WorldWideScience

Sample records for dissipation-induced subcritical flutter

  1. Unfolding the conical zones of the dissipation-induced subcritical flutter for the rotationally symmetrical gyroscopic systems

    OpenAIRE

    Kirillov, Oleg N.

    2008-01-01

    Flutter of an elastic body of revolution spinning about its axis of symmetry is prohibited in the subcritical spinning speed range by the Krein theorem for the Hamiltonian perturbations. Indefinite damping creates conical domains of the subcritical flutter (subcritical parametric resonance) bifurcating into the pockets of two Whitney's umbrellas when non-conservative positional forces are additionally taken into account. This explains why in contrast to the common intuition, but in agreement ...

  2. Unfolding the conical zones of the dissipation-induced subcritical flutter for the rotationally symmetrical gyroscopic systems

    CERN Document Server

    Kirillov, Oleg N

    2008-01-01

    Flutter of an elastic body of revolution spinning about its axis of symmetry is prohibited in the subcritical spinning speed range by the Krein theorem for the Hamiltonian perturbations. Indefinite damping creates conical domains of the subcritical flutter (subcritical parametric resonance) bifurcating into the pockets of two Whitney's umbrellas when non-conservative positional forces are additionally taken into account. This explains why in contrast to the common intuition, but in agreement with experience, symmetry-breaking stiffness variation can promote subcritical friction-induced oscillations of the rotor rather than inhibit them.

  3. Evaluation of four subcritical response methods for on-line prediction of flutter onset in wind-tunnel tests

    Science.gov (United States)

    Ruhlin, C. L.; Watson, J. J.; Ricketts, R. H.; Doggett, R. V., Jr.

    1982-01-01

    Four subcritical response methods were evaluated for on-line use in transonic wind-tunnel tests where the flutter model is excited solely by airstream turbulence. The methods were: randomdec, power-spectral-density, peak-hold, and cross-spectrum. Subcritical response data were obtained during tests in the Langley Transonic Dynamics Tunnel of a cantilevered flutter model wing. The test procedure was to maintain a constant Mach number and increase the dynamic pressure (q) in incremental steps. The four methods provided damping trends by which the flutter mode could be tracked and extrapolated to a flutter-onset q. A hard flutter point was obtained at M = 0.82. The peak-mold and cross-spectrum methods gave reliable results and could be most readily used for on-line testing.

  4. Supercritical as well as subcritical Hopf bifurcation in nonlinear flutter systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Hopf bifurcations of an airfoil flutter system with a cubic nonlinearity are investigated,with the flow speed as the bifurcation parameter.The center manifold theory and complex normal form method are used to obtain the bifurcation equation.Interestingly,for a certain linear pitching stiffness the Hopf bifurcation is both supercritical and subcritical.It is found,mathematically,this is caused by the fact that one coefficient in the bifurcation equation does not contain the first power of the bifurcation parameter.The solutions of the bifurcation equation are validated by the equivalent linearization method and incremental harmonic balance method.

  5. Dissipation-induced instabilities and symmetry

    Institute of Scientific and Technical Information of China (English)

    Oleg N. Kirillov; Ferdinand Verhulst

    2011-01-01

    The paradox of destabilization of a conservative or non-conservative system by small dissipation, or Ziegler's paradox (1952), has stimulated a growing interest in the sensitivity of reversible and Hamiltonian systems with respect to dissipative perturbations. Since the last decade it has been widely accepted that dissipation-induced instabilities are closely related to singularities arising on the stability boundary, associated with Whitney's umbrella. The first explanation of Ziegler's paradox was given (much earlier) by Oene Bottema in 1956. The aspects of the mechanics and geometry of dissipation-induced instabilities with an application to rotor dynamics are discussed.

  6. Flutter clearance of the horizontal tail of the Bellanca Skyrocket II airplane

    Science.gov (United States)

    Ricketts, R. H.; Cazier, F. W., Jr.; Farmer, M. G.

    1982-01-01

    The Skyrocket II is an all composite constructed experimental prototype airplane. A flutter clearance program was conducted on the horizontal tail so that the airplane could be safely flown to acquire natural laminar flow aerodynamic data. Ground vibration test data were used in a lifting surface flutter analysis to predict symmetric and antisymmetric flutter boundaries. Subcritical response data which were acquired during flight tests are compared with the analytical results. The final flutter clearance placard speed was based on flight test data.

  7. Nonlinear Characteristics of Randomly Excited Transonic Flutter

    DEFF Research Database (Denmark)

    Christiansen, Lasse Engbo; Lehn-Schiøler, Tue; Mosekilde, Erik

    2002-01-01

    shown that the self-sustained oscillations arise in a subcritical Hopf bifurcation. However, analysis of the experimental data also reveals that this bifurcation is modified in various ways. We present an outline of the construction of a 6 DOF model of the aeroelastic behavior of the wing structure...... reproduce several of the experimentally observed modifications of the flutter transition. In particular, the models display the characteristic phenomena of coherence resonance....

  8. Dissipation-Induced Heteroclinic Orbits in Tippe Tops

    OpenAIRE

    Bou-Rabee, Nawaf M.; Marsden, Jerrold E.; Romero, Louis A.

    2008-01-01

    This paper demonstrates that the conditions for the existence of a dissipation-induced heteroclinic orbit between the inverted and noninverted states of a tippe top are determined by a complex version of the equations for a simple harmonic oscillator: the modified Maxwell–Bloch equations. A standard linear analysis reveals that the modified Maxwell–Bloch equations describe the spectral instability of the noninverted state and Lyapunov stability of the inverted state. Standard nonlinear analys...

  9. Bayesian analysis of the flutter margin method in aeroelasticity

    Science.gov (United States)

    Khalil, Mohammad; Poirel, Dominique; Sarkar, Abhijit

    2016-12-01

    A Bayesian statistical framework is presented for Zimmerman and Weissenburger flutter margin method which considers the uncertainties in aeroelastic modal parameters. The proposed methodology overcomes the limitations of the previously developed least-square based estimation technique which relies on the Gaussian approximation of the flutter margin probability density function (pdf). Using the measured free-decay responses at subcritical (preflutter) airspeeds, the joint non-Gaussain posterior pdf of the modal parameters is sampled using the Metropolis-Hastings (MH) Markov chain Monte Carlo (MCMC) algorithm. The posterior MCMC samples of the modal parameters are then used to obtain the flutter margin pdfs and finally the flutter speed pdf. The usefulness of the Bayesian flutter margin method is demonstrated using synthetic data generated from a two-degree-of-freedom pitch-plunge aeroelastic model. The robustness of the statistical framework is demonstrated using different sets of measurement data. It will be shown that the probabilistic (Bayesian) approach reduces the number of test points required in providing a flutter speed estimate for a given accuracy and precision.

  10. Stochastic Flutter Analysis

    NARCIS (Netherlands)

    Verhoosel, C.V.; Gutiérrez, M.A.; Hulshoff, S.J.

    2006-01-01

    The field of fluid-structure interaction is combined with the field of stochastics to perform a stochastic flutter analysis. Various methods to directly incorporate the effects of uncertainties in the flutter analysis are investigated. The panel problem with a supersonic fluid flowing over it is con

  11. Supersonic unstalled flutter

    Science.gov (United States)

    Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.

    1978-01-01

    Recently two flutter analyses have been developed at NASA Lewis Research Center to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. The details of the development of the solution to each of these models have been published. The objective of the present paper is to utilize these analyses in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results from this study are correlated against experimental qualitative observation to validate the models.

  12. Dissipation-induced optical nonlinearity at low light levels

    CERN Document Server

    Greenberg, Joel A

    2011-01-01

    We observe a dissipation-induced nonlinear optical process in a gas of cold atoms that gives rise to large nonlinear coupling strengths with high transparency. The nonlinearity results from the simultaneous cooling and crystallization of the gas, and can give rise to efficient Bragg scattering in the form of a six-wave-mixing process at low-light-levels with an extremely large effective fifth-order nonlinear susceptibility of \\chi^(5)= 7.6 x 10-15 (m/V)^4. For large optical gains, collective scattering due to the strong light-matter coupling leads to slow group velocities (~c/105) and long atomic coherence times (~100 {\\mu}s).

  13. Nonlinear dynamics approach of modeling the bifurcation for aircraft wing flutter in transonic speed

    DEFF Research Database (Denmark)

    Matsushita, Hiroshi; Miyata, T.; Christiansen, Lasse Engbo

    2002-01-01

    The procedure of obtaining the two-degrees-of-freedom, finite dimensional. nonlinear mathematical model. which models the nonlinear features of aircraft flutter in transonic speed is reported. The model enables to explain every feature of the transonic flutter data of the wind tunnel tests...... conducted at National Aerospace Laboratory in Japan for a high aspect ratio wing. It explains the nonlinear features of the transonic flutter such as the subcritical Hopf bifurcation of a limit cycle oscillation (LCO), a saddle-node bifurcation, and an unstable limit cycle as well as a normal (linear......) flutter condition with its linear pan. At a final procedure of improve a quantitative matching with the test data. the continuation method for analyzing the bifurcation is extensively used....

  14. Geared-elevator flutter study. [transonic flutter characteristics of empennage

    Science.gov (United States)

    Ruhlin, C. L.; Doggett, R. V., Jr.; Gregory, R. A.

    1976-01-01

    The paper describes an experimental and analytical study of the transonic flutter characteristics of an empennage flutter model having an all-movable horizontal tail with a geared elevator. Two configurations were flutter tested: one with a geared elevator and one with a locked elevator with the model cantilever-mounted on a sting in the wind tunnel. The geared-elevator configuration fluttered experimentally at about 20% higher dynamic pressures than the locked-elevator configuration. The experimental flutter boundary was nearly flat at transonic speeds for both configurations. It was found that an analysis which treated the elevator as a discrete surface predicted flutter dynamic pressure levels better than analyses which treated the stabilizer and elevator as a warped surface. Warped-surface methods, however, predicted more closely the experimental flutter frequencies and Mach number trends.

  15. STUDIES ON FLUTTER PREDICTION

    Directory of Open Access Journals (Sweden)

    Irina-Carmen ANDREI

    2012-03-01

    Full Text Available The purpose of this paper is to study the instability of the dynamic flutter. The justification is expressed by the fact that the occurrence of flutter within the aircraft’s flight envelope results in irreversible structural deformation which consequently leads to serious damage. Therefore the mathematical modeling of this phenomenon and its validation are very important. The instability of the dynamic flutter is characterized by critical speed and critical pulsation of oscillatory movements. In this paper, the quasi-stationary model and the Theodorsen model have been analyzed for calculating the aerodynamic forces and torques, and a comparison of them has been carried out. The fluid-structure coupling is done by rewriting the equations, considering that the forces are given by closed formulas. For the mathematical modeling of the flutter there have been used the p-k and V-g methods based on the Theodorsen model and the quasi-stationary model. In order to modeling the free vortices aerodynamic forces and moments, the equations which describe both the motion of the structure and the fluid flow had to be integrated simultaneously in time. The fluid-structure coupling is considered as a combination of two systems that describe the aeroelastic behavior of the structure.

  16. Subcritical nuclear assembly

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    A Subcritical Nuclear Assembly is a device where the nuclear-fission chain reaction is initiated and maintained using an external neutron source. It is a valuable educational and research tool where in a safe way many reactor parameters can be measured. Here, we have used the Wigner-Seitz method in the six-factor formula to calculate the effective multiplication factor of a subcritical nuclear reactor Nuclear Chicago model 9000. This reactor has approximately 2500 kg of natural uranium heterogeneously distributed in slugs. The reactor uses a {sup 239}PuBe neutron source that is located in the center of an hexagonal array. Using Monte Carlo methods, with the MCNP5 code, a three-dimensional model of the subcritical reactor was designed to estimate the effective multiplication factor, the neutron spectra, the total and thermal neutron fluences along the radial and axial axis. With the neutron spectra in two locations outside the reactor the ambient dose equivalent were estimated. (Author)

  17. The Flutter Shutter Camera Simulator

    Directory of Open Access Journals (Sweden)

    Yohann Tendero

    2012-10-01

    Full Text Available The proposed method simulates an embedded flutter shutter camera implemented either analogically or numerically, and computes its performance. The goal of the flutter shutter is to make motion blur invertible, by a "fluttering" shutter that opens and closes on a well chosen sequence of time intervals. In the simulations the motion is assumed uniform, and the user can choose its velocity. Several types of flutter shutter codes are tested and evaluated: the original ones considered by the inventors, the classic motion blur, and finally several analog or numerical optimal codes proposed recently. In all cases the exact SNR of the deconvolved result is also computed.

  18. The Flutter Shutter Code Calculator

    Directory of Open Access Journals (Sweden)

    Yohann Tendero

    2015-08-01

    Full Text Available The goal of the flutter shutter is to make uniform motion blur invertible, by a"fluttering" shutter that opens and closes on a sequence of well chosen sub-intervals of the exposure time interval. In other words, the photon flux is modulated according to a well chosen sequence calledflutter shutter code. This article provides a numerical method that computes optimal flutter shutter codes in terms of mean square error (MSE. We assume that the observed objects follow a known (or learned random velocity distribution. In this paper, Gaussian and uniform velocity distributions are considered. Snapshots are also optimized taking the velocity distribution into account. For each velocity distribution, the gain of the optimal flutter shutter code with respectto the optimal snapshot in terms of MSE is computed. This symmetric optimization of theflutter shutter and of the snapshot allows to compare on an equal footing both solutions, i.e. camera designs. Optimal flutter shutter codes are demonstrated to improve substantially the MSE compared to classic (patented or not codes. A numerical method that permits to perform a reverse engineering of any existing (patented or not flutter shutter codes is also describedand an implementation is given. In this case we give the underlying velocity distribution fromwhich a given optimal flutter shutter code comes from. The combination of these two numerical methods furnishes a comprehensive study of the optimization of a flutter shutter that includes a forward and a backward numerical solution.

  19. Aircraft vibration and flutter

    Directory of Open Access Journals (Sweden)

    R. R. Aggarwal

    1958-04-01

    Full Text Available "The paper outlines the theoretical and experimental procedure one has to adopt for flutter prevention during the various stages (project, design and prototype of the development of modern aircraft. With the advent of high speed, the aerodynamic coefficients have to be calculated with due regards to the effects of compressibility, finite aspect ratio of the lifting surfaces, sweep back and other peculiar shapes of the wings. The use of thin, small aspect ratio with external masses, necessitates the computation of higher frequency modes of vibration. Single degree of freedom flutter and the effect of control surface non-linearities has also become very important. Thus, it is shown how the availability of high speed computing machines, improved experimental technique for model and full scale testing has not kept pace with the uncertainties associated with the transonic speeds, low aspect ratio and the high frequency modes. Cross-checking of theoretical and experimental results at every stage seem to be the only answer."

  20. Fluttering in Stratified Flows

    Science.gov (United States)

    Lam, Try; Vincent, Lionel; Kanso, Eva

    2016-11-01

    The descent motion of heavy objects under the influence of gravitational and aerodynamic forces is relevant to many branches of engineering and science. Examples range from estimating the behavior of re-entry space vehicles to studying the settlement of marine larvae and its influence on underwater ecology. The behavior of regularly shaped objects freely falling in homogeneous fluids is relatively well understood. For example, the complex interaction of a rigid coin with the surrounding fluid will cause it to either fall steadily, flutter, tumble, or be chaotic. Less is known about the effect of density stratification on the descent behavior. Here, we experimentally investigate the descent of discs in both pure water and in a linearly salt-stratified fluids where the density is varied from 1.0 to 1.14 of that of water where the Brunt-Vaisala frequency is 1.7 rad/sec and the Froude number Fr robots for space exploration and underwater missions.

  1. Accelerator driven sub-critical core

    Science.gov (United States)

    McIntyre, Peter M; Sattarov, Akhdiyor

    2015-03-17

    Systems and methods for operating an accelerator driven sub-critical core. In one embodiment, a fission power generator includes a sub-critical core and a plurality of proton beam generators. Each of the proton beam generators is configured to concurrently provide a proton beam into a different area of the sub-critical core. Each proton beam scatters neutrons within the sub-critical core. The plurality of proton beam generators provides aggregate power to the sub-critical core, via the proton beams, to scatter neutrons sufficient to initiate fission in the sub-critical core.

  2. 14 CFR 27.629 - Flutter.

    Science.gov (United States)

    2010-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.629 Flutter. Each aerodynamic surface of the rotorcraft must be free from flutter under each appropriate speed and power...

  3. FLUTTER SUPPRESSION USING DISTRIBUTEDPIEZOELECTRIC ACTUATORS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A piezoelectric actuator has the benefits of flexibility of its position, without time lag and wide bandpass characteristics. The early results of the wind tunnel flutter suppression test using the piezoeletric actuator were presented in Ref.[1]. A rigid rectangular wing model is constrained by a plunge spring and a pitch spring, and a pair of piezoelectric actuators is bonded on both sides of the plunge spring so as to carry out the active control. Refs.[2,3] reported two flutter suppression wind tunnel tests where the distributed piezoelectric actuators were used. In Ref.[2] low speed wind tunnel tests were conducted with aluminum and composite plate-like rectangular models fully covered by piezoelectric actuators. Flutter speed is increased by 11%. In Ref.[3] a composite plate-like swept back model with piezoceramic actuators bonded on the inboard surface was tested in a transonic wind tunnel and a 12% increment of flutter dynamic pressure was achieved.  In the present investigation, an aluminum plate-like rectangular model with inboard bonded piezoceramic actuators is adopted. Active flutter suppression control law has been designed. A series of analyses and ground tests and, finally, low-speed wind tunnel tests with the active control system opened and closed are conducted. Reasonable results have been obtained.

  4. Some observations on the Houbolt-Rainey and peak-hold methods of flutter onset prediction

    Science.gov (United States)

    Doggett, Robert V., Jr.

    1990-01-01

    A subcritical response method for flutter onset prediction developed by Houbolt and Rainey in 1958 is compared with the Peak-Hold Method which was apparently first applied to flutter onset prediction by Sandford, Abel, and Gray in the early 1970's. The rational argument presented shows that the two methods are not different, but are actually the same. So, because there is an analytical foundation for the Houbolt-Rainey Method, then there is the same analytical foundation for the Peak-Hold Method. Further, it is suggested that, in applying Peak-Hold Method in cases where turbulence is used as the excitation force, the variation of the reciprocal of the response amplitude with the reciprocal of the dynamic pressure to be used to extrapolate to flutter onset rather than the variation with dynamic pressure which is the current practice because the linear trend which is predicted to occur for the former is easier to extrapolate to the flutter condition than the nonlinear trend predicted to occur for the latter.

  5. Real-time flutter analysis

    Science.gov (United States)

    Walker, R.; Gupta, N.

    1984-01-01

    The important algorithm issues necessary to achieve a real time flutter monitoring system; namely, the guidelines for choosing appropriate model forms, reduction of the parameter convergence transient, handling multiple modes, the effect of over parameterization, and estimate accuracy predictions, both online and for experiment design are addressed. An approach for efficiently computing continuous-time flutter parameter Cramer-Rao estimate error bounds were developed. This enables a convincing comparison of theoretical and simulation results, as well as offline studies in preparation for a flight test. Theoretical predictions, simulation and flight test results from the NASA Drones for Aerodynamic and Structural Test (DAST) Program are compared.

  6. Airfoil Aeroelastic Flutter Analysis Based on Modified Leishman-Beddoes Model at Low Mach Number

    Institute of Scientific and Technical Information of China (English)

    SHAO Song; ZHU Qinghua; ZHANG Chenglin; NI Xianping

    2011-01-01

    Based on modified Leishman-Beddoes(L-B)state space model at low Mach number(lower than 0.3),the airfoil aeroelastic system is presented in this paper.The main modifications for L-B model include a new dynamic stall criterion and revisions of normal force and pitching moment coefficient.The bifurcation diagrams,the limit cycle oscillation (LCO)phase plane plots and the time domain response figures are applied to investigating the stall flutter bifurcation behavior of airfoil aeroelastic systems with symmetry or asymmetry.It is shown that the symmetric periodical oscillation happens after subcritical bifurcation caused by dynamic stall,and the asymmetric periodical oscillation,which is caused by the interaction of dynamic stall and static divergence,only happens in the airfoil aeroelastic system with asymmetry.Validations of the modified L-B model and the airfoil aeroelastic system are presented with the experimental airload data of NACA0012 and OA207 and experimental stall flutter data of NACA0012 respectively.Results demonstrate that the airfoil aeroelastic system presented in this paper is effective and accurate,which can be applied to the investigation of airfoil stall flutter at low Mach number.

  7. Subcritical excitation of plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, K.; Itoh, S.; Yagi, M.; Fukuyama, A.

    1996-01-01

    Theory of current-diffusive interchange mode turbulence in plasmas is developed in the presence of collisional transport. Double-valued amplitude of stationary fluctuations is expressed in terms of the pressure gradient. The backward bifurcation is shown to appear near the linear stability boundary. The subcritical nature of the turbulence is explicitly illustrated. Critical pressure gradient at which the transition from collisional transport to the turbulent one is to occur is predicted. This provides a prototype of the transport theory for nonlinear-non-equilibrium systems. (author).

  8. Subcritical excitation of plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka [National Inst. for Fusion Science, Nagoya (Japan); Itoh, Sanae; Yagi, Masatoshi; Fukuyama, Atsushi

    1996-09-01

    Theory of current-diffusive interchange mode turbulence in plasmas in the presence of collisional transport is developed. Amplitude of stationary fluctuations is expressed in terms of the double-valued function of the pressure gradient. The backward bifurcation is shown to appear near the linear stability boundary. The subcritical nature of the turbulence is explicitly illustrated. The critical pressure gradient at which the transition from collisional transport to the turbulent one is to occur is predicted. This work provides a prototype of the transport theory for nonlinear-nonequilibrium systems. (author)

  9. Hiatal hernia squeezing the heart to flutter.

    Science.gov (United States)

    Patel, Arpan; Shah, Rushikesh; Nadavaram, Sravanthi; Aggarwal, Aakash

    2014-04-01

    An 80-year-old woman presented to the emergency department with failure to thrive and weakness for 14 days. Medical history was significant for polio. On admission her electrocardiogram showed atrial flutter, and cardiac enzymes were elevated. Echocardiogram revealed a high pulmonary artery pressure, but no other wall motion abnormalities or valvulopathies. Chest x-ray showed a large lucency likely representing a diaphragmatic hernia. Computed tomographic scan confirmed the hernia. Our patient remained in atrial flutter despite rate control, and thereafter surgery was consulted to evaluate the patient. She underwent hernia repair. After surgery, the patient was taken off rate control and monitored for 72 hours; she did not have any episode of atrial flutter and was discharged with follow up in a week showing no arrhythmia. Her flutter was caused directly by the mechanical effect of the large hiatal hernia pressing against her heart, as the flutter resolved after the operation.

  10. Interval Finite Element Analysis of Wing Flutter

    Institute of Scientific and Technical Information of China (English)

    Wang Xiaojun; Qiu Zhiping

    2008-01-01

    The influences of uncertainties in structural parameters on the flutter speed of wing are studied. On the basis of the deterministic flutter analysis model of wing, the uncertainties in structural parameters are considered and described by interval numbers. By virtue of first-order Taylor series expansion, the lower and upper bound curves of the transient decay rate coefficient versus wind velocity are given. So the interval estimation of the flutter critical wind speed of wing can be obtained, which is more reasonable than the point esti- mation obtained by the deterministic flutter analysis and provides the basis for the further non-probabilistic interval reliability analysis of wing flutter. The flow chart for interval finite element model of flutter analysis of wing is given. The proposed interval finite element model and the stochastic finite element model for wing flutter analysis are compared by the examples of a three degrees of freedorn airfoil and fuselage and a 15° swepthack wing, and the results have shown the effectiveness and feasibility of the presented model. The prominent advantage of the proposed interval finite element model is that only the bounds of uncertain parameters axe required, and the probabilistic distribution densities or other statistical characteristics are not needed.

  11. Supersonic Flutter of Laminated Curved Panels

    Directory of Open Access Journals (Sweden)

    M. Ganapathi

    1995-04-01

    Full Text Available Supersonic flutter analysis of laminated composite curved panels is investigated using doubly-curved, quadrilateral, shear flexible, shell element based on field-consistency approach. The formulation includes transverse shear deformation, in-plane and rotary inertias. The aerodynamic force is evaluated using two-dimensional static aerodynamic approximation for high supersonic flow. Initially, the model developed here is verified for the flutter analysis of flat plates. Numerical results are presented for isotropic, orthotropic and laminated anisotropic curved panels. A detailed parametric study is carried out to observe the effects of aspect and thickness ratios, number of layers, lamination scheme, and boundary conditions on flutter boundary.

  12. Propfan test assessment testbed aircraft flutter model test report

    Science.gov (United States)

    Jenness, C. M. J.

    1987-01-01

    The PropFan Test Assessment (PTA) program includes flight tests of a propfan power plant mounted on the left wind of a modified Gulfstream II testbed aircraft. A static balance boom is mounted on the right wing tip for lateral balance. Flutter analyses indicate that these installations reduce the wing flutter stabilizing speed and that torsional stiffening and the installation of a flutter stabilizing tip boom are required on the left wing for adequate flutter safety margins. Wind tunnel tests of a 1/9th scale high speed flutter model of the testbed aircraft were conducted. The test program included the design, fabrication, and testing of the flutter model and the correlation of the flutter test data with analysis results. Excellent correlations with the test data were achieved in posttest flutter analysis using actual model properties. It was concluded that the flutter analysis method used was capable of accurate flutter predictions for both the (symmetric) twin propfan configuration and the (unsymmetric) single propfan configuration. The flutter analysis also revealed that the differences between the tested model configurations and the current aircraft design caused the (scaled) model flutter speed to be significantly higher than that of the aircraft, at least for the single propfan configuration without a flutter boom. Verification of the aircraft final design should, therefore, be based on flutter predictions made with the test validated analysis methods.

  13. Fan Stall Flutter Flow Mechanism Studied

    Science.gov (United States)

    Lepicovsky, Jan

    2002-01-01

    Modern turbofan engines employ a highly loaded fan stage with transonic or low-supersonic velocities in the blade-tip region. The fan blades are often prone to flutter at off-design conditions. Flutter is a highly undesirable and dangerous self-excited mode of blade oscillations that can result in high-cycle fatigue blade failure. The origins of blade flutter are not fully understood yet. Experimental data that can be used to clarify the origins of blade flutter in modern transonic fan designs are very limited. The Transonic Flutter Cascade Facility at the NASA Glenn Research Center was developed to experimentally study the details of flow mechanisms associated with fan flutter. The cascade airfoils are instrumented to measure high-frequency unsteady flow variations in addition to the steady flow data normally recorded in cascade tests. The test program measures the variation in surface pressure in response to the oscillation of one or more of the cascade airfoils. However, during the initial phases of the program when all airfoils were in fixed positions, conditions were found where significant time variations in the pressures near the airfoil leading edges could be observed.

  14. Method for experimental determination of flutter speed by parameter identification

    Science.gov (United States)

    Nissim, E.; Gilyard, Glenn B.

    1989-01-01

    A method for flight flutter testing is proposed which enables one to determine the flutter dynamic pressure from flights flown far below the flutter dynamic pressure. The method is based on the identification of the coefficients of the equations of motion at low dynamic pressures, followed by the solution of these equations to compute the flutter dynamic pressure. The initial results of simulated data reported in the present work indicate that the method can accurately predict the flutter dynamic pressure, as described. If no insurmountable difficulties arise in the implementation of this method, it may significantly improve the procedures for flight flutter testing.

  15. 14 CFR 29.629 - Flutter and divergence.

    Science.gov (United States)

    2010-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.629 Flutter and divergence. Each aerodynamic surface of the rotorcraft must be free from flutter and divergence under...

  16. Numerical modeling of flutter in a transonic fan

    OpenAIRE

    Milandre, Olivier

    2014-01-01

    Flutter is a self-feeding and potentially destructive vibration that can lead to devastating effects such as broken blades. Using accurate numerical models to predict flutter in the conception of an engine is essential to avoid huge waste of money. The software 2, using the elsA CFD package developed by the French Aerospace Lab, ONERA, is used to perform unsteady calculations and predict flutter margin. The current methodology does not systematically manage to reproduce the expected flutter p...

  17. Modeling of Parameters of Subcritical Assembly SAD

    CERN Document Server

    Petrochenkov, S; Puzynin, I

    2005-01-01

    The accepted conceptual design of the experimental Subcritical Assembly in Dubna (SAD) is based on the MOX core with a nominal unit capacity of 25 kW (thermal). This corresponds to the multiplication coefficient $k_{\\rm eff} =0.95$ and accelerator beam power 1 kW. A subcritical assembly driven with the existing 660 MeV proton accelerator at the Joint Institute for Nuclear Research has been modelled in order to make choice of the optimal parameters for the future experiments. The Monte Carlo method was used to simulate neutron spectra, energy deposition and doses calculations. Some of the calculation results are presented in the paper.

  18. Implementation of the non-flutter design principle

    DEFF Research Database (Denmark)

    Andersen, Michael Styrk; Sahin, Emrah; Laustsen, Benjamin

    2014-01-01

    The non-flutter design principle is introduced. Aerodynamically stable section model tests performed by three different research groups indicate, that flutter might be avoided if the torsional-to-vertical frequency ratio is kept below 1. A case study of a suspension bridge spanning 3:7 km...... with a torsional-to-vertical frequency ratio = 0.89 is presented. Using a multimodal flutter approach and bridge deck flutter derivatives equal to those of a thin airfoil, classical flutter was shown not to occur....

  19. FLUTTER SUPPRESSION USING DISTRIBUTED PIEZOELECTRIC ACTUATORS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Flutter suppression using distributed piezoelectric actuators has been analyzed and tested. In constructing the finite element equation, effects of piezoelectric matrices are investigated. LQG method is used in designing the control law. In reducing the order of the control law, both balance realization and LK methods are used. For the rational approximation of the unsteady aerodynamic forces LS method is improved. In determining the piezoelectric constants d31 a new dynamic response method is developed. Laser vibrameter is used to pick up the model response and in ground resonance test the model is excited by piezoelectric actuators. Reasonable agreement of the wind tunnel flutter suppression test with calculated results is obtained.

  20. Decoupler pylon: wing/store flutter suppressor

    Science.gov (United States)

    Reed, W. H., III (Inventor)

    1982-01-01

    A device for suspending a store from a support such as an aircraft wing and more specifically for increasing the flutter speed of an aircraft flying with attached store and reducing the sensitivity of flutter to changes in the pitch inertia and center of gravity location of the store is described. It comprises softspring where the store pitch mode is decoupled from support modes and a low frequency active control mechanism which maintains store alignment. A pneumatic suspension system both isolates the store in pitch and, under conditions of changing mean load, aligns the store with the wing to which it is attached.

  1. Subcritical convection in an internally heated layer

    Science.gov (United States)

    Xiang, Linyan; Zikanov, Oleg

    2017-06-01

    Thermal convection in a horizontal layer with uniform internal heating and stress-free constant-temperature boundaries is analyzed numerically. The work is motivated by the questions arising in the development of liquid metal batteries, in which convection is induced by the Joule heating of electrolyte. It is demonstrated that three-dimensional convection cells exist at subcritical Rayleigh numbers.

  2. Ground vibration test and flutter analysis of air sampling probe

    Science.gov (United States)

    Ellison, J. F.

    1986-01-01

    The Dryden Flight Research Facility of NASA Ames Research Center conducted a ground vibration test and a flutter analysis of an air sampling probe that was to be mounted on a Convair 990 airplane. The probe was a steel, wing-shaped structure used to gather atmospheric data. The ground vibration test was conducted to update the finite-element model used in the flutter analysis. The analysis predicted flutter speeds well outside the operating flight envelope of the Convair 990 airplane.

  3. Real-time flutter analysis of an active flutter-suppression system on a remotely piloted research aircraft

    Science.gov (United States)

    Gilyard, G. B.; Edwards, J. W.

    1983-01-01

    Flight-test results of the first three flights of an aeroelastic research wing are described. The flight flutter-test technique used to obtain real-time damping estimates from fast-frequency sweep data was obtained and the open-loop flutter boundary determined. Nyquist analyses of sweep maneuvers appear to provide additional valuable information about flutter suppression system operation, both in terms of phase-margin estimates and as a means of evaluating maneuver quality. An error in implementing the flutter-suppression system required in a one-half nominal gain configuration, which caused the wing to be unstable at lower Mach numbers than anticipated, and the vehicle experienced closed-loop flutter on its third flight. Real-time flutter-testing procedures were improved.

  4. YF-16 flight flutter test procedures

    Science.gov (United States)

    Brignac, W. J.; Ness, H. B.; Johnson, M. K.; Smith, L. M.

    1976-01-01

    The Random Decrement technique (Randomdec) was incorporated in procedures for flight testing of the YF-16 lightweight fighter prototype. Damping values obtained substantiate the adequacy of the flutter margin of safety. To confirm the structural modes which were being excited, a spectral analysis of each channel was performed using the AFFTC time/data 1923/50 time series analyzer. Inflight test procedure included the careful monitoring of strip charts, three axis pulses, rolls, and pullups.

  5. Supersonic Chordwise Bending Flutter in Cascades

    Science.gov (United States)

    1975-05-31

    such a flutter boundary can be made by utilizing the trend lines predicted from a supersonic analysis based on supersonic cascade theory (Appendix I...bonding agent was injected via hypodermic needles after the blade tabs were properly inserted, The integrity and repeatability of the mounting of the indi...in conjunction with NASTRAN predictions and supersonic cascade aerodynamic computa- tions. Comparisons between theory and experiment are discussed. DD

  6. Piezo-actuated Vibration and Flutter Control

    OpenAIRE

    S.B. Kandagal; Kartik Venkatraman

    2006-01-01

    The potential application of smart materials is being investigated by various researchers inthe perspective of building intelligent systems. A smart structure consists of distributed actuatorsand sensors with associated processors to analyse and control the structure. Piezoceramics,magnetostrictive materials, electro-rheological fluids, magneto-rheological fluids, shape memoryalloys, fibre optics are quite often used in realising a smart/intelligent system. In this paper,vibration and flutter...

  7. Stall Flutter Control of a Smart Blade Section Undergoing Asymmetric Limit Oscillations

    Directory of Open Access Journals (Sweden)

    Nailu Li

    2016-01-01

    Full Text Available Stall flutter is an aeroelastic phenomenon resulting in unwanted oscillatory loads on the blade, such as wind turbine blade, helicopter rotor blade, and other flexible wing blades. Although the stall flutter and related aeroelastic control have been studied theoretically and experimentally, microtab control of asymmetric limit cycle oscillations (LCOs in stall flutter cases has not been generally investigated. This paper presents an aeroservoelastic model to study the microtab control of the blade section undergoing moderate stall flutter and deep stall flutter separately. The effects of different dynamic stall conditions and the consequent asymmetric LCOs for both stall cases are simulated and analyzed. Then, for the design of the stall flutter controller, the potential sensor signal for the stall flutter, the microtab control capability of the stall flutter, and the control algorithm for the stall flutter are studied. The improvement and the superiority of the proposed adaptive stall flutter controller are shown by comparison with a simple stall flutter controller.

  8. Monte Carlo simulation of a perturbed subcritical core

    Energy Technology Data Exchange (ETDEWEB)

    Jaradat, Mustafa K.; Park, Chang Je [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Jordan Subcritical Assembly (JSA) is designed for the purpose of education, training, and experiment research. Jordan subcritical assembly is considered Jordan's First Nuclear Facility Moving Jordan into the nuclear age. It is a teaching and training experimental facility that is designed to stay in a subcriticality A subcritical assembly is a multiplying system of nuclear fuel and moderator whose effective multiplication factor is less than unity. An extraneous source of neutron is required for the operation in order to compensate for the difference between the production rate of fission neutrons in the fuel and the rate of loss caused by absorption and leakage.

  9. Non-Flutter Design Principle for long Span Bridges

    DEFF Research Database (Denmark)

    Johansson, Jens; Andersen, Michael Styrk; Starch Øvre, Michele

    velocity for a thin airfoil shows an asymptotical behavior. In traditional bridge design the torsional-to-vertical frequency ratio is increased to obtain higher flutter wind velocities. In the present study, we investigate, what we will label the non-flutter design principle, in which the torsional...

  10. Analysis of tiltrotor whirl flutter in time and frequency domain

    DEFF Research Database (Denmark)

    Kim, Taeseong; Shin, SanJoon; Kim, Taehyoun

    2009-01-01

    The whirl flutter phenomenon in a rotor is induced by in-plane hub forces, and imposes a serious limit on the forward speed. In this paper, based on Greenberg’s model, quasi-steady and unsteady aerodynamic forces are formulated to examine the whirl flutter stability for a three-bladed rotor without...

  11. Use of eigenvectors in the solution of the flutter equation

    CSIR Research Space (South Africa)

    Van Zyl, Lourens H

    1993-07-01

    Full Text Available The use of eigenvectors to assign eigenvalues to modes for the p-k formulation of the flutter equation is described. The procedure has the potential to overcome some of the problems of the determinant iteration procedure to solve the flutter...

  12. Comparisons of bridges flutter derivatives and generalized ones

    Institute of Scientific and Technical Information of China (English)

    Fuyou XU; Airong CHEN; Zhe ZHANG; Cailiang HUANG

    2009-01-01

    The causes of the nonlinearity of self-excited aerodynamic force of bridge are interpreted from such two aspects as amplitude and wind velocity. The concept of "generalized flutter derivative" is proposed, and its physical meaning is illustrated. The graphs of the general-ized flutter derivatives of plate and Sutong Bridge section model are plotted. The characteristics of all generalized flutter derivatives are compared and analyzed, and their superiorities are verified. The results indicate that the physical meaning of generalized flutter derivatives are more explicit compared to the traditional ones. It is more convenient to understand the nonlinearity properties of self-excited aerodynamic force of bridge according to the generalized flutter derivatives graphs with the wind velocity as the horizontal coordinate.

  13. Preliminary study of effects of winglets on wing flutter

    Science.gov (United States)

    Doggett, R. V., Jr.; Farmer, M. G.

    1976-01-01

    Some experimental flutter results are presented over a Mach number range from about 0.70 to 0.95 for a simple, swept, tapered, flat-plate wing model having a planform representative of subsonic transport airplanes and for the same wing model equipped with two different upper surface winglets. Both winglets had the same planform and area (about 2 percent of the basic-wing area); however, one weighed about 0.3 percent of the basic-wing weight, and the other weighed about 1.8 percent of the wing weight. The addition of the lighter winglet reduced the wing-flutter dynamic pressure by about 3 percent; the heavier winglet reduced the wing-flutter dynamic pressure by about 12 percent. The experimental flutter results are compared at a Mach number of 0.80 with analytical flutter results obtained by using doublet-lattice and lifting-surface (kernel-function) unsteady aerodynamic theories.

  14. Neutrino Physics with Accelerator Driven Subcritical Reactors

    CERN Document Server

    Ciuffoli, Emilio; Zhao, Fengyi

    2015-01-01

    Accelerator driven system (ADS) subcritical nuclear reactors are under development around the world. They will be intense sources of free, 30-50 MeV antimuon decay at rest antimuon neutrinos. These ADS reactor neutrinos can provide a robust test of the LSND anomaly and a precise measurement of the leptonic CP-violating phase delta, including sign(cos(delta)). The first phase of many ADS programs includes the construction of a low energy, high intensity proton or deuteron accelerator, which can yield competitive bounds on sterile neutrinos.

  15. Subcritical water extraction of lipids from wet algal biomass

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Shuguang; Reddy, Harvind K.; Schaub, Tanner; Holguin, Francisco Omar

    2016-05-03

    Methods of lipid extraction from biomass, in particular wet algae, through conventionally heated subcritical water, and microwave-assisted subcritical water. In one embodiment, fatty acid methyl esters from solids in a polar phase are further extracted to increase biofuel production.

  16. Subcritical water extraction of lipids from wet algal biomass

    Science.gov (United States)

    Deng, Shuguang; Reddy, Harvind K.; Schaub, Tanner; Holguin, Francisco Omar

    2016-05-03

    Methods of lipid extraction from biomass, in particular wet algae, through conventionally heated subcritical water, and microwave-assisted subcritical water. In one embodiment, fatty acid methyl esters from solids in a polar phase are further extracted to increase biofuel production.

  17. Detection of subcritical crack propagation for concrete dams

    Institute of Scientific and Technical Information of China (English)

    BAO TengFei; YU Hong

    2009-01-01

    Subcritical propagation of cracks is a warning sign of fracture.If such propagation is detected at an early stage,timely maintenance measures can be taken to prevent the failure of structures.To detect the subcritical propagation of a crack,the crack needs to be monitored continuously in a long term,which is not realistic under certain conditions.However,cracks in concrete dams can be monitored continuously by dam monitoring to offer possible detection for subcritical propagation.In this paper,with measured crack openings from dam monitoring,a state equation for characterizing crack development is established based on the grey system theory.The relation between the stability of the equation and the subcritical crack propagation is investigated,then a criterion is proposed for detecting subcritical propagation.An example demonstrates the validity of the criterion and its potential for practical application.

  18. Interactive flutter analysis and parametric study for conceptual wing design

    Science.gov (United States)

    Mukhopadhyay, Vivek

    1995-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate the flutter instability boundary of a flexible cantilever wing, when well defined structural and aerodynamic data are not available, and then study the effect of change in Mach number, dynamic pressure, torsional frequency, sweep, mass ratio, aspect ratio, taper ratio, center of gravity, and pitch inertia, to guide the development of the concept. The software was developed on MathCad (trademark) platform for Macintosh, with integrated documentation, graphics, database and symbolic mathematics. The analysis method was based on nondimensional parametric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on torsional stiffness, sweep, mass ratio, aspect ratio, center of gravity location and pitch inertia radius of gyration. The plots were compiled in a Vaught Corporation report from a vast database of past experiments and wind tunnel tests. The computer program was utilized for flutter analysis of the outer wing of a Blended Wing Body concept, proposed by McDonnell Douglas Corporation. Using a set of assumed data, preliminary flutter boundary and flutter dynamic pressure variation with altitude, Mach number and torsional stiffness were determined.

  19. A CFD analysis of controlled flutter phenomenon

    Directory of Open Access Journals (Sweden)

    Thirusangu Velmurugan

    2016-01-01

    Full Text Available In the present study, the concept of aero elastic wind energy generator is utilized wind turbines and it applied to produce electricity at low wind speeds. Flutter is the mechanism of dynamic instability in which the energy can be extracted from the wind. This energy might possibly transform into electric power. A straight rectangular wing with single degree of freedom at stalling angle is employed to do suitable work for producing power. A computational model of aero elastic wind energy generator is developed by using ICEM CFD and the flow analysis is carried out at different speeds for the prediction of co-efficient of power for the proposed device. Further a small model is experimentally fabricated and tested in a wind tunnel with different velocities using non-linear theory to predict the power co-efficient of a model. The test results from experiment are compared with the computational results. Thus it is evident that the correlated results are accurate within the acceptable range. The input from the flow analysis is used for structural analysis in ANSYS. The frequency, amplitude of oscillation and phase response of the proposed system can be obtained and it compared with the numerical values from MATLAB simulation of the same system to ensure for obtaining sustained oscillation which is capable of producing power. The flutter mechanism is having the advantage of producing power at very low velocity, eventhough low efficiency.

  20. Supersonic stall flutter of high-speed fans

    Science.gov (United States)

    Adamczyk, J. J.; Stevans, W.; Jutras, R.

    1981-01-01

    An analytical model is proposed for predicting the onset of supersonic stall bending flutter in high-speed rotors. The analysis is based on a modified two-dimensional, compressible, unsteady actuator disk theory. The stability boundary predicted by the analysis is shown to be in good agreement with the measured boundary of a high speed fan. The prediction that the flutter mode would be a forward traveling wave sensitive to wheel speed and aerodynamic loading is confirmed by experimental measurements. In addition, the analysis shows that reduced frequency and dynamic head also play a significant role in establishing the supersonic stall bending flutter boundary of an unshrouded fan.

  1. Prevention of atrial flutter with cryoablation may be proarrhythmogenic

    DEFF Research Database (Denmark)

    Lukac, Peter; Hjortdal, Vibeke E; Pedersen, Anders K;

    2007-01-01

    BACKGROUND: Atrial flutter is a serious problem after surgery for congenital heart disease. METHODS: We performed an intraoperative linear one-minute cryolesion between a right atriotomy and the tricuspid annulus to prevent atrial flutter in 17 consecutive adult patients undergoing surgery...... for congenital heart disease. Coronary angiography and electrophysiology study using an electroanatomic mapping system to assess the conduction across the line and to try to induce atrial flutter were performed three months after the operation in 15 patients. RESULTS: Eleven patients had bidirectional block...

  2. GVT-Based Ground Flutter Test without Wind Tunnel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc (ZONA) and Arizona State University (ASU) propose a R&D effort to develop a ground flutter testing system without wind tunnel, called the...

  3. GVT-Based Ground Flutter Test without Wind Tunnel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc (ZONA) and Arizona State University (ASU) propose a R&D effort to further develop the ground flutter testing system in place of a wind...

  4. Wing/store flutter with nonlinear pylon stiffness

    Science.gov (United States)

    Desmarais, R. N.; Reed, W. H., III

    1980-01-01

    Recent wind tunnel tests and analytical studies show that a store mounted on a pylon with soft pitch stiffness provides substantial increase in flutter speed of fighter aircraft and reduces dependency of flutter on mass and inertia of the store. This concept, termed the decoupler pylon, utilizes a low frequency control system to maintain pitch alignment of the store during maneuvers and changing flight conditions. Under rapidly changing transient loads, however, the alignment control system may allow the store to momentarily bottom against a relatively stiff backup structure in which case the pylon stiffness acts as a hardening nonlinear spring. Such structural nonlinearities are known to affect not only the flutter speed but also the basic behavior of the instability. The influence of pylon stiffness nonlinearities or the flutter characteristics of wing mounted external stores is examined.

  5. Eigenspace design techniques for active flutter suppression

    Science.gov (United States)

    Garrard, W. L.; Liebst, B. S.

    1984-01-01

    The application of eigenspace design techniques to an active flutter suppression system for the DAST ARW-2 research drone is examined. Eigenspace design techniques allow the control system designer to determine feedback gains which place controllable eigenvalues in specified configurations and which shape eigenvectors to achieve desired dynamic response. Eigenspace techniques were applied to the control of lateral and longitudinal dynamic response of aircraft. However, little was published on the application of eigenspace techniques to aeroelastic control problems. This discussion will focus primarily on methodology for design of full-state and limited-state (output) feedback controllers. Most of the states in aeroelastic control problems are not directly measurable, and some type of dynamic compensator is necessary to convert sensor outputs to control inputs. Compensator design are accomplished by use of a Kalman filter modified if necessary by the Doyle-Stein procedure for full-state loop transfer function recovery, by some other type of observer, or by transfer function matching.

  6. Robust control design techniques for active flutter suppression

    Science.gov (United States)

    Ozbay, Hitay; Bachmann, Glen R.

    1994-01-01

    In this paper, an active flutter suppression problem is studied for a thin airfoil in unsteady aerodynamics. The mathematical model of this system is infinite dimensional because of Theodorsen's function which is irrational. Several second order approximations of Theodorsen's function are compared. A finite dimensional model is obtained from such an approximation. We use H infinity control techniques to find a robustly stabilizing controller for active flutter suppression.

  7. Flutter suppression of plates using passive constrained viscoelastic layers

    Science.gov (United States)

    Cunha-Filho, A. G.; de Lima, A. M. G.; Donadon, M. V.; Leão, L. S.

    2016-10-01

    Flutter in aeronautical panels is a self-excited aeroelastic phenomenon which occurs during supersonic flights due to dynamic instability of inertia, elastic and aerodynamic forces of the system. In the flutter condition, when the critical aerodynamic pressure is reached, the vibration amplitudes of the panel become dynamically unstable and increase exponentially with time, significantly affecting the fatigue life of the existing aeronautical components. Thus, in this paper, the interest is to investigate the possibility reducing the effects of the supersonic aeroelastic instability of rectangular plates by applying passive constrained viscoelastic layers. The rationale for such study is the fact that as the addition of viscoelastic materials provides decreased vibration amplitudes it becomes important to quantify the suppression of plate flutter coalescence modes that can be obtained. Moreover, despite the fact that much research on the suppression of panel flutter has been carried out by using passive, semi-active and active control techniques, few works have been proposed to deal with the problem of predicting the flutter boundary of aeroviscoelastic systems, since they must conveniently account for the frequency- and temperature-dependent behavior of the viscoelastic material. After the presentation of the theoretical foundations of the methodology, the description of a numerical study on the flutter analysis of a three-layer sandwich plate is addressed.

  8. Wing flutter boundary prediction using unsteady Euler aerodynamic method

    Science.gov (United States)

    Lee-Rausch, Elizabeth M.; Batina, John T.

    1993-01-01

    Modifications to an existing 3D implicit upwind Euler/Navier-Stokes code for the aeroelastic analysis of wings are described. These modifications include the incorporation of a deforming mesh algorithm and the addition of the structural equations of motion for their simultaneous time-integration with the governing flow equations. The paper gives a brief description of these modifications and presents unsteady calculations which check the modifications to the code. Euler flutter results for an isolated 45 deg swept-back wing are compared with experimental data for seven freestream Mach numbers which define the flutter boundary over a range of Mach number from 0.499 to 1.14. These comparisons show good agreement in flutter characteristics for freestream Mach numbers below unity. For freestream Mach numbers above unity, the computed aeroelastic results predict a premature rise in the flutter boundary as compared with the experimental boundary. Steady and unsteady contours of surface Mach number and pressure are included to illustrate the basic flow characteristics of the time-marching flutter calculations and to aid in identifying possible causes for the premature rise in the computational flutter boundary.

  9. Subcritical water extraction of bioactive compounds from dry loquat ...

    African Journals Online (AJOL)

    ERASTO

    In this study, the efficacy of subcritical water extraction (SWE) technique was assessed by comparing .... the inlet valve remained opened until the temperature rose to the set temperature and for an ..... Supercritical CO2 extraction ofEucalyptus.

  10. Structural changes in microcrystalline cellulose in subcritical water treatment.

    Science.gov (United States)

    Tolonen, Lasse K; Zuckerstätter, Gerhard; Penttilä, Paavo A; Milacher, Walter; Habicht, Wilhelm; Serimaa, Ritva; Kruse, Andrea; Sixta, Herbert

    2011-07-11

    Subcritical water is a high potential green chemical for the hydrolysis of cellulose. In this study microcrystalline cellulose was treated in subcritical water to study structural changes of the cellulose residues. The alterations in particle size and appearance were studied by scanning electron microscopy (SEM) and those in the degree of polymerization (DP) and molar mass distributions by gel permeation chromatography (GPC). Further, changes in crystallinity and crystallite dimensions were quantified by wide-angle X-ray scattering and (13)C solid-state NMR. The results showed that the crystallinity remained practically unchanged throughout the treatment, whereas the size of the remaining cellulose crystallites increased. Microcrystalline cellulose underwent significant depolymerization in subcritical water. However, depolymerization leveled off at a relatively high degree of polymerization. The molar mass distributions of the residues showed a bimodal form. We infer that cellulose gets dissolved in subcritical water only after extensive depolymerization.

  11. Astrobionibbler: In Situ Microfluidic Subcritical Water Extraction of Amino Acids

    Science.gov (United States)

    Noell, A. C.; Fisher, A. M.; Takano, N.; Fors-Francis, K.; Sherrit, S.; Grunthaner, F.

    2016-10-01

    A fluidic-chip based instrument for subcritical water extraction (SCWE) of amino acids and other organics from powder samples has been developed. A variety of soil analog extractions have been performed to better understand SCWE capabilities.

  12. Kinetics of Sub-Critical Bubbles and the Electroweak Transition

    CERN Document Server

    Gelmini, Graciela B; Gelmini, Graciela; Gleiser, Marcelo

    1994-01-01

    We investigate the role of large amplitude sub-critical thermal fluctuations in the dynamics of first order phase transitions. In particular, we obtain a kinetic equation for the number density of sub-critical fluctuations of the broken-symmetric phase within the symmetric phase, modeled as spherical bubbles, and solve it analytically for temperatures above the critical temperature. We study the approach to equilibrium and obtain the equilibrium distribution of sub-critical bubbles of the unstable phase by examining three possible mechanisms responsible for their removal; their shrinking, their coupling to thermal noise, and by thermal fluctuations of the true vacuum inside them. We show that for sufficiently strong transitions, either the shrinking or the coupling to thermal noise dominate the dynamics. As the strength of the transition weakens we show that sub-critical fluctuations become progressively more important, as a larger fraction of the total volume is occupied by the broken-symmetric phase, until ...

  13. Parametric studies on relationships between flutter derivatives of slender bridge (I)

    Institute of Scientific and Technical Information of China (English)

    Xu Xu

    2009-01-01

    Relationships between flutter derivatives of slender bridge are investigated based on our previously proposed semi-analytical flutter derivatives of flexible structure.The intrinsic relations are validated with test data of flutter derivatives of two bridges.Changes in flutter derivatives with the aerodynamic center, rotation speed, and angle variation are also studied by using a parametric method. The results show correctness of the proposed expressions of flutter derivatives given by authors in Ref.[1], and indicate that certain relations exist between these derivatives. It is also shown that semi-analytical flutter derivatives are applicable to bridges with a streamlined cross-section.

  14. On-Line Flutter Prediction Tool for Wind Tunnel Flutter Testing using Parameter Varying Estimation Methodology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes to develop an on-line flutter prediction tool using the parameter varying estimation (PVE) methodology, called the PVE Toolbox,...

  15. On-Line Flutter Prediction Tool for Wind Tunnel Flutter Testing using Parameter Varying Estimation Methodology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes to develop an on-line flutter prediction tool for wind tunnel model using the parameter varying estimation (PVE) technique to...

  16. Quantum decoherence of subcritical bubble in electroweak phase transition

    CERN Document Server

    Shiromizu, T

    1995-01-01

    In a weakly first order phase transition the typical scale of a subcritical bubble calculated in our previous papers turned out to be too small. At this scale quantum fluctuations may dominate and our previous classical result may be altered. So we examine the critical size of a subcritical bubble where quantum-to-classical transition occurs through quantum decoherence. We show that this critical size is almost equal to the typical scale which we previously obtained.

  17. Pulsed neutron source based on accelerator-subcritical-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Makoto; Noda, Akira; Iwashita, Yoshihisa; Okamoto, Hiromi; Shirai, Toshiyuki [Kyoto Univ., Uji (Japan). Inst. for Chemical Research

    1997-03-01

    A new pulsed neutron source which consists of a 300MeV proton linac and a nuclear fuel subcritical assembly is proposed. The proton linac produces pulsed spallation neutrons, which are multipied by the subcritical assembly. A prototype proton linac that accelerates protons up to 7MeV has been developed and a high energy section of a DAW structure is studied with a power model. Halo formations in high intensity beam are also being studied. (author)

  18. Subcritical growth of natural hydraulic fractures

    Science.gov (United States)

    Garagash, D.

    2014-12-01

    Joints are the most common example of brittle tensile failure in the crust. Their genesis at depth is linked to the natural hydraulic fracturing, which requires pore fluid pressure in excess of the minimum in situ stress [Pollard and Aidyn, JSG1988]. Depending on the geological setting, high pore pressure can result form burial compaction of interbedded strata, diagenesis, or tectonics. Common to these loading scenarios is slow build-up of pore pressure over a geological timescale, until conditions for initiation of crack growth are met on favorably oriented/sized flaws. The flaws can vary in size from grain-size cracks in igneous rocks to a fossil-size flaws in clastic rock, and once activated, are inferred to propagate mostly subcritically [Segall JGR 1984; Olson JGR 1993]. Despite many observational studies of natural hydraulic fractures, the modeling attempts appear to be few [Renshaw and Harvey JGR 1994]. Here, we use boundary integral formulation for the pore fluid inflow from the permeable rock into a propagating joint [Berchenko et al. IJRMMS 1997] coupled with the criteria for subcritical propagation assisted by the environmental effects of pore fluid at the crack tip to solve for the evolution of a penny-shape joint, which, in interbedded rock, may eventually evolve to short-blade geometry (propagation confined to a bed). Initial growth is exceedingly slow, paced by the stress corrosion reaction kinetics at the crack tip. During this stage the crack is fully-drained (i.e. the fluid pressure in the crack is equilibrated with the ambient pore pressure). This "slow" stage is followed by a rapid acceleration, driven by the increase of the mechanical stress intensity factor with the crack length, towards the terminal joint velocity. We provide an analytical expression for the latter as a function of the rock diffusivity, net pressure loading at the initiation (or flaw lengthscale), and parameters describing resistance to fracture growth. Due to a much slower

  19. Subcritical crack growth in two titanium alloys.

    Science.gov (United States)

    Williams, D. N.

    1973-01-01

    Measurement of subcritical crack growth during static loading of precracked titanium alloys in salt water using samples too thin for plane strain loading to predominate was examined as a method for determining the critical stress intensity for crack propagation in salt water. Significant internal crack growth followed by arrest was found at quite low stress intensities, but crack growth rates were relatively low. Assuming these techniques provided a reliable measurement of the critical stress intensity, the value for annealed Ti-4Al-1.5Mo-0.5V alloy was apparently about 35 ksi-in. to the 1/2 power, while that for annealed Ti-4Al-3Mo-1V was below 45 ksi-in. to the 1/2 power. Crack growth was also observed in tests conducted in both alloys in an air environment. At 65 ksi-in. to the 1/2 power, the extent of crack growth was greater in air than in salt water. Ti-4Al-3Mo-1V showed arrested crack growth in air at a stress intensity of 45 ksi-in. to the 1/2 power.

  20. Supersonic Stall Flutter of High Speed Fans. [in turbofan engines

    Science.gov (United States)

    Adamczyk, J. J.; Stevens, W.; Jutras, R.

    1981-01-01

    An analytical model is developed for predicting the onset of supersonic stall bending flutter in axial flow compressors. The analysis is based on a modified two dimensional, compressible, unsteady actuator disk theory. It is applied to a rotor blade row by considering a cascade of airfoils whose geometry and dynamic response coincide with those of a rotor blade element at 85 percent of the span height (measured from the hub). The rotor blades are assumed to be unshrouded (i.e., free standing) and to vibrate in their first flexural mode. The effects of shock waves and flow separation are included in the model through quasi-steady, empirical, rotor total-pressure-loss and deviation-angle correlations. The actuator disk model predicts the unsteady aerodynamic force acting on the cascade blading as a function of the steady flow field entering the cascade and the geometry and dynamic response of the cascade. Calculations show that the present model predicts the existence of a bending flutter mode at supersonic inlet Mach numbers. This flutter mode is suppressed by increasing the reduced frequency of the system or by reducing the steady state aerodynamic loading on the cascade. The validity of the model for predicting flutter is demonstrated by correlating the measured flutter boundary of a high speed fan stage with its predicted boundary. This correlation uses a level of damping for the blade row (i.e., the log decrement of the rotor system) that is estimated from the experimental flutter data. The predicted flutter boundary is shown to be in good agreement with the measured boundary.

  1. Complex Mode Frequency Iteration Method for Flutter Analysis of 2-DOF Systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    For a vibration system with 2-DOF of bend and torsion, itscritical flutter wind speed can be calculated by using complex mode frequency iteration (CMFI) method based on MatLab 5.2, the results of which are in agree with those acquired by wind tunnel test. Not only critical flutter wind speed, but also vibration characteristic of a system under different wind speeds can be determined. CMFI method is suitable for both of separated-flow torsional flutter and classic coupling flutter analysis, which is presented by flutter analysis of an ideal thin plate and a bluff bridge deck. Furthermore, it is proved through the investigation of the relationship between flutter derivatives and its critical flutter wind speed that coupling aerodynamic derivatives are necessary for classic coupling flutter to occur.

  2. Late atypical atrial flutter after ablation of atrial fibrillation.

    Science.gov (United States)

    Ferreira, Raquel; Primo, João; Adão, Luís; Gonzaga, Anabela; Gonçalves, Helena; Santos, Rui; Fonseca, Paulo; Santos, José; Gama, Vasco

    2016-10-01

    Cardiac surgery for structural heart disease (often involving the left atrium) and radiofrequency catheter ablation of atrial fibrillation have led to an increased incidence of regular atrial tachycardias, often presenting as atypical flutters. This type of flutter is particularly common after pulmonary vein isolation, especially after extensive atrial ablation including linear lesions and/or defragmentation. The authors describe the case of a 51-year-old man, with no relevant medical history, referred for a cardiology consultation in 2009 for paroxysmal atrial fibrillation. After failure of antiarrhythmic therapy, he underwent catheter ablation, with criteria of acute success. Three years later he again suffered palpitations and atypical atrial flutter was documented. The electrophysiology study confirmed the diagnosis of atypical left flutter and reappearance of electrical activity in the right inferior pulmonary vein. This vein was again ablated successfully and there has been no arrhythmia recurrence to date. In an era of frequent catheter ablation it is essential to understand the mechanism of this arrhythmia and to recognize such atypical flutters.

  3. Analytical and experimental investigation of flutter suppression by piezoelectric actuation

    Science.gov (United States)

    Heeg, Jennifer

    1993-01-01

    The objective of this research was to analytically and experimentally study the capabilities of piezoelectric plate actuators for suppressing flutter. Piezoelectric materials are characterized by their ability to produce voltage when subjected to a mechanical strain. The converse piezoelectric effect can be utilized to actuate a structure by applying a voltage. For this investigation, a two-degree-of-freedom wind tunnel model was designed, analyzed, and tested. The model consisted of a rigid wing and a flexible mount system that permitted a translational and a rotational degree of freedom. The model was designed such that flutter was encountered within the testing envelope of the wind tunnel. Actuators made of piezoelectric material were affixed to leaf springs of the mount system. Command signals, applied to the piezoelectric actuators, exerted control over the damping and stiffness properties. A mathematical aeroservoelastic model was constructed by using finite element methods, laminated plate theory, and aeroelastic analysis tools. Plant characteristics were determined from this model and verified by open loop experimental tests. A flutter suppression control law was designed and implemented on a digital control computer. Closed loop flutter testing was conducted. The experimental results represent the first time that adaptive materials have been used to actively suppress flutter. They demonstrate that small, carefully placed actuating plates can be used effectively to control aeroelastic response.

  4. Epistemic uncertainty quantification in flutter analysis using evidence theory

    Institute of Scientific and Technical Information of China (English)

    Tang Jian; Wu Zhigang; Yang Chao

    2015-01-01

    Aimed at evaluating the structural stability and flutter risk of the system, this paper man-ages to quantify epistemic uncertainty in flutter analysis using evidence theory, including both para-metric uncertainty and method selection uncertainty, on the basis of information from limited experimental data of uncertain parameters. Two uncertain variables of the actuator coupling system with unknown probability distributions, that is bending and torsional stiffness, which are both described with multiple intervals and the basic belief assignment (BBA) extricated from the modal test of actuator coupling systems, are taken into account. Considering the difference in dealing with experimental data by different persons and the reliability of various information sources, a new combination rule of evidence––the generalized lower triangular matrices method is formed to acquire the combined BBA. Finally the parametric uncertainty and the epistemic uncertainty of flut-ter analysis method selection are considered in the same system to realize quantification. A typical rudder of missile is selected to examine the present method, and the dangerous range of velocity as well as relevant belief and plausibility functions is obtained. The results suggest that the present method is effective in obtaining the lower and upper bounds of flutter probability and assessing flut-ter risk of structures with limited experimental data of uncertain parameters and the belief of dif-ferent methods.

  5. Predicting Flutter and Forced Response in Turbomachinery

    Science.gov (United States)

    VanZante, Dale E.; Adamczyk, John J.; Srivastava, Rakesh; Bakhle, Milind A.; Shabbir, Aamir; Chen, Jen-Ping; Janus, J. Mark; To, Wai-Ming; Barter, John

    2005-01-01

    TURBO-AE is a computer code that enables detailed, high-fidelity modeling of aeroelastic and unsteady aerodynamic characteristics for prediction of flutter, forced response, and blade-row interaction effects in turbomachinery. Flow regimes that can be modeled include subsonic, transonic, and supersonic, with attached and/or separated flow fields. The three-dimensional Reynolds-averaged Navier-Stokes equations are solved numerically to obtain extremely accurate descriptions of unsteady flow fields in multistage turbomachinery configurations. Blade vibration is simulated by use of a dynamic-grid-deformation technique to calculate the energy exchange for determining the aerodynamic damping of vibrations of blades. The aerodynamic damping can be used to assess the stability of a blade row. TURBO-AE also calculates the unsteady blade loading attributable to such external sources of excitation as incoming gusts and blade-row interactions. These blade loadings, along with aerodynamic damping, are used to calculate the forced responses of blades to predict their fatigue lives. Phase-lagged boundary conditions based on the direct-store method are used to calculate nonzero interblade phase-angle oscillations; this practice eliminates the need to model multiple blade passages, and, hence, enables large savings in computational resources.

  6. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    Science.gov (United States)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  7. A novel concept for CRIEC-driven subcritical research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nieto, M.; Miley, G.H. [Illinois Univ., Fusion Studies Lab., Dept. of Nuclear, Plasma, and Radiological Engineering, Urbana, IL (United States)

    2001-07-01

    A novel scheme is proposed to drive a low-power subcritical fuel assembly by means of a long Cylindrical Radially-convergent Inertial Electrostatic Confinement (CRIEC) used as a neutron source. The concept is inherently safe in the sense that the fuel assembly remains subcritical at all times. Previous work has been done for the possible implementation of CRIEC as a subcritical assembly driver for power reactors. However, it has been found that the present technology and stage of development of IEC-based neutron sources can not meet the neutron flux requirements to drive a system as big as a power reactor. Nevertheless, smaller systems, such as research and training reactors, could be successfully driven with levels of neutron flux that seem more reasonable to be achieved in the near future by IEC devices. The need for custom-made expensive nuclear fission fuel, as in the case of the TRIGA reactors, is eliminated, and the CRIEC presents substantial advantages with respect to the accelerator-driven subcritical reactors in terms of simplicity and cost. In the present paper, a conceptual design for a research/training CRIEC-driven subcritical assembly is presented, emphasizing the description, principle of operation and performance of the CRIEC neutron source, highlighting its advantages and discussing some key issues that require study for the implementation of this concept. (author)

  8. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  9. Scattering of gravity waves in subcritical flows over an obstacle

    CERN Document Server

    Robertson, Scott; Parentani, Renaud

    2016-01-01

    We numerically study the scattering coefficients of linear water waves on stationary flows above a localized obstacle. We compare the scattering on trans- and subcritical flows, and then focus on the latter which have been used in recent analog gravity experiments. The main difference concerns the magnitude of the mode amplification: whereas transcritical flows display a large amplification (which is generally in good agreement with the Hawking prediction), this effect is heavily suppressed in subcritical flows. This is due to the transmission across the obstacle for frequencies less than some critical value. As a result, subcritical flows display high- and low-frequency behaviors separated by a narrow band around the critical frequency. In the low-frequency regime, transmission of long wavelengths is accompanied by non-adiabatic scattering into short wavelengths, whose spectrum is approximately linear in frequency. By contrast, in the high-frequency regime, no simple description seems to exist. In particular...

  10. Modeling of the CTEx subcritical unit using MCNPX code

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Avelino [Divisao de Defesa Quimica, Biologica e Nuclear. Centro Tecnologico do Exercito - CTEx, Guaratiba, Rio de Janeiro, RJ (Brazil); Silva, Ademir X. da, E-mail: ademir@con.ufrj.br [Programa de Engenharia Nuclear. Universidade Federal do Rio de Janeiro - UFRJ Centro de Tecnologia, Rio de Janeiro, RJ (Brazil); Rebello, Wilson F. [Secao de Engenharia Nuclear - SE/7 Instituto Militar de Engenharia - IME Rio de Janeiro, RJ (Brazil); Cunha, Victor L. Lassance [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The present work aims at simulating the subcritical unit of Army Technology Center (CTEx) namely ARGUS pile (subcritical uranium-graphite arrangement) by using the computational code MCNPX. Once such modeling is finished, it could be used in k-effective calculations for systems using natural uranium as fuel, for instance. ARGUS is a subcritical assembly which uses reactor-grade graphite as moderator of fission neutrons and metallic uranium fuel rods with aluminum cladding. The pile is driven by an Am-Be spontaneous neutron source. In order to achieve a higher value for k{sub eff}, a higher concentration of U235 can be proposed, provided it safely remains below one. (author)

  11. Transition to subcritical turbulence in a tokamak plasma

    CERN Document Server

    van Wyk, F; Schekochihin, A A; Roach, C M; Field, A R; Dorland, W

    2016-01-01

    Unstable perturbations driven by the pressure gradient and other sources of free energy in tokamak plasmas can grow exponentially and eventually saturate nonlinearly, leading to turbulence. Recent work has shown that in the presence of sheared flows, such systems can be subcritical. This means that all perturbations are linearly stable and a transition to a turbulent state only occurs if large enough initial perturbations undergo sufficient transient growth to allow nonlinear interaction. There is, however, currently very little known about a subcritical transition to turbulence in fusion-relevant plasmas. Here we use first-principles gyrokinetic simulations of a turbulent plasma in the outer core of the Mega-Ampere Spherical Tokamak (MAST) to demonstrate that the experimentally observed state is near the transition threshold, that the turbulence in this state is subcritical, and that transition to turbulence occurs via accumulation of very long-lived, intense, finite-amplitude coherent structures, which domi...

  12. Evaluating Subcriticality during the Ebola Epidemic in West Africa.

    Directory of Open Access Journals (Sweden)

    Wayne T A Enanoria

    Full Text Available The 2014-2015 Ebola outbreak is the largest and most widespread to date. In order to estimate ongoing transmission in the affected countries, we estimated the weekly average number of secondary cases caused by one individual infected with Ebola throughout the infectious period for each affected West African country using a stochastic hidden Markov model fitted to case data from the World Health Organization. If the average number of infections caused by one Ebola infection is less than 1.0, the epidemic is subcritical and cannot sustain itself. The epidemics in Liberia and Sierra Leone have approached subcriticality at some point during the epidemic; the epidemic in Guinea is ongoing with no evidence that it is subcritical. Response efforts to control the epidemic should continue in order to eliminate Ebola cases in West Africa.

  13. The subcritical baroclinic instability in local accretion disc models

    CERN Document Server

    Lesur, G

    2009-01-01

    (abridged) Aims: We present new results exhibiting a subcritical baroclinic instability (SBI) in local shearing box models. We describe the 2D and 3D behaviour of this instability using numerical simulations and we present a simple analytical model describing the underlying physical process. Results: A subcritical baroclinic instability is observed in flows stable for the Solberg-Hoiland criterion using local simulations. This instability is found to be a nonlinear (or subcritical) instability, which cannot be described by ordinary linear approaches. It requires a radial entropy gradient weakly unstable for the Schwartzchild criterion and a strong thermal diffusivity (or equivalently a short cooling time). In compressible simulations, the instability produces density waves which transport angular momentum outward with typically alpha<3e-3, the exact value depending on the background temperature profile. Finally, the instability survives in 3D, vortex cores becoming turbulent due to parametric instabilities...

  14. Winglet effects on the flutter of twin-engine-transport type wing

    Science.gov (United States)

    Bhatia, K. G.; Nagaraja, K. S.; Ruhlin, C. L.

    1984-01-01

    Flutter characteristics of a cantilevered high aspect ratio wing with winglet were investigated. The configuration represented a current technology, twin-engine airplane. A low-speed and a high-speed model were used to evaluate compressibility effects through transonic Mach numbers and a wide range of mass-density ratios. Four flutter mechanisms were obtained in test, as well as analysis from various combinations of configuration parameters. The coupling between wing tip vertical and chordwise motions was shown to have significant effect under some conditions. It is concluded that, for the flutter model configurations studied, the winglet related flutter was amenable to the conventional flutter analysis techniques.

  15. Determination of Flutter Derivatives for the Great Belt Bridge

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad; Damsgaard, Aage; Reinhold, Thim A.

    1992-01-01

    A new method which combines control theory and system identification techniques has been used to extract flutter derivatives from section model tests for the Great Belt East Bridge. Tests were conducted by exciting the section model simultaneously in vertical and torsional modes of vibration. Tests...... coupled motion derivatives from a simple set of tests.This paper describes the control theory and system identification approach used and discusses the limitations encountered. Results are compared with flutter derivatives obtained by other researchers. The method offers a reasonably robust technique...

  16. Vector plotting as an indication of the approach to flutter

    Science.gov (United States)

    Broadbent, E. G.

    1975-01-01

    A binary flexure-torsion analysis was made to check theoretically a method for predicting flutter which depends on plotting vectorially the amplitudes of response relative to the exciting force and extracting the relevant damping rate. The results of this calculation are given in graphs both of the vector plots themselves and of the estimated damping rate against forward speed. The estimated damping rates are compared with calculated values. The method has the advantage that in a flight flutter test damping can be estimated from continuous excitation records: the method is an extension of the Kennedy and Pancu technique used in ground resonance testing.

  17. Perturbation and harmonic balance methods for nonlinear panel flutter.

    Science.gov (United States)

    Kuo, C.-C.; Morino, L.; Dugundji, J.

    1972-01-01

    A systematic way of applying both perturbation methods and harmonic balance methods to nonlinear panel flutter problems is developed here. Results obtained by both these methods for two-dimensional simply supported and three-dimensional clamped-clamped plates with six modes agree well with those obtained by the straightforward direct integration method, yet require less computer time and provide better insight into the solutions. Effects of viscoelastic structural damping on the flutter stability boundary are generally found to be destabilizing and the postflutter behavior becomes more explosive. The methods developed here may be of interest in related vibration problems.

  18. The pulsing CPSD method for subcritical assemblies with pulsed sources

    CERN Document Server

    Ballester, D; Ballester, Daniel; Munoz-Cobo, Jose L.

    2005-01-01

    Stochastic neutron transport theory is applied to the derivation of the two-neutron-detectors cross power spectral density for subcritical assemblies when external pulsed sources are used. A general relationship between the two-detector probability generating functions of the kernel and the source is obtained considering the contribution to detectors statistics of both the pulsed source and the intrinsic neutron source. An expansion in alpha-eigenvalues is derived for the final solution, which permits to take into account the effect of higher harmonics in subcritical systems. Further, expressions corresponding to the fundamental mode approximation are compared with recent results from experiments performed under the MUSE-4 European research project.

  19. Aeroservoelastic Modeling of Body Freedom Flutter for Control System Design

    Science.gov (United States)

    Ouellette, Jeffrey

    2017-01-01

    One of the most severe forms of coupling between aeroelasticity and flight dynamics is an instability called freedom flutter. The existing tools often assume relatively weak coupling, and are therefore unable to accurately model body freedom flutter. Because the existing tools were developed from traditional flutter analysis models, inconsistencies in the final models are not compatible with control system design tools. To resolve these issues, a number of small, but significant changes have been made to the existing approaches. A frequency domain transformation is used with the unsteady aerodynamics to ensure a more physically consistent stability axis rational function approximation of the unsteady aerodynamic model. The aerodynamic model is augmented with additional terms to account for limitations of the baseline unsteady aerodynamic model and to account for the gravity forces. An assumed modes method is used for the structural model to ensure a consistent definition of the aircraft states across the flight envelope. The X-56A stiff wing flight-test data were used to validate the current modeling approach. The flight-test data does not show body-freedom flutter, but does show coupling between the flight dynamics and the aeroelastic dynamics and the effects of the fuel weight.

  20. Aeroservoelastic Modeling of Body Freedom Flutter for Control System Design

    Science.gov (United States)

    Ouellette, Jeffrey

    2017-01-01

    The communication of this method is being used by NASA in the ongoing collaborations with groups interested in the X-56A flight test program. Model generation for body freedom flutter Addressing issues in: State Consistency, Low frequency dynamics, Unsteady aerodynamics. Applied approach to X-56A MUTT: Comparing to flight test data.

  1. Suspension Bridge Flutter for Girder with Separate Control Flaps

    DEFF Research Database (Denmark)

    Huynh, T.; Thoft-Christensen, Palle

    Active vibration control of long span suspension bridge flutter using separated control flaps (SFSC) has shown to increase effectively the critical wind speed of bridges. In this paper, an SFSC calculation based on modal equations of the vertical and torsional motions of the bridge girder including...

  2. Determination of Flutter Derivatives for the Great Belt Bridge

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad; Damsgaard, Aage; Reinhold, Thim A.

    1992-01-01

    A new method which combines control theory and system identification techniques has been used to extract flutter derivatives from section model tests for the Great Belt East Bridge. Tests were conducted by exciting the section model simultaneously in vertical and torsional modes of vibration. Tests...

  3. Flutter-driven triboelectrification for harvesting wind energy.

    Science.gov (United States)

    Bae, Jihyun; Lee, Jeongsu; Kim, SeongMin; Ha, Jaewook; Lee, Byoung-Sun; Park, YoungJun; Choong, Chweelin; Kim, Jin-Baek; Wang, Zhong Lin; Kim, Ho-Young; Park, Jong-Jin; Chung, U-In

    2014-09-23

    Technologies to harvest electrical energy from wind have vast potentials because wind is one of the cleanest and most sustainable energy sources that nature provides. Here we propose a flutter-driven triboelectric generator that uses contact electrification caused by the self-sustained oscillation of flags. We study the coupled interaction between a fluttering flexible flag and a rigid plate. In doing so, we find three distinct contact modes: single, double and chaotic. The flutter-driven triboelectric generator having small dimensions of 7.5 × 5 cm at wind speed of 15 ms(-1) exhibits high-electrical performances: an instantaneous output voltage of 200 V and a current of 60 μA with a high frequency of 158 Hz, giving an average power density of approximately 0.86 mW. The flutter-driven triboelectric generation is a promising technology to drive electric devices in the outdoor environments in a sustainable manner.

  4. Research of Dynamic Experiment on Subcritical Experimental Assembly Venus 1#

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Wei; LIU; Feng; ZHANG; Zhi-feng; LIU; Dong-hai

    2015-01-01

    Our laboratory cooperated with Xi’an Jiaotong University in applying for the national science foundation project Research on the Safety Impact and Mechanism of Minor Acctinides and Long Life Fission Products Transmuted by Accelerator Driven Subcritical Reactor,and undertook the experimental tasks.

  5. Extraction of antioxidants from Chlorella sp. using subcritical water treatment

    Science.gov (United States)

    Zakaria, S. M.; Mustapa Kamal, S. M.; Harun, M. R.; Omar, R.; Siajam, S. I.

    2017-06-01

    Chlorella sp. microalgae is one of the main source of natural bioactive compounds used in the food and pharmaceutical industries. Subcritical water extraction is the technique that offers an efficient, non-toxic, and environmental-friendly method to obtain natural ingredients. In this work, the extracts of Chlorella sp. microalgae was evaluated in terms of: chemical composition, extraction (polysaccharides) yield and antioxidant activity, using subcritical water extraction. Extractions were performed at temperatures ranging from 100°C to 300°C. The results show that by using subcritical water, the highest yield of polysaccharides is 23.6 that obtained at 150°C. Analysis on the polysaccharides yield show that the contents were highly influenced by the extraction temperature. The individual antioxidant activity were evaluated by in vitro assay using a free radical method. In general, the antioxidant activity of the extracts obtained at different water temperatures was high, with values of 31.08-54.29 . The results indicated that extraction by subcritical water was effective and Chlorella sp. can be a useful source of natural antioxidants.

  6. EXTRACTION OF QUERCETIN FROM POLYGONUM HYDROPIPER L. BY SUBCRITICAL WATER

    Directory of Open Access Journals (Sweden)

    A. V. Lekar

    2014-01-01

    Full Text Available The new method of quercetin extraction from Polygonum hydropiper L. by subcritical water was developed. High performance liquid chromatography was used for identification and quantification of flavonoids in the extract. The new method is environmentally friendly and more effective (7.6-times than traditional flavonoids extraction methods using expensive and toxic organic solvents.

  7. Monte Carlo Alpha Iteration Algorithm for a Subcritical System Analysis

    Directory of Open Access Journals (Sweden)

    Hyung Jin Shim

    2015-01-01

    Full Text Available The α-k iteration method which searches the fundamental mode alpha-eigenvalue via iterative updates of the fission source distribution has been successfully used for the Monte Carlo (MC alpha-static calculations of supercritical systems. However, the α-k iteration method for the deep subcritical system analysis suffers from a gigantic number of neutron generations or a huge neutron weight, which leads to an abnormal termination of the MC calculations. In order to stably estimate the prompt neutron decay constant (α of prompt subcritical systems regardless of subcriticality, we propose a new MC alpha-static calculation method named as the α iteration algorithm. The new method is derived by directly applying the power method for the α-mode eigenvalue equation and its calculation stability is achieved by controlling the number of time source neutrons which are generated in proportion to α divided by neutron speed in MC neutron transport simulations. The effectiveness of the α iteration algorithm is demonstrated for two-group homogeneous problems with varying the subcriticality by comparisons with analytic solutions. The applicability of the proposed method is evaluated for an experimental benchmark of the thorium-loaded accelerator-driven system.

  8. Study of flutter related computational procedures for minimum weight structural sizing of advanced aircraft

    Science.gov (United States)

    Oconnell, R. F.; Hassig, H. J.; Radovcich, N. A.

    1976-01-01

    Results of a study of the development of flutter modules applicable to automated structural design of advanced aircraft configurations, such as a supersonic transport, are presented. Automated structural design is restricted to automated sizing of the elements of a given structural model. It includes a flutter optimization procedure; i.e., a procedure for arriving at a structure with minimum mass for satisfying flutter constraints. Methods of solving the flutter equation and computing the generalized aerodynamic force coefficients in the repetitive analysis environment of a flutter optimization procedure are studied, and recommended approaches are presented. Five approaches to flutter optimization are explained in detail and compared. An approach to flutter optimization incorporating some of the methods discussed is presented. Problems related to flutter optimization in a realistic design environment are discussed and an integrated approach to the entire flutter task is presented. Recommendations for further investigations are made. Results of numerical evaluations, applying the five methods of flutter optimization to the same design task, are presented.

  9. Parametric studies on relationships between flutter derivatives of slender bridge (Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    Xu xu

    2009-01-01

    Based on curve fitting of coefficients of three component forces of the Messina Straits Bridge, and the previously proposed semi-analytical expressions of flutter deriva-tives of flexible structure, the change of flutter derivatives of slender bridge cross-section with respect to its aerodynamic center, rotational speed and angle variation is studied using a parametric method. The calculated results are compared with the measured ones, and expressions of flutter derivatives of the Messina Straits Bridge are derived. The in-trinsic relationships existing in flutter derivatives are validated again. It is shown that the influence of the rotational speed on flutter derivatives is not negligible. Therefore, it provides an additional semi-analytical approach for analyzing flutter derivatives of the bridge with streamlined cross-section to get its aerodynamic information.

  10. Coupled-Mode Flutter of Bending-Bending Type in Highly-Flexible Uniform Airfoils

    Science.gov (United States)

    Pourazarm, Pariya; Modarres-Sadeghi, Yahya

    2016-11-01

    We study the behavior of a highly flexible uniform airfoil placed in wind both numerically and experimentally. It is shown that for a non-rotating highly-flexible cantilevered airfoil, placed at very small angles of attack (less than 1 degree), the airfoil loses its stability by buckling. For slightly higher angles of attack (more than 1 degree) a coupled-mode flutter in which the first and the second flapwise modes coalesce toward a flutter mode is observed, and thus the observed flutter has a bending-bending nature. The flutter onset and frequency found experimentally matched the numerical predictions. If the same airfoil is forced to rotate about its fixed end, the static deflection decreases and the observed couple-mode flutter becomes of flapwise-torsional type, same as what has already been observed for flutter of rotating wind turbine blades. The support provided by the National Science Foundation, CBET-1437988, is greatly acknowledged.

  11. Flutter Analysis of RX-420 Balistic Rocket Fin Involving Rigid Body Modes of Rocket Structures

    OpenAIRE

    Novi Andria

    2013-01-01

    Flutter is a phenomenon that has brought a catastrophic failure to the flight vehicle structure. In this experiment, flutter was analyzed for its symmetric and antisymmetric configuration to understand the effect of rocket rigid modes to the fin flutter characteristic. This research was also expected to find out the safety level of RX-420 structure design. The analysis was performed using half rocket model. Fin structure used in this research was a fin which has semispan 600 mm, thickness 12 ...

  12. Fetal Atrial Flutter: a Case Report and Experience of Sotalol Treatment

    Directory of Open Access Journals (Sweden)

    Tsui-Hua Wu

    2006-03-01

    Conclusion: The efficacy of antiarrhythmic drug therapy for fetal atrial flutter has not been well established. In our case, we used sotalol combined with digoxin and the fetal heart beat slowed after therapy. Sotalol may be considered the drug of choice for fetal atrial flutter. If the fetal atrial flutter is resistant to these therapies, a combination of other congenital cardiac diseases or organic abnormalities should be considered.

  13. The imprint of the Hawking effect in subcritical flows

    CERN Document Server

    Coutant, Antonin

    2016-01-01

    We study the propagation of low frequency shallow water waves on a one dimensional flow of varying depth. When taking into account dispersive effects, the linear propagation of long wavelength modes on uneven bottoms excites new solutions of the dispersion relation which possess a much shorter wavelength. The peculiarity is that one of these new solutions has a negative energy. When the flow becomes supercritical, this mode has been shown to be responsible for the (classical) analog of the Hawking effect. For subcritical flows, the production of this mode has been observed numerically and experimentally, but the precise physics governing the scattering remained unclear. In this work, we provide an analytic treatment of this effect in subcritical flows. We analyze the scattering of low frequency waves using a new perturbative series, derived from a generalization of the Bremmer series. We show that the production of short wavelength modes is governed by a complex value of the position: a complex turning point....

  14. Atrial flutter in myotonic dystrophy type 1: Patient characteristics and clinical outcome.

    Science.gov (United States)

    Wahbi, Karim; Sebag, Frederic A; Lellouche, Nicolas; Lazarus, Arnaud; Bécane, Henri-Marc; Bassez, Guillaume; Stojkovic, Tanya; Fayssoil, Abdallah; Laforêt, Pascal; Béhin, Anthony; Meune, Christophe; Eymard, Bruno; Duboc, Denis

    2016-03-01

    The prevalence and the incidence of atrial flutter in patients with myotonic dystrophy type 1 (DM1) and the most appropriate strategies for its management are unknown. We retrospectively included in the DM1 Heart Registry 929 adult patients with DM1 admitted to our Institutions between January 2000 and September 2013. We selected patients presenting with atrial flutter and analysed data relative to the occurrence of arterial thromboembolism, severe bradyarrhythmias and atrial flutter recurrences. Atrial flutter was present in 79 of the 929 patients included in our Registry, representing a 8.5% prevalence. Patients with atrial flutter were older, had a higher muscular disability rating scale score and had higher prevalence of other cardiac manifestations of DM1. Sixty patients presented with a first episode of atrial flutter, representing a 4.6% incidence. Severe bradyarrhythmias requiring permanent pacing were present in 4 patients (6.7%). Over a 53 ± 28 months mean follow-up duration, 2 patients (3.3%) had ischaemic stroke and 12 (20%) had atrial flutter recurrences. Patients who underwent radiofrequency ablation were more frequently free of atrial flutter recurrence than other patients (95 vs. 61%; HR = 0.17; P = 0.04). Atrial flutter is a common manifestation of DM1, potentially complicated by arterial thromboembolism or severe bradyarrhythmias. Radiofrequency catheter ablation is associated with a lower risk for recurrences.

  15. Analysis of supersonic stall bending flutter in axial-flow compressor by actuator disk theory

    Science.gov (United States)

    Adamczyk, J. J.

    1978-01-01

    An analytical model was developed for predicting the onset of supersonic stall bending flutter in axial-flow compressors. The analysis is based on two-dimensional, compressible, unsteady actuator disk theory. It is applied to a rotor blade row by considering a cascade of airfoils. The effects of shock waves and flow separation are included in the model. Calculations show that the model predicts the onset, in an unshrouded rotor, of a bending flutter mode that exhibits many of the characteristics of supersonic stall bending flutter. The validity of the analysis for predicting this flutter mode is demonstrated.

  16. Application of a flight test and data analysis technique to flutter of a drone aircraft

    Science.gov (United States)

    Bennett, R. M.

    1981-01-01

    Modal identification results presented were obtained from recent flight flutter tests of a drone vehicle with a research wing (DAST ARW-1 for Drones for Aerodynamic and Structural Testing, Aeroelastic Research Wing-1). This vehicle is equipped with an active flutter suppression system (FSS). Frequency and damping of several modes are determined by a time domain modal analysis of the impulse response function obtained by Fourier transformations of data from fast swept sine wave excitation by the FSS control surface on the wing. Flutter points are determined for two different altitudes with the FSS off. Data are given for near the flutter boundary with the FSS on.

  17. Flutter Analysis of RX-420 Balistic Rocket Fin Involving Rigid Body Modes of Rocket Structures

    Directory of Open Access Journals (Sweden)

    Novi Andria

    2013-03-01

    Full Text Available Flutter is a phenomenon that has brought a catastrophic failure to the flight vehicle structure. In this experiment, flutter was analyzed for its symmetric and antisymmetric configuration to understand the effect of rocket rigid modes to the fin flutter characteristic. This research was also expected to find out the safety level of RX-420 structure design. The analysis was performed using half rocket model. Fin structure used in this research was a fin which has semispan 600 mm, thickness 12 mm, chord root 700 mm, chord tip 400 mm, made by Al 6061-T651, double spar configuration with skin thickness of 2 mm. Structural dynamics and flutter stability were analyzed using finite element software implemented on MSC. Nastran. The analysis shows that the antisymmetric flutter mode is more critical than symmetric flutter mode. At sea level altitude, antisymmetric flutter occurs at 6.4 Mach, and symmetric flutter occurs at 10.15 Mach. Compared to maximum speed of RX-420 which is 4.5 Mach at altitude 11 km or equivalent to 2.1 Mach at sea level, it can be concluded that the RX-420 structure design is safe, and flutter will not occur during flight.

  18. The influence of trailed vorticity on flutter speed estimations

    DEFF Research Database (Denmark)

    Pirrung, Georg; Aagaard Madsen, Helge; Kim, Taeseong

    2014-01-01

    . The influence of the near wake model on the aeroelastic stability of the blades of the NREL 5 MW turbine in overspeed conditions is investigated in the second part of the paper. The analysis is based on a runaway case in which the turbine is free to speed up without generator torque and vibrations start...... building up at a critical rotor speed. Blades with modified torsional and flapwise stiffness are also investigated. A flutter analysis is often part of the stability investigations for new blades but is normally carried out with engineering models that do not include the influence of unsteady trailed...... vorticity. Including this influence results in a slightly increased safety margin against classical flutter in all simulated cases....

  19. Investigating the Transonic Flutter Boundary of the Benchmark Supercritical Wing

    Science.gov (United States)

    Heeg, Jennifer; Chwalowski, Pawel

    2017-01-01

    This paper builds on the computational aeroelastic results published previously and generated in support of the second Aeroelastic Prediction Workshop for the NASA Benchmark Supercritical Wing configuration. The computational results are obtained using FUN3D, an unstructured grid Reynolds-Averaged Navier-Stokes solver developed at the NASA Langley Research Center. The analysis results focus on understanding the dip in the transonic flutter boundary at a single Mach number (0.74), exploring an angle of attack range of ??1 to 8 and dynamic pressures from wind off to beyond flutter onset. The rigid analysis results are examined for insights into the behavior of the aeroelastic system. Both static and dynamic aeroelastic simulation results are also examined.

  20. A MODELING METHOD OF FLUTTERING LEAVES BASED ON POINT CLOUD

    Directory of Open Access Journals (Sweden)

    J. Tang

    2017-09-01

    Full Text Available Leaves falling gently or fluttering are common phenomenon in nature scenes. The authenticity of leaves falling plays an important part in the dynamic modeling of natural scenes. The leaves falling model has a widely applications in the field of animation and virtual reality. We propose a novel modeling method of fluttering leaves based on point cloud in this paper. According to the shape, the weight of leaves and the wind speed, three basic trajectories of leaves falling are defined, which are the rotation falling, the roll falling and the screw roll falling. At the same time, a parallel algorithm based on OpenMP is implemented to satisfy the needs of real-time in practical applications. Experimental results demonstrate that the proposed method is amenable to the incorporation of a variety of desirable effects.

  1. Development and Investigation of Reactivity Measurement Methods in Subcritical Cores

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Johanna

    2005-05-01

    Subcriticality measurements during core loading and in future accelerator driven systems have a clear safety relevance. In this thesis two subcriticality methods are treated: the Feynman-alpha and the source modulation method. The Feynman-alpha method is a technique to determine the reactivity from the relative variance of the detector counts during a measurement period. The period length is varied to get the full time dependence of the variance-to-mean. The corresponding theoretical formula was known only with stationary sources. In this thesis, due to its relevance for novel reactivity measurement methods, the Feynman-alpha formulae for pulsed sources for both the stochastic and the deterministic cases are treated. Formulae neglecting as well as including the delayed neutrons are derived. The formulae neglecting delayed neutrons are experimentally verified with quite good agreement. The second reactivity measurement technique investigated in this thesis is the so-called source modulation technique. The theory of the method was elaborated on the assumption of point kinetics, but in practice the method will be applied by using the signal from a single local neutron detector. Applicability of the method therefore assumes point kinetic behaviour of the core. Hence, first the conditions of the point kinetic behaviour of subcritical cores was investigated. After that the performance of the source modulation technique in the general case as well as and in the limit of exact point kinetic behaviour was examined. We obtained the unexpected result that the method has a finite, non-negligible error even in the limit of point kinetic behaviour, and a substantial error in the operation range of future accelerator driven subcritical reactors (ADS). In practice therefore the method needs to be calibrated by some other method for on-line applications.

  2. Subcritical dynamo bifurcation in the Taylor-Green flow.

    Science.gov (United States)

    Ponty, Y; Laval, J-P; Dubrulle, B; Daviaud, F; Pinton, J-F

    2007-11-30

    We report direct numerical simulations of dynamo generation for flow generated using a Taylor-Green forcing. We find that the bifurcation is subcritical and show its bifurcation diagram. We connect the associated hysteretic behavior with hydrodynamics changes induced by the action of the Lorentz force. We show the geometry of the dynamo magnetic field and discuss how the dynamo transition can be induced when an external field is applied to the flow.

  3. Droplet turbulence interactions under subcritical and supercritical conditions

    Science.gov (United States)

    Coy, E. B.; Greenfield, S. C.; Ondas, M. S.; Song, Y.-H.; Spegar, T. D.; Santavicca, D. A.

    1993-01-01

    The goal of this research is to experimentally characterize the behavior of droplets in vaporizing liquid sprays under conditions typical of those encountered in high pressure combustion systems such as liquid fueled rocket engines. Of particular interest are measurements of droplet drag, droplet heating, droplet vaporization, droplet distortion, and secondary droplet breakup, under both subcritical and supercritical conditions. The paper presents a brief description of the specific accomplishments which have been made over the past year.

  4. Specialists Meeting on Wing-with-Stores Flutter

    Science.gov (United States)

    1975-04-01

    Le rappel 4lastioue ktait fourni par tine lame de rigiditd r.5glable par valeurs discrbtos, monttle sur tin arbre po;. td par des 1ames en croix dans...3) 1,2 , V VR 0,8 - -- -- ,4 -_ 34 A. 35- I I_ -r24-5 1 _ -12 -8 -4 0 4 0 2 4 6 8 10 12 14 Damping g o/o. Frequency f ( HzJ FIG. 9 FLUTTER SPEED

  5. Accelerator-driven subcritical facility:Conceptual design development

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Yousry [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)]. E-mail: gohar@anl.gov; Bolshinsky, Igor [Idaho National Laboratory, P.O. Box 2528, Idaho Falls, ID 83403 (United States); Naberezhnev, Dmitry [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Duo, Jose [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Pennsylvania State University, University Park, PA 16802 (United States); Belch, Henry [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Bailey, James [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2006-06-23

    A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron accelerator is considered to drive the subcritical assembly. The neutron source intensity and spectrum have been studied. The energy deposition, spatial neutron generation, neutron utilization fraction, and target dimensions have been quantified to define the main target performance parameters, and to select the target material and beam parameters. Different target conceptual designs have been developed based the engineering requirements including heat transfer, thermal hydraulics, structure, and material issues. The subcritical assembly is designed to obtain the highest possible neutron flux level with a K {sub eff} of 0.98. Different fuel materials, uranium enrichments, and reflector materials are considered in the design process. The possibility of using low enrichment uranium without penalizing the facility performance is carefully evaluated. The mechanical design of the facility has been developed to maximize its utility and minimize the time for replacing the target and the fuel assemblies. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements, upgrades, and new missions. In addition, it has large design margins to accommodate different operating conditions and parameters. In this paper, the conceptual design and the design analyses of the facility will be presented.

  6. Calculated characteristics of subcritical assembly with anisotropic transport of neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Gorin, N.V.; Lipilina, E.N.; Lyutov, V.D.; Saukov, A.I. [Zababakhin Russian Federal Nuclear Center - All-Russian Scientific Researching Institute of Technical Physics (Russian Federation)

    2003-07-01

    There was considered possibility of creating enough sub-critical system that multiply neutron fluence from a primary source by many orders. For assemblies with high neutron tie between parts, it is impossible. That is why there was developed a construction consisting of many units (cascades) having weak feedback with preceding cascades. The feedback attenuation was obtained placing layers of slow neutron absorber and moderators between the cascades of fission material. Anisotropy of fast neutron transport through the layers was used. The system consisted of many identical cascades aligning one by another. Each cascade consists of layers of moderator, fissile material and absorber of slow neutrons. The calculations were carried out using the code MCNP.4a with nuclear data library ENDF/B5. In this construction neutrons spread predominantly in one direction multiplying in each next fissile layer, and they attenuate considerably in the opposite direction. In a calculated construction, multiplication factor of one cascade is about 1.5 and multiplication factor of whole construction composed of n cascades is 1.5{sup n}. Calculated keff value is 0.9 for one cascade and does not exceed 0.98 for a system containing any number of cascades. Therefore the assembly is always sub-critical and therefore it is safe in respect of criticality. There was considered using such a sub-critical assembly to create a powerful neutron fluence for neutron boron-capturing therapy. The system merits and demerits were discussed. (authors)

  7. Subcritical Hopf bifurcations in low-density jets

    Science.gov (United States)

    Zhu, Yuanhang; Gupta, Vikrant; Li, Larry K. B.

    2016-11-01

    Low-density jets are known to bifurcate from a steady state (a fixed point) to self-excited oscillations (a periodic limit cycle) when the Reynolds number increases above a critical value corresponding to the Hopf point, ReH . In the literature, this Hopf bifurcation is often considered to be supercritical because the self-excited oscillations appear only when Re > ReH . However, we find that under some conditions, there exists a hysteretic bistable region at ReSN ReSN denotes a saddle-node bifurcation point. This shows that the Hopf bifurcation can also be subcritical, which has three main implications. First, low-density jets could be triggered into self-excited oscillations even when Re < ReH . Second, in the modeling of low-density jets, the subcritical or supercritical nature of the Hopf bifurcation should be taken into account because the former is caused by cubic nonlinearity whereas the latter is caused by square nonlinearity. Third, the response of the system to external forcing and noise depends on its proximity to the bistable region. Therefore, when investigating the forced response of low-density jets, it is important to consider whether the Hopf bifurcation is subcritical or supercritical.

  8. Design, Development and Installation of Jordan Subcritical Assembly

    Directory of Open Access Journals (Sweden)

    Ned Xoubi

    2013-01-01

    Full Text Available Following its announcement in 2007 to pursue a nuclear power program and in the absence of any nuclear facility essential for the education, training, and research, Jordan decided to build a subcritical reactor as its first nuclear facility. Jordan Subcritical Assembly (JSA is uranium fueled light water moderated and reflected subcritical reactor driven by a plutonium-beryllium source, and the core consists of 313 LEU fuel rods, loaded into a water-filled vessel in a square lattice of 19.11 mm pitch. The fuel rods are based on PWR fuel structural pattern type, made of uranium oxide (UO2 with 3.4 wt% 235U enrichment in zirconium alloy (Zr-4 cladding. Design, optimization, and verification were performed using MCNP5 nuclear code; the computed effective multiplication factor is 0.95923. The JSA is designed to fulfill the training needs of students and is equipped to perform all of the fundamental experiments required for a typical nuclear engineering university program. This paper presents the design, development, modeling, core analysis, and utilization of Jordan’s first nuclear facility and why this simplified low cost reactor presents an attractive choice to fulfill the preliminary experimental needs of nuclear engineering education in developing countries.

  9. Subcritical versus supercritical transition to turbulence in curved pipes

    CERN Document Server

    Kühnen, J; Schwegel, M; Kuhlmann, H; Hof, B

    2015-01-01

    Transition to turbulence in straight pipes occurs in spite of the linear stability of the laminar Hagen--Poiseuille flow if the amplitude of flow perturbations as well as the Reynolds number exceed a minimum threshold (subcritical transition). As the pipe curvature increases centrifugal effects become important, modifying the basic flow as well as the most unstable linear modes. If the curvature (tube-to-coiling diameter $d/D$) is sufficiently large a Hopf bifurcation (supercritical instability) is encountered before turbulence can be excited (subcritical instability). We trace the instability thresholds in the $Re-d/D$ parameter space in the range $0.01\\leq\\ d/D \\leq0.1$ by means of laser-Doppler velocimetry and determine the point where the subcritical and supercritical instabilities meet. Two different experimental setups were used: a closed system where the pipe forms an axisymmetric torus and an open system employing a helical pipe. Implications for the measurement of friction factors in curved pipes are...

  10. Effects of flutter and PEP mask physiotherapy on symptoms and lung function in children with cystic fibrosis

    NARCIS (Netherlands)

    C.M. van Winden; A. Visser (Adriaan); P.J. Sterk (Peter); S. Beckers; J.C. de Jongste (Johan); W.C.J. Hop (Wim)

    1998-01-01

    textabstractRecently, the flutter was introduced as a new device to improve sputum expectoration. Preliminary data suggested a significant improvement in expectoration and lung function during flutter treatment in patients with cystic fibrosis (CF). The aim of the prese

  11. Labyrinth Seal Flutter Analysis and Test Validation in Support of Robust Rocket Engine Design

    Science.gov (United States)

    El-Aini, Yehia; Park, John; Frady, Greg; Nesman, Tom

    2010-01-01

    High energy-density turbomachines, like the SSME turbopumps, utilize labyrinth seals, also referred to as knife-edge seals, to control leakage flow. The pressure drop for such seals is order of magnitude higher than comparable jet engine seals. This is aggravated by the requirement of tight clearances resulting in possible unfavorable fluid-structure interaction of the seal system (seal flutter). To demonstrate these characteristics, a benchmark case of a High Pressure Oxygen Turbopump (HPOTP) outlet Labyrinth seal was studied in detail. First, an analytical assessment of the seal stability was conducted using a Pratt & Whitney legacy seal flutter code. Sensitivity parameters including pressure drop, rotor-to-stator running clearances and cavity volumes were examined and modeling strategies established. Second, a concurrent experimental investigation was undertaken to validate the stability of the seal at the equivalent operating conditions of the pump. Actual pump hardware was used to construct the test rig, also referred to as the (Flutter Rig). The flutter rig did not include rotational effects or temperature. However, the use of Hydrogen gas at high inlet pressure provided good representation of the critical parameters affecting flutter especially the speed of sound. The flutter code predictions showed consistent trends in good agreement with the experimental data. The rig test program produced a stability threshold empirical parameter that separated operation with and without flutter. This empirical parameter was used to establish the seal build clearances to avoid flutter while providing the required cooling flow metering. The calibrated flutter code along with the empirical flutter parameter was used to redesign the baseline seal resulting in a flutter-free robust configuration. Provisions for incorporation of mechanical damping devices were introduced in the redesigned seal to ensure added robustness

  12. Preparation and characterization of foxtail millet bran oil using subcritical propane and supercritical carbon dioxide extraction

    National Research Council Canada - National Science Library

    Shi, Yuzhong; Ma, Yuxiang; Zhang, Ruitin; Ma, Hanjun; Liu, Benguo

    2015-01-01

    ...), supercritical carbon dioxide extraction (SCE) and subcritical propane extraction (SPE) and analyzed the yield, physicochemical property, fatty acid profile, tocopherol composition, oil oxidative stability in this study...

  13. Long-term outcome of electrical cardioversion in patients with chronic atrial flutter

    NARCIS (Netherlands)

    Crijns, HJGM; VanGelder, IC; Tieleman, RG; Brugemann, J; DeKam, PJ; Gosselink, ATM; BinkBoelkens, MTE; Lie, KI

    1997-01-01

    Objective-To determine she long-term outcome of serial electrical cardioversion therapy in patients with chronic atrial flutter. Design-Prospective study, case series. Setting-University hospital. Patients-50 consecutive patients with chronic (> 24 hours) atrial flutter without a previous relapse on

  14. Nonlinear dynamics approach of modeling the bifurcation for aircraft wing flutter in transonic speed

    DEFF Research Database (Denmark)

    Matsushita, Hiroshi; Miyata, T.; Christiansen, Lasse Engbo

    2002-01-01

    The procedure of obtaining the two-degrees-of-freedom, finite dimensional. nonlinear mathematical model. which models the nonlinear features of aircraft flutter in transonic speed is reported. The model enables to explain every feature of the transonic flutter data of the wind tunnel tests...

  15. Impact of dronedarone in atrial fibrillation and flutter on stroke reduction

    DEFF Research Database (Denmark)

    Christiansen, Christine Benn; Torp-Pedersen, Christian; Køber, Lars

    2010-01-01

    Dronedarone has been developed for treatment of atrial fibrillation (AF) or atrial flutter (AFL). It is an amiodarone analogue but noniodinized and without the same adverse effects as amiodarone.......Dronedarone has been developed for treatment of atrial fibrillation (AF) or atrial flutter (AFL). It is an amiodarone analogue but noniodinized and without the same adverse effects as amiodarone....

  16. Parametric Flutter Analysis of the TCA Configuration and Recommendation for FFM Design and Scaling

    Science.gov (United States)

    Baker, Myles; Lenkey, Peter

    1997-01-01

    The current HSR Aeroelasticity plan to design, build, and test a full span, free flying transonic flutter model in the TDT has many technical obstacles that must be overcome for a successful program. One technical obstacle is the determination of a suitable configuration and point in the sky to use in setting the scaling point for the ASE models program. Determining this configuration and point in the sky requires balancing several conflicting requirements, including model buildability, tunnel test safety, and the ability of the model to represent the flutter mechanisms of interest. As will be discussed in detail in subsequent sections, the current TCA design exhibits several flutter mechanisms of interest. It has been decided that the ASE models program will focus on the low frequency symmetric flutter mechanism, and will make no attempt to investigate high frequency flutter mechanisms. There are several reasons for this choice. First, it is believed that the high frequency flutter mechanisms are similar in nature to classical wing bending/torsion flutter, and therefore there is more confidence that this mechanism can be predicted using current techniques. The low frequency mode, on the other hand, is a highly coupled mechanism involving wing, body, tail, and engine motion which may be very difficult to predict. Second, the high frequency flutter modes result in very small weight penalties (several hundred pounds), while suppression of the low frequency mechanism inside the flight envelope causes thousands of pounds to be added to the structure. In order to successfully test the low frequency flutter mode of interest, a suitable starting configuration and point in the sky must be identified. The configuration and point in the sky must result in a wind tunnel model that (1) represents the low-frequency wing/body/engine/empennage flutter mechanisms that are unique to HSCT configurations, (2) flutters at an acceptably low frequency in the tunnel, (3) flutters at an

  17. Developing Uncertainty Models for Robust Flutter Analysis Using Ground Vibration Test Data

    Science.gov (United States)

    Potter, Starr; Lind, Rick; Kehoe, Michael W. (Technical Monitor)

    2001-01-01

    A ground vibration test can be used to obtain information about structural dynamics that is important for flutter analysis. Traditionally, this information#such as natural frequencies of modes#is used to update analytical models used to predict flutter speeds. The ground vibration test can also be used to obtain uncertainty models, such as natural frequencies and their associated variations, that can update analytical models for the purpose of predicting robust flutter speeds. Analyzing test data using the -norm, rather than the traditional 2-norm, is shown to lead to a minimum-size uncertainty description and, consequently, a least-conservative robust flutter speed. This approach is demonstrated using ground vibration test data for the Aerostructures Test Wing. Different norms are used to formulate uncertainty models and their associated robust flutter speeds to evaluate which norm is least conservative.

  18. Supersonic unstalled flutter. [aerodynamic loading of thin airfoils induced by cascade motion

    Science.gov (United States)

    Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.

    1978-01-01

    Flutter analyses were developed to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. These analyses are utilized in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results are correlated against experimental qualitative observation to validate the models.

  19. A preliminary study of the effects of vortex diffusers (winglets) on wing flutter

    Science.gov (United States)

    Doggett, R. V., Jr.; Farmer, M. G.

    1975-01-01

    Some experimental flutter results are presented for a simple, flat-plate wing model and for the same wing model equipped with two different upper surface vortex diffusers over the Mach number range from about 0.70 to 0.95. Both vortex diffusers had the same planform, but one weighed about 0.3 percent of the basic wing weight, whereas the other weighed about 1.8 percent of the wing weight. The addition of the lighter vortex diffuser reduced the flutter dynamic pressure by about 3 percent; the heavier vortex diffuser reduced the flutter dynamic pressure by about 12 percent. The experimental flutter results are compared at a Mach number of 0.80 with analytical flutter results obtained by using doublet lattice and lifting surface (Kernel function) unsteady aerodynamic theories.

  20. Some considerations on the effects of the P-derivatives on bridge deck flutter

    Science.gov (United States)

    Zhang, Xin; Brownjohn, James Mark William

    2005-05-01

    Using two degrees of freedom (dof) experimental flutter derivatives to perform three-dimensional flutter analysis for a cable-supported bridge is a widely practiced method. It is important to consider the P-derivatives effect to have more accurate analysis for a long-span bridge. Through a case example, this paper studied some of the issues relating to the P-derivatives effects on flutter. The operational condition in two-dof experiments was discussed. It was suggested that due to the strong aeroelastic coupling effect of the sectional model studied in this research, there was an inherent weakness of two-dof experiments. The effect of the P-derivatives was studied for an example bridge by comparing the flutter analysis results using two-dof and three-dof experimental flutter derivatives.

  1. Further studies of stall flutter and nonlinear divergence of two-dimensional wings

    Science.gov (United States)

    Dugundji, J.; Chopra, I.

    1975-01-01

    An experimental investigation is made of the purely torsional stall flutter of a two-dimensional wing pivoted about the midchord, and also of the bending-torsion stall flutter of a two-dimensional wing pivoted about the quarterchord. For the purely torsional flutter case, large amplitude limit cycles ranging from + or - 11 to + or - 160 degrees were observed. Nondimensional harmonic coefficients were extracted from the free transient vibration tests for amplitudes up to 80 degrees. Reasonable nondimensional correlation was obtained for several wing configurations. For the bending-torsion flutter case, large amplitude coupled limit cycles were observed with torsional amplitudes as large as + or - 40 degrees. The torsion amplitudes first increased, then decreased with increasing velocity. Additionally, a small amplitude, predominantly torsional flutter was observed when the static equilibrium angle was near the stall angle.

  2. Analysis of subcritical system corresponding to energy amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Miramar Blazquez, J.F. [Zaragoza Univ. (Spain). Area de Ingenieria Nuclear - CPS

    2007-07-01

    Spallation neutron consist basically of an accelerator providing a beam of high-energy (> 100 Mev) protons o possibly heavier ions and suitable target of heavy-element material. Neutron yields and spectra were measured for protons and deuterons of intermediate energies on thick target at several laboratories. In this work we have the purpose to do the analysis of subcritical system corresponding to Energy Amplifier. We know the accelerator current intensity and we can obtain the current intensity I in protons/s that irradiate the subcritical assembly. The source intensity corresponding to produced neutrons by proton is the product Sn=S(E).I, being n referred to neutrons, and S(E) is the ratio of produced neutrons by proton in {sup 208}Pb{sub 82} that is given by a numerical approximation of a graphical function due to Stankowsky et alii. We study the system of a subcritical reactor with cylindrical symmetry and finite dimensions. The behaviour of neutronic flux is determined by means of the time-dependent diffusion equation in which the source density is replaced by slowing-down density in the equation of age theory (doing the age=0) and applying the adequate boundary and initial conditions. The neutronic spectrum in the spallation has been recently obtained. We indicate the results obtained. The neutronic flux is calculated, being r and z the radial and axial coordinates, t the time and E the proton energy. New symbols appear,the effective multiplication factor, the mean neutronic diffusion time and the bulking, corresponding to mode (m,n). We suppose that the infinite multiplication factor is (K)inf=0.98. For an energy interval of [200,1000] Mev, we have obtained the normalized neutronic flux in a fixed point, in function of time and proton energy. The volumetric fraction of fuel is obtained as a function of two variables that depend of nuclear parameters. The obtained normalized neutronic flux for a fixed proton energy, in function of r and z, is a solution

  3. Preliminary design concept of a subcritical reactor using available resources

    Energy Technology Data Exchange (ETDEWEB)

    Churnetski, E.L. [Oak Ridge Y-12 Plant, TN (United States); Hoyny, V.; Chaudhuri, B.R.; Taprantzis, A.; Yavas, A. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering

    1993-12-31

    During the Fall 1993 semester, a project was initiated within the Nuclear Engineering Department of the University of Tennessee with the objective of developing a design for a subcritical reactor with maximized multiplication factor using materials currently available. Such a device, if constructed, would serve as a teaching tool for the Department of Nuclear Engineering. Design work was conducted as a large number of computer calculations, with trial pile configurations based on fundamental nuclear engineering principles, in an effort to maximize multiplication factor through fuel element geometry, moderator type, fissile/moderator ratio, and reflector character. The principal objective of the design group for the early phase of this project was to present several possible ``baseline`` reactor designs and identify directions for improvements. For the sake of calculational ease, the cores analyzes to date have been of nearly cubic shape. The SCALE CSAS25 software which runs KENO.Va, a Monte Carlo code, was used for all neutronics calculations. The baseline reactors resulting from work to date are cuboidal in shape and graphite reflected. Two types of fuel element geometries are proposed, a typical triangular pitch rod lattice and an arrangement of discrete fuel slugs placed in a lattice corresponding to body centered cubic packing. The latter arrangement provides slightly higher multiplication factors than the former. Calculations were performed for both graphite and heavy water moderation with heavy water moderation producing considerably higher multiplication factors, as expected. In general, the maximum k{sub eff} for the reactors are in the range of 0.5 to 0.9, well subcritical, except in the cases of the extreme possible values of fuel assay where critical configurations are possible. In these cases, designs with reduced fuel loading are recommended to assure a subcritical multiplication factor.

  4. The Nonlinear Dynamics of Time Dependent Subcritical Baroclinic Currents

    Science.gov (United States)

    Pedlosky, J.; Flierl, G. R.

    2006-12-01

    The nonlinear dynamics of baroclinically unstable waves in a time dependent zonal shear flow is considered in the framework of the two-layer Phillips model on the beta plane. In most cases considered in this study the amplitude of the shear is well below the critical value of the steady shear version of the model. Nevertheless, the time dependent problem in which the shear oscillates periodically is unstable, and the unstable waves grow to substantial amplitudes, in some cases with strongly nonlinear and turbulent characteristics. For very small values of the shear amplitude in the presence of dissipation an analytical, asymptotic theory predicts a self-sustained wave whose amplitude undergoes a nonlinear oscillation whose period is amplitude dependent. There is a sensitive amplitude dependence of the wave on the frequency of the oscillating shear when the shear amplitude is small. This behavior is also found in a truncated model of the dynamics, and that model is used to examine larger shear amplitudes. When there is a mean value of the shear in addition to the oscillating component, but such that the total shear is still subcritical, the resulting nonlinear states exhibit a rectified horizontal buoyancy flux with a nonzero time average as a result of the instability of the oscillating shear. For higher, still subcritical, values of the shear we have detected a symmetry breaking in which a second cross-stream mode is generated through an instability of the unstable wave although this second mode would by itself be stable on the basic time dependent current. For shear values that are substantially subcritical but of order of the critical shear, calculations with a full quasi-geostrophic numerical model reveal a turbulent flow generated by the instability. If the beta effect is disregarded the inviscid, linear problem is formally stable. However, our calculations show that a small degree of nonlinearity is enough to destabilize the flow leading to large amplitude

  5. Dynamics of parabolic problems with memory. Subcritical and critical nonlinearities

    Science.gov (United States)

    Li, Xiaojun

    2016-08-01

    In this paper, we study the long-time behavior of the solutions of non-autonomous parabolic equations with memory in cases when the nonlinear term satisfies subcritical and critical growth conditions. In order to do this, we show that the family of processes associated to original systems with heat source f(x, t) being translation bounded in Lloc 2 ( R ; L 2 ( Ω ) ) is dissipative in higher energy space M α , 0 < α ≤ 1, and possesses a compact uniform attractor in M 0 .

  6. Structural testing for static failure, flutter and other scary things

    Science.gov (United States)

    Ricketts, R. H.

    1983-01-01

    Ground test and flight test methods are described that may be used to highlight potential structural problems that occur on aircraft. Primary interest is focused on light-weight general aviation airplanes. The structural problems described include static strength failure, aileron reversal, static divergence, and flutter. An example of each of the problems is discussed to illustrate how the data acquired during the tests may be used to predict the occurrence of the structural problem. While some rules of thumb for the prediction of structural problems are given the report is not intended to be used explicitly as a structural analysis handbook.

  7. Aeroelastic Tailoring of Transport Wings Including Transonic Flutter Constraints

    Science.gov (United States)

    Stanford, Bret K.; Wieseman, Carol D.; Jutte, Christine V.

    2015-01-01

    Several minimum-mass optimization problems are solved to evaluate the effectiveness of a variety of novel tailoring schemes for subsonic transport wings. Aeroelastic stress and panel buckling constraints are imposed across several trimmed static maneuver loads, in addition to a transonic flutter margin constraint, captured with aerodynamic influence coefficient-based tools. Tailoring with metallic thickness variations, functionally graded materials, balanced or unbalanced composite laminates, curvilinear tow steering, and distributed trailing edge control effectors are all found to provide reductions in structural wing mass with varying degrees of success. The question as to whether this wing mass reduction will offset the increased manufacturing cost is left unresolved for each case.

  8. Yalina booster subcritical assembly performance with low enriched uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto; Gohar, Yousry, E-mail: alby@anl.gov [Argonne National Laboratory, Lemont, IL (United States)

    2011-07-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  9. Hydrolysis of whey protein isolate using subcritical water.

    Science.gov (United States)

    Espinoza, Ashley D; Morawicki, Rubén O; Hager, Tiffany

    2012-01-01

    Hydrolyzed whey protein isolate (WPI) is used in the food industry for protein enrichment and modification of functional properties. The purpose of the study was to determine the feasibility of subcritical water hydrolysis (SWH) on WPI and to determine the temperature and reaction time effects on the degree of hydrolysis (DH) and the production of peptides and free amino acids (AAs). Effects of temperature (150 to 320 °C) and time (0 to 20 min) were initially studied with a central composite rotatable design followed by a completely randomized factorial design with temperature (250 and 300 °C) and time (0 to 50 min) as factors. SWH was conducted in an electrically heated, 100-mL batch, high pressure vessel. The DH was determined by a spectrophotometric method after derivatization. The peptide molecular weights (MWs) were analyzed by gel electrophoresis and mass spectrometry, and AAs were quantified by high-performance liquid chromotography. An interaction of temperature and time significantly affected the DH and AA concentration. As the DH increased, the accumulation of lower MW peptides also increased following SWH (and above 10% DH, the majority of peptides were hydrolyzed by subcritical water, and with adjustment of treatment parameters there is reasonable control of the end-products.

  10. The physics of accelerator driven sub-critical reactors

    Indian Academy of Sciences (India)

    S B Degweker; Biplab Ghosh; Anil Bajpal; S D Pranjape

    2007-02-01

    In recent years, there has been an increasing worldwide interest in accelerator driven systems (ADS) due to their perceived superior safety characteristics and their potential for burning actinides and long-lived fission products. Indian interest in ADS has an additional dimension, which is related to our planned large-scale thorium utilization for future nuclear energy generation. The physics of ADS is quite different from that of critical reactors. As such, physics studies on ADS reactors are necessary for gaining an understanding of these systems. Development of theoretical tools and experimental facilities for studying the physics of ADS reactors constitute important aspect of the ADS development program at BARC. This includes computer codes for burnup studies based on transport theory and Monte Carlo methods, codes for studying the kinetics of ADS and sub-critical facilities driven by 14 MeV neutron generators for ADS experiments and development of sub-criticality measurement methods. The paper discusses the physics issues specific to ADS reactors and presents the status of the reactor physics program and some of the ADS concepts under study.

  11. Subcritical and supercritical water oxidation of CELSS model wastes

    Science.gov (United States)

    Takahashi, Y.; Wydeven, T.; Koo, C.

    1989-01-01

    A mixture of ammonium hydroxide with acetic acid and a slurry of human feces, urine, and wipes were used as CELSS model wastes to be wet-oxidized at temperatures from 250 to 500 C, i.e. below and above the critical point of water (374 C and 218 kg/sq cm or 21.4 MPa). The effects of oxidation temperature ( 250-500 C) and residence time (0-120 mn) on carbon and nitrogen and on metal corrosion from the reactor material were studied. Almost all of the organic matter in the model wastes was oxidized in the temperature range from 400 to 500 C, above the critical conditions for water. In contrast, only a small portion of the organic matter was oxidized at subcritical conditions. A substantial amount of nitrogen remained in solution in the form of ammonia at temperatures ranging from 350 to 450 C suggesting that, around 400 C, organic carbon is completely oxidized and most of the nitrogen is retained in solution. The Hastelloy C-276 alloy reactor corroded during subcritical and supercritical water oxidation.

  12. Subcritical water extractor for Mars analog soil analysis.

    Science.gov (United States)

    Amashukeli, Xenia; Grunthaner, Frank J; Patrick, Steven B; Yung, Pun To

    2008-06-01

    Abstract Technologies that enable rapid and efficient extraction of biomarker compounds from various solid matrices are a critical requirement for the successful implementation of in situ chemical analysis of the martian regolith. Here, we describe a portable subcritical water extractor that mimics multiple organic solvent polarities by tuning the dielectric constant of liquid water through adjustment of temperature and pressure. Soil samples, collected from the Yungay region of the Atacama Desert (martian regolith analogue) in the summer of 2005, were used to test the instrument's performance. The total organic carbon was extracted from the samples at concentrations of 0.2-55.4 parts per million. The extraction data were compared to the total organic carbon content in the bulk soil, which was determined via a standard analytical procedure. The instrument's performance was examined over the temperature range of 25-250 degrees C at a fixed pressure of 20.7 MPa. Under these conditions, water remains in a subcritical fluid state with a dielectric constant varying between approximately 80 (at 25 degrees C) and approximately 30 (at 250 degrees C).

  13. Subcritical Water Extractor for Mars Analog Soil Analysis

    Science.gov (United States)

    Amashukeli, Xenia; Grunthaner, Frank J.; Patrick, Steven B.; Yung, Pun To

    2008-06-01

    Technologies that enable rapid and efficient extraction of biomarker compounds from various solid matrices are a critical requirement for the successful implementation of in situ chemical analysis of the martian regolith. Here, we describe a portable subcritical water extractor that mimics multiple organic solvent polarities by tuning the dielectric constant of liquid water through adjustment of temperature and pressure. Soil samples, collected from the Yungay region of the Atacama Desert (martian regolith analogue) in the summer of 2005, were used to test the instrument's performance. The total organic carbon was extracted from the samples at concentrations of 0.2 55.4 parts per million. The extraction data were compared to the total organic carbon content in the bulk soil, which was determined via a standard analytical procedure. The instrument's performance was examined over the temperature range of 25 250°C at a fixed pressure of 20.7 MPa. Under these conditions, water remains in a subcritical fluid state with a dielectric constant varying between ˜80 (at 25°C) and ˜30 (at 250°C).

  14. Robust fault-tolerant control for wing flutter under actuator failure

    Institute of Scientific and Technical Information of China (English)

    Gao Mingzhou; Cai Guoping

    2016-01-01

    Many control laws, such as optimal controller and classical controller, have seen their applications to suppressing the aeroelastic vibrations of the aeroelastic system. However, those con-trol laws may not work effectively if the aeroelastic system involves actuator faults. In the current study for wing flutter of reentry vehicle, the effect of actuator faults on wing flutter system is rarely considered and few of the fault-tolerant control problems are taken into account. In this paper, we use the radial basis function neural network and the finite-time H∞adaptive fault-tolerant control technique to deal with the flutter problem of wings, which is affected by actuator faults, actuator saturation, parameter uncertainties and external disturbances. The theory of this article includes the modeling of wing flutter and fault-tolerant controller design. The stability of the finite-time adaptive fault-tolerant controller is theoretically proved. Simulation results indicate that the designed fault-tolerant flutter controller can effectively deal with the faults in the flutter system and can promptly suppress the wing flutter as well.

  15. An Interactive Software for Conceptual Wing Flutter Analysis and Parametric Study

    Science.gov (United States)

    Mukhopadhyay, Vivek

    1996-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate the flutter instability boundary of a flexible cantilever wing, when well-defined structural and aerodynamic data are not available, and then study the effect of change in Mach number, dynamic pressure, torsional frequency, sweep, mass ratio, aspect ratio, taper ratio, center of gravity, and pitch inertia, to guide the development of the concept. The software was developed for Macintosh or IBM compatible personal computers, on MathCad application software with integrated documentation, graphics, data base and symbolic mathematics. The analysis method was based on non-dimensional parametric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on torsional stiffness, sweep, mass ratio, taper ratio, aspect ratio, center of gravity location and pitch inertia radius of gyration. The parametric plots were compiled in a Vought Corporation report from a vast data base of past experiments and wind-tunnel tests. The computer program was utilized for flutter analysis of the outer wing of a Blended-Wing-Body concept, proposed by McDonnell Douglas Corp. Using a set of assumed data, preliminary flutter boundary and flutter dynamic pressure variation with altitude, Mach number and torsional stiffness were determined.

  16. Experimental Methods Applied in a Study of Stall Flutter in an Axial Flow Fan

    Directory of Open Access Journals (Sweden)

    John D. Gill

    2004-01-01

    Full Text Available Flutter testing is an integral part of aircraft gas turbine engine development. In typical flutter testing blade mounted sensors in the form of strain gages and casing mounted sensors in the form of light probes (NSMS are used. Casing mounted sensors have the advantage of being non-intrusive and can detect the vibratory response of each rotating blade. Other types of casing mounted sensors can also be used to detect flutter of rotating blades. In this investigation casing mounted high frequency response pressure transducers are used to characterize the part-speed stall flutter response of a single stage unshrouded axial-flow fan. These dynamic pressure transducers are evenly spaced around the circumference at a constant axial location upstream of the fan blade leading edge plane. The pre-recorded experimental data at 70% corrected speed is analyzed for the case where the fan is back-pressured into the stall flutter zone. The experimental data is analyzed using two probe and multi-probe techniques. The analysis techniques for each method are presented. Results from these two analysis methods indicate that flutter occurred at a frequency of 411 Hz with a dominant nodal diameter of 2. The multi-probe analysis technique is a valuable method that can be used to investigate the initiation of flutter in turbomachines.

  17. Robust fault-tolerant control for wing flutter under actuator failure

    Directory of Open Access Journals (Sweden)

    Gao Mingzhou

    2016-08-01

    Full Text Available Many control laws, such as optimal controller and classical controller, have seen their applications to suppressing the aeroelastic vibrations of the aeroelastic system. However, those control laws may not work effectively if the aeroelastic system involves actuator faults. In the current study for wing flutter of reentry vehicle, the effect of actuator faults on wing flutter system is rarely considered and few of the fault-tolerant control problems are taken into account. In this paper, we use the radial basis function neural network and the finite-time H∞ adaptive fault-tolerant control technique to deal with the flutter problem of wings, which is affected by actuator faults, actuator saturation, parameter uncertainties and external disturbances. The theory of this article includes the modeling of wing flutter and fault-tolerant controller design. The stability of the finite-time adaptive fault-tolerant controller is theoretically proved. Simulation results indicate that the designed fault-tolerant flutter controller can effectively deal with the faults in the flutter system and can promptly suppress the wing flutter as well.

  18. Rapid Aeroelastic Analysis of Blade Flutter in Turbomachines

    Science.gov (United States)

    Trudell, J. J.; Mehmed, O.; Stefko, G. L.; Bakhle, M. A.; Reddy, T. S. R.; Montgomery, M.; Verdon, J.

    2006-01-01

    The LINFLUX-AE computer code predicts flutter and forced responses of blades and vanes in turbomachines under subsonic, transonic, and supersonic flow conditions. The code solves the Euler equations of unsteady flow in a blade passage under the assumption that the blades vibrate harmonically at small amplitudes. The steady-state nonlinear Euler equations are solved by a separate program, then equations for unsteady flow components are obtained through linearization around the steady-state solution. A structural-dynamics analysis (see figure) is performed to determine the frequencies and mode shapes of blade vibrations, a preprocessor interpolates mode shapes from the structural-dynamics mesh onto the LINFLUX computational-fluid-dynamics mesh, and an interface code is used to convert the steady-state flow solution to a form required by LINFLUX. Then LINFLUX solves the linearized equations in the frequency domain to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. A post-processor uses the unsteady pressures to calculate generalized aerodynamic forces, response amplitudes, and eigenvalues (which determine the flutter frequency and damping). In comparison with the TURBO-AE aeroelastic-analysis code, which solves the equations in the time domain, LINFLUX-AE is 6 to 7 times faster.

  19. Chirality-dependent flutter of Typha blades in wind

    Science.gov (United States)

    Zhao, Zi-Long; Liu, Zong-Yuan; Feng, Xi-Qiao

    2016-07-01

    Cattail or Typha, an emergent aquatic macrophyte widely distributed in lakes and other shallow water areas, has slender blades with a chiral morphology. The wind-resilient Typha blades can produce distinct hydraulic resistance for ecosystem functions. However, their stem may rupture and dislodge in excessive wind drag. In this paper, we combine fluid dynamics simulations and experimental measurements to investigate the aeroelastic behavior of Typha blades in wind. It is found that the chirality-dependent flutter, including wind-induced rotation and torsion, is a crucial strategy for Typha blades to accommodate wind forces. Flow visualization demonstrates that the twisting morphology of blades provides advantages over the flat one in the context of two integrated functions: improving wind resistance and mitigating vortex-induced vibration. The unusual dynamic responses and superior mechanical properties of Typha blades are closely related to their biological/ecosystem functions and macro/micro structures. This work decodes the physical mechanisms of chirality-dependent flutter in Typha blades and holds potential applications in vortex-induced vibration suppression and the design of, e.g., bioinspired flight vehicles.

  20. Fluttering energy harvesters in the wind: A review

    Science.gov (United States)

    McCarthy, J. M.; Watkins, S.; Deivasigamani, A.; John, S. J.

    2016-01-01

    The growing area of harvesting energy by aerodynamically induced flutter in a fluid stream is reviewed. Numerous approaches were found to understand, demonstrate and [sometimes] optimise harvester performance based on Movement-Induced or Extraneously Induced Excitation. Almost all research was conducted in smooth, unidirectional flow domains; either experimental or computational. The power outputs were found to be very low when compared to conventional wind turbines, but potential advantages could be lower noise levels. A consideration of the likely outdoor environment for fluttering harvesters revealed that the flow would be highly turbulent and having a mean flow angle in the horizontal plane that could approach a harvester from any direction. Whilst some multiple harvester systems in smooth, well-aligned flow found enhanced efficiency (due to beneficial wake interaction) this would require an invariant flow approach angle. It was concluded that further work needs to be performed to find a universally accepted metric for efficiency and to understand the effects of the realities of the outdoors, including the highly variable and turbulent flow conditions likely to be experienced.

  1. Flutter of flexible plate in an inhomogeneous temperature field

    Directory of Open Access Journals (Sweden)

    Baghdasaryan G.Y.

    2012-12-01

    Full Text Available There are several works devoted to the investigation of the stability of plates and shells in a supersonic gas flow. Remarks on these works in monographs [1,2] and in the paper [3] can be found. The issues of the influence of constant temperature field on the stability of deformable thin bodies in a supersonis gas flow are investigated also [4-7]. In the paper [8], in linear formulation we consider the problem of stability of long rectangular plate under the influence of both variable along the thickness temperature field and supersonic gas flow (with the unperturbed speed, which directed along the short edges of the plate. Due to the inhomogeneity of along the thickness temperature field the buckling of the plate is takes place and this state is taken as unperturbed. Conditions of stability of unperturbed state of examined termogasoelastic system are obtained and on its base the stability area is constructed in the space of variables characterizing the value of the flown speed, the temperature at the middle plane of the plate and the temperature gradient along the normal direction of this plane. It is shown that via the combined action of the temperature field and the flowing stream one can regulate the process of stability and with the help of temperature field one can significantly change the value of the flutter critical speed. In this paper, the problem, posed in [8], considered in nonlinear formulation. The effect of temperature field on the dependence of "amplitude-speed" is studied. It is shown that: a in the case of relatively thick plates if gradually increase the speed flowing stream , the flutter type vibrations persist up to ( – is the upper critical speed, the value of which depends on the temperature of the mid-plane of the plate, where the oscillations "pluck" and restored the undisturbed state of the plate. By reducing the speed the unperturbed state becomes stable up to ( – is the lower critical speed. For the amplitude of

  2. Response of atrial flutter to overdrive atrial pacing and intravenous disopyramide phosphate, singly and in combination.

    Science.gov (United States)

    Camm, J; Ward, D; Spurrell, R

    1980-01-01

    Ten patients who suffered spontaneous paroxysms of atrial flutter were investigated by electrophysiological techniques. Two had overt Wolff-Parkinson-White syndrome; three Lown-Ganong-Levine syndrome; and one a concealed accessory atrioventricular connection. Atrial flutter was initiated, at study, by right atrial pacing and electrograms from the right atrium and coronary sinus were observed for at least five minutes to ensure stable flutter in both atria. Atrial flutter was terminated by 2.5 s or 5 s bursts of atrial pacing at rates 10, 50, or 100 beats/min faster than the intrinsic flutter rate in only two patients. Atrial flutter, which was reinitiated in two patients, was then treated with intravenous disopyramide phosphate, 2 mg/kg body weight, infused over five minutes. In all 10 patients the atrial rate slowed from a mean of 310 +/- 39 beats/min to 217 +/- 27 beats/min and atrial flutter terminated in one case. Though the mean ventricular rate fell from 161 +/- 52 beats/min to 156 +/- 45 beats/min the atrioventricular conduction ratio fell from 2.17 +/- 0.86 to 1.55 +/- 0.59 and four patients were left with symptomatically significant increases of ventricular rate. In seven of nine patients overdrive atrial pacing, repeated after disopryamide, resulted in the conversion of atrial flutter to sinus rhythm. In this study, overdrive atrial pacing and intravenous disopyramide, singly and in combination, terminated atrial flutter in nine of the 10 patients and it is suggested that this method may provide an effective alternative to direct current cardioversion. PMID:7426181

  3. Some experimental and theoretical flutter characteristics of an arrow-wing configuration

    Science.gov (United States)

    Doggett, R. V., Jr.; Ricketts, R. H.

    1977-01-01

    Experimental and theoretical flutter results are presented for a simplified 1/50-size wind-tunnel model of an arrow-wing configuration. Transonic flutter characteristics are presented for three configurations - wing without engine nacelles, wing with flow-through nacelles, and wing with pencil nacelles (thin, streamline bodies). Experimental results are correlated with analytical results obtained from kernel-function and doublet-lattice unsteady aerodynamic theories. Theoretical results are presented that show the effects on flutter of systematic changes in structural stiffness and mass.

  4. Decoupler pylon - A simple, effective wing/store flutter suppressor. [in fighter/attack aircraft

    Science.gov (United States)

    Reed, W. H.; Foughner, J. T., Jr.; Runyan, H. L., Jr.

    1979-01-01

    As an alternative to alleviating wing/store flutter by conventional passive methods or by more advanced active control methods, a quasi-passive concept, referred to as the decoupler pylon, is investigated which combines desirable features of both methods. Passive soft-spring/damper elements are used to decouple wing modes from store pitch modes, and a low-power control system maintains store alignment under changing mean loads. It is shown by analysis and wind tunnel tests that the decoupler pylon provides substantial increase in flutter speed and makes flutter virtually insensitive to inertia and center-of-gravity location of the store.

  5. LCO flutter of cantilevered woven glass/epoxy laminate in subsonic flow

    Institute of Scientific and Technical Information of China (English)

    Dayang Laila Abang Haji Abdul Majid; ShahNor Basri

    2008-01-01

    The paper presents aeroelastic characteristics of a cantilevered composite wing,idealized as a composite flat plate laminate.The composite laminate was made from woven glass fibers with epoxy matrix.The elastic and dynamic properties of the laminate were determined experimentally for aeroelastic calculations.Aeroelastic wind tunnel testing of the laminate was performed and the result showed that flutter,a dynamic instability occurred.The cantilevered laminate also displayed limit cycle amplitude,post-flutter oscillation.The experimental flutter velocity and frequency were verified by our computational analysis.

  6. Application of two synthesis methods for active flutter suppression on an aeroelastic wind tunnel model

    Science.gov (United States)

    Abel, I.; Newsom, J. R.; Dunn, H. J.

    1979-01-01

    Two flutter suppression control laws have been synthesized, implemented, and demonstrated on an aeroelastic wind-tunnel model of a transport-type wing. One control law was synthesized using an aerodynamic energy method and the other from using results of optimal control theory. At M = 0.95, the model was tested to a dynamic pressure 44 percent above the system-off flutter dynamic pressure. Both synthesis methods yielded control laws effective in suppressing flutter. The experimental results also indicate that wind-tunnel turbulence is an important factor in the experimental demonstration of system performance.

  7. Neutron spatial flux profile measurement in compact subcritical system using miniature neutron detectors

    Science.gov (United States)

    Shukla, Mayank; Desai, Shraddha S.; Roy, Tushar; Kashyap, Yogesh; Ray, Nirmal; Bajpai, Shefali; Patel, Tarun; Sinha, Amar

    2015-02-01

    A zero power multiplying assembly in subcritical regime serves as a benchmark for validating subcritical reactor physics. The utilization of a subcritical assembly for the determination of nuclear parameters in a multiplying medium requires a well-defined neutron flux to carry out the experiments. For this it is necessary to know the neutron flux profile inside a subcritical system. A compact subcritical assembly BRAHMMA has been developed in India. The experimental channels in this assembly are typically less than 8 mm diameter. This requires use of miniature detectors that can be mounted in these experimental channels. In this article we present the thermal neutron flux profile measurement in a compact subcritical system using indigenously developed miniature gas filled neutron detectors. These detectors were specially designed and fabricated considering the restrictive dimensional requirements of the subcritical core. Detectors of non-standard size with various sensitivities, from 0.4 to 0.001 cps/nv were used for neutron flux of interest ranging from 103 to 107 n-cm-2 s-1. A comparison of measured neutron flux using these detectors and simulated Monte Carlo calculations are also presented in this article.

  8. A thermodynamics comparison of subcritical and transcritical organic Rankine cycle system for power generation

    Institute of Scientific and Technical Information of China (English)

    朱家玲; 薄华宇; 李太禄; 胡开永; 刘克涛

    2015-01-01

    A comparison on subcritical and transcritical organic Rankine cycle (ORC) system with a heat source of 110 °C geothermal water was presented. The net power output, thermal and exergy efficiencies and the products of the heat transfer coefficient (U) and the total heat exchange area (A) (UA values) were calculated for parametric optimization. Nine candidate working fluids were investigated and compared. Under the given conditions, transcritical systems have higher net power outputs than subcritical ones. The highest net power output of transcritical systems is 18.63 kW obtained by R218, and that of subcritical systems is 13.57 kW obtained by R600a. Moreover, with the increase of evaporating pressure, the thermal and exergy efficiencies of transcritical systems increase at first and then decrease, but the efficiencies of subcritical ones increase. As a result, the efficiencies of transcritical systems cannot always outperform those of the subcritical ones. However, the subcritical systems have lower minimum UA values and lower expansion ratios than the transcritical ones at the maximum net power output. In addition, the transcritical cycles have higher expansion ratios than the subcritical ones at their maximum net power output.

  9. The Subcritical Assembly in Dubna (SAD)—Part II: Research program for ADS-demo experiment

    Science.gov (United States)

    Gudowski, Waclaw; Shvetsov, Valery; Polanski, Aleksander; Broeders, Cornelis

    2006-06-01

    Subcritical Assembly in Dubna (SAD), a project funded by the International Science and Technology Centre, driven in collaboration with many European partners, may become the first Accelerator Driven Subcritical experiment coupling an existing proton accelerator of 660 MeV with a compact MQX-fuelled subcritical core. The main objective of the SAD experiment is to study physics of Accelerator Driven System ranging from a very deep subcriticality up to keff of 0.98. All experiences with subcriticality monitoring from previous subcritical experiments like MUSE, Yalina and IBR-30 booster mode will be verified in order to select the most reliable subcriticality monitoring technique. Particular attention will be given to validation of the core power-beam current relation. Moreover, some studies have been done to assess possibility of power upgrade for SAD.

  10. Subcritical transition to turbulence in planar shear flows

    Science.gov (United States)

    Orszag, S. A.; Patera, A. T.

    1981-01-01

    The two-dimensional steady and time dependent properties of plane Poiseuille and plane Couette flows are analyzed using iterative techniques and full numerical simulation of the Navier-Stokes equations. It is shown that the finite-amplitude two-dimensional states investigated are strongly unstable to very small three-dimensional perturbations. It is also shown, through full numerical simulation, that this explosive secondary instability can explain the subcritical transitions that occur in real flows. Finally, it is shown that the three-dimensional instability can be analyzed by a linear stability analysis of a two-dimensional flow consisting of the basic parallel flow and a steady (or quasi-steady) finite-amplitude two-dimensional cellular motion.

  11. Feedback control of subcritical Turing instability with zero mode.

    Science.gov (United States)

    Golovin, A A; Kanevsky, Y; Nepomnyashchy, A A

    2009-04-01

    A global feedback control of a system that exhibits a subcritical monotonic instability at a nonzero wave number (short-wave or Turing instability) in the presence of a zero mode is investigated using a Ginzburg-Landau equation coupled to an equation for the zero mode. This system is studied analytically and numerically. It is shown that feedback control, based on measuring the maximum of the pattern amplitude over the domain, can stabilize the system and lead to the formation of localized unipulse stationary states or traveling solitary waves. It is found that the unipulse traveling structures result from an instability of the stationary unipulse structures when one of the parameters characterizing the coupling between the periodic pattern and the zero mode exceeds a critical value that is determined by the zero mode damping coefficient.

  12. Experimental Study of Subcritical Water Liquefaction of Biomass

    DEFF Research Database (Denmark)

    Zhu, Zhe; Toor, Saqib; Rosendahl, Lasse

    2014-01-01

    that the addition of K2CO3 lowered the solids quality in terms of the heating values, while it did not have apparent effect on the functional groups of solid residues. SEM analysis of the raw biomass and solid residues revealed that the char formation for wood, sawdust and macroalgae had initially finished when......In this work, hydrothermal liquefaction (HTL) of wood industry residues (wood, bark, sawdust) and macroalgae for producing biofuels has been investigated under subcritical water conditions (at temperature of 300 C), with and without the presence of catalyst. The effects of catalyst and biomass type...... (woody and non-woody) on the biomass conversion, bio-crude yield, and the qualities of products were studied. The results suggested that the addition of potassium carbonate as catalyst showed a positive effect on bio-crude yield, especially for wood, where it was enhanced to 47.48 wt%. Macroalgae showed...

  13. Gravity-driven soap film dynamics in subcritical regimes

    Science.gov (United States)

    Auliel, M. I.; Castro, F.; Sosa, R.; Artana, G.

    2015-10-01

    We undertake the analysis of soap-film dynamics with the classical approach of asymptotic expansions. We focus our analysis in vertical soap film tunnels operating in subcritical regimes with elastic Mach numbers Me=O(10-1) . Considering the associated set of nondimensional numbers that characterize this flow, we show that the flow behaves as a two-dimensional (2D) divergence free flow with variable mass density. When the soap film dynamics agrees with that of a 2D and almost constant mass density flow, the regions where the second invariant of the velocity gradient is non-null correspond to regions where the rate of change of film thickness is non-negligible.

  14. Thorium as a Fuel for Accelerator Driven Subcritical Electronuclear Systems

    CERN Document Server

    Barashenkov, V S; Singh, V

    2000-01-01

    Neutron yield and energy production in a very large, practically infinite, uranium and thorium target-blocks irradiated by protons with energies in the range 0.1-2 GeV are studied by Monte Carlo method. Though the comparison of uranium and thorium targets shows that the neutron yield in the latter is 30-40 % less and the energy gain is approximatelly two times smaller, accelerator Driven subcritical Systems (ADS) with thorium fuel are very perspective at the bombarding energies higher than several hundreds MeV. An admixture of fissile elements U^{233}, U^{235}, Pu^{239} in the set-up gives larger neutron multiplication which in turn shows better energy amplification. It is argued that due to the practically complete burning of the fuel in such set-up there is no need of technology of conversion of the exhaust fuel.

  15. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    Science.gov (United States)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  16. Studies on the stability of preservatives under subcritical water conditions.

    Science.gov (United States)

    Kapalavavi, B; Marple, R; Gamsky, C; Yang, Y

    2015-06-01

    The goal of this work was to further validate the subcritical water chromatography (SBWC) methods for separation and analysis of preservatives through the evaluation of analyte stability in subcritical water. In this study, the degradation of preservatives was investigated at temperatures of 100-200°C using two different approaches. First, the peak areas obtained by SBWC at high temperatures were compared with those achieved using the traditional high-performance liquid chromatography (HPLC) at 25°C. In the second approach, several preservatives and water were loaded into a vessel and heated at high temperatures for 30 or 60 min. The heated mixtures were then analysed by GC/MS to determine the stability of preservatives. The t- and F-test on the results of the first approach reveal that the peak areas achieved by HPLC and SBWC are not significantly different at the 95% confidence level, meaning that the preservatives studied are stable during the high-temperature SBWC runs. Although the results of the second approach show approximately 10% degradation of preservatives into mainly p-hydroxybenzoic acid and phenol at 200°C, the preservatives studied are stable at 100 and 150°C. This is in good agreement with the validation results obtained by the first approach. The findings of this work confirm that SBWC methods at temperatures up to 150°C are reliable for separation and analysis of preservatives in cosmetic and other samples. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  17. Subcritical-Water Extraction of Organics from Solid Matrices

    Science.gov (United States)

    Amashukeli, Xenia; Grunthaner, Frank; Patrick, Steven; Kirby, James; Bickler, Donald; Willis, Peter; Pelletier, Christine; Bryson, Charles

    2009-01-01

    An apparatus for extracting organic compounds from soils, sands, and other solid matrix materials utilizes water at subcritical temperature and pressure as a solvent. The apparatus, called subcritical water extractor (SCWE), is a prototype of subsystems of future instrumentation systems to be used in searching for organic compounds as signs of past or present life on Mars. An aqueous solution generated by an apparatus like this one can be analyzed by any of a variety of established chromatographic or spectroscopic means to detect the dissolved organic compound( s). The apparatus can be used on Earth: indeed, in proof-of-concept experiments, SCWE was used to extract amino acids from soils of the Atacama Desert (Chile), which was chosen because the dryness and other relevant soil conditions there approximate those on Mars. The design of the apparatus is based partly on the fact that the relative permittivity (also known as the dielectric constant) of liquid water varies with temperature and pressure. At a temperature of 30 C and a pressure of 0.1 MPa, the relative permittivity of water is 79.6, due to the strong dipole-dipole electrostatic interactions between individual molecular dipoles. As the temperature increases, increasing thermal energy causes increasing disorientation of molecular dipoles, with a consequent decrease in relative permittivity. For example, water at a temperature of 325 C and pressure of 20 MPa has a relative permittivity of 17.5, which is similar to the relative permittivities of such nonpolar organic solvents as 1-butanol (17.8). In the operation of this apparatus, the temperature and pressure of water are adjusted so that the water can be used in place of commonly used organic solvents to extract compounds that have dissimilar physical and chemical properties.

  18. Marginally subcritical dynamics explain enhanced stimulus discriminability under attention.

    Science.gov (United States)

    Tomen, Nergis; Rotermund, David; Ernst, Udo

    2014-01-01

    Recent experimental and theoretical work has established the hypothesis that cortical neurons operate close to a critical state which describes a phase transition from chaotic to ordered dynamics. Critical dynamics are suggested to optimize several aspects of neuronal information processing. However, although critical dynamics have been demonstrated in recordings of spontaneously active cortical neurons, little is known about how these dynamics are affected by task-dependent changes in neuronal activity when the cortex is engaged in stimulus processing. Here we explore this question in the context of cortical information processing modulated by selective visual attention. In particular, we focus on recent findings that local field potentials (LFPs) in macaque area V4 demonstrate an increase in γ-band synchrony and a simultaneous enhancement of object representation with attention. We reproduce these results using a model of integrate-and-fire neurons where attention increases synchrony by enhancing the efficacy of recurrent interactions. In the phase space spanned by excitatory and inhibitory coupling strengths, we identify critical points and regions of enhanced discriminability. Furthermore, we quantify encoding capacity using information entropy. We find a rapid enhancement of stimulus discriminability with the emergence of synchrony in the network. Strikingly, only a narrow region in the phase space, at the transition from subcritical to supercritical dynamics, supports the experimentally observed discriminability increase. At the supercritical border of this transition region, information entropy decreases drastically as synchrony sets in. At the subcritical border, entropy is maximized under the assumption of a coarse observation scale. Our results suggest that cortical networks operate at such near-critical states, allowing minimal attentional modulations of network excitability to substantially augment stimulus representation in the LFPs.

  19. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    Science.gov (United States)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  20. Subcritical crack growth under mode I, II, and III loading for Coconino sandstone

    Science.gov (United States)

    Ko, Tae Young

    In systems subjected to long-term loading, subcritical crack growth is the principal mechanism causing the time-dependent deformation and failure of rocks. Subcritical crack growth is environmentally-assisted crack growth, which can allow cracks to grow over a long period of time at stresses far smaller than their failure strength and at tectonic strain rates. The characteristics of subcritical crack growth can be described by a relationship between the stress intensity factor and the crack velocity. This study presents the results of studies conducted to validate the constant stress-rate test for determining subcritical crack growth parameters in Coconino sandstone, compared with the conventional testing method, the double torsion test. The results of the constant stress-rate test are in good agreement with the results of double torsion test. More importantly, the stress-rate tests can determine the parameter A with a much smaller standard deviation than the double torsion test. Thus the constant stress-rate test seems to be both a valid and preferred test method for determining the subcritical crack growth parameters in rocks. We investigated statistical aspects of the constant stress-rate test. The effects of the number of tests conducted on the subcritical crack growth parameters were examined and minimum specimen numbers were determined. The mean and standard deviation of the subcritical crack growth parameters were obtained by randomly selecting subsets from the original strength data. In addition, the distribution form of the subcritical crack growth parameters and the relation between the parameter n and A were determined. We extended the constant stress-rate test technique to modes II and III subcritical crack growth in rocks. The experimental results of the modes I, II and III tests show that the values of the subcritical crack growth parameters are similar to each other. The subcritical crack growth parameter n value for Coconino sandstone has the range

  1. Experimental Model Based Feedback Control for Flutter Suppression and Gust Load Alleviation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes an R&D effort to develop an Experimental Model Based Feedback Control (EMBFC) Framework for the flutter suppression and...

  2. A Conceptual Wing Flutter Analysis Tool for Systems Analysis and Parametric Design Study

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2003-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate flutt er instability boundaries of a typical wing, when detailed structural and aerodynamic data are not available. Effects of change in key flu tter parameters can also be estimated in order to guide the conceptual design. This userfriendly software was developed using MathCad and M atlab codes. The analysis method was based on non-dimensional paramet ric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on wing torsion stiffness, sweep, mass ratio, taper ratio, aspect ratio, center of gravit y location and pitch-inertia radius of gyration. These parametric plo ts were compiled in a Chance-Vought Corporation report from database of past experiments and wind tunnel test results. An example was prese nted for conceptual flutter analysis of outer-wing of a Blended-Wing- Body aircraft.

  3. Antony van Leeuwenhoek and the description of diaphragmatic flutter (respiratory myoclonus).

    Science.gov (United States)

    Larner, Andrew J

    2005-08-01

    This article reviews the first account of diaphragmatic flutter, published by Antony van Leeuwenhoek, the renowned microscopist, in 1723. The completeness of the clinical description merits the eponymous description of Leeuwenhoek's disease.

  4. Kinetic mesh-free method for flutter prediction in turbomachines

    Indian Academy of Sciences (India)

    V Ramesh; S M Deshpande

    2014-02-01

    The present paper deals with the development and application of a kinetic theory-based mesh-free method for unsteady flows. The method has the capability to compute on any arbitrary distribution of moving nodes. In general, computation of unsteady flow past multiple moving boundaries using conventional finite volume solvers are quite involved. They invariably require repeated grid generation or an efficient grid movement strategy. This approach becomes more difficult when there are many moving boundaries. In the present work, we propose a simple and an effective node movement strategy for the mesh-free solver. This can tackle the unsteady problems with moving boundaries in a much easier way. Using the present method we have computed unsteady flow in oscillating turbomachinery blades. A simple energy method has been used to predict flutter using the unsteady computations. The results compare well with the available experiments and other computations.

  5. Supersonic flutter analysis of thin cracked functionally graded material plates

    CERN Document Server

    Natarajan, S; Bordas, S

    2012-01-01

    In this paper, the flutter behaviour of simply supported square functionally graded material plates immersed in a supersonic flow is studied. An enriched 4-noded quadrilateral element based on field consistency approach is used for this study and the crack is modelled independent of the underlying mesh. The material properties are assumed to be temperature dependent and graded only in the thickness direction. The effective material properties are estimated using the rule of mixtures. The formulation is based on the first order shear deformation theory and the shear correction factors are evaluated employing the energy equivalence principle. The influence of the crack length, the crack orientation, the flow angle and the gradient index on the aerodynamic pressure and the frequency are numerically studied. The results obtained here reveal that the critical frequency and the critical pressure decreases with increase in crack length and it is minimum when the crack is aligned to the flow angle.

  6. Holistic approach to flutter clearance using classical methods

    CSIR Research Space (South Africa)

    Van Zyl, Lourens H

    2006-09-01

    Full Text Available USING CLASSICAL METHODS Fig. 4: Second symmetric wing bending mode Louw H van Zyl 8 0 10 20 30 40 0 50 100 150 200 250 TAS [m/s] Fr eq u en cy [H z] Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10... Mode 11 Mode 12 Mode 13 Mode 14 Fig. 5: Frequency vs air speed from p-k flutter analysis -0.4 -0.3 -0.2 -0.1 0 0.1 0 50 100 150 200 250 TAS [m/s] D a m pi n g ra tio Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8...

  7. Aeroelastic flutter of feathers, flight and the evolution of non-vocal communication in birds.

    Science.gov (United States)

    Clark, Christopher J; Prum, Richard O

    2015-11-01

    Tonal, non-vocal sounds are widespread in both ordinary bird flight and communication displays. We hypothesized these sounds are attributable to an aerodynamic mechanism intrinsic to flight feathers: aeroelastic flutter. Individual wing and tail feathers from 35 taxa (from 13 families) that produce tonal flight sounds were tested in a wind tunnel. In the wind tunnel, all of these feathers could flutter and generate tonal sound, suggesting that the capacity to flutter is intrinsic to flight feathers. This result implies that the aerodynamic mechanism of aeroelastic flutter is potentially widespread in flight of birds. However, the sounds these feathers produced in the wind tunnel replicated the actual flight sounds of only 15 of the 35 taxa. Of the 20 negative results, we hypothesize that 10 are false negatives, as the acoustic form of the flight sound suggests flutter is a likely acoustic mechanism. For the 10 other taxa, we propose our negative wind tunnel results are correct, and these species do not make sounds via flutter. These sounds appear to constitute one or more mechanism(s) we call 'wing whirring', the physical acoustics of which remain unknown. Our results document that the production of non-vocal communication sounds by aeroelastic flutter of flight feathers is widespread in birds. Across all birds, most evolutionary origins of wing- and tail-generated communication sounds are attributable to three mechanisms: flutter, percussion and wing whirring. Other mechanisms of sound production, such as turbulence-induced whooshes, have evolved into communication sounds only rarely, despite their intrinsic ubiquity in ordinary flight.

  8. The Design and Operation of a Simple Low-Speed Flutter-Suppression Model.

    Science.gov (United States)

    1984-04-01

    Library Flying Operations and Airworthiness Division Statutory and State Authorities and Industry Trans-Australia Airlines, Library Qantas Airways ...detailed mathematical analysis , a small dynamic flutter model has been designed and tested, in order to explore the problems of instrument- ation and...Henry A. Cole Jnr. - NASA CR-2205 March 1973 2. Adaptive Flutter Suppression - Analysis and Test. Johnson, E.H., - AGARD-R-703 Harvey, C.A., January

  9. Electrophysiological characteristics and radiofrequency ablation of right atrial flutter

    Directory of Open Access Journals (Sweden)

    Yoga Yuniadi

    2007-09-01

    Full Text Available This study aimed to elaborate the electrophysiology characteristics and radiofrequency ablation (RFA results of atrial flutter (AFL which has not been established in Indonesia. Three multipolar catheters were inserted percutaneously and positioned into coronary sinus (CS, His bundle area and around tricuspid annulus. Eight mm ablation catheter was used to make linear ablation at CTI of typical and reverse typical AFL. Bidirectional block was confirmed by conduction time prolongation of more than 90 msec from low lateral to CS ostium and vice versa, and/or by means of differential pacing. Thirty AFL from 27 patients comprised of 19 typical AFL, 5 reverse typical AFL and 6 atypical AFL enrolled the study. Mean tachycardia cycle length (TCL were 261.8 ± 42.84, 226.5 ± 41.23, and 195.4 ± 9.19 msec, respectively (p = 0.016. CTI conduction time occupied up to 60% of TCL with mean conduction time of 153.0 ± 67.37 msec. CS activation distributed to three categories which comprised of proximal to distal, distal to proximal and fusion activation. Only nine of 27 patients had no structural heart disease. RFA of symptomatic typical and reverse typical AFL demonstrated 96% success and 4.5 % recurrence rate during 13 ± 8 months follow up. Typical AFL is the predominant type of AFL in our population. The majority of AFL cases suffered from structural heart disease. RFA was highly effective to cure typical and reverse typical AFL. (Med J Indones 2007; 16:151-8 Keywords: atrial flutter, electrophysiology, ablation

  10. Fluid Structural Modal Coupled Numerical Investigation of Transonic Fluttering Of Axial Flow Compressor Blades

    Directory of Open Access Journals (Sweden)

    Rio Melvin Aro.T

    2015-05-01

    Full Text Available Flutter is an unstable oscillation which can lead to destruction. Flutter can occur on fixed surfaces, such as blades, wing or the stabilizer. By self-excited aeroelastic instability, flutter can lead to mechanical or structural failure of aircraft engine blades. The modern engines have been designed with increased pressure ratio and reduced weight in order to improve aerodynamic efficiency, resulting in severe aeroelastic problems. Particularly flutter in axial compressors with transonic flow can be characterized by a number of aerodynamic nonlinear effects such as shock boundary layer interaction, rotating stall, and tip vortex instability. Rotating blades operating under high centrifugal forces may also encounter structural nonlinearities due to friction damping and large deformations. In the future work a standard axial flow compressor blade will be taken for analysis, both Subsonic and Transonic range are taken for analysis. Fluid and Structure are two different domains which will be coupled by full system coupling technique to predict the fluttering effect on the compressor blade. ANSYS is a commercial simulation tool, which will be deployed in this work to perform FSI (Fluid Structure Interaction and FSI coupled Modal to predict the flutter in the compressor blades

  11. Pressure measurements on a rectangular wing with a NACA0012 airfoil during conventional flutter

    Science.gov (United States)

    Rivera, Jose A., Jr.; Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Silva, Walter A.

    1992-01-01

    The Structural Dynamics Division at NASA LaRC has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of the program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type CFD codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. The first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree-of-freedom mount system. Two wind-tunnel tests were conducted with the first model. Several dynamic instability boundaries were investigated such as a conventional flutter boundary, a transonic plunge instability region near Mach = 0.90, and stall flutter. In addition, wing surface unsteady pressure data were acquired along two model chords located at the 60 to 95-percent span stations during these instabilities. At this time, only the pressure data for the conventional flutter boundary is presented. The conventional flutter boundary and the wing surface unsteady pressure measurements obtained at the conventional flutter boundary test conditions in pressure coefficient form are presented. Wing surface steady pressure measurements obtained with the model mount system rigidized are also presented. These steady pressure data were acquired at essentially the same dynamic pressure at which conventional flutter had been encountered with the mount system flexible.

  12. Sensitivity Analysis of Flutter Response of a Wing Incorporating Finite-Span Corrections

    Science.gov (United States)

    Issac, Jason Cherian; Kapania, Rakesh K.; Barthelemy, Jean-Francois M.

    1994-01-01

    Flutter analysis of a wing is performed in compressible flow using state-space representation of the unsteady aerodynamic behavior. Three different expressions are used to incorporate corrections due to the finite-span effects of the wing in estimating the lift-curve slope. The structural formulation is based on a Rayleigh-Pitz technique with Chebyshev polynomials used for the wing deflections. The aeroelastic equations are solved as an eigen-value problem to determine the flutter speed of the wing. The flutter speeds are found to be higher in these cases, when compared to that obtained without accounting for the finite-span effects. The derivatives of the flutter speed with respect to the shape parameters, namely: aspect ratio, area, taper ratio and sweep angle, are calculated analytically. The shape sensitivity derivatives give a linear approximation to the flutter speed curves over a range of values of the shape parameter which is perturbed. Flutter and sensitivity calculations are performed on a wing using a lifting-surface unsteady aerodynamic theory using modules from a system of programs called FAST.

  13. Smolyak-Grid-Based Flutter Analysis with the Stochastic Aerodynamic Uncertainty

    Directory of Open Access Journals (Sweden)

    Yuting Dai

    2014-01-01

    Full Text Available How to estimate the stochastic aerodynamic parametric uncertainty on aeroelastic stability is studied in this current work. The aerodynamic uncertainty is more complicated than the structural one, and it takes more significant effect on the flutter boundary. First, the nominal unsteady aerodynamic influence coefficients were calculated with the doublet lattice method. Based on this nominal model, the stochastic uncertainty model for unsteady aerodynamic pressure coefficients was constructed with physical meaning. Afterwards, the methodology for flutter uncertainty quantification due to aerodynamic perturbation was developed, based on the nonintrusive polynomial chaos expansion theory. In order to enhance the computational efficiency, the integration algorithm, namely, Smolyak sparse grids, was employed to calculate the coefficients of the stochastic polynomial basis. Finally, the flutter uncertainty analysis methodology was applied to an aircraft's wing model. The influence of uncertainty with uniform distribution for aerodynamic pressure coefficients on flutter boundary was quantified. The numerical results indicate that, the influence of unsteady aerodynamic pressure due to the motion of coupling modes takes significant effect on flutter boundary. It is validated that the flutter uncertainty analysis based on Smolyak sparse grids integration is efficient and accurate for quantifying input uncertainty with high dimensions.

  14. Parameter estimation for the subcritical Heston model based on discrete time observations

    OpenAIRE

    2014-01-01

    We study asymptotic