrosion of steel structures within and near the fuel waste package. The model accurately predicts key experimental trends seen in literature data, the most important being the dramatic depression of the fuel dissolution rate by the presence of dissolved hydrogen at even relatively low concentrations (e.g., less than 1 mM). This hydrogen effect counteracts oxidation reactions and can limit fuel degradation to chemical dissolution, which results in radionuclide source term values that are four or five orders of magnitude lower than when oxidative dissolution processes are operative. This paper presents the scientific basis of the model, the approach for modeling used fuel in a disposal system, and preliminary

  15. Test Objectives for the Saltcake Dissolution Retrieval Demonstration

    International Nuclear Information System (INIS)

    DEFIGH PRICE, C.

    2000-01-01

    This document describes the objectives the Saltcake Dissolution Retrieval Demonstration. The near term strategy for single-shell tank waste retrieval activities has shifted from focusing on maximizing the number of tanks entered for retrieval (regardless of waste volume or content) to a focus on scheduling the retrieval of wastes from those single-shell tanks with a high volume of contaminants of concern. These contaminants are defined as mobile, long-lived radionuclides that have a potential of reaching the groundwater and the Columbia River. This strategy also focuses on the performance of key retrieval technology demonstrations, including the Saltcake Dissolution Retrieval Demonstration, in a variety of waste forms and tank farm locations to establish a technical basis for future work. The work scope will also focus on the performance of risk assessment, retrieval performance evaluations (RPE) and incorporating vadose zone characterization data on a tank-by-tank basis, and on updating tank farm closure/post closure work plans. The deployment of a retrieval technology other than Past-Practice Sluicing (PPS) allows determination of limits of technical capabilities, as well as, providing a solid planning basis for future SST retrievals. This saltcake dissolution technology deployment test will determine if saltcake dissolution is a viable retrieval option for SST retrieval. CH2M Hill Hanford Group (CHG) recognizes the SST retrieval mission is key to the success of the River Protection Project (RPP) and the overall completion of the Hanford Site cleanup. The objectives outlined in this document will be incorporated into and used to develop the test and evaluation plan for saltcake dissolution retrievals. The test and evaluation plan will be developed in fiscal year 2001

  16. Modeling groundwater age using tritium and groundwater mineralization processes - Morondava sedimentary basin, Southwestern Madagascar

    International Nuclear Information System (INIS)

    RAMAROSON, V.

    2007-01-01

    The tritium method in the lumped parameter approach was used for groundwater dating in the Morondava sedimentary basin, Southwestern Madagascar. Tritium data were interpreted by the dispersion model. The modeling results, with P D values between 0.05 and 0.7, show that shallow groundwater age is ranging from 17 to 56 years. Different types of chemical composition were determined for these shallow ground waters, among others, Ca-HCO 3 , Ca-Na-HCO 3 , Ca-Na-Mg-HCO 3 , Ca-K-HCO 3 -NO 3 -SO 4 , Na-Cl, or Ca-Na-Mg-Cl. Likewise, deeper ground waters show various chemical type such as Ca-Na-HCO 3 , Ca-Mg-Na H CO 3 , Ca-Na-Mg-HCO 3 , Ca-Na-Mg-HCO 3 -Cl-SO 4 , Ca-Mg-HCO 3 , Na-Ca-Mg-HCO 3 -SO 4 -Cl, Na-Cl-HCO 3 or Na-HCO 3 -Cl. To evaluate the geochemical processes, the NETPATH inverse geochemical modeling type was implemented. The modeling results show that silicate minerals dissolution , including olivine, plagioclase, and pyroxene is more important than calcite or dolomite dissolution, for both shallow and deeper groundwater . In the Southern part of the study area, while halite dissolution is likely to be the source of shallow groundwater chloride concentration rise, the mineral precipitation seems to be responsible for less chloride content in deeper groundwater. Besides, ion exchange contributes to the variations of major cations concentrations in groundwater. The major difference between shallow and deep groundwater mineralization process lies in the leaching of marine aerosols deposits by local precipitation, rapidly infiltrated through the sandy formation and giving marine chemical signature to shallow groundwater [fr

  17. Taxonomic minimalism.

    Science.gov (United States)

    Beattle, A J; Oliver, I

    1994-12-01

    Biological surveys are in increasing demand while taxonomic resources continue to decline. How much formal taxonomy is required to get the job done? The answer depends on the kind of job but it is possible that taxonomic minimalism, especially (1) the use of higher taxonomic ranks, (2) the use of morphospecies rather than species (as identified by Latin binomials), and (3) the involvement of taxonomic specialists only for training and verification, may offer advantages for biodiversity assessment, environmental monitoring and ecological research. As such, formal taxonomy remains central to the process of biological inventory and survey but resources may be allocated more efficiently. For example, if formal Identification is not required, resources may be concentrated on replication and increasing sample sizes. Taxonomic minimalism may also facilitate the inclusion in these activities of important but neglected groups, especially among the invertebrates, and perhaps even microorganisms. Copyright © 1994. Published by Elsevier Ltd.

  18. Marital dissolution: an economic analysis.

    Science.gov (United States)

    Hunter, K A

    1984-01-01

    A longitudinal analysis of factors affecting marital dissolution in the United States is presented using data from the Coleman-Rossi Retrospective Life History. Factors considered include labor force participation of both spouses, wage growth, size of family unit, age at marriage, and educational status. The study is based on the economic analysis approach developed by Gary S. Becker and others.

  19. Study of groundwater salinization in Chaj Doab using environmental isotopes

    International Nuclear Information System (INIS)

    Hussain, S.D.; Sajjid, M.I.; Akram, W.; Ahmad, M.; Rafiq, M.

    1991-09-01

    Environmental isotopes and chemical composition of water have been used to study the origin of groundwater salinity in Chaj Doab. Three important possible processes of salinization i.e. enrichment of salt content of water by evaopration, mixing with connate marine water and dissolution of salts from soil sediments have been investigated. No evidence for mixing with connate maine water could be found. The process of evaporation too does not seem to apply any significant role in salinization of groundwater. The dissolution of salts from soil sediments appears as dominant mechanism for increasing the salt content of water in this area. (author)

  20. Carbonate mineral dissolution kinetics in high pressure experiments

    Science.gov (United States)

    Dethlefsen, F.; Dörr, C.; Schäfer, D.; Ebert, M.

    2012-04-01

    The potential CO2 reservoirs in the North German Basin are overlain by a series of Mesozoic barrier rocks and aquifers and finally mostly by Tertiary and Quaternary close-to-surface aquifers. The unexpected rise of stored CO2 from its reservoir into close-to-surface aquifer systems, perhaps through a broken well casing, may pose a threat to groundwater quality because of the acidifying effect of CO2 dissolution in water. The consequences may be further worsening of the groundwater quality due to the mobilization of heavy metals. Buffer mechanisms counteracting the acidification are for instance the dissolution of carbonates. Carbonate dissolution kinetics is comparably fast and carbonates can be abundant in close-to-surface aquifers. The disadvantages of batch experiments compared to column experiments in order to determine rate constants are well known and have for instance been described by v. GRINSVEN and RIEMSDIJK (1992). Therefore, we have designed, developed, tested, and used a high-pressure laboratory column system to simulate aquifer conditions in a flow through setup within the CO2-MoPa project. The calcite dissolution kinetics was determined for CO2-pressures of 6, 10, and 50 bars. The results were evaluated by using the PHREEQC code with a 1-D reactive transport model, applying a LASAGA (1984) -type kinetic dissolution equation (PALANDRI and KHARAKA, 2004; eq. 7). While PALANDRI and KHARAKA (2004) gave calcite dissolution rate constants originating from batch experiments of log kacid = -0.3 and log kneutral = -5.81, the data of the column experiment were best fitted using log kacid = -2.3 and log kneutral = -7.81, so that the rate constants fitted using the lab experiment applying 50 bars pCO2 were approximately 100 times lower than according to the literature data. Rate constants of experiments performed at less CO2 pressure (pCO2 = 6 bars: log kacid = -1.78; log kneutral = -7.29) were only 30 times lower than literature data. These discrepancies in the

  1. Assessment of groundwater contamination by leachate near a ...

    African Journals Online (AJOL)

    The results show that the leachate from the landfill has a minimal impact on the groundwater resource and this can be attributed to the existing soil stratigraphy at the site consisting of clay which is deduced to have a significant influence on the natural attenuation of leachate into groundwater. Keywords: Groundwater ...

  2. Groundwater Potential

    African Journals Online (AJOL)

    big timmy

    4Department of Geology, Ekiti State University, Ado-Ekiti, Nigeria. Corresponding ... integrated for the classification of the study area into different groundwater potential zones. .... table is mainly controlled by subsurface movement of water into ...

  3. Geochemical investigation of groundwater in the Tono area, Japan. Chemical characteristics and groundwater evolution

    International Nuclear Information System (INIS)

    Iwatsuki, Teruki; Hama, Katsuhiro; Yoshida, Hidekazu

    1997-01-01

    Geochemical investigations form an important part of the R and D program at the Tono study site, central Japan. Detailed geological structure and groundwater chemistry have been studied to understand the geochemical environment in the sedimentary and crystalline rocks distributed in this area. The chemical evolution of the groundwater in the sedimentary rocks is characterized with the variation in Na + , Ca 2+ and HCO 3 - concentrations, and ion exchange and dissolution of calcite are dominant reactions in the evolution of groundwater. Geological investigation shows that a fracture system of crystalline rock can be classified into:intact zone, moderately fractured zone and intensely fractured zone, according to the frequency and the width of fractures and fractured zones. The groundwater in the intact and fractured zones of crystalline rock are characterized by Na + -Ca 2+ -HCO 3 - or Na + -HCO 3 - dominated water, and Na + -Ca 2+ -Fe 2+ -HCO 3 - dominated water. The chemical evolution of groundwater is, generally, controlled by water-rock interaction between plagioclase, iron minerals and groundwater. The groundwater at depth of G.L.-186m in the crystalline rock at the Tono area is characterized by the mixture between the oxidized surface water and the reduced groundwater. The investigation based on correlation between geological structures and groundwater chemistry can be applied to understand the geochemical environment in deep crystalline rock, and will support the development of a realistic hydrogeochemical model. (author)

  4. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junxia; Wang, Yanxin, E-mail: yx.wang@cug.edu.cn; Xie, Xianjun

    2016-02-15

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000–10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ{sup 37}Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. - Highlights: • Natural high arsenic, fluoride and iodine groundwater co-occur with saline water.

  5. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China

    International Nuclear Information System (INIS)

    Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2016-01-01

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000–10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ"3"7Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. - Highlights: • Natural high arsenic, fluoride and iodine groundwater co-occur with saline water. • Groundwater

  6. Dissolution test for glibenclamide tablets

    Directory of Open Access Journals (Sweden)

    Elisabeth Aparecida dos Santos Gianotto

    2007-10-01

    Full Text Available The aim of this work is to develop and validate a dissolution test for glibenclamide tablets. Optimal conditions to carry out the dissolution test are 500 mL of phosphate buffer at pH 8.0, paddles at 75 rpm stirring speed, time test set to 60 min and using equipment with six vessels. The derivative UV spectrophotometric method for determination of glibenclamide released was developed, validated and compared with the HPLC method. The UVDS method presents linearity (r² = 0.9999 in the concentration range of 5-14 µg/mL. Precision and recoveries were 0.42% and 100.25%, respectively. The method was applied to three products commercially available on the Brazilian market.

  7. The dissolution of chalcopyrite in chloride media

    International Nuclear Information System (INIS)

    Ibanez, T.; Velasquez, L.

    2013-01-01

    The aim of this investigation is to determinate the effects of parameters and additives on the kinetics of dissolution of chalcopyrite on moderated conditions by means of dissolutions test with chalcopyrite concentrate and pure chalcopyrite in shake flasks and instrumented stirred reactors. A study of the dissolution of chalcopyrite in chloride solutions has demonstrated that the rate of dissolution of chalcopyrite is strongly dependent on the potential of the solution within a range of 540 to 630 mV (versus SHE). Leaching at pH around 2.5 results in increased rates of copper dissolution suggesting the possibility to keep the solution potential within the range. Both pyrite and silver ions enhance the dissolution of chalcopyrite and this effect increases when both species are present. The MnO 2 has a negative effect on the dissolution increasing the solution potential to values where the rate decreases considerably. (Author)

  8. A multiphase interfacial model for the dissolution of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jerden, James L., E-mail: jerden@anl.gov [Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439 (United States); Frey, Kurt [University of Notre Dame, Notre Dame, IN 46556 (United States); Ebert, William [Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439 (United States)

    2015-07-15

    Highlights: • This model accounts for chemistry, temperature, radiolysis, U(VI) minerals, and hydrogen effect. • The hydrogen effect dominates processes determining spent fuel dissolution rate. • The hydrogen effect protects uranium oxide spent fuel from oxidative dissolution. - Abstract: The Fuel Matrix Dissolution Model (FMDM) is an electrochemical reaction/diffusion model for the dissolution of spent uranium oxide fuel. The model was developed to provide radionuclide source terms for use in performance assessment calculations for various types of geologic repositories. It is based on mixed potential theory and consists of a two-phase fuel surface made up of UO{sub 2} and a noble metal bearing fission product phase in contact with groundwater. The corrosion potential at the surface of the dissolving fuel is calculated by balancing cathodic and anodic reactions occurring at the solution interfaces with UO{sub 2} and NMP surfaces. Dissolved oxygen and hydrogen peroxide generated by radiolysis of the groundwater are the major oxidizing agents that promote fuel dissolution. Several reactions occurring on noble metal alloy surfaces are electrically coupled to the UO{sub 2} and can catalyze or inhibit oxidative dissolution of the fuel. The most important of these is the oxidation of hydrogen, which counteracts the effects of oxidants (primarily H{sub 2}O{sub 2} and O{sub 2}). Inclusion of this reaction greatly decreases the oxidation of U(IV) and slows fuel dissolution significantly. In addition to radiolytic hydrogen, large quantities of hydrogen can be produced by the anoxic corrosion of steel structures within and near the fuel waste package. The model accurately predicts key experimental trends seen in literature data, the most important being the dramatic depression of the fuel dissolution rate by the presence of dissolved hydrogen at even relatively low concentrations (e.g., less than 1 mM). This hydrogen effect counteracts oxidation reactions and can limit

  9. Calcination/dissolution residue treatment

    International Nuclear Information System (INIS)

    Knight, R.C.; Creed, R.F.; Patello, G.K.; Hollenberg, G.W.; Buehler, M.F.; O'Rourke, S.M.; Visnapuu, A.; McLaughlin, D.F.

    1994-09-01

    Currently, high-level wastes are stored underground in steel-lined tanks at the Hanford site. Current plans call for the chemical pretreatment of these wastes before their immobilization in stable glass waste forms. One candidate pretreatment approach, calcination/dissolution, performs an alkaline fusion of the waste and creates a high-level/low-level partition based on the aqueous solubilities of the components of the product calcine. Literature and laboratory studies were conducted with the goal of finding a residue treatment technology that would decrease the quantity of high-level waste glass required following calcination/dissolution waste processing. Four elements, Fe, Ni, Bi, and U, postulated to be present in the high-level residue fraction were identified as being key to the quantity of high-level glass formed. Laboratory tests of the candidate technologies with simulant high-level residues showed reductive roasting followed by carbonyl volatilization to be successful in removing Fe, Ni, and Bi. Subsequent bench-scale tests on residues from calcination/dissolution processing of genuine Hanford Site tank waste showed Fe was separated with radioelement decontamination factors of 70 to 1,000 times with respect to total alpha activity. Thermodynamic analyses of the calcination of five typical Hanford Site tank waste compositions also were performed. The analyses showed sodium hydroxide to be the sole molten component in the waste calcine and emphasized the requirement for waste blending if fluid calcines are to be achieved. Other calcine phases identified in the thermodynamic analysis indicate the significant thermal reconstitution accomplished in calcination

  10. The dissolution phenomenon of lysozyme crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Ulrich, J. [Martin Luther University Halle-Wittenberg, Department of Thermal Separation Processes, Centre of Engineering Science, Halle/Saale (Germany)

    2012-02-15

    Dissolution studies on lysozyme crystals were carried out since the observed dissolution pattern look different from non-protein dissolved crystals. The Tetragonal, High Temperature and Low Temperature Orthorhombic morphologies, crystallized using sodium chloride, were chosen and the influence of different pH, salt and protein concentration on their dissolution was investigated. An increase in pH and/or salt concentration can modify the dissolution behaviour. The pattern of the crystals during the dissolution process will, therefore, develop differently. Frequently a skeleton like crystal pattern followed by a falling apart of the crystals is observed. The multi-component character of the lysozyme crystal (protein, water, buffer, salt) as well as ''solvatomorphism'' gives first insights in the phenomena happening in the dissolution process. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Plutonium dioxide dissolution in glass

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J.D.; Alexander, D.L.; Li, Hong [and others

    1996-09-01

    In the aftermath of the Cold War, the U.S. Department of Energy`s (DOE) Office of Fissile Materials Disposition (OFMD) is charged with providing technical support for evaluation of disposition options for excess fissile materials manufactured for the nation`s defense. One option being considered for the disposition of excess plutonium (Pu) is immobilization by vitrification. The vitrification option entails immobilizing Pu in a host glass and waste package that are criticality-safe (immune to nuclear criticality), proliferation-resistant, and environmentally acceptable for long-term storage or disposal. To prove the technical and economic feasibility of candidate vitrification options it is necessary to demonstrate that PuO{sub 2} feedstock can be dissolved in glass in sufficient quantity. The OFMD immobilization program has set a Pu solubility goal of 10 wt% in glass. The life cycle cost of the vitrification options are strongly influenced by the rate at which PUO{sub 2} dissolves in glass. The total number of process lines needed for vitrification of 50 t of Pu in 10 years is directly dependent upon the time required for Pu dissolution in glass. The objective of this joint Pacific Northwest National Laboratory (PNNL) - Savannah River Technology Center (SRTC) study was to demonstrate a high Pu solubility in glass and to identify on a rough scale the time required for Pu dissolution in the glass. This study was conducted using a lanthanide borosilicate (LaBS) glass composition designed at the SRTC for the vitrification of actinides.

  12. Plutonium dioxide dissolution in glass

    International Nuclear Information System (INIS)

    Vienna, J.D.; Alexander, D.L.; Li, Hong

    1996-09-01

    In the aftermath of the Cold War, the U.S. Department of Energy's (DOE) Office of Fissile Materials Disposition (OFMD) is charged with providing technical support for evaluation of disposition options for excess fissile materials manufactured for the nation's defense. One option being considered for the disposition of excess plutonium (Pu) is immobilization by vitrification. The vitrification option entails immobilizing Pu in a host glass and waste package that are criticality-safe (immune to nuclear criticality), proliferation-resistant, and environmentally acceptable for long-term storage or disposal. To prove the technical and economic feasibility of candidate vitrification options it is necessary to demonstrate that PuO 2 feedstock can be dissolved in glass in sufficient quantity. The OFMD immobilization program has set a Pu solubility goal of 10 wt% in glass. The life cycle cost of the vitrification options are strongly influenced by the rate at which PUO 2 dissolves in glass. The total number of process lines needed for vitrification of 50 t of Pu in 10 years is directly dependent upon the time required for Pu dissolution in glass. The objective of this joint Pacific Northwest National Laboratory (PNNL) - Savannah River Technology Center (SRTC) study was to demonstrate a high Pu solubility in glass and to identify on a rough scale the time required for Pu dissolution in the glass. This study was conducted using a lanthanide borosilicate (LaBS) glass composition designed at the SRTC for the vitrification of actinides

  13. Optimization of Dissolution Compartments in a Biorelevant Dissolution Apparatus Golem v2, Supported by Multivariate Analysis

    Directory of Open Access Journals (Sweden)

    Ivan Stupák

    2017-11-01

    Full Text Available Biorelevant dissolution instruments represent an important tool for pharmaceutical research and development. These instruments are designed to simulate the dissolution of drug formulations in conditions most closely mimicking the gastrointestinal tract. In this work, we focused on the optimization of dissolution compartments/vessels for an updated version of the biorelevant dissolution apparatus—Golem v2. We designed eight compartments of uniform size but different inner geometry. The dissolution performance of the compartments was tested using immediate release caffeine tablets and evaluated by standard statistical methods and principal component analysis. Based on two phases of dissolution testing (using 250 and 100 mL of dissolution medium, we selected two compartment types yielding the highest measurement reproducibility. We also confirmed a statistically ssignificant effect of agitation rate and dissolution volume on the extent of drug dissolved and measurement reproducibility.

  14. CHARACTERIZATION AND ALUMINUM DISSOLUTION DEMONSTRATION WITH A 3 LITER TANK 51H SAMPLE

    International Nuclear Information System (INIS)

    Hay, M; John Pareizs, J; Cj Bannochie, C; Michael Stone, M; Damon Click, D; Daniel McCabe, D

    2008-01-01

    A 3-liter sludge slurry sample was sent to SRNL for demonstration of a low temperature aluminum dissolution process. The sludge was characterized before and after the aluminum dissolution. Post aluminum dissolution sludge settling and the stability of the decanted supernate were also observed. The characterization of the as-received 3-liter sample of Tank 51H sludge slurry shows a typical high aluminum HM sludge. The XRD analysis of the dried solids indicates Boehmite is the predominant crystalline form of aluminum in the sludge solids. However, amorphous phases of aluminum present in the sludge would not be identified using this analytical technique. The low temperature (55 C) aluminum dissolution process was effective at dissolving aluminum from the sludge. Over the three week test, ∼42% of the aluminum was dissolved out of the sludge solids. The process appears to be selective for aluminum with no other metals dissolving to any appreciable extent. At the termination of the three week test, the aluminum concentration in the supernate had not leveled off indicating more aluminum could be dissolved from the sludge with longer contact times or higher temperatures. The slow aluminum dissolution rate in the test may indicate the dissolution of the Boehmite form of aluminum however; insufficient kinetic data exists to confirm this hypothesis. The aluminum dissolution process appears to have minimal impact on the settling rate of the post aluminum dissolution sludge. However, limited settling data were generated during the test to quantify the effects. The sludge settling was complete after approximately twelve days. The supernate decanted from the settled sludge after aluminum dissolution appears stable and did not precipitate aluminum over the course of several months. A mixture of the decanted supernate with Tank 11 simulated supernate was also stable with respect to precipitation

  15. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    Science.gov (United States)

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  16. Optimization of the solvent-based dissolution method to sample volatile organic compound vapors for compound-specific isotope analysis.

    Science.gov (United States)

    Bouchard, Daniel; Wanner, Philipp; Luo, Hong; McLoughlin, Patrick W; Henderson, James K; Pirkle, Robert J; Hunkeler, Daniel

    2017-10-20

    The methodology of the solvent-based dissolution method used to sample gas phase volatile organic compounds (VOC) for compound-specific isotope analysis (CSIA) was optimized to lower the method detection limits for TCE and benzene. The sampling methodology previously evaluated by [1] consists in pulling the air through a solvent to dissolve and accumulate the gaseous VOC. After the sampling process, the solvent can then be treated similarly as groundwater samples to perform routine CSIA by diluting an aliquot of the solvent into water to reach the required concentration of the targeted contaminant. Among solvents tested, tetraethylene glycol dimethyl ether (TGDE) showed the best aptitude for the method. TGDE has a great affinity with TCE and benzene, hence efficiently dissolving the compounds during their transition through the solvent. The method detection limit for TCE (5±1μg/m 3 ) and benzene (1.7±0.5μg/m 3 ) is lower when using TGDE compared to methanol, which was previously used (385μg/m 3 for TCE and 130μg/m 3 for benzene) [2]. The method detection limit refers to the minimal gas phase concentration in ambient air required to load sufficient VOC mass into TGDE to perform δ 13 C analysis. Due to a different analytical procedure, the method detection limit associated with δ 37 Cl analysis was found to be 156±6μg/m 3 for TCE. Furthermore, the experimental results validated the relationship between the gas phase TCE and the progressive accumulation of dissolved TCE in the solvent during the sampling process. Accordingly, based on the air-solvent partitioning coefficient, the sampling methodology (e.g. sampling rate, sampling duration, amount of solvent) and the final TCE concentration in the solvent, the concentration of TCE in the gas phase prevailing during the sampling event can be determined. Moreover, the possibility to analyse for TCE concentration in the solvent after sampling (or other targeted VOCs) allows the field deployment of the sampling

  17. 100-N pilot project: Proposed consolidated groundwater monitoring program

    International Nuclear Information System (INIS)

    Borghese, J.V.; Hartman, M.J.; Lutrell, S.P.; Perkins, C.J.; Zoric, J.P.; Tindall, S.C.

    1996-11-01

    This report presents a proposed consolidated groundwater monitoring program for the 100-N Pilot Project. This program is the result of a cooperative effort between the Hanford Site contractors who monitor the groundwater beneath the 100-N Area. The consolidation of the groundwater monitoring programs is being proposed to minimize the cost, time, and effort necessary for groundwater monitoring in the 100-N Area, and to coordinate regulatory compliance activities. The integrity of the subprograms requirements remained intact during the consolidation effort. The purpose of this report is to present the proposed consolidated groundwater monitoring program and to summarize the process by which it was determined

  18. Brahmaputra river basin groundwater: Solute distribution, chemical evolution and arsenic occurrences in different geomorphic settings

    Directory of Open Access Journals (Sweden)

    Swati Verma

    2015-09-01

    New hydrological insights for the region: Most groundwater solutes of RCD and YA terrains were derived from both silicate weathering and carbonate dissolution, while silicate weathering process dominates the solute contribution in OA groundwater. Groundwater samples from all terrains are postoxic with mean pe values between Fe(III and As(V–As(III reductive transition. While, reductive dissolution of (Fe–MnOOH is the dominant mechanism of As mobilization in RCD and YA aquifers, As in OA and PD aquifers could be mobilized by combined effect of pH dependent sorption and competitive ion exchange. The present study focuses on the major ion chemistry as well as the chemistry of the redox sensitive solutes of the groundwater in different geomorphic settings and their links to arsenic mobilization in groundwater.

  19. Modelling the incongruent dissolution of hydrated cement minerals

    International Nuclear Information System (INIS)

    Berner, U.R.

    1988-01-01

    Hydrated calciumsilicates are the main constituents of hydrated portland cements. Their chemistry will strongly influence the longterm behaviour of a concrete system envisioned in use in radioactive waste repositories. Experimental data show that hydrated calciumsilicates dissolve incongruently, depending on the calcium/silicon ratio of the solid. A model that simulates the incongruent dissolution behaviour of these hydrated calciumsilicates is presented. In the model the hydrated calciumcilicates are represented as a mixture of two congruently soluble components. The dissolution of the particular components is described using the concept of variable activities in the solid state. Each component's activity in the solid state is obtained from a large body of solubility data by applying the Gibbs-Duhem equation for nonideal mixtures. Using this approach a simplified set of equations, which describe the solubility of the components as a function of the calcium/silicon ratio of the solid, is derived. As an application, the degradation of a standard portland cement in pure water and in a carbonate-rich groundwater is modelled. (orig.)

  20. Emotional and Cognitive Coping in Relationship Dissolution

    Science.gov (United States)

    Wrape, Elizabeth R.; Jenkins, Sharon Rae; Callahan, Jennifer L.; Nowlin, Rachel B.

    2016-01-01

    Dissolution of a romantic relationship can adversely affect functioning among college students and represents one primary reason for seeking campus counseling. This study examined the associations among common coping strategies and distress following relationship dissolution. Avoidance and repetitive negative thinking (RNT) were significantly…

  1. CALCIUM CARBONATE DISSOLUTION RATE IN LIMESTONE CONTACTORS

    Science.gov (United States)

    The rate of carbonate mineral dissolution from limestone was studied using a rotating disk apparatus and samples of limestone of varied composition. The purpose of this study was to determine the effect of limestone composition on the kinetics of carbonate mineral dissolution. Th...

  2. Assessment of seawater intrusion and nitrate contamination on the groundwater quality in the Korba coastal plain of Cap-Bon (North-east of Tunisia)

    Science.gov (United States)

    Zghibi, Adel; Tarhouni, Jamila; Zouhri, Lahcen

    2013-11-01

    In recent years, seawater intrusion and nitrate contamination of groundwater have become a growing concern for people in rural areas in Tunisia where groundwater is always used as drinking water. The coastal plain of Korba (north-east of Tunisia) is a typical area where the contamination of the aquifer in the form of saltwater intrusion and high nitrate concentrations is very developed and represents the major consequence of human activities. The objective of this study is to evaluate groundwater resource level, to determine groundwater quality and to assess the risk of NO3- pollution in groundwater using hydrogeochemical tools. Groundwater were sampled and analyzed for physic-chemical parameters: Ca2+, Mg2+, Na+, K+, Cl-, SO42-, HCO3-, NO3-, Total Dissolved Solid and of the physical parameters (pH, electrical conductivity and the temperature). The interpretation of the analytical results is shown numerically and graphically through the ionic deviations, Piper Diagram, seawater fractions and binary diagrams. Moreover, electrical conductivity investigations have been used to identify the location of the major intrusion plumes in this coastal area and to obtain new information on the spatial scales and dynamics of the fresh water-seawater interface. Those processes can be used as indicators of seawater intrusion progression. First, the hydrogeochemical investigation of this aquifer reveals the major sources of contamination, represented by seawater intrusion. Thus, the intensive extraction of groundwater from aquifer reduces freshwater outflow to the sea, creates several drawdown cones and lowering of the water table to as much as 12 m below mean sea level in the center part of the study area especially between Diarr El Hojjej and Tafelloun villages, causing seawater migration inland and rising toward the wells. Moreover, the results of this study revealed the presence of direct cation exchange linked to seawater intrusion and dissolution processes associated with

  3. Kinetics of oxidic phase dissolution in acids

    International Nuclear Information System (INIS)

    Gorichev, I.G.; Kipriyanov, N.A.

    1981-01-01

    The critical analysis of the experimental data on dissolution kinetics of metal oxides (BeO, V 2 O 5 , UO 2 , Nb 2 O 5 , Ta 2 O 5 etc.) in acid media is carried out. Kinetic peculiarities of oxide dissolution are explained on the basis of the notions of electron- proton theory. It is established that the surface nonstoichiometric ccomposition of oxide phase and potential jump, appearing on the interface of the oxide-electrolyte phase are the important factors, determining the dissolution rate of a solid phase. The dissolution rate of metal oxides is limited by the transition of protons into the solid oxide phase. Morphological models of heterogeneous kinetics are used when explaining kinetic regularities of oxide dissolution process [ru

  4. Accelerated dissolution of iron oxides in ice

    Directory of Open Access Journals (Sweden)

    D. Jeong

    2012-11-01

    Full Text Available Iron dissolution from mineral dusts and soil particles is vital as a source of bioavailable iron in various environmental media. In this work, the dissolution of iron oxide particles trapped in ice was investigated as a new pathway of iron supply. The dissolution experiments were carried out in the absence and presence of various organic complexing ligands under dark condition. In acidic pH conditions (pH 2, 3, and 4, the dissolution of iron oxides was greatly enhanced in the ice phase compared to that in water. The dissolved iron was mainly in the ferric form, which indicates that the dissolution is not a reductive process. The extent of dissolved iron was greatly affected by the kind of organic complexing ligands and the surface area of iron oxides. The iron dissolution was most pronounced with high surface area iron oxides and in the presence of strong iron binding ligands. The enhanced dissolution of iron oxides in ice is mainly ascribed to the "freeze concentration effect", which concentrates iron oxide particles, organic ligands, and protons in the liquid like ice grain boundary region and accelerates the dissolution of iron oxides. The ice-enhanced dissolution effect gradually decreased when decreasing the freezing temperature from −10 to −196 °C, which implies that the presence and formation of the liquid-like ice grain boundary region play a critical role. The proposed phenomenon of enhanced dissolution of iron oxides in ice may provide a new pathway of bioavailable iron production. The frozen atmospheric ice with iron-containing dust particles in the upper atmosphere thaws upon descending and may provide bioavailable iron upon deposition onto the ocean surface.

  5. The effect of fuel chemistry on UO{sub 2} dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Casella, Amanda, E-mail: amanda.casella@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-25, Richland, WA 99352 (United States); Hanson, Brady, E-mail: brady.hanson@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-27, Richland, WA 99352 (United States); Miller, William [University of Missouri Research Reactor, 1513 Research Park Drive, Columbia, MO 65211 (United States)

    2016-08-01

    The dissolution rate of both unirradiated UO{sub 2} and used nuclear fuel has been studied by numerous countries as part of the performance assessment of proposed geologic repositories. In the scenario of waste package failure and groundwater contact with the fuel, the effects of variables such as temperature, dissolved oxygen, and water and fuel chemistry on the dissolution rates of the fuel are necessary to provide a quantitative estimate of the potential release over geologic time frames. The primary objective of this research was to determine the influence these parameters, with primary focus on the fuel chemistry, have on the dissolution rate of unirradiated UO{sub 2} under oxidizing repository conditions and compare them to the rates predicted by current dissolution models. Both unirradiated UO{sub 2} and UO{sub 2} doped with varying concentrations of Gd{sub 2}O{sub 3}, to simulate used fuel composition after long time periods when radiolysis has minor contributions to dissolution, were examined. In general, a rise in temperature increased the dissolution rate of UO{sub 2} and had a larger effect on pure UO{sub 2} than on those doped with Gd{sub 2}O{sub 3}. Oxygen dependence was observed in the UO{sub 2} samples with no dopant and increased as the temperature rose; in the doped fuels less dependence was observed. The addition of gadolinia into the UO{sub 2} matrix resulted in a significant decrease in the dissolution rate. The matrix stabilization effect resulting from the dopant proved even more beneficial in lowering the dissolution rate at higher temperatures and dissolved O{sub 2} concentrations in the leachate where the rates would typically be elevated. - Highlights: • UO{sub 2} dissolution rates were measured for a matrix of repository relevant conditions. • Dopants in the UO{sub 2} matrix lowered the dissolution rate. • Reduction in rates by dopants were increased at elevated temperature and O{sub 2} levels. • UO{sub 2} may be overly

  6. Hydrogeochemistry and isotope geochemistry of Velenje Basin groundwater

    Directory of Open Access Journals (Sweden)

    Tjaša Kanduč

    2016-08-01

    Full Text Available The geochemical and isotopic composition of groundwater in the Velenje Basin, Slovenia, was investigated between the years 2014 to 2015 to identify the geochemical processes in the major aquifers (Pliocene and Triassic and the water–rock interactions. Thirty-eight samples of groundwater were taken from the aquifers, 19 in the mine and 19 from the surface. Groundwater in the Triassic aquifer is dominated by HCO3–, Ca2+ and Mg2+ with δ13C DIC values in the range from -19.3 to -2.8 ‰, indicating degradation of soil organic matter and dissolution of carbonate minerals. In contrast, groundwater in the Pliocene aquifers is enriched in Mg2+, Na+, Ca2+, K+, and Si, and has high alkalinity, with δ13CDIC values in the range of -14.4 to +4.6 ‰. Based on the δ13CDIC values in all the aquifers (Pliocene and Triassic, both processes inflence the dissolution of carbonate minerals and dissolution of organic matter and in the Pliocene aquifers, methanogenesis as well. Based on Principal Component Analysis (PCA, and on geochemical and isotopic data we conclude that the following types of groundwater in Velenje Basin are present: Triassic aquifers with higher pH and lower conductivity and chloride, Pliocene, Pliocene 1 and Pliocene 2 aquifers with lower pH and higher conductivity and chloride contents, and Pliocene 3 and Pliocene 2, 3 aquifers with the highest pH values and lowest conductivities and chloride contents. 87Sr/86Sr tracer was used for the fist time in Slovenia to determine geochemical processes (dissolution of silicate versus carbonate fraction in Velenje Basin groundwater of different aquifers dewatering Pliocene and Triassic strata. 87Sr/86Sr values range from 0.70820 to 0.71056 in groundwater of Pliocene aquifers and from 0.70808 to 0.70910 in groundwater of the Triassic aquifer. This indicates that dissolution of the carbonate fraction prevails in both aquifers, while in Pliocene aquifers, an additional silicate weathering prevails with

  7. Kinetics and thermodynamics of the dissolution of Th1-xMxO2 solid solutions (M = U, Pu)

    International Nuclear Information System (INIS)

    Hubert, S.; Heisbourg, G.; Dacheux, N.; Moisy, Ph.; Purans, J.

    2004-01-01

    Kinetics of the dissolution of Th 1-x M x O 2 (M = U, Pu) solid solutions was investigated as a function of several chemical parameters such as pH, substitution ratio, temperature, ionic strength, and electrolyte. Several compositions of Th 1-x U x O 2 and Th 1-x Pu x O 2 were synthesized and characterized before and after leaching by using several methods such as XRD, EXAFS, BET, PIXE, SEM, and XPS. Leaching tests were performed in nitric, hydrochloric or sulfuric media and groundwater. The normalized dissolution rates were evaluated for Th 1-x U x O 2 , and Th 0.88 Pu 0.12 O 2 leading to the determination of the partial order related to the proton concentration, n, and to the corresponding normalized dissolution rate constant at pH = 0, k'T. While for Th enriched solids, the solid solutions Th 1-x U x O 2 have the same dissolution behaviour than ThO 2 with a partial order n ∼ 0.3, in the case of uranium enriched solids, Th 1-x U x O 2 has the same dissolution behaviour than UO 2 with a partial order of n = 1, indicating that uranium oxidation rate becomes the limiting step of the dissolution process. The stoichiometry of the release of both actinides (U or Pu, Th) was verified until the precipitation of thorium occurred in the leachate for pH > 2, while uranium was released in the solution as an uranyl form. For uranium enriched solid solutions, thermodynamic equilibrium was reached after 100 days, and solubility constant of secondary phase was determined. In the case of Th 1-x Pu x O 2 , the dissolution behaviour is similar to that of ThO 2 , but only kinetic aspect of the dissolution can be studied. From the analysis of XPS and EXAFS data on leached and un-leached Th 1-x U x O 2 samples, the dissolution mechanism of solid solutions was explained and will be discussed. The role of the electrolytes on the dissolution of the solid solutions is discussed. Kinetics parameters of dissolution are also given in groundwater and in neutral media

  8. A Study on the Oxidative-dissolution Leaching of Fission Product Oxides in the carbonate solution

    International Nuclear Information System (INIS)

    Lee, Eil Hee; Kim, Kwang Wook; Lim, Jae Gwan; Chung, Dong Yong; Yang, Han Beom; Joe, Kih Soo; Seo, Heui Seung; Kim, Yeon Hwa; Lee, Se Yoon

    2009-07-01

    This study was carried out to investigate the characteristics of an oxidativedissolution leaching of FP co-dissolved with U in a carbonate solution of Na 2 CO 3 - H 2 O 2 and (NH 4 ) 2 CO 3 -H 2 O 2 , respectively. Simulated FP-oxides which contained 12 components have been added to the solution to examine their oxidative dissolution characteristics. It was found that H 2 O 2 was an effective oxidant to minimize the dissolution of FP in a carbonate solution. In 0.5M Na 2 CO 3 -0.5M H 2 O 2 and 0.5M (NH 4 ) 2 CO 3 -0.5M H 2 O 2 solution, some elements such as Re, Te, Cs and Mo seem to be dissolved together with U. It is revealed that dissolution rates of Re, Te and Cs are high (completely dissolved within 10∼20 minutes) due to their high solubility in Na 2 CO 3 and (NH 4 ) 2 CO 3 solution regardless of the addition of H 2 O 2 , and independent of the concentrations of Na 2 CO 3 and H 2 O 2 . However, Mo was slowly dissolved by an oxidative dissolution with H 2 O 2 . It is found that the most important factor for the oxidative dissolution of FP is the pH of the solution and an effective oxidative dissolution is achieved at a pH between 10∼12 for Na 2 CO 3 and a pH between 9∼10 for (NH 4 ) 2 CO 3 , respectively, in order to minimize the dissolution of FP

  9. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China.

    Science.gov (United States)

    Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2016-02-15

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000-10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ(37)Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. Copyright © 2015. Published by Elsevier B.V.

  10. Mechanistic Basis of Cocrystal Dissolution Advantage.

    Science.gov (United States)

    Cao, Fengjuan; Amidon, Gordon L; Rodríguez-Hornedo, Naír; Amidon, Gregory E

    2018-01-01

    Current interest in cocrystal development resides in the advantages that the cocrystal may have in solubility and dissolution compared with the parent drug. This work provides a mechanistic analysis and comparison of the dissolution behavior of carbamazepine (CBZ) and its 2 cocrystals, carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) under the influence of pH and micellar solubilization. A simple mathematical equation is derived based on the mass transport analyses to describe the dissolution advantage of cocrystals. The dissolution advantage is the ratio of the cocrystal flux to drug flux and is defined as the solubility advantage (cocrystal to drug solubility ratio) times the diffusivity advantage (cocrystal to drug diffusivity ratio). In this work, the effective diffusivity of CBZ in the presence of surfactant was determined to be different and less than those of the cocrystals. The higher effective diffusivity of drug from the dissolved cocrystals, the diffusivity advantage, can impart a dissolution advantage to cocrystals with lower solubility than the parent drug while still maintaining thermodynamic stability. Dissolution conditions where cocrystals can display both thermodynamic stability and a dissolution advantage can be obtained from the mass transport models, and this information is useful for both cocrystal selection and formulation development. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. The groundwater regime of the Harwell region

    International Nuclear Information System (INIS)

    Alexander, J.

    1983-12-01

    A regional hydrogeological assessment has been undertaken in the Harwell area utilizing currently available geological information and water level data. Since the dissolution and transport of any disposed waste would be controlled by the rate and direction of groundwater movement through a potential repository, a detailed knowledge of regional and local hydrogeology is essential. This study is based on the tenet that very slow groundwater movement, through a sequence of clay lithologies, is measurable at widely separated points within intervening high permeability systems. The analysis of available data from high permeability units within a regional groundwater flow-system provides a general flow model which takes into account inter-lithology water movement in general and vertical water movement across low permeability formations in particular. Groundwater contour maps have been constructed for the Chalk, Upper Greensand, Corallian and Great Oolite lithologies. These show that in the Cretaceous and Jurassic formations of the Harwell area, groundwater movement is predominantly in the horizontal direction with a smaller proportion of vertical flow taking place between adjacent formations. The potential for vertical movement, both upwards and downwards through intervening low permeability clay lithologies is evident. The results are discussed. (author)

  12. Dissolution rate of BTEX contaminants in water

    International Nuclear Information System (INIS)

    Njobuenwu, D.O.; Amadi, S.A.; Ukpaka, P.C.

    2005-01-01

    Benzene, toluene, ethylbenzene and xylenes (BTEX) and substituted benzenes are the most common aromatic compounds in petroleum. BTEX components are the most soluble and mobile fraction of crude oil and many petroleum products, and frequently enter soil, sediments and aquatic environments because of accidental spills, leaks and improper oil waste disposal practices. The mass transfer process of hydrocarbons in aquatic mediums has received considerable attention in the literature. This paper focused on the molecular mass transfer rate of BTEX in water, with the aim of understanding and predicting contaminant fate and transport. A comprehensive model was developed to simulate the molecular dissolution rate of BTEX in a natural water stream. The model considered the physicochemical properties of the BTEX compounds and physical processes relevant to the spreading of contaminants in the sea. The dissolution rate was a function of oil slick area, dissolution mass transferability and oil solubility in water. The total dissolution rate N was calculated and the dissolution mass transfer coefficient K was given as the point value of mass transfer coefficient. Results for the dissolution rate based on the solubility of the components in the water were compared with analytical solutions from previous studies and showed good agreement. The model showed that benzene had the largest dissolution rate, while o-xylene had the lowest rate because of its lower fraction. Benzene dissolution rate was approximately 2.6, which was 20.6 times that of toluene and ethylbenzene. It was concluded that the model is useful in predicting and monitoring the dissolution rate of BTEX contaminants in soil and water systems. 22 refs., 2 tabs., 3 figs

  13. Hydrochemistry and Isotope Hydrology for Groundwater Sustainability of the Coastal Multilayered Aquifer System (Zhanjiang, China

    Directory of Open Access Journals (Sweden)

    Pengpeng Zhou

    2017-01-01

    Full Text Available Groundwater sustainability has become a critical issue for Zhanjiang (China because of serious groundwater level drawdown induced by overexploitation of its coastal multilayered aquifer system. It is necessary to understand the origins, material sources, hydrochemical processes, and dynamics of the coastal groundwater in Zhanjiang to support its sustainable management. To this end, an integrated analysis of hydrochemical and isotopic data of 95 groundwater samples was conducted. Hydrochemical analysis shows that coastal groundwater is fresh; however, relatively high levels of Cl−, Mg2+, and total dissolved solid (TDS imply slight seawater mixing with coastal unconfined groundwater. Stable isotopes (δ18O and δ2H values reveal the recharge sources of groundwater in the multilayered aquifer system. The unconfined groundwater originates from local modern precipitation; the confined groundwater in mainland originates from modern precipitation in northwestern mountain area, and the confined groundwater in Donghai and Leizhou is sourced from rainfall recharge during an older period with a colder climate. Ionic relations demonstrate that silicate weathering, carbonate dissolutions, and cation exchange are the primary processes controlling the groundwater chemical composition. Declining trends of groundwater level and increasing trends of TDS of the confined groundwater in islands reveal the landward extending tendency of the freshwater-seawater mixing zone.

  14. Chemical dissolution of sulfide minerals

    Science.gov (United States)

    Chao, T.T.; Sanzolone, R.F.

    1977-01-01

    Chemical dissolution treatments involving the use of aqua regia, 4 N HNO3, H2O2-ascorbic acid, oxalic acid, KClO3+HCl, and KClO3+HCl followed by 4 N HNO3 were applied to specimens of nine common sulfide minerals (galena, chalcopyrite, cinnabar, molybdenite, orpiment, pyrite, stibnite, sphalerite, and tetrahedrite) mixed individually with a clay loam soil. The resultant decrease in the total sulfur content of the mixture, as determined by using the Leco induction furnace, was used to evaluate the effectiveness of each chemical treatment. A combination of KClO3+HCl followed by 4 N HNO3 boiling gently for 20 min has been shown to be very effective in dissolving all the sulfide minerals. This treatment is recommended to dissolve metals residing in sulfide minerals admixed with secondary weathering products, as one step in a fractionation scheme whereby metals in soluble and adsorbed forms, and those associated with organic materials and secondary oxides, are first removed by other chemical extractants.

  15. Dissolution of metallic uranium in alkalis

    International Nuclear Information System (INIS)

    Mondino, Angel V.; Wilkinson, Maria V.; Manzini, Alberto C.

    1999-01-01

    The dissolution of U metallic foils has been studied in the framework of the development of an improved 99 Mo-production process. The best conditions for the dissolution of uranium foils of approximately 150 μm are the following: a) NaClO concentrations of 0.20 and 0.23 M with NaOH of 0.27 and 0.31 M respectively; b) temperature of the solution, 70 C degrees; c) volume of the solution, 15 ml / cm 2 of uranium foil; d) dissolution time, 30 minutes. (author)

  16. Dissolution studies of spent nuclear fuels

    International Nuclear Information System (INIS)

    1991-02-01

    To obtain quantitative data on the dissolution of high burnup spent nuclear fuel, dissolution study have been carried out at the Department of Chemistry, JAERI, from 1984 under the contract with STA entitled 'Reprocessing Test Study of High Burnup Fuel'. In this study PWR spent fuels of 8,400 to 36,100 MWd/t in averaged burnup were dissolved and the chemical composition and distribution of radioactive nuclides were measured for insoluble residue, cladding material (hull), off-gas and dissolved solution. With these analyses basic data concerning the dissolution and clarification process in the reprocessing plant were accumulated. (author)

  17. Dissolution characteristics of chalcedony under alkaline condition. Study for changes in mineral composition of engineered barrier composed by bentonite

    International Nuclear Information System (INIS)

    Watanabe, Yasutaka; Yokoyama, Shingo

    2016-01-01

    In the engineered barrier of radioactive waste disposal facilities, it is expected that bentonite is exposed to alkaline groundwater which arise from leaching of cementations materials. Minerals contained in the bentonite will be dissolved by reactions of the alkaline groundwater. Some bentonite contains silica such as quartz and chalcedony. Chalcedony is categorized in intermediate silica which is microcrystalline. It is known that dissolution of silica influences to the dissolution of smectite by means of solubility. However, dissolution kinetics of chalcedony in the alkaline condition has not been investigated, which is an uncertainty in geochemical simulations to evaluate a long-term stability of the engineered barrier. Therefore, this study performed flow-through experiments in alkaline conditions using chalcedony in order to obtain the dissolution rate of the chalcedony. The flow-through experiments was performed using NaOH-NaCl solution adjusted to 0.3 mol/L of ionic strength. Initial pH of the solution was from 8.9 to 13.5. As a result, higher pH and higher temperature showed higher Si ion concentrations of reacted solutions. The dissolution rate of the samples was calculated using Si ion concentrations at steady state of the experiment. Note that, the dissolution rate of the chalcedony was almost same as that of quartz at same temperature. After the experiments, SEM observation showed that rough surface of the chalcedony partly changed to smooth surface like quartz. It is supposed that rough surface of chalcedony was rapidly dissolved because of low degree of crystallization. The dissolution rate obtained is supposedly applicable to highly crystalline SiO 2 of chalcedony. (author)

  18. Composition and Dissolution of a Migratory, Weathered Coal Tar Creosote DNAPL

    Directory of Open Access Journals (Sweden)

    Kerstin E. Scherr

    2016-09-01

    Full Text Available Opaque, viscous tars derived from the carbonization of fossile carbon feedstocks, such coal tars and creosote, are long-term sources of groundwater contamination, predominantly with poly- and heterocyclic aromatic hydrocarbons (PAH. The dissolution, ageing and migratory behavior of dense, non aqueous phase liquid (DNAPL coal tar blobs and pools forming at the aquitard is not sufficiently understood to estimate the risk and adequately design groundwater treatment measures at a contaminated site. In this study, we investigate the composition and dissolution of a migrated, aged creosote DNAPL and corresponding experimental and groundwater profiles using comprehensive two-dimensional gas chromatography (GCxGC-MS. GC-FID unresolved compounds were attributed to methylated homocyclic species using GCxGC-MS in the Methylanthracene weight range. Equilibrium concentrations were estimated using Raoult’s law, assuming non-ideal behavior. Low molecular weight compounds were found to be prevalent even after decades of weathering, with Naphthalene (8% by mass representing the most abundant identified compound, contrary to the expected preferential depletion of hydrophilic compounds. Morevoer, dimethylnaphthalenes were relatively more abundant in the aqueous boundary layer than in the DNAPL. DNAPL migration over 400m with the groundwater flow effected lower viscosity and specific gravity of the migrated phase body in a superposition of weathering, transport and aquifer chromatography effects. Based on a decomposition of analysed and estimated constituents using the group contribution approach, reference DNAPL values for activity coefficients γi were used to model aqueous solubilities for selected compounds. Anthracene was close to its theoretical precipitation limit in the bulk DNAPL. While laboratory and modelled DNAPL dissolution behavior agree well, field data imply the presence of specific interfacial in situ processes significantly impacting dissolution

  19. The minimally tuned minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Essig, Rouven; Fortin, Jean-Francois

    2008-01-01

    The regions in the Minimal Supersymmetric Standard Model with the minimal amount of fine-tuning of electroweak symmetry breaking are presented for general messenger scale. No a priori relations among the soft supersymmetry breaking parameters are assumed and fine-tuning is minimized with respect to all the important parameters which affect electroweak symmetry breaking. The superpartner spectra in the minimally tuned region of parameter space are quite distinctive with large stop mixing at the low scale and negative squark soft masses at the high scale. The minimal amount of tuning increases enormously for a Higgs mass beyond roughly 120 GeV

  20. HB-Line Dissolution of Glovebox Floor Sweepings

    International Nuclear Information System (INIS)

    Gray, J.H.

    1998-02-01

    Two candidate flowsheets for dissolving glovebox floor sweepings in the HB-Line Phase I geometrically favorable dissolver have been developed.Dissolving conditions tested and modified during the laboratory program were based on the current processing scheme for dissolving high-fired Pu-238 oxide in HB-Line. Subsequent adjustments made to the HB-Line flowsheet reflected differences in the dissolution behavior between high-fired Pu-238 oxide and the MgO sand/PuF 4 /PuO 2 mixture in glovebox floor sweepings. Although both candidate flowsheets involved two separate dissolving steps and resulted incomplete dissolution of all solids, the one selected for use in HB-Line will require fewer processing operations and resembles the initial flowsheet proposed for dissolving sand, slag, and crucible material in F-Canyon dissolvers. Complete dissolution of glovebox floor sweepings was accomplished in the laboratory by initially dissolving between 55 and 65 degree in a 14 molar nitric acid solution. Under these conditions, partial dissolution of PuF 4 and complete dissolution of PuO 2 and MgO sand were achieved in less than one hour. The presence of free fluoride in solution,uncomplexed by aluminum, was necessary for complete dissolution of the PuO 2 .The remaining PuF 4 dissolved following addition of aluminum nitrate nonahydrate (ANN) to complex the fluoride and heating between 75 and 85 degree C for an additional hour. Precipitation of magnesium and/or aluminum nitrates could occur before, during, and after transfer of product solutions. Both dilution and/or product solution temperature controls may be necessary to prevent precipitation of these salts. Corrosion of the dissolver should not be an issue during these dissolving operations. Corrosion is minimized when dissolving at 55-65 degree C for one to three hours at a maximum uncomplexed free fluoride concentration of 0.07 molar and by dissolving at 75-85 degree C at a one to one aluminum to fluoride mole ratio for another

  1. [Phytobezoar dissolution with Coca-Cola].

    Science.gov (United States)

    Martínez de Juan, F; Martínez-Lapiedra, C; Picazo, V

    2006-05-01

    The treatment of phytobezoar is empiric. The various therapeutic choices include dietary modifications, prokinetic drugs, gastric lavage, enzymatic dissolution, endoscopic treatment, and surgery. We present two cases of phytobezoar with successful outcome after Coca-Cola administration.

  2. Dissolution studies of synthetic soddyite and uranophane

    International Nuclear Information System (INIS)

    Casas, I.; Perez, I.; Torrero, E.; Bruno, J.; Cera, E.; Duro, L.

    1997-09-01

    The dissolution of synthetically obtained soddyite and uranophane has been studied in solutions of low ionic strength. These are the likely final phases of the oxidative alternation pathway of uranium dioxide. The thermodynamic and kinetic dissolution properties of these phases have been determined at different bicarbonate concentrations. The solubilities determined in the experiments with soddyite correspond fairly well to the theoretical model calculated with a log K 0 s0 =3.9±0.7. For uranophane, the best fitting was obtained for a log K 0 s0 =11.7±0.6. The dissolution rate in the presence of bicarbonate gave for soddyite an average value of 6.8(±4.4) 10 -10 mol m -2 s -1 . For uranophane, under the same experimental conditions, the following dissolution rate equation has been derived: r 0 (mol m -2 s -1 )=10 -9±2. [HCO 3 - ] 0.69±0.09 2

  3. Improvement of database on glass dissolution

    International Nuclear Information System (INIS)

    Hayashi, Maki; Sasamoto, Hiroshi; Yoshikawa, Hideki

    2008-03-01

    In geological disposal system, high-level radioactive waste (HLW) glass is expected to retain radionuclide for the long term as the first barrier to prevent radionuclide release. The advancement of its performance assessment technology leads to the reliability improvement of the safety assessment of entire geological disposal system. For this purpose, phenomenological studies for improvement of scientific understanding of dissolution/alteration mechanisms, and development of robust dissolution/alteration model based on the study outcomes are indispensable. The database on glass dissolution has been developed for supporting these studies. This report describes improvement of the prototype glass database. Also, this report gives an example of the application of the database for reliability assessment of glass dissolution model. (author)

  4. Low temperature dissolution flowsheet for plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Almond, P. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    The H-Canyon flowsheet used to dissolve Pu metal for PuO2 production utilizes boiling HNO3. SRNL was requested to develop a complementary dissolution flowsheet at two reduced temperature ranges. The dissolution and H2 generation rates of Pu metal were investigated using a dissolving solution at ambient temperature (20-30 °C) and for an intermediate temperature of 50-60 °C. Additionally, the testing included an investigation of the dissolution rates and characterization of the off-gas generated from the ambient temperature dissolution of carbon steel cans and the nylon bags that contain the Pu metal when charged to the dissolver.

  5. Status report on dissolution model development

    International Nuclear Information System (INIS)

    Jackson, D.D.

    1983-07-01

    The computer program PROTOCOL models the dissolution reactions of chemical species in water. It is being developed particularly to study the dissolution of proposed nuclear waste forms and related phases. Experimentally derived leaching rate functions are coupled to thermochemical equilibrium calculations and water flow rates. The program has been developed over a period of years. This report describes improvements that have been done in the past year

  6. Dissolution of the Mors salt dome

    International Nuclear Information System (INIS)

    Lindstroem Jensen, K.E.

    1982-01-01

    Regardless of the interpretation of the measured salinity profiles above the Mors salt dome, they can at most be the result of dissolution rates of about 0.004 mm per year. This means that it would take more than 2.5 mill. years to dissolve 10 m of salt. Variations in groun water velocity and cap rock porosity will not significantly change this condition. The stability of the Mors salt dome is therefore not affected by dissolution of the dome. (EG)

  7. From laboratory experiments to a geological disposal vault: calculation of used nuclear fuel dissolution rates

    International Nuclear Information System (INIS)

    Sunder, S.; Shoesmith, D.W.; Kolar, M.; Leneveu, D.M.

    1998-01-01

    Calculation of used nuclear fuel dissolution rates in a geological disposal vault requires a knowledge of the redox conditions in the vault. For redox conditions less oxidizing than those causing UO 2 oxidation to the U 3 O 7 , stage, a thermodynamically-based model is appropriate. For more oxidizing redox conditions a kinetic or an electrochemical model is needed to calculate these rates. The redox conditions in a disposal vault will be affected by the radiolysis of groundwater by the ionizing radiation associated with the fuel. Therefore, we have calculated the alpha-, beta- and gamma-dose rates in water in contact with the reference used fuel in the Canadian Nuclear Fuel Waste Management Program (CNFWMP) as a function of cooling time. Also, we have determined dissolution rates of UO 2 fuel as a function of alpha and gamma dose rates from our electrochemical measurements. These room-temperature rates are used to calculate the dissolution rates of used fuel at 100 o C, the highest temperature expected in a container in the CNFWMP, as a function of time since emplacement. It is shown that beta radiolysis of water will be the main cause of oxidation of used CANDU fuel in a failed container. The use of a kinetic or an electrochemical corrosion model, to calculate fuel dissolution rates, is required for a period of ∼1000 a following emplacement of copper containers in the geologic disposal vault envisaged in the CNFWMP. Beyond this time period a thermodynamically-based model adequately predicts the fuel dissolution rates. The results presented in this paper can be adopted to calculate used fuel dissolution rates for other used UO 2 fuels in other waste management programs. (author)

  8. Groundwater arsenic concentrations in Vietnam controlled by sediment age

    DEFF Research Database (Denmark)

    Postma, Dieke; Larsen, Flemming; Thai, Nguyen Thi

    2012-01-01

    Arsenic contamination of groundwater continues to threaten the health of millions of people in southeast Asia. The oxidation of organic carbon, coupled to the reductive dissolution of arsenic-bearing iron oxides, is thought to control the release of sediment-bound arsenic into groundwater. However......, the cause of the high spatial variability in groundwater arsenic concentrations—which can range from 5 to 500 μg l−1 within distances of a few kilometres—has been uncertain. Here, we combine measurements of sediment age, organic-matter reactivity and water chemistry at four locations along a cross......-section of the arsenic-contaminated Red River floodplain in Vietnam to determine the origin of variations in groundwater arsenic concentrations. The burial age of the aquifer sediments, determined using optical stimulated luminescence, ranged from 460 years near the course of the present-day river to 5,900 years...

  9. Evaluation of a three compartment in vitro gastrointestinal simulator dissolution apparatus to predict in vivo dissolution.

    Science.gov (United States)

    Takeuchi, Susumu; Tsume, Yasuhiro; Amidon, Gregory E; Amidon, Gordon L

    2014-11-01

    In vitro dissolution tests are performed for new formulations to evaluate in vivo performance, which is affected by the change of gastrointestinal (GI) physiology, in the GI tract. Thus, those environmental changes should be introduced to an in vitro dissolution test. Many studies have successfully shown the improvement of in vitro-in vivo correlations (IVIVC) by introducing those physiological changes into dissolution tests. The gastrointestinal simulator (GIS), a multicompartment in vitro dissolution apparatus, was developed to evaluate in vivo drug dissolution. A gastric-emptying rate along with transit rate are key factors to evaluate in vivo drug dissolution and, hence, drug absorption. Dissolution tests with the GIS were performed with Biopharmaceutical Classification System class I drugs at five different gastric-emptying rates in the fasted state. Computational models were used to determine in vivo gastric-emptying time for propranolol and metoprolol based on the GIS dissolution results. Those were compared with published clinical data to determine the gastric half-emptying time. In conclusion, the GIS is a practical tool to assess dissolution properties and can improve IVIVC. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Dissolution process for advanced-PWR-type fuels

    International Nuclear Information System (INIS)

    Black, D.E.; Decker, L.A.; Pearson, L.G.

    1979-01-01

    The new Fluorinel Dissolution Process and Fuel Storage (FAST) Facility at ICPP will provide underwater storage of spent PWR fuel and a new head-end process for fuel dissolution. The dissolution will be two-stage, using HF and HNO 3 , with an intermittent H 2 SO 4 dissolution for removing stainless steel components. Equipment operation is described

  11. Development and Validation of a Dissolution Test Method for ...

    African Journals Online (AJOL)

    Purpose: To develop and validate a dissolution test method for dissolution release of artemether and lumefantrine from tablets. Methods: A single dissolution method for evaluating the in vitro release of artemether and lumefantrine from tablets was developed and validated. The method comprised of a dissolution medium of ...

  12. Geochemical modelling baseline compositions of groundwater

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Kjøller, Claus; Andersen, Martin Søgaard

    2008-01-01

    and variations in water chemistry that are caused by large scale geochemical processes taking place at the timescale of thousands of years. The most important geochemical processes are ion exchange (Valreas and Aveiro) where freshwater solutes are displacing marine ions from the sediment surface, and carbonate......Reactive transport models, were developed to explore the evolution in groundwater chemistry along the flow path in three aquifers; the Triassic East Midland aquifer (UK), the Miocene aquifer at Valreas (F) and the Cretaceous aquifer near Aveiro (P). All three aquifers contain very old groundwaters...... dissolution (East Midlands, Valreas and Aveiro). Reactive transport models, employing the code PHREEQC, which included these geochemical processes and one-dimensional solute transport were able to duplicate the observed patterns in water quality. These models may provide a quantitative understanding...

  13. The minimal non-minimal standard model

    International Nuclear Information System (INIS)

    Bij, J.J. van der

    2006-01-01

    In this Letter I discuss a class of extensions of the standard model that have a minimal number of possible parameters, but can in principle explain dark matter and inflation. It is pointed out that the so-called new minimal standard model contains a large number of parameters that can be put to zero, without affecting the renormalizability of the model. With the extra restrictions one might call it the minimal (new) non-minimal standard model (MNMSM). A few hidden discrete variables are present. It is argued that the inflaton should be higher-dimensional. Experimental consequences for the LHC and the ILC are discussed

  14. Hydrogeochemical analysis and evaluation of groundwater in the reclaimed small basin of Abu Mina, Egypt

    Science.gov (United States)

    Salem, Zenhom E.; Atwia, Mohamed G.; El-Horiny, Mohamed M.

    2015-12-01

    Agricultural reclamation activities during the last few decades in the Western Nile Delta have led to great changes in the groundwater levels and quality. In Egypt, changing the desert land into agricultural land has been done using transferred Nile water (through irrigation canal systems) or/and groundwater. This research investigates the hydrogeochemical changes accompanying the reclamation processes in the small basin of Abu Mina, which is part of the Western Nile Delta region. In summer 2008, 23 groundwater samples were collected and groundwater levels were measured in 40 observation wells. Comparing the groundwater data of the pre-reclamation (1974) and the post-reclamation (2008) periods, groundwater seems to have been subjected to many changes: rise in water level, modification of the flow system, improvement of water quality, and addition of new salts through dissolution processes. Generally, Abu Mina basin is subdivided into two areas, recharge and discharge. The dissolution and mixing were recognized in the recharge areas, while the groundwater of the discharge region carries the signature of the diluted pre-reclamation groundwater. The salts of soil and aquifer deposits play an important role in the salt content of the post and pre-reclamation groundwater. NaCl was the predominant water type in the pre-reclamation groundwater, while CaSO4, NaCl and MgSO4 are the common chemical facies in the post-reclamation groundwater. The post-reclamation groundwater mostly indicates mixing between the pre-reclamation groundwater and the infiltrated freshwater with addition of some ions due to interaction with soil and sediments.

  15. Ground-water monitoring under RCRA

    International Nuclear Information System (INIS)

    Coalgate, J.

    1993-11-01

    In developing a regulatory strategy for the disposal of hazardous waste under the Resource Conservation and Recovery Act (RCRA), protection of ground-water resources was the primary goal of the Environmental Protection Agency (EPA). EPA's ground-water protection strategy seeks to minimize the potential for hazardous wastes and hazardous constituents in waste placed in land disposel units to migrate into the environment. This is achieved through liquids management (limiting the placement of liquid wastes in or on the land, requiring the use of liners beneath waste, installing leachate collection systems and run-on and run-off controls, and covering wastes at closure). Ground-water monitoring serves to detect any failure in EPA's liquids management strategy so that ground-water contamination can be detected and addressed as soon as possible

  16. JSS project phase 4: Experimental and modelling studies of HLW glass dissolution in repository environments

    International Nuclear Information System (INIS)

    1987-10-01

    A goal of the JSS project was to develop a scientific basis for understanding the effects of waste package components, groundwater chemistry, and other repository conditions on glass dissolution behaviour, and to develop and refine a model for the processes governing glass dissolution. The fourth phase of the project, which was performed by the Hahn-Meitner-Institut, Berlin, FRG, dealt specifically with model development and application. Phase 4 also adressed whether basaltic glasses could serve as natural analogues for nuclear waste glasses, thus providing a means to test the capability of the model for long-term predictions. Additional experiments were performed in order to complete the data base necessary to model interactions between the glass and bentonite and between glass and steel corrosion products. More data on temperature, S/V, and pH dependence of the glass/water reaction were also collected. In this report, the data acquired during phase 4 are presented and discussed. (orig./DG)

  17. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics.

    Science.gov (United States)

    Kang, Seung-Kyun; Park, Gayoung; Kim, Kyungmin; Hwang, Suk-Won; Cheng, Huanyu; Shin, Jiho; Chung, Sangjin; Kim, Minjin; Yin, Lan; Lee, Jeong Chul; Lee, Kyung-Mi; Rogers, John A

    2015-05-06

    Semiconducting materials are central to the development of high-performance electronics that are capable of dissolving completely when immersed in aqueous solutions, groundwater, or biofluids, for applications in temporary biomedical implants, environmentally degradable sensors, and other systems. The results reported here include comprehensive studies of the dissolution by hydrolysis of polycrystalline silicon, amorphous silicon, silicon-germanium, and germanium in aqueous solutions of various pH values and temperatures. In vitro cellular toxicity evaluations demonstrate the biocompatibility of the materials and end products of dissolution, thereby supporting their potential for use in biodegradable electronics. A fully dissolvable thin-film solar cell illustrates the ability to integrate these semiconductors into functional systems.

  18. Jarosite dissolution rates in perchlorate brine

    Science.gov (United States)

    Legett, Carey; Pritchett, Brittany N.; Elwood Madden, Andrew S.; Phillips-Lander, Charity M.; Elwood Madden, Megan E.

    2018-02-01

    Perchlorate salts and the ferric sulfate mineral jarosite have been detected at multiple locations on Mars by both landed instruments and orbiting spectrometers. Many perchlorate brines have eutectic temperatures bearing rocks and sediments may have been altered by perchlorate brines. Here we measured jarosite dissolution rates in 2 M sodium perchlorate brine as well as dilute water at 298 K to determine the effects of perchlorate anions on jarosite dissolution rates and potential reaction products. We developed a simple method for determining aqueous iron concentrations in high salinity perchlorate solutions using ultraviolet-visible spectrophotometry that eliminates the risk of rapid oxidation reactions during analyses. Jarosite dissolution rates in 2 M perchlorate brine determined by iron release rate (2.87 × 10-12 ±0.85 × 10-12 mol m-2 s-1) were slightly slower than the jarosite dissolution rate measured in ultrapure (18.2 MΩ cm-1) water (5.06 × 10-12 mol m-2 s-1) using identical methods. No additional secondary phases were observed in XRD analyses of the reaction products. The observed decrease in dissolution rate may be due to lower activity of water (ɑH2O = 0.9) in the 2 M NaClO4 brine compared with ultrapure water (ɑH2O = 1). This suggests that the perchlorate anion does not facilitate iron release, unlike chloride anions which accelerated Fe release rates in previously reported jarosite and hematite dissolution experiments. Since dissolution rates are slower in perchlorate-rich solutions, jarosite is expected to persist longer in perchlorate brines than in dilute waters or chloride-rich brines. Therefore, if perchlorate brines dominate aqueous fluids on the surface of Mars, jarosite may remain preserved over extended periods of time, despite active aqueous processes.

  19. Arsenic species and chemistry in groundwater of southeast Michigan

    International Nuclear Information System (INIS)

    Kim, M.-J.; Nriagu, Jerome; Haack, Sheridan

    2002-01-01

    Most of the arsenic detected was arsenite [As(III)]. - Groundwater samples, taken from 73 wells in 10 counties of southeast Michigan in 1997 had arsenic concentrations in the range of 0.5 to 278 μg/l, the average being 29 μg/l. About 12% of these wells had arsenic concentrations that exceeded the current USEPA's maximum contaminant level of 50 μg/l. Most (53-98%) of the arsenic detected was arsenite [As(III)] and other observations supported the arsenic species distribution (low redox potential and DO). In shallow groundwater ( 15 m), the concentration of arsenic is possibly controlled by reductive dissolution of arsenic-rich iron hydroxide/oxyhydroxide and dissolution of arsenic sulfide minerals

  20. Current Status of Groundwater Monitoring Networks in Korea

    Directory of Open Access Journals (Sweden)

    Jin-Yong Lee

    2016-04-01

    Full Text Available Korea has been operating groundwater monitoring systems since 1996 as the Groundwater Act enacted in 1994 enforces nationwide monitoring. Currently, there are six main groundwater monitoring networks operated by different government ministries with different purposes: National Groundwater Monitoring Network (NGMN, Groundwater Quality Monitoring Network (GQMN, Seawater Intrusion Monitoring Network (SIMN, Rural Groundwater Monitoring Network (RGMN, Subsidiary Groundwater Monitoring Network (SGMN, and Drinking Water Monitoring Network (DWMN. The Networks have a total of over 3500 monitoring wells and the majority of them are now equipped with automatic data loggers and remote terminal units. Most of the monitoring data are available to the public through internet websites. These Networks have provided scientific data for designing groundwater management plans and contributed to securing the groundwater resource particularly for recent prolonged drought seasons. Each Network, however, utilizes its own well-specifications, probes, and telecommunication protocols with minimal communication with other Networks, and thus duplicate installations of monitoring wells are not uncommon among different Networks. This mini-review introduces the current regulations and the Groundwater Monitoring Networks operated in Korea and provides some suggestions to improve the sustainability of the current groundwater monitoring system in Korea.

  1. Heterogeneous redox conditions, arsenic mobility, and groundwater flow in a fractured-rock aquifer near a waste repository site in New Hampshire, USA

    Science.gov (United States)

    Anthropogenic sources of carbon from landfill or waste leachate can promote reductive dissolution of in situ arsenic (As) and enhance the mobility of As in groundwater. Groundwater from residential-supply wells in a fractured crystalline-rock aquifer adjacent to a Superfund site ...

  2. Dissolution testing of orally disintegrating tablets.

    Science.gov (United States)

    Kraemer, Johannes; Gajendran, Jayachandar; Guillot, Alexis; Schichtel, Julian; Tuereli, Akif

    2012-07-01

    For industrially manufactured pharmaceutical dosage forms, product quality tests and performance tests are required to ascertain the quality of the final product. Current compendial requirements specify a disintegration and/or a dissolution test to check the quality of oral solid dosage forms. These requirements led to a number of compendial monographs for individual products and, at times, the results obtained may not be reflective of the dosage form performance. Although a general product performance test is desirable for orally disintegrating tablets (ODTs), the complexity of the release controlling mechanisms and short time-frame of release make such tests difficult to establish. For conventional oral solid dosage forms (COSDFs), disintegration is often considered to be the prerequisite for subsequent dissolution. Hence, disintegration testing is usually insufficient to judge product performance of COSDFs. Given the very fast disintegration of ODTs, the relationship between disintegration and dissolution is worthy of closer scrutiny. This article reviews the current status of dissolution testing of ODTs to establish the product quality standards. Based on experimental results, it appears that it may be feasible to rely on the dissolution test without a need for disintegration studies for selected ODTs on the market. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  3. Crystal modifications and dissolution rate of piroxicam.

    Science.gov (United States)

    Lyn, Lim Yee; Sze, Huan Wen; Rajendran, Adhiyaman; Adinarayana, Gorajana; Dua, Kamal; Garg, Sanjay

    2011-12-01

    Piroxicam is a nonsteroidal anti-inflammatory drug with low aqueous solubility which exhibits polymorphism. The present study was carried out to develop polymorphs of piroxicam with enhanced solubility and dissolution rate by the crystal modification technique using different solvent mixtures prepared with PEG 4000 and PVP K30. Physicochemical characteristics of the modified crystal forms of piroxicam were investigated by X-ray powder diffractometry, FT-IR spectrophotometry and differential scanning calorimetry. Dissolution and solubility profiles of each modified crystal form were studied and compared with pure piroxicam. Solvent evaporation method (method I) produced both needle and cubic shaped crystals. Slow crystallization from ethanol with addition of PEG 4000 or PVP K30 at room temperature (method II) produced cubic crystal forms. Needle forms produced by method I improved dissolution but not solubility. Cubic crystals produced by method I had a dissolution profile similar to that of untreated piroxicam but showed better solubility than untreated piroxicam. Cubic shaped crystals produced by method II showed improved dissolution, without a significant change in solubility. Based on the XRPD results, modified piroxicam crystals obtained by method I from acetone/benzene were cube shaped, which correlates well with the FTIR spectrum; modified needle forms obtained from ethanol/methanol and ethanol/acetone showed a slight shift of FTIR peak that may be attributed to differences in the internal structure or conformation.

  4. Catalysed electrolytic metal oxide dissolution processes

    International Nuclear Information System (INIS)

    Machuron-Mandard, X.

    1994-01-01

    The hydrometallurgical processes designed for recovering valuable metals from mineral ores as well as industrial wastes usually require preliminary dissolution of inorganic compounds in aqueous media before extraction and purification steps. Unfortunately, most of the minerals concerned hardly or slowly dissolve in acidic or basic solutions. Metallic oxides, sulfides and silicates are among the materials most difficult to dissolve in aqueous solutions. They are also among the main minerals containing valuable metals. The redox properties of such materials sometimes permit to improve their dissolution by adding oxidizing or reducing species to the leaching solution, which leads to an increase in the dissolution rate. Moreover, limited amounts of redox promoters are required if the redox agent is regenerated continuously thanks to an electrochemical device. Nuclear applications of such concepts have been suggested since the dissolution of many actinide compounds (e.g., UO 2 , AmO 2 , PuC, PuN,...) is mainly based on redox reactions. In the 1980s, improvements of the plutonium dioxide dissolution process have been proposed on the basis of oxidation-reduction principles, which led a few years later to the design of industrial facilities (e.g., at Marcoule or at the french reprocessing plant of La Hague). General concepts and well-established results obtained in France at the Atomic Energy Commission (''Commissariat a l'Energie Atomique'') will be presented and will illustrate applications to industrial as well as analytical problems. (author)

  5. Criticality safety in high explosives dissolution

    International Nuclear Information System (INIS)

    Troyer, S.D.

    1997-01-01

    In 1992, an incident occurred at the Pantex Plant in which the cladding around a fissile material component (pit) cracked during dismantlement of the high explosives portion of a nuclear weapon. Although the event did not result in any significant contamination or personnel exposures, concerns about the incident led to the conclusion that the current dismantlement process was unacceptable. Options considered for redesign, dissolution tooling design considerations, dissolution tooling design features, and the analysis of the new dissolution tooling are summarized. The final tooling design developed incorporated a number of safety features and provides a simple, self-contained, low-maintenance method of high explosives removal for nuclear explosive dismantlement. Analyses demonstrate that the tooling design will remain subcritical under normal, abnormal, and credible accident scenarios. 1 fig

  6. Waste form dissolution in bedded salt

    International Nuclear Information System (INIS)

    Kaufman, A.M.

    1980-01-01

    A model was devised for waste dissolution in bedded salt, a hydrologically tight medium. For a typical Spent UnReprocessed Fuel (SURF) emplacement, the dissolution rate wll be diffusion limited and will rise to a steady state value after t/sub eq/ approx. = 250 (1+(1-epsilon 0 ) K/sub D//epsilon 0 ) (years) epsilon 0 is the overpack porosity and K/sub d/ is the overpack sorption coefficient. The steady state dissolution rate itself is dominated by the solubility of UO 2 . Steady state rates between 5 x 10 -5 and .5 (g/year) are achievable by SURF emplacements in bedded salt without overpack, and rates between 5 x 10 -7 and 5 x 10 -3 (g/year) with an overpack having porosity of 10 -2

  7. Magnetic resonance imaging of tablet dissolution.

    Science.gov (United States)

    Nott, Kevin P

    2010-01-01

    Magnetic resonance imaging (MRI) is the technique of choice for measuring hydration, and its effects, during dissolution of tablets since it non-invasively maps (1)H nuclei associated with 'mobile' water. Although most studies have used MRI systems with high-field superconducting magnets, low-field laboratory-based instruments based on permanent magnet technology are being developed that provide key data for the formulation scientist. Incorporation of dissolution hardware, in particular the United States Pharmacopeia (USP) apparatus 4 flow-through cell, allows measurements under controlled conditions for comparison against other dissolution methods. Furthermore, simultaneous image acquisition and measurement of drug concentration allow direct comparison of the drug release throughout the hydration process. The combination of low-field MRI with USP-4 apparatus provides another tool to aid tablet formulation. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Effect of compositional heterogeneity on dissolution of non-ideal LNAPL mixtures

    Science.gov (United States)

    Vasudevan, M.; Johnston, C. D.; Bastow, T. P.; Lekmine, G.; Rayner, J. L.; Nambi, I. M.; Suresh Kumar, G.; Ravi Krishna, R.; Davis, G. B.

    2016-11-01

    The extent of dissolution of petroleum hydrocarbon fuels into groundwater depends greatly on fuel composition. Petroleum fuels can consist of thousands of compounds creating different interactions within the non-aqueous phase liquid (NAPL), thereby affecting the relative dissolution of the components and hence a groundwater plume's composition over long periods. Laboratory experiments were conducted to study the variability in the effective solubilities and activity coefficients for common constituents of gasoline fuels (benzene, toluene, p-xylene and 1,2,4-trimethylbenzene) (BTX) in matrices with an extreme range of molar volumes and chemical affinities. Four synthetic mixtures were investigated comprising BTX with the bulk of the NAPL mixtures made up of either, ethylbenzene (an aromatic like BTX with similar molar volume); 1,3,5-trimethylbenzene (an aromatic with a greater molar volume); n-hexane (an aliphatic with a low molar volume); and n-decane (an aliphatic with a high molar volume). Equilibrium solubility values for the constituents were under-predicted by Raoult's law by up to 30% (higher experimental concentrations) for the mixture with n-hexane as a filler and over-predicted by up to 12% (lower experimental concentrations) for the aromatic mixtures with ethylbenzene and 1,3,5-trimethylbenzene as fillers. Application of PP-LFER (poly-parameter linear free energy relationship) model for non-ideal mixtures also resulted in poor correlation between experimentally measured and predicted concentrations, indicating that differences in chemical affinities can be the major cause of deviation from ideal behavior. Synthetic mixtures were compared with the dissolution behavior of fresh and naturally weathered unleaded gasoline. The presence of lighter aliphatic components in the gasoline had a profound effect on estimating effective solubility due to chemical affinity differences (estimated at 0.0055 per percentage increase in the molar proportion of aliphatic) as

  9. DISSOLUTION OF IRRADIATED MURR FUEL ASSEMBLIES

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E.

    2010-06-17

    A literature survey on the dissolution of spent nuclear fuel from the University of Missouri Research Reactor (MURR) has been performed. This survey encompassed both internal and external literature sources for the dissolution of aluminum-clad uranium alloy fuels. The most limiting aspect of dissolution in the current facility configuration involves issues related to the control of the flammability of the off-gas from this process. The primary conclusion of this work is that based on past dissolution of this fuel in H-Canyon, four bundles of this fuel (initial charge) may be safely dissolved in a nitric acid flowsheet catalyzed with 0.002 M mercuric nitrate using a 40 scfm purge to control off-gas flammability. The initial charge may be followed by a second charge of up to five bundles to the same dissolver batch depending on volume and concentration constraints. The safety of this flowsheet relies on composite lower flammability limits (LFL) estimated from prior literature, pilot-scale work on the dissolution of site fuels, and the proposed processing flowsheet. Equipment modifications or improved LFL data offer the potential for improved processing rates. The fuel charging sequence, as well as the acid and catalyst concentrations, will control the dissolution rate during the initial portion of the cycle. These parameters directly impact the hydrogen and off-gas generation and, along with the purge flowrate determine the number of bundles that may be charged. The calculation approach within provides Engineering a means to determine optimal charging patterns. Downstream processing of this material should be similar to that of recent processing of site fuels requiring only minor adjustments of the existing flowsheet parameters.

  10. Formation, transformation and dissolution of phases formed on surfaces

    International Nuclear Information System (INIS)

    Shoesmith, D.W.

    1983-03-01

    The basic mechanisms of film growth, transformation, and dissolution of phases formed on surfaces are discussed. Film growth can occur via solid-state processes or via substrate (usally metal or alloy) dissolution, followed by local supersaturation and precipitation of an insoluble phase. The phase(s) formed may be metastable and transform to a more stable phase, via either solid-state or dissolution-reprecipitation processes. Film dissolution reactions can also occur via a variety of mechanisms, including: (i) direct chemical dissolution when no oxidation state change occurs; (ii) redox dissolution when the film dissolves via a redox reaction involving a reducing or oxidizing agent in solution; and (iii) autoreduction, where film dissolution is coupled to metal dissolution. Such film-growth and dissolution processes, which often produce complex multilayer films, are common in the nuclear industry. A number of examples are discussed

  11. Microbially mediated barite dissolution in anoxic brines

    International Nuclear Information System (INIS)

    Ouyang, Bingjie; Akob, Denise M.; Dunlap, Darren; Renock, Devon

    2017-01-01

    Fluids injected into shale formations during hydraulic fracturing of black shale return with extraordinarily high total-dissolved-solids (TDS) and high concentrations of barium (Ba) and radium (Ra). Barite, BaSO_4, has been implicated as a possible source of Ba as well as a problematic mineral scale that forms on internal well surfaces, often in close association with radiobarite, (Ba,Ra)SO_4. The dissolution of barite by abiotic processes is well quantified. However, the identification of microbial communities in flowback and produced water necessitates the need to understand barite dissolution in the presence of bacteria. Therefore, we evaluated the rates and mechanisms of abiotic and microbially-mediated barite dissolution under anoxic and hypersaline conditions in the laboratory. Barite dissolution experiments were conducted with bacterial enrichment cultures established from produced water from Marcellus Shale wells located in northcentral Pennsylvania. These cultures were dominated by anaerobic halophilic bacteria from the genus Halanaerobium. Dissolved Ba was determined by ICP-OES and barite surfaces were investigated by SEM and AFM. Our results reveal that: 1) higher amounts of barium (up to ∼5 × ) are released from barite in the presence of Halanaerobium cultures compared to brine controls after 30 days of reaction, 2) etch pits that develop on the barite (001) surface in the presence of Halanaerobium exhibit a morphology that is distinct from those that form during control experiments without bacteria, 3) etch pits that develop in the presence of Halanaerobium exhibit a morphology that is similar to the morphology of etch pits formed in the presence of strong organic chelators, EDTA and DTPA, and 4) experiments using dialysis membranes to separate barite from bacteria suggest that direct contact between the two is not required in order to promote dissolution. These results suggest that Halanaerobium increase the rate of barite dissolution in anoxic

  12. Saltcake dissolution FY 1998 status report

    International Nuclear Information System (INIS)

    HERTING, D.L.

    1999-01-01

    A laboratory scouting study was completed on the dissolution characteristics of Hanford waste from three single-shell waste tanks: 241-BY-102, 241-BY-106, and 241-B-106. Gross dissolution behavior (percent undissolved solids as a function of dilution) is explained in terms of characteristics of individual salts in the waste. The percentage of the sodium inventory retrievable from the tanks by dissolving saltcake at reasonable dilution levels is estimated at 86% of the total sodium for tank BY-102, 98% for BY-106, and 79% for B-106

  13. Chrysotile dissolution rates: Implications for carbon sequestration

    International Nuclear Information System (INIS)

    Thom, James G.M.; Dipple, Gregory M.; Power, Ian M.; Harrison, Anna L.

    2013-01-01

    Highlights: • Uncertainties in serpentine dissolution kinetics hinder carbon sequestration models. • A pH dependent, far from equilibrium dissolution rate law for chrysotile. • F chrysotile (mol/m 2 /s) = 10 −0.21pH−10.57 at 22 °C over pH 2–10. • Laboratory dissolution rates consistent with mine waste weathering observations. • Potential for carbon sequestration in mine tailings and aquifers is assessed. - Abstract: Serpentine minerals (e.g., chrysotile) are a potentially important medium for sequestration of CO 2 via carbonation reactions. The goals of this study are to report a steady-state, far from equilibrium chrysotile dissolution rate law and to better define what role serpentine dissolution kinetics will have in constraining rates of carbon sequestration via serpentine carbonation. The steady-state dissolution rate of chrysotile in 0.1 m NaCl solutions was measured at 22 °C and pH ranging from 2 to 8. Dissolution experiments were performed in a continuously stirred flow-through reactor with the input solutions pre-equilibrated with atmospheric CO 2 . Both Mg and Si steady-state fluxes from the chrysotile surface, and the overall chrysotile flux were regressed and the following empirical relationships were obtained: F Mg =-0.22pH-10.02;F Si =-0.19pH-10.37;F chrysotile =-0.21pH-10.57 where F Mg , F Si , and F chrysotile are the log 10 Mg, Si, and molar chrysotile fluxes in mol/m 2 /s, respectively. Element fluxes were used in reaction-path calculations to constrain the rate of CO 2 sequestration in two geological environments that have been proposed as potential sinks for anthropogenic CO 2 . Carbon sequestration in chrysotile tailings at 10 °C is approximately an order of magnitude faster than carbon sequestration in a serpentinite-hosted aquifer at 60 °C on a per kilogram of water basis. A serpentinite-hosted aquifer, however, provides a larger sequestration capacity. The chrysotile dissolution rate law determined in this study has

  14. Groundwater Managment Districts

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset outlines the location of the five Groundwater Management Districts in Kansas. GMDs are locally formed and elected boards for regional groundwater...

  15. Evaluation of alkaline dissolution of Al 6061 and Al 1050 for the production of Mo-99 from LEU targets

    International Nuclear Information System (INIS)

    Mindrisz, Ana C.; Camilo, Ruth L.; Araujo, Izilda C.; Forbicini, Christina A.L.G. de O.

    2013-01-01

    Since 2008, due to the global crisis in the production of radioisotope 99 Mo, which product of decay, 99m Tc, is the tracer element most often used in nuclear medicine and accounts for about 80% of all diagnostic procedures in vivo. Studies on the alkaline dissolution to obtain 9 9M o from irradiated UAl x -Al LEU targets are under development. Processing time should be minimized, considering the short half-life of 99 Mo and 99m Tc, about 66 h and 6 h, respectively. This makes dissolution time a significant factor in the development of the process. This paper presents the results of alkaline dissolution of 'scraps' of Al 6061 and 1050, used to simulate the dissolution process of UAl x -Al targets. Dissolution time and gas releasing were evaluated using the following alkaline solutions: a) NaOH 3 mol.L -1 and NaNO 3 2 mol.L -1 , b) NaOH 3 mol.L -1 and NaNO 3 4 mol.L -1 . The initial temperature of dissolution was 85 deg C in all cases. Al 6061 showed values of dissolution time greater than that for Al 1050, 25% for NaNO 3 2 mol.L -1 and 104.55% for NaNO 3 4 mol.L -1 . The dissolution with NaNO 3 2 mol.L -1 showed that the gas releasing for Al 6061 was 2.7% greater than for Al 1050. However Al 1050 showed that gas releasing 9.92% greater than for Al 6061 during the dissolution with NaNO 3 4 mol.L -1 . The decision about what type of alloy has to be used, Al 1050 or Al 6061, it will be upto the group that will manufacture the targets for the RMB. (author)

  16. Effect of sodium lauryl sulfate in dissolution media on dissolution of hard gelatin capsule shells.

    Science.gov (United States)

    Zhao, Fang; Malayev, Vyacheslav; Rao, Venkatramana; Hussain, Munir

    2004-01-01

    Sodium lauryl sulfate (SLS) is a commonly used surfactant in dissolution media for poorly water soluble drugs. However, it has occasionally been observed that SLS negatively impacts the dissolution of drug products formulated in gelatin capsules. This study investigated the effect of SLS on the dissolution of hard gelatin capsule shells. The USP paddle method was used with online UV monitoring at 214 nm (peptide bond). Empty size #0 capsule shells were held to the bottom of the dissolution vessel by magnetic three-prong sinkers. SLS significantly slowed down the dissolution of gelatin shells at pH < 5. Visually, the gelatin shells transformed into some less-soluble precipitate under these conditions. This precipitate was found to contain a higher sulfur content than the gelatin control sample by elemental analysis, indicating that SLS is part of the precipitate. Additionally, the slowdown of capsule shell dissolution was shown to be dependent on the SLS concentration and the ionic strength of the media. SLS interacts with gelatin to form a less-soluble precipitate at pH < 5. The use of SLS in dissolution media at acidic pH should be carefully evaluated for gelatin capsule products.

  17. Assessing the effect of dissolved organic ligands on mineral dissolution rates: An example from calcite dissolution

    International Nuclear Information System (INIS)

    DeMaio, T.; Grandstaff, D.E.

    1997-01-01

    Experiments suggest that dissolved organic ligands may primarily modify mineral dissolution rates by three mechanisms: (1) metal-ligand (M-L) complex formation in solution, which increases the degree of undersaturation, (2) formation of surface M-L complexes that attack the surface, and (3) formation of surface complexes which passivate or protect the surface. Mechanisms (1) and (2) increase the dissolution rate and the third decreases it compared with organic-free solutions. The types and importance of these mechanisms may be assessed from plots of dissolution rate versus degree of undersaturation. To illustrate this technique, calcite, a common repository cementing and vein-filling mineral, was dissolved at pH 7.8 and 22 C in Na-Ca-HCO 3 -Cl solutions with low concentrations of three organic ligands. Low citrate concentrations (50 microM) increased the dissolution rate consistent with mechanism (1). Oxalate decreased the rate, consistent with mechanism (3). Low phthalate concentration (<50 microM) decreased calcite dissolution rates; however, higher concentrations increased the dissolution rates, which became faster than in inorganic solutions. Thus, phthalate exhibits both mechanisms (2) and (3) at different concentrations. In such cases linear extrapolations of dissolution rates from high organic ligand concentrations may not be valid

  18. A kinetic model for borosilicate glass dissolution based on the dissolution affinity of a surface alteration layer

    International Nuclear Information System (INIS)

    Bourcier, W.L.; Peiffer, D.W.; Knauss, K.G.; McKeegan, K.D.; Smith, D.K.

    1989-11-01

    A kinetic model for the dissolution of borosilicate glass is used to predict the dissolution rate of a nuclear waste glass. In the model, the glass dissolution rate is controlled by the rate of dissolution of an alkali-depleted amorphous surface (gel) layer. Our model predicts that all components concentrated in the surface layer, affect glass dissolution rates. The good agreement between predicted and observed elemental dissolution rates suggests that the dissolution rate of the gel layer limits the overall rate of glass dissolution. The model predicts that the long-term rate of glass dissolution will depend mainly on ion concentrations in solution, and therefore on the secondary phases which precipitate and control ion concentrations. 10 refs., 5 figs., 1 tab

  19. Chemistry of groundwater discharge inferred from longitudinal river sampling

    Science.gov (United States)

    Batlle-Aguilar, J.; Harrington, G. A.; Leblanc, M.; Welch, C.; Cook, P. G.

    2014-02-01

    We present an approach for identifying groundwater discharge chemistry and quantifying spatially distributed groundwater discharge into rivers based on longitudinal synoptic sampling and flow gauging of a river. The method is demonstrated using a 450 km reach of a tropical river in Australia. Results obtained from sampling for environmental tracers, major ions, and selected trace element chemistry were used to calibrate a steady state one-dimensional advective transport model of tracer distribution along the river. The model closely reproduced river discharge and environmental tracer and chemistry composition along the study length. It provided a detailed longitudinal profile of groundwater inflow chemistry and discharge rates, revealing that regional fractured mudstones in the central part of the catchment contributed up to 40% of all groundwater discharge. Detailed analysis of model calibration errors and modeled/measured groundwater ion ratios elucidated that groundwater discharging in the top of the catchment is a mixture of local groundwater and bank storage return flow, making the method potentially useful to differentiate between local and regional sourced groundwater discharge. As the error in tracer concentration induced by a flow event applies equally to any conservative tracer, we show that major ion ratios can still be resolved with minimal error when river samples are collected during transient flow conditions. The ability of the method to infer groundwater inflow chemistry from longitudinal river sampling is particularly attractive in remote areas where access to groundwater is limited or not possible, and for identification of actual fluxes of salts and/or specific contaminant sources.

  20. Multivariate analysis of the heterogeneous geochemical processes controlling arsenic enrichment in a shallow groundwater system.

    Science.gov (United States)

    Huang, Shuangbing; Liu, Changrong; Wang, Yanxin; Zhan, Hongbin

    2014-01-01

    The effects of various geochemical processes on arsenic enrichment in a high-arsenic aquifer at Jianghan Plain in Central China were investigated using multivariate models developed from combined adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR). The results indicated that the optimum variable group for the AFNIS model consisted of bicarbonate, ammonium, phosphorus, iron, manganese, fluorescence index, pH, and siderite saturation. These data suggest that reductive dissolution of iron/manganese oxides, phosphate-competitive adsorption, pH-dependent desorption, and siderite precipitation could integrally affect arsenic concentration. Analysis of the MLR models indicated that reductive dissolution of iron(III) was primarily responsible for arsenic mobilization in groundwaters with low arsenic concentration. By contrast, for groundwaters with high arsenic concentration (i.e., > 170 μg/L), reductive dissolution of iron oxides approached a dynamic equilibrium. The desorption effects from phosphate-competitive adsorption and the increase in pH exhibited arsenic enrichment superior to that caused by iron(III) reductive dissolution as the groundwater chemistry evolved. The inhibition effect of siderite precipitation on arsenic mobilization was expected to exist in groundwater that was highly saturated with siderite. The results suggest an evolutionary dominance of specific geochemical process over other factors controlling arsenic concentration, which presented a heterogeneous distribution in aquifers. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of Environmental Science and Health, Part A, to view the supplemental file.

  1. Physicochemical characterization and dissolution properties of ...

    African Journals Online (AJOL)

    calorimetry (DSC), powder x-ray diffractometry (PXRD) and Fourier transform infrared (FT-IR) spectroscopy. Phase solubility studies revealed an AL-type diagram indicating a 1:1 stoichiometric inclusion complex and a stability constant value of 914 M-1. Solubility and dissolution rates of PYR and the binary systems were ...

  2. Dissolution enhancement of Tibolone by micronization technique

    Directory of Open Access Journals (Sweden)

    Kailash Bansal

    2012-01-01

    Conclusion: Micronization technique has a significant impact on the dissolution of Tibolone. The experimental findings suggest that micronization can be used for the preparation of rapidly dissolving formulations of Tibolone, and could potentially lead to improvement in the in-vivo bioavailability of Tibolone oral tablets.

  3. Sodium tetraphenylborate solubility and dissolution rates

    International Nuclear Information System (INIS)

    Barnes, M.J.; Peterson, R.A.; Swingle, R.F.; Reeves, C.T.

    1995-01-01

    The rate of solid sodium tetraphenylborate (NaTPB) dissolution in In-Tank Precipitation salt solutions has been experimentally determined. The data indicates that the dissolution rate of solid NaTPB is a minor contributor the lag time experienced in the 1983 Salt Decontamination Demonstration Test and should not be considered as the rate determining step. Current analytical models for predicting the time to reach the composite lower flammability limit assume that the lag time is not more than 6 hours, and the data supports this assumption (i.e., dissolution by itself requires much less than 6 hours). The data suggests that another step--such as mass transport, the reaction of a benzene precursor or the mixing behavior--is the rate determining factor for benzene release to the vapor space in Tank 48H. In addition, preliminary results from this program show that the degree of agitation employed is not a significant parameter in determining the rate of NaTPB dissolution. As a result of this study, an improved equation for predicting equilibrium tetraphenylborate solubility with respect to temperature and sodium ion concentration has been determined

  4. Efavirenz Dissolution Enhancement I: Co-Micronization

    Directory of Open Access Journals (Sweden)

    Helvécio Vinícius Antunes Rocha

    2012-12-01

    Full Text Available AIDS constitutes one of the most serious infectious diseases, representing a major public health priority. Efavirenz (EFV, one of the most widely used drugs for this pathology, belongs to the Class II of the Biopharmaceutics Classification System for drugs with very poor water solubility. To improve EFV’s dissolution profile, changes can be made to the physical properties of the drug that do not lead to any accompanying molecular modifications. Therefore, the study objective was to develop and characterize systems with efavirenz able to improve its dissolution, which were co-processed with sodium lauryl sulfate (SLS and polyvinylpyrrolidone (PVP. The technique used was co-micronization. Three different drug:excipient ratios were tested for each of the two carriers. The drug dispersion dissolution results showed significant improvement for all the co-processed samples in comparison to non-processed material and corresponding physical mixtures. The dissolution profiles obtained for dispersion with co-micronized SLS samples proved superior to those of co-micronized PVP, with the proportion (1:0.25 proving the optimal mixture. The improvements may be explained by the hypothesis that formation of a hydrophilic layer on the surface of the micronized drug increases the wettability of the system formed, corroborated by characterization results indicating no loss of crystallinity and an absence of interaction at the molecular level.

  5. Modeling of Dissolution Effects on Waterflooding

    DEFF Research Database (Denmark)

    Alexeev, Artem; Shapiro, Alexander; Thomsen, Kaj

    2015-01-01

    reaction rates) may exhibit rapid increase of porosity and permeability near the inlet probably indicating a formation of high permeable channels (wormholes). Water saturation in the zone of dissolution increases due to an increase in the bulk volume accessible for the injected fluid. Volumetric non...

  6. 25 CFR 11.605 - Dissolution.

    Science.gov (United States)

    2010-04-01

    ... Domestic Relations § 11.605 Dissolution. (a) The Court of Indian Offenses shall enter a decree of... supported by evidence that (i) the parties have lived separate and apart for a period of more than 180 days..., or provided for child custody, the support of any child entitled to support, the maintenance of...

  7. Dilution physics modeling: Dissolution/precipitation chemistry

    International Nuclear Information System (INIS)

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    1995-09-01

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affect safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics

  8. Physicochemical characterization and dissolution properties of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... 1Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria. .... were carefully and homogenously blended in a mortar, to prepare ... different binary systems with HP-β-CD were carried out by adding an excess ..... Overall, the rank order of dissolution rates of.

  9. Toward a consistent model for glass dissolution

    International Nuclear Information System (INIS)

    Strachan, D.M.; McGrail, B.P.; Bourcier, W.L.

    1994-01-01

    Understanding the process of glass dissolution in aqueous media has advanced significantly over the last 10 years through the efforts of many scientists around the world. Mathematical models describing the glass dissolution process have also advanced from simple empirical functions to structured models based on fundamental principles of physics, chemistry, and thermodynamics. Although borosilicate glass has been selected as the waste form for disposal of high-level wastes in at least 5 countries, there is no international consensus on the fundamental methodology for modeling glass dissolution that could be used in assessing the long term performance of waste glasses in a geologic repository setting. Each repository program is developing their own model and supporting experimental data. In this paper, we critically evaluate a selected set of these structured models and show that a consistent methodology for modeling glass dissolution processes is available. We also propose a strategy for a future coordinated effort to obtain the model input parameters that are needed for long-term performance assessments of glass in a geologic repository. (author) 4 figs., tabs., 75 refs

  10. Groundwater recharge and discharge scenarios for a nuclear waste repository in bedded salt

    International Nuclear Information System (INIS)

    Carpenter, D.W.; Steinborn, T.L.; Thorson, L.D.

    1979-01-01

    Twelve potential scenarios have been identified whereby groundwater may enter or exit a nuclear waste repository in bedded salt. The 12 scenarios may be grouped into 4 categories or failure modes: dissolution, fracturing, voids, and penetration. Dissolution modes include breccia pipe and breccia blanket formation, and dissolution around boreholes. Fracture modes include flow through preexisting or new fractures and the effects of facies changes. Voids include interstitial voids (pores) and fluid inclusions. Penetration modes include shaft and borehole sealing failures, undetected boreholes, and new mines or wells constructed after repository decommissioning. The potential importance of thermal effects on groundwater flow patterns and on the recharge-discharge process is discussed. The appropriate levels of modeling effort, and the interaction between the adequacy of the geohydrologic data base and the warranted degree of model complexity are also discussed

  11. Genesis of the gossan at the Las Cruces Ore Deposit (SW Spain). Groundwater-Rock Interaction.

    Science.gov (United States)

    Scheiber, L.; Ayora, C.; Vázquez-Suñé, E.; Soler, A.

    2016-12-01

    The Las Cruces deposit has sparked an interest in the scientific community due to the exceptional genesis and mineralogical composition. The original gossan formed by goethite and hematite has been replaced by siderite and galena rock. The current gossan composition is as the result of the interaction of groundwater that circulates through the Niebla-Posadas aquifer and a gossan formed by Fe-oxyhydroxides. The groundwater conditions promoted the reductive dissolution of Pb-bearing goethite by the organic matter degradation and the formation of siderite and galena. Hydrochemical and isotopic characteristics of groundwater endorses this hypothesis. Thus, negative Eh values, the existence of H2S and the tendency to light sulfate isotope values show the reducing conditions of groundwater. The key role of the organic matter degradation is marked by the high ammonium, boron and dissolved organic carbon (DOC) concentrations together the light δ13C values, both in groundwater and siderite. The siderite precipitation is confirmed by the high pH values (up to 10), the low amount of Fe (<10ppb) and the thermodynamic calculations. The Fe-oxyhydroxides are a high adsorption capacity which is capable of absorbing metals as arsenic, lead and antimony. The reductive dissolution of these minerals involves the release of these metal to groundwater. Then, the groundwater rich in sulfur and an excess of lead produce the galena precipitation. The likeness between the δ34S values, both the gossan and groundwater, reveals that the sulfur of the galena come from the currently groundwater. A reactive transport model confirm that the present day groundwater flux and composition is able to form the siderite rock in less than 1Ma, with no external supply of reactants. The limiting factor of the process is the Dissolved Organic Carbon (DOC) concentration in groundwater, i.e., higher concentrations would decrease the formation time, whereas the result is not sensitive to flow conditions.

  12. Regularity of Minimal Surfaces

    CERN Document Server

    Dierkes, Ulrich; Tromba, Anthony J; Kuster, Albrecht

    2010-01-01

    "Regularity of Minimal Surfaces" begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is t

  13. DOE groundwater protection strategy

    International Nuclear Information System (INIS)

    Lichtman, S.

    1988-01-01

    EH is developing a DOE-wide Groundwater Quality Protection Strategy to express DOE's commitment to the protection of groundwater quality at or near its facilities. This strategy responds to a September 1986 recommendation of the General Accounting Office. It builds on EPA's August 1984 Ground-Water Protection Strategy, which establishes a classification system designed to protect groundwater according to its value and vulnerability. The purposes of DOE's strategy are to highlight groundwater protection as part of current DOE programs and future Departmental planning, to guide DOE managers in developing site-specific groundwater protection practices where DOE has discretion, and to guide DOE's approach to negotiations with EPA/states where regulatory processes apply to groundwater protection at Departmental facilities. The strategy calls for the prevention of groundwater contamination and the cleanup of groundwater commensurate with its usefulness. It would require long-term groundwater protection with reliance on physical rather than institutional control methods. The strategy provides guidance on providing long-term protection of groundwater resources; standards for new remedial actions;guidance on establishing points of compliance; requirements for establishing classification review area; and general guidance on obtaining variances, where applicable, from regulatory requirements. It also outlines management tools to implement this strategy

  14. HIV status awareness, partnership dissolution and HIV transmission in generalized epidemics.

    Science.gov (United States)

    Reniers, Georges; Armbruster, Benjamin

    2012-01-01

    HIV status aware couples with at least one HIV positive partner are characterized by high separation and divorce rates. This phenomenon is often described as a corollary of couples HIV Testing and Counseling (HTC) that ought to be minimized. In this contribution, we demonstrate the implications of partnership dissolution in serodiscordant couples for the propagation of HIV. We develop a compartmental model to study epidemic outcomes of elevated partnership dissolution rates in serodiscordant couples and parameterize it with estimates from population-based data (Rakai, Uganda). Via its effect on partnership dissolution, every percentage point increase in HIV status awareness reduces HIV incidence in monogamous populations by 0.27 percent for women and 0.63 percent for men. These effects are even larger when the assumption of monogamy can be relaxed, but are moderated by other behavior changes (e.g., increased condom use) in HIV status aware serodiscordant partnerships. When these behavior changes are taken into account, each percentage point increase in HIV status awareness reduces HIV incidence by 0.13 and 0.32 percent for women and men, respectively (assuming monogamy). The partnership dissolution effect exists because it decreases the fraction of serodiscordant couples in the population and prolongs the time that individuals spend outside partnerships. Our model predicts that elevated partnership dissolution rates in HIV status aware serodiscordant couples reduce the spread of HIV. As a consequence, the full impact of couples HTC for HIV prevention is probably larger than recognized to date. Particularly high partnership dissolution rates in female positive serodiscordant couples contribute to the gender imbalance in HIV infections.

  15. HIV status awareness, partnership dissolution and HIV transmission in generalized epidemics.

    Directory of Open Access Journals (Sweden)

    Georges Reniers

    Full Text Available HIV status aware couples with at least one HIV positive partner are characterized by high separation and divorce rates. This phenomenon is often described as a corollary of couples HIV Testing and Counseling (HTC that ought to be minimized. In this contribution, we demonstrate the implications of partnership dissolution in serodiscordant couples for the propagation of HIV.We develop a compartmental model to study epidemic outcomes of elevated partnership dissolution rates in serodiscordant couples and parameterize it with estimates from population-based data (Rakai, Uganda.Via its effect on partnership dissolution, every percentage point increase in HIV status awareness reduces HIV incidence in monogamous populations by 0.27 percent for women and 0.63 percent for men. These effects are even larger when the assumption of monogamy can be relaxed, but are moderated by other behavior changes (e.g., increased condom use in HIV status aware serodiscordant partnerships. When these behavior changes are taken into account, each percentage point increase in HIV status awareness reduces HIV incidence by 0.13 and 0.32 percent for women and men, respectively (assuming monogamy. The partnership dissolution effect exists because it decreases the fraction of serodiscordant couples in the population and prolongs the time that individuals spend outside partnerships.Our model predicts that elevated partnership dissolution rates in HIV status aware serodiscordant couples reduce the spread of HIV. As a consequence, the full impact of couples HTC for HIV prevention is probably larger than recognized to date. Particularly high partnership dissolution rates in female positive serodiscordant couples contribute to the gender imbalance in HIV infections.

  16. Geochemistry of groundwater in the Beaver and Camas Creek drainage basins, eastern Idaho

    Science.gov (United States)

    Rattray, Gordon W.; Ginsbach, Michael L.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, is studying the fate and transport of waste solutes in the eastern Snake River Plain (ESRP) aquifer at the Idaho National Laboratory (INL) in eastern Idaho. This effort requires an understanding of the natural and anthropogenic geochemistry of groundwater at the INL and of the important physical and chemical processes controlling the geochemistry. In this study, the USGS applied geochemical modeling to investigate the geochemistry of groundwater in the Beaver and Camas Creek drainage basins, which provide groundwater recharge to the ESRP aquifer underlying the northeastern part of the INL. Data used in this study include petrology and mineralogy from 2 sediment and 3 rock samples, and water-quality analyses from 4 surface-water and 18 groundwater samples. The mineralogy of the sediment and rock samples was analyzed with X-ray diffraction, and the mineralogy and petrology of the rock samples were examined in thin sections. The water samples were analyzed for field parameters, major ions, silica, nutrients, dissolved organic carbon, trace elements, tritium, and the stable isotope ratios of hydrogen, oxygen, carbon, sulfur, and nitrogen. Groundwater geochemistry was influenced by reactions with rocks of the geologic terranes—carbonate rocks, rhyolite, basalt, evaporite deposits, and sediment comprised of all of these rocks. Agricultural practices near and south of Dubois and application of road anti-icing liquids on U.S. Interstate Highway 15 were likely sources of nitrate, chloride, calcium, and magnesium to groundwater. Groundwater geochemistry was successfully modeled in the alluvial aquifer in Camas Meadows and the ESRP fractured basalt aquifer using the geochemical modeling code PHREEQC. The primary geochemical processes appear to be precipitation or dissolution of calcite and dissolution of silicate minerals. Dissolution of evaporite minerals, associated with Pleistocene Lake

  17. Dissolution of two NWCF calcines: Extent of dissolution and characterization of undissolved solids

    International Nuclear Information System (INIS)

    Brewer, K.N.; Herbst, R.S.; Tranter, T.J.

    1995-01-01

    A study was undertaken to determine the dissolution characteristics of two NWCF calcine types. A two-way blended calcine made from 4 parts nonradioactive aluminum nitrate and one part WM-102 was studied to determine the extent of dissolution for aluminum-type calcines. A two-way blend of 3.5 parts fluorinel waste from WM-187 and 1 part sodium waste from WM-185 was used to determine the extent of dissolution for zirconium-type calcines. This study was necessary to develop suitable aqueous separation flowsheets for the partitioning of actinides and fission products from ICPP calcines and to determine the disposition of the resulting undissolved solids (UDS). The dissolution flowsheet developed by Herbst was used to dissolve these two NWCF calcine types. Results show that greater than 95 wt% of aluminum and zirconium calcine types were dissolved after a single batch contact with 5 M HNO 3 . A characterization of the UDS indicates that the weight percent of TRU elements in the UDS resulting from both calcine type dissolutions increases by approximately an order of magnitude from their concentrations prior to dissolution. Substantial activities of cesium and strontium are also present in the UDS resulting from the dissolution of both calcine types. Multiple TRU, Cs, and Sr analyses of both UDS types show that these solids are relatively homogeneous. From this study, it is estimated that between 63.5 and 635 cubic meters of UDS will be generated from the dissolution of 3800 M 3 of calcine. The significant actinide and fission product activities in these UDS will preclude their disposal as low-level waste. If the actinide and fission activity resulting from the UDS is the only considered source in the dissolved calcine solutions, an estimated 99.9 to 99.99 percent of the solids must be removed from this solution for it to meet non-TRU Class A low-level waste

  18. In vitro Dissolution Studies on Solid Dispersions of Mefenamic Acid.

    Science.gov (United States)

    Rao, K R S Sambasiva; Nagabhushanam, M V; Chowdary, K P R

    2011-03-01

    Solid dispersions of mefanamic acid with a water-soluble polymer polyvinyl pyrrolidine and a super disintegrant, primojel were prepared by common solvent and solvent evaporation methods employing methanol as the solvent. The dissolution rate and dissolution efficiency of the prepared solid dispersions were evaluated in comparison to the corresponding pure drug. Solid dispersions of mefenamic acid showed a marked enhancement in dissolution rate and dissolution efficiency. At 1:4 ratio of mefenamic acid-primojel a 2.61 fold increase in the dissolution rate of mefenamic acid was observed with solid dispersion. The solid dispersions in combined carriers gave much higher rates of dissolution than super disintegrants alone. Mefanamic acid-primojel-polyvinyl pyrrolidine (1:3.2:0.8) solid dispersion gave a 4.11 fold increase in the dissolution rate of mefenamic acid. Super disintegrants alone or in combination with polyvinyl pyrrolidine could be used to enhance the dissolution rate of mefenamic acid.

  19. Hydrochemical and isotopic characteristics of groundwater in the northeastern Tennger Desert, northern China

    Science.gov (United States)

    Wang, Liheng; Dong, Yanhui; Xu, Zhifang; Qiao, Xiaojuan

    2017-12-01

    Groundwater is typically the only water source in arid regions, and its circulation processes should be better understood for rational resource exploitation. Stable isotopes and major ions were investigated in the northeastern Tengger Desert, northern China, to gain insights into groundwater recharge and evolution. In the northern mountains, Quaternary unconsolidated sediments, exposed only in valleys between hills, form the main aquifer, which is mainly made of aeolian sand and gravel. Most of the mountain groundwater samples plot along the local meteoric water line (LMWL), with a more depleted signature compared to summer precipitation, suggesting that mountain groundwater was recharged by local precipitation during winter. Most of the groundwater was fresh, with total dissolved solids less than 1 g/L; dominant ions are Na+, SO4 2- and Cl-, and all mineral saturation indices are less than zero. Evaporation, dissolution and cation exchange are the major hydrogeochemical processes. In the southern plains, however, the main aquifers are sandstone. The linear regression line of δD and δ 18O of groundwater parallels the LMWL but the intercept is lower, indicating that groundwater in the plains has been recharged by ancient precipitation rather than modern. Both calcite and dolomite phases in the plains groundwater are close to saturation, while gypsum and halite can still be dissolved into the groundwater. Different recharge mechanisms occur in the northern mountains and the southern plains, and the hydraulic connection between them is weak. Because of the limited recharge, groundwater exploitation should be limited as much as possible.

  20. Groundwater salinity study in the Mekong Delta using isotope techniques

    International Nuclear Information System (INIS)

    Le Van Khoi, Nguyen Kien Chinh; Do Tien Hung

    2002-01-01

    Environmental isotopes D, 18 O and chemical composition were used for study of recharge and salinization of groundwater in the are located between Bassac and Mekong Rivers. The results showed that: (a) Pleistocene aquifers are recharged through flood plains and outcrops located at the same altitude. The sanility of groundwater in these aquifers is mostly due to dissolution of the aquifer material, (b) Pliocene and Miocene aquifers receive recharge through outcrops located at the higher altitude on the northeast extension of the Delta and Cambodia. The salinity of groundwater in the coastal region of the aquifer is attributable to sea water intrusion. There appears to be significant retention of sea water in the coastal sediment during intrusion. (Author)

  1. Variable infiltration and river flooding resulting in changing groundwater quality - A case study from Central Europe

    Science.gov (United States)

    Miotliński, Konrad; Postma, Dieke; Kowalczyk, Andrzej

    2012-01-01

    SummaryThe changes in groundwater quality occurring in a buried valley aquifer following a reduction in groundwater exploitation and enhanced infiltration due to extensive flooding of the Odra River in 1997 were investigated. Long-time series data for the chemical composition of groundwater in a large well field for drinking water supply indicated the deterioration of groundwater quality in the wells capturing water from the flooded area, which had been intensively cultivated since the 1960s. Infiltration of flooded river water into the aquifer is suggested by an elevated chloride concentration, although salt flushing from the rewatered unsaturated zone due to the enhanced recharge event is much more feasible. Concomitantly with chloride increases in the concentrations of sulphate, ferrous iron, manganese, and nickel imply the oxidation of pyrite (FeS 2) which is abundant in the aquifer. The proton production resulting from pyrite oxidation is buffered by the dissolution of calcite, while the Ca:SO 4 stoichiometry of the groundwater indicates that pyrite oxidation coupled with nitrate reduction is the dominant process occurring in the aquifer. The pyritic origin of SO42- is confirmed by the sulphur isotopic composition. The resultant Fe 2+ increase induces Mn-oxide dissolution and the mobilisation of Ni 2+ previously adsorbed to Mn-oxide surfaces. The study has a major implication for groundwater quality prediction studies where there are considerable variations in water level associated with groundwater management and climate change issues.

  2. Strontium isotope geochemistry of alluvial groundwater: a tracer for groundwater resources characterisation

    Directory of Open Access Journals (Sweden)

    P. Négrel

    2004-01-01

    Full Text Available This study presents strontium isotope and major ion data of shallow groundwater and river water from the Ile du Chambon catchment, located on the Allier river in the Massif Central (France. There are large variations in the major-element contents in the surface- and groundwater. Plotting of Na vs. Cl contents and Ca, Mg, NO3, K, SO4, HCO3, Sr concentrations reflect water–rock interaction (carbonate dissolution for Ca, Mg, HCO3 and Sr because the bedrock contains marly limestones, agricultural input (farming and fertilising and sewage effluents (for NO3, K, SO4, although some water samples are unpolluted. Sr contents and isotope ratios (87Sr/86Sr vary from 0.70892 to 0.71180 along the hydrological cycle in the groundwater agree with previous work on groundwater in alluvial aquifers in the Loire catchment. The data plot along three directions in a 87Sr/86Sr v. 1/Sr diagram as a result of mixing, involving at least three geochemical signatures–Allier river water, and two distinct signatures that might be related to different water-rock interactions in the catchment. Mixing proportions are calculated and discussed. The alluvial aquifer of the Ile du Chambon catchment is considered, within the Sr isotope systematic, in a larger scheme that includes several alluvial aquifers of the Loire Allier catchment. Keywords: : Loire river, major and trace elements, Sr isotopic ratio, alluvial aquifer, hydrology

  3. Development and application of a biorelevant dissolution method using USP apparatus 4 in early phase formulation development.

    Science.gov (United States)

    Fang, Jiang B; Robertson, Vivian K; Rawat, Archana; Flick, Tawnya; Tang, Zhe J; Cauchon, Nina S; McElvain, James S

    2010-10-04

    Dissolution testing is frequently used to determine the rate and extent at which a drug is released from a dosage form, and it plays many important roles throughout drug product development. However, the traditional dissolution approach often emphasizes its application in quality control testing and usually strives to obtain 100% drug release. As a result, dissolution methods are not necessarily biorelevant and meaningful application of traditional dissolution methods in the early phases of drug product development can be very limited. This article will describe the development of a biorelevant in vitro dissolution method using USP apparatus 4, biorelevant media, and real-time online UV analysis. Several case studies in the areas of formulation selection, lot-to-lot variability, and food effect will be presented to demonstrate the application of this method in early phase formulation development. This biorelevant dissolution method using USP apparatus 4 provides a valuable tool to predict certain aspects of the in vivo drug release. It can be used to facilitate the formulation development/selection for pharmacokinetic (PK) and clinical studies. It may also potentially be used to minimize the number of PK studies, and to aid in the design of more efficient PK and clinical studies.

  4. Hydrogeochemical quality and suitability studies of groundwater in northern Bangladesh.

    Science.gov (United States)

    Islam, M J; Hakim, M A; Hanafi, M M; Juraimi, Abdul Shukor; Aktar, Sharmin; Siddiqa, Aysha; Rahman, A K M Shajedur; Islam, M Atikul; Halim, M A

    2014-07-01

    Agriculture, rapid urbanization and geochemical processes have direct or indirect effects on the chemical composition of groundwater and aquifer geochemistry. Hydro-chemical investigations, which are significant for assessment of water quality, were carried out to study the sources of dissolved ions in groundwater of Dinajpur district, northern Bangladesh. The groundwater samplish were analyzed for physico-chemical properties like pH, electrical conductance, hardness, alkalinity, total dissolved solids and Ca2+, Mg2+, Na+, K+, CO3(2-), HCO3(-), SO4(2-) and Cl- ions, respectively. Based on the analyses, certain parameters like sodium adsorption ratio, soluble sodium percentage, potential salinity, residual sodium carbonate, Kelly's ratio, permeability index and Gibbs ratio were also calculated. The results showed that the groundwater of study area was fresh, slightly acidic (pH 5.3-6.4) and low in TDS (35-275 mg I(-1)). Ground water of the study area was found suitable for irrigation, drinking and domestic purposes, since most of the parameters analyzed were within the WHO recommended values for drinking water. High concentration of NO3- and Cl- was reported in areas with extensive agriculture and rapid urbanization. Ion-exchange, weathering, oxidation and dissolution of minerals were major geochemical processes governing the groundwater evolution in study area. Gibb's diagram showed that all the samples fell in the rock dominance field. Based on evaluation, it is clear that groundwater quality of the study area was suitable for both domestic and irrigation purposes.

  5. Hydrochemical characterization of groundwater in the Akyem area, Ghana

    Science.gov (United States)

    Banoeng-Yakubo, B.; Yidana, S.M.; Anku, Y.; Akabzaa, T.; Asiedu, D.

    2008-01-01

    The Akyem area is a small farming community located in southeastern Ghana. Groundwater samples from wells in the area were analyzed for concentrations of the major ions, silica, electrical conductivity and pH. The objective was to determine the main controls on the hydrochemistry of ground-water. Mass balance modeling was used together with multivariate R-mode hierarchical cluster analysis to determine the significant sources of variation in the hydrochemistry. Two water types exist in this area. The first is influenced most by the weathering of silicate minerals from the underlying geology, and is thus rich in silica, sodium, calcium, bicarbonate, and magnesium ions. The second is water that has been influenced by the effects of fertilizers and other anthropogenic activities in the area. Mineral speciation and silicate mineral stability diagrams suggest that montmorillonite, probably derived from the incongruent dissolution of feldspars and micas, is the most stable silicate phase in the groundwaters. The apparent incongruent weathering of silicate minerals in the groundwater system has led to the enrichment of sodium, calcium, magnesium and bicarbonate ions as well as silica, leading to the supersaturation of calcite, aragonite, dolomite and quartz. Stability in the montmorillonite field suggests restricted flow conditions and a long groundwater residence time, leading to greater exposure of the rock to weathering. Cation exchange processes appear to play minor roles in the hydrochemistry of groundwater.

  6. Hydrogeochemical investigations of groundwater in Ziarat valley, Baluchistan

    International Nuclear Information System (INIS)

    Akram, W.; Ahmad, M.; Rafiq, M.

    2010-03-01

    Present study was undertaken in Ziarat Valley, Baluchistan to investigate recent trends of groundwater chemistry (geochemical facies, geochemical evolution) and assess the groundwater quality for drinking and irrigation purposes. For this purpose samples of groundwater (open wells, tube wells, karezes, springs) were periodically collected from different locations and analyzed for dissolved chemical constituents such as sodium, potassium, magnesium, calcium, carbonate, bicarbonate, chloride and sulphate. The data indicated that concentrations of sodium, potassium, calcium and magnesium vary from 5 to 113,0.3 to 3,18 to 62 and 27 to 85 mg/l respectively. Values of anions i. e. bicarbonate, chloride and sulphate lie in the range of 184 to 418, 14 to 77 and 8 to 318 mg/l respectively. Hydrogeochemical facies revealed that groundwater in the study area belongs to Mg-HCO/sub 3/ type at 72% surveyed locations. Dissolution and calcite precipitation were found to be the main processes controlling the groundwater chemistry. Chemical quality was assessed for drinking use by comparing with WHO, Indian and proposed national standards, and for irrigation use using empirical indices such as SAR and RSC. The results show that groundwater is quite suitable for irrigation and drinking purposes. (author)

  7. Hydrochemistry of urban groundwater, Seoul, Korea: the impact of subway tunnels on groundwater quality.

    Science.gov (United States)

    Chae, Gi-Tak; Yun, Seong-Taek; Choi, Byoung-Young; Yu, Soon-Young; Jo, Ho-Young; Mayer, Bernhard; Kim, Yun-Jong; Lee, Jin-Yong

    2008-10-23

    Hydrogeologic and hydrochemical data for subway tunnel seepage waters in Seoul (Republic of Korea) were examined to understand the effect of underground tunnels on the degradation of urban groundwater. A very large quantity of groundwater (up to 63 million m3 year(-1)) is discharged into subway tunnels with a total length of 287 km, resulting in a significant drop of the local groundwater table and the abandonment of groundwater wells. For the tunnel seepage water samples (n = 72) collected from 43 subway stations, at least one parameter among pathogenic microbes (total coliform, heterotrophic bacteria), dissolved Mn and Fe, NH4+, NO3(-), turbidity, and color exceeded the Korean Drinking Water Standards. Locally, tunnel seepage water was enriched in dissolved Mn (avg. 0.70 mg L(-1), max. 5.58 mg L(-1)), in addition to dissolved Fe, NH4+, and pathogenic microbes, likely due to significant inflow of sewage water from broken or leaking sewer pipes. Geochemical modeling of redox reactions was conducted to simulate the characteristic hydrochemistry of subway tunnel seepage. The results show that variations in the reducing conditions occur in urban groundwater, dependent upon the amount of organic matter-rich municipal sewage contaminating the aquifer. The organic matter facilitates the reduction and dissolution of Mn- and Fe-bearing solids in aquifers and/or tunnel construction materials, resulting in the successive increase of dissolved Mn and Fe. The present study clearly demonstrates that locally significant deterioration of urban groundwater is caused by a series of interlinked hydrogeologic and hydrochemical changes induced by underground tunnels.

  8. The anodic dissolution of SIMFUEL (UO2) in slightly alkaline sodium carbonate/bicarbonate solutions

    International Nuclear Information System (INIS)

    Keech, P.G.; Goldik, J.S.; Qin, Z.; Shoesmith, D.W.

    2011-01-01

    The corrosion of nuclear fuel under waste disposal conditions is likely to be influenced by the bicarbonate/carbonate content of the groundwater since it increases the solubility of the U VI corrosion product, [UO 2 ] 2+ . As one of the half reactions involved in the corrosion process, the anodic dissolution of SIMFUEL (UO 2 ) has been studied in bicarbonate/carbonate solutions (pH 9.8) using voltammetric and potentiostatic techniques and electrochemical impedance spectroscopy. The reaction proceeds by two consecutive one electron transfer reactions (U IV → U V → U VI ). At low potentials (≤250 mV (vs. SCE) the rate of the first electron transfer reaction is rate determining irrespective of the total carbonate concentration. At potentials >250 mV (vs. SCE) the formation of a U VI O 2 CO 3 surface layer begins to inhibit the dissolution rate and the current becomes independent of potential indicating rate control by the chemical dissolution of this layer.

  9. Double porosity model to describe both permeability change and dissolution processes

    International Nuclear Information System (INIS)

    Niibori, Yuichi; Usui, Hideo; Chida, Taiji

    2015-01-01

    Cement is a practical material for constructing the geological disposal system of radioactive wastes. The dynamic behavior of both permeability change and dissolution process caused by a high pH groundwater was explained using a double porosity model assuming that each packed particle consists of the sphere-shaped aggregation of smaller particles. This model assumes two kinds of porosities between the particle clusters and between the particles, where the former porosity change mainly controls the permeability change of the bed, and the latter porosity change controls the diffusion of OH"- ions inducing the dissolution of silica. The fundamental equations consist of a diffusion equation of spherical coordinates of OH"- ions including the first-order reaction term and some equations describing the size changes of both the particles and the particle clusters with time. The change of over-all permeability of the packed bed is evaluated by Kozeny-Carman equation and the calculated radii of particle clusters. The calculated result well describes the experimental result of both permeability change and dissolution processes. (author)

  10. Dissolution of targets for the production of Mo-99: Part 1. Influence of NaOH concentration and the addition of NaNO3 and NaNO2 on the dissolution time

    International Nuclear Information System (INIS)

    Camilo, Ruth L.; Araujo, Izilda da C.; Mindrisz, Ana C.; Forbicini, Christina A.L.G. de O.

    2011-01-01

    Faced with global crisis in the production of radioisotope 99 Mo, which product of decay, 99 mTc, is the tracer element most often used in nuclear medicine and accounts for about 80% of all diagnostic procedures in vivo, since September 2008 Brazil is developing the project called Brazilian Multipurpose Reactor (RMB). Within the Brazilian Nuclear Program (PNB) the construction of the RMB, is seen as a long term solution to meet all domestic demand relative to the supply of radioisotopes and radiopharmaceuticals. In the process to be studied to obtain 99 Mo from irradiated UA1 x -A1 LEU targets employing alkaline dissolution, processing time should be minimized, considering the short half life of 99 Mo and 99 mTc, about 66 h and 6 h, respectively. That makes dissolution time a significant factor in the development of the process. This paper presents the results of alkaline dissolution of scraps of Al, used to simulate the dissolution process of UA1 x -A1 targets. Al corresponds to about 79% of the total weight of the UA1 x -A1 target. The effect of NaOH concentration on dissolution time for the interval of 1 to 3.5 mol.L-1 was studied, keeping the molar ratio in 1Al:2.16NaOH and the initial temperature of 88 degree C. The influence of reagent composition over dissolution time was studied using three different solutions: a) 3 mol.L -1 NaOH, b) 3 mol.L -1 NaOH/NaNO 3 and c) 3 mol.L -1 NaOH/NaNO 2 , keeping the same molar ratio and temperature. The results showed that the dissolution time decreases with increasing NaOH concentration and the addition of NaNO 3 or NaNO 2 in the NaOH solution reduces both dissolution time and volume of gases released. (author)

  11. Development and validation of dissolution test for Metoprolol ...

    African Journals Online (AJOL)

    The dissolution method which uses USP apparatus I (Basket) with rotating at 100 rpm, 900 ml of different dissolution medium, ultra violet spectroscopy for quantification was demonstrated to be robust, discriminating and transferable. Dissolution tests conditions were selected after it was demonstrated that the Metoprolol ...

  12. Investigation of dissolution kinetics of a Nigerian columbite in ...

    African Journals Online (AJOL)

    Investigation of dissolution kinetics of a Nigerian columbite in hydrofluoric acid using the shrinking core model. ... Experimental results indicate that the dissolution rate is chemical reaction controlled, with reaction order of 0.57. Dissolution of over 90 % of the columbite was achieved in 5 h, using 20 M HF at 90 oC with 100 ...

  13. Geomorphic aspects of groundwater flow

    Science.gov (United States)

    LaFleur, Robert G.

    The many roles that groundwater plays in landscape evolution are becoming more widely appreciated. In this overview, three major categories of groundwater processes and resulting landforms are considered: (1) Dissolution creates various karst geometries, mainly in carbonate rocks, in response to conditions of recharge, geologic setting, lithology, and groundwater circulation. Denudation and cave formation rates can be estimated from kinetic and hydraulic parameters. (2) Groundwater weathering generates regoliths of residual alteration products at weathering fronts, and subsequent exhumation exposes corestones, flared slopes, balanced rocks, domed inselbergs, and etchplains of regional importance. Groundwater relocation of dissolved salts creates duricrusts of various compositions, which become landforms. (3) Soil and rock erosion by groundwater processes include piping, seepage erosion, and sapping, important agents in slope retreat and headward gully migration. Thresholds and limits are important in many chemical and mechanical groundwater actions. A quantitative, morphometric approach to groundwater landforms and processes is exemplified by selected studies in carbonate and clastic terrains of ancient and recent origins. Résumé Les rôles variés joués par les eaux souterraines dans l'évolution des paysages deviennent nettement mieux connus. La revue faite ici prend en considération trois grandes catégories de processus liés aux eaux souterraines et les formes associées: (1) La dissolution crée des formes karstiques variées, surtout dans les roches carbonatées, en fonction des conditions d'alimentation, du cadre géologique, de la lithologie et de la circulation des eaux souterraines. Les taux d'érosion et de formation des grottes peuvent être estimés à partir de paramètres cinétiques et hydrauliques. (2) L'érosion par les eaux souterraines donne naissance à des régolites, résidus d'altération sur des fronts d'altération, et l'exhumation r

  14. Minimally invasive orthognathic surgery.

    Science.gov (United States)

    Resnick, Cory M; Kaban, Leonard B; Troulis, Maria J

    2009-02-01

    Minimally invasive surgery is defined as the discipline in which operative procedures are performed in novel ways to diminish the sequelae of standard surgical dissections. The goals of minimally invasive surgery are to reduce tissue trauma and to minimize bleeding, edema, and injury, thereby improving the rate and quality of healing. In orthognathic surgery, there are two minimally invasive techniques that can be used separately or in combination: (1) endoscopic exposure and (2) distraction osteogenesis. This article describes the historical developments of the fields of orthognathic surgery and minimally invasive surgery, as well as the integration of the two disciplines. Indications, techniques, and the most current outcome data for specific minimally invasive orthognathic surgical procedures are presented.

  15. Correlates of minimal dating.

    Science.gov (United States)

    Leck, Kira

    2006-10-01

    Researchers have associated minimal dating with numerous factors. The present author tested shyness, introversion, physical attractiveness, performance evaluation, anxiety, social skill, social self-esteem, and loneliness to determine the nature of their relationships with 2 measures of self-reported minimal dating in a sample of 175 college students. For women, shyness, introversion, physical attractiveness, self-rated anxiety, social self-esteem, and loneliness correlated with 1 or both measures of minimal dating. For men, physical attractiveness, observer-rated social skill, social self-esteem, and loneliness correlated with 1 or both measures of minimal dating. The patterns of relationships were not identical for the 2 indicators of minimal dating, indicating the possibility that minimal dating is not a single construct as researchers previously believed. The present author discussed implications and suggestions for future researchers.

  16. Hexavalent Chromium Minimization Strategy

    Science.gov (United States)

    2011-05-01

    Logistics 4 Initiative - DoD Hexavalent Chromium Minimization Non- Chrome Primer IIEXAVAJ ENT CHRO:M I~UMI CHROMIUM (VII Oil CrfVli.J CANCEfl HAnRD CD...Management Office of the Secretary of Defense Hexavalent Chromium Minimization Strategy Report Documentation Page Form ApprovedOMB No. 0704-0188...00-2011 4. TITLE AND SUBTITLE Hexavalent Chromium Minimization Strategy 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  17. Minimal Super Technicolor

    DEFF Research Database (Denmark)

    Antola, M.; Di Chiara, S.; Sannino, F.

    2011-01-01

    We introduce novel extensions of the Standard Model featuring a supersymmetric technicolor sector (supertechnicolor). As the first minimal conformal supertechnicolor model we consider N=4 Super Yang-Mills which breaks to N=1 via the electroweak interactions. This is a well defined, economical......, between unparticle physics and Minimal Walking Technicolor. We consider also other N =1 extensions of the Minimal Walking Technicolor model. The new models allow all the standard model matter fields to acquire a mass....

  18. The Dissolution of Double Holliday Junctions

    DEFF Research Database (Denmark)

    Bizard, Anna H; Hickson, Ian D

    2014-01-01

    as "double Holliday junction dissolution." This reaction requires the cooperative action of a so-called "dissolvasome" comprising a Holliday junction branch migration enzyme (Sgs1/BLM RecQ helicase) and a type IA topoisomerase (Top3/TopoIIIα) in complex with its OB (oligonucleotide/oligosaccharide binding......Double Holliday junctions (dHJS) are important intermediates of homologous recombination. The separate junctions can each be cleaved by DNA structure-selective endonucleases known as Holliday junction resolvases. Alternatively, double Holliday junctions can be processed by a reaction known......) fold containing accessory factor (Rmi1). This review details our current knowledge of the dissolution process and the players involved in catalyzing this mechanistically complex means of completing homologous recombination reactions....

  19. Study of dissolution process and its modelling

    Directory of Open Access Journals (Sweden)

    Juan Carlos Beltran-Prieto

    2017-01-01

    Full Text Available The use of mathematical concepts and language aiming to describe and represent the interactions and dynamics of a system is known as a mathematical model. Mathematical modelling finds a huge number of successful applications in a vast amount of science, social and engineering fields, including biology, chemistry, physics, computer sciences, artificial intelligence, bioengineering, finance, economy and others. In this research, we aim to propose a mathematical model that predicts the dissolution of a solid material immersed in a fluid. The developed model can be used to evaluate the rate of mass transfer and the mass transfer coefficient. Further research is expected to be carried out to use the model as a base to develop useful models for the pharmaceutical industry to gain information about the dissolution of medicaments in the body stream and this could play a key role in formulation of medicaments.

  20. Aggregation, sedimentation, dissolution and bioavailability of ...

    Science.gov (United States)

    To understand their fate and transport in estuarine systems, the aggregation, sedimentation, and dissolution of CdSe quantum dots (QDs) in seawater were investigated. Hydrodynamic size increased from 40 to 60 nm to >1 mm within 1 h in seawater, and the aggregates were highly polydispersed. Their sedimentation rates in seawater were measured to be 4–10 mm/day. Humic acid (HA), further increased their size and polydispersity, and slowed sedimentation. Light increased their dissolution and release of dissolved Cd. The ZnS shell also slowed release of Cd ions. With sufficient light, HA increased the dissolution of QDs, while with low light, HA alone did not change their dissolution. The benthic zone in estuarine systems is the most probable long-term destination of QDs due to aggregation and sedimentation. The bioavailability of was evaluated using the mysid Americamysis bahia. The 7-day LC50s of particulate and dissolved QDs were 290 and 23 μg (total Cd)/L, respectively. For mysids, the acute toxicity appears to be from Cd ions; however, research on the effects of QDs should be conducted with other organisms where QDs may be lodged in critical tissues such as gills or filtering apparatus and Cd ions may be released and delivered directly to those tissues. Because of their increasing use and value to society, cadmium-based quantum dots (QDs) will inevitably find their way into marine systems. In an effort to understand the fate and transport of CdSe QDs in estuar

  1. DISSOLUTION OF ZIRCONIUM AND ALLOYS THEREFOR

    Science.gov (United States)

    Swanson, J.L.

    1961-07-11

    The dissolution of zirconium cladding in a water solution of ammonium fluoride and ammonium nitrate is described. The method finds particular utility in processing spent fuel elements for nuclear reactors. The zirconium cladding is first dissolved in a water solution of ammonium fluoride and ammonium nitrate; insoluble uranium and plutonium fiuorides formed by attack of the solvent on the fuel materiai of the fuel element are then separated from the solution, and the fuel materiai is dissolved in another solution.

  2. Saltcake Dissolution FY 2000 Status Report

    International Nuclear Information System (INIS)

    HERTING, D.L.

    2000-01-01

    Laboratory tests were completed on the dissolution characteristics of Hanford saltcake waste from single-shell waste tanks 241-TX- 113, 241-BY-102, 241-BY-106, 241-A-101, and 241-S-102 (henceforth referred to as TX-113, BY-102, BY-106, A-101, and S-102, respectively). This work was funded by the Tanks Focus Area (EM-50) under Technical Task Plan Number RL0-8-WT-41, ''PHMC Pretreatment--Saltcake Dissolution''. The tests performed on saltcake from tank TX-113 were similar in scope to those completed in previous years on waste from tanks BY-102, BY-106, B-106, A-101, and S-102 (Herting 1998, 1999). In addition to the ''standard'' dissolution tests, new types of tests were performed this year related to feed stability and radionuclide distribution. The River Protection Project (RPP) is tasked with retrieving waste from double-shell and single-shell tanks to provide feed for vitrification. The RPP organization needs chemical and physical data to evaluate technologies for retrieving the waste. Little significant laboratory testing has been done to evaluate in-tank dissolution parameters for the various types of saltcake wastes that exist in single-shell tanks. A computer modeling program known as the Environmental Simulation Program (ESP), produced by OLI Systems, Inc of Morris Plains, New Jersey, is being used by the RPP organization to predict solubilities during dilution and retrieval of all tank waste types. Data from this task are provided to ESP users to support evaluation, refinement, and validation of the ESP model

  3. Sampling and treatment of rock cores and groundwater under reducing environments of deep underground

    International Nuclear Information System (INIS)

    Ebashi, Katsuhiro; Yamaguchi, Tetsuji; Tanaka, Tadao

    2005-01-01

    A method of sampling and treatment of undisturbed rock cores and groundwater under maintained reducing environments of deep underground was developed and demonstrated in a Neogene's sandy mudstone layer at depth of GL-100 to -200 m. Undisturbed rock cores and groundwater were sampled and transferred into an Ar gas atmospheric glove box with minimized exposure to the atmosphere. The reducing conditions of the sampled groundwater and rock cores were examined in the Ar atmospheric glove box by measuring pH and Eh of the sampled groundwater and sampled groundwater contacting with disk type rock samples, respectively. (author)

  4. A critical evaluation of the local-equilibrium assumption in modeling NAPL-pool dissolution

    Science.gov (United States)

    Seagren, Eric A.; Rittmann, Bruce E.; Valocchi, Albert J.

    1999-07-01

    An analytical modeling analysis was used to assess when local equilibrium (LE) and nonequilibrium (NE) modeling approaches may be appropriate for describing nonaqueous-phase liquid (NAPL) pool dissolution. NE mass-transfer between NAPL pools and groundwater is expected to affect the dissolution flux under conditions corresponding to values of Sh'St (the modified Sherwood number ( Lxkl/ Dz) multiplied by the Stanton number ( kl/ vx))≈400, the NE and LE solutions converge, and the LE assumption is appropriate. Based on typical groundwater conditions, many cases of interest are expected to fall in this range. The parameter with the greatest impact on Sh'St is kl. The NAPL pool mass-transfer coefficient correlation of Pfannkuch [Pfannkuch, H.-O., 1984. Determination of the contaminant source strength from mass exchange processes at the petroleum-ground-water interface in shallow aquifer systems. In: Proceedings of the NWWA/API Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water—Prevention, Detection, and Restoration, Houston, TX. Natl. Water Well Assoc., Worthington, OH, Nov. 1984, pp. 111-129.] was evaluated using the toluene pool data from Seagren et al. [Seagren, E.A., Rittmann, B.E., Valocchi, A.J., 1998. An experimental investigation of NAPL-pool dissolution enhancement by flushing. J. Contam. Hydrol., accepted.]. Dissolution flux predictions made with kl calculated using the Pfannkuch correlation were similar to the LE model predictions, and deviated systematically from predictions made using the average overall kl=4.76 m/day estimated by Seagren et al. [Seagren, E.A., Rittmann, B.E., Valocchi, A.J., 1998. An experimental investigation of NAPL-pool dissolution enhancement by flushing. J. Contam. Hydrol., accepted.] and from the experimental data for vx>18 m/day. The Pfannkuch correlation kl was too large for vx>≈10 m/day, possibly because of the relatively low Peclet number data used by Pfannkuch [Pfannkuch, H.-O., 1984. Determination

  5. Relationships with former stepgrandparents after remarriage dissolution.

    Science.gov (United States)

    Sanner, Caroline; Coleman, Marilyn; Ganong, Lawrence

    2018-03-01

    Increases in stepfamily formation and longevity suggest that more children have stepgrandparent relationships than ever before. Because remarriages end in divorce more often than first marriages, many children experience the involuntary dissolution of stepgrandparent ties. Little is known about stepgrandparent relationships in general, and even less is known about how these relationships are affected by remarriage dissolution. Guided by symbolic interaction theory, the purpose of this study was to understand how stepgrandchildren make sense of their relationships with former stepgrandparents. We explored their perceptions of why relationships were or were not maintained and the impact of continued or dissolved ties on their personal well-being. Former stepgrandchildren (N = 29) aged 18 to 37 were interviewed about their former stepgrandparents. The quality and continuity of these relationships were contingent on stepgrandchildren's relationships with former stepparents, biological parents' relationships with former stepgrandparents, and efforts by former stepgrandparents to remain involved. Losing ties with former stepgrandparents was upsetting, especially when relationships with biological grandparents were not close. Individuals who maintained relationships with former stepgrandparents benefitted from continued access to valuable resources (e.g., positive role models, additional sources of love and support). Our findings have important implications for clinicians' and researchers' understanding of the effects of remarriage dissolution on children as well as the intergenerational efforts that may be critical for preserving meaningful stepfamily ties. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Dissolution of Marriage According to Canon Law

    Directory of Open Access Journals (Sweden)

    MSc. Sulejman Ahmedi

    2013-12-01

    Full Text Available In the Canon law, dissolution of marriage is not allowed since it was considered sacred and as such cannot break until the two spouses are alive, except only if one of the spouses passes away. But throughout history we find cases when allowed dissolution of the marriage and causes specific conditions set by the church. Thus, according to the Old Testament, if, a man married to a woman, didn’t like something about his wife, should write a request for divorce and allow her to leave his home. Meanwhile according to the New Testament records, divorce is prohibited. Although most Protestants continue to espouse the view that marriage was sacred and as such should not be divorced, from those who had supported the idea of granting the divorce. One of them was Luther, who in his remarks before his preachers said: "In my opinion, the issue of divorce belongs to the law, are not they to whom called for regulation of parental relationships, why not have they the authority to regulate the relations between spouses". Protestant churches allow the dissolution of marriage: a Because of adultery by the wife; allowed by Jesus, b Unjustified abandonment of the marital community; c If there were other reasons: if one spouse refuses to have sexual marriage, if the husband abuses his wife     repeatedly and without cause, severe illness of one spouse.

  7. Anomalous dissolution of metals and chemical corrosion

    Directory of Open Access Journals (Sweden)

    DRAGUTIN M. DRAZIC

    2005-03-01

    Full Text Available An overview is given of the anomalous behavior of some metals, in particular Fe and Cr, in acidic aqueous solutions during anodic dissolution. The anomaly is recognizable by the fact that during anodic dissolutionmore material dissolves than would be expected from the Faraday law with the use of the expected valence of the formed ions. Mechanical disintegration, gas bubble blocking, hydrogen embrittlement, passive layer cracking and other possible reasons for such behavior have been discussed. It was shown, as suggested by Kolotyrkin and coworkers, that the reason can be, also, the chemical reaction in which H2O molecules with the metal form metal ions and gaseous H2 in a potential independent process. It occurs simultaneously with the electrochemical corrosion process, but the electrochemical process controls the corrosion potential. On the example of Cr in acid solution itwas shown that the reason for the anomalous behavior is dominantly chemical dissolution, which is considerably faster than the electrochemical corrosion, and that the increasing temperature favors chemical reaction, while the other possible reasons for the anomalous behavior are of negligible effect. This effect is much smaller in the case of Fe, but exists. The possible role of the chemical dissolution reacton and hydrogen evolution during pitting of steels and Al and stress corrosion cracking or corrosion fatigue are discussed.

  8. Groundwater sustainability strategies

    Science.gov (United States)

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  9. Concentration and size distribution of particles in abstracted groundwater.

    Science.gov (United States)

    van Beek, C G E M; de Zwart, A H; Balemans, M; Kooiman, J W; van Rosmalen, C; Timmer, H; Vandersluys, J; Stuyfzand, P J

    2010-02-01

    Particle number concentrations have been counted and particle size distributions calculated in groundwater derived by abstraction wells. Both concentration and size distribution are governed by the discharge rate: the higher this rate the higher the concentration and the higher the proportion of larger particles. However, the particle concentration in groundwater derived from abstraction wells, with high groundwater flow velocities, is much lower than in groundwater from monitor wells, with minimal flow velocities. This inconsistency points to exhaustion of the particle supply in the aquifer around wells due to groundwater abstraction for many years. The particle size distribution can be described with the help of a power law or Pareto distribution. Comparing the measured particle size distribution with the Pareto distribution shows that particles with a diameter >7 microm are under-represented. As the particle size distribution is dependent on the flow velocity, so is the value of the "Pareto" slope beta. (c) 2009 Elsevier Ltd. All rights reserved.

  10. Minimizing Mutual Couping

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed herein are techniques, systems, and methods relating to minimizing mutual coupling between a first antenna and a second antenna.......Disclosed herein are techniques, systems, and methods relating to minimizing mutual coupling between a first antenna and a second antenna....

  11. Ruled Laguerre minimal surfaces

    KAUST Repository

    Skopenkov, Mikhail; Pottmann, Helmut; Grohs, Philipp

    2011-01-01

    A Laguerre minimal surface is an immersed surface in ℝ 3 being an extremal of the functional ∫ (H 2/K-1)dA. In the present paper, we prove that the only ruled Laguerre minimal surfaces are up to isometry the surfaces ℝ (φλ) = (Aφ, Bφ, Cφ + D cos 2φ

  12. Dynamics of Agricultural Groundwater Extraction

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Zilberman, D.; Ierland, van E.C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is

  13. Factors controlling groundwater quality in the Yeonjegu District of Busan City, Korea, using the hydrogeochemical processes and fuzzy GIS.

    Science.gov (United States)

    Venkatramanan, Senapathi; Chung, Sang Yong; Selvam, Sekar; Lee, Seung Yeop; Elzain, Hussam Eldin

    2017-10-01

    The hydrogeochemical processes and fuzzy GIS techniques were used to evaluate the groundwater quality in the Yeonjegu district of Busan Metropolitan City, Korea. The highest concentrations of major ions were mainly related to the local geology. The seawater intrusion into the river water and municipal contaminants were secondary contamination sources of groundwater in the study area. Factor analysis represented the contamination sources of the mineral dissolution of the host rocks and domestic influences. The Gibbs plot exhibited that the major ions were derived from the rock weathering condition. Piper's trilinear diagram showed that the groundwater quality was classified into five types of CaHCO 3 , NaHCO 3 , NaCl, CaCl 2 , and CaSO 4 types in that order. The ionic relationship and the saturation mineral index of the ions indicated that the evaporation, dissolution, and precipitation processes controlled the groundwater chemistry. The fuzzy GIS map showed that highly contaminated groundwater occurred in the northeastern and the central parts and that the groundwater of medium quality appeared in most parts of the study area. It suggested that the groundwater quality of the study area was influenced by local geology, seawater intrusion, and municipal contaminants. This research clearly demonstrated that the geochemical analyses and fuzzy GIS method were very useful to identify the contaminant sources and the location of good groundwater quality.

  14. Trace elements in groundwater used for water supply in Latvia

    Science.gov (United States)

    Retike, Inga; Kalvans, Andis; Babre, Alise; Kalvane, Gunta; Popovs, Konrads

    2014-05-01

    Latvia is rich with groundwater resources of various chemical composition and groundwater is the main drinking source. Groundwater quality can be easily affected by pollution or overexploitation, therefore drinking water quality is an issue of high importance. Here the first attempt is made to evaluate the vast data base of trace element concentrations in groundwater collected by Latvian Environment, Geology and Meteorology Centre. Data sources here range from National monitoring programs to groundwater resources prospecting and research projects. First available historical records are from early 1960, whose quality is impossible to test. More recent systematic research has been focused on the agricultural impact on groundwater quality (Levins and Gosk, 2007). This research was mainly limited to Quaternary aquifer. Monitoring of trace elements arsenic, cadmium and lead was included in National groundwater monitoring program of Latvia in 2008 and 2009, but due to lack of funding the monitoring was suspended until 2013. As a result there are no comprehensive baseline studies regarding the trace elements concentration in groundwater. The aim of this study is to determine natural major and trace element concentration in aquifers mainly used for water supply in Latvia and to compare the results with EU potable water standards. A new overview of artesian groundwater quality will be useful for national and regional planning documents. Initial few characteristic traits of trace element concentration have been identified. For example, elevated fluorine, strontium and lithium content can be mainly associated with gypsum dissolution, but the highest barium concentrations are found in groundwaters with low sulphate content. The groundwater composition data including trace element concentrations originating from heterogeneous sources will be processed and analyzed as a part of a newly developed geologic and hydrogeological data management and modeling system with working name

  15. Innovative technique for assessment of groundwater quality

    International Nuclear Information System (INIS)

    Ahmad, N.; Ahmad, M.; Sajjad, M.I.

    2001-07-01

    Groundwater quality of a part of Chaj Doab has been assessed with innovative techniques which are not reported in literature. The concept of triangular coordinates is modified by multi-rectangular ones for the classification of major cations and anions analysed in the ground water. A Multi-Rectangular Diagram (MRD) has been developed with the combination of rectangular coordinates by virtue of which milli-equivalent per liter percentages (meq/1%) of major cations and anions could be classified into different categories more efficiently as compared to classical trilinear diagrams. Both Piper diagram and MRD are used for the assessment of 259 data sets analysed from ground water of Chaj Doab area, Pakistan. The differentiated ground water types with MRD in the study area are calcium bicarbonate, magnesium bicarbonate, sodium bicarbonate and sodium sulfate. Sodium bicarbonate type emerges as the most abundant type of ground water in the study area. A map showing spatial variation of groundwater quality has been constructed with the help of MRD. This map shows that, in the vicinity of rivers Chenab and Jhelum, calcium bicarbonate type of waters occur while the central area is mainly covered by sodium bicarbonate dominant waters. Groundwaters near the upper Jhelum canal are dominant in sodium sulfate. An important relation between calcium and sodium is proposed which explains the movement history of groundwater in the aquifer. Hydrogeochemical processes have been evaluated with new methods. Ion exchange between calcium and sodium, precipitation of calcium bicarbonate and dissolution of rock forming minerals are the major delineated hydrogeochemical processes. (author)

  16. H-O isotopic and chemical characteristics of a precipitation-lake water-groundwater system in a desert area

    Science.gov (United States)

    Jin, Ke; Rao, Wenbo; Tan, Hongbing; Song, Yinxian; Yong, Bin; Zheng, Fangwen; Chen, Tangqing; Han, Liangfeng

    2018-04-01

    The recharge mechanism of groundwater in the Badain Jaran Desert, North China has been a focus of research and still disputable in the past two decades. In this study, the chemical and hydrogen (H) and oxygen (O) isotopic characteristics of shallow groundwater, lake water and local precipitation in the Badain Jaran Desert and neighboring areas were investigated to reveal the relationships between various water bodies and the recharge source of shallow groundwater. Isotopic and hydrogeochemical results show that (1) shallow groundwater was associated with local precipitation in the Ayouqi and Yabulai regions, (2) lake water was mainly recharged by groundwater in the desert hinterland, (3) shallow groundwater of the desert hinterland, Yabulai Mountain and Gurinai Grassland had a common recharge source. Shallow groundwater of the desert hinterland had a mean recharge elevation of 1869 m a.s.l. on the basis of the isotope-altitude relationship and thus originated chiefly from lateral infiltration of precipitation in the Yabulai Mountain. It is further concluded that shallow groundwater flowed towards the Gurinai Grassland according to the groundwater table contour map. Along the flow pathway, the H-O isotopic variations were primarily caused by the evaporation effect but chemical variations of shallow groundwater were affected by multiple factors, e.g., evaporation effect, dilution effect of occasional heavy-precipitation and dissolution of aquifer evaporites. Our findings provide new insight into the groundwater cycle and benefit the management of the limited water resources in the arid desert area.

  17. The dissolution rate of UO2 in the alkaline regime under oxidizing conditions using a simplified ground water analog

    International Nuclear Information System (INIS)

    Leider, H.R.; Nguyen, S.N.; Weed, H.C.; Steward, S.A.

    1992-01-01

    The major factor controlling the long term release of radionuclides from spent fuel in a geologic repository is the leaching/dissolution by groundwater of the UO 2 matrix, since more than 90% of the radionuclide waste is contained in the fuel matrix. The objective of this investigation is to provide experimental dissolution rates for UO 2 samples which can be used to develop a mechanistic release model (or models) for UO 2+x (x≥0) under repository conditions. Several types of data will be obtained from this study: (1) the dissolution rates of UO 2 as a function of pI-L temperature, carbonate and oxygen fugacity; (2) the comparison of the steady state dissolution rates of ''not-reduced'' versus ''reduced'' UO 2 samples and of single crystal versus polycrystalline UO 2 under identical experimental conditions; (3) the pre- and post-test surface analyses of the samples to provide information on the surface phases that may be formed under experimental conditions

  18. Investigation into the dissolution and direct assay of high-fired plutonium dioxide

    International Nuclear Information System (INIS)

    Patterson, J.K.

    1976-01-01

    A fusion-melt and dissolution assay method has been developed and tested for the quantitative analysis of high-fired plutonium dioxide. The method employs fusion of the plutonium dioxide at temperatures greater than the melting point of an eutectic mixture of potassium pyrosulfate plus sodium peroxide. The resultant melt is then titrated directly by either controlled potential coulometry or a gravimetric titration, using standardized ceric sulfate as the titrant. It has been concluded from these investigations that by using the techniques described, high-fired plutonium dioxide (stochiometric) can be quantitatively dissolved and assayed to a degree heretofore beyond the state-of-the-art, while showing direct traceability to the Federal standards. After fusion, the dissolution and direct assay is applicable to existing routine analytical procedures. The method was designed so as to minimize physical handling, simplify the chemical operations, and maximize the personal safety of the analyst at an appreciable cost savings per analysis

  19. Dissolution rate enhancement of piroxicam by ordered mixing.

    Science.gov (United States)

    Saharan, Vikas Anand; Choudhury, Pratim Kumar

    2012-07-01

    Micronized piroxicam was mixed with lactose, mannitol, sorbitol, maltitol and sodium chloride to produce ordered mixture in a glass vial by manual hand shaking method. The effect of excipients, surfactant, superdisintegrant, drug concentration and carrier particle size on dissolution rate was investigated. Dissolution rate studies of the prepared ordered mixtures revealed that all water soluble excipients increased the dissolution rate of piroxicam when compared to the dissolution rate of piroxicam or its suspension. Ordered mixture formulation PLF4, consisting of lactose as water soluble excipient, SSG (8% w/s) and SLS (1% w/w), released piroxcam at a very fast rate so much so that about 90% of the composition had passed into solution within 2 min. The order of the dissolution rate enhancement for ordered mixtures of various water soluble excipients was: lactose > mannitol > maltitol > sorbitol > sodium chloride. Carrier granules of size 355-710 µm were most effective in increasing the dissolution rate of drug from ordered mixtures. Decreasing the carrier particle size reduced drug dissolution from ordered mixtures. The dissolution rate of ordered mixtures consisting of 1-5% w/w piroxicam was superior to dissolution rate of piroxicam suspension. The dissolution data fitting and the resulting regression parameters indicated Hixson Crowell, cube root law, as the best fit to drug release data of ordered mixtures.

  20. High-resolution InSAR constraints on flood-related subsidence and evaporite dissolution along the Dead Sea shores: Interplay between hydrology and rheology

    Science.gov (United States)

    Shviro, Maayan; Haviv, Itai; Baer, Gidon

    2017-09-01

    Sinkhole generation and land subsidence are commonly attributed to dissolution of subsurface layers by under-saturated groundwater and formation of cavities. Along the Dead Sea (DS) shorelines, this process also involves seasonal flash floods that are drained into the subsurface by existing and newly formed sinkholes. We quantify the contribution of flash-floods to salt dissolution and land subsidence using high-resolution interferometric synthetic aperture radar (InSAR). Subsidence rates during a 3-year period (2012-2015) were calculated from 57 COSMO SkyMed X-band interferograms bracketing major flood events and intra-flood periods in 21 sinkhole sites. The sites are located within channels and alluvial fans along the western shores of the Dead Sea, Israel. The observed subsidence reaches maximum rates of 2.5 mm/day, accumulating in specific sites to 500 mm/year. In most of the sinkhole sites a gradual increase in the annual subsidence rate is observed during the 3-year study period. Three different modes of response to floods were observed: (1) sites where floodwater is not directly channeled into sinkholes do not respond to floods; (2) sites adjacent to active channels with sinkholes are unaffected by specific floods but their subsidence rates increase gradually from early winter to mid-summer, and decay gradually until the following winter; and (3) sites in active channels with sinkholes are characterized by an abrupt increase in subsidence rates immediately after each flood (by a factor of up to 20) and by a subsequent quasi-exponential subsidence decay over periods of several months. In these latter sites, subsidence rates after each flood are temporally correlated with alternating groundwater levels in adjacent boreholes. The rapid rise in groundwater head following floods increases the hydraulic gradient of the under-saturated groundwater and hence also the groundwater discharge and the dissolution rate of the subsurface salt layer. A subsequent quasi

  1. Groundwater Assessment Platform

    OpenAIRE

    Podgorski, Joel; Berg, Michael

    2018-01-01

    The Groundwater Assessment Platform is a free, interactive online GIS platform for the mapping, sharing and statistical modeling of groundwater quality data. The modeling allows users to take advantage of publicly available global datasets of various environmental parameters to produce prediction maps of their contaminant of interest.

  2. Oxidative corrosion of spent UO2 fuel in vapor and dripping groundwater at 900C

    International Nuclear Information System (INIS)

    Finch, R. J.

    1999-01-01

    Corrosion of spent UO 2 fuel has been studied in experiments conducted for nearly six years. Oxidative dissolution in vapor and dripping groundwater at 90 C occurs via general corrosion at fuel-fragment surfaces. Dissolution along fuel-grain boundaries is also evident in samples contacted by the largest volumes of groundwater, and corroded grain boundaries extend at least 20 or 30 grains deep (> 200 microm), possibly throughout millimeter-sized fragments. Apparent dissolution of fuel along defects that intersect grain boundaries has created dissolution pits that are 50 to 200 nm in diameter. Dissolution pits penetrate 1-2 microm into each grain, producing a ''worm-like'' texture along fuel-grain-boundaries. Sub-micrometer-sized fuel shards are common between fuel grains and may contribute to the reactive surface area of fuel exposed to groundwater. Outer surfaces of reacted fuel fragments develop a fine-grained layer of corrosion products adjacent to the fuel (5-15 microm thick). A more coarsely crystalline layer of corrosion products commonly covers the fine-grained layer, the thickness of which varies considerably among samples (from less than 5 microm to greater than 40 microm). The thickest and most porous corrosion layers develop on fuel fragments exposed to the largest volumes of groundwater. Corrosion-layer compositions depend strongly on water flux, with uranyl oxy-hydroxides predominating in vapor experiments, and alkali and alkaline earth uranyl silicates predominating in high drip-rate experiments. Low drip-rate experiments exhibit a complex assemblage of corrosion products, including phases identified in vapor and high drip-rate experiments

  3. Evaluating data worth for ground-water management under uncertainty

    Science.gov (United States)

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  4. Uranothorite solid solutions: From synthesis to dissolution

    International Nuclear Information System (INIS)

    Costin, Dan-Tiberiu

    2012-01-01

    USiO 4 coffinite appears as one of the potential phases formed in the back-end of the alteration of spent fuel, in reducing storage conditions. A study aiming to assess the thermodynamic data associated with coffinite through an approach based on the preparation of Th 1-x U x SiO 4 uranothorite solid solutions was then developed during this work. First, the preparation of uranothorite samples was successfully undertaken in hydrothermal conditions. However, the poly-phased samples systematically formed for x ≥ 0,2 underlined the kinetic hindering linked with the preparation of uranium-enriched samples, including coffinite end-member. Nevertheless, the characterization of the various samples led to confirm the formation of an ideal solid solution and allowed the constitution of a spectroscopic database. The purification of the samples was then performed by the means of different protocols based on physical (dispersion-centrifugation) or chemical (selective dissolution of secondary phases) methods. This latter led to a complete of the impurities (Th 1-y U y O 2 mixed oxide and amorphous silica) through successive washing steps in acid then basic media. Finally, dissolution experiments were undertaken on uranothorite samples (0 ≤ xexp. ≤ 0,5) and allowed pointing out the influence of composition, pH and temperature on the normalized dissolution rate of the compounds. Also, the associated thermodynamic data, such as activation energy, indicate that the reaction is controlled by surface reactions. Once the equilibrium is reached, the analogous solubility constants were determined for each composition studied, then allowing the extrapolation to coffinite value. It was then finally possible to conclude on the inversion of coffinitisation reaction with temperature. (author) [fr

  5. Minimizing Exposure at Work

    Science.gov (United States)

    ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Home Page Pesticide Health and Safety Information Safe Use Practices Minimizing Exposure at Work Pesticides - Pennsylvania State University Cooperative Extension Personal Protective Equipment for Working

  6. Minimalism. Clip and Save.

    Science.gov (United States)

    Hubbard, Guy

    2002-01-01

    Provides background information on the art movement called "Minimalism" discussing why it started and its characteristics. Includes learning activities and information on the artist, Donald Judd. Includes a reproduction of one of his art works and discusses its content. (CMK)

  7. Ruled Laguerre minimal surfaces

    KAUST Repository

    Skopenkov, Mikhail

    2011-10-30

    A Laguerre minimal surface is an immersed surface in ℝ 3 being an extremal of the functional ∫ (H 2/K-1)dA. In the present paper, we prove that the only ruled Laguerre minimal surfaces are up to isometry the surfaces ℝ (φλ) = (Aφ, Bφ, Cφ + D cos 2φ) + λ(sin φ, cos φ, 0), where A,B,C,D ε ℝ are fixed. To achieve invariance under Laguerre transformations, we also derive all Laguerre minimal surfaces that are enveloped by a family of cones. The methodology is based on the isotropic model of Laguerre geometry. In this model a Laguerre minimal surface enveloped by a family of cones corresponds to a graph of a biharmonic function carrying a family of isotropic circles. We classify such functions by showing that the top view of the family of circles is a pencil. © 2011 Springer-Verlag.

  8. Hanford groundwater scenario studies

    International Nuclear Information System (INIS)

    Arnett, R.C.; Gephart, R.E.; Deju, R.A.; Cole, C.R.; Ahlstrom, S.W.

    1977-05-01

    This report documents the results of two Hanford groundwater scenario studies. The first study examines the hydrologic impact of increased groundwater recharge resulting from agricultural development in the Cold Creek Valley located west of the Hanford Reservation. The second study involves recovering liquid radioactive waste which has leaked into the groundwater flow system from a hypothetical buried tank containing high-level radioactive waste. The predictive and control capacity of the onsite Hanford modeling technology is used to evaluate both scenarios. The results of the first study indicate that Cold Creek Valley irrigationis unlikely to cause significant changes in the water table underlying the high-level waste areas or in the movement of radionuclides already in the groundwater. The hypothetical tank leak study showed that an active response (in this case waste recovery) can be modeled and is a possible alternative to passive monitoring of radionuclide movement in the unlikely event that high-level waste is introduced into the groundwater

  9. Biogeochemistry of Arsenic in Groundwater Flow Systems: The Case of Southern Louisiana

    Science.gov (United States)

    Johannesson, K. H.; Yang, N.; Datta, S.

    2017-12-01

    Arsenic (As) is a highly toxic and carcinogenic metalloid that can cause serious health effects, including increased risk of cancers, infant mortality, and reduced intellectual and motor function in children to populations chronically exposed to As. Recent estimates suggest that more than 140 million people worldwide are drinking As-contaminated groundwater (i.e., As ≥ 10 µg kg-1), and the most severely affected region is the Ganges-Brahmaputra-Meghna delta in Bangladesh and India (i.e., Bengal Basin). Arsenic appears to be mobilized to Bengal Basin groundwaters by reductive dissolution of Fe oxides in aquifer sediments with the source of the labile organic matter occurring in the aquifer sediments. Studies within the lower Mississippi River delta of southern Louisiana (USA) also reveal high As concentrations (up to 640 µg kg-1) in shallow groundwaters. It is not known what affects, if any, the elevated groundwater As has had on local communities. The regional extent of high As shallow groundwaters is controlled, in part, by the distribution of Holocene sediments, deltaic deposits, and organic-rich sediments, similar to the Bengal Basin. Field and laboratory studies suggest that As is largely of geogenic origin, and further that microbial reduction of Fe(III)/Mn(IV) oxides/oxyhydroxides within the sediments contributes the bulk of the As to the groundwaters. Incubation studies are supported by biogeochemical reactive transport modeling, which also indicates reductive dissolution of metal oxides/oxyhydroxides as the likely source of As to these groundwaters. Finally, reactive transport modeling of As in shallow groundwaters suggests that sorption to aquifer mineral surfaces limits the transport of As after mobilization, which may explain, in part, the heterogeneous distribution of As in groundwaters of southern Louisiana and, perhaps, the Bengal Basin.

  10. Geochemical evolution of groundwater in the Mud Lake area, eastern Idaho, USA

    Science.gov (United States)

    Rattray, Gordon W.

    2015-01-01

    Groundwater with elevated dissolved-solids concentrations—containing large concentrations of chloride, sodium, sulfate, and calcium—is present in the Mud Lake area of Eastern Idaho. The source of these solutes is unknown; however, an understanding of the geochemical sources and processes controlling their presence in groundwater in the Mud Lake area is needed to better understand the geochemical sources and processes controlling the water quality of groundwater at the Idaho National Laboratory. The geochemical sources and processes controlling the water quality of groundwater in the Mud Lake area were determined by investigating the geology, hydrology, land use, and groundwater geochemistry in the Mud Lake area, proposing sources for solutes, and testing the proposed sources through geochemical modeling with PHREEQC. Modeling indicated that sources of water to the eastern Snake River Plain aquifer were groundwater from the Beaverhead Mountains and the Camas Creek drainage basin; surface water from Medicine Lodge and Camas Creeks, Mud Lake, and irrigation water; and upward flow of geothermal water from beneath the aquifer. Mixing of groundwater with surface water or other groundwater occurred throughout the aquifer. Carbonate reactions, silicate weathering, and dissolution of evaporite minerals and fertilizer explain most of the changes in chemistry in the aquifer. Redox reactions, cation exchange, and evaporation were locally important. The source of large concentrations of chloride, sodium, sulfate, and calcium was evaporite deposits in the unsaturated zone associated with Pleistocene Lake Terreton. Large amounts of chloride, sodium, sulfate, and calcium are added to groundwater from irrigation water infiltrating through lake bed sediments containing evaporite deposits and the resultant dissolution of gypsum, halite, sylvite, and bischofite.

  11. Minimal and careful processing

    OpenAIRE

    Nielsen, Thorkild

    2004-01-01

    In several standards, guidelines and publications, organic food processing is strongly associated with "minimal processing" and "careful processing". The term "minimal processing" is nowadays often used in the general food processing industry and described in literature. The term "careful processing" is used more specifically within organic food processing but is not yet clearly defined. The concept of carefulness seems to fit very well with the processing of organic foods, especially if it i...

  12. Dissolution of LMFBR fuel-sodium aerosols

    International Nuclear Information System (INIS)

    Allen, M.D.; Moss, O.R.

    1979-01-01

    Plutonium dioxide, normally insoluble in biological fluids, becomes much more soluble when mixed with sodium as the aerosol is formed. Sodium-fuel aerosols are approximately 20 times less soluble in simulated lung fluid than in distilled water. Solubility of sodium-fuel aerosols increases when Na 2 CO 3 are added to the distilled-water dissolution fluid. Mixed-oxide fuel aerosols without sodium present are relatively insoluble in distilled water, simulated lung fluid, and distilled water with Na 2 CO 3 and NaHCO 3 added

  13. System and process for dissolution of solids

    Science.gov (United States)

    Liezers, Martin; Farmer, III, Orville T.

    2017-10-10

    A system and process are disclosed for dissolution of solids and "difficult-to-dissolve" solids. A solid sample may be ablated in an ablation device to generate nanoscale particles. Nanoparticles may then swept into a coupled plasma device operating at atmospheric pressure where the solid nanoparticles are atomized. The plasma exhaust may be delivered directly into an aqueous fluid to form a solution containing the atomized and dissolved solids. The composition of the resulting solution reflects the composition of the original solid sample.

  14. Dissolution behavior of lithium compounds in ethanol

    Directory of Open Access Journals (Sweden)

    Tomohiro Furukawa

    2016-12-01

    Full Text Available In order to exchange the components which received irradiation damage during the operation at the International Fusion Materials Irradiation Facility, the adhered lithium, which is partially converted to lithium compounds such as lithium oxide and lithium hydroxide, should be removed from the components. In this study, the dissolution experiments of lithium compounds (lithium nitride, lithium hydroxide, and lithium oxide were performed in a candidate solvent, allowing the clarification of time and temperature dependence. Based on the results, a cleaning procedure for adhered lithium on the inner surface of the components was proposed.

  15. Can hydrate dissolution experiments predict the fate of a natural hydrate system?

    Energy Technology Data Exchange (ETDEWEB)

    Hester, K.C.; Peltzer, E.T.; Dunk, R.M.; Walz, P.M.; Brewer, P.G. [Monterey Bay Aquarium Research Inst., Moss Landing, CA (United States); Dendy Sloan, E. [Colorado School of Mines, Golden, CO (United States). Center for Hydrate Research

    2008-07-01

    Gas hydrates are naturally occurring compounds found in permafrost regions and in oceans. In the natural environment, sufficient temperature and pressure conditions for hydrate formation exist over a significant portion of the ocean. However, in addition to pressure and temperature, the chemical potential of the gas in the hydrate must be equal to the surrounding waters. If the concentration of the gas in surrounding water is under-saturated with respect to the gas in the hydrate, the hydrate will dissolve to drive the system towards chemical equilibrium. This paper presented a dissolution study of exposed hydrate from outcrops at Barkley Canyon, located off Vancouver Island, British Columbia. A previous field experiment on synthetic methane hydrate samples had demonstrated that mass transfer controlled dissolution in under-saturated seawater. However, seafloor hydrate outcrops have been shown to have significant longevity compared to expected dissolution rates based upon convective boundary layer diffusion calculations. An in-situ dissolution experiment was performed on two distinct natural hydrate fabrics in order to help resolve this apparent disconnect between the dissolution rates of synthetic and natural hydrate. The paper presented a map of Barkley Canyon and discussed the field measurements and methods for the study. Exposed outcrops of gas hydrates were cored using a specially constructed stainless steel coring device and a hydraulic ram was located inside the corer. Hydrate samples were cored directly using the a manipulator arm and then injected into a sampling cell. The hydrate was then added to an open mesh exposure container, which allowed for exposure to ambient benthic currents with minimal disturbance. As well, in order to observe the slow dissolution of the hydrate in seawater at Barkley Canyon, time-lapse photography was employed. Last, the paper presented the results of the hydrate fabric porosities and hydrate dissolution rates. It was

  16. Investigation on Microbial Dissolution of Uranium (VI) from Autunite Mineral - 13421

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda, Paola; Katsenovich, Yelena; Lagos, Leonel [Applied Research Center, Florida International University. 10555 West Flagler St. Suite 2100, Miami Fl 33175 (United States)

    2013-07-01

    Precipitating autunite minerals by polyphosphate injection was identified as a feasible remediation strategy for sequestering uranium in contaminated groundwater and soil in situ at the Hanford Site. Autunite stability under vadose and saturated zone environmental conditions can help to determine the long-term effectiveness of this remediation strategy. The Arthrobacter bacteria are one of the most common groups in soils and are found in large numbers in Hanford soil as well as other subsurface environments contaminated with radionuclides. Ubiquitous in subsurface microbial communities, these bacteria can play a significant role in the dissolution of minerals and the formation of secondary minerals. The main objective of this investigation was to study the bacterial interactions under oxidizing conditions with uranium (VI); study the potential role of bicarbonate, which is an integral complexing ligand for U(VI) and a major ion in groundwater compositions; and present data from autunite dissolution experiments using Arthrobacter strain G968, a less U(VI)-tolerant strain. Sterile 100 mL glass mixed reactors served as the major bioreactor for initial experimentation. These autunite-containing bioreactors were injected with bacterial cells after the autunite equilibrated with the media solution amended with 0 mM, 3 mM 5 mM and 10 mM concentrations of bicarbonate. G968 Arthrobacter cells in the amount of 10{sup 6} cells/mL were injected into the reactors after 27 days, giving time for the autunite to reach steady state. Abiotic non-carbonate controls were kept without bacterial inoculation to provide a control for the biotic samples. Samples of the solution were analyzed for dissolved U(VI) by means of kinetic phosphorescence analyzer KPA-11 (Chemcheck Instruments, Richland, WA). Analysis showed that as [HCO{sub 3}{sup -}] increases, a diminishing trend on the effect of bacteria on autunite leaching is observed. Viability of cells was conducted after 24 hours of cell

  17. Investigation on Microbial Dissolution of Uranium (VI) from Autunite Mineral - 13421

    International Nuclear Information System (INIS)

    Sepulveda, Paola; Katsenovich, Yelena; Lagos, Leonel

    2013-01-01

    Precipitating autunite minerals by polyphosphate injection was identified as a feasible remediation strategy for sequestering uranium in contaminated groundwater and soil in situ at the Hanford Site. Autunite stability under vadose and saturated zone environmental conditions can help to determine the long-term effectiveness of this remediation strategy. The Arthrobacter bacteria are one of the most common groups in soils and are found in large numbers in Hanford soil as well as other subsurface environments contaminated with radionuclides. Ubiquitous in subsurface microbial communities, these bacteria can play a significant role in the dissolution of minerals and the formation of secondary minerals. The main objective of this investigation was to study the bacterial interactions under oxidizing conditions with uranium (VI); study the potential role of bicarbonate, which is an integral complexing ligand for U(VI) and a major ion in groundwater compositions; and present data from autunite dissolution experiments using Arthrobacter strain G968, a less U(VI)-tolerant strain. Sterile 100 mL glass mixed reactors served as the major bioreactor for initial experimentation. These autunite-containing bioreactors were injected with bacterial cells after the autunite equilibrated with the media solution amended with 0 mM, 3 mM 5 mM and 10 mM concentrations of bicarbonate. G968 Arthrobacter cells in the amount of 10 6 cells/mL were injected into the reactors after 27 days, giving time for the autunite to reach steady state. Abiotic non-carbonate controls were kept without bacterial inoculation to provide a control for the biotic samples. Samples of the solution were analyzed for dissolved U(VI) by means of kinetic phosphorescence analyzer KPA-11 (Chemcheck Instruments, Richland, WA). Analysis showed that as [HCO 3 - ] increases, a diminishing trend on the effect of bacteria on autunite leaching is observed. Viability of cells was conducted after 24 hours of cell incubation with

  18. Coupled multiphase reactive flow and mineral dissolution-precipitation kinetics: Examples of long-term CO2 sequestration in Utsira Sand, Norway and Mt. Simon Formation, Midwest USA

    Science.gov (United States)

    Zhang, Y.; Zhang, G.; Lu, P.; Hu, B.; Zhu, C.

    2017-12-01

    The extent of CO2 mineralization after CO2 injection into deep saline aquifers is a result of the complex coupling of multiphase fluid flow, mass transport, and brine-mineral reactions. The effects of dissolution rate laws and groundwater flow on the long-term fate of CO2 have been seriously overlooked. To investigate these effects, we conducted multiphase (CO2 and brine) coupled reactive transport modeling of CO2 storage in two sandy formations (Utsira Sand, Norway1,2 and Mt. Simon formation, USA 3) using ToughReact and simulated a series of scenarios. The results indicated that: (1) Different dissolution rate laws for feldspars can significantly affect the amount of CO2 mineralization. Increased feldspar dissolution will promote CO2 mineral trapping through the coupling between feldspar dissolution and carbonate mineral precipitation at raised pH. The predicted amount of CO2 mineral trapping when using the principle of detailed balancing-based rate law for feldspar dissolution is about twice as much as that when using sigmoidal rate laws in the literature. (2) Mineral trapping is twice as much when regional groundwater flow is taken into consideration in long-term simulations (e.g., 10,000 years) whereas most modeling studies neglected the regional groundwater flow back and effectively simulated a batch reactor process. Under the influence of regional groundwater flow, the fresh brine from upstream continuously dissolves CO2 at the tail of CO2 plume, generating a large acidified area where large amount of CO2 mineralization takes place. The upstream replenishment of groundwater results in ˜22% mineral trapping at year 10,000, compared to ˜4% when this effect is ignored. Refs: 1Zhang, G., Lu, P., Wei, X., Zhu, C. (2016). Impacts of Mineral Reaction Kinetics and Regional Groundwater Flow on Long-Term CO2 Fate at Sleipner. Energy & Fuels, 30(5), 4159-4180. 2Zhu, C., Zhang, G., Lu, P., Meng, L., Ji, X. (2015). Benchmark modeling of the Sleipner CO2 plume

  19. Use of partial dissolution techniques in geochemical exploration

    Science.gov (United States)

    Chao, T.T.

    1984-01-01

    Application of partial dissolution techniques to geochemical exploration has advanced from an early empirical approach to an approach based on sound geochemical principles. This advance assures a prominent future position for the use of these techniques in geochemical exploration for concealed mineral deposits. Partial dissolution techniques are classified as single dissolution or sequential multiple dissolution depending on the number of steps taken in the procedure, or as "nonselective" extraction and as "selective" extraction in terms of the relative specificity of the extraction. The choice of dissolution techniques for use in geochemical exploration is dictated by the geology of the area, the type and degree of weathering, and the expected chemical forms of the ore and of the pathfinding elements. Case histories have illustrated many instances where partial dissolution techniques exhibit advantages over conventional methods of chemical analysis used in geochemical exploration. ?? 1984.

  20. Dissolution mechanisms of CO2 hydrate droplets in deep seawaters

    International Nuclear Information System (INIS)

    Gabitto, Jorge; Tsouris, Costas

    2006-01-01

    Carbon dioxide dissolution at intermediate ocean depths was studied using physical and mass transfer models. Particle density and hydrate layer thickness were determined using existing field data. Pseudo-homogeneous and heterogeneous mass transfer models were proposed to study the dissolution process. Pseudo-homogeneous models do not seem to represent the dissolution process well. Although heterogeneous models interpret the physical behavior better, unresolved issues related to hydrate dissolution still remain. For example, solid hydrate forms on one side of the hydrate film while it dissolves on the other. Dissolution is a complex process that comprises at least two sequential steps. The global process is controlled by mass transfer inside the hydrate layer or by a dissolution reaction at the hydrate-water interface

  1. Standard practice for measurement of the glass dissolution rate using the single-pass flow-through test method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice describes a single-pass flow-through (SPFT) test method that can be used to measure the dissolution rate of a homogeneous silicate glass, including nuclear waste glasses, in various test solutions at temperatures less than 100°C. Tests may be conducted under conditions in which the effects from dissolved species on the dissolution rate are minimized to measure the forward dissolution rate at specific values of temperature and pH, or to measure the dependence of the dissolution rate on the concentrations of various solute species. 1.2 Tests are conducted by pumping solutions in either a continuous or pulsed flow mode through a reaction cell that contains the test specimen. Tests must be conducted at several solution flow rates to evaluate the effect of the flow rate on the glass dissolution rate. 1.3 This practice excludes static test methods in which flow is simulated by manually removing solution from the reaction cell and replacing it with fresh solution. 1.4 Tests may be conducted wit...

  2. Optimized remedial groundwater extraction using linear programming

    International Nuclear Information System (INIS)

    Quinn, J.J.

    1995-01-01

    Groundwater extraction systems are typically installed to remediate contaminant plumes or prevent further spread of contamination. These systems are expensive to install and maintain. A traditional approach to designing such a wellfield uses a series of trial-and-error simulations to test the effects of various well locations and pump rates. However, the optimal locations and pump rates of extraction wells are difficult to determine when objectives related to the site hydrogeology and potential pumping scheme are considered. This paper describes a case study of an application of linear programming theory to determine optimal well placement and pump rates. The objectives of the pumping scheme were to contain contaminant migration and reduce contaminant concentrations while minimizing the total amount of water pumped and treated. Past site activities at the area under study included disposal of contaminants in pits. Several groundwater plumes have been identified, and others may be present. The area of concern is bordered on three sides by a wetland, which receives a portion of its input budget as groundwater discharge from the pits. Optimization of the containment pumping scheme was intended to meet three goals: (1) prevent discharge of contaminated groundwater to the wetland, (2) minimize the total water pumped and treated (cost benefit), and (3) avoid dewatering of the wetland (cost and ecological benefits). Possible well locations were placed at known source areas. To constrain the problem, the optimization program was instructed to prevent any flow toward the wetland along a user-specified border. In this manner, the optimization routine selects well locations and pump rates so that a groundwater divide is produced along this boundary

  3. Mapping groundwater renewability using age data in the Baiyang alluvial fan, NW China

    Science.gov (United States)

    Huang, Tianming; Pang, Zhonghe; Li, Jie; Xiang, Yong; Zhao, Zhijiang

    2017-05-01

    Groundwater age has been used to map renewability of water resources within four groups: strong, partial, and rare renewability, and non-renewable. The Baiyang alluvial fan in NW China is a representative area for examining groundwater recharge from river infiltration and for mapping groundwater renewability, and it has been investigated using multiple isotopes and water chemistry. Systematic sampling included 52 samples for 2H and 18O analysis and 32 samples for 3H, 13C and 14C analysis. The δ13C compositions remain nearly constant throughout the basin (median -12.7‰) and indicate that carbonate dissolution does not alter 14C age. The initial 14C activity of 80 pmC, obtained by plotting 3H and 14C activity, was used to correct groundwater 14C age. The results show that areas closer to the river consist of younger groundwater ages; this suggests that river infiltration is the main recharge source to the shallow groundwater system. However, at distances far away from the river, groundwater ages become older, i.e., from modern water (less than 60 year) to pre-modern water (from 60 to 1,000 years) and paleowater (more than 1,000 yeas). The four classifications of groundwater renewability have been associated with different age ranges. The area of shallow groundwater with strong renewability accounts for 74% of the total study area. Because recharge condition (river infiltration) controls overall renewability, a groundwater renewability map is of significant importance to the management of groundwater exploitation of this area as well as other arid groundwater basins.

  4. Hydrogeochemistry and Stable Isotope Studies of Groundwater in the Ga West Municipal Area, Ghana

    International Nuclear Information System (INIS)

    Saka, David

    2011-07-01

    This study assesses groundwater in the Ga West Municipal Area of Ghana using hydrogeochemistry and stable isotope approaches. High salinity groundwaters are obtained in the municipality which poses problems for current and future domestic water supply exploitation. The increase in salinity is related to the dissolution of minerals in the host rocks and the evaporative concentration of solutes. The dominant groundwater composition in both shallow and deep wells sampled is Na-Cl, with concentration increasing substantially with well depths. The mixing process between freshwater and saline water was observed in the shift from CaHCO3 facies to Ca-Cl facies. Schoeller diagrams showed that groundwater movement in the study area is mostly vertical, moving from the shallow groundwaters towards the deep groundwaters. There were however few exceptions where no relationship was established between the shallow and the deep groundwaters. The oxygen and hydrogen isotope compositions in the groundwater samples suggest that groundwater recharge is of meteoric origin, with few samples showing evidence of evaporation. An average deuterium excess of rainfall of 14.2‰ was observed, which indicates the significance of kinetic evaporation due to low humidity conditions prevalent in the study area. The d-excess also indicates modern recharge along the Akwapim-Togo Ranges. Groundwater analysis for trace metals indicates that 93% of the groundwaters have Iron concentration above recommended limits. However, Cu, Zn, Pb, Cd and Cr have values within the acceptable limits. Generally, about 40% of the groundwaters sampled are not suitable for drinking and domestic purposes based on comparison with international standards for drinking water. (au)

  5. Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics

    Science.gov (United States)

    Jeschke, Alexander A.; Vosbeck, Katrin; Dreybrodt, Wolfgang

    2001-01-01

    The effective dissolution rates of gypsum are determined by mixed kinetics, where the rate constants of dissolution at the surface and the transport constant of molecular diffusion of dissolved material are similar. To obtain the surface reaction rate law it is necessary to know the transport constant. We have determined the surface rate law for monocrystalline selenite by using a rotating disc set-up, where the transport coefficients are well known. As a result, up to a calcium concentration of 0.6 · ceq, we find a nearly linear rate law Rs = ksl (1- cs/ ceq) n1, where cs is the total calcium concentration at the surface and ceq the equilibrium concentration with respect to gypsum, n1 = 1.2 ± 0.2, and ksl = 1.1 · 10 -4 mmol cm -2 s -1 ± 15%. We also employed batch-experiments for selenite, alabaster and gypsum rock samples. The result of these experiments were interpreted by using a transport constant determined by NaCl dissolution experiments under similar physical conditions. The batch experiments reveal a dissolution rate law Rs = ksl (1- cs/ ceq) n1, ksl = 1.3 · 10 -4 mmol · cm -2 s -1, n1 = 1.2 ± 0.2 for c ≤ 0.94 · ceq. Close to equilibrium a nonlinear rate law, Rs = ks2 (1- cs/ ceq) n2, is observed, where ks2 is in the order of 10 mmol · cm -2 s -1 and n2 ≈ 4.5. The experimentally observed gypsum dissolution rates from the batch experiments could be accurately fitted, with only minor variations of the surface reaction constant obtained from the rotating disk experiment and the transport coefficient from the NaCl dissolution batch experiment. Batch experiments on pure synthetic gypsum, reveal a linear rate law up to equilibrium. This indicates inhibition of dissolution in natural samples close to equilibrium, as is known also for calcite minerals.

  6. Bench Scale Saltcake Dissolution Test Report

    International Nuclear Information System (INIS)

    BECHTOLD, D.B.; PACQUET, E.A.

    2000-01-01

    A potential scenario for retrieving saltcake from single shell tanks is the ''Rainbird(reg s ign) sprinkler'' method. Water is distributed evenly across the surface of the saltcake and allowed to percolate by gravity through the waste. The salt dissolves in the water, forming a saturated solution. The saturated liquid is removed by a saltwell pump situated near the bottom of the tank. By this method, there is never a large inventory of liquid in the tank that could pose a threat of leakage. There are many variables or factors that can influence the hydrodynamics of this retrieval process. They include saltcake porosity; saltwell pumping rate; salt dissolution chemistry; factors that could promote flow channeling (e.g. tank walls, dry wells, inclusions or discontinuities in the saltcake); method of water distribution; plug formation due to crystal formations or accumulation of insoluble solids. A brief literature search indicates that very little experimental data exist on these aspects of saltcake dissolution (Wiersma 1996, 1997). The tests reported here were planned (Herting, 2000) to provide preliminary data and information for planning future, scaled-up tests of the sprinkler method

  7. A Study on the Anodic Dissolution of Aluminum(II)

    International Nuclear Information System (INIS)

    Nam, C. W.; Park, C. S.; Park, C. S.

    1978-01-01

    In many cases oxide films formed on metals in atmosphere or aqueous solution are chemically inactive, especially it is the case with aluminum. In this study, anodic dissolution of aluminum was done using various electrolyte and cathode, mechanism of which was examined. As a consequence, oxide film on aluminum surface was dissolved together with the dissolution reaction of metal by the anodic current. It was shown that the dissolution reaction due to the contact between electrolyte and metal happened in the same time

  8. Dissolution Model Development: Formulation Effects and Filter Complications

    DEFF Research Database (Denmark)

    Berthelsen, Ragna; Holm, Rene; Jacobsen, Jette

    2016-01-01

    This study describes various complications related to sample preparation (filtration) during development of a dissolution method intended to discriminate among different fenofibrate immediate-release formulations. Several dissolution apparatus and sample preparation techniques were tested. The fl....... With the tested drug–formulation combination, the best in vivo–in vitro correlation was found after filtration of the dissolution samples through 0.45-μm hydrophobic PTFE membrane filters....

  9. A synthesis of hydrochemistry with an integrated conceptual model for groundwater in the Hexi Corridor, northwestern China

    Science.gov (United States)

    Wang, Liheng; Dong, Yanhui; Xu, Zhifang

    2017-09-01

    Although many studies have investigated the recharge and evolution of groundwater in the Hexi Corridor, northwestern (NW) China, they describe individual sites such as Jinchang, Jiuquan, Dunhuang, and others. Considering the similarity of these sites, a systematic review of the entire Hexi Corridor is lacking. This paper compares and summarizes previous studies in the Hexi Corridor to provide a regional perspective of the isotopic characteristics and hydrochemical composition of groundwater. In unconfined aquifers, groundwater is recharged by snow and ice melt water from the Qilian Mountains; local precipitation can be neglected. Therefore, the groundwater belongs to a unique hydrological cycle model in the Hexi Corridor, referred to as snow and ice melt water-groundwater system. The dominant anion species changes from HCO3- in front of the mountains to SO42- in the middle basin and Cl- at the basin boundary along the groundwater flow direction, and TDS increases gradually owing to evaporation. A major hydrogeochemical process is the dissolution of minerals from the aquifer in the recharge area changing to cation exchange reactions in the discharge area. Confined groundwater was recharged mainly in the late Pleistocene and middle Holocene at colder temperatures than those of modern times; thus, it is non-renewable. In addition to dissolution, the hydrochemical composition of confined groundwater is also affected by cation exchange reactions. The hydrogeochemical categories of the confined groundwater are simple and stable. In the present study, a conceptual model is established on the basis of the analyses presented, which has important implications for water resource management in the Hexi Corridor. The inter-basin water allocation program should continue in order to achieve optimal utilization of water resources, but groundwater exploitation should be limited as much as possible. Additionally, on the basis of the review and integration of previous research, the

  10. Pure drug nanoparticles in tablets: what are the dissolution limitations?

    International Nuclear Information System (INIS)

    Heng, Desmond; Ogawa, Keiko; Cutler, David J.; Chan, Hak-Kim; Raper, Judy A.; Ye Lin; Yun, Jimmy

    2010-01-01

    There has been increasing interests for drug companies to incorporate drug nanoparticles into their existing formulations. However, technical knowledge in this area is still in its infancy and more study needs to be done to stimulate growth in this fledging field. There is a need to scrutinize the performance of pure drug nanoparticles in tablets, particularly relating formulation variables to their dissolution performance. Application of the pure form, synthesized without the use of surfactants or stabilizers, is often preferred to maximize drug loading and also to minimize toxicity. Cefuroxime axetil, a poorly water-soluble cephalosporin antibiotic, was used as the model drug in the formulation development. Drug release rate, tablet disintegration time, tensile strength and energy of failure were predominantly influenced by the amount of super-disintegrant, amount of surfactant, compression force and diluent species, respectively. The compression rate had minimal impact on the responses. The main hurdle confronting the effective use of pure drug nanoparticles in tablets is the difficulty in controlling aggregation in solution, which could potentially be aggravated by the tabletting process. Through the use of elevated levels of surfactants (8 w/w% sodium dodecyl sulphate), drug release from the nanoparticle preparation was enhanced from 58.0 ± 2.7% to 72.3 ± 0.7% in 10 min. Hence, it is recommended that physical formulations for pure drug nanoparticles be focused on the particle de-aggregation step in solution, if much higher rates are to be desired. In conclusion, even though pure drug nanoparticles could be easily synthesized, limitations from aggregation may need to be overcome, before successful application in tablets can be fully realized.

  11. Pure drug nanoparticles in tablets: what are the dissolution limitations?

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Desmond [Institute of Chemical and Engineering Sciences (Singapore); Ogawa, Keiko [Nitto Denko Co. Ltd., Medical Division (Japan); Cutler, David J.; Chan, Hak-Kim, E-mail: kimc@pharm.usyd.edu.a [University of Sydney, Advanced Drug Delivery Group, Faculty of Pharmacy, A15 (Australia); Raper, Judy A. [University of Wollongong, Vice Chancellor' s Unit (Australia); Ye Lin [University of Sydney, School of Aerospace, Mechanical and Mechatronic Engineering (Australia); Yun, Jimmy [Nanomaterials Technology Pty. Ltd. (Singapore)

    2010-06-15

    There has been increasing interests for drug companies to incorporate drug nanoparticles into their existing formulations. However, technical knowledge in this area is still in its infancy and more study needs to be done to stimulate growth in this fledging field. There is a need to scrutinize the performance of pure drug nanoparticles in tablets, particularly relating formulation variables to their dissolution performance. Application of the pure form, synthesized without the use of surfactants or stabilizers, is often preferred to maximize drug loading and also to minimize toxicity. Cefuroxime axetil, a poorly water-soluble cephalosporin antibiotic, was used as the model drug in the formulation development. Drug release rate, tablet disintegration time, tensile strength and energy of failure were predominantly influenced by the amount of super-disintegrant, amount of surfactant, compression force and diluent species, respectively. The compression rate had minimal impact on the responses. The main hurdle confronting the effective use of pure drug nanoparticles in tablets is the difficulty in controlling aggregation in solution, which could potentially be aggravated by the tabletting process. Through the use of elevated levels of surfactants (8 w/w% sodium dodecyl sulphate), drug release from the nanoparticle preparation was enhanced from 58.0 {+-} 2.7% to 72.3 {+-} 0.7% in 10 min. Hence, it is recommended that physical formulations for pure drug nanoparticles be focused on the particle de-aggregation step in solution, if much higher rates are to be desired. In conclusion, even though pure drug nanoparticles could be easily synthesized, limitations from aggregation may need to be overcome, before successful application in tablets can be fully realized.

  12. Pure drug nanoparticles in tablets: what are the dissolution limitations?

    Science.gov (United States)

    Heng, Desmond; Ogawa, Keiko; Cutler, David J.; Chan, Hak-Kim; Raper, Judy A.; Ye, Lin; Yun, Jimmy

    2010-06-01

    There has been increasing interests for drug companies to incorporate drug nanoparticles into their existing formulations. However, technical knowledge in this area is still in its infancy and more study needs to be done to stimulate growth in this fledging field. There is a need to scrutinize the performance of pure drug nanoparticles in tablets, particularly relating formulation variables to their dissolution performance. Application of the pure form, synthesized without the use of surfactants or stabilizers, is often preferred to maximize drug loading and also to minimize toxicity. Cefuroxime axetil, a poorly water-soluble cephalosporin antibiotic, was used as the model drug in the formulation development. Drug release rate, tablet disintegration time, tensile strength and energy of failure were predominantly influenced by the amount of super-disintegrant, amount of surfactant, compression force and diluent species, respectively. The compression rate had minimal impact on the responses. The main hurdle confronting the effective use of pure drug nanoparticles in tablets is the difficulty in controlling aggregation in solution, which could potentially be aggravated by the tabletting process. Through the use of elevated levels of surfactants (8 w/w% sodium dodecyl sulphate), drug release from the nanoparticle preparation was enhanced from 58.0 ± 2.7% to 72.3 ± 0.7% in 10 min. Hence, it is recommended that physical formulations for pure drug nanoparticles be focused on the particle de-aggregation step in solution, if much higher rates are to be desired. In conclusion, even though pure drug nanoparticles could be easily synthesized, limitations from aggregation may need to be overcome, before successful application in tablets can be fully realized.

  13. Dissolution studies on Nickel ferrite in dilute chemical decontamination formulations

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S. [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Chemical Engineering; Srinivasan, M.P. [Bhabha Atomic Research Centre (BARC) (India). Water and Steam Chemistry Laboratory; Raghavan, P.S. [Madras Christian College, Chennai (India); Narasimhan, S.V. [Bhabha Atomic Research Centre, Bombay (India); Gopalan, R. [Madras Christian College, Chennai (India). Department of Chemistry

    2004-09-01

    Nickel ferrite is one of the important corrosion products in the pipeline surfaces of water-cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to the nature of the chelant, the nature of the reductant used in the formulation and the temperature at which the dissolution studies are performed. The dissolution is mainly controlled by the reductive dissolution of the ferrite particles, but complexing agents also play a significant role in the dissolution process. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid-state method. The dissolution studies are performed in pyridine-2,6-dicarboxylic acid (PDCA), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA) formulations containing organic reductants like ascorbic acid and low oxidation state transition metal ion reductants like Fe(II)-L (where L = PDCA, NTA, EDTA) at 85 C. The dissolution of nickel ferrite in PDCA, NTA and EDTA formulations is influenced by the presence of reductants in the formulations. The addition of Fe(II)-L in the formulation greatly enhances the dissolution of nickel ferrite. The preferential leaching of nickel over iron during the dissolution of nickel ferrite was observed in all the formulations. (orig.)

  14. Dissolution studies on Nickel ferrite in dilute chemical decontamination formulations

    International Nuclear Information System (INIS)

    Ranganathan, S.; Narasimhan, S.V.; Gopalan, R.

    2004-01-01

    Nickel ferrite is one of the important corrosion products in the pipeline surfaces of water-cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to the nature of the chelant, the nature of the reductant used in the formulation and the temperature at which the dissolution studies are performed. The dissolution is mainly controlled by the reductive dissolution of the ferrite particles, but complexing agents also play a significant role in the dissolution process. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid-state method. The dissolution studies are performed in pyridine-2,6-dicarboxylic acid (PDCA), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA) formulations containing organic reductants like ascorbic acid and low oxidation state transition metal ion reductants like Fe(II)-L (where L = PDCA, NTA, EDTA) at 85 C. The dissolution of nickel ferrite in PDCA, NTA and EDTA formulations is influenced by the presence of reductants in the formulations. The addition of Fe(II)-L in the formulation greatly enhances the dissolution of nickel ferrite. The preferential leaching of nickel over iron during the dissolution of nickel ferrite was observed in all the formulations. (orig.)

  15. Dissolution behavior of PFBR MOX fuel in nitric acid

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Kapoor, Y.S.; Singh, Mamta; Meena, D.L.; Pandey, Ashish; Bhatt, R.B.; Behere, P.G.

    2017-01-01

    Present paper describes the dissolution characteristics of PFBR MOX fuel (U,Pu)O 2 in nitric acid. An overview of batch dissolution experiments, studying the percentage dissolution of uranium and plutonium in (U, Pu)O 2 MOX sintered pellets with different percentage of PuO 2 with reference to time and nitric acid concentration are described. 90% of uranium and plutonium of PFBR MOX gets dissolves in 2 hrs and amount of residue increases with the decrease in nitric acid concentration. Overall variation in percentage residue in PFBR MOX fuel after dissolution test also described. (author)

  16. Dissolution of uranium oxide TBP-HNO3 complex

    International Nuclear Information System (INIS)

    Mizuno, Mineo; Kosaka, Yuji; Mori, Yukihide; Shimada, Takashi

    2002-12-01

    As a head end process for the pulverization of the spent fuel, the mechanical method (the shredder method) and the pyro-chemical method (oxidisation heat-treatment) have been examined. UO 2 is a main ingredient of Uranium oxide powder by the mechanical method, and U 3 O 8 is that by the pyro-chemical method. Moreover, the particle size of the pulverized powder depend on the conditions of the pulverizing process. As it was considered that the difference of dissolution rates of samples was caused by the difference of sample chemical forms and dissolution temperature, parametric surveys on chemical form and particle size of powder and dissolution temperature were carried out, and the following results were obtained. 1) The remarkable difference of dissolution rate between U 3 O 8 powder (average particle size 3.7 μm) and UO 2 powder (average particle size 2.4 μm) which have comparatively similar particle size was not observed. 2) It was confirmed that the dissolution rate became lower according to the particle size increase (average particle size 2.4 μm-1 mm). And it was considered that dissolution rate had strong dependency on particle size, according to the results that the powder with 1 mm particle size did not dissolute completely after 5 hours test. 3) The temperature dependency of the dissolution rate was confirmed by dissolution test with UO 2 powder (average particle size 2.4 μm-1 mm). The higher dissolution rate was obtained in the higher dissolution temperature, and 11 kcal/mol was obtained as activation energy of dissolution. 4) In the dissolution test of UO 2 powder, the nitric acid concentration started to change earlier than that of U 3 O 8 powder and concentration change range became larger compared with that in the dissolution test of U 3 O 8 powder. It was considered that those differences were caused by difference in mole ratio of Uranium and nitric acid which are consumed in the dissolution reaction (3:7 for U 3 O 8 , 3:8 for UO 2 ). 5) In case

  17. Frogging It: A poetic Analysis of Relationship Dissolution

    Directory of Open Access Journals (Sweden)

    Sandra L. Faulkner

    2012-10-01

    Full Text Available Often, themes in work and life intertwine; the author recognized that a cadre of poems she had written during the past several years were about relationship dissolution. The poems concerned romantic and friendship dissolution and the aspects of identity creation and loss this entails. The author presents the poems and makes an explicit connection to interpersonal relationship dissolution literature through the technique of poetic analysis. This analysis serves as an exemplar for how poetry as performative writing offers a valuable addition to interpersonal communication research through the poeticizing of relational dissolution as an everyday relational challenge.

  18. Do Workplace Sex Ratios Affect Partnership Formation and Dissolution?

    DEFF Research Database (Denmark)

    Svarer, Michael

    In this paper, I analyse the association between workplace sex ratios and partnership formation and dissolution. I find that the risk of dissolution increases with the fraction of coworkers of the opposite sex at both the female and male workplace. On the other hand, workplace sex ratios are not ......In this paper, I analyse the association between workplace sex ratios and partnership formation and dissolution. I find that the risk of dissolution increases with the fraction of coworkers of the opposite sex at both the female and male workplace. On the other hand, workplace sex ratios...

  19. Effect of alteration phase formation on the glass dissolution rate

    International Nuclear Information System (INIS)

    Ebert, W.L.

    1997-01-01

    The dissolution rates of many glasses have been observed to increase upon the formation of certain alteration phases. While simulations have predicted the accelerating effect of formation of certain phases, the phases predicted to form in computer simulations are usually different than those observed to form in experiments. This is because kinetically favored phases form first in experiments, while simulations predict the thermodynamically favored phases. Static dissolution tests with crushed glass have been used to measure the glass dissolution rate after alteration phases form. Because glass dissolution rates are calculated on a per area basis, an important effect in tests conducted with crushed glass is the decrease in the surface area of glass that is available for reaction as the glass dissolves. This loss of surface area must be taken into account when calculating the dissolution rate. The phases that form and their effect on the dissolution rate are probably related to the glass composition. The impact of phase formation on the glass dissolution rate also varies according to the solubility products of the alteration phases and how the orthocilicic acid activity is affected. Insight into the relationship between the glass dissolution rate, solution chemistry and alteration phase formation is provided by the results of accelerated dissolution tests

  20. Importance of surface structure on dissolution of fluorite

    DEFF Research Database (Denmark)

    Godinho, Jose; Piazolo, Sandra; Balic Zunic, Tonci

    2014-01-01

    forming the initial surface and its inclination to the closest stable planes, which are specific for each surface orientation. During an initial dissolution regime dissolution rates decrease significantly, even though the total surface area increases. During a second dissolution regime, some surfaces...... by the relative stability of the planes and type of edges that constitute a surface needs to be considered. Significant differences between dissolution rates calculated based on surface area alone, and based on surface reactivity are expected for materials with the fluorite structure....

  1. Effect of alteration phase formation on the glass dissolution rate

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W L [Argonne National Laboratory, Chemical Technology Div. (United States)

    1997-07-01

    The dissolution rates of many glasses have been observed to increase upon the formation of certain alteration phases. While simulations have predicted the accelerating effect of formation of certain phases, the phases predicted to form in computer simulations are usually different than those observed to form in experiments. This is because kinetically favored phases form first in experiments, while simulations predict the thermodynamically favored phases. Static dissolution tests with crushed glass have been used to measure the glass dissolution rate after alteration phases form. Because glass dissolution rates are calculated on a per area basis, an important effect in tests conducted with crushed glass is the decrease in the surface area of glass that is available for reaction as the glass dissolves. This loss of surface area must be taken into account when calculating the dissolution rate. The phases that form and their effect on the dissolution rate are probably related to the glass composition. The impact of phase formation on the glass dissolution rate also varies according to the solubility products of the alteration phases and how the orthocilicic acid activity is affected. Insight into the relationship between the glass dissolution rate, solution chemistry and alteration phase formation is provided by the results of accelerated dissolution tests.

  2. Mathematical methods for quantification and comparison of dissolution testing data.

    Science.gov (United States)

    Vranić, Edina; Mehmedagić, Aida; Hadzović, Sabira

    2002-12-01

    In recent years, drug release/dissolution from solid dosage forms has been the subject of intense and profitable scientific developments. Whenever a new solid dosage form is developed or produced, it is necessary to ensure that drug dissolution occurs in an appropriate manner. The pharmaceutical industry and the registration authorities do focus, nowadays, on drug dissolution studies. The quantitative analysis of the values obtained in dissolution/release tests is easier when mathematical formulas that express the dissolution results as a function of some of the dosage forms characteristics are used. This work discusses the analysis of data obtained for dissolution profiles under different media pH conditions using mathematical methods of analysis described by Moore and Flanner. These authors have described difference factor (f1) and similarity factor (f2), which can be used to characterise drug dissolution/release profiles. In this work we have used these formulas for evaluation of dissolution profiles of the conventional tablets in different pH of dissolution medium (range of physiological variations).

  3. Waste minimization assessment procedure

    International Nuclear Information System (INIS)

    Kellythorne, L.L.

    1993-01-01

    Perry Nuclear Power Plant began developing a waste minimization plan early in 1991. In March of 1991 the plan was documented following a similar format to that described in the EPA Waste Minimization Opportunity Assessment Manual. Initial implementation involved obtaining management's commitment to support a waste minimization effort. The primary assessment goal was to identify all hazardous waste streams and to evaluate those streams for minimization opportunities. As implementation of the plan proceeded, non-hazardous waste streams routinely generated in large volumes were also evaluated for minimization opportunities. The next step included collection of process and facility data which would be useful in helping the facility accomplish its assessment goals. This paper describes the resources that were used and which were most valuable in identifying both the hazardous and non-hazardous waste streams that existed on site. For each material identified as a waste stream, additional information regarding the materials use, manufacturer, EPA hazardous waste number and DOT hazard class was also gathered. Once waste streams were evaluated for potential source reduction, recycling, re-use, re-sale, or burning for heat recovery, with disposal as the last viable alternative

  4. Global depletion of groundwater resources

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P.

    2010-01-01

    In regions with frequent water stress and large aquifer systems groundwater is often used as an additional water source. If groundwater abstraction exceeds the natural groundwater recharge for extensive areas and long times, overexploitation or persistent groundwater depletion occurs. Here we

  5. Saline groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    Lampen, P.

    1992-11-01

    The State-of-art report describes research made on deep saline groundwaters and brines found in crystalline bedrock, mainly in site studies for nuclear waste disposal. The occurrence, definitions and classifications of saline groundwaters are reviewed with a special emphasis on the different theories concerning the origins of saline groundwaters. Studies of the saline groundwaters in Finland and Sweden have been reviewed more thoroughly. Also the mixing of different bodies of groundwaters, observations of the contact of saline groundwaters and permafrost, and the geochemical modelling of saline groundwaters as well as the future trends of research have been discussed. (orig.)

  6. Modeling of groundwater using the isotopic technique in the sedimentary aquifer of the Mahafaly basin, southwestern Madagascar

    International Nuclear Information System (INIS)

    Fareze, L.H.

    2016-01-01

    The Mahafaly sedimentary basin, southwest of Madagascar belongs to the region where the water resources management problem, such as high groundwater mineralization and dry wells lingers. In this research work, hydrochemistry and isotopes techniques are used to assess the groundwater characteristics, to determine the groundwater origin and to understand their geochemical evolution. The development of an hydrological model using Modflow software contribute to control the groundwater flow and predict the dissolved particles evolution and travel time according to their flow direction. Dissolution of halite, calcite and gypsum and cation exchange are the main sources of the groundwater mineralization in the study area. The groundwater isotopic composition indicates that the groundwaters are directly recharged by local precipitation, having a mean time of 25 years. A mixture of groundwater and Onilahy river water occurs in adjacent aquifers, of which residence time is about 60 years. A mixture of recent and old groundwaters by the upwelling of the deep waters is observed in the southern aquifer of Isalo, confirmed by the tritium concentration value, which is lower than 0,5UT. The model established indicates a high groundwater flow rate from the recharge area, located in Betioky hill. This is due to a steep slope with a hydraulic conductivity of about 10 -5 m.s -1 , although other flow directions have been identified. The model predicts a decrease of the hydraulic head during the last decades. [fr

  7. Integrating geochemical investigations and geospatial assessment to understand the evolutionary process of hydrochemistry and groundwater quality in arid areas.

    Science.gov (United States)

    El Alfy, Mohamed; Alharbi, Talal; Mansour, Basma

    2018-04-12

    Groundwater is the key for life in arid areas. Aquifer overexploitation and climatic conditions can significantly deteriorate groundwater quality. The Al-Qassim area in central Saudi Arabia is characterized by dense agricultural use and is irrigated mainly by fossil groundwater from the Saq Aquifer. Understanding the area's hydrochemistry, major factors governing groundwater quality, and alternative uses of the groundwater are the main goals of this study. Groundwater samples were collected and examined for major, minor, and trace elements. Ionic relationships, hydrochemical facies, geospatial distributions, and multivariate analyses were conducted to assess the hydrochemical processes at play. The salinity and nitrate concentrations of the Saq Aquifer's groundwater were found to increase in the outcrop areas more than the confined areas. The spatial distributions were fragmented by three main factors: (i) modern recharge by relatively brackish water, (ii) irrigation return flow in intensive farming areas, and (iii) overexploitation and draining of deep and relatively saline zones of the aquifer. Seven water types were found representing the alkaline water with a predominance of sulfate-chloride ions and earth alkaline water with a predominance of sulfate and chloride. Mixing between fresh and brackish water, dissolution of mineral phases, silicate weathering, and reverse ion exchange were recognized as the evolutionary processes, while evaporation played a minor role. Cluster analyses characterized the fresh groundwater zone, modern groundwater recharge zone, and anthropogenic influence zone. In the confined areas, nearly all the groundwater was appropriate for domestic use and irrigation. In the outcrop areas, some limitations were found due to unsuitable conditions.

  8. Evolutionary analysis of groundwater flow: Application of multivariate statistical analysis to hydrochemical data in the Densu Basin, Ghana

    Science.gov (United States)

    Yidana, Sandow Mark; Bawoyobie, Patrick; Sakyi, Patrick; Fynn, Obed Fiifi

    2018-02-01

    An evolutionary trend has been postulated through the analysis of hydrochemical data of a crystalline rock aquifer system in the Densu Basin, Southern Ghana. Hydrochemcial data from 63 groundwater samples, taken from two main groundwater outlets (Boreholes and hand dug wells) were used to postulate an evolutionary theory for the basin. Sequential factor and hierarchical cluster analysis were used to disintegrate the data into three factors and five clusters (spatial associations). These were used to characterize the controls on groundwater hydrochemistry and its evolution in the terrain. The dissolution of soluble salts and cation exchange processes are the dominant processes controlling groundwater hydrochemistry in the terrain. The trend of evolution of this set of processes follows the pattern of groundwater flow predicted by a calibrated transient groundwater model in the area. The data suggest that anthropogenic activities represent the second most important process in the hydrochemistry. Silicate mineral weathering is the third most important set of processes. Groundwater associations resulting from Q-mode hierarchical cluster analysis indicate an evolutionary pattern consistent with the general groundwater flow pattern in the basin. These key findings are at variance with results of previous investigations and indicate that when carefully done, groundwater hydrochemical data can be very useful for conceptualizing groundwater flow in basins.

  9. Ground-water protection activities of the US Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    1987-02-01

    This report evaluates the internal consistency of NRC's ground-water protection programs. These programs have evolved consistently with growing public concerns about the significance of ground-water contamination and environmental impacts. Early NRC programs provided for protection of the public health and safety by minimizing releases of radionuclides. More recent programs have included provisions for minimizing releases of nonradiological constituents, mitigating environmental impacts, and correcting ground-water contamination. NRC's ground-water protection programs are categorized according to program areas, including nuclear materials and waste management (NMSS), nuclear reactor operation (NRR), confirmatory research and standards development (RES), inspection and enforcement (IE), and agreement state programs (SP). Based on analysis of existing ground-water protection programs within NRC, the interoffice Ground-water Protection Group has identified several inconsistencies between and within program areas. These inconsistencies include: (1) different definitions of the term ''ground-water,'' (2) variable regulation of nonradiological constituents in ground water, (3) different design periods for ground-water protection, and (4) different scopes and rigor of ground-water assessments. The second inconsistency stems from differences in statutory authority granted to the NRC. The third inconsistency is rationalized by recognizing differences in perceived risks associated with nuclear facilities. The Ground-water Protection Group will document its analysis of the remaining inconsistencies and make recommendations to reconcile or eliminate them in a subsequent report

  10. Assessment of groundwater salinization mechanisms in Santiago Island - Cabo Verde: An environmental isotopic approach

    International Nuclear Information System (INIS)

    Carreira, P.M.; Nunes, D.; Marques, J.M.; Pina, A.; Mota Gomes, A.; Almeida, E.; Goncalves, R.; Monteiro Santos, F.

    2007-01-01

    Two sampling campaigns were carried out at Santiago Island - Cabo Verde under the scope of an isotopic and geochemical research study. An evaluation of the groundwater systems was carried out through the application of environmental isotopes and geochemical data in order to answer questions such as: origin and mechanisms of groundwater recharge; relation between the hydrochemical evolution of the groundwater systems with the geological matrix (minerals dissolution) or mixture with seawater and aerosol marine influence; identification of seawater intrusion mechanisms and, determination of the apparent groundwater 'age'. The results obtained so far are not conclusive on the identification of the process responsible for the increase of salinity. In general, all the data obtained seems to indicate that the waters have the same isotopic history but different geochemical evolution, which depends on the weathering and permeability of the rocks. (author)

  11. Impact of leachable sulfate on the quality of groundwater in the Pocatello aquifer

    International Nuclear Information System (INIS)

    Meehan, C.; Welhan, J.

    1994-01-01

    During the summer of 1993, groundwaters and surface waters were found to have anomalous sulfate concentrations in the Southern Pocatello municipal aquifer in an area known as the Highway Ponds. Leach tests performed on a large pile of road aggregate stockpiled near the Highway Ponds have been identified as the most likely source for the sulfate. Correlating trends of sulfate and chloride concentrations can be found both in the main Pocatello aquifer and in Pocatello Creek groundwaters. The chloride contamination at Pocatello Creek has previously been suggested to be derived from road salt. It is hypothesized that aggregate used in roadbed construction may be responsible for elevated sulfate in the areas groundwater. Chemical modeling has eliminated carbonate precipitation/dissolution reactions in buffering the chemistry of sulfate-impacted groundwater. Ion-exchange with clays is hypothesized to be a more significant process and is being investigated further. 12 refs., 3 figs

  12. Minimal quantization and confinement

    International Nuclear Information System (INIS)

    Ilieva, N.P.; Kalinowskij, Yu.L.; Nguyen Suan Han; Pervushin, V.N.

    1987-01-01

    A ''minimal'' version of the Hamiltonian quantization based on the explicit solution of the Gauss equation and on the gauge-invariance principle is considered. By the example of the one-particle Green function we show that the requirement for gauge invariance leads to relativistic covariance of the theory and to more proper definition of the Faddeev - Popov integral that does not depend on the gauge choice. The ''minimal'' quantization is applied to consider the gauge-ambiguity problem and a new topological mechanism of confinement

  13. Minimal Composite Inflation

    DEFF Research Database (Denmark)

    Channuie, Phongpichit; Jark Joergensen, Jakob; Sannino, Francesco

    2011-01-01

    We investigate models in which the inflaton emerges as a composite field of a four dimensional, strongly interacting and nonsupersymmetric gauge theory featuring purely fermionic matter. We show that it is possible to obtain successful inflation via non-minimal coupling to gravity, and that the u......We investigate models in which the inflaton emerges as a composite field of a four dimensional, strongly interacting and nonsupersymmetric gauge theory featuring purely fermionic matter. We show that it is possible to obtain successful inflation via non-minimal coupling to gravity...

  14. Minimalism and Speakers’ Intuitions

    Directory of Open Access Journals (Sweden)

    Matías Gariazzo

    2011-08-01

    Full Text Available Minimalism proposes a semantics that does not account for speakers’ intuitions about the truth conditions of a range of sentences or utterances. Thus, a challenge for this view is to offer an explanation of how its assignment of semantic contents to these sentences is grounded in their use. Such an account was mainly offered by Soames, but also suggested by Cappelen and Lepore. The article criticizes this explanation by presenting four kinds of counterexamples to it, and arrives at the conclusion that minimalism has not successfully answered the above-mentioned challenge.

  15. Minimal open strings

    International Nuclear Information System (INIS)

    Hosomichi, Kazuo

    2008-01-01

    We study FZZT-branes and open string amplitudes in (p, q) minimal string theory. We focus on the simplest boundary changing operators in two-matrix models, and identify the corresponding operators in worldsheet theory through the comparison of amplitudes. Along the way, we find a novel linear relation among FZZT boundary states in minimal string theory. We also show that the boundary ground ring is realized on physical open string operators in a very simple manner, and discuss its use for perturbative computation of higher open string amplitudes.

  16. Hydrothermal evolution of repository groundwaters in basalt

    International Nuclear Information System (INIS)

    Apps, J.A.

    1984-01-01

    Groundwaters in the near field of a radioactive waste repository in basalt will change their chemical composition in response to reactions with the basalt. These reactions will be promoted by the heat generated by the decaying waste. It is important to predict both the rate and the extent of these reactions, and the secondary minerals produced, because the alteration process controls the chemical environment affecting the corrosion of the canister, the solubility and complexation of migrating radionuclides, the reactivity of the alteration products to radionuclides sorption, and the porosity and permeability of the host rock. A comprehensive review of the literature leads to the preliminary finding that hydrothermally altering basalts in geothermal regions such as Iceland lead to a secondary mineralogy and groundwater composition similar to that expected to surround a repository. Furthermore, laboratory experiments replicating the alteration conditions approximate those observed in the field and expected in a repository. Preliminary estimates were made of the rate of hydration and devitrification of basaltic glass and the zero-order dissolution rate of basaltic materials. The rates were compared with those for rhyolitic glasses and silicate minerals. Preliminary calculations made of mixed process alteration kinetics, involving pore diffusion and surface reaction suggest that at temperatures greater than 150 0 C, alteration proceeds so rapidly as to become pervasive in normally fractured basalt exposed to higher temperatures in the field. 70 references

  17. Dissolution of metallic uranium and its alloys. Part 1. Review of analytical and process-scale metallic uranium dissolution

    International Nuclear Information System (INIS)

    Laue, C.A.; Gates-Anderson, D.; Fitch, T.E.

    2004-01-01

    This review focuses on dissolution/reaction systems capable of treating uranium metal waste to remove its pyrophoric properties. The primary emphasis is the review of literature describing analytical and production-scale dissolution methods applied to either uranium metal or uranium alloys. A brief summary of uranium's corrosion behavior is included since the corrosion resistance of metals and alloys affects their dissolution behavior. Based on this review, dissolution systems were recommended for subsequent screening studies designed to identify the best system to treat depleted uranium metal wastes at Lawrence Livermore National Laboratory (LLNL). (author)

  18. Glass dissolution rate measurement and calculation revisited

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Maxime, E-mail: maxime.fournier@cea.fr [CEA, DEN, DTCD, SECM, F-30207, Bagnols sur Cèze (France); Ull, Aurélien; Nicoleau, Elodie [CEA, DEN, DTCD, SECM, F-30207, Bagnols sur Cèze (France); Inagaki, Yaohiro [Department of Applied Quantum Physics & Nuclear Engineering, Kyushu University, Fukuoka, 819-0395 (Japan); Odorico, Michaël [ICSM-UMR5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule, BP17171, F-30207, Bagnols sur Cèze (France); Frugier, Pierre; Gin, Stéphane [CEA, DEN, DTCD, SECM, F-30207, Bagnols sur Cèze (France)

    2016-08-01

    Aqueous dissolution rate measurements of nuclear glasses are a key step in the long-term behavior study of such waste forms. These rates are routinely normalized to the glass surface area in contact with solution, and experiments are very often carried out using crushed materials. Various methods have been implemented to determine the surface area of such glass powders, leading to differing values, with the notion of the reactive surface area of crushed glass remaining vague. In this study, around forty initial dissolution rate measurements were conducted following static and flow rate (SPFT, MCFT) measurement protocols at 90 °C, pH 10. The international reference glass (ISG), in the forms of powders with different particle sizes and polished monoliths, and soda-lime glass beads were examined. Although crushed glass grains clearly cannot be assimilated with spheres, it is when using the samples geometric surface (S{sub geo}) that the rates measured on powders are closest to those found for monoliths. Overestimation of the reactive surface when using the BET model (S{sub BET}) may be due to small physical features at the atomic scale—contributing to BET surface area but not to AFM surface area. Such features are very small compared with the thickness of water ingress in glass (a few hundred nanometers) and should not be considered in rate calculations. With a S{sub BET}/S{sub geo} ratio of 2.5 ± 0.2 for ISG powders, it is shown here that rates measured on powders and normalized to S{sub geo} should be divided by 1.3 and rates normalized to S{sub BET} should be multiplied by 1.9 in order to be compared with rates measured on a monolith. The use of glass beads indicates that the geometric surface gives a good estimation of glass reactive surface if sample geometry can be precisely described. Although data clearly shows the repeatability of measurements, results must be given with a high uncertainty of approximately ±25%. - Highlights: • Initial dissolution

  19. Dissolution and compaction instabilities in geomaterials

    Science.gov (United States)

    Stefanou, I.; Sulem, J.; de Sauvage, J.

    2014-12-01

    Compaction bands play an important role in reservoir engineering and geological storage. Their presence in geological formations may also provide useful information on various geological processes. Several mechanisms can be involved at different scales and may be responsible for compaction band instabilities [1]. Compaction bands can be seen as a particular instability of the governing mathematical system leading to localization of deformation [2-4]. In a saturated porous rock, the progressive mechanical damage of the solid skeleton during compaction, results in the increase of the interface area of the reactants and consequently in the acceleration of the dissolution rate of the solid phase [2,5]. Thus, the solid skeleton is degraded more rapidly (mass removal because of dissolution), the overall mechanical properties of the system diminish (contraction of the elastic domain - chemical softening), deformations increase and the solid skeleton is further damaged (intergranular fractures, debonding, breakage of the porous network etc.). The stability of this positive feedback process is investigated analytically through linear stability analysis by considering the strong chemo-poro-mechanical coupling due to chemical dissolution. The post bifurcation behavior is then studied analytically and numerically revealing the compaction band thickness and periodicity. The effect of various parameters is studied as for instance the influence of the hydraulic diffusivity on the compaction band thickness. [1] P. Baud, S. Vinciguerra, C. David, A. Cavallo, E. Walker and T. Reuschlé (2009), Pure Appl. Geophys., 166(5-7), 869-898 [2] I. Stefanou and J. Sulem (2014), JGR: Solid Earth, 119(2), 880-899. doi:10.1002/2013JB010342I [3] J.W. Rudnicki and J.R. Rice (1975), Journal of the Mechanics and Physics of Solids 23(6),: 371-394 [4] K.A. Issen and J.W. Rudnicki (2000), JGR, 105(B9), 21529. doi:10.1029/2000JB900185 [5] R. Nova, R. Castellanza and C. Tamagnini (2003), International

  20. K Basin sludge dissolution engineering study

    International Nuclear Information System (INIS)

    Westra, A.G.

    1998-01-01

    The purpose of this engineering study is to investigate the available technology related to dissolution of the K Basin sludge in nitric acid. The conclusion of this study along with laboratory and hot cell tests with actual sludge samples will provide the basis for beginning conceptual design of the sludge dissolver. The K Basin sludge contains uranium oxides, fragments of metallic U, and some U hydride as well as ferric oxyhydroxide, aluminum oxides and hydroxides, windblown sand that infiltrated the basin enclosure, ion exchange resin, and miscellaneous materials. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be conditioned so that it meets Tank Waste Remediation System waste acceptance criteria and can be sent to one of the underground storage tanks. Sludge conditioning will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and then reacting the solution with caustic to co-precipitate the uranium and plutonium. There will be five distinct feed streams to the sludge conditioning process two from the K East (KE) Basin and three from the K West (KW) Basin. The composition of the floor and pit sludges which contain more iron oxides and sand than uranium is much different than the canister sludges which are composed of mostly uranium oxides. The sludge conditioning equipment will be designed to process all of the sludge streams, but some of the operating parameters will be adjusted as necessary to handle the different sludge stream compositions. The volume of chemical additions and the amount of undissolved solids will be much different for floor and pit sludge than for canister sludge. Dissolution of uranium metal and uranium dioxide has been studied quite thoroughly and much information is available. Both uranium metal and uranium dioxide have been dissolved on a large scale in nuclear fuel

  1. Dissolution rates of aluminum-based spent fuels relevant to geological disposal

    International Nuclear Information System (INIS)

    Mickalonis, J.I.

    2000-01-01

    The Department of Energy is pursuing the option of direct disposal of a wide variety of spent nuclear fuels under its jurisdiction. Characterization of the various types of spent fuel is required prior to licensing by the Nuclear Regulatory Commission and acceptance of the fuel at a repository site. One category of required data is the expected rate of radionuclide and fissile release to the environment as a result of exposure to groundwater after closure of the repository. To provide this type of data for four different aluminum-based spent fuels, tests were conducted using a flow through method that allows the dissolution rate of the spent fuel matrix to be measured without interference by secondary precipitation reactions that would muddle interpretation of the results. Similar tests had been conducted earlier with light water reactor spent fuel, thereby allowing direct comparisons

  2. Results from Nevada Nuclear Waste Storage Investigations (NNWSI) Series 3 spent fuel dissolution tests

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1990-06-01

    The dissolution and radionuclide release behavior of spent fuel in groundwater is being studied by the Yucca Mountain Project (YMP), formerly the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Specimens prepared from pressurized water reactor fuel rod segments were tested in sealed stainless steel vessels in Nevada Test Site J-13 well water at 85 degree C and 25 degree C. The test matrix included three specimens of bare-fuel particles plus cladding hulls, two fuel rod segments with artificially defected cladding and water-tight end fittings, and an undefected fuel rod section with watertight end fittings. Periodic solution samples were taken during test cycles with the sample volumes replenished with fresh J-13 water. Test cycles were periodically terminated and the specimens restarted in fresh J-13 water. The specimens were run for three cycles for a total test duration of 15 months. 22 refs., 32 figs., 26 tabs

  3. Pavement Subsidence in the Cumberland Gap Tunnel, USA: A Story of Groundwater Chemistry

    Science.gov (United States)

    Zhu, J.; Currens, J. C.; Webb, S. E.; Rister, B. W.

    2014-12-01

    Cumberland Gap Tunnel was constructed in 1996 to improve highway travel between southeastern Kentucky and northeastern Tennessee and to restore Cumberland Gap to its historical appearance. About five years after construction, the concrete pavement in the tunnel began to exhibit noticeable signs of subsidence. Ground penetrating radar surveys detected voids in many areas of the limestone roadbed aggregate beneath the pavement. Field investigations conducted by the Kentucky Geological Survey and Kentucky Transportation Center from 2006 to 2008 discovered that groundwater was flowing from the bedrock invert into the aggregate along many parts of the tunnel. Average groundwater discharge from the tunnel was measured at approximately 1700 m3/d. We analyzed 265 groundwater samples collected from aggregate in different parts of the tunnel roadbed during low and high flow conditions. Calculated calcite saturation indices indicated that the groundwater was geochemically aggressive and capable of continuously dissolving calcite in the limestone aggregate although pH values of these water samples were near neutral. We also conducted an in-situ dissolution experiment by placing eight baskets filled with limestone aggregate beneath the roadbed in different locations in the tunnel for 178 days. At the end of the experiment, the limestone aggregate in contact with groundwater exhibited visual signs of dissolution and lost mass, and the highest mass loss recorded was 3.4 percent. Mass loss calculations based on kinetic models of calcite mineral and water samples taken near the baskets matched well with the actual measured mass losses, confirming that dissolution of calcite by the groundwater was the primary cause of the roadbed subsidence problem. Based on these findings, we suggested the limestone aggregate be replaced with noncarbonate (granite) aggregate to mitigate future road subsidence. The suggestion was adopted, and the repair was completed in early 2014.

  4. CHARACTERIZATION OF GROUNDWATER HYDROCHEMISTRY ...

    African Journals Online (AJOL)

    Osondu

    2013-03-01

    Mar 1, 2013 ... It was concluded that water quality of the study area is unsuitable for irrigation ... Key words: Assessment, characterization, Groundwater quality, .... The in-situ measurement was ..... framework of the aquifer in and around East.

  5. Groundwater Capture Zones

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Source water protection areas are delineated for each groundwater-based public water supply system using available geologic and hydrogeologic information to...

  6. Wetland Groundwater Processes

    National Research Council Canada - National Science Library

    Williams, Greg

    1993-01-01

    This technical note summarizes hydrologic and hydraulic (H AND H) processes and the related terminology that will likely be encountered during an evaluation of the effect of ground-water processes on wetland function...

  7. Natural radionuclides in groundwaters

    International Nuclear Information System (INIS)

    Laul, J.C.

    1990-01-01

    The U-234 and Th-230 radionuclides are highly retarded by factors of 10 4 to 10 5 in basalt groundwater (Hanford) and briny groundwaters from Texas and geothermal brine from the Salton Sea Geothermal Field (SSGF). In basalt groundwaters (low ionic strength), Ra is highly sorbed, while in brines (high ionic strength), Ra is soluble. This is probably because the sorption sites are saturated with Na + and Cl - ions and RaCl 2 is soluble in brines. Pb-210 is soluble in SSGF brine, probably as a chloride complex. The U-234/Th-230 ratios in basalt groundwaters and brines from Texas and SSGF are nearly unity, indicating that U is in the +4 state, suggesting a reducing environment for these aquifers. 19 refs., 3 figs

  8. Natural radionuclides in groundwaters

    International Nuclear Information System (INIS)

    Laul, J.C.

    1992-01-01

    The 234 U and 230 Th radionuclides are highly retarded by factors of 10 4 to 10 5 in basalt groundwater (Hanford) and briny groundwaters from Texas, and geothermal brine form the Salton Sea Geothermal Field (SSGF). In basalt groundwaters (low ionic strength), Ra is highly sorbed, while in brines (high ionic strength), Ra is soluble. This is probably because the sorption sites are saturated with Na + and Cl - ions, and RaCl 2 is soluble in brines. 210 Pb is soluble in SSGF brine, probably as a chloride complex. The 234 U/ 230 Th ratios in basalt groundwaters and brines from Texas and SSGF are nearly unity, indicating that U is in the +4 state, suggesting a reducing environment for these aquifers. (author) 19 refs.; 3 figs

  9. Colloid-facilitated effects on migration of radionuclides in fractured rock with a kinetic solubility-limited dissolution model

    International Nuclear Information System (INIS)

    Jen Chunping; Tien Nengchuan

    2010-01-01

    Nuclides can move with groundwater either as solutes or colloids, where the latter mechanism generally results in much shorter traveling time as the nuclides interact strongly with solid phases, such as actinides. In the performance assessment, it is therefore essential to assess the relative importance of these two transport mechanisms for different nuclides. The relative importance of colloids depends on the nature and concentration of the colloids in groundwater. Plutonium (Pu), neptunium (Np), uranium (U) and americium (Am) are four nuclides of concern for the long-term emplacement of nuclear wastes at potential repository sites. These four actinides have a high potential for migrating if attached to iron oxide, clay or silica colloids in the groundwater.Strong sorption of the actinides by colloids in the groundwater may facilitate the transport of these nuclides along potential flow paths. The solubility-limited dissolution model can be used to assess the safety of the release of nuclear waste in geological disposal sites. Usually, it has been assumed that the solubility of the waste form is constant. If a nuclide reaches its solubility limit at an inner location near the waste form, it is unlikely that the same nuclide will reach its solubility limit at an outer location unless this nuclide has a parent nuclide. It is unlikely that the daughter nuclides will exceed their solubility limit due to decay of their parent nuclide. The present study investigates the effect of colloids on the transport of solubility-limited nuclides under the kinetic solubility-limited dissolution (KSLD) boundary condition in fractured media. The release rate of the nuclides is proportional to the difference between the saturation concentration and the inlet aqueous concentration of the nuclides. The presence of colloids decreases the aqueous concentration of nuclides and, thus, increases the release flux of nuclides from the waste form. (authors)

  10. Minimal model holography

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R; Gopakumar, Rajesh

    2013-01-01

    We review the duality relating 2D W N minimal model conformal field theories, in a large-N ’t Hooft like limit, to higher spin gravitational theories on AdS 3 . This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Higher spin theories and holography’. (review)

  11. Minimal constrained supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Cribiori, N. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Dall' Agata, G., E-mail: dallagat@pd.infn.it [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Farakos, F. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Porrati, M. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2017-01-10

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  12. Hazardous waste minimization

    International Nuclear Information System (INIS)

    Freeman, H.

    1990-01-01

    This book presents an overview of waste minimization. Covers applications of technology to waste reduction, techniques for implementing programs, incorporation of programs into R and D, strategies for private industry and the public sector, and case studies of programs already in effect

  13. Minimally invasive distal pancreatectomy

    NARCIS (Netherlands)

    Røsok, Bård I.; de Rooij, Thijs; van Hilst, Jony; Diener, Markus K.; Allen, Peter J.; Vollmer, Charles M.; Kooby, David A.; Shrikhande, Shailesh V.; Asbun, Horacio J.; Barkun, Jeffrey; Besselink, Marc G.; Boggi, Ugo; Conlon, Kevin; Han, Ho Seong; Hansen, Paul; Kendrick, Michael L.; Kooby, David; Montagnini, Andre L.; Palanivelu, Chinnasamy; Wakabayashi, Go; Zeh, Herbert J.

    2017-01-01

    The first International conference on Minimally Invasive Pancreas Resection was arranged in conjunction with the annual meeting of the International Hepato-Pancreato-Biliary Association (IHPBA), in Sao Paulo, Brazil on April 19th 2016. The presented evidence and outcomes resulting from the session

  14. Minimal DBM Substraction

    DEFF Research Database (Denmark)

    David, Alexandre; Håkansson, John; G. Larsen, Kim

    In this paper we present an algorithm to compute DBM substractions with a guaranteed minimal number of splits and disjoint DBMs to avoid any redundance. The substraction is one of the few operations that result in a non-convex zone, and thus, requires splitting. It is of prime importance to reduce...

  15. Minimal constrained supergravity

    Directory of Open Access Journals (Sweden)

    N. Cribiori

    2017-01-01

    Full Text Available We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  16. Minimal constrained supergravity

    International Nuclear Information System (INIS)

    Cribiori, N.; Dall'Agata, G.; Farakos, F.; Porrati, M.

    2017-01-01

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  17. The origin of groundwater composition in the Pampeano Aquifer underlying the Del Azul Creek basin, Argentina.

    Science.gov (United States)

    Zabala, M E; Manzano, M; Vives, L

    2015-06-15

    The Pampean plain is the most productive region in Argentina. The Pampeano Aquifer beneath the Pampean plain is used mostly for drinking water. The study area is the sector of the Pampeano Aquifer underlying the Del Azul Creek basin, in Buenos Aires province. The main objective is to characterize the chemical and isotopic compositions of groundwater and their origin on a regional scale. The methodology used involved the identification and characterization of potential sources of solutes, the study of rain water and groundwater chemical and isotopic characteristics to deduce processes, the development of a hydrogeochemical conceptual model, and its validation by hydrogeochemical modelling with PHREEQC. Groundwater samples come mostly from a two-depth monitoring network of the "Dr. Eduardo J. Usunoff" Large Plains Hydrology Institute (IHLLA). Groundwater salinity increases from SW to NE, where groundwater is saline. In the upper basin groundwater is of the HCO3-Ca type, in the middle basin it is HCO3-Na, and in the lower basin it is ClSO4-NaCa and Cl-Na. The main processes incorporating solutes to groundwater during recharge in the upper basin are rain water evaporation, dissolution of CO2, calcite, dolomite, silica, and anorthite; cationic exchange with Na release and Ca and Mg uptake, and clay precipitation. The main processes modifying groundwater chemistry along horizontal flow at 30 m depth from the upper to the lower basin are cationic exchange, dissolution of silica and anorthite, and clay precipitation. The origin of salinity in the middle and lower basin is secular evaporation in a naturally endorheic area. In the upper and middle basins there is agricultural pollution. In the lower basin the main pollution source is human liquid and solid wastes. Vertical infiltration through the boreholes annular space during the yearly flooding stages is probably the pollution mechanism of the samples at 30 m depth. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. PCR detection of groundwater bacteria associated with colloidal transport

    International Nuclear Information System (INIS)

    Cruz-Perez, P.; Stetzenbach, L.D.; Alvarez, A.J.

    1996-01-01

    Colloidal transport may increase the amount of contaminant material than that which could be transported by water flow alone. The role of colloids in groundwater contaminant transport is complicated and may involve many different processes, including sorption of elements onto colloidal particles, coagulation/dissolution, adsorption onto solid surfaces, filtration, and migration. Bacteria are known to concentrate minerals and influence the transport of compounds in aqueous environments and may also serve as organic colloids, thereby influencing subsurface transport of radionuclides and other contaminants. The initial phase of the project consisted of assembling a list of bacteria capable of sequestering or facilitating mineral transport. The development and optimization of the PCR amplification assay for the detection of the organisms of interest, and the examination of regional groundwaters for those organisms, are presented for subsequent research

  19. Hydrothermal waste package interactions with methane-containing basalt groundwater

    International Nuclear Information System (INIS)

    McGrail, B.P.

    1984-11-01

    Hydrothermal waste package interaction tests with methane-containing synthetic basalt groundwater have shown that in the absence of gamma radiolysis, methane has little influence on the glass dissolution rate. Gamma radiolysis tests at fluxes of 5.5 x 10 5 and 4.4 x 10 4 R/hr showed that methane-saturated groundwater was more reducing than identical experiments where Ar was substituted for CH 4 . Dissolved methane, therefore, may be beneficial to the waste package in limiting the solubility of redox sensitive radionuclides such a 99 Tc. Hydrocarbon polymers known to form under the irradiation conditions of these tests were not produced. The presence of the waste package constituents apparently inhibited the formation of the polymers, however, the mechanism which prevented their formation was not determined

  20. PCR detection of groundwater bacteria associated with colloidal transport

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Perez, P.; Stetzenbach, L.D.; Alvarez, A.J.

    1996-02-29

    Colloidal transport may increase the amount of contaminant material than that which could be transported by water flow alone. The role of colloids in groundwater contaminant transport is complicated and may involve many different processes, including sorption of elements onto colloidal particles, coagulation/dissolution, adsorption onto solid surfaces, filtration, and migration. Bacteria are known to concentrate minerals and influence the transport of compounds in aqueous environments and may also serve as organic colloids, thereby influencing subsurface transport of radionuclides and other contaminants. The initial phase of the project consisted of assembling a list of bacteria capable of sequestering or facilitating mineral transport. The development and optimization of the PCR amplification assay for the detection of the organisms of interest, and the examination of regional groundwaters for those organisms, are presented for subsequent research.

  1. Handbook of divorce and relationship dissolution

    CERN Document Server

    Fine, Mark A

    2013-01-01

    This Handbook presents up-to-date scholarship on the causes and predictors, processes, and consequences of divorce and relationship dissolution. Featuring contributions from multiple disciplines, this Handbook reviews relationship termination, including variations depending on legal status, race/ethnicity, and sexual orientation. The Handbook focuses on the often-neglected processes involved as the relationship unfolds, such as infidelity, hurt, and remarriage. It also covers the legal and policy aspects, the demographics, and the historical aspects of divorce. Intended for researchers, practitioners, counselors, clinicians, and advanced students in psychology, sociology, family studies, communication, and nursing, the book serves as a text in courses on divorce, marriage and the family, and close relationships.

  2. Stratigraphy and dissolution of the Rustler Formation

    International Nuclear Information System (INIS)

    Bachman, G.O.

    1985-01-01

    The Rustler Formation is the uppermost evaporite-bearing unit in the Permian Ochoan series in southeastern New Mexico. It rests on the Salado Formation which includes the salt beds where the mined facility for the Waste Isolation Pilot Plant (WIPP) is being constructed. An understanding of the physical stratigraphy of the Rustler Formation is pertinent to studies of the WIPP site because some portions of the Rustler are water-bearing and may provide paths for circulating waters to come into contact with, and dissolve, evaporites within the Ochoan sequence. Knowledge of the processes, magnitude, and history of evaporite dissolution in the vicinity of the WIPP site is important to an evaluation of the integrity of the site. 2 refs., 2 figs

  3. Uranium Metal Analysis via Selective Dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Chenault, Jeffrey W.

    2008-09-10

    Uranium metal, which is present in sludge held in the Hanford Site K West Basin, can create hazardous hydrogen atmospheres during sludge handling, immobilization, or subsequent transport and storage operations by its oxidation/corrosion in water. A thorough knowledge of the uranium metal concentration in sludge therefore is essential to successful sludge management and waste process design. The goal of this work was to establish a rapid routine analytical method to determine uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of up to 1000-fold higher total uranium concentrations (i.e., up to 30 wt% and more uranium) for samples to be taken during the upcoming sludge characterization campaign and in future analyses for sludge handling and processing. This report describes the experiments and results obtained in developing the selective dissolution technique to determine uranium metal concentration in K Basin sludge.

  4. Integrated groundwater data management

    Science.gov (United States)

    Fitch, Peter; Brodaric, Boyan; Stenson, Matt; Booth, Nathaniel; Jakeman, Anthony J.; Barreteau, Olivier; Hunt, Randall J.; Rinaudo, Jean-Daniel; Ross, Andrew

    2016-01-01

    The goal of a data manager is to ensure that data is safely stored, adequately described, discoverable and easily accessible. However, to keep pace with the evolution of groundwater studies in the last decade, the associated data and data management requirements have changed significantly. In particular, there is a growing recognition that management questions cannot be adequately answered by single discipline studies. This has led a push towards the paradigm of integrated modeling, where diverse parts of the hydrological cycle and its human connections are included. This chapter describes groundwater data management practices, and reviews the current state of the art with enterprise groundwater database management systems. It also includes discussion on commonly used data management models, detailing typical data management lifecycles. We discuss the growing use of web services and open standards such as GWML and WaterML2.0 to exchange groundwater information and knowledge, and the need for national data networks. We also discuss cross-jurisdictional interoperability issues, based on our experience sharing groundwater data across the US/Canadian border. Lastly, we present some future trends relating to groundwater data management.

  5. Dissolution characteristics of mixed UO2 powders in J-13 water under saturated conditions

    International Nuclear Information System (INIS)

    Veleckis, E.; Hoh, J.C.

    1991-03-01

    The Yucca Mountain Project/Spent Fuel program at Argonne National Laboratory is designed to determine radionuclide release rates by exposing high-level waste to repository-relevant groundwater. To gain experience for the tests with spent fuel, a scoping experiment was conducted at room temperature to determine the uranium release rate from an unirradiated UO 2 powder mixture (14.3 wt % enrichment in 235 U) to J-13 water under saturated conditions. Another goal set for the experiment was to develop a method for utilizing isotope dilution techniques to determine whether the dissolution rate of UO 2 matrix is in accordance with an existing kinetic model. Results of these analyses revealed unequal uranium dissolution rates from the enriched and depleted portions of the powder mixture because of undisclosed differences between them. Although the presence of this inhomogeneity has precluded the application of the kinetic model, it also provided an opportunity to elaborate on the utilization of isotope dilution data in recognizing and quantifying such conditions. Detailed listings of uranium release and solution chemistry data are presented. Other problems commonly associated with spent fuel, such as the effectiveness of filtering media, the existence of uranium concentration peaks during early stages of the leach tests, the need for concentration corrections due to water replenishments of sample volumes, and experience derived from isotope dilution data are discussed in the context of the present results. 10 refs., 5 figs., 7 tabs

  6. The effect of sodium chloride on the dissolution of calcium silicate hydrate gels

    International Nuclear Information System (INIS)

    Hill, J.; Harris, A.W.; Manning, M.; Chambers, A.; Swanton, S.W.

    2006-01-01

    The use of cement based materials will be widespread in the long-term management of radioactive materials in the United Kingdom. One of the applications could be the Nirex reference vault backfill (NRVB) as an engineered barrier within a deep geological repository. NRVB confers alkaline conditions, which would provide a robust chemical barrier through the control of the solubility of some key radionuclides, enhanced sorption and minimised corrosion of steel containers. An understanding of the dissolution of C-S-H gels in cement under the appropriate conditions (e.g., saline groundwaters) is necessary to demonstrate the expected evolution of the chemistry over time and to provide sufficient cement to buffer the porewater conditions for the required time. A programme of experimental work has been undertaken to investigate C-S-H gel dissolution behaviour in sodium chloride solutions and the effect of calcium/silicon ratio (C/S), temperature and cation type on this behaviour. Reductions in calcium concentration and pH values were observed with samples equilibrated at 45 deg. C compared to those prepared at 25 deg. C. The effect of salt cation type on salt-concentration dependence of the dissolution of C-S-H gels was investigated by the addition of lithium or potassium chloride in place of sodium chloride for gels with a C/S of 1.0 and 1.8. With a C/S of 1.0, similar increases in dissolved calcium concentration with increasing ionic strength were recorded for the different salts. However, at a C/S of 1.8, anomalously high calcium concentrations were observed in the presence of lithium

  7. Accelerated dissolution testing for controlled release microspheres using the flow-through dissolution apparatus.

    Science.gov (United States)

    Collier, Jarrod W; Thakare, Mohan; Garner, Solomon T; Israel, Bridg'ette; Ahmed, Hisham; Granade, Saundra; Strong, Deborah L; Price, James C; Capomacchia, A C

    2009-01-01

    Theophylline controlled release capsules (THEO-24 CR) were used as a model system to evaluate accelerated dissolution tests for process and quality control and formulation development of controlled release formulations. Dissolution test acceleration was provided by increasing temperature, pH, flow rate, or adding surfactant. Electron microscope studies on the theophylline microspheres subsequent to each experiment showed that at pH values of 6.6 and 7.6 the microspheres remained intact, but at pH 8.6 they showed deterioration. As temperature was increased from 37-57 degrees C, no change in microsphere integrity was noted. Increased flow rate also showed no detrimental effect on integrity. The effect of increased temperature was determined to be the statistically significant variable.

  8. Sustainable Groundwater Management Using Economic Incentive Approach

    Science.gov (United States)

    Yan, T.; Shih, J.; Sanchirico, J. N.

    2006-12-01

    Although groundwater accounts for about 20% of the water consumption in the US, recent urban development, land use changes and agricultural activities in many regions (for example, Chesapeake Bay and eastern shore of Maryland) have resulted in deleterious impacts on groundwater quality. These impacts have dramatically increased potential human health and ecological system risks. One example is nitrogen pollution delivered to local waterways from septic systems via groundwater. Conventional approaches for nitrogen removal, such as pumping and treatment (nitrification-denitrification) process, tend to be expensive. On the other hand, economic incentive approaches (such as marketable permits) have the potential to increase the efficiency of environmental policy by reducing compliance costs for regulated entities and individuals and/or achieving otherwise uneconomical pollution reduction. The success of the sulfur dioxide trading market has led to the creation of trading markets for other pollutants, especially at the regional, state, and smaller (e.g. watershed) scales. In this paper, we develop an integrated framework, which includes a groundwater flow and transport model, and a conceptual management model. We apply this framework to a synthetic set up which includes one farm and two development areas in order to investigate the potential of using economic incentive approaches for groundwater quality management. The policy analysis is carried out by setting up the objective of the modeling framework to minimize the total cost of achieving groundwater quality goals at specific observation point using either a transferable development right (TDR) system between development areas and/or using a tax for fertilizer usage in the farm area. The TDR system consists of a planning agency delineating a region into restricted-use (e.g., agriculture, open space) and high intensity zones (e.g., residential, commercial uses). The agency then endows landowners in the restricted area

  9. Dry Stream Reaches in Carbonate Terranes: Surface Indicators of Ground-Water Reservoirs

    Science.gov (United States)

    Brahana, J.V.; Hollyday, E.F.

    1988-01-01

    In areas where dry stream reaches occur, subsurface drainage successfully competes with surface drainage, and sheet-like dissolution openings have developed parallel to bedding creating the ground-water reservoir. Union Hollow in south-central Tennessee is the setting for a case study that illustrates the application of the dry stream reach technique. In this technique, dry stream reach identification is based on two types of readily acquired information: remotely sensed black and white infrared aerial photography; and surface reconnaissance of stream channel characteristics. Test drilling in Union Hollow subsequent to identification of the dry reach proved that a localized ground-water reservoir was present.

  10. Overview of chemical modeling of nuclear waste glass dissolution

    International Nuclear Information System (INIS)

    Bourcier, W.L.

    1991-02-01

    Glass dissolution takes place through metal leaching and hydration of the glass surface accompanied by development of alternation layers of varying crystallinity. The reaction which controls the long-term glass dissolution rate appears to be surface layer dissolution. This reaction is reversible because the buildup of dissolved species in solution slows the dissolution rate due to a decreased dissolution affinity. Glass dissolution rates are therefore highly dependent on silica concentrations in solution because silica is the major component of the alteration layer. Chemical modeling of glass dissolution using reaction path computer codes has successfully been applied to short term experimental tests and used to predict long-term repository performance. Current problems and limitations of the models include a poorly defined long-term glass dissolution mechanism, the use of model parameters determined from the same experiments that the model is used to predict, and the lack of sufficient validation of key assumptions in the modeling approach. Work is in progress that addresses these issues. 41 refs., 7 figs., 2 tabs

  11. Frogging It: A Poetic Analysis of Relationship Dissolution

    Science.gov (United States)

    Faulkner, Sandra L.

    2012-01-01

    Often, themes in work and life intertwine; the author recognized that a cadre of poems she had written during the past several years were about relationship dissolution. The poems concerned romantic and friendship dissolution and the aspects of identity creation and loss this entails. The author presents the poems and makes an explicit connection…

  12. Hydro-chemo-mechanical coupling in sediments: Localized mineral dissolution

    KAUST Repository

    Cha, Minsu; Santamarina, Carlos

    2016-01-01

    Mineral dissolution is inherently a chemo-hydro-mechanical coupled process. Field evidence and laboratory results show that dissolution may localize and form open conduits in cohesive media such as carbonate rocks. This study focuses on the evolution of localized dissolution in soils (i.e., frictional and non-cohesive granular materials) under effective confining stresses. Experimental results show the development of localized dissolution (“pipe”) when a carbonate-quartz sand is subjected to reactive fluid flow: only loosely packed quartz grains remain within pipes, and the number of pipes decreases away from the inlet port. Concurrent shear wave velocity measurements show a decrease in stiffness during dissolution due to stress and fabric changes, and more complex signal codas anticipate the development of internal heterogeneity. The discrete element method is used to simulate localized vertical dissolution features in granular materials, under constant vertical stress and zero lateral strain far-field boundaries. As porosity increases along dissolution pipes, vertical load is transferred to the surrounding soils and marked force chains develop. In terms of equivalent stress, principal stress rotation takes place within pipes and the sediment reaches the Coulomb failure condition inside pipes and in the surrounding medium. Dissolution pipes alter the geo-plumbing of the subsurface, enhance fluid transport but limit the long term performance of storage systems, alter the fluid pressure and effective stress fields, soften the sediment and may trigger shear failures.

  13. Successful topical dissolution of cholesterol gallbladder stones using ethyl propionate.

    Science.gov (United States)

    Hofmann, A F; Amelsberg, A; Esch, O; Schteingart, C D; Lyche, K; Jinich, H; Vansonnenberg, E; D'Agostino, H B

    1997-06-01

    Topical dissolution of cholesterol gallbladder stones using methyl tert-butyl ether (MTBE) is useful in symptomatic patients judged too ill for surgery. Previous studies showed that ethyl propionate (EP), a C5 ester, dissolves cholesterol gallstones rapidly in vitro, but differs from MTBE in being eliminated so rapidly by the liver that blood levels remain undetectable. Our aim was to test EP as a topical dissolution agent for cholesterol gallbladder stones. Five high-risk patients underwent topical dissolution of gallbladder stones by EP. In three patients, the solvent was instilled via a cholecystostomy tube placed previously to treat acute cholecystitis; in two patients, a percutaneous transhepatic catheter was placed in the gallbladder electively. Gallstone dissolution was assessed by chromatography, by gravimetry, and by catheter cholecystography. Total dissolution of gallstones was obtained in four patients after 6-10 hr of lavage; in the fifth patient, partial gallstone dissolution facilitated basketing of the stones. In two patients, cholesterol dissolution was measured and averaged 30 mg/min. Side effects were limited to one episode of transient hypotension and pain at the infusion site; no patient developed somnolence or nausea. Gallstone elimination was associated with relief of symptoms. EP is an acceptable alternative to MTBE for topical dissolution of cholesterol gallbladder stones in high-risk patients. The lower volatility and rapid hepatic extraction of EP suggest that it may be preferable to MTBE in this investigational procedure.

  14. Uranium carbide dissolution in nitric solution: Sonication vs. silent conditions

    International Nuclear Information System (INIS)

    Virot, Matthieu; Szenknect, Stéphanie; Chave, Tony; Dacheux, Nicolas; Moisy, Philippe; Nikitenko, Sergey I.

    2013-01-01

    The dissolution of uranium carbide (UC) in nitric acid media is considered by means of power ultrasound (sonication) or magnetic stirring. The induction period required to initiate UC dissolution was found to be dramatically shortened when sonicating a 3 M nitric solution (Ar, 20 kHz, 18 W cm −2 , 20 °C). At higher acidity, magnetic stirring offers faster dissolution kinetics compared to sonication. Ultrasound-assisted UC dissolution is found to be passivated after ∼60% dissolution and remains incomplete whatever the acidity which is confirmed by ICP–AES, LECO and SEM–EDX analyses. In general, the kinetics of UC dissolution is linked to the in situ generation of nitrous acid in agreement with the general mechanism of UC dissolution; the nitrous acid formation is reported to be faster under ultrasound at low acidity due to the nitric acid sonolysis. The carbon balance shared between the gaseous, liquid, and solid phases is strongly influenced by the applied dissolution procedure and HNO 3 concentration

  15. Uranium carbide dissolution in nitric solution: Sonication vs. silent conditions

    Science.gov (United States)

    Virot, Matthieu; Szenknect, Stéphanie; Chave, Tony; Dacheux, Nicolas; Moisy, Philippe; Nikitenko, Sergey I.

    2013-10-01

    The dissolution of uranium carbide (UC) in nitric acid media is considered by means of power ultrasound (sonication) or magnetic stirring. The induction period required to initiate UC dissolution was found to be dramatically shortened when sonicating a 3 M nitric solution (Ar, 20 kHz, 18 W cm-2, 20 °C). At higher acidity, magnetic stirring offers faster dissolution kinetics compared to sonication. Ultrasound-assisted UC dissolution is found to be passivated after ∼60% dissolution and remains incomplete whatever the acidity which is confirmed by ICP-AES, LECO and SEM-EDX analyses. In general, the kinetics of UC dissolution is linked to the in situ generation of nitrous acid in agreement with the general mechanism of UC dissolution; the nitrous acid formation is reported to be faster under ultrasound at low acidity due to the nitric acid sonolysis. The carbon balance shared between the gaseous, liquid, and solid phases is strongly influenced by the applied dissolution procedure and HNO3 concentration.

  16. Mathematical methods for quantification and comparison of dissolution testing data

    Directory of Open Access Journals (Sweden)

    Edina Vranić

    2002-02-01

    Full Text Available In recent years, drug release/dissolution from solid dosage forms has been the subject of intense and profitable scientific developments. Whenever a new solid dosage form is developed or produced, it is necessary to ensure that drug dissolutionoccurs in an appropriate manner. The pharmaceutical industry and the registration authorities do focus, nowadays, on drug dissolution studies. The quantitative analysis of the values obtained in dissolution/release tests is easier when mathematicalformulas that express the dissolution results as a function of some of the dosage forms characteristics are used. This work discusses the analysis of data obtained for dissolution profiles under different media pH conditions using mathematical methodsof analysis described by Moore and Flanner. These authors have described difference factor (f1 and similarity factor (f2, which can be used to characterise drug dissolution/release profiles. In this work we have used these formulas for evaluation of dissolution profiles of the conventional tablets in different pH of dissolution medium (range of physiological variations.

  17. Nuclear Criticality Safety Assessment for Tank 38H Salt Dissolution

    International Nuclear Information System (INIS)

    Davis, P.L.

    1996-01-01

    This assessment report of sample results of the accumulating insoluble solids from Tank 38H demonstrates that an inherent subcritical condition for nuclear criticality safety exists during saltcake dissolution. This report also defines criteria for future sampling of Tank 38H for continued verification of the inherent subcritical condition as saltcake dissolution proceeds

  18. Effect of Bulk and Interfacial Rheological Properties on Bubble Dissolution

    NARCIS (Netherlands)

    Kloek, W.; Vliet, van T.; Meinders, M.

    2001-01-01

    This paper describes theoretical calculations of the combined effect of bulk and interracial rheological properties on dissolution behavior of a bubble in an infinite medium at saturated conditions. Either bulk or interracial elasticity can stop the bubble dissolution process, and stability criteria

  19. Hydro-chemo-mechanical coupling in sediments: Localized mineral dissolution

    KAUST Repository

    Cha, Minsu

    2016-06-11

    Mineral dissolution is inherently a chemo-hydro-mechanical coupled process. Field evidence and laboratory results show that dissolution may localize and form open conduits in cohesive media such as carbonate rocks. This study focuses on the evolution of localized dissolution in soils (i.e., frictional and non-cohesive granular materials) under effective confining stresses. Experimental results show the development of localized dissolution (“pipe”) when a carbonate-quartz sand is subjected to reactive fluid flow: only loosely packed quartz grains remain within pipes, and the number of pipes decreases away from the inlet port. Concurrent shear wave velocity measurements show a decrease in stiffness during dissolution due to stress and fabric changes, and more complex signal codas anticipate the development of internal heterogeneity. The discrete element method is used to simulate localized vertical dissolution features in granular materials, under constant vertical stress and zero lateral strain far-field boundaries. As porosity increases along dissolution pipes, vertical load is transferred to the surrounding soils and marked force chains develop. In terms of equivalent stress, principal stress rotation takes place within pipes and the sediment reaches the Coulomb failure condition inside pipes and in the surrounding medium. Dissolution pipes alter the geo-plumbing of the subsurface, enhance fluid transport but limit the long term performance of storage systems, alter the fluid pressure and effective stress fields, soften the sediment and may trigger shear failures.

  20. Dissolution enhancement of drugs. part i: technologies and effect of ...

    African Journals Online (AJOL)

    and steam aided granulation. In these techniques carrier plays an important role in improving solubility and dissolution rate. Polymers, superdisintegrants, surfactants are extensively studied in recent years for dissolution enhancement in drugs. This part of this review discusses technological overview and effect of polymers,

  1. Environmental impacts of open loop geothermal system on groundwater

    Science.gov (United States)

    Kwon, Koo-Sang; Park, Youngyun; Yun, Sang Woong; Lee, Jin-Yong

    2013-04-01

    Application of renewable energies such as sunlight, wind, rain, tides, waves and geothermal heat has gradually increased to reduce emission of CO2 which is supplied from combustion of fossil fuel. The geothermal energy of various renewable energies has benefit to be used to cooling and heating systems and has good energy efficiency compared with other renewable energies. However, open loop system of geothermal heat pump system has possibility that various environmental problems are induced because the system directly uses groundwater to exchange heat. This study was performed to collect data from many documents such as papers and reports and to summarize environmental impacts for application of open loop system. The environmental impacts are classified into change of hydrogeological factors such as water temperature, redox condition, EC, change of microbial species, well contamination and depletion of groundwater. The change of hydrogeological factors can induce new geological processes such as dissolution and precipitation of some minerals. For examples, increase of water temperature can change pH and Eh. These variations can change saturation index of some minerals. Therefore, dissolution and precipitation of some minerals such as quartz and carbonate species and compounds including Fe and Mn can induce a collapse and a clogging of well. The well contamination and depletion of groundwater can reduce available groundwater resources. These environmental impacts will be different in each region because hydrogeological properties and scale, operation period and kind of the system. Therefore, appropriate responses will be considered for each environmental impact. Also, sufficient study will be conducted to reduce the environmental impacts and to improve geothermal energy efficiency during the period that a open loop system is operated. This work was supported by the Energy Efficiency and Resources of the Korea Institute of Energy Technology Evaluation and Planning

  2. Groundwater regimes and isotopic studies, Ranger mine area, Northern Territory

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M; Green, D C

    1986-12-01

    Three types of groundwater occur in the area of the Ranger mine. Type A groundwater occurs in the loose sands and gravels occupying the present day stream channels, Type B in the weathering profile and Type C occurs in relatively fresh fractured bedrock occupying open fractures and other cavities. The three types of groundwater can be distinguished both chemically and isotopically. Light stable isotope data suggest that most early rains are lost by evapotranspiration and have no imprint on the groundwater. Later in the wet season, the ground is saturated and groundwater recharge occurs on a regional scale. This younger groundwater sits on the older waters. Mixing is probably minimal as before any large scale mixing could occur, most younger waters are lost by evapotranspiration. Stable isotope data suggest that Type B groundwater in certain areas has some connection with evaporated surface water bodies. Stable isotope measurements for the pollution monitoring bores around the tailings dam do not indicate any connection with the polluted pond waters at the time of sample collection.

  3. Impact of Spatial Pumping Patterns on Groundwater Management

    Science.gov (United States)

    Yin, J.; Tsai, F. T. C.

    2017-12-01

    Challenges exist to manage groundwater resources while maintaining a balance between groundwater quantity and quality because of anthropogenic pumping activities as well as complex subsurface environment. In this study, to address the impact of spatial pumping pattern on groundwater management, a mixed integer nonlinear multi-objective model is formulated by integrating three objectives within a management framework to: (i) maximize total groundwater withdrawal from potential wells; (ii) minimize total electricity cost for well pumps; and (iii) attain groundwater level at selected monitoring locations as close as possible to the target level. Binary variables are used in the groundwater management model to control the operative status of pumping wells. The NSGA-II is linked with MODFLOW to solve the multi-objective problem. The proposed method is applied to a groundwater management problem in the complex Baton Rouge aquifer system, southeastern Louisiana. Results show that (a) non-dominated trade-off solutions under various spatial distributions of active pumping wells can be achieved. Each solution is optimal with regard to its corresponding objectives; (b) operative status, locations and pumping rates of pumping wells are significant to influence the distribution of hydraulic head, which in turn influence the optimization results; (c) A wide range of optimal solutions is obtained such that decision makers can select the most appropriate solution through negotiation with different stakeholders. This technique is beneficial to finding out the optimal extent to which three objectives including water supply concern, energy concern and subsidence concern can be balanced.

  4. Development of a kinetic model for the dissolution of the UO2 spent nuclear fuel. Application of the model to the minor radionuclides

    International Nuclear Information System (INIS)

    Bruno, J.; Cera, E.; Duro, L.; Pon, J.; Pablo, J. de; Eriksen, Trygve

    1998-05-01

    A kinetic model has been developed in order to explain the evolution of the spent fuel matrix/groundwater system. Mass balance equations have been used to follow the evolution of the system with time. The model has been calibrated by using experimental dissolution data from spent fuel leaching tests from Studsvik and KTH and from synthetic unirradiated UO 2 dissolution tests from VTT. The results of the testing exercise indicate that the combination of mass balance equations together with the kinetic rate laws constitute a useful tool to model and explain experimental dissolution data available in the literature for UO 2 solid phases, including uraninites, unirradiated UO 2 and spent fuel. Although the key processes are well identified and understood, there are still some remaining uncertainties concerning some of the critical parameters of the model. This is particularly true for the density of UO 2 sites prone to oxidation and the rates and mechanisms of the hydrogen peroxide and the combined oxygen and bicarbonate promoted dissolution of UO 2 for oxidant concentration ranges relevant to the spent fuel disposal system. The mass balance kinetic model developed has been extended to minor radionuclides contained in the matrix, i.e. Pu, Tc and Sr. In the case of Pu, the model presented reproduces the behaviour of this critical radionuclide even at early contact times. As it would be expected, Tc seems to follow a different mechanism for its release with respect to the UO 2 matrix dissolution, which is probably linked to the rate of oxidation of Tc metallic inclusions in the fuel. A co- dissolution process of Sr with the UO 2 matrix reproduces the long term dissolution behaviour of this radionuclide, better than the initial Sr release rates

  5. Development of a kinetic model for the dissolution of the UO{sub 2} spent nuclear fuel. Application of the model to the minor radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, J.; Cera, E.; Duro, L.; Pon, J. [QuantiSci SL, Barcelona (Spain); Pablo, J. de [UPC, Barcelona (Spain). Dept. Enginyeria Quimica; Eriksen, Trygve [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear Chemistry

    1998-05-01

    A kinetic model has been developed in order to explain the evolution of the spent fuel matrix/groundwater system. Mass balance equations have been used to follow the evolution of the system with time. The model has been calibrated by using experimental dissolution data from spent fuel leaching tests from Studsvik and KTH and from synthetic unirradiated UO{sub 2} dissolution tests from VTT. The results of the testing exercise indicate that the combination of mass balance equations together with the kinetic rate laws constitute a useful tool to model and explain experimental dissolution data available in the literature for UO{sub 2} solid phases, including uraninites, unirradiated UO{sub 2} and spent fuel. Although the key processes are well identified and understood, there are still some remaining uncertainties concerning some of the critical parameters of the model. This is particularly true for the density of UO{sub 2} sites prone to oxidation and the rates and mechanisms of the hydrogen peroxide and the combined oxygen and bicarbonate promoted dissolution of UO{sub 2} for oxidant concentration ranges relevant to the spent fuel disposal system. The mass balance kinetic model developed has been extended to minor radionuclides contained in the matrix, i.e. Pu, Tc and Sr. In the case of Pu, the model presented reproduces the behaviour of this critical radionuclide even at early contact times. As it would be expected, Tc seems to follow a different mechanism for its release with respect to the UO{sub 2} matrix dissolution, which is probably linked to the rate of oxidation of Tc metallic inclusions in the fuel. A co- dissolution process of Sr with the UO{sub 2} matrix reproduces the long term dissolution behaviour of this radionuclide, better than the initial Sr release rates 49 refs, 22 figs, 2 tables

  6. Looking for the Self: Phenomenology, Neurophysiology and Philosophical Significance of Drug-induced Ego Dissolution

    Directory of Open Access Journals (Sweden)

    Raphaël Millière

    2017-05-01

    Full Text Available There is converging evidence that high doses of hallucinogenic drugs can produce significant alterations of self-experience, described as the dissolution of the sense of self and the loss of boundaries between self and world. This article discusses the relevance of this phenomenon, known as “drug-induced ego dissolution (DIED”, for cognitive neuroscience, psychology and philosophy of mind. Data from self-report questionnaires suggest that three neuropharmacological classes of drugs can induce ego dissolution: classical psychedelics, dissociative anesthetics and agonists of the kappa opioid receptor (KOR. While these substances act on different neurotransmitter receptors, they all produce strong subjective effects that can be compared to the symptoms of acute psychosis, including ego dissolution. It has been suggested that neuroimaging of DIED can indirectly shed light on the neural correlates of the self. While this line of inquiry is promising, its results must be interpreted with caution. First, neural correlates of ego dissolution might reveal the necessary neurophysiological conditions for the maintenance of the sense of self, but it is more doubtful that this method can reveal its minimally sufficient conditions. Second, it is necessary to define the relevant notion of self at play in the phenomenon of DIED. This article suggests that DIED consists in the disruption of subpersonal processes underlying the “minimal” or “embodied” self, i.e., the basic experience of being a self rooted in multimodal integration of self-related stimuli. This hypothesis is consistent with Bayesian models of phenomenal selfhood, according to which the subjective structure of conscious experience ultimately results from the optimization of predictions in perception and action. Finally, it is argued that DIED is also of particular interest for philosophy of mind. On the one hand, it challenges theories according to which consciousness always involves

  7. Looking for the Self: Phenomenology, Neurophysiology and Philosophical Significance of Drug-induced Ego Dissolution

    Science.gov (United States)

    Millière, Raphaël

    2017-01-01

    There is converging evidence that high doses of hallucinogenic drugs can produce significant alterations of self-experience, described as the dissolution of the sense of self and the loss of boundaries between self and world. This article discusses the relevance of this phenomenon, known as “drug-induced ego dissolution (DIED)”, for cognitive neuroscience, psychology and philosophy of mind. Data from self-report questionnaires suggest that three neuropharmacological classes of drugs can induce ego dissolution: classical psychedelics, dissociative anesthetics and agonists of the kappa opioid receptor (KOR). While these substances act on different neurotransmitter receptors, they all produce strong subjective effects that can be compared to the symptoms of acute psychosis, including ego dissolution. It has been suggested that neuroimaging of DIED can indirectly shed light on the neural correlates of the self. While this line of inquiry is promising, its results must be interpreted with caution. First, neural correlates of ego dissolution might reveal the necessary neurophysiological conditions for the maintenance of the sense of self, but it is more doubtful that this method can reveal its minimally sufficient conditions. Second, it is necessary to define the relevant notion of self at play in the phenomenon of DIED. This article suggests that DIED consists in the disruption of subpersonal processes underlying the “minimal” or “embodied” self, i.e., the basic experience of being a self rooted in multimodal integration of self-related stimuli. This hypothesis is consistent with Bayesian models of phenomenal selfhood, according to which the subjective structure of conscious experience ultimately results from the optimization of predictions in perception and action. Finally, it is argued that DIED is also of particular interest for philosophy of mind. On the one hand, it challenges theories according to which consciousness always involves self-awareness. On

  8. Aluminum Target Dissolution in Support of the Pu-238 Program

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Benker, Dennis [ORNL; DePaoli, David W [ORNL; Felker, Leslie Kevin [ORNL; Mattus, Catherine H [ORNL

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  9. A new method for alkaline dissolution of uranium metal foil

    International Nuclear Information System (INIS)

    Mondino, A.V.; Wilkinson, M.V.; Manzini, A.C.

    2001-01-01

    In order to develop a production process of 99 Mo by fission of low-enriched uranium, the first purification step, which consists of dissolution of a uranium metal foil target, was studied. It was found that alkaline NaClO gave good results, reaching the dissolution of up to 300 μm of uranium foil. The different conditions for the dissolution were studied and the optimum ones were found. The influence of NaClO and NaOH concentration, temperature, dissolving solution volume per unit of surface and dissolution time were investigated. During this step, a gas identified as H 2 , was generated, and a precipitate characterized as Na 2 U 2 O 7 was observed. A stoichiometric reaction for this uranium dissolution is proposed. (author)

  10. Physical heterogeneity control on effective mineral dissolution rates

    Science.gov (United States)

    Jung, Heewon; Navarre-Sitchler, Alexis

    2018-04-01

    Hydrologic heterogeneity may be an important factor contributing to the discrepancy in laboratory and field measured dissolution rates, but the governing factors influencing mineral dissolution rates among various representations of physical heterogeneity remain poorly understood. Here, we present multiple reactive transport simulations of anorthite dissolution in 2D latticed random permeability fields and link the information from local grid scale (1 cm or 4 m) dissolution rates to domain-scale (1m or 400 m) effective dissolution rates measured by the flux-weighted average of an ensemble of flow paths. We compare results of homogeneous models to heterogeneous models with different structure and layered permeability distributions within the model domain. Chemistry is simplified to a single dissolving primary mineral (anorthite) distributed homogeneously throughout the domain and a single secondary mineral (kaolinite) that is allowed to dissolve or precipitate. Results show that increasing size in correlation structure (i.e. long integral scales) and high variance in permeability distribution are two important factors inducing a reduction in effective mineral dissolution rates compared to homogeneous permeability domains. Larger correlation structures produce larger zones of low permeability where diffusion is an important transport mechanism. Due to the increased residence time under slow diffusive transport, the saturation state of a solute with respect to a reacting mineral approaches equilibrium and reduces the reaction rate. High variance in permeability distribution favorably develops large low permeability zones that intensifies the reduction in mixing and effective dissolution rate. However, the degree of reduction in effective dissolution rate observed in 1 m × 1 m domains is too small (equilibrium conditions reduce the effective dissolution rate by increasing the saturation state. However, in large domains where less- or non-reactive zones develop, higher

  11. Minimal abdominal incisions

    Directory of Open Access Journals (Sweden)

    João Carlos Magi

    2017-04-01

    Full Text Available Minimally invasive procedures aim to resolve the disease with minimal trauma to the body, resulting in a rapid return to activities and in reductions of infection, complications, costs and pain. Minimally incised laparotomy, sometimes referred to as minilaparotomy, is an example of such minimally invasive procedures. The aim of this study is to demonstrate the feasibility and utility of laparotomy with minimal incision based on the literature and exemplifying with a case. The case in question describes reconstruction of the intestinal transit with the use of this incision. Male, young, HIV-positive patient in a late postoperative of ileotiflectomy, terminal ileostomy and closing of the ascending colon by an acute perforating abdomen, due to ileocolonic tuberculosis. The barium enema showed a proximal stump of the right colon near the ileostomy. The access to the cavity was made through the orifice resulting from the release of the stoma, with a lateral-lateral ileo-colonic anastomosis with a 25 mm circular stapler and manual closure of the ileal stump. These surgeries require their own tactics, such as rigor in the lysis of adhesions, tissue traction, and hemostasis, in addition to requiring surgeon dexterity – but without the need for investments in technology; moreover, the learning curve is reported as being lower than that for videolaparoscopy. Laparotomy with minimal incision should be considered as a valid and viable option in the treatment of surgical conditions. Resumo: Procedimentos minimamente invasivos visam resolver a doença com o mínimo de trauma ao organismo, resultando em retorno rápido às atividades, reduções nas infecções, complicações, custos e na dor. A laparotomia com incisão mínima, algumas vezes referida como minilaparotomia, é um exemplo desses procedimentos minimamente invasivos. O objetivo deste trabalho é demonstrar a viabilidade e utilidade das laparotomias com incisão mínima com base na literatura e

  12. Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Foadi, Roshan; Frandsen, Mads Toudal; A. Ryttov, T.

    2007-01-01

    Different theoretical and phenomenological aspects of the Minimal and Nonminimal Walking Technicolor theories have recently been studied. The goal here is to make the models ready for collider phenomenology. We do this by constructing the low energy effective theory containing scalars......, pseudoscalars, vector mesons and other fields predicted by the minimal walking theory. We construct their self-interactions and interactions with standard model fields. Using the Weinberg sum rules, opportunely modified to take into account the walking behavior of the underlying gauge theory, we find...... interesting relations for the spin-one spectrum. We derive the electroweak parameters using the newly constructed effective theory and compare the results with the underlying gauge theory. Our analysis is sufficiently general such that the resulting model can be used to represent a generic walking technicolor...

  13. The origin of groundwater composition in the Pampeano Aquifer underlying the Del Azul Creek basin, Argentina

    International Nuclear Information System (INIS)

    Zabala, M.E.; Manzano, M.; Vives, L.

    2015-01-01

    The Pampean plain is the most productive region in Argentina. The Pampeano Aquifer beneath the Pampean plain is used mostly for drinking water. The study area is the sector of the Pampeano Aquifer underlying the Del Azul Creek basin, in Buenos Aires province. The main objective is to characterize the chemical and isotopic compositions of groundwater and their origin on a regional scale. The methodology used involved the identification and characterization of potential sources of solutes, the study of rain water and groundwater chemical and isotopic characteristics to deduce processes, the development of a hydrogeochemical conceptual model, and its validation by hydrogeochemical modelling with PHREEQC. Groundwater samples come mostly from a two-depth monitoring network of the “Dr. Eduardo J. Usunoff” Large Plains Hydrology Institute (IHLLA). Groundwater salinity increases from SW to NE, where groundwater is saline. In the upper basin groundwater is of the HCO 3 -Ca type, in the middle basin it is HCO 3 -Na, and in the lower basin it is ClSO 4 –NaCa and Cl–Na. The main processes incorporating solutes to groundwater during recharge in the upper basin are rain water evaporation, dissolution of CO 2 , calcite, dolomite, silica, and anorthite; cationic exchange with Na release and Ca and Mg uptake, and clay precipitation. The main processes modifying groundwater chemistry along horizontal flow at 30 m depth from the upper to the lower basin are cationic exchange, dissolution of silica and anorthite, and clay precipitation. The origin of salinity in the middle and lower basin is secular evaporation in a naturally endorheic area. In the upper and middle basins there is agricultural pollution. In the lower basin the main pollution source is human liquid and solid wastes. Vertical infiltration through the boreholes annular space during the yearly flooding stages is probably the pollution mechanism of the samples at 30 m depth. - Highlights: • The work studies the

  14. The origin of groundwater composition in the Pampeano Aquifer underlying the Del Azul Creek basin, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Zabala, M.E., E-mail: mzabala@faa.unicen.edu.ar [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Ciudad Autónoma de Buenos Aires (Argentina); Instituto de Hidrología de Llanuras “Dr. Eduardo J. Usunoff”, Av. República Italia 780, 7300 Azul, Provincia Buenos Aires (Argentina); Manzano, M., E-mail: marisol.manzano@upct.es [Escuela de Ingeniería de Caminos, Canales y Puertos y de Ingeniería de Minas, Universidad Politécnica de Cartagena, P° de Alfonso XIII 52, E-30203 Cartagena (Spain); Vives, L., E-mail: lvives@faa.unicen.edu.ar [Instituto de Hidrología de Llanuras “Dr. Eduardo J. Usunoff”, Av. República Italia 780, 7300 Azul, Provincia Buenos Aires (Argentina)

    2015-06-15

    The Pampean plain is the most productive region in Argentina. The Pampeano Aquifer beneath the Pampean plain is used mostly for drinking water. The study area is the sector of the Pampeano Aquifer underlying the Del Azul Creek basin, in Buenos Aires province. The main objective is to characterize the chemical and isotopic compositions of groundwater and their origin on a regional scale. The methodology used involved the identification and characterization of potential sources of solutes, the study of rain water and groundwater chemical and isotopic characteristics to deduce processes, the development of a hydrogeochemical conceptual model, and its validation by hydrogeochemical modelling with PHREEQC. Groundwater samples come mostly from a two-depth monitoring network of the “Dr. Eduardo J. Usunoff” Large Plains Hydrology Institute (IHLLA). Groundwater salinity increases from SW to NE, where groundwater is saline. In the upper basin groundwater is of the HCO{sub 3}-Ca type, in the middle basin it is HCO{sub 3}-Na, and in the lower basin it is ClSO{sub 4}–NaCa and Cl–Na. The main processes incorporating solutes to groundwater during recharge in the upper basin are rain water evaporation, dissolution of CO{sub 2}, calcite, dolomite, silica, and anorthite; cationic exchange with Na release and Ca and Mg uptake, and clay precipitation. The main processes modifying groundwater chemistry along horizontal flow at 30 m depth from the upper to the lower basin are cationic exchange, dissolution of silica and anorthite, and clay precipitation. The origin of salinity in the middle and lower basin is secular evaporation in a naturally endorheic area. In the upper and middle basins there is agricultural pollution. In the lower basin the main pollution source is human liquid and solid wastes. Vertical infiltration through the boreholes annular space during the yearly flooding stages is probably the pollution mechanism of the samples at 30 m depth. - Highlights: • The

  15. Cation exchange and CaCO 3 dissolution during artificial recharge of effluent to a calcareous sandstone aquifer

    Science.gov (United States)

    Goren, Orly; Gavrieli, Ittai; Burg, Avihu; Lazar, Boaz

    2011-03-01

    SummaryThis research describes a field study and laboratory simulations of the geochemical evolution of groundwater following a recharge of effluent into aquifers. The study was conducted in the soil aquifer treatment (SAT) system of the Shafdan sewage reclamation plant, Israel. The SAT system recharges secondary effluent into the calcareous sandstone sediments of the Israeli Coastal Aquifer as a tertiary treatment. The reclaimed effluent is recovered ca. 500 m off the recharge basin and is used for unlimited irrigation. The laboratory simulations in which effluent was pumped through experimental columns packed with pristine Shafdan sediment showed that the chemical composition of the outflowing water was controlled mainly by cation exchange and CaCO 3 dissolution. Na +, K + and Mg 2+ were adsorbed and Ca 2+ was desorbed during the initial stage of recharge. The equilibrium distribution of the adsorbed cations was: Ca 2+ ˜ 60%, Mg 2+ ˜ 20%, and Na + and K + ˜ 10% each. The Ca 2+ in the Shafdan production wells and in the experimental columns outflow (˜5 meq L -1) was always higher than the Ca 2+ in the recharged effluent (˜3.5 meq L -1), indicating continuous CaCO 3 dissolution. This study demonstrates that besides mixing, a suite of geochemical processes should be considered when assessing groundwater quality following artificial recharge of aquifers.

  16. Identification of hydrogeochemical processes and pollution sources of groundwater nitrate in Leiming Basin of Hainan island, Southern China

    Science.gov (United States)

    Shaowen, Y.; Zhan, Y., , Dr; Li, Q.

    2017-12-01

    Identifying the evolution of groundwater quality is important for the control and management of groundwater resources. The main aims of the present study are to identify the major factors affecting hydrogeochemistry of groundwater resources and to evaluate the potential sources of groundwater nitrate in Leiming basin using chemical and isotopic methods. The majority of samples belong to Na-Cl water type and are followed by Ca-HCO3 and mixed Ca-Na-HCO3. The δ18O and δ2H values in groundwater indicate that the shallow fissure groundwater is mainly recharged by rainfall. The evaporated surface water is another significant origin of groundwater. The weathering and dissolution of different rocks and minerals, input of precipitation, evaporation, ion exchange and anthropogenic activities, especially agricultural activities, influence the hydrogeochemistry of the study area. NO- 3 concentration in the groundwater varies from 0.7 to 51.7 mg/L and high values are mainly occurred in the densely populated area. The combined use of isotopic values and hydrochemical data suggests that the NO- 3 load in Leiming basin is not only derived from agricultural activities but also from other sources such as waste water and atmospheric deposition. Fertilizer is considered as the major source of NO- 3 in the groundwater in Leiming basin.

  17. Hydrochemical and multivariate analysis of groundwater quality in the northwest of Sinai, Egypt.

    Science.gov (United States)

    El-Shahat, M F; Sadek, M A; Salem, W M; Embaby, A A; Mohamed, F A

    2017-08-01

    The northwestern coast of Sinai is home to many economic activities and development programs, thus evaluation of the potentiality and vulnerability of water resources is important. The present work has been conducted on the groundwater resources of this area for describing the major features of groundwater quality and the principal factors that control salinity evolution. The major ionic content of 39 groundwater samples collected from the Quaternary aquifer shows high coefficients of variation reflecting asymmetry of aquifer recharge. The groundwater samples have been classified into four clusters (using hierarchical cluster analysis), these match the variety of total dissolvable solids, water types and ionic orders. The principal component analysis combined the ionic parameters of the studied groundwater samples into two principal components. The first represents about 56% of the whole sample variance reflecting a salinization due to evaporation, leaching, dissolution of marine salts and/or seawater intrusion. The second represents about 15.8% reflecting dilution with rain water and the El-Salam Canal. Most groundwater samples were not suitable for human consumption and about 41% are suitable for irrigation. However, all groundwater samples are suitable for cattle, about 69% and 15% are suitable for horses and poultry, respectively.

  18. Geochemistry and environmental isotope of groundwater from the upper Cretaceous aquifer of Orontes basin (Syria)

    International Nuclear Information System (INIS)

    Al-Charideh, A.

    2010-03-01

    Chemical and environmental isotopes have been used for studying the Upper Cretaceous aquifer systems in the Middle Orontes basin. The results indicate that the salinity of groundwater (0.2 to 2 g/l) reveals the dissolution of evaporate rocks is the main factor of high salinity especially in the Homes depression. The degree of salinity and its spaces distribution are basically related to the pattern of groundwater movement in the Upper cretaceous aquifer. The stable isotopes composition of groundwater in the Homes depression are more depleted by -2.5% and -17.0% for δ 18 O and δ 2 H respectively, than the groundwater from Hama elevation, suggested different origin and recharge time between this two groundwater groups. Estimates of their mean subsurface residence times have been constrained on the basis of 14 C D IC. The corrected ages of groundwater are recent and less to 10 thousand years in Hama uplift. However, the corrected age of groundwater in the Homs depression range between 10 to 25 thousand years indicate late Pleistocene recharge period. (author)

  19. Major ion chemistry and quality assessment of groundwater in Haripur area

    International Nuclear Information System (INIS)

    Akram, W.; Tariq, J.A.; Ahmad, M.

    2011-07-01

    Study was conducted for investigating chemical composition of groundwater, identifying the compositional types of groundwater, delineating the processes controlling the groundwater chemistry and assessing the groundwater quality for drinking / irrigation uses. Groundwater samples collected from shallow (hand pumps, open well, motor pumps) and deep (tube wells) aquifers were analyzed for major cations (Na/sup +/,K/sup +, Ca/sup 2+/, Mg/sup 2+/) and anions (HCO/sub 3/, Cl/sup '/, SO/sub 4/). The data indicated that Ca/sub 2/ is the dominant cation in most of the samples followed by Mg/sup 2+/ whereas HCO/sub 3/ is the most abundant anion in all samples. Hydrochemistry provides a clear indication of active recharge of shallow and deep aquifers by modern meteoric water. Carbonate dissolution was found to be the prevailing process controlling the groundwater chemistry. Chemical quality was assessed for drinking purpose by comparing with WHO, Indian and national standards, and for irrigation purpose using empirical indices such as SAR and RSC. The results show that groundwater meets the norms of good quality drinking water and can be safely used for irrigation. (author)

  20. Geochemical Characteristics of Shallow Groundwater in Jiaoshiba Shale Gas Production Area: Implications for Environmental Concerns

    Directory of Open Access Journals (Sweden)

    Yiman Li

    2016-11-01

    Full Text Available The geochemical characteristics of shallow groundwater are essential for environmental impact studies in the shale gas production area. Jiaoshiba in the Sichuan basin is the first commercial-scale shale gas production area in China. This paper studied the geochemical and isotopic characteristics of the shallow groundwater of the area for future environmental concerns. Results show that the average pH of the shallow groundwater is 7.5 and the total dissolved solids (TDS vary from 150 mg/L to 350 mg/L. The main water types are HCO3-Ca and HCO3-Ca·Mg due to the carbonates dissolution equilibrium in karst aquifers. The concentrations of major ions and typical toxic elements including Mn, Cr, Cu, Zn, Ba, and Pb are below the drinking water standard of China and are safe for use as drinking water. The high nitrate content is inferred to be caused by agricultural pollution. The shallow groundwater is recharged by local precipitation and flows in the vertical circulation zone. Evidences from low TDS, water isotopes, and high 3H and 14C indicate that the circulation rate of shallow groundwater is rapid, and the lateral groundwater has strong renewability. Once groundwater pollution from deep shale gas production occurs, it will be recovered soon by enough precipitation.

  1. Geology of groundwater occurrences of the Lower Cretaceus sandstone aquifer in East Central Sinai, Egypt

    Directory of Open Access Journals (Sweden)

    Saad Younes Ghoubachi

    2017-01-01

    Full Text Available The present study focused on investigating the impact of geological setting on the groundwater occurrences of the Lower Cretaceous sandstone aquifer (Malha. The Lower Cretaceous sandstone aquifer is subdivided into 3 units according to their lithological characters for the first time in this present work. The study area is dissected by normal faults with their downthrown sides due north direction. The groundwater flows from southeast recharge area (outcrop to the northwest direction with an average hydraulic gradient of 0.0035. The hydraulic parameters of the Lower Cretaceous sandstone aquifer were determined and evaluated through 7 pumping tests carried out on productive wells. The Lower Cretaceous aquifer in the study area is characterized by moderate to high potential. The calculated groundwater volume of the Lower Cretaceous aquifer (6300 km2 in the study area attains about 300 bcm, while the estimated recharge to the same aquifer reaches about 44,500 m3/day with an annual recharge of 16 mcm/year. Expended Durov diagram plot revealed that the groundwater has been evolved from Mg-SO4 and Mg-Cl dissolution area types that eventually reached a final stage of evolution represented by a Na-Cl water type. This diagram helps also in identifying groundwater flow direction. The groundwater salinity ranges from 1082 ppm (Shaira to 1719 ppm (Nakhl, in the direction of groundwater movement towards north.

  2. Uncertainty in 14C model ages of groundwater: The influence of soil gas in terranes dominated by C3 plants

    Science.gov (United States)

    Nelson, S.; Hart, R.; Eggett, D.

    2009-12-01

    Groundwater is the largest source of fresh water readily available to humanity and aquifers with long residence times are particularly susceptible to overuse. Thus, it is important to have quantitative estimates of the residence time of water in such aquifers. Many models used to calculate 14C ages of groundwater depend on an estimate of the δ13C value of carbon dioxide in soil at the time of recharge, a value that must be estimated. Other work has suggested that for terranes dominated by C3 plants, -23‰ is an appropriate value, and sensitivity calculations show that the apparent age of a groundwater is strongly dependent on the choice of this parameter. This is especially true where the measured values of δ13C of dissolved inorganic carbon (DIC) are used to estimate the contribution of “dead” carbon to the DIC load via the dissolution of calcite in the aquifer and soil zones. To better understand the temporal and spatial isotopic and abundance variability of soil carbon dioxide, we established soil gas sampling sites that encompassed a wide variety of settings in terms of season, elevation, climate, and plant community that were sampled monthly throughout regions of the state of Utah where C3 flora dominate. Direct measurements of soil gas suggest a value of -21.8 ± 1.4‰ (1σ) is a good input variable as long as: a) C3 vegetation dominates, and b) extreme aridity does not prevail such that plant densities and soil microbial activities are minimized. If recharge is envisaged to occur during spring and early summer in highly vegetated uplands, a value of -24.0 ± 0.6‰ may be more appropriate as statistical analysis reveals that seasonality and plant density are most clearly correlated to the carbon isotope composition of carbon dioxide in soil gas. Although the two values and ranges cited above values do not diverge strongly from other published estimates, they place fairly narrow limits on the uncertainty of ±500 and ±200 yr., respectively, in

  3. Controlling groundwater pumping online.

    Science.gov (United States)

    Zekri, Slim

    2009-08-01

    Groundwater over-pumping is a major problem in several countries around the globe. Since controlling groundwater pumping through water flow meters is hardly feasible, the surrogate is to control electricity usage. This paper presents a framework to restrict groundwater pumping by implementing an annual individual electricity quota without interfering with the electricity pricing policy. The system could be monitored online through prepaid electricity meters. This provides low transaction costs of individual monitoring of users compared to the prohibitive costs of water flow metering and monitoring. The public groundwater managers' intervention is thus required to determine the water and electricity quota and watch the electricity use online. The proposed framework opens the door to the establishment of formal groundwater markets among users at very low transaction costs. A cost-benefit analysis over a 25-year period is used to evaluate the cost of non-action and compare it to the prepaid electricity quota framework in the Batinah coastal area of Oman. Results show that the damage cost to the community, if no active policy is implemented, amounts to (-$288) million. On the other hand, the implementation of a prepaid electricity quota with an online management system would result in a net present benefit of $199 million.

  4. Transient changes in shallow groundwater chemistry during the MSU ZERT CO2 injection experiment

    Science.gov (United States)

    Apps, J.A.; Zheng, Lingyun; Spycher, N.; Birkholzer, J.T.; Kharaka, Y.; Thordsen, J.; Kakouros, E.; Trautz, R.

    2011-01-01

    Food-grade CO2 was injected into a shallow aquifer through a perforated pipe placed horizontally 1-2 m below the water table at the Montana State University Zero Emission Research and Technology (MSU-ZERT) field site at Bozeman, Montana. The possible impact of elevated CO2 levels on groundwater quality was investigated by analyzing 80 water samples taken before, during, and following CO2 injection. Field determinations and laboratory analyses showed rapid and systematic changes in pH, alkalinity, and conductance, as well as increases in the aqueous concentrations of trace element species. The geochemical data were first evaluated using principal component analysis (PCA) in order to identify correlations between aqueous species. The PCA findings were then used in formulating a geochemical model to simulate the processes likely to be responsible for the observed increases in the concentrations of dissolved constituents. Modeling was conducted taking into account aqueous and surface complexation, cation exchange, and mineral precipitation and dissolution. Reasonable matches between measured data and model results suggest that: (1) CO2 dissolution in the groundwater causes calcite to dissolve. (2) Observed increases in the concentration of dissolved trace metals result likely from Ca+2-driven ion exchange with clays (smectites) and sorption/desorption reactions likely involving Fe (hydr)oxides. (3) Bicarbonate from CO2 dissolution appears to compete for sorption with anionic species such as HAsO4-2, potentially increasing dissolved As levels in groundwater. ?? 2011 Published by Elsevier Ltd.

  5. Time scales for dissolution of calcite fracture fillings and implications for saturated zone radionuclide transport at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Winterle, J.R.; Murphy, W.M.

    1999-01-01

    An analysis was performed to estimate time scales for dissolution of calcite fracture fillings in the fractured tuff aquifer that underlies Yucca Mountain (YM), Nevada, where groundwater is chemically undersaturated with respect to calcite. The impetus for this analysis originates from speculation that undissolved calcite in the saturated zone is evidence for limited diffusive exchange between fracture and matrix waters. Assuming that matrix diffusion is the rate-limiting process, the time scale for dissolution of calcite fracture fillings depends on the amount of calcite initially deposited, the distance between flowing fractures, the degree of chemical disequilibrium, and the rate of diffusion. Assuming geochemistry of J-13 well water in free-flowing fractures, estimated time scales for complete dissolution of matrix-entrapped calcite range from about 10 4 yr for a 2 mm-thick deposit located 1 m from a flowing fracture, to over 10 7 yr for a 2 cm-thick deposit located 100 m from a flowing fracture. The authors conclude that, given the geochemical and hydrologic characteristics observed at YM, the persistence of calcite minerals over geologic time scales in aquifers where flowing water is under-saturated with calcite does not necessarily preclude matrix diffusion as a dilution mechanism. However, the model suggests that the effective spacing between flowing fractures may be large enough to diminish the overall benefit of matrix diffusion to proposed high-level waste repository performance

  6. Dissolution of Monocrystalline Silicon Nanomembranes and Their Use as Encapsulation Layers and Electrical Interfaces in Water-Soluble Electronics.

    Science.gov (United States)

    Lee, Yoon Kyeung; Yu, Ki Jun; Song, Enming; Barati Farimani, Amir; Vitale, Flavia; Xie, Zhaoqian; Yoon, Younghee; Kim, Yerim; Richardson, Andrew; Luan, Haiwen; Wu, Yixin; Xie, Xu; Lucas, Timothy H; Crawford, Kaitlyn; Mei, Yongfeng; Feng, Xue; Huang, Yonggang; Litt, Brian; Aluru, Narayana R; Yin, Lan; Rogers, John A

    2017-12-26

    The chemistry that governs the dissolution of device-grade, monocrystalline silicon nanomembranes into benign end products by hydrolysis serves as the foundation for fully eco/biodegradable classes of high-performance electronics. This paper examines these processes in aqueous solutions with chemical compositions relevant to groundwater and biofluids. The results show that the presence of Si(OH) 4 and proteins in these solutions can slow the rates of dissolution and that ion-specific effects associated with Ca 2+ can significantly increase these rates. This information allows for effective use of silicon nanomembranes not only as active layers in eco/biodegradable electronics but also as water barriers capable of providing perfect encapsulation until their disappearance by dissolution. The time scales for this encapsulation can be controlled by introduction of dopants into the Si and by addition of oxide layers on the exposed surfaces.The former possibility also allows the doped silicon to serve as an electrical interface for measuring biopotentials, as demonstrated in fully bioresorbable platforms for in vivo neural recordings. This collection of findings is important for further engineering development of water-soluble classes of silicon electronics.

  7. The anodic dissolution of SIMFUEL (UO{sub 2}) in slightly alkaline sodium carbonate/bicarbonate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Keech, P.G.; Goldik, J.S.; Qin, Z. [Department of Chemistry, University of Western Ontario, 1151 Richmond St, London ON, N6A 5B7 (Canada); Shoesmith, D.W., E-mail: dwshoesm@uwo.ca [Department of Chemistry, University of Western Ontario, 1151 Richmond St, London ON, N6A 5B7 (Canada)

    2011-09-30

    The corrosion of nuclear fuel under waste disposal conditions is likely to be influenced by the bicarbonate/carbonate content of the groundwater since it increases the solubility of the U{sup VI} corrosion product, [UO{sub 2}]{sup 2+}. As one of the half reactions involved in the corrosion process, the anodic dissolution of SIMFUEL (UO{sub 2}) has been studied in bicarbonate/carbonate solutions (pH 9.8) using voltammetric and potentiostatic techniques and electrochemical impedance spectroscopy. The reaction proceeds by two consecutive one electron transfer reactions (U{sup IV} {yields} U{sup V} {yields} U{sup VI}). At low potentials ({<=}250 mV (vs. SCE) the rate of the first electron transfer reaction is rate determining irrespective of the total carbonate concentration. At potentials >250 mV (vs. SCE) the formation of a U{sup VI}O{sub 2}CO{sub 3} surface layer begins to inhibit the dissolution rate and the current becomes independent of potential indicating rate control by the chemical dissolution of this layer.

  8. Fluoride contamination in groundwater resources of Alleppey, southern India

    Directory of Open Access Journals (Sweden)

    Dhanya Raj

    2017-01-01

    Full Text Available Alleppey is one of the thickly populated coastal towns of the Kerala state in southern India. Groundwater is the main source of drinking water for the 240,991 people living in this region. The groundwater is being extracted from a multi-layer aquifer system of unconsolidated to semi-consolidated sedimentary formations, which range in age from Recent to Tertiary. The public water distribution system uses dug and tube wells. Though there were reports on fluoride contamination, this study reports for the first time excess fluoride and excess salinity in the drinking water of the region. The quality parameters, like Electrical Conductivity (EC ranges from 266 to 3900 μs/cm, the fluoride content ranges from 0.68 to 2.88 mg/L, and the chloride ranges between the 5.7 to 1253 mg/L. The main water types are Na-HCO3, Na-CO3 and Na-Cl. The aqueous concentrations of F− and CO32− show positive correlation whereas F− and Ca2+ show negative correlation. The source of fluoride in the groundwater could be from dissolution of fluorapatite, which is a common mineral in the Tertiary sediments of the area. Long residence time, sediment–groundwater interaction and facies changes (Ca-HCO3 to Na-HCO3 during groundwater flow regime are the major factors responsible for the high fluoride content in the groundwater of the area. High strontium content and high EC in some of the wells indicate saline water intrusion that could be due to the excess pumping from the deeper aquifers of the area. The water quality index computation has revealed that 62% of groundwater belongs to poor quality and is not suitable for domestic purposes as per BIS and WHO standards. Since the groundwater is the only source of drinking water in the area, proper treatment strategies and regulating the groundwater extraction are required as the quality deterioration poses serious threat to human health.

  9. Legal incentives for minimizing waste

    International Nuclear Information System (INIS)

    Clearwater, S.W.; Scanlon, J.M.

    1991-01-01

    Waste minimization, or pollution prevention, has become an integral component of federal and state environmental regulation. Minimizing waste offers many economic and public relations benefits. In addition, waste minimization efforts can also dramatically reduce potential criminal requirements. This paper addresses the legal incentives for minimizing waste under current and proposed environmental laws and regulations

  10. In vitro acellular dissolution of mineral fibres: A comparative study.

    Science.gov (United States)

    Gualtieri, Alessandro F; Pollastri, Simone; Bursi Gandolfi, Nicola; Gualtieri, Magdalena Lassinantti

    2018-05-04

    The study of the mechanisms by which mineral fibres promote adverse effects in both animals and humans is a hot topic of multidisciplinary research with many aspects that still need to be elucidated. Besides length and diameter, a key parameter that determines the toxicity/pathogenicity of a fibre is biopersistence, one component of which is biodurability. In this paper, biodurability of mineral fibres of social and economic importance (chrysotile, amphibole asbestos and fibrous erionite) has been determined for the first time in a systematic comparative way from in vitro acellular dissolution experiments. Dissolution was possible using the Gamble solution as simulated lung fluid (pH = 4 and at body temperature) so to reproduce the macrophage phagolysosome environment. The investigated mineral fibres display very different dissolution rates. For a 0.25 μm thick fibre, the calculated dissolution time of chrysotile is in the range 94-177 days, very short if compared to that of amphibole fibres (49-245 years), and fibrous erionite (181 years). Diffraction and SEM data on the dissolution products evidence that chrysotile rapidly undergoes amorphization with the formation of a nanophasic silica-rich fibrous metastable pseudomorph as first dissolution step whereas amphibole asbestos and fibrous erionite show minor signs of dissolution even after 9-12 months.

  11. Dissolution of covalent adaptable network polymers in organic solvent

    Science.gov (United States)

    Yu, Kai; Yang, Hua; Dao, Binh H.; Shi, Qian; Yakacki, Christopher M.

    2017-12-01

    It was recently reported that thermosetting polymers can be fully dissolved in a proper organic solvent utilizing a bond-exchange reaction (BER), where small molecules diffuse into the polymer, break the long polymer chains into short segments, and eventually dissolve the network when sufficient solvent is provided. The solvent-assisted dissolution approach was applied to fully recycle thermosets and their fiber composites. This paper presents the first multi-scale modeling framework to predict the dissolution kinetics and mechanics of thermosets in organic solvent. The model connects the micro-scale network dynamics with macro-scale material properties: in the micro-scale, a model is developed based on the kinetics of BERs to describe the cleavage rate of polymer chains and evolution of chain segment length during the dissolution. The micro-scale model is then fed into a continuum-level model with considerations of the transportation of solvent molecules and chain segments in the system. The model shows good prediction on conversion rate of functional groups, degradation of network mechanical properties, and dissolution rate of thermosets during the dissolution. It identifies the underlying kinetic factors governing the dissolution process, and reveals the influence of different material and processing variables on the dissolution process, such as time, temperature, catalyst concentration, and chain length between cross-links.

  12. Dissolution of targets for the production of Mo-99: Part 1. Influence of NaOH concentration and the addition of NaNO{sub 3} and NaNO{sub 2} on the dissolution time

    Energy Technology Data Exchange (ETDEWEB)

    Camilo, Ruth L.; Araujo, Izilda da C.; Mindrisz, Ana C.; Forbicini, Christina A.L.G. de O., E-mail: rcamilo@ipen.br, E-mail: icaraujo@ipen.br, E-mail: acmindri@ipen.br, E-mail: cforbici@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN/SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Faced with global crisis in the production of radioisotope {sup 99}Mo, which product of decay, {sup 99}mTc, is the tracer element most often used in nuclear medicine and accounts for about 80% of all diagnostic procedures in vivo, since September 2008 Brazil is developing the project called Brazilian Multipurpose Reactor (RMB). Within the Brazilian Nuclear Program (PNB) the construction of the RMB, is seen as a long term solution to meet all domestic demand relative to the supply of radioisotopes and radiopharmaceuticals. In the process to be studied to obtain {sup 99}Mo from irradiated UA1{sub x}-A1 LEU targets employing alkaline dissolution, processing time should be minimized, considering the short half life of {sup 99}Mo and {sup 99}mTc, about 66 h and 6 h, respectively. That makes dissolution time a significant factor in the development of the process. This paper presents the results of alkaline dissolution of scraps of Al, used to simulate the dissolution process of UA1{sub x}-A1 targets. Al corresponds to about 79% of the total weight of the UA1{sub x}-A1 target. The effect of NaOH concentration on dissolution time for the interval of 1 to 3.5 mol.L-1 was studied, keeping the molar ratio in 1Al:2.16NaOH and the initial temperature of 88 degree C. The influence of reagent composition over dissolution time was studied using three different solutions: a) 3 mol.L{sup -1} NaOH, b) 3 mol.L{sup -1} NaOH/NaNO{sub 3} and c) 3 mol.L{sup -1} NaOH/NaNO{sub 2}, keeping the same molar ratio and temperature. The results showed that the dissolution time decreases with increasing NaOH concentration and the addition of NaNO{sub 3} or NaNO{sub 2} in the NaOH solution reduces both dissolution time and volume of gases released. (author)

  13. The impact of river infiltration on the chemistry of shallow groundwater in a reclaimed water irrigation area.

    Science.gov (United States)

    Yin, Shiyang; Wu, Wenyong; Liu, Honglu; Bao, Zhe

    2016-10-01

    Reclaimed water reuse is an effective method of alleviating agricultural water shortages, which entails some potential risks for groundwater. In this study, the impacts of wastewater reuse on groundwater were evaluated by combination of groundwater chemistry and isotopes. In reclaimed water infiltration, salt composition was affected not only by ion exchange and dissolution equilibrium but also by carbonic acid equilibrium. The dissolution and precipitation of calcites and dolomites as well as exchange and adsorption between Na and Ca/Mg were simultaneous, leading to significant changes in Na/Cl, (Ca+Mg)/Cl, electrical conductivity (EC) and sodium adsorption ratio (SAR). The reclaimed water was of the Na-Mg-Ca-HCO 3 -Cl type, and groundwater recharged by reclaimed water was of the Na-Mg-HCO 3 and Mg-Na-HCO 3 types. The hydrogeological conditions characterized by sand-clay alternation led to both total nitrogen (TN) and total phosphorus (TP) removal efficiencies >95%, and there was no significant difference in those contents between aquifers recharged by precipitation and reclamation water. >40years of long-term infiltration and recharge from sewage and reclaimed water did not cause groundwater contamination by nitrogen, phosphorus and heavy metals. These results indicate that characteristics of the study area, such as the lithologic structure with sand-clay alternation, relatively thick clay layer, and relatively large groundwater depth have a significant role in the high vulnerability. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Arsenic and Fluoride Mobilization Mechanism in Groundwater of Indus Delta and Thar Desert, Sindh, Pakistan

    Directory of Open Access Journals (Sweden)

    VIQAR HUSAIN

    2012-06-01

    Full Text Available Indus deltaic plain consists of medium to fine grained sediments, rich in organic matter deposited during the Holocene period. Thar desert is covered with sand dunes and loess originated from transported sediments from Rann of Kutch or the Indus plain by monsoon winds or by the reworking of local alluvial deposits. Groundwater salinity and microbial pollution are common in both types of lanforms, but arsenic (AS and fluoride (F toxicity dominate in the groundwater of Indus delta and Thar desert, respectively. Arsenic concentration in Tando Mohammad Khan and Tando Allayar varies from 10-500 ppb and exhibits near neutral slightly alkaline pH ranging from 6.8 to 8.0. Arsenic distribution is patchy and seems to be related to the prsence of small scale redox zonation in the aquifer. High arsenic affected areas are densely populated and intensively cultivated and its hot spots are those from where the Indus river passed during the Holocene period including Tando Allayar and Tando Mohammad Khan. Extensive ground water irrigation has accelerated flow of groundwater that brought dissolved degraded organic matter in contact with arsenic bearing sediments, enhancing reduction processes and triggering release of arsenic from detrital bioitite and muscovite in the groundwater. Furthermore, unlined sanitation and microbial contamination contribute to degradation of organic matter that enhances the reduction of iron oxy-hydroxide leading to release of arsenic to groundwater. Fluoride is found in all the groundwater samples of Tharparkar district, in the range of 0.96-2.74mg/l. The pH of groundwater is alkaline (7.38-8.59, which is accelerating maximum (1.24%F dissolution in the groundwater. The favourable pH of groundwater and soil composition of Holocene sediments of Indus delta and slightly older alluvium of Thar desert, respectively are responsible for mobilization of arsenic and fluoride in groundwater of Sindh province of Pakistan.

  15. The application of parallel wells to support the use of groundwater for sustainable irrigation

    Science.gov (United States)

    Suhardi

    2018-05-01

    The use of groundwater as a source of irrigation is one alternative in meeting water needs of plants. Using groundwater for irrigation requires a high cost because of the discharge that can be taken is limited. In addition, the use of large groundwater can cause environmental damage and social conflict. To minimize costs, maintain quality of the environment and to prevent social conflicts, it is necessary to innovate in the groundwater taking system. The study was conducted with an innovation of using parallel wells. Performance is measured by comparing parallel wells with a single well. The results showed that the use of parallel wells to meet the water needs of rice plants and increase the pump discharge up to 100%. In addition, parallel wells can reduce the influence radius of taking of groundwater compared to single well so as to prevent social conflict. Thus, the use of parallel wells can support the achievement of the use of groundwater for sustainable irrigation.

  16. The ZOOM minimization package

    International Nuclear Information System (INIS)

    Fischler, Mark S.; Sachs, D.

    2004-01-01

    A new object-oriented Minimization package is available for distribution in the same manner as CLHEP. This package, designed for use in HEP applications, has all the capabilities of Minuit, but is a re-write from scratch, adhering to modern C++ design principles. A primary goal of this package is extensibility in several directions, so that its capabilities can be kept fresh with as little maintenance effort as possible. This package is distinguished by the priority that was assigned to C++ design issues, and the focus on producing an extensible system that will resist becoming obsolete

  17. Minimizing the Pacman effect

    International Nuclear Information System (INIS)

    Ritson, D.; Chou, W.

    1997-10-01

    The Pacman bunches will experience two deleterious effects: tune shift and orbit displacement. It is known that the tune shift can be compensated by arranging crossing planes 900 relative to each other at successive interaction points (lPs). This paper gives an analytical estimate of the Pacman orbit displacement for a single as well as for two crossings. For the latter, it can be minimized by using equal phase advances from one IP to another. In the LHC, this displacement is in any event small and can be neglected

  18. Minimally Invasive Parathyroidectomy

    Directory of Open Access Journals (Sweden)

    Lee F. Starker

    2011-01-01

    Full Text Available Minimally invasive parathyroidectomy (MIP is an operative approach for the treatment of primary hyperparathyroidism (pHPT. Currently, routine use of improved preoperative localization studies, cervical block anesthesia in the conscious patient, and intraoperative parathyroid hormone analyses aid in guiding surgical therapy. MIP requires less surgical dissection causing decreased trauma to tissues, can be performed safely in the ambulatory setting, and is at least as effective as standard cervical exploration. This paper reviews advances in preoperative localization, anesthetic techniques, and intraoperative management of patients undergoing MIP for the treatment of pHPT.

  19. Kinetics of Inorganic Calcite Dissolution in Seawater under Pressure

    Science.gov (United States)

    Dong, S.; Subhas, A.; Rollins, N.; Berelson, W.; Adkins, J. F.

    2016-02-01

    While understanding calcium carbonate dissolution is vital in constructing global carbon cycles and predicting the effect of seawater acidification as a result of increasing atmospheric CO2, there is still a major debate over the basic formulation of a dissolution rate law. The kinetics of calcium carbonate dissolution are typically described by the equation: Rate=k(1-Ω)n, while Ω=[Ca2+][CO32-]/Ksp. In this study, 13C-labeled calcite is dissolved in unlabeled seawater and the evolving d13C composition of the fluid is traced over time to establish dissolution rate. Instead of changing ion concentration to obtain varying Ω (as in our previous study; Subhas et al. 2015), we changed Ksp by conducting experiments under different pressures (described in theory as ∂lnKsp/∂P=-ΔV/RT, where ΔV is partial molal volume). This involved the construction of a pressure vessel that could hold our sample bag and provide aliquots while remaining pressurized. Pressure experiments were conducted between 0-2000PSI. Results support the conclusion in our previous study that near-equilibrium dissolution rates are highly nonlinear, but give a disparate relationship between undersaturation and dissolution rate if Ω is calculated assuming the specific ΔV embedded in CO2SYS. A revised ΔV from -37cm3 to -65cm3 would make the dissolution formulation equation agree, but clearly appears unreasonable. Our results are explained by a pressure effect on carbonate dissolution kinetics over and above the influence of pressure on Ω. If this is a phenomenon that occurs in nature, then we would predict that dissolution should be occurring shallower in the water column (as sometimes observed) than indicated by standard Ω calculations.

  20. Belgrade waterworks groundwater source

    International Nuclear Information System (INIS)

    Sotic, A.; Dasic, M.; Vukcevic, G.; Vasiljevic, Lj.; Nikolic, S.

    2002-01-01

    Paper deals with Belgrade Waterworks groundwater source, its characteristics, conception of protection programme, contaminations on source and with parameters of groundwater quality degradation. Groundwaters present natural heritage with their strategic and slow renewable natural resources attributes, and as such they require priority in protection. It is of greatest need that existing source is to be protected and used optimally for producing quality drinkable water. The concept of source protection programme should be based on regular water quality monitoring, identification of contaminators, defining areas of their influences on the source and their permanent control. However, in the last 10 years, but drastically in the last 3, because of the overall situation in the country, it is very characteristic downfall in volume of business, organisation and the level of supply of the technical equipment

  1. Cytotoxicity and intracellular dissolution of nickel nanowires

    KAUST Repository

    Perez, Jose E.

    2015-12-22

    The assessment of cytotoxicity of nanostructures is a fundamental step for their development as biomedical tools. As widely used nanostructures, nickel nanowires (Ni NWs) seem promising candidates for such applications. In this work, Ni NWs were synthesized and then characterized using vibrating sample magnetometry, energy dispersive X-Ray analysis and electron microscopy. After exposure to the NWs, cytotoxicity was evaluated in terms of cell viability, cell membrane damage and induced apoptosis/necrosis on the model human cell line HCT 116. The influence of NW to cell ratio (10:1 to 1000:1) and exposure times up to 72 hours was analyzed for Ni NWs of 5.4 µm in length, as well as for Ni ions. The results show that cytotoxicity markedly increases past 24 hours of incubation. Cellular uptake of NWs takes place through the phagocytosis pathway, with a fraction of the dose of NWs dissolved inside the cells. Cell death results from a combination of apoptosis and necrosis, where the latter is the outcome of the secondary necrosis pathway. The cytotoxicity of Ni ions and Ni NWs dissolution studies suggest a synergistic toxicity between NW aspect ratio and dissolved Ni, with the cytotoxic effects markedly increasing after 24 hours of incubation.

  2. Cytotoxicity and intracellular dissolution of nickel nanowires.

    Science.gov (United States)

    Perez, Jose E; Contreras, Maria F; Vilanova, Enrique; Felix, Laura P; Margineanu, Michael B; Luongo, Giovanni; Porter, Alexandra E; Dunlop, Iain E; Ravasi, Timothy; Kosel, Jürgen

    2016-09-01

    The assessment of cytotoxicity of nanostructures is a fundamental step for their development as biomedical tools. As widely used nanostructures, nickel nanowires (Ni NWs) seem promising candidates for such applications. In this work, Ni NWs were synthesized and then characterized using vibrating sample magnetometry, energy dispersive X-Ray analysis, and electron microscopy. After exposure to the NWs, cytotoxicity was evaluated in terms of cell viability, cell membrane damage, and induced apoptosis/necrosis on the model human cell line HCT 116. The influence of NW to cell ratio (10:1 to 1000:1) and exposure times up to 72 hours was analyzed for Ni NWs of 5.4 μm in length, as well as for Ni ions. The results show that cytotoxicity markedly increases past 24 hours of incubation. Cellular uptake of NWs takes place through the phagocytosis pathway, with a fraction of the dose of NWs dissolved inside the cells. Cell death results from a combination of apoptosis and necrosis, where the latter is the outcome of the secondary necrosis pathway. The cytotoxicity of Ni ions and Ni NWs dissolution studies suggest a synergistic toxicity between NW aspect ratio and dissolved Ni, with the cytotoxic effects markedly increasing after 24 hours of incubation.

  3. Germany, Austria and dissolution of Yugoslavia

    Directory of Open Access Journals (Sweden)

    Vuković Slobodan V.

    2001-01-01

    Full Text Available The article deals with one of the causes of dissolution/breakdown of Yugoslavia. The author first analyses writing of German and Austrian press which has, at the very beginning of the crisis, taken a strong anti-Serb standing, as in 1914 and 1941. Author then analyses the reasons that led Austrian and German diplomacy and governments to actively forging the crisis and then breaking down a sovereign country. Those reasons could be summarized as follows: German and Austrian revenge for two wars lost in these territories; improvement of conditions for fulfillment of old German dream to advance toward Middle East; in order to become a world power Germany 'had to' to annul some of the consequences of the First and Second World War on the symbolic level and acquire a possibility to test its powers, and breaking down Yugoslavia, with help of its internal allies Germany broke down its army without military engagement and removed an obstacle for advancement towards East.

  4. Cytotoxicity and intracellular dissolution of nickel nanowires

    KAUST Repository

    Perez, Jose E.; Contreras, Maria F.; Vidal, Enrique Vilanova; Felix Servin, Laura P.; Margineanu, Michael B.; Luongo, Giovanni; Porter, Alexandra E.; Dunlop, Iain E.; Ravasi, Timothy; Kosel, Jü rgen

    2015-01-01

    The assessment of cytotoxicity of nanostructures is a fundamental step for their development as biomedical tools. As widely used nanostructures, nickel nanowires (Ni NWs) seem promising candidates for such applications. In this work, Ni NWs were synthesized and then characterized using vibrating sample magnetometry, energy dispersive X-Ray analysis and electron microscopy. After exposure to the NWs, cytotoxicity was evaluated in terms of cell viability, cell membrane damage and induced apoptosis/necrosis on the model human cell line HCT 116. The influence of NW to cell ratio (10:1 to 1000:1) and exposure times up to 72 hours was analyzed for Ni NWs of 5.4 µm in length, as well as for Ni ions. The results show that cytotoxicity markedly increases past 24 hours of incubation. Cellular uptake of NWs takes place through the phagocytosis pathway, with a fraction of the dose of NWs dissolved inside the cells. Cell death results from a combination of apoptosis and necrosis, where the latter is the outcome of the secondary necrosis pathway. The cytotoxicity of Ni ions and Ni NWs dissolution studies suggest a synergistic toxicity between NW aspect ratio and dissolved Ni, with the cytotoxic effects markedly increasing after 24 hours of incubation.

  5. Basin F Subregional Groundwater Model

    National Research Council Canada - National Science Library

    Mazion, Edward

    2001-01-01

    The groundwater flow system at Rocky Mountain Arsenal (RMA) is complex. To evaluate proposed remedial alternatives, interaction of the local groundwater flow system with the present contamination control systems must be understood...

  6. Dissolution mechanism of aluminum hydroxides in acid media

    Science.gov (United States)

    Lainer, Yu. A.; Gorichev, I. G.; Tuzhilin, A. S.; Gololobova, E. G.

    2008-08-01

    The effects of the concentration, temperature, and potential at the hydroxide/electrolyte interface on the aluminum hydroxide dissolution in sulfuric, hydrochloric, and perchloric acids are studied. The limiting stage of the aluminum hydroxide dissolution in the acids is found to be the transition of the complexes that form on the aluminum hydroxide surface from the solid phase into the solution. The results of the calculation of the acid-base equilibrium constants at the oxide (hydroxide)/solution interface using the experimental data on the potentiometric titration of Al2O3 and AlOOH suspensions are analyzed. A mechanism is proposed for the dissolution of aluminum hydroxides in acid media.

  7. Mongol Warfare in the Pre-Dissolution Period »

    Directory of Open Access Journals (Sweden)

    Timothy May

    2015-01-01

    Full Text Available Although the Mongols used many of the tactics and strategies that steppe nomads had used for centuries, the Mongols refined steppe warfare so that this style of warfare reached its apogee during the Mongol Empire. Furthermore, the Mongols developed a style of warfare that made them possibly the greatest military force in history. This work examines several facets of the pre-dissolution period (1200–1260. With the dissolution of the Mongol Empire, Mongol warfare once again changed. In some areas it remained complex while in others it regressed to traditional forces of steppe warfare, still potent but not as effective as the pre-dissolution period.

  8. Dissolution behaviour of silicon nitride coatings for joint replacements

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Maria [Materials in Medicine Group, Div. of Applied Materials Science, Dept. of Engineering Sciences, Uppsala University, Uppsala (Sweden); Bryant, Michael [Institute of Functional Surfaces (iFS), School of Mechanical Engineering, University of Leeds, Leeds (United Kingdom); Schmidt, Susann [Thin Film Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping (Sweden); Engqvist, Håkan [Materials in Medicine Group, Div. of Applied Materials Science, Dept. of Engineering Sciences, Uppsala University, Uppsala (Sweden); Hall, Richard M. [Institute of Medical and Biological Engineering (iMBE), School of Mechanical Engineering, University of Leeds, Leeds (United Kingdom); Neville, Anne [Institute of Functional Surfaces (iFS), School of Mechanical Engineering, University of Leeds, Leeds (United Kingdom); Persson, Cecilia, E-mail: cecilia.persson@angstrom.uu.se [Materials in Medicine Group, Div. of Applied Materials Science, Dept. of Engineering Sciences, Uppsala University, Uppsala (Sweden)

    2016-05-01

    In this study, the dissolution rate of SiN{sub x} coatings was investigated as a function of coating composition, in comparison to a cobalt chromium molybdenum alloy (CoCrMo) reference. SiN{sub x} coatings with N/Si ratios of 0.3, 0.8 and 1.1 were investigated. Electrochemical measurements were complemented with solution (inductively coupled plasma techniques) and surface analysis (vertical scanning interferometry and x-ray photoelectron spectroscopy). The dissolution rate of the SiN{sub x} coatings was evaluated to 0.2–1.4 nm/day, with a trend of lower dissolution rate with higher N/Si atomic ratio in the coating. The dissolution rates of the coatings were similar to or lower than that of CoCrMo (0.7–1.2 nm/day). The highest nitrogen containing coating showed mainly Si–N bonds in the bulk as well as at the surface and in the dissolution area. The lower nitrogen containing coatings showed Si–N and/or Si–Si bonds in the bulk and an increased formation of Si–O bonds at the surface as well as in the dissolution area. The SiN{sub x} coatings reduced the metal ion release from the substrate. The possibility to tune the dissolution rate and the ability to prevent release of metal ions encourage further studies on SiN{sub x} coatings for joint replacements. - Graphical abstract: Dissolution rates of SiN{sub 0.3}, SiN{sub 0.8}, and SiN{sub 1.1} coatings on CoCrMo compared to uncoated CoCrMo. Dissolution rates were obtained from i) electrochemical measurements of I{sub corr}, ii) the step height between covered and solution-exposed surfaces, measured using VSI, and iii) the ion concentration in the solution, measured with ICP. - Highlights: • The dissolution of SiN{sub x} coatings was investigated in comparison to (bulk) CoCrMo. • The coatings gave a lower or similar dissolution rate to CoCrMo, of 0.2–1.2 nm/day. • An increased nitrogen content in the coatings gave lower dissolution rates. • SiN{sub x} coatings on CoCrMo reduced the metal ion release

  9. Initial Drug Dissolution from Amorphous Solid Dispersions Controlled by Polymer Dissolution and Drug-Polymer Interaction.

    Science.gov (United States)

    Chen, Yuejie; Wang, Shujing; Wang, Shan; Liu, Chengyu; Su, Ching; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Qian, Feng

    2016-10-01

    To identify the key formulation factors controlling the initial drug and polymer dissolution rates from an amorphous solid dispersion (ASD). Ketoconazole (KTZ) ASDs using PVP, PVP-VA, HMPC, or HPMC-AS as polymeric matrix were prepared. For each drug-polymer system, two types of formulations with the same composition were prepared: 1. Spray dried dispersion (SDD) that is homogenous at molecular level, 2. Physical blend of SDD (80% drug loading) and pure polymer (SDD-PB) that is homogenous only at powder level. Flory-Huggins interaction parameters (χ) between KTZ and the four polymers were obtained by Flory-Huggins model fitting. Solution (13)C NMR and FT-IR were conducted to investigate the specific drug-polymer interaction in the solution and solid state, respectively. Intrinsic dissolution of both the drug and the polymer from ASDs were studied using a Higuchi style intrinsic dissolution apparatus. PXRD and confocal Raman microscopy were used to confirm the absence of drug crystallinity on the tablet surface before and after dissolution study. In solid state, KTZ is completely miscible with PVP, PVP-VA, or HPMC-AS, demonstrated by the negative χ values of -0.36, -0.46, -1.68, respectively; while is poorly miscible with HPMC shown by a positive χ value of 0.23. According to solution (13)C NMR and FT-IR studies, KTZ interacts with HPMC-AS strongly through H-bonding and dipole induced interaction; with PVPs and PVP-VA moderately through dipole-induced interactions; and with HPMC weakly without detectable attractive interaction. Furthermore, the "apparent" strength of drug-polymer interaction, measured by the extent of peak shift on NMR or FT-IR spectra, increases with the increasing number of interacting drug-polymer pairs. For ASDs with the presence of considerable drug-polymer interactions, such as KTZ/PVPs, KTZ/PVP-VA, or KTZ /HPMC-AS systems, drug released at the same rate as the polymer when intimate drug-polymer mixing was ensured (i.e., the SDD systems

  10. Technical framework for groundwater restoration

    International Nuclear Information System (INIS)

    1991-04-01

    This document provides the technical framework for groundwater restoration under Phase II of the Uranium Mill Tailings Remedial Action (UMTRA) Project. A preliminary management plan for Phase II has been set forth in a companion document titled ''Preplanning Guidance Document for Groundwater Restoration''. General principles of site characterization for groundwater restoration, restoration methods, and treatment are discussed in this document to provide an overview of standard technical approaches to groundwater restoration

  11. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  12. Kinetics of carbonate dissolution in CO2-saturated aqueous system at reservoir conditions

    Science.gov (United States)

    Peng, Cheng; Crawshaw, John P.; Maitland, Geoffrey; Trusler, J. P. Martin

    2014-05-01

    In recent years, carbon capture and storage (CCS) has emerged as a key technology for limiting anthropogenic CO2 emissions while allowing the continued utilisation of fossil fuels. The most promising geological storage sites are deep saline aquifers because the capacity, integrity and injection economics are most favourable, and the environmental impact can be minimal. Many rock-fluid chemical reactions are known to occur both during and after CO2 injection in saline aquifers. The importance of rock-fluid reactions in the (CO2 + H2O) system can be understood in terms of their impact on the integrity and stability of both the formation rocks and cap rocks. The chemical interactions between CO2-acidified brines and the reservoir minerals can influence the porosity and permeability of the formations, resulting in changes in the transport processes occurring during CO2 storage. Since carbonate minerals are abundant in sedimentary rocks, one of the requirements to safely implement CO2 storage in saline aquifers is to characterise the reactivity of carbonate minerals in aqueous solutions at reservoir conditions. In this work, we reported measurements of the intrinsic rate of carbonate dissolution in CO2-saturated water under high-temperature high-pressure reservoir conditions extending up to 373 K and 14 MPa. The rate of carbonate dissolution in CO2-free HCl(aq) was also measured at ambient pressure at temperatures up to 353 K. Various pure minerals and reservoir rocks were investigated in this study, including single-crystals of calcite and magnesite, and samples of dolomite, chalks and sandstones. A specially-designed batch reactor system, implementing the rotating disc technique, was used to obtain the intrinsic reaction rate at the solid/liquid interface, free of mass transfer effects. The effective area and mineralogy of the exposed surface was determined by a combination of surface characterisation techniques including XRD, SEM, EDX and optical microscopy. The

  13. What Controls Submarine Groundwater Discharge?

    Science.gov (United States)

    Martin, J. B.; Cable, J. E.; Cherrier, J.; Roy, M.; Smith, C. G.; Dorsett, A.

    2008-05-01

    Numerous processes have been implicated in controlling submarine groundwater discharge (SGD) to coastal zones since Ghyben, Herzberg and Dupuit developed models of fresh water discharge from coastal aquifers at the turn of the 19th century. Multiple empirical and modeling techniques have also been applied to these environments to measure the flow. By the mid-1950's, Cooper had demonstrated that dispersion across the fresh water-salt water boundary required salt water entrained into fresh water flow be balanced by recharge of salt water across the sediment-water interface seaward of the outflow face. Percolation of water into the beach face from wind and tidal wave run up and changes in pressure at the sediment-water interface with fluctuating tides have now been recognized, and observed, as processes driving seawater into the sediments. Within the past few years, variations in water table levels and the 1:40 amplification from density difference in fresh water and seawater have been implicated to pump salt water seasonally across the sediment- water interface. Salt water driven by waves, tides and seasonal water table fluctuations is now recognized as a component of SGD when it flows back to overlying surface waters. None of these processes are sufficiently large to provide measured volumes of SGD in Indian River Lagoon, Florida, however, because minimal tides and waves exist, flat topography and transmissive aquifers minimize fluctuations of the water table, and little water is entrained across the salt water-fresh water boundary. Nonetheless, the saline fraction of SGD represents more than 99% of the volume of total SGD in the Indian River Lagoon. This volume of saline SGD can be driven by the abundance of burrowing organisms in the lagoon, which pump sufficient amounts of water through the sediment- water interface. These bioirrigating organisms are ubiquitous at all water depths in sandy sediment and thus may provide one of the major sources of SGD world wide

  14. Hydrogeochemistry of the groundwater in the Tarkwa area, Wasa west District of Ghana

    International Nuclear Information System (INIS)

    Yankey, R. K.

    2008-06-01

    The pH of the groundwater is acidic (4.3-6.7) and acidification of the groundwater is principally due to natural biogeochemical processes. Three main water types were delineated: Na-Cl (31.3%), Ca-Mg-HCO 3 (62.5%) and mixed type (6.3%) Major cation and anion concentrations dominance pattern observed in this study were generally in the order of Na > Ca > Mg > K and HCO 3 > CI > SO 4 and indicated partial cationic and anionic characteristics of fresh water. The chemistry of groundwater is controlled by mineral weathering, ion exchange and to some extent precipitation. Iron and manganese were the predominant trace elements in the groundwater and contributed substantially (93.1 %) to the metal load of the groundwater. The pollution index (HPI) for the groundwater came out to be 9.82; which is far below the critical value of 100 indicating that the groundwater is not critically contaminated. The anthropogenic influence on the groundwater is at present minimal. Water quality is good for the majority of the groundwater samples as the majority of samples were within the permissible drinking limits of World Health Organization (WHO, 1998). However the pH of the groundwater was disturbingly low. (au)

  15. Groundwater management under uncertainty using a stochastic multi-cell model

    Science.gov (United States)

    Joodavi, Ata; Zare, Mohammad; Ziaei, Ali Naghi; Ferré, Ty P. A.

    2017-08-01

    The optimization of spatially complex groundwater management models over long time horizons requires the use of computationally efficient groundwater flow models. This paper presents a new stochastic multi-cell lumped-parameter aquifer model that explicitly considers uncertainty in groundwater recharge. To achieve this, the multi-cell model is combined with the constrained-state formulation method. In this method, the lower and upper bounds of groundwater heads are incorporated into the mass balance equation using indicator functions. This provides expressions for the means, variances and covariances of the groundwater heads, which can be included in the constraint set in an optimization model. This method was used to formulate two separate stochastic models: (i) groundwater flow in a two-cell aquifer model with normal and non-normal distributions of groundwater recharge; and (ii) groundwater management in a multiple cell aquifer in which the differences between groundwater abstractions and water demands are minimized. The comparison between the results obtained from the proposed modeling technique with those from Monte Carlo simulation demonstrates the capability of the proposed models to approximate the means, variances and covariances. Significantly, considering covariances between the heads of adjacent cells allows a more accurate estimate of the variances of the groundwater heads. Moreover, this modeling technique requires no discretization of state variables, thus offering an efficient alternative to computationally demanding methods.

  16. The role of evapotranspiration in the groundwater hydrochemistry of an arid coastal wetland (Península Valdés, Argentina)

    International Nuclear Information System (INIS)

    Alvarez, María del Pilar; Carol, Eleonora; Dapeña, Cristina

    2015-01-01

    Coastal wetlands are complex hydrogeological systems, in which saline groundwater usually occurs. Salinity can be attributed to many origins, such as dissolution of minerals in the sediments, marine contribution and evapotranspiration, among others. The aim of this paper is to evaluate the processes that condition the hydrochemistry of an arid marsh, Playa Fracasso, located in Patagonia, Argentina. A study of the dynamics and geochemistry of the groundwater was carried out in each hydrogeomorphological unit, using major ion and isotope ( 18 O and 2 H) data, soil profiles descriptions and measurements, and recording of water tables in relation to the tidal flow. Water balances and analytical models based on isotope data were used to quantify the evaporation processes and to define the role of evaporation in the chemical composition of water. The results obtained show that the groundwater salinity of the marsh comes mainly from the tidal inflow, to which the halite and gypsum dissolution is added. These mineral facies are the result of the total evaporation of the marine water flooding that occurs mostly at the spring high tides. The isotope relationships in the fan and bajada samples show the occurrence of evaporation processes. Such processes, however, are not mainly responsible for the saline content of groundwater, which is actually generated by the dissolution of the typical evaporite facies of the arid environment sediments. It is concluded that the evapotranspiration processes condition groundwater quality. This is not only due to the saline enrichment caused by the evapotranspiration of shallow water, but also because such processes are the main drivers of the formation of soluble salts, which are then incorporated into the water by groundwater or tidal flow. - Highlights: • Tidal inflow and evapotranspiration processes condition the salinity of the marsh. • The total evaporation of marine water led the halite and gypsum precipitation. • The dissolution

  17. Dissolution of cellulose in ionic liquid: A review

    Science.gov (United States)

    Mohd, N.; Draman, S. F. S.; Salleh, M. S. N.; Yusof, N. B.

    2017-02-01

    Dissolution of cellulose with ionic liquids (IL) and deep eutectic solvent (DES) lets the comprehensive dissolution of cellulose. Basically, cellulose can be dissolved, in some hydrophilic ionic liquids, such as 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-allyl-3-methylimidazolium chloride (AMIMCl). Chloride based ionic liquids are suitable solvents for cellulose dissolution. Although the ILs is very useful in fine chemical industry, its application in the pharmaceutical and food industry have been very limited due to issues with toxicity, purity, and high cost. Seeing to these limitations, new green alternative solvent which is DES was used. This green solvents, may be definitely treated as the next-generation reagents for more sustainable industrial development. Thus, this review aims to discuss the dissolution of cellulose either with ionic liquids or DES and its application.

  18. Dissolution of heavy metals from electrostatic precipitator (ESP) dust ...

    African Journals Online (AJOL)

    SIBOO

    Key words: Fungal leaching, sponge iron, electrostatic precipitator (ESP) dust, metal dissolution. INTRODUCTION ... ability of micro organisms to transform solid compounds ..... of metals from spent lithium ion secondary batteries using A.

  19. wax matrix tablets and its implication on dissolution prof

    African Journals Online (AJOL)

    acetaminophen-wax matrix tablet and hence its implication on dissolution profile. Acetaminophen-wax ... inertness, cost effectiveness, non- toxicity and more importantly their ... Liver Poole, England) at constant load (30 arbitrary units on the ...

  20. Studies on PEM fuel cell noble metal catalyst dissolution

    DEFF Research Database (Denmark)

    Andersen, S. M.; Grahl-Madsen, L.; Skou, E. M.

    2011-01-01

    A combination of electrochemical, spectroscopic and gravimetric methods was carried out on Proton Exchange Membrane (PEM) fuel cell electrodes with the focus on platinum and ruthenium catalysts dissolution, and the membrane degradation. In cyclic voltammetry (CV) experiments, the noble metals were...... found to dissolve in 1 M sulfuric acid solution and the dissolution increased exponentially with the upper potential limit (UPL) between 0.6 and 1.6 vs. RHE. 2-20% of the Pt (depending on the catalyst type) was found to be dissolved during the experiments. Under the same conditions, 30-100% of the Ru...... (depending on the catalyst type) was found to be dissolved. The faster dissolution of ruthenium compared to platinum in the alloy type catalysts was also confirmed by X-ray diffraction measurements. The dissolution of the carbon supported catalyst was found one order of magnitude higher than the unsupported...

  1. Influence of the Efavirenz Micronization on Tableting and Dissolution

    Directory of Open Access Journals (Sweden)

    Lucio Mendes Cabral

    2012-09-01

    Full Text Available The purpose of this study was to propose an analytical procedure that provides the effects of particle size and surface area on dissolution of efavirenz. Five different batches obtained by different micronization processes and with different particle size distribution and surface area were studied. The preformulation studies and dissolution curves were used to confirm the particle size distribution effect on drug solubility. No polymorphic variety or amorphization was observed in the tested batches and the particle size distribution was determined as directly responsible for the improvement of drug dissolution. The influence of the preparation process on the tablets derived from efavirenz was observed in the final dissolution result in which agglomeration, usually seen in non-lipophilic micronized material, was avoided through the use of an appropriate wet granulation method. For these reasons, micronization may represent one viable alternative for the formulation of brick dust drugs.

  2. Stability and drug dissolution evaluation of Qingkailing soft/hard ...

    African Journals Online (AJOL)

    HPLC-DAD) method was developed ... stability and drug dissolution, which may affect the biopharmaceutics and the clinical effects of the drug. ... behavior may also affect the pharmacokinetic ..... of enzymes and intrinsic factors in stomach and.

  3. Study on the dissolution of uranium dibutyl phosphate deposits

    International Nuclear Information System (INIS)

    Rufus, A.L.; Sathyaseelan, V.S.; Velmurugan, S.; Narasimhan

    2008-01-01

    An insoluble sticky complex of uranium dibutyl phosphate (U-DBP) formed on the inner surfaces of a reprocessing facility can host radioactive nuclides resulting in radiation exposure hazard. Removal of this layer will greatly result in the reduction of radiation field. Hence, dissolution studies with synthetically prepared U-DBP were carried out. A two-step dissolution process consisting of an initial oxidation with acid permanganate followed by reduction with NAC (NTA, Ascorbic acid and Citric acid) was used. Oxidation kinetics of DBP by permanganate, dissolution of synthetic U-DBP complex as a powder and also as a film over SS surface was studied. XRF and SEM techniques were used to monitor the process of dissolution. Material compatibility of welded SS-304 specimens was also studied. It was found that the two-step process was more efficient when compared to either permanganate or NAC treatment alone. (author)

  4. investigation of dissolution kinetics of a nigerian columbite

    African Journals Online (AJOL)

    user

    1,2 DEPARTMENT OF CHEMICAL ENGINEERING, OBAFEMI AWOLOWO UNIVERSITY, ILE-IFE, OSUN STATE NIGERIA. E-mail addresses: ... Experimental results indicate that the dissolution rate is chemical reaction ..... Nuclear Instruments.

  5. The effect of sentencing types on singlehood and relationship dissolution

    DEFF Research Database (Denmark)

    Fallesen, Peter; Andersen, Lars Højsgaard

    Prior research shows that imprisonment may matter for the risk of experiencing divorce or other types of relationship dissolution, as imprisonment implies separation and the social stigma of criminal conviction. Despite these straightforward theoretical mechanisms, we currently lack empirical...

  6. Predicting the dissolution kinetics of silicate glasses using machine learning

    Science.gov (United States)

    Anoop Krishnan, N. M.; Mangalathu, Sujith; Smedskjaer, Morten M.; Tandia, Adama; Burton, Henry; Bauchy, Mathieu

    2018-05-01

    Predicting the dissolution rates of silicate glasses in aqueous conditions is a complex task as the underlying mechanism(s) remain poorly understood and the dissolution kinetics can depend on a large number of intrinsic and extrinsic factors. Here, we assess the potential of data-driven models based on machine learning to predict the dissolution rates of various aluminosilicate glasses exposed to a wide range of solution pH values, from acidic to caustic conditions. Four classes of machine learning methods are investigated, namely, linear regression, support vector machine regression, random forest, and artificial neural network. We observe that, although linear methods all fail to describe the dissolution kinetics, the artificial neural network approach offers excellent predictions, thanks to its inherent ability to handle non-linear data. Overall, we suggest that a more extensive use of machine learning approaches could significantly accelerate the design of novel glasses with tailored properties.

  7. Biologically mediated dissolution of volcanic glass in seawater

    NARCIS (Netherlands)

    Staudigel, H; Yayanos, A; Chastain, R; Davies, G.T.; Verdurmen, E.A Th; Schiffmann, P; Bourcier, R; de Baar, H.J.W.

    1998-01-01

    We studied the effects of biological mediation on the dissolution of basaltic glass in seawater. Experiments with typical seawater microbial populations were contrasted with a sterile control, and reactions were monitored chemically and isotopically. Biologically mediated experiments produce twice

  8. Dissolution and transport of plutonium from oxide particles in soils

    International Nuclear Information System (INIS)

    Brown, D.A.

    1978-01-01

    This report contains a summary of methods and data on plutonium dissolution and movement in four soils, plus a copy of a manuscript describing the automatic sample changer for alpha radiation detection which has been submitted for publication

  9. In vivo dissolution measurement with indium-111 summation peak ratios

    International Nuclear Information System (INIS)

    Jay, M.; Woodward, M.A.; Brouwer, K.R.

    1985-01-01

    Dissolution of [ 111 In]labeled tablets was measured in vivo in a totally noninvasive manner by using a modification of the perturbed angular correlation technique known as the summation peak ratio method. This method, which requires the incorporation of only 10-12 microCi into the dosage form, provided reliable dissolution data after oral administration of [ 111 In]lactose tablets. These results were supported by in vitro experiments which demonstrated that the dissolution rate as measured by the summation peak ratio method was in close agreement with the dissolution rate of salicylic acid in a [ 111 In]salicylic acid tablet. The method has the advantages of using only one detector, thereby avoiding the need for complex coincidence counting systems, requiring less radioactivity, and being potentially applicable to a gamma camera imaging system

  10. Controlled dissolution of colossal quantities of nitrogen in stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    The solubility of nitrogen in austenitic stainless steel was investigated thermogravimetrically by equilibrating thin foils of AISI 304 and AISI 316 in ammonia/hydrogen gas mixtures. Controlled dissolution of colossal amounts of nitrogen under metastable equilibrium conditions was realized...

  11. Evaluation of disintegration and dissolution of chloroquine tablets in ...

    African Journals Online (AJOL)

    Evaluation of disintegration and dissolution of chloroquine tablets in some States in Northern Nigeria. ... This study seeks to assess the quality of chloroquine tablets in some States in Northern Nigeria by determining ... HOW TO USE AJOL.

  12. Study on the dissolution of uranium dibutyl phosphate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Rufus, A.L.; Sathyaseelan, V.S.; Velmurugan, S.; Narasimhan [Bhabha Atomic Research Centre Facilities, Water and Steam Chemistry Div., Kalpakkam (India)], E-mail: svn@igcar.gov.in

    2008-07-01

    An insoluble sticky complex of uranium dibutyl phosphate (U-DBP) formed on the inner surfaces of a reprocessing facility can host radioactive nuclides resulting in radiation exposure hazard. Removal of this layer will greatly result in the reduction of radiation field. Hence, dissolution studies with synthetically prepared U-DBP were carried out. A two-step dissolution process consisting of an initial oxidation with acid permanganate followed by reduction with NAC (NTA, Ascorbic acid and Citric acid) was used. Oxidation kinetics of DBP by permanganate, dissolution of synthetic U-DBP complex as a powder and also as a film over SS surface was studied. XRF and SEM techniques were used to monitor the process of dissolution. Material compatibility of welded SS-304 specimens was also studied. It was found that the two-step process was more efficient when compared to either permanganate or NAC treatment alone. (author)

  13. Dissolution rate enhancement of repaglinide by solid dispersion

    African Journals Online (AJOL)

    Keywords: Diabetes, Solid dispersion, Repaglinide, Solubility, Dissolution, Burst release. Tropical Journal of ... high lipophilicity (logP = 3.97) and relatively low oral bioavailability (56 .... II drug, i.e., low soluble and high permeable in nature. As.

  14. Minimal conformal model

    Energy Technology Data Exchange (ETDEWEB)

    Helmboldt, Alexander; Humbert, Pascal; Lindner, Manfred; Smirnov, Juri [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2016-07-01

    The gauge hierarchy problem is one of the crucial drawbacks of the standard model of particle physics (SM) and thus has triggered model building over the last decades. Its most famous solution is the introduction of low-scale supersymmetry. However, without any significant signs of supersymmetric particles at the LHC to date, it makes sense to devise alternative mechanisms to remedy the hierarchy problem. One such mechanism is based on classically scale-invariant extensions of the SM, in which both the electroweak symmetry and the (anomalous) scale symmetry are broken radiatively via the Coleman-Weinberg mechanism. Apart from giving an introduction to classically scale-invariant models, the talk presents our results on obtaining a theoretically consistent minimal extension of the SM, which reproduces the correct low-scale phenomenology.

  15. Minimal Reducts with Grasp

    Directory of Open Access Journals (Sweden)

    Iris Iddaly Mendez Gurrola

    2011-03-01

    Full Text Available The proper detection of patient level of dementia is important to offer the suitable treatment. The diagnosis is based on certain criteria, reflected in the clinical examinations. From these examinations emerge the limitations and the degree in which each patient is in. In order to reduce the total of limitations to be evaluated, we used the rough set theory, this theory has been applied in areas of the artificial intelligence such as decision analysis, expert systems, knowledge discovery, classification with multiple attributes. In our case this theory is applied to find the minimal limitations set or reduct that generate the same classification that considering all the limitations, to fulfill this purpose we development an algorithm GRASP (Greedy Randomized Adaptive Search Procedure.

  16. Minimally extended SILH

    International Nuclear Information System (INIS)

    Chala, Mikael; Grojean, Christophe; Humboldt-Univ. Berlin; Lima, Leonardo de; Univ. Estadual Paulista, Sao Paulo

    2017-03-01

    Higgs boson compositeness is a phenomenologically viable scenario addressing the hierarchy problem. In minimal models, the Higgs boson is the only degree of freedom of the strong sector below the strong interaction scale. We present here the simplest extension of such a framework with an additional composite spin-zero singlet. To this end, we adopt an effective field theory approach and develop a set of rules to estimate the size of the various operator coefficients, relating them to the parameters of the strong sector and its structural features. As a result, we obtain the patterns of new interactions affecting both the new singlet and the Higgs boson's physics. We identify the characteristics of the singlet field which cause its effects on Higgs physics to dominate over the ones inherited from the composite nature of the Higgs boson. Our effective field theory construction is supported by comparisons with explicit UV models.

  17. Minimally extended SILH

    Energy Technology Data Exchange (ETDEWEB)

    Chala, Mikael [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Valencia Univ. (Spain). Dept. de Fisica Teorica y IFIC; Durieux, Gauthier; Matsedonskyi, Oleksii [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Grojean, Christophe [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Humboldt-Univ. Berlin (Germany). Inst. fuer Physik; Lima, Leonardo de [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Univ. Estadual Paulista, Sao Paulo (Brazil). Inst. de Fisica Teorica

    2017-03-15

    Higgs boson compositeness is a phenomenologically viable scenario addressing the hierarchy problem. In minimal models, the Higgs boson is the only degree of freedom of the strong sector below the strong interaction scale. We present here the simplest extension of such a framework with an additional composite spin-zero singlet. To this end, we adopt an effective field theory approach and develop a set of rules to estimate the size of the various operator coefficients, relating them to the parameters of the strong sector and its structural features. As a result, we obtain the patterns of new interactions affecting both the new singlet and the Higgs boson's physics. We identify the characteristics of the singlet field which cause its effects on Higgs physics to dominate over the ones inherited from the composite nature of the Higgs boson. Our effective field theory construction is supported by comparisons with explicit UV models.

  18. Review: Optimization methods for groundwater modeling and management

    Science.gov (United States)

    Yeh, William W.-G.

    2015-09-01

    Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.

  19. Groundwater-surface water interaction

    International Nuclear Information System (INIS)

    White, P.A.; Clausen, B.; Hunt, B.; Cameron, S.; Weir, J.J.

    2001-01-01

    This chapter discusses natural and modified interactions between groundwater and surface water. Theory on recharge to groundwater from rivers is introduced, and the relative importance of groundwater recharge from rivers is illustrated with an example from the Ngaruroro River, Hawke's Bay. Some of the techniques used to identify and measure recharge to groundwater from gravel-bed rivers will be outlined, with examples from the Ngaruroro River, where the recharge reach is relatively well defined, and from the Rakaia River, where it is poorly defined. Groundwater recharged from rivers can have characteristic chemical and isotopic signatures, as shown by Waimakariri River water in the Christchurch-West Melton groundwater system. The incorporation of groundwater-river interaction in a regional groundwater flow model is outlined for the Waimea Plains, and relationships between river scour and groundwater recharge are examined for the Waimakariri River. Springs are the result of natural discharge from groundwater systems and are important water sources. The interactions between groundwater systems, springs, and river flow for the Avon River in New Zealand will be outlined. The theory of depletion of stream flow by groundwater pumpage will be introduced with a case study from Canterbury, and salt-water intrusion into groundwater systems with examples from Nelson and Christchurch. The theory of artificial recharge to groundwater systems is introduced with a case study from Hawke's Bay. Wetlands are important to flora, and the relationship of the wetland environment to groundwater hydrology will be discussed, with an example from the South Taupo wetland. (author). 56 refs., 25 figs., 3 tabs

  20. TANK 12 SLUDGE CHARACTERIZATION AND ALUMINUM DISSOLUTION DEMONSTRATION

    International Nuclear Information System (INIS)

    Reboul, S.; Hay, Michael; Zeigler, Kristine; Stone, Michael

    2009-01-01

    A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of ∼7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low (∼20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40% of the

  1. PATHS groundwater hydrologic model

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  2. Automated Groundwater Screening

    International Nuclear Information System (INIS)

    Taylor, Glenn A.; Collard, Leonard B.

    2005-01-01

    The Automated Intruder Analysis has been extended to include an Automated Ground Water Screening option. This option screens 825 radionuclides while rigorously applying the National Council on Radiation Protection (NCRP) methodology. An extension to that methodology is presented to give a more realistic screening factor for those radionuclides which have significant daughters. The extension has the promise of reducing the number of radionuclides which must be tracked by the customer. By combining the Automated Intruder Analysis with the Automated Groundwater Screening a consistent set of assumptions and databases is used. A method is proposed to eliminate trigger values by performing rigorous calculation of the screening factor thereby reducing the number of radionuclides sent to further analysis. Using the same problem definitions as in previous groundwater screenings, the automated groundwater screening found one additional nuclide, Ge-68, which failed the screening. It also found that 18 of the 57 radionuclides contained in NCRP Table 3.1 failed the screening. This report describes the automated groundwater screening computer application

  3. Controlling groundwater over abstraction

    NARCIS (Netherlands)

    Naber, Al Majd; Molle, Francois

    2017-01-01

    The control of groundwater over abstraction is a vexing problem worldwide. Jordan is one of the countries facing severe water scarcity which has implemented a wide range of measures and policies over the past 20 years. While the gap between formal legal and policy frameworks and local practices on

  4. Groundwater quota versus tiered groundwater pricing : two cases of groundwater management in north-west China

    NARCIS (Netherlands)

    Aarnoudse, Eefje; Qu, Wei; Bluemling, B.; Herzfeld, Thomas

    2017-01-01

    Difficulties in monitoring groundwater extraction cause groundwater regulations to fail worldwide. In two counties in north-west China local water authorities have installed smart card machines to monitor and regulate farmers’ groundwater use. Data from a household survey and in-depth interviews are

  5. Experimental results: Pilot plant calcine dissolution and liquid feed stability

    International Nuclear Information System (INIS)

    Herbst, R.S.; Fryer, D.S.; Brewer, K.N.; Johnson, C.K.; Todd, T.A.

    1995-02-01

    The dissolution of simulated Idaho Chemical Processing Plant pilot plant calcines, containing none of the radioactive actinides, lanthanides or fission products, was examined to evaluate the solubility of calcine matrix materials in acidic media. This study was a necessary precursor to dissolution and optimization experiments with actual radionuclide-containing calcines. The importance of temperature, nitric acid concentration, ratio of acid volume to calcine mass, and time on the amount, as a weight percentage of calcine dissolved, was evaluated. These parameters were studied for several representative pilot plant calcine types: (1) Run No. 74 Zirconia calcine; (2) Run No. 17 Zirconia/Sodium calcine; (3) Run No. 64 Zirconia/Sodium calcine; (3) Run No. 1027 Alumina calcine; and (4) Run No. 20 Alumina/Zirconia/Sodium calcine. Statistically designed experiments with the different pilot plant calcines indicated the effect of the studied process variables on the amount of calcine dissolved decreases in the order: Acid/Calcine Ratio > Temperature > HNO 3 Concentration > Dissolution Time. The following conditions are suitable to achieve greater than 90 wt. % dissolution of most Zr, Al, or Na blend calcines: (1) Maximum nitric acid concentration of 5M; (2) Minimum acid/calcine ratio of 10 mL acid/1 gram calcine; (3) Minimum dissolution temperature of 90 degrees C; and (4) Minimum dissolution time of 30 minutes. The formation of calcium sulphate (CaSO 4 ) precipitates was observed in certain dissolved calcine solutions during the dissolution experiments. Consequently, a study was initiated to evaluate if and under what conditions the resulting dissolved calcine solutions would be unstable with regards to precipitate formation. The results indicate that precipitate formation in the calcine solutions prepared under the above proposed dissolution conditions are not anticipated

  6. Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Arcia, Edgar

    2016-10-11

    A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as how the morphological features of the crystals dictates how the dissolution process proceeds, and how materials can be purified by re-crystallization techniques.

  7. Dissolution of Kansas evaporites: the radioactive waste disposal problem

    International Nuclear Information System (INIS)

    Smith, B.J.

    1977-01-01

    The radioactive waste repository at Lyons, Kansas, focused attention on the problem of evaporite dissolution. More study is needed in the determination of the mechanisms responsible for deterioration. Also, recent water-use policies have been questioned with the need pointed out for increased effectiveness in planning. Good water planning has to take into account the role of evaporite dissolution in water quality. 23 references

  8. HANFORD GROUNDWATER REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    By 1990 nearly 50 years of producing plutonium put approximately 1.70E + 12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and

  9. Groundwater and underground coal gasification in Alberta

    International Nuclear Information System (INIS)

    Haluszka, A.; MacMillan, G.; Maev, S.

    2010-01-01

    Underground coal gasification has potential in Alberta. This presentation provided background information on underground coal gasification and discussed groundwater and the Laurus Energy demonstration project. A multi-disciplined approach to project assessment was described with particular reference to geologic and hydrogeologic setting; geologic mapping; and a hydrogeologic numerical model. Underground coal gasification involves the conversion of coal into synthesis gas or syngas. It can be applied to mined coal at the surface or applied to non-mined coal seams using injection and production wells. Underground coal gasification can effect groundwater as the rate of water influx into the coal seams influences the quality and composition of the syngas. Byproducts created include heat as well as water with dissolved concentrations of ammonia, phenols, salts, polyaromatic hydrocarbons, and liquid organic products from the pyrolysis of coal. A process overview of underground coal gasification was also illustrated. It was concluded that underground coal gasification has the potential in Alberta and risks to groundwater could be minimized by a properly designed project. refs., figs.

  10. Dissolution of nuclear fuels; Disolucion de combustibles Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Uriarte Hueda, A; Berberana Eizmendi, M; Rainey, R

    1968-07-01

    A laboratory study was made of the instantaneous dissolution rate (IDR) for unirradiated uranium metal rods and UO{sub 2}, PuO{sub 2} and PuO{sub 2}-UO{sub 2} pellets in boiling nitric acid alone and with additives. The uranium metal and UO{sub 2} dissolved readily in nitric acid alone; PuO{sub 2} dissolved slowly even with the addition of fluoride; PuO{sub 2}-UO{sub 2} pellets containing as much as 35% PuO{sub 2} in UO{sub 2} gave values of the instantaneous dissolution rate to indicate can be dissolved with nitric acid alone. An equation to calculate the time for complete dissolution has been determinate in function of the instantaneous dissolution rates. The calculated values agree with the experimental. Uranium dioxide pellets from various sources but all having a same density varied in instantaneous dissolution rate. All the pellets, however, have dissolved ved in the same time. The time for complete dissolution of PuO{sub 2}-UO{sub 2} pellets, having the same composition, and the concentration of the used reagents are function of the used reagents are function of the fabrication method. (Author) 8 refs.

  11. Dissolution of ion exchange resin by hydrogen peroxide

    International Nuclear Information System (INIS)

    Lee, S.C.

    1981-08-01

    The resin dissolution process was conducted successfully in full-scale equipment at the SRL Semiworks. A solution containing 0.001M Fe 2+ , or Fe 3+ , and 3 vol % H 2 O 2 in 0.1M HNO 3 is sufficient to dissolve up to 40 vol % resin slurry (Dowex 50W-X8). Foaming and pressurization can be eliminated by maintaining the dissolution temperature below 99 0 C. The recommended dissolution temperature range is 85 to 90 0 C. Premixing hydrogen peroxide with all reactants will not create a safety hazard, but operating with a continual feed of hydrogen peroxide is recommended to control the dissolution rate. An air sparging rate of 1.0 to 1.5 scfm will provide sufficient mixing. Spent resin from chemical separation contains DTPA (diethylenetriaminepentaacetic acid) residue, and the resin must be washed with 0.1M NH 4 OH to remove excess DTPA before dissolution. Gamma irradiation of resin up to 4 kW-hr/L did not change the dissolution rate significantly

  12. Dissolution of metal and metal oxide nanoparticles in aqueous media

    International Nuclear Information System (INIS)

    Odzak, Niksa; Kistler, David; Behra, Renata; Sigg, Laura

    2014-01-01

    The dissolution of Ag (citrate, gelatin, polyvinylpyrrolidone and chitosan coated), ZnO, CuO and carbon coated Cu nanoparticles (with two nominal sizes each) has been studied in artificial aqueous media, similar in chemistry to environmental waters, for up to 19 days. The dissolved fraction was determined using DGT (Diffusion Gradients in Thin films), dialysis membrane (DM) and ultrafiltration (UF). Relatively small fractions of Ag nanoparticles dissolved, whereas ZnO dissolved nearly completely within few hours. Cu and CuO dissolved as a function of pH. Using DGT, less dissolved Ag was measured compared to UF and DM, likely due to differences in diffusion of organic complexes. Similar dissolved metal concentrations of ZnO, Cu and CuO nanoparticles were determined using DGT and UF, but lower using DM. The results indicate that there is a need to apply complementary techniques to precisely determine dissolution of nanoparticles in aqueous media. - Highlights: • Three different techniques used simultaneously to measure NPs dissolution. • ZnO-NPs are the most soluble, followed by CuO-NPs, carbon coated Cu-NPs and Ag-NPs. • Dissolution is an important process affecting the fate of nanoparticles. • Complementary techniques are needed to precisely determine dissolution of NPs. - Dissolution of several types of nanoparticles was examined in aqueous media using three complementary techniques

  13. On-line monitoring of lithium carbonate dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuzhu; Song, Xingfu; Wang, Jin; Luo, Yan; Yu, Jianguo [National Engineering Research Center for Integrated Utilization Salt Lake Resources, East China University of Science and Technology, Shanghai (China)

    2009-11-15

    Dissolution of lithium carbonate (Li{sub 2}CO{sub 3}) in aqueous solution was investigated using three on-line apparatuses: the concentration of Li{sub 2}CO{sub 3} was measured by electrical conductivity equipment; CLD (Chord Length Distribution) was monitored by FBRM (Focused Beam Reflectance Measurement); crystal image was observed by PVM (Particle Video Microscope). Results show dissolution rate goes up with a decrease of particle size, and with an increase in temperature; stirring speed causes little impact on dissolution; ultrasound facilitates dissolution obviously. The CLD evolution and crystal images of Li{sub 2}CO{sub 3}powders in stirred fluid were observed detailedly by FBRM and PVM during dissolution. Experimental data were fitted to Avrami model, through which the activation energy was found to be 34.35 kJ/mol. PBE (Population Balance Equation) and moment transform were introduced to calculate dissolution kinetics, obtaining correlation equations of particle size decreasing rate as a function of temperature and undersaturation. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Phosphorous availability influences the dissolution of apatite by soil fungi

    Science.gov (United States)

    Rosling, A.; Suttle, K. B.; Johansson, E.; van Hees, P. W.; Banfield, J. F.

    2007-12-01

    We conducted mineral dissolution experiments using fungi isolated from a grassland soil in northern California to determine the response of fungi to different levels of phosphorus availability and to identify pathways of apatite dissolution by fungal exudates. Fluorapatite dissolution experiments were performed either with fungi present or under abiotic conditions using cell-free liquid media conditioned by fungal growth at different phosphorus and calcium availabilities. Among biogeochemically active soil fungal isolates apatite dissolution was either active in response to phosphorus limiting growth conditions or passive as a result of mycelial growth. Zygomycete isolates in the order of Mucorales acidify their growth media substrate in the presence of phosphorus, mainly through production of oxalic acid. Cell-free exudates induced fluorapatite dissolution at a rate of 10 -0.9 ± 0.14 and 10 -1.2 ± 0.22 mmol P/m2/s. The Ascomycete isolate, in the family Trichocomaceae, induced fluorapatite dissolution at a rate of 10 - 1.1 ± 0.05 mmol P/m2/s by lowering the pH of the media under phosphorus-limited conditions, without producing significant amounts of low molecular weight organic acids (LMWOAs). Oxalate strongly etches fluorapatite along channels parallel to [001], forming needle like features, while exudates from Trichocomaceae induced surface rounding. We conclude that while LMWOAs are well-studied weathering agents these does not appear to be produced by fungi in response to phosphorus limiting growth conditions.

  15. Dissolution of mixed oxide spent fuel from FBR

    International Nuclear Information System (INIS)

    Sanyoshi, H.; Nishina, H.; Toyota, O.; Yamamoto, R.; Nemoto, S.; Okamoto, F.; Togashi, A.; Kawata, T.; Hayashi, S.

    1991-01-01

    At the Tokai Works of the Power Reactor and Nuclear Fuel Development Corporation (PNC), the Chemical Processing Facility (CPF) has been continuing operation since 1982 for laboratory scale hot experiments on reprocessing of FBR mixed oxide fuel. As a part of these experiments, dissolution experiments have been performed to define the key parameters affecting dissolution rates such as concentration of nitric acid, temperature and burnup and also to confirm the amount of insoluble residue. The dissolution rate of the irradiated fuel was determined to be in proportion to the 1.7 power of the nitric acid concentration. The activation energy determined from the experiments varied from 6 to 11 kcal/mol depending on the method of dissolution. The dissolution rate decreased as the fuel burnup increased in low nitric acid media below 5 mol/l. However, it was found that the effect of the burnup became negligible in a high concentration of nitric acid media. The amount of insoluble residue and its constituents were evaluated by changing the dissolution condition. (author)

  16. Groundwater quality assessment of urban Bengaluru using multivariate statistical techniques

    Science.gov (United States)

    Gulgundi, Mohammad Shahid; Shetty, Amba

    2018-03-01

    Groundwater quality deterioration due to anthropogenic activities has become a subject of prime concern. The objective of the study was to assess the spatial and temporal variations in groundwater quality and to identify the sources in the western half of the Bengaluru city using multivariate statistical techniques. Water quality index rating was calculated for pre and post monsoon seasons to quantify overall water quality for human consumption. The post-monsoon samples show signs of poor quality in drinking purpose compared to pre-monsoon. Cluster analysis (CA), principal component analysis (PCA) and discriminant analysis (DA) were applied to the groundwater quality data measured on 14 parameters from 67 sites distributed across the city. Hierarchical cluster analysis (CA) grouped the 67 sampling stations into two groups, cluster 1 having high pollution and cluster 2 having lesser pollution. Discriminant analysis (DA) was applied to delineate the most meaningful parameters accounting for temporal and spatial variations in groundwater quality of the study area. Temporal DA identified pH as the most important parameter, which discriminates between water quality in the pre-monsoon and post-monsoon seasons and accounts for 72% seasonal assignation of cases. Spatial DA identified Mg, Cl and NO3 as the three most important parameters discriminating between two clusters and accounting for 89% spatial assignation of cases. Principal component analysis was applied to the dataset obtained from the two clusters, which evolved three factors in each cluster, explaining 85.4 and 84% of the total variance, respectively. Varifactors obtained from principal component analysis showed that groundwater quality variation is mainly explained by dissolution of minerals from rock water interactions in the aquifer, effect of anthropogenic activities and ion exchange processes in water.

  17. Acid groundwater in an anoxic aquifer: Reactive transport modelling of buffering processes

    International Nuclear Information System (INIS)

    Franken, Gudrun; Postma, Dieke; Duijnisveld, Wilhelmus H.M.; Boettcher, Juergen; Molson, John

    2009-01-01

    The acidification of groundwater, due to acid rain, was investigated in a Quaternary sandy aquifer in the Fuhrberger Feld, near Hannover, Germany. The groundwater, recharged through an area covered by a coniferous forest, had a pH in the range 4-5 down to a depth of 5 m. The evolution in groundwater chemistry along the flow path was investigated in a transect of multisamplers. A 2D groundwater flow model was established delineating the groundwater flow field and a groundwater flow velocity of around 80 m/a along the flow path was derived. Speciation calculations showed the groundwater to be close to equilibrium with the mineral jurbanite (AlOHSO 4 ) over the pH range 4.0-6.5. This suggests an accumulation of acid rain derived SO 4 2- in the aquifer sediment during the decades with high atmospheric S deposition. The groundwater has a pH of around 4.5 in the upstream part of the flow path increasing to near 6 further downstream. 1D reactive transport modelling, using PHREEQC, was used to analyze different combinations of buffering processes. The first model contains ion exchange in combination with jurbanite dissolution. At the ion exchange front Al 3+ is adsorbed leading to the dissolution of jurbanite and an increase in pH. Comparison with field data showed that the simulated increases in pH and alkalinity are much lower than observed in the field. The second model includes organic matter degradation. In addition to ion exchange and jurbanite dissolution, the model included the reduction of SO 4 2- and Fe-oxides as well as the precipitation of Fe sulfide. This model matches the field data well and illustrates the importance of redox processes for pH buffering in the Fuhrberg aquifer. The current progress of the acidification front is about 4 m/a. This corresponds to an average value of 150 a of acid input, which covers large historical variations. Remediation is expected to take the same time span because it requires desorption and neutralization of adsorbed Al 3

  18. MULTI-OBJECTIVE OPTIMAL DESIGN OF GROUNDWATER REMEDIATION SYSTEMS: APPLICATION OF THE NICHED PARETO GENETIC ALGORITHM (NPGA). (R826614)

    Science.gov (United States)

    A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...

  19. Montmorillonite dissolution kinetics: Experimental and reactive transport modeling interpretation

    Science.gov (United States)

    Cappelli, Chiara; Yokoyama, Shingo; Cama, Jordi; Huertas, F. Javier

    2018-04-01

    The dissolution kinetics of K-montmorillonite was studied at 25 °C, acidic pH (2-4) and 0.01 M ionic strength by means of well-mixed flow-through experiments. The variations of Si, Al and Mg over time resulted in high releases of Si and Mg and Al deficit, which yielded long periods of incongruent dissolution before reaching stoichiometric steady state. This behavior was caused by simultaneous dissolution of nanoparticles and cation exchange between the interlayer K and released Ca, Mg and Al and H. Since Si was only involved in the dissolution reaction, it was used to calculate steady-state dissolution rates, RSi, over a wide solution saturation state (ΔGr ranged from -5 to -40 kcal mol-1). The effects of pH and the degree of undersaturation (ΔGr) on the K-montmorillonite dissolution rate were determined using RSi. Employing dissolution rates farthest from equilibrium, the catalytic pH effect on the K-montmorillonite dissolution rate was expressed as Rdiss = k·aH0.56±0.05 whereas using all dissolution rates, the ΔGr effect was expressed as a non-linear f(ΔGr) function Rdiss = k · [1 - exp(-3.8 × 10-4 · (|ΔGr|/RT)2.13)] The functionality of this expression is similar to the equations reported for dissolution of Na-montmorillonite at pH 3 and 50 °C (Metz, 2001) and Na-K-Ca-montmorillonite at pH 9 and 80 °C (Cama et al., 2000; Marty et al., 2011), which lends support to the use of a single f(ΔGr) term to calculate the rate over the pH range 0-14. Thus, we propose a rate law that also accounts for the effect of pOH and temperature by using the pOH-rate dependence and the apparent activation energy proposed by Rozalén et al. (2008) and Amram and Ganor (2005), respectively, and normalizing the dissolution rate constant with the edge surface area of the K-montmorillonite. 1D reactive transport simulations of the experimental data were performed using the Crunchflow code (Steefel et al., 2015) to quantitatively interpret the evolution of the released cations

  20. Minimizing Characterization - Derived Waste at the Department of Energy Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Van Pelt, R. S.; Amidon, M. B.; Reboul, S. H.

    2002-02-25

    Environmental restoration activities at the Department of Energy Savannah River Site (SRS) utilize innovative site characterization approaches and technologies that minimize waste generation. Characterization is typically conducted in phases, first by collecting large quantities of inexpensive data, followed by targeted minimally invasive drilling to collect depth-discrete soil/groundwater data, and concluded with the installation of permanent multi-level groundwater monitoring wells. Waste-reducing characterization methods utilize non-traditional drilling practices (sonic drilling), minimally intrusive (geoprobe, cone penetrometer) and non-intrusive (3-D seismic, ground penetration radar, aerial monitoring) investigative tools. Various types of sensor probes (moisture sensors, gamma spectroscopy, Raman spectroscopy, laser induced and X-ray fluorescence) and hydrophobic membranes (FLUTe) are used in conjunction with depth-discrete sampling techniques to obtain high-resolution 3-D plume profiles. Groundwater monitoring (short/long-term) approaches utilize multi-level sampling technologies (Strata-Sampler, Cone-Sipper, Solinst Waterloo, Westbay) and low-cost diffusion samplers for seepline/surface water sampling. Upon collection of soil and groundwater data, information is portrayed in a Geographic Information Systems (GIS) format for interpretation and planning purposes. At the SRS, the use of non-traditional drilling methods and minimally/non intrusive investigation approaches along with in-situ sampling methods has minimized waste generation and improved the effectiveness and efficiency of characterization activities.

  1. Minimizing Characterization - Derived Waste at the Department of Energy Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Van Pelt, R. S.; Amidon, M. B.; Reboul, S. H.

    2002-01-01

    Environmental restoration activities at the Department of Energy Savannah River Site (SRS) utilize innovative site characterization approaches and technologies that minimize waste generation. Characterization is typically conducted in phases, first by collecting large quantities of inexpensive data, followed by targeted minimally invasive drilling to collect depth-discrete soil/groundwater data, and concluded with the installation of permanent multi-level groundwater monitoring wells. Waste-reducing characterization methods utilize non-traditional drilling practices (sonic drilling), minimally intrusive (geoprobe, cone penetrometer) and non-intrusive (3-D seismic, ground penetration radar, aerial monitoring) investigative tools. Various types of sensor probes (moisture sensors, gamma spectroscopy, Raman spectroscopy, laser induced and X-ray fluorescence) and hydrophobic membranes (FLUTe) are used in conjunction with depth-discrete sampling techniques to obtain high-resolution 3-D plume profiles. Groundwater monitoring (short/long-term) approaches utilize multi-level sampling technologies (Strata-Sampler, Cone-Sipper, Solinst Waterloo, Westbay) and low-cost diffusion samplers for seepline/surface water sampling. Upon collection of soil and groundwater data, information is portrayed in a Geographic Information Systems (GIS) format for interpretation and planning purposes. At the SRS, the use of non-traditional drilling methods and minimally/non intrusive investigation approaches along with in-situ sampling methods has minimized waste generation and improved the effectiveness and efficiency of characterization activities

  2. Extent and severity of groundwater contamination based on hydrochemistry mechanism of sandy tropical coastal aquifer.

    Science.gov (United States)

    Isa, Noorain Mohd; Aris, Ahmad Zaharin; Sulaiman, Wan Nor Azmin Wan

    2012-11-01

    Small islands are susceptible to anthropogenic and natural activities, especially in respect of their freshwater supply. The freshwater supply in small islands may be threatened by the encroachment of seawater into freshwater aquifers, usually caused by over pumping. This study focused on the hydrochemistry of the Kapas Island aquifer, which controls the groundwater composition. Groundwater samples were taken from six constructed boreholes for the analysis and measurement of its in-situ and major ions. The experimental results show a positive and significant correlation between Na-Cl (r=0.907; paquifer bedrock. About 76% of collected data (n=108) were found to be in the dissolution process of carbonate minerals. Moreover, the correlation between total CEC and Ca shows a positive and strong relationship (r=0.995; pchemical composition. The output of this research explains the chemical mechanism attributed to the groundwater condition of the Kapas Island aquifer. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Arsenic mobilization in a freshening groundwater system formed within glaciomarine deposits

    International Nuclear Information System (INIS)

    Cavalcanti de Albuquerque, R.; Kirste, D.

    2012-01-01

    Arsenic release to groundwater and conditions favoring As mobility are investigated in a system of aquifers formed within unconsolidated Quaternary sediments. The studied groundwater system is comprised of unconfined aquifers formed in glaciofluvial sediments with Ca–Mg–HCO 3 groundwater, and confined aquifers formed within glaciomarine sediments with high As (above 10 μg/L) Na–HCO 3 or Na–Cl groundwater. A positive relationship of As concentrations with the Na/(Ca + Mg) ratio of groundwater indicates that As release occurs in glaciomarine sediments concurrent to cation exchange reactions related to groundwater freshening. Arsenic is mobile in confined aquifers as a result of groundwater basic pH which prevents arsenate from adsorbing to mineral surfaces, and reducing conditions that favor speciation to arsenite. Selected extractions applied to sediment core samples indicate that As occurs in sediments predominantly in sulfide minerals and in Mn oxides and/or Fe oxyhydroxides. General positive relationships between As and the reduced species Fe 2+ , NH 3 and dissolved S 2− suggest that As release occurs at increasingly reducing conditions. Despite likely As release via Fe oxyhydroxide reductive dissolution, Fe remains at relatively low concentrations in groundwater (up to 0.37 mg/L) as a result of possible Fe adsorption and Fe reprecipitation as carbonate minerals favored by basic pH and high alkalinity. The presence of S 2− in some samples, a negative relationship between δ 34 S of SO 4 and SO 4 2- concentrations, and a positive relationship between δ 34 S and δ 18 O of SO 4 indicate that groundwater in confined aquifers is undergoing bacterial SO 4 reduction.

  4. URANIUM-SERIES CONSTRAINTS ON RADIONUCLIDE TRANSPORT AND GROUNDWATER FLOW AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    S. J. Goldstein, S. Luo, T. L. Ku, and M. T. Murrell

    2006-04-01

    Uranium-series data for groundwater samples from the vicinity of the Nopal I uranium ore deposit are used to place constraints on radionuclide transport and hydrologic processes at this site, and also, by analogy, at Yucca Mountain. Decreasing uranium concentrations for wells drilled in 2003 suggest that groundwater flow rates are low (< 10 m/yr). Field tests, well productivity, and uranium isotopic constraints also suggest that groundwater flow and mixing is limited at this site. The uranium isotopic systematics for water collected in the mine adit are consistent with longer rock-water interaction times and higher uranium dissolution rates at the front of the adit where the deposit is located. Short-lived nuclide data for groundwater wells are used to calculate retardation factors that are on the order of 1,000 for radium and 10,000 to 10,000,000 for lead and polonium. Radium has enhanced mobility in adit water and fractures near the deposit.

  5. URANIUM-SERIES CONSTRAINTS ON RADIONUCLIDE TRANSPORT AND GROUNDWATER FLOW AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, MEXICO

    International Nuclear Information System (INIS)

    S. J. Goldstein, S. Luo, T. L. Ku, and M. T. Murrell

    2006-01-01

    Uranium-series data for groundwater samples from the vicinity of the Nopal I uranium ore deposit are used to place constraints on radionuclide transport and hydrologic processes at this site, and also, by analogy, at Yucca Mountain. Decreasing uranium concentrations for wells drilled in 2003 suggest that groundwater flow rates are low (< 10 m/yr). Field tests, well productivity, and uranium isotopic constraints also suggest that groundwater flow and mixing is limited at this site. The uranium isotopic systematics for water collected in the mine adit are consistent with longer rock-water interaction times and higher uranium dissolution rates at the front of the adit where the deposit is located. Short-lived nuclide data for groundwater wells are used to calculate retardation factors that are on the order of 1,000 for radium and 10,000 to 10,000,000 for lead and polonium. Radium has enhanced mobility in adit water and fractures near the deposit

  6. Concentrations and speciation of arsenic along a groundwater flow-path in the Upper Floridan aquifer, Florida, USA

    Science.gov (United States)

    Haque, S. E.; Johannesson, K. H.

    2006-05-01

    Arsenic (As) concentrations and speciation were determined in groundwaters along a flow-path in the Upper Floridan aquifer (UFA) to investigate the biogeochemical “evolution“ of As in this relatively pristine aquifer. Dissolved inorganic As species were separated in the field using anion-exchange chromatography and subsequently analyzed by inductively coupled plasma mass spectrometry. Total As concentrations are higher in the recharge area groundwaters compared to down-gradient portions of UFA. Redox conditions vary from relatively oxic to anoxic along the flow-path. Mobilization of As species in UFA groundwaters is influenced by ferric iron reduction and subsequent dissolution, sulfate reduction, and probable pyrite precipitation that are inferred from the data to occur along distinct regions of the flow-path. In general, the distribution of As species are consistent with equilibrium thermodynamics, such that arsenate dominates in more oxidizing waters near the recharge area, and arsenite predominates in the progressively reducing groundwaters beyond the recharge area.

  7. Kuwaiti dolocrete: petrology, geochemistry and groundwater origin

    Science.gov (United States)

    El-Sayed, M. I.; Fairchild, I. J.; Spiro, B.

    1991-09-01

    Near-surface sediments in southern Kuwait show extensive development of duricrusts. The host materials are siliciclastic sandstones of the post-Eocene Kuwait Group. Inland, the duricrusts are dominantly pedogenic calcrete (with some silcrete and gypcrete), whereas within 10-20 km of the coast, dolomite is the dominant duricrust mineral. Both these dolocretes and the inland calcretes display a similar maturation sequence in which carbonate-rich nodules develop and coalesce, carbonate progressively replacing and displacing detrital grains. The dolomite of the dolocretes forms mosaics of crystals typically 10-70 μm in size, varying from simple rhombs to spherulites. An intermediate morphology, named artichoke dolomite from its appearance in SEM, is particularly abundant. Authigenic palygorskite is associated with the dolomite. Dissolution of cores or zones within dolomite crystals has occurred. Calcite is present as sparry crystals (always post-dating dolomite) and is the expected precipitate from present-day soil and groundwaters. Chemical analyses of dolomite show highly negative values of δ13C (- to - 10.7‰ PDB) and δ18O varying from + 0.6 to + 3.3‰ PDB. The oxygen isotope values are interpreted as reflecting evaporation of a marine-based fluid. Manganese values of around 1000 ppm show that this fluid was reducing. Strontium data show variability reflecting mineral-fluid reactions. The general absence of metastable carbonates and presence of zoning in dolomite crystals suggests that meteoric dilution of seawater also occurred. Given that the duricrusts lack biogenic features, the light carbon isotope values are taken to indicate oxidation of seeping hydrocarbons. The dolocretes are interpreted as groundwater precipitates near the water table of a brackish water body formed at a time of higher relative sea level than today.

  8. Hydrogeochemical characterization of Bacolod City groundwater system

    International Nuclear Information System (INIS)

    Sucgang, Raymond J.; Almoneda, Rosalina; Fernandez, Lourdes; Castaneda, Soledad S.; Gemora, Jenelyn Y.; Desengano, Daisy; Lim, Fatima

    2007-01-01

    Groundwater is constantly being recycled and replenished by rainfall. However, because of the uneven distribution of rain and the heavy use of water in certain areas, some regions are experiencing undue water shortage. Changes in land use, population growth, and economic development in the Bacolod City region, can result in an increase in water demand and the generation of additional pollution sources. To delineate the ground water recharge area for Bacolod City and at the same time, assess the vulnerability of the aquifer to pollution, water samples were collected in an attempt to relate chemical variations in ground water to the underlying differences in geology, availability and mechanism of recharge, and to define the natural versus anthropogenic influences in the groundwater system. Measurements of field data such as pH, conductivity, temperature and alkalinity were made. Several geochemical processes are recognized in the chemistry of the Bacolod aquifer system. The most important processes are: water-bedrock interaction, dissolution of connate halites , and seawater intrusion. Simple mass balance modeling shows that the feasible source of active recharge aside from direct precipitation, is infiltration from the Loygoy river. Rivers and tributaries transport water originated as precipitation falling at higher elevations. The ground water in Bacolod City is predominantly of the Ca-Mg-HCO 3 type. Recharge becomes sodium dominated along its path, indicating a slow but active mechanism. The ground water near the coasts is brackish due to sea water infiltration. The possible presence of connate halites lying in the deep aquifers is also indicated. The information generated, when used in conjunction with isotopic techniques, will be important in the choice of sites for pumping stations and in the knowledge of the extent of potential pollution of ground water from streams/reservoirs. (author)

  9. Minimal Marking: A Success Story

    Science.gov (United States)

    McNeilly, Anne

    2014-01-01

    The minimal-marking project conducted in Ryerson's School of Journalism throughout 2012 and early 2013 resulted in significantly higher grammar scores in two first-year classes of minimally marked university students when compared to two traditionally marked classes. The "minimal-marking" concept (Haswell, 1983), which requires…

  10. Swarm robotics and minimalism

    Science.gov (United States)

    Sharkey, Amanda J. C.

    2007-09-01

    Swarm Robotics (SR) is closely related to Swarm Intelligence, and both were initially inspired by studies of social insects. Their guiding principles are based on their biological inspiration and take the form of an emphasis on decentralized local control and communication. Earlier studies went a step further in emphasizing the use of simple reactive robots that only communicate indirectly through the environment. More recently SR studies have moved beyond these constraints to explore the use of non-reactive robots that communicate directly, and that can learn and represent their environment. There is no clear agreement in the literature about how far such extensions of the original principles could go. Should there be any limitations on the individual abilities of the robots used in SR studies? Should knowledge of the capabilities of social insects lead to constraints on the capabilities of individual robots in SR studies? There is a lack of explicit discussion of such questions, and researchers have adopted a variety of constraints for a variety of reasons. A simple taxonomy of swarm robotics is presented here with the aim of addressing and clarifying these questions. The taxonomy distinguishes subareas of SR based on the emphases and justifications for minimalism and individual simplicity.

  11. Minimal dilaton model

    Directory of Open Access Journals (Sweden)

    Oda Kin-ya

    2013-05-01

    Full Text Available Both the ATLAS and CMS experiments at the LHC have reported the observation of the particle of mass around 125 GeV which is consistent to the Standard Model (SM Higgs boson, but with an excess of events beyond the SM expectation in the diphoton decay channel at each of them. There still remains room for a logical possibility that we are not seeing the SM Higgs but something else. Here we introduce the minimal dilaton model in which the LHC signals are explained by an extra singlet scalar of the mass around 125 GeV that slightly mixes with the SM Higgs heavier than 600 GeV. When this scalar has a vacuum expectation value well beyond the electroweak scale, it can be identified as a linearly realized version of a dilaton field. Though the current experimental constraints from the Higgs search disfavors such a region, the singlet scalar model itself still provides a viable alternative to the SM Higgs in interpreting its search results.

  12. Minimal mirror twin Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Riccardo [Institute of Theoretical Studies, ETH Zurich,CH-8092 Zurich (Switzerland); Scuola Normale Superiore,Piazza dei Cavalieri 7, 56126 Pisa (Italy); Hall, Lawrence J.; Harigaya, Keisuke [Department of Physics, University of California,Berkeley, California 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, California 94720 (United States)

    2016-11-29

    In a Mirror Twin World with a maximally symmetric Higgs sector the little hierarchy of the Standard Model can be significantly mitigated, perhaps displacing the cutoff scale above the LHC reach. We show that consistency with observations requires that the Z{sub 2} parity exchanging the Standard Model with its mirror be broken in the Yukawa couplings. A minimal such effective field theory, with this sole Z{sub 2} breaking, can generate the Z{sub 2} breaking in the Higgs sector necessary for the Twin Higgs mechanism. The theory has constrained and correlated signals in Higgs decays, direct Dark Matter Detection and Dark Radiation, all within reach of foreseen experiments, over a region of parameter space where the fine-tuning for the electroweak scale is 10-50%. For dark matter, both mirror neutrons and a variety of self-interacting mirror atoms are considered. Neutrino mass signals and the effects of a possible additional Z{sub 2} breaking from the vacuum expectation values of B−L breaking fields are also discussed.

  13. Assessment of groundwater quality using geographical information system (GIS), at north-east Cairo, Egypt.

    Science.gov (United States)

    El-Shahat, M F; Sadek, M A; Mostafa, W M; Hagagg, K H

    2016-04-01

    The present investigation has been conducted to delineate the hydrogeochemical and environmental factors that control the water quality of the groundwater resources in the north-east of Cairo. A complementary approach based on hydrogeochemistry and a geographical information system (GIS) based protectability index has been employed for conducting this work. The results from the chemical analysis revealed that the groundwater of the Quaternary aquifer is less saline than that of the Miocene aquifer and the main factors that control the groundwater salinity in the studied area are primarily related to the genesis of the original recharging water modified after by leaching, dissolution, cation exchange, and fertilizer leachate. The computed groundwater quality index (WQI) falls into two categories: fair for almost all the Miocene groundwater samples, while the Quaternary groundwater samples are all have a good quality. The retarded flow and non-replenishment of the Miocene aquifer compared to the renewable active recharge of the Quaternary aquifer can explain this variation of WQI. The index and overlay approach exemplified by the DUPIT index has been used to investigate the protectability of the study aquifers against diffuse pollutants. Three categories (highly protectable less vulnerable, moderately protectable moderately vulnerable and less protectable highly vulnerable) have been determined and areally mapped.

  14. Seasonal and Spatial Variability of Anthropogenic and Natural Factors Influencing Groundwater Quality Based on Source Apportionment

    Directory of Open Access Journals (Sweden)

    Xueru Guo

    2018-02-01

    Full Text Available Globally, groundwater resources are being deteriorated by rapid social development. Thus, there is an urgent need to assess the combined impacts of natural and enhanced anthropogenic sources on groundwater chemistry. The aim of this study was to identify seasonal characteristics and spatial variations in anthropogenic and natural effects, to improve the understanding of major hydrogeochemical processes based on source apportionment. 34 groundwater points located in a riverside groundwater resource area in northeast China were sampled during the wet and dry seasons in 2015. Using principal component analysis and factor analysis, 4 principal components (PCs were extracted from 16 groundwater parameters. Three of the PCs were water-rock interaction (PC1, geogenic Fe and Mn (PC2, and agricultural pollution (PC3. A remarkable difference (PC4 was organic pollution originating from negative anthropogenic effects during the wet season, and geogenic F enrichment during the dry season. Groundwater exploitation resulted in dramatic depression cone with higher hydraulic gradient around the water source area. It not only intensified dissolution of calcite, dolomite, gypsum, Fe, Mn and fluorine minerals, but also induced more surface water recharge for the water source area. The spatial distribution of the PCs also suggested the center of the study area was extremely vulnerable to contamination by Fe, Mn, COD, and F−.

  15. Integration of ground-water and vadose-zone geochemistry to investigate hydrochemical evolution

    International Nuclear Information System (INIS)

    Fisher, R.S.; Mullican, W.F.

    1990-01-01

    This paper summarizes the results of an extensive groundwater-sampling program conducted in the Hueco Bolson and Diablo Plateau area of West Texas. The origin, hydrochemical evolution, and age of groundwater in arid lands of Trans-Pecos Texas were investigated by combining mineralogic analyses of soils and aquifer matrix, chemical analyses of readily soluble materials in soils and water extracted from the thick, unsaturated zone, and chemical and isotopic analyses of groundwater from three principal aquifers, the Diablo Plateau, Hueco Bolson, and Rio Grande alluvial aquifers. Repeated groundwater sampling over a 3-year period and quarterly sampling of selected wells revealed no significant short-term chemical or isotopic variability. Groundwater ages range from recent to nearly 28,000 years; the distribution of ages reflects relative permeability (transmissivity) of the aquifers. Most groundwaters evolve from calcium-bicarbonate to sodium-sulfate types because of carbonate and sulfate mineral dissolution coupled with exchange of aqueous calcium and magnesium for sodium on clay minerals. Water in the Rio Grande alluvial aquifer evolved to a sodium-chloride type as a result of extensive evapotranspiration on irrigated fields. The appendices list detailed results of field measurements of temperature, pH, Eh, dissolved oxygen, and major ion concentrations

  16. Stable isotopic data for inferring source of groundwater recharge in the Anekal Taluk, Karnataka

    International Nuclear Information System (INIS)

    Ansari, Md. Arzoo; Deodhar, Archana; Jaryal, Ajay; Mendhekar, G.N.; Sinha, U.K.; Dash, Ashutosh; Davis, Deljo

    2015-01-01

    Occurrence of groundwater mainly depends on recharge area characteristics such as slope of the topography, surface cover characteristics, geology of the area and the permeability of top soil etc. Most of the tube wells located in the study area are in unconfined aquifer and the hydrology of them is mainly influenced by rainfall and surrounding catchments area characteristics. Isotope techniques provide a unique tool for establishing the recharge areas of groundwater. The stable Isotopes of O and H in water behave chemically conservative below 60 - 80°C and their concentrations are not affected by geochemical reactions in normal aquifers. Therefore, groundwater preserves its isotopic fingerprint, reflecting the history and origin before infiltration. This makes it an useful tool to interpret recharge mechanisms and the flow system. Therefore, an isotope hydrological technique has been applied in Anekal (12 deg 47 min 44 sec N; 77 deg 41 min 29 sec E) to identify the groundwater recharge area. Groundwater samples were collected from the study areas and analyzed for environmental Isotope (δ 2 H, δ 18 O) by a Isotope ratio mass spectrometer (IsoPrime-100) using gas equilibration method. Physico-chemical parameters (Temperature, EC, pH) were measured insitu. Electrical conductivity (EC) of the groundwater ranges from 668 to 2139 μS/cm, which is dependent on their travel path and the associated rock-water interaction (dissolution of rock minerals)

  17. Dissolution of Simulated and Radioactive Savannah River Site High-Level Waste Sludges with Oxalic Acid & Citric Acid Solutions

    International Nuclear Information System (INIS)

    STALLINGS, MARY

    2004-01-01

    sludge solids. We recommend that these results be evaluated further to determine if these solutions contain sufficient neutron poisons. We observed low general corrosion rates in tests in which carbon steel coupons were contacted with solutions of oxalic acid, citric acid and mixtures of oxalic and citric acids. Wall thinning can be minimized by maintaining short contact times with these acid solutions. We recommend additional testing with oxalic and oxalic/citric acid mixtures to measure dissolution performance of sludges that have not been previously dried. This testing should include tests to clearly ascertain the effects of total acid strength and metal complexation on dissolution performance. Further work should also evaluate the downstream impacts of citric acid on the SRS High-Level Waste System (e.g., radiochemical separations in the Salt Waste Processing Facility and addition of organic carbon in the Saltstone and Defense Waste Processing facilities)

  18. Etching of semiconductor cubic crystals: Determination of the dissolution slowness surfaces

    Science.gov (United States)

    Tellier, C. R.

    1990-03-01

    Equations of the representative surface of dissolution slowness for cubic crystals are determined in the framework of a tensorial approach of the orientation-dependent etching process. The independent dissolution constants are deduced from symmetry considerations. Using previous data on the chemical etching of germanium and gallium arsenide crystals, some possible polar diagrams of the dissolution slowness are proposed. A numerical and graphical simulation method is used to obtain the derived dissolution shapes. The influence of extrema in the dissolution slowness on the successive dissolution shapes is also examined. A graphical construction of limiting shapes of etched crystals appears possible using the tensorial representation of the dissolution slowness.

  19. Investigation of the gas formation in dissolution process of nuclear reactor fuel

    International Nuclear Information System (INIS)

    Zhang Qinfen; Liao Yuanzhong; Chen Yongqing; Sun Shuyun; Fan Yincheng

    1987-12-01

    The gas formation in dissolution process of two kinds of nuclear fuels was studied. The results shows that the maximum volume flow released from dissolution system is composed of two parts. One of them is air remained in dissolver and pushed out by acid vapor. The other is produced in dissolution reaction. The procedure of calculating the gas amount produced in dissolution process has been given. It is based on variation of components of dissolution solution. The gas amount produced in dissolution process of spent UO 2 fuel elements was calculated. The condenser system and loading volume of disposal system of tail gas of dissolution of spent fuel were discussed

  20. Analysis of americium, plutonium and technetium solubility in groundwater

    International Nuclear Information System (INIS)

    Takeda, Seiji

    1999-08-01

    Safety assessments for geologic disposal of radioactive waste generally use solubilities of radioactive elements as the parameter restricting the dissolution of the elements from a waste matrix. This study evaluated americium, plutonium and technetium solubilities under a variety of geochemical conditions using the geochemical model EQ3/6. Thermodynamic data of elements used in the analysis were provided in the JAERI-data base. Chemical properties of both natural groundwater and interstitial water in buffer materials (bentonite and concrete) were investigated to determine the variations in Eh, pH and ligand concentrations (CO 3 2- , F - , PO 4 3- , SO 4 2- , NO 3 - and NH 4 + ). These properties can play an important role in the complexation of radioactive elements. Effect of the groundwater chemical properties on the solubility and formation of chemical species for americium, plutonium and technetium was predicted based on the solubility analyses under a variety of geochemical conditions. The solubility and speciation of the radioactive elements were estimated, taking into account the possible range of chemical compositions determined from the groundwater investigation. (author)

  1. Effect of Domestic Waste Leachates on Quality Parameters of Groundwater

    Directory of Open Access Journals (Sweden)

    John Jiya MUSA

    2014-02-01

    Full Text Available Water is an elixir of life. Percolating groundwater provides a medium through which wastes particularly organics can undergo degradation into simpler substances through biochemical reactions involving dissolution, hydrolysis, oxidation and reduction processes. Ground water samples in and around dumpsite and landfills located in Kubuwa were studied to assess the effect of wastewater leachates on groundwater resources in the particular area. Groundwater samples were collected from 5 different bore-wells in and around relative distances from dumpsites. EC values ranged between 30 and 138 µS/cm, TDS ranged between 95 mg/L and 120 mg/L, SS ranged between 10 and 23 mg/L while that of the evening ranged between 11 and 15 mg/L, nitrate values ranged between 0.18 to 0.80 mg/L for the early morning samples while the late evening samples which ranged between 0.25 and 0.43 mg/L, while concentration of Sulphate in the morning water sample ranged between 168 and 213 mg/L while that of the evening ranged between 20 and 45 mg/L. The government of the Federal Republic of Nigeria should create landfills and dumpsites far away from residential homes and better still recycling plants should be put in place to recycle the various forms of waste products from homes.

  2. Geochemistry of shale groundwaters: Results of preliminary laboratory leaching experiments

    International Nuclear Information System (INIS)

    Von Damm, K.L.; Johnson, K.O.

    1987-09-01

    Twelve shales were reacted with distilled water at 20 0 C and 100 0 C; the composition of the waters and the mineralogy were determined before and after reaction. The experiments were conducted in a batch mode over a period of approximately 40 days. Major changes occurred in the solution chemistry; in most cases sulfate became the dominant anion while either sodium or calcium was the major cation. The high sulfate is most likely a result of the oxidation of pyrite in the samples. In the 100 0 C experiments some of the solutions became quite acidic. Examination of the observed mineralogy and comparison to the mineral assemblage calculated to be in equilibrium with the experimentally determined waters, suggests that the acidic waters are generated when no carbonate minerals remain to buffer the groundwaters to a more neutral pH. The pH of shale waters will be determined by the balance between the oxidation of pyrite and organic matter and the dissolution of carbonate minerals. The experimental data are helping to elucidate the chemical reactions that control the pH of shale groundwaters, a critical parameter in determining other water-rock and waste-water-rock interactions and ultimate solute mobility. An experimental approach also provides a means of obtaining data for shales for which no groundwater data are available as well as data on chemical species which are not usually determined or reported

  3. Geochemistry of shale groundwaters: Results of preliminary laboratory leaching experiments

    Energy Technology Data Exchange (ETDEWEB)

    Von Damm, K.L.; Johnson, K.O.

    1987-09-01

    Twelve shales were reacted with distilled water at 20/sup 0/C and 100/sup 0/C; the composition of the waters and the mineralogy were determined before and after reaction. The experiments were conducted in a batch mode over a period of approximately 40 days. Major changes occurred in the solution chemistry; in most cases sulfate became the dominant anion while either sodium or calcium was the major cation. The high sulfate is most likely a result of the oxidation of pyrite in the samples. In the 100/sup 0/C experiments some of the solutions became quite acidic. Examination of the observed mineralogy and comparison to the mineral assemblage calculated to be in equilibrium with the experimentally determined waters, suggests that the acidic waters are generated when no carbonate minerals remain to buffer the groundwaters to a more neutral pH. The pH of shale waters will be determined by the balance between the oxidation of pyrite and organic matter and the dissolution of carbonate minerals. The experimental data are helping to elucidate the chemical reactions that control the pH of shale groundwaters, a critical parameter in determining other water-rock and waste-water-rock interactions and ultimate solute mobility. An experimental approach also provides a means of obtaining data for shales for which no groundwater data are available as well as data on chemical species which are not usually determined or reported.

  4. Hydrogeochemical interpretation of the groundwater at the Haestholmen site, Finland

    International Nuclear Information System (INIS)

    Nordstrom, D.K.

    1986-11-01

    This investigation forms a part of the research aimed at marking an assessment of the suitability of rapakivi granite at Haestholmen, an island off the southeastern coast of Finland, for the storage of reactor waste from the Loviisa nuclear power plant. The purpose of this study is to provide preliminary interpretations of the groundwater chemistry based on analyses of groundwater samples taken from several drillholes down to depths of 200 m, as well as other hydrogeological studies made on the site. Chemical analyses of grounfwaters at Haestholmen have demonstrated a fresh-water/saline-water interface at 60-150 m depth, depending on the distance from the coast. The main conclusions from this study are that (1) the saline water has a seawater origin, (2) the saline water is most likely old Baltic seawater from the early to middle Holocene, (3) this seawater has been chemically modified by at least four processes: calcite precipitation, fluorite dissolution and precipitation, Na-K-Mg-Ca cation exchange and sulfate reduction, (4) the saline groundwaters are not chemically uniform with depth and (5) the saline water chemistry reflects a structural control by the bedrock

  5. Study of dissolution factors of U, Th and Ta

    International Nuclear Information System (INIS)

    Santos, Maristela; Medeiros, Geiza; Zouain, Felipe; Cunha, Kenya Dias da; Pitassi, Gabriel; Lima, Cintia; Leite, Carlos Vieira Barros; Nascimento, Jose Eduardo; Dalia, Kely Cristina

    2009-01-01

    Air pollution can be a problem in industrial processes, but monitoring and controlling the aerosols in the work place is not enough to estimate the occupational risk due to dust particle inhalation. The solubility in lung fluid is considered to estimate this risk. The aim of this study is to determine in vitro specific dissolution parameters for thorium (Th), uranium (U) and tantalum (Ta) associated to crystal lattice of a niobium mineral (pyrochlore). Th, U and Ta dissolution factors in vitro were obtained using the Gamble solution (Simulant Lung Fluid, SLF), PIXE (Particle Induced X ray Emission) and alpha spectrometry as analytical techniques. Ta, Th and U are present in the pyrochlore crystal lattice as oxide; however they have shown different dissolution parameters. The rapid dissolution fraction (fr), rapid dissolution rate (λr); slow dissolution rate (fs) and slow dissolution fraction ((λs) measured for tantalum oxide were equal to 0.1, 0.45 d -1 and 0.00007 d -1 , respectively; for uranium oxide fr was equal to 0.05, (λr equal to 1.1 d -1 ; (λs equal to 0.000068 d -1 ; for thorium oxide fr was 0.025, (λr was 1.5 d -1 and (λs: 0.000065 d -1 . These results show that chemical behavior of these 3 compounds in the SLF could not be represented by the same parameter. The ratio of uranium concentration in urine and feces samples from workers exposed to pyrochlore dust particle was determined. These values agree with the theoretical values of estimated uranium concentration using specific parameters for uranium oxide present in pyrochlore. (author)

  6. Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy.

    Science.gov (United States)

    Kent, Ronald D; Vikesland, Peter J

    2012-07-03

    Incorporation of silver nanoparticles (AgNPs) into an increasing number of consumer products has led to concern over the potential ecological impacts of their unintended release to the environment. Dissolution is an important environmental transformation that affects the form and concentration of AgNPs in natural waters; however, studies on AgNP dissolution kinetics are complicated by nanoparticle aggregation. Herein, nanosphere lithography (NSL) was used to fabricate uniform arrays of AgNPs immobilized on glass substrates. Nanoparticle immobilization enabled controlled evaluation of AgNP dissolution in an air-saturated phosphate buffer (pH 7.0, 25 °C) under variable NaCl concentrations in the absence of aggregation. Atomic force microscopy (AFM) was used to monitor changes in particle morphology and dissolution. Over the first day of exposure to ≥10 mM NaCl, the in-plane AgNP shape changed from triangular to circular, the sidewalls steepened, the in-plane radius decreased by 5-11 nm, and the height increased by 6-12 nm. Subsequently, particle height and in-plane radius decreased at a constant rate over a 2-week period. Dissolution rates varied linearly from 0.4 to 2.2 nm/d over the 10-550 mM NaCl concentration range tested. NaCl-catalyzed dissolution of AgNPs may play an important role in AgNP fate in saline waters and biological media. This study demonstrates the utility of NSL and AFM for the direct investigation of unaggregated AgNP dissolution.

  7. Dissolution performance of plutonium nitride based fuel materials

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, E.; Hedberg, M. [Nuclear Chemistry, Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivaegen 4, Gothenburg, SE41296 (Sweden)

    2016-07-01

    Nitride fuels have been regarded as one viable fuel option for Generation IV reactors due to their positive features compared to oxides. To be able to close the fuel cycle and follow the Generation IV concept, nitrides must, however, demonstrate their ability to be reprocessed. This means that the dissolution performance of actinide based nitrides has to be thoroughly investigated and assessed. As the zirconium stabilized nitrides show even better potential as fuel material than does the pure actinide containing nitrides, investigations on the dissolution behavior of both PuN and (Pu,Zr)N has been undertaken. If possible it is desirable to perform the fuel dissolutions using nitric acid. This, as most reprocessing strategies using solvent-solvent extraction are based on a nitride containing aqueous matrix. (Pu,Zr)N/C microspheres were produced using internal gelation. The spheres dissolution performance was investigated using nitric acid with and without additions of HF and Ag(II). In addition PuN fuel pellets were produced from powder and their dissolution performance were also assessed in a nitric acid based setting. It appears that both PuN and (Pu,Zr)N/C fuel material can be completely dissolved in nitric acid of high concentration with the use of catalytic amounts of HF. The amount of HF added strongly affects dissolution kinetics of (Pu, Zr)N and the presence of HF affects the 2 solutes differently, possibly due to inhomogeneity o the initial material. Large additions of Ag(II) can also be used to facilitate the dissolution of (Pu,Zr)N in nitric acid. PuN can be dissolved by pure nitric acid of high concentration at room temperature while (Pu, Zr)N is unaffected under similar conditions. At elevated temperature (reflux), (Pu,Zr)N can, however, also be dissolved by concentrated pure nitric acid.

  8. Hydrogeochemical processes influencing groundwater quality within the Lower Pra Basin

    International Nuclear Information System (INIS)

    Tay, Collins

    2015-12-01

    evaporation playing an insignificant role on the infiltrating water. However, with reference to the Local Meteoric Water Line (LMWL) for the Accra Plains by Akiti (1986), the results suggest evidence of isotopic enrichment by evaporation on the surface or in the unsaturated zone before recharge into the groundwater system. Hydrochemical facies delineated two main water types, the Ca-Mg-HCO 3 and Na-HCO 3 water types, with Ca-Mg-Cl and Na-Cl as minor water types. Using Q-mode Hierarchical Cluster Analyses (HCA), surface and groundwater within the basin have been characterized into four (4) water groups and five (5) subgroups. Water quality data for subgroups show that, Groups 1 and 2 waters both represent a transition zone between Ca-Mg-HCO 3 /Na-HCO 3 and Na-Cl/ Ca-Mg-Cl /Na-SO 4 water types and therefore, can be regarded as transition zones between groundwaters which evolved from Ca-Mg-HCO 3 water type into Na-HCO 3 , Ca-Mg-Cl, and Na-Cl water types along its flow-path. Hydrochemical data also suggest that, groundwater within the basin is primarily undergoing recharge processes involving freshwater mixing with geochemically different ionic signatures than processes involving saline-freshwater mixing. PCA using Varimax with Kaiser Normalization for component matrix has delineated three main processes; i.e. natural geochemical and biochemical processes (water-soil-rock interactions), incongruent dissolution of silicates/aluminosilicates, and pollution of the water resources principally from agricultural inputs. The trace metal results show that, groundwater in some communities within the basin is contaminated, due to natural and anthropogenic sources with Al (19.2 % of boreholes), Se (18.4 % of boreholes), Cd (18.0 % of boreholes), As (11.6 % of boreholes), Pb (39.6 % of boreholes), Mn (5.6 % of boreholes), Hg (42.0 % of boreholes) and Fe (21.6 % of boreholes) concentrations exceeding the WHO (2004) guideline limits for drinking water. Results from the social impact survey

  9. Mass transport by groundwater

    International Nuclear Information System (INIS)

    Ledoux, E.; Goblet, P.; Jamet, Ph.; De Marsily, G.; Des Orres, P.E.; Lewi, J.

    1991-01-01

    The first analyses of the safety of radioactive waste disposal published in 1970s were mostly of a generic type using the models of radionuclide migration in the geosphere. These simply constructed models gave way to more sophisticated techniques in order to represent better the complexity and diversity of geological media. In this article, it is attempted to review the various concepts used to quantify radionuclide migration and the evolution of their incorporation into the models. First, it was examined how the type of discontinuity occurring in geological media affects the choice of a representative model. The principle of transport in the subsurface was reviewed, and the effect that coupled processes exert to groundwater flow and mass migration was discussed. The processes that act directly to cause groundwater flow were distinguished. The method of validating such models by comparing the results with the geochemical systems in nature was explained. (K.I.)

  10. Assessment of Long-Term Evolution of Groundwater Hydrochemical Characteristics Using Multiple Approaches: A Case Study in Cangzhou, Northern China

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-03-01

    Full Text Available Water shortage is severe in the North China Plain (NCP. In addition to a deficiency of water resources, deterioration of groundwater quality should be of great concern. In this study, hydrogeological analysis was conducted in combination with principal component analysis, correlation analysis and the co-kriging method to identify factors controlling the content of major ions and total dissolved solids (TDS in areal shallow and deep groundwater and to assess groundwater evolution in Cangzhou, China. The results suggested that groundwater quality degradation occurred and developed in the study area, as indicated by increasing concentrations of major ions, TDS and hardness in both shallow and deep groundwater. In shallow groundwater, whose hydrochemical water types changed from HCO3–Ca.Na.Mg and HCO3.Cl–Na in the west (Zone II to Cl.SO4–Na and Cl–Na in the east (Zone III. Areas with TDS concentrations between 1500 and 2000 mg/L occupied 79.76% of the total in the 1980s, while areas with a TDS concentration ranging from 2500 to 3000 mg/L comprised 59.11% of the total in the 2010s. In deep groundwater, the area with TDS over 1000 mg/L expanded from 5366.39 km2 in the 1960s to 7183.52 km2 in the 2010s. Natural processes (water-rock interactions and anthropogenic activities (groundwater exploitation were the dominant factors controlling the major ions’ content in local groundwater. Dissolution of dolomite, calcite, feldspar and gypsum were the primary sources of major ions in groundwater, and the ion exchange reaction had a strong effect on the cation content, especially for deep groundwater.

  11. Results from NNWSI [Nevada Nuclear Waste Storage Investigations] Series 2 bare fuel dissolution tests

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1990-09-01

    The dissolution and radionuclide release behavior of spent fuel in groundwater is being studied by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Two bare spent fuel specimens plus the empty cladding hulls were tested in NNWSI J-13 well water in unsealed fused silica vessels under ambient hot cell air conditions (25 degree C) in the currently reported tests. One of the specimens was prepared from a rod irradiated in the H. B. Robinson Unit 2 reactor and the other from a rod irradiated in the Turkey Point Unit 3 reactor. Results indicate that most radionuclides of interest fall into three groups for release modeling. The first group principally includes the actinides (U, Np, Pu, Am, and Cm), all of which reached solubility-limited concentrations that were orders of magnitude below those necessary to meet the NRC 10 CFR 60.113 release limits for any realistic water flux predicted for the Yucca Mountain repository site. The second group is nuclides of soluble elements such as Cs, Tc, and I, for which release rates do not appear to be solubility-limited and may depend on the dissolution rate of fuel. In later test cycles, 137 Cs, 90 Sr, 99 Tc, and 129 I were continuously released at rates between about 5 x 10 -5 and 1 x 10 -4 of inventory per year. The third group is radionuclides that may be transported in the vapor phase, of which 14 C is of primary concern. Detailed test results are presented and discussed. 17 refs., 15 figs., 21 tabs

  12. Iodine mobilization in groundwater system at Datong basin, China: Evidence from hydrochemistry and fluorescence characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junxia; Wang, Yanxin, E-mail: yx.wang@cug.edu.cn; Guo, Wei; Xie, Xianjun; Zhang, Liping; Liu, Yaqing; Kong, Shuqiong

    2014-01-01

    Characterizing the speciation of iodine in groundwater is essential for understanding its hydrogeochemical behavior in aquifer systems. To quantify the variations in iodine speciation and assess factors controlling the distribution and transformation of iodine, 82 groundwater samples and 1 rain water were collected from the Datong basin, northern China in this study. Factor analysis (FA) and excitation emission matrix with parallel factor analysis (EEM–PARAFAC) were used to clarify the potential relationships among iodine species and other hydrochemical parameters. The iodine concentrations of groundwater range from 6.23 to 1380 μg L{sup −1} with 47% of samples exceeding its drinking water level of 150 μg L{sup −1} as recommended by the Chinese government. 57% of samples have ratios of iodate to total iodine greater than 60%, while iodide as the major species in 22% of the samples. Significant amounts of organic iodine with concentrations higher than 100 μg L{sup −1} were observed in 9 groundwater samples. Redox conditions of groundwater system strongly affect iodine concentration and speciation of inorganic iodine in groundwater, and extremely reducing condition restricts the iodine release from sediments into groundwater. The results of FA show that iodine mobilization in groundwater is related to the nature of dissolved organic matter. EEM-PARAFAC model demonstrates the dominance of terrestrial DOM sources and the presence of microbial activities in groundwater system of the Datong basin. It is proposed that degradation of organic matter and reductive dissolution of iron oxyhydroxides are major hydrogeochemical processes responsible for the mobilization of iodine release and the genesis of organic iodine. - Highlights: • Iodine species in groundwater was studied from Datong basin, northern China. • Weakly alkaline environment favors the accumulation of iodine in groundwater. • Iodate is the major species of iodine in groundwater from Datong

  13. Determination of the origin of dissolved inorganic carbon in groundwater around a reclaimed landfill in Otwock using stable carbon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Porowska, Dorota, E-mail: dorotap@uw.edu.pl

    2015-05-15

    Highlights: • Research showed the origin of DIC in the groundwater around a reclaimed landfill. • Carbon isotope was used to evaluate the contributions of carbon from different sources. • The leachate-contaminated water was isotopically distinct from the natural groundwater. • DIC in the natural groundwater comes from organic matter and dissolution of carbonates. • In the contaminated water, DIC comes from organic matter in the aquifer and landfill. - Abstract: Chemical and isotopic analyses of groundwater from piezometers located around a reclaimed landfill in Otwock (Poland) were performed in order to trace the origin of dissolved inorganic carbon (DIC) in the groundwater. Due to differences in the isotopic composition of carbon from different sources, an analysis of stable carbon isotopes in the groundwater, together with the Keeling plot approach and a two-component mixing model allow us to evaluate the relative contributions of carbon from these sources in the groundwater. In the natural (background) groundwater, DIC concentrations and the isotopic composition of DIC (δ{sup 13}C{sub DIC}) comes from two sources: decomposition of organic matter and carbonate dissolution within the aquifer sediments, whereas in the leachate-contaminated groundwater, DIC concentrations and δ{sup 13}C{sub DIC} values depend on the degradation of organic matter within the aquifer sediments and biodegradation of organic matter stored in the landfill. From the mixing model, about 4–54% of the DIC pool is derived from organic matter degradation and 96–46% from carbonate dissolution in natural conditions. In the leachate-contaminated groundwater, about 20–53% of the DIC is derived from organic matter degradation of natural origin and 80–47% from biodegradation of organic matter stored in the landfill. Partial pressure of CO{sub 2} (P CO{sub 2}) was generally above the atmospheric, hence atmospheric CO{sub 2} as a source of carbon in DIC pool was negligible in the

  14. Groundwater contaminant plume ranking

    International Nuclear Information System (INIS)

    1988-08-01

    Containment plumes at Uranium Mill Tailings Remedial Action (UMTRA) Project sites were ranked to assist in Subpart B (i.e., restoration requirements of 40 CFR Part 192) compliance strategies for each site, to prioritize aquifer restoration, and to budget future requests and allocations. The rankings roughly estimate hazards to the environment and human health, and thus assist in determining for which sites cleanup, if appropriate, will provide the greatest benefits for funds available. The rankings are based on the scores that were obtained using the US Department of Energy's (DOE) Modified Hazard Ranking System (MHRS). The MHRS and HRS consider and score three hazard modes for a site: migration, fire and explosion, and direct contact. The migration hazard mode score reflects the potential for harm to humans or the environment from migration of a hazardous substance off a site by groundwater, surface water, and air; it is a composite of separate scores for each of these routes. For ranking the containment plumes at UMTRA Project sites, it was assumed that each site had been remediated in compliance with the EPA standards and that relict contaminant plumes were present. Therefore, only the groundwater route was scored, and the surface water and air routes were not considered. Section 2.0 of this document describes the assumptions and procedures used to score the groundwater route, and Section 3.0 provides the resulting scores for each site. 40 tabs

  15. Transient refractory material dissolution by a volumetrically-heated melt

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Jean Marie, E-mail: jean-marie.seiler@cea.fr [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Ratel, Gilles [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Combeau, Hervé [Institut Jean Lamour, UMR 7198, Lorraine University, Ecole des Mines de Nancy, Parc de Saurupt, 54042 Nancy Cedex (France); Gaus-Liu, Xiaoyang; Kretzschmar, Frank; Miassoedov, Alexei [Karlsruhe Institut of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    Highlights: • We describe a test investigating ceramic dissolution by a molten non-eutectic melt. • The evolution of the interface temperature between melt and refractory is measured. • A theoretical model describing dissolution kinetics is proposed. • When dissolution stops, interface temperature is the liquidus temperature of the melt. - Abstract: The present work addresses the question of corium–ceramic interaction in a core catcher during a core-melt accident in a nuclear power plant. It provides an original insight into transient aspects concerning dissolution of refractory material by a volumetrically heated pool. An experiment with simulant material (LIVECERAM) is presented. Test results clearly show that dissolution of solid refractory material can occur in a non-eutectic melt at a temperature which is lower than the melting temperature of the refractory material. During the dissolution transient, the interface temperature rises above the liquidus temperature, corresponding to the instantaneous average composition of the melt pool. With constant power dissipation in the melt and external cooling of the core-catcher, a final steady-state situation is reached. Dissolution stops when the heat flux (delivered by the melt to the refractory) can be removed by conduction through the residual thickness of the ceramic, with T{sub interface} = T{sub liquidus} (calculated for the average composition of the final liquid pool). The final steady state corresponds to a uniform pool composition and uniform interface temperature distribution. Convection in the pool is governed by natural thermal convection and the heat flux distribution is therefore similar to what would be obtained for a single component pool. An interpretation of the experiment with two model-based approaches (0D and 1D) is presented. The mass transfer kinetics between the interface and the bulk is controlled by a diffusion sublayer within the boundary layer. During the dissolution transient

  16. In vivo in vitro correlations for a poorly soluble drug, danazol, using the flow-through dissolution method with biorelevant dissolution media

    DEFF Research Database (Denmark)

    Sunesen, Vibeke Hougaard; Pedersen, Betty Lomstein; Kristensen, Henning Gjelstrup

    2005-01-01

    The purpose of the study was to design dissolution tests that were able to distinguish between the behaviour of danazol under fasted and fed conditions, by using biorelevant media. In vitro dissolution of 100mg danazol capsules was performed using the flow-through dissolution method. Flow rates w...

  17. Experimental hydrothermal dissolution of forsterite, enstatite, diopside, and labradorite

    Energy Technology Data Exchange (ETDEWEB)

    Ponader, H.B.

    1989-01-01

    Natural hydrothermal water/rock interactions such as those which occur during mineral dissolution and serpentinization were experimentally duplicated using a flow-through apparatus. Labradorite, forsterite, enstatite, diopside, and lherzolite powders were reached with flowing aqueous fluids ({approximately} 10 ml/day) at 300 C and 300 bars for up to 58 days in order to quantify mineral stabilities and dissolution rates, and to characterize dissolution textures and mechanisms. The principal methods for characterization of the solids included surface sensitive spectroscopies (SAM and SPS), SEM, and XRD; reacted fluids were analyzed for major element chemistry and pH. Chapters 1 and 2 investigate labradorite dissolution by deionized water. The labradorite powder dissolved extensively while boehmite and halloysite precipitated. The SAM results show that, in general, the reacted surfaces are enriched in Al and depleted in Si, Na, and Ca. Chapter 3 describes the experiments that reacted deionized water with diopside, enstatite, forsterite, and lherzolite, from which lizardite {plus minus} chrysotile {plus minus} Fe-oxides precipitated. The reacted diopside and enstatite surfaces appeared highly corroded; their crystal structures, in part, control the mechanisms by which they dissolve. The stabilities of the minerals decrease in the order: lherzolite > diopside > enstatite > forsterite. At near neutral pH, the degree to which total surface areas influence dissolution rates appears greater that the effect of mineral composition and interaction of the primary minerals within the lherzolite.

  18. Kinetics of dissolution of calcium phosphate (Ca-P bioceramics

    Directory of Open Access Journals (Sweden)

    Lukas Brazda

    2008-06-01

    Full Text Available Hydroxyapatite (HAp and β-tricalcium phosphate (β-TCP are widely used bioceramics for surgical or dental applications. This paper is dealing with dissolution kinetics of synthetically prepared β-TCP and four types of HAp granules. Two groups of HAp, treated at different temperatures, each of them with two different granule sizes, were tested. Three corrosive solutions with different pH and simulated body fluid (SBF were used for immersing of the samples. Changes in concentrations of calcium and phosphate ions, pH level and weight changes of the samples were observed. It was found that presence of TRIS buffer enhanced dissolution rate of the β-TCP approximately two times. When exposed to SBF solution, calcium phosphate (most probably hydroxyapatite precipitation predominates over β-TCP dissolution. Results from HAp samples dissolution showed some unexpected findings. Neither heat treatment nor HAp particle size made any major differences in dissolution rate of the same mass of each HAp sample.

  19. The dissolution kinetics of magnetite under regenerative conditions

    International Nuclear Information System (INIS)

    Ranganathan, S.

    2004-01-01

    Dissolution studies of magnetite were carried out under regenerative conditions in dilute chemical decontamination formulations. During regeneration of the formulation, the H + from the strong acid cation exchange resin gets released and the metal is absorbed on the resin. The efficiency of the regenerative process depends on the stability constants of the complexes involved and the selectivity on the ion exchange column. The regenerative condition helps to maintain a constant chelating agent concentration and pH during the dissolution experiment. Such a condition is ideal for obtaining data on the dissolution behaviour of the corrosion products with special application to actual reactor decontamination. The ethylenediaminetetraacetic acid (EDTA) based formulation used was found to be ineffective due to the high stability constant of Fe(III)-EDTA complex, which is not easily cleaved by the cation exchange resin. Hence, knowledge of the kinetics of magnetite dissolution under regenerative condition is of primary importance. The 2,6-pyridinedicarboxylic acid formulation is found to be better for the dissolution of Fe 3 O 4 in both static and regenerative modes in the presence of reductants than nitrilotriacetic acid and EDTA. (orig.)

  20. The dissolution kinetics of magnetite under regenerative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S. [New Brunswick Univ., Frederiction (Canada). Dept. of Chemical Engineering; Raghavan, P.S.; Gopalan, R.; Srinivasan, M.P.; Narasimhan, S.V. [Water and Steam Chemistry Lab. of Bhabha Atomic Research Centre (BARC) (India)

    2004-07-01

    Dissolution studies of magnetite were carried out under regenerative conditions in dilute chemical decontamination formulations. During regeneration of the formulation, the H{sup +} from the strong acid cation exchange resin gets released and the metal is absorbed on the resin. The efficiency of the regenerative process depends on the stability constants of the complexes involved and the selectivity on the ion exchange column. The regenerative condition helps to maintain a constant chelating agent concentration and pH during the dissolution experiment. Such a condition is ideal for obtaining data on the dissolution behaviour of the corrosion products with special application to actual reactor decontamination. The ethylenediaminetetraacetic acid (EDTA) based formulation used was found to be ineffective due to the high stability constant of Fe(III)-EDTA complex, which is not easily cleaved by the cation exchange resin. Hence, knowledge of the kinetics of magnetite dissolution under regenerative condition is of primary importance. The 2,6-pyridinedicarboxylic acid formulation is found to be better for the dissolution of Fe{sub 3}O{sub 4} in both static and regenerative modes in the presence of reductants than nitrilotriacetic acid and EDTA. (orig.)

  1. Dissolution of coccolithophorid calcite by microzooplankton and copepod grazing

    Science.gov (United States)

    Antia, A. N.; Suffrian, K.; Holste, L.; Müller, M. N.; Nejstgaard, J. C.; Simonelli, P.; Carotenuto, Y.; Putzeys, S.

    2008-01-01

    Independent of the ongoing acidification of surface seawater, the majority of the calcium carbonate produced in the pelagial is dissolved by natural processes above the lysocline. We investigate to what extent grazing and passage of coccolithophorids through the guts of copepods and the food vacuoles of microzooplankton contribute to calcite dissolution. In laboratory experiments where the coccolithophorid Emiliania huxleyi was fed to the rotifer Brachionus plicatilis, the heterotrophic flagellate Oxyrrhis marina and the copepod Acartia tonsa, calcite dissolution rates of 45-55%, 37-53% and 5-22% of ingested calcite were found. We ascribe higher loss rates in microzooplankton food vacuoles as compared to copepod guts to the strongly acidic digestion and the individual packaging of algal cells. In further experiments, specific rates of calcification and calcite dissolution were also measured in natural populations during the PeECE III mesocosm study under differing ambient pCO2 concentrations. Microzooplankton grazing accounted for between 27 and 70% of the dynamic calcite stock being lost per day, with no measurable effect of CO2 treatment. These measured calcite dissolution rates indicate that dissolution of calcite in the guts of microzooplankton and copepods can account for the calcite losses calculated for the global ocean using budget and model estimates.

  2. Optimization of dissolution process parameters for uranium ore concentrate powders

    Energy Technology Data Exchange (ETDEWEB)

    Misra, M.; Reddy, D.M.; Reddy, A.L.V.; Tiwari, S.K.; Venkataswamy, J.; Setty, D.S.; Sheela, S.; Saibaba, N. [Nuclear Fuel Complex, Hyderabad (India)

    2013-07-01

    Nuclear fuel complex processes Uranium Ore Concentrate (UOC) for producing uranium dioxide powder required for the fabrication of fuel assemblies for Pressurized Heavy Water Reactor (PHWR)s in India. UOC is dissolved in nitric acid and further purified by solvent extraction process for producing nuclear grade UO{sub 2} powder. Dissolution of UOC in nitric acid involves complex nitric oxide based reactions, since it is in the form of Uranium octa oxide (U{sub 3}O{sub 8}) or Uranium Dioxide (UO{sub 2}). The process kinetics of UOC dissolution is largely influenced by parameters like concentration and flow rate of nitric acid, temperature and air flow rate and found to have effect on recovery of nitric oxide as nitric acid. The plant scale dissolution of 2 MT batch in a single reactor is studied and observed excellent recovery of oxides of nitrogen (NO{sub x}) as nitric acid. The dissolution process is automated by PLC based Supervisory Control and Data Acquisition (SCADA) system for accurate control of process parameters and successfully dissolved around 200 Metric Tons of UOC. The paper covers complex chemistry involved in UOC dissolution process and also SCADA system. The solid and liquid reactions were studied along with multiple stoichiometry of nitrous oxide generated. (author)

  3. Laboratory simulation of salt dissolution during waste removal

    International Nuclear Information System (INIS)

    Wiersma, B.J.; Parish, W.R.

    1997-01-01

    Laboratory experiments were performed to support the field demonstration of improved techniques for salt dissolution in waste tanks at the Savannah River Site. The tests were designed to investigate three density driven techniques for salt dissolution: (1) Drain-Add-Sit-Remove, (2) Modified Density Gradient, and (3) Continuous Salt Mining. Salt dissolution was observed to be a very rapid process as salt solutions with densities between 1.38-1.4 were frequently removed. Slower addition and removal rates and locating the outlet line at deeper levels below the top of the saltcake provided the best contact between the dissolution water and the saltcake. It was observed that dissolution with 1 M sodium hydroxide solution resulted in salt solutions that were within the current inhibitor requirements for the prevention of stress corrosion cracking. This result was independent of the density driven technique. However, if inhibited water (0.01 M sodium hydroxide and 0.011 M sodium nitrite) was utilized, the salt solutions were frequently outside the inhibitor requirements. Corrosion testing at conditions similar to the environments expected during waste removal was recommended

  4. Computational fluid dynamics (CFD) studies of a miniaturized dissolution system.

    Science.gov (United States)

    Frenning, G; Ahnfelt, E; Sjögren, E; Lennernäs, H

    2017-04-15

    Dissolution testing is an important tool that has applications ranging from fundamental studies of drug-release mechanisms to quality control of the final product. The rate of release of the drug from the delivery system is known to be affected by hydrodynamics. In this study we used computational fluid dynamics to simulate and investigate the hydrodynamics in a novel miniaturized dissolution method for parenteral formulations. The dissolution method is based on a rotating disc system and uses a rotating sample reservoir which is separated from the remaining dissolution medium by a nylon screen. Sample reservoirs of two sizes were investigated (SR6 and SR8) and the hydrodynamic studies were performed at rotation rates of 100, 200 and 400rpm. The overall fluid flow was similar for all investigated cases, with a lateral upward spiraling motion and central downward motion in the form of a vortex to and through the screen. The simulations indicated that the exchange of dissolution medium between the sample reservoir and the remaining release medium was rapid for typical screens, for which almost complete mixing would be expected to occur within less than one minute at 400rpm. The local hydrodynamic conditions in the sample reservoirs depended on their size; SR8 appeared to be relatively more affected than SR6 by the resistance to liquid flow resulting from the screen. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Dissolution and alteration of uraninite under reducing conditions

    International Nuclear Information System (INIS)

    Janeczek, J.; Ewing, R.C.

    1992-01-01

    The behavior of uraninite under hydrothermal, reducung conditions is discussed on the basis of data in the literature and the authors' investigation of samples from two natural analogue sites: Oklo, Gabon and Cigar Lake, Canada. Uraninite under reducing conditions, in the presence of saline hydrothermal solutions may be altered through dissolution, preferential loss of lead and/or Y + HREE, and coffinitization. Textural features indicative of dissolution or uraninite include embayed grain boundaries, corroded relicts of uraninite embedded in a clay matrix, and replacement of uraninite by clays and sulfides. The alteration textures and phase chemistries at Oklo and Cigar Lake are remarkably similar. Dissolution of uraninite at Cigar Lake and Oklo was associated with the precipitation or illite and was probably caused by saline, uraninite moderately acidic solutions at approximately 200deg C. Increased oxygen fugacity may have occured locally due to release of excess oxygen from uraninite during dissolution or by α-radiolysis of the solution. The formation of Pb-rich (up to 18 wt% Pb, uraninite-I) and Pb-depleted (approximately 7-8 wt% Pb, uraninite-II) uraninites at both Oklo and Cigar Lake resulted from the loss of Pb due to predominantly episodic volume diffusion related to regional geologic events. Lead loss was not associated with U mobilization. In addition to uraninite dissolution, coffinitization resulted in U, Pb and REE release. (orig.)

  6. Dissolution Enhancement of Rosuvastatin Calcium by Liquisolid Compact Technique

    Directory of Open Access Journals (Sweden)

    V. J. Kapure

    2013-01-01

    Full Text Available In present investigation liquisolid compact technique is investigated as a tool for enhanced dissolution of poorly water-soluble drug Rosuvastatin calcium (RVT. The model drug RVT, a HMG-Co A reductase inhibitor was formulated in form of directly compressed tablets and liquisolid compacts; and studied for in-vitro release characteristics at different dissolution conditions. In this technique, liquid medications of water insoluble drugs in non-volatile liquid vehicles can be converted into acceptably flowing and compressible powders. Formulated systems were assessed for precompression parameters like flow properties of liquisolid system, Fourior transform infra red spectra (FTIR analysis, X-ray powder diffraction (XRPD, differential scanning calorimetry (DSC, and post compression parameters like content uniformity, weight variation, hardness and friability, disintegration test, wetting time, in vitro dissolution studies, effect of dissolution volume on drug release rate, and estimation of fraction of molecularly dispersed drug in liquid medication. As liquisolid compacts demonstrated significantly higher drug release rates, we lead to conclusion that it could be a promising strategy in improving the dissolution of poor water soluble drugs and formulating immediate release solid dosage forms.

  7. Thoria/thoria-urania dissolution studies for reprocessing application

    International Nuclear Information System (INIS)

    Srinivas, C.; Yalmali, Vrunda; Pente, A.S.; Wattal, P.K.; Misra, S.D.

    2012-06-01

    Thoria dissolution is normally conducted in 13M nitric acid in the presence of 0.03M sodium fluoride or HF as catalyst and 0.1M aluminium nitrate for mitigation of fluoride related corrosion of SS 304L dissolver vessel. Addition of aluminium nitrate in such high concentrations has undesirable consequences in the downstream high level radioactive liquid waste vitrification process at 900-1000 degC. Besides, because of the highly corrosive nature of fluoride ion, lowering its concentration in the dissolution reaction is advantageous in reducing the corrosion of dissolver and other downstream equipments. The present work was done with twin objectives of avoiding aluminium nitrate addition and lowering the fluoride ion concentration during dissolution reaction. High temperature sintered thoria and thoria-4 weight% urania dissolution reactions were investigated in the absence of aluminium nitrate and at reduced fluoride concentrations. Corrosion rates of SS 304L zircaloy in various dissolvent mixtures were studied by weight loss method. These studies clearly showed that aluminium nitrate addition for control of fluoride related corrosion of SS 304L can be avoided when zircaloy-clad thoria/thoria-urania pellets are dissolved. Dissolved zirconium ion was observed to be as effective as aluminium ion. Moreover, dissolution could be achieved with reasonable reaction rates at reduced fluoride concentration of 0.005-0.01M instead of 0.03M by changing the method of addition of the fluoride catalyst. (author)

  8. Solubility and dissolution improvement of ketoprofen by emulsification ionic gelation

    Science.gov (United States)

    Rachmaniar, Revika; Tristiyanti, Deby; Hamdani, Syarif; Afifah

    2018-02-01

    Ketoprofen or [2-(3-benzoylphenyl) propionic acid] is non-steroidal anti-inflammatory (NSAID) and an analgesic which has high permeability and low solubility. The purpose of this work was to improve the solubility and dissolution of poorly water-soluble ketoprofen prepared by emulsification ionic gelation method and utilizing polymer (chitosan) and cross linker (tripolyphosphate, TPP) for particles formulation. The results show that increasing pH value of TPP, higher solubility and dissolution of as-prepared ketoprofen-chitosan was obtained. The solubility in water of ketoprofen-chitosan with pH 6 for TPP increased 2.71-fold compared to untreated ketoprofen. While the dissolution of ketoprofen-chitosan with pH 6 of TPP in simulated gastric fluid without enzyme (0.1 N HCl), pH 4.5 buffer and simulated intestinal fluid without enzyme (phosphate buffer pH 6.8) was increased 1.9-fold, 1.6-fold and 1.2-fold compared to untreated ketoprofen for dissolution time of 30 minutes, respectively. It could be concluded that chitosan and TPP in the emulsification ionic gelation method for ketoprofen preparation effectively increases solubility and dissolution of poorly water-soluble ketoprofen.

  9. Formalization of the kinetics for autocatalytic dissolutions. Focus on the dissolution of uranium dioxide in nitric medium

    International Nuclear Information System (INIS)

    Charlier, F.; Canion, D.; Gravinese, A.; Magnaldo, A.; Lalleman, S.; Borda, G.; Schaer, E.

    2017-01-01

    Uranium dioxide dissolution in nitric acid is a complex reaction. On the one hand, the dissolution produces nitrous oxides (NOX), which makes it a triphasic reaction. On the other hand, one of the products accelerates the kinetic rate; the reaction is hence called autocatalytic.The kinetics for these kinds of reactions need to be formalized in order to optimize and design innovative dissolution reactors. In this work, the kinetics rates have been measured by optical microscopy using a single particle approach. The advantages of this analytical technique are an easier management of species transport in solution and a precise following of the dissolution rate. The global rate is well described by a mechanism considering two steps: a non-catalyzed reaction, where the catalyst concentration has no influence on the dissolution rate, and a catalyzed reaction. The mass transfer rate of the catalyst was quantified in order to discriminate when the reaction was influenced by catalyst accumulated in the boundary layer or uncatalyzed. This first approximation described well the sigmoid dissolution curve profile. Moreover, experiments showed that solutions filled with catalyst proved to lose reactivity over time. Results pointed out that the higher the liquid-gas exchanges, the faster the kinetic rate decreases with time. Thus, it was demonstrated, for the first time, that there is a link between catalyst and nitrous oxides. The outcome of this study leads to new ways for improving the design of dissolvers. Gas-liquid exchanges are indeed a lever to impact dissolution rates. Temperature and catalyst concentration can be optimized to reduce residence times in dissolvers. (authors)

  10. Approaches to groundwater travel time

    International Nuclear Information System (INIS)

    Kaplan, P.; Klavetter, E.; Peters, R.

    1989-01-01

    One of the objectives of performance assessment for the Yucca Mountain Project is to estimate the groundwater travel time at Yucca Mountain, Nevada, to determine whether the site complies with the criteria specified in the Code of Federal Regulations, Title 10 CFR 60.113 (a). The numerical standard for performance in these criteria is based on the groundwater travel time along the fastest path of likely radionuclide transport from the disturbed zone to the accessible environment. The concept of groundwater travel time as proposed in the regulations, does not have a unique mathematical statement. The purpose of this paper is to discuss the ambiguities associated with the regulatory specification of groundwater travel time, two different interpretations of groundwater travel time, and the effect of the two interpretations on estimates of the groundwater travel time

  11. Approaches to groundwater travel time

    International Nuclear Information System (INIS)

    Kaplan, P.; Klavetter, E.; Peters, R.

    1989-01-01

    One of the objectives of performance assessment for the Yucca Mountain Project is to estimate the groundwater travel time at Yucca Mountain, Nevada, to determine whether the site complies with the criteria specified in the Code of Federal Regulations. The numerical standard for performance in these criteria is based on the groundwater travel time along the fastest path of likely radionuclide transport from the disturbed zone to the accessible environment. The concept of groundwater travel time, as proposed in the regulations, does not have a unique mathematical statement. The purpose of this paper is to discuss (1) the ambiguities associated with the regulatory specification of groundwater travel time, (2) two different interpretations of groundwater travel time, and (3) the effect of the two interpretations on estimates of the groundwater travel time. 3 refs., 2 figs., 2 tabs

  12. Dissolution of synthetic uranium dibutyl phosphate deposits in oxidizing and reducing chemical formulations

    International Nuclear Information System (INIS)

    Rufus, A.L.; Sathyaseelan, V.S.; Narasimhan, S.V.; Velmurugan, S.

    2013-01-01

    Graphical abstract: SEM of the U-DBP coated stainless steel coupon before and after exposure to chemical formulation containing acid permanganate at 80 °C. -- Highlights: •Combination of oxidation and reduction processes efficiently dissolves U-DBP deposits. •NP and NAC formulations are compatible with SS-304. •Dissolved uranium and added chemicals are effectively removed via ion exchangers. -- Abstract: Permanganate and nitrilotriacetic acid (NTA) based dilute chemical formulations were evaluated for the dissolution of uranium dibutyl phosphate (U-DBP), a compound that deposits over the surfaces of nuclear reprocessing plants and waste storage tanks. A combination of an acidic, oxidizing treatment (nitric acid with permanganate) followed by reducing treatment (NTA based formulation) efficiently dissolved the U-DBP deposits. The dissolution isotherm of U-DBP in its as precipitated form followed a logarithmic fit. The same chemical treatment was also effective in dissolving U-DBP coated on the surface of 304-stainless steel, while resulting in minimal corrosion of the stainless steel substrate material. Investigation of uranium recovery from the resulting decontamination solutions by ion exchange with a bed of mixed anion and cation resins showed quantitative removal of uranium

  13. A general model for the dissolution of nuclear waste glasses in salt brine

    International Nuclear Information System (INIS)

    McGrail, B.P.; Strachan, D.M.

    1988-07-01

    A mechanistic model describing a dynamic mass balance between the production and consumption of dissolved silica was found to describe the dissolution of SRL-165 defense waste glass in a high-magnesium (PBB3) brine at a temperature of 90/degree/C. The synergetic effect of the waste package container on the glass dissolution rate was found to depend on a precipitation reaction for a ferrous silicate mineral. The model predicted that the ferrous silicate precipitate should be variable in composition where the iron-silica ratio depended on the metal-to-glass surface area ratio used in the experiment. This prediction was confirmed experimentally by the variable iron-silica ratios observed in filtered leachates. However, the interaction between dissolved silica and iron corrosion products needs to be much better understood before the model could be used with confidence in predicting radionuclide release rates for a salt repository. If the deleterious effects of the iron corrosion products can be shown to be transient, and the fracturing of the glass can be minimized, it appears that the performance of SRL-165 defense waste glass will be near the NRC regulatory criterion for fraction release of one part in 100,000 in PBB3 brine at 90/degree/C under silica-saturated conditions. 47 refs., 6 figs., 1 tab

  14. Dissolution of synthetic uranium dibutyl phosphate deposits in oxidizing and reducing chemical formulations

    Energy Technology Data Exchange (ETDEWEB)

    Rufus, A.L.; Sathyaseelan, V.S.; Narasimhan, S.V.; Velmurugan, S., E-mail: svelu@igcar.gov.in

    2013-06-15

    Graphical abstract: SEM of the U-DBP coated stainless steel coupon before and after exposure to chemical formulation containing acid permanganate at 80 °C. -- Highlights: •Combination of oxidation and reduction processes efficiently dissolves U-DBP deposits. •NP and NAC formulations are compatible with SS-304. •Dissolved uranium and added chemicals are effectively removed via ion exchangers. -- Abstract: Permanganate and nitrilotriacetic acid (NTA) based dilute chemical formulations were evaluated for the dissolution of uranium dibutyl phosphate (U-DBP), a compound that deposits over the surfaces of nuclear reprocessing plants and waste storage tanks. A combination of an acidic, oxidizing treatment (nitric acid with permanganate) followed by reducing treatment (NTA based formulation) efficiently dissolved the U-DBP deposits. The dissolution isotherm of U-DBP in its as precipitated form followed a logarithmic fit. The same chemical treatment was also effective in dissolving U-DBP coated on the surface of 304-stainless steel, while resulting in minimal corrosion of the stainless steel substrate material. Investigation of uranium recovery from the resulting decontamination solutions by ion exchange with a bed of mixed anion and cation resins showed quantitative removal of uranium.

  15. Hydrodynamic Impacts on Dissolution, Transport and Absorption from Thousands of Drug Particles Moving within the Intestines

    Science.gov (United States)

    Behafarid, Farhad; Brasseur, James G.

    2017-11-01

    Following tablet disintegration, clouds of drug particles 5-200 μm in diameter pass through the intestines where drug molecules are absorbed into the blood. Release rate depends on particle size, drug solubility, local drug concentration and the hydrodynamic environment driven by patterned gut contractions. To analyze the dynamics underlying drug release and absorption, we use a 3D lattice Boltzmann model of the velocity and concentration fields driven by peristaltic contractions in vivo, combined with a mathematical model of dissolution-rate from each drug particle transported through the grid. The model is empirically extended for hydrodynamic enhancements to release rate by local convection and shear-rate, and incorporates heterogeneity in bulk concentration. Drug dosage and solubility are systematically varied along with peristaltic wave speed and volume. We predict large hydrodynamic enhancements (35-65%) from local shear-rate with minimal enhancement from convection. With high permeability boundary conditions, a quasi-equilibrium balance between release and absorption is established with volume and wave-speed dependent transport time scale, after an initial transient and before a final period of dissolution/absorption. Supported by FDA.

  16. Ground-water travel time

    International Nuclear Information System (INIS)

    Bentley, H.; Grisak, G.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Travel Time Subgroup are presented

  17. Regional ground-water system

    International Nuclear Information System (INIS)

    Long, J.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Regime Subgroup are presented

  18. Adsorptive Iron Removal from Groundwater

    OpenAIRE

    Sharma, S.K.

    2001-01-01

    Iron is commonly present in groundwater worldwide. The presence of iron in the water supply is not harmful to human health, however it is undesirable. Bad taste, discoloration, staining, deposition in the distribution system leading to aftergrowth, and incidences of high turbidity are some of the aesthetic and operational problems associated with iron in water supplies. Iron removal from groundwater is, therefore, a major concern for water supply companies using groundwater sources....

  19. GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION.

    Energy Technology Data Exchange (ETDEWEB)

    PAQUETTE,D.E.; BENNETT,D.B.; DORSCH,W.R.; GOODE,G.A.; LEE,R.J.; KLAUS,K.; HOWE,R.F.; GEIGER,K.

    2002-05-31

    THE DEPARTMENT OF ENERGY ORDER 5400.1, GENERAL ENVIRONMENTAL PROTECTION PROGRAM, REQUIRES THE DEVELOPMENT AND IMPLEMENTATION OF A GROUNDWATER PROTECTION PROGRAM. THE BNL GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION PROVIDES AN OVERVIEW OF HOW THE LABORATORY ENSURES THAT PLANS FOR GROUNDWATER PROTECTION, MONITORING, AND RESTORATION ARE FULLY DEFINED, INTEGRATED, AND MANAGED IN A COST EFFECTIVE MANNER THAT IS CONSISTENT WITH FEDERAL, STATE, AND LOCAL REGULATIONS.

  20. Speciation, Mobility and Fate of Actinides in the Groundwater at the Hanford Site

    International Nuclear Information System (INIS)

    Buesseler, K.O.; Dai, M.; Repeta, D.; Wacker, J.F.; Kelley, J.M.

    2003-01-01

    Plutonium and other actinides represent important contaminants in the groundwater and vadose zone at Hanford and other DOE sites. The distribution and migration of these actinides in groundwater must be understood so that these sites can be carefully monitored and effectively cleaned up, thereby minimizing risks to the public. The objective of this project was to obtain field data on the chemical and physical forms of plutonium in groundwater at the Hanford site. We focused on the 100-k and 100-n areas near the Columbia River, where prior reactor operations and waste storage was in close proximity to the river. In particular, a unique set of technical approaches were combined to look at the details of Pu speciation in groundwater, as thus its chemical affinity for soil surfaces and solubility in groundwater, as these impact directly the migration rates off site and possible mitigation possibilities one might undertake to control, or at least better monitor these releases

  1. Groundwater resources of Mosteiros basin, island of Fogo, Cape Verde, West Africa

    Science.gov (United States)

    Heilweil, Victor M.; Gingerich, Stephen B.; Plummer, Niel; Verstraeten, Ingrid M.

    2010-01-01

    Groundwater resources in Cape Verde provide water for agriculture, industry, and human consumption. These resources are limited and susceptible to contamination. Additional groundwater resources are needed for continued agricultural development, particularly during times of drought, but increased use and (or) climatic change may have adverse effects on the quantity and quality of freshwater available. In volcanic island aquifers such as those of Cape Verde, a lens of fresh groundwater typically ?floats? upon a layer of brackish water at the freshwater/saltwater boundary, and increased pumping may cause salt water intrusion or other contamination. A recent U.S. Geological Survey study assessed baseline groundwater conditions in watersheds on three islands of Cape Verde to provide the scientific basis for sustainably developing water resources and minimizing future groundwater depletion and contamination.

  2. Simulating the effects of a beaver dam on regional groundwater flow through a wetland

    Directory of Open Access Journals (Sweden)

    Kathleen Feiner

    2015-09-01

    New hydrological insights for the region: The construction of a beaver dam resulted in minimal changes to regional groundwater flow paths at this site, which is attributed to a clay unit underlying the peat, disconnecting this wetland from regional groundwater flow. However, groundwater discharge from the wetland pond increased by 90%. Simulating a scenario with the numerical model in which the wetland is connected to regional groundwater flow results in a much larger impact on flow paths. In the absence of the clay layer, the simulated construction of a beaver dam causes a 70% increase in groundwater discharge from the wetland pond and increases the surface area of both the capture zone and the discharge zone by 30% and 80%, respectively.

  3. Using SDP to optimize conjunctive use of surface and groundwater in China

    DEFF Research Database (Denmark)

    Davidsen, Claus; Mo, X; Liu, S.

    2014-01-01

    A hydro-economic modelling approach to optimize conjunctive use of scarce surface water and groundwater resources under uncertainty is presented. Stochastic dynamic programming (SDP) is used to minimize the basin-wide total costs arising from allocations of surface water, head-dependent groundwater......, which includes surface water droughts and groundwater over-pumping. The head-dependent groundwater pumping costs will enable assessment of the long-term effects of increased electricity prices on the groundwater pumping. The optimization framework is used to assess realistic alternative development...... pumping costs, water allocations from the South-North Water Transfer Project and water curtailments of the users. Each water user group (agriculture, industry, domestic) is characterized by fixed demands and fixed water allocation and water supply curtailment costs. The non-linear one step-ahead sub...

  4. Minimizing transient influence in WHPA delineation: An optimization approach for optimal pumping rate schemes

    Science.gov (United States)

    Rodriguez-Pretelin, A.; Nowak, W.

    2017-12-01

    For most groundwater protection management programs, Wellhead Protection Areas (WHPAs) have served as primarily protection measure. In their delineation, the influence of time-varying groundwater flow conditions is often underestimated because steady-state assumptions are commonly made. However, it has been demonstrated that temporary variations lead to significant changes in the required size and shape of WHPAs. Apart from natural transient groundwater drivers (e.g., changes in the regional angle of flow direction and seasonal natural groundwater recharge), anthropogenic causes such as transient pumping rates are of the most influential factors that require larger WHPAs. We hypothesize that WHPA programs that integrate adaptive and optimized pumping-injection management schemes can counter transient effects and thus reduce the additional areal demand in well protection under transient conditions. The main goal of this study is to present a novel management framework that optimizes pumping schemes dynamically, in order to minimize the impact triggered by transient conditions in WHPA delineation. For optimizing pumping schemes, we consider three objectives: 1) to minimize the risk of pumping water from outside a given WHPA, 2) to maximize the groundwater supply and 3) to minimize the involved operating costs. We solve transient groundwater flow through an available transient groundwater and Lagrangian particle tracking model. The optimization problem is formulated as a dynamic programming problem. Two different optimization approaches are explored: I) the first approach aims for single-objective optimization under objective (1) only. The second approach performs multiobjective optimization under all three objectives where compromise pumping rates are selected from the current Pareto front. Finally, we look for WHPA outlines that are as small as possible, yet allow the optimization problem to find the most suitable solutions.

  5. Possible effects of groundwater pumping on surface water in the Verde Valley, Arizona

    Science.gov (United States)

    Leake, Stanley A.; Haney, Jeanmarie

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with The Nature Conservancy, has applied a groundwater model to simulate effects of groundwater pumping and artificial recharge on surface water in the Verde Valley sub-basin of Arizona. Results are in two sets of maps that show effects of locations of pumping or recharge on streamflow. These maps will help managers make decisions that will meet water needs and minimize environmental impacts.

  6. Arsenic levels in groundwater aquifer

    African Journals Online (AJOL)

    Miodrag Jelic

    resistance (ρ); dielectric constant (ε); magnetic permeability (η); electrochemical activity ..... comprises grey sands of different particle size distribution ..... groundwater: testing pollution mechanisms for sedimentary aquifers in. Bangladesh.

  7. Characteristics of MOX dissolution with silver mediated electrolytic oxidation method

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Miki; Nakazaki, Masato; Kida, Takashi; Sato, Kenji; Kato, Tadahito; Kihara, Takehiro; Sugikawa, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    MOX dissolution with silver mediated electrolytic oxidation method is to be applied to the preparation of plutonium nitrate solution to be used for criticality safety experiments at Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF). Silver mediated electrolytic oxidation method uses the strong oxidisation ability of Ag(II) ion. This method is though to be effective for the dissolution of MOX, which is difficult to be dissolved with nitric acid. In this paper, the results of experiments on dissolution with 100 g of MOX are described. It was confirmed from the results that the MOX powder to be used at NUCEF was completely dissolved by silver mediated electrolytic oxidation method and that Pu(VI) ion in the obtained solution was reduced to tetravalent by means of NO{sub 2} purging. (author)

  8. Numerical modelling of glass dissolution: gel layer morphology

    Energy Technology Data Exchange (ETDEWEB)

    Devreux, F. E-mail: fd@pmc.polytechnique.fr; Barboux, P

    2001-09-01

    Numerical simulations of glass dissolution are presented. The glass is modelized as a random binary mixture composed of two species representing silica and soluble oxides, such as boron and alkali oxides. The soluble species are dissolved immediately when they are in contact with the solution. For the species which represents silica, one introduces dissolution and condensation probabilities. It is shown that the morphology and the thickness of the surface hydration layer (the gel) are highly dependent on the dissolution model, especially on the parameter which controls the surface tension. Simulations with different glass surface area to solution volume ratio (S/V) show that this experimental parameter has important effects on both the shrinkage and the gel layer thickness.

  9. Dissolution rate effect upon lyolumenescence of irradiated potassium chloride

    International Nuclear Information System (INIS)

    Leshchinskij, B.L.; Dzelme, Yu.R.; Tiliks, Yu.E.; Bugaenko, L.T.

    1985-01-01

    The paper is aimed at studying dissolution rate effect and concentration of electron acceptor upon lyoluminescence (LL) that occurs during dissolution of solids with radiation defects. For investigation gamma-irradiated potassium chloride monocrystalline disks were used. As a solvent 3x10sup(-6) M solution of C(RH) hodamine in 2.7 KCl aqueous solution is used. It is shown that LL occurs as a result of recombination of radiation defects with the solution and between themselves in two different regions of subsurface layer of the solid. Investigated dependences of LL intensty on dissolution rate are the efficient method of studying the structure of solids-aqueous solution interface and LL mechanism

  10. Turbulent solutal convection and surface patterning in solid dissolution

    International Nuclear Information System (INIS)

    Sullivan, T.S.; Liu, Y.; Ecke, R.E.

    1996-01-01

    We describe experiments in which crystals of NaCl, KBr, and KCl are dissolved from below by aqueous solutions containing concentrations of the respective salts from zero concentration to near saturation. The solution near the solid-liquid interface is gravitationally unstable, producing turbulent hydrodynamic motion similar to thermal convection from a single surface cooled from above. The coupling of the fluid flow with the solid dissolution produces irregular patterns at the solid-liquid interface with a distribution of horizontal length scales. The dissolution mass flux and the pattern length scales are compared with a turbulent boundary layer model. Remarkable agreement is found, showing that the fluid motion controls both the dissolution rate and the interface patterning. copyright 1996 The American Physical Society

  11. Oxidation and dissolution of UO{sub 2} in bicarbonate media: Implications for the spent nuclear fuel oxidative dissolution mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, J. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)]. E-mail: francisco.javier.gimenez@upc.edu; Clarens, F. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Casas, I. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Rovira, M. [CTM Centre Tecnologic, Avda. Bases de Manresa 1. 08240 Manresa (Spain); Pablo, J. de [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Bruno, J. [Enresa-Enviros Environmental Science and Waste Management Chair, UPC, Jordi Girona 1-3 B2, 08034 Barcelona (Spain)

    2005-10-15

    The objective of this work is to study the UO{sub 2} oxidation by O{sub 2} and dissolution in bicarbonate media and to extrapolate the results obtained to improve the knowledge of the oxidative dissolution of spent nuclear fuel. The results obtained show that in the studied range the oxygen consumption rate is independent on the bicarbonate concentration while the UO{sub 2} dissolution rate does depend on. Besides, at 10{sup -4} mol dm{sup -3} bicarbonate concentration, the oxygen consumption rate is almost two orders of magnitude higher than the UO{sub 2} dissolution rate. These results suggest that at low bicarbonate concentration (<10{sup -2} mol dm{sup -3}) the alteration of the spent nuclear fuel cannot be directly derived from the measured uranium concentrations in solution. On the other hand, the study at low bicarbonate concentrations of the evolution of the UO{sub 2} surface at nanometric scale by means of the SFM technique shows that the difference between oxidation and dissolution rates is not due to the precipitation of a secondary solid phase on UO{sub 2}.

  12. STATISTICAL INVESTIGATION OF THE GROUNDWATER SYSTEM IN DARB EL-ARBAEIN, SOUTHWESTERN DESERT, EGYPT

    Directory of Open Access Journals (Sweden)

    Kashouty Mohamed El

    2009-12-01

    Full Text Available In Darb El Arbaein, the groundwater is the only water resources. The aquifer system starts from Paleozoic-Mesozoic to Upper Cretaceous sandstone rocks. They overlay the basement rocks and the aquifer is confined. In the present research, the performance of the statistical analyses to classify groundwater samples depending on their chemical characters has been tested. The hydrogeological and hydrogeochemical data of 92 groundwater samples was obtained from the GARPAD authority in northern, central, and southern Darb El Arbaein. A robust classification scheme for partitioning groundwater chemistry into homogeneous groups was an important tool for the characterization of Nubian sandstone aquifer. We test the performance of the many available graphical and statistical methodologies used to classify water samples. R-mode, Q-mode, correlation analysis, and principal component analysis were investigated. All the methods were discussed and compared as to their ability to cluster, ease of use, and ease of interpretation. The correlation investigation clarifies the relationship among the lithology, hydrogeology, and anthropogenic. Factor investigation revealed three factors namely; the evaporation process-agriculturalimpact-lithogenic dissolution, the hydrogeological characteristics of the aquifer system, and the surface meteoric water that rechargethe aquifer system. Two main clusters that subdivided into four sub clusters were identified in groundwater system based on hydrogeological and hydrogeochemical data. They reflect the impact of geomedia, hydrogeology, geographic position, and agricultural wastewater. The groundwater is undersaturated with respect to most selected minerals. The groundwater was supersaturated with respect to iron minerals in northern and southern Darb El Arbaein. The partial pressure of CO2 of the groundwater versus saturation index of calcite shows the gradual change in PCO2 from atmospheric to the present aquifer

  13. Hydrological and geochemical constraints on the mechanism of formation of arsenic contaminated groundwater in Sonargaon, Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Itai, Takaaki [Institute for Study of the Earth' s Interior, Okayama University, Misasa, Tottori 682-0193 (Japan)], E-mail: itai-epss@hiroshima-u.ac.jp; Masuda, Harue [Department of Geosciences, Osaka-City University, Sugimoto-tyo, Sumiyoshi, Osaka 558-8585 (Japan); Seddique, Ashraf A. [Department of Geosciences, Osaka-City University, Sugimoto-tyo, Sumiyoshi, Osaka 558-8585 (Japan); Department of Geology, University of Dhaka, Dhaka 1000 (Bangladesh); Mitamura, Muneki [Department of Geosciences, Osaka-City University, Sugimoto-tyo, Sumiyoshi, Osaka 558-8585 (Japan); Maruoka, Teruyuki [Department of Integrative Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8572 (Japan); Li, Xiaodong [Department of Geosciences, Osaka-City University, Sugimoto-tyo, Sumiyoshi, Osaka 558-8585 (Japan); Kusakabe, Minoru [Institute for Study of the Earth' s Interior, Okayama University, Misasa, Tottori 682-0193 (Japan); Dipak, Biswas K. [Department of Geology, University of Dhaka, Dhaka 1000 (Bangladesh); Farooqi, Abida [Department of Geosciences, Osaka-City University, Sugimoto-tyo, Sumiyoshi, Osaka 558-8585 (Japan); Yamanaka, Toshiro [Department of Earth Systems Science, Okayama University, 3-1-1 Tsushima-naka Okayama 700-8530 (Japan); Nakaya, Shinji [Department of Civil Engineering, Shinshu University, Wakazato, Nagano 380-8553 (Japan); Matsuda, Jun-ichi [Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama-tyo, Toyonaka-shi, Osaka 560-0043 (Japan); Ahmed, Kazi Matin [Department of Geology, University of Dhaka, Dhaka 1000 (Bangladesh)

    2008-11-15

    The geochemical characteristics and hydrological constraints of high As groundwater in Sonargaon, in mid-eastern Bangladesh were investigated in order to ascertain the mechanism of As release into the groundwaters from host sediments in the Ganges-Brahmaputra delta. Samples of groundwater were collected from ca. 230 tube wells in both the rainy and dry seasons. Similar to previous studies, high As groundwater was found in the Holocene unconfined aquifer but not in the Pleistocene aquifer. Groundwaters in the Holocene aquifer were of the Ca-Mg-HCO{sub 3} type with major solutes derived from chemical weathering of detrital minerals such as plagioclase and biotite. Groundwater with high As was generally characterized by high NH{sub 4}{sup +}, possibly derived from the agricultural application of fertilizer as suggested by the small variation of {delta}{sup 15}N{sub NH4} (mostly 2-4 per mille ). Concentrations of Fe changed between the rainy and dry seasons by precipitation/dissolution of Fe oxyhydroxide and siderite, whilst there was not an apparent concomitant change in As. Inhomogeneous spatial distribution of {delta}{sup 18}O in the Holocene unconfined aquifer indicates poor mixing of groundwater in the horizontal direction. Spatial variation of redox conditions is associated with localized variations in subsurface permeability and the recharge/discharge cycle of groundwater. Hydrogeochemical data presented in this paper suggest that reduction of Fe oxyhydroxide is not the only mechanism of As mobilization, and chemical weathering of biotite and/or other basic minerals in the Holocene aquifer could also be important as a primary cause of As mobilization.

  14. Hydrogeochemical signatures and evolution of groundwater impacted by the Bayan Obo tailing pond in northwest China

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiang [Institute of Water Sciences and College of Engineering, Peking University, Beijing (China); Shaanxi Key Laboratory of Comprehensive Utilization of Tailing Resources, Shangluo University, Shaanxi (China); Deng, Hailin, E-mail: hailin.deng@gmail.com [CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913 (Australia); Zheng, Chunmiao [Institute of Water Sciences and College of Engineering, Peking University, Beijing (China); School of Environmental Science and Engineering, South University of Science and Technology of China, Shenzhen (China); Department of Geological Science, University of Alabama, Tuscaloosa, AL (United States); Cao, Guoliang [Institute of Water Sciences and College of Engineering, Peking University, Beijing (China)

    2016-02-01

    Uncontrolled leakage from mine tailing ponds can pose a serious environmental threat. Groundwater quality in a semi-arid region with extensive worries about the leakage from one of world's largest tailing ponds is studied herein through an integrated hydrogeochemical analysis and multivariate statistical analysis. Results show that elevated concentrations of NO{sub 2}{sup −}, B, Mn, NH{sub 4}{sup +}, F{sup −}, and SO{sub 4}{sup 2−} in groundwater were probably caused by leakage from the tailing pond and transported with the regional groundwater flow towards downstream Yellow River. While NO{sub 2}{sup −} contamination is only limited to areas close to the pond, high B concentrations persist within the contaminated plume originating from the tailing pond. Our current study shows that there is no geochemical evidence for U and Th contamination in groundwater due to leakage from the Bayan Obo tailing pond. Combining effects which includes regional variations, pond leaking and downstream mixing, mineral precipitation and dissolution, redox processes, ion exchange processes and agricultural activities, controlled groundwater hydrogeochemical signatures in the studied area. This study demonstrate that an increase in knowledge of evolution of groundwater quality by integrating field hydrochemical data and multivariate statistical analysis will help understand major water–rock interactions and provide a scientific basis for protection and rational utilization of groundwater resources in this and other tailing-impacted areas. - Highlights: • Combining hydrogeochemical methods and multivariate statistical analysis. • First reporting geochemical processes in aquifers nearby Bayan Obo REE tailing pond. • No geochemical evidence for uranium and thorium contamination in shallow groundwater.

  15. Application of multivariate statistical technique for hydrogeochemical assessment of groundwater within the Lower Pra Basin, Ghana

    Science.gov (United States)

    Tay, C. K.; Hayford, E. K.; Hodgson, I. O. A.

    2017-06-01

    Multivariate statistical technique and hydrogeochemical approach were employed for groundwater assessment within the Lower Pra Basin. The main objective was to delineate the main processes that are responsible for the water chemistry and pollution of groundwater within the basin. Fifty-four (54) (No) boreholes were sampled in January 2012 for quality assessment. PCA using Varimax with Kaiser Normalization method of extraction for both rotated space and component matrix have been applied to the data. Results show that Spearman's correlation matrix of major ions revealed expected process-based relationships derived mainly from the geochemical processes, such as ion-exchange and silicate/aluminosilicate weathering within the aquifer. Three main principal components influence the water chemistry and pollution of groundwater within the basin. The three principal components have accounted for approximately 79% of the total variance in the hydrochemical data. Component 1 delineates the main natural processes (water-soil-rock interactions) through which groundwater within the basin acquires its chemical characteristics, Component 2 delineates the incongruent dissolution of silicate/aluminosilicates, while Component 3 delineates the prevalence of pollution principally from agricultural input as well as trace metal mobilization in groundwater within the basin. The loadings and score plots of the first two PCs show grouping pattern which indicates the strength of the mutual relation among the hydrochemical variables. In terms of proper management and development of groundwater within the basin, communities, where intense agriculture is taking place, should be monitored and protected from agricultural activities. especially where inorganic fertilizers are used by creating buffer zones. Monitoring of the water quality especially the water pH is recommended to ensure the acid neutralizing potential of groundwater within the basin thereby, curtailing further trace metal

  16. Towards sustainable groundwater management in Karst aquifers in semi-arid environments: Central West Bank, Palestine

    Science.gov (United States)

    Jebreen, H.; Banning, A.; Wohnlich, S.

    2017-12-01

    The Central West Bank (CWB) is characterized by karstified carbonate aquifers in the semiarid climate zone, where groundwater resources are frequently threatened by overexploitation and pollution. Despite often limited system knowledge, quantitative and qualitative factors such as groundwater recharge rate, aquifer parameters, flow and transport dynamics, anthropogenic impacts, and groundwater vulnerability need to be assessed. Therefore, sustainable groundwater use in the CWB is of critical importance. In the present study, we explore the scale of the groundwater problems in CWB as well as the possibility of sustainable management through different scenarios: 1) Managed aquifer recharge using a water balance model, stable isotopes (2H & 18O) and chloride mass balance, 2) Geochemical evolution and renewability of groundwater, and 3) Anthropogenic impacts. A total of 20 spring water samples were collected and analyzed for pH, electrical conductivity, total dissolved solids (TDS), hardness, major-ion chemistry (Cl-, HCO3-, SO42-, Na+, K+, Ca2+ and Mg2+), trace elements (Li, Be, Al, Ba, Tl, Pb, Bi, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, R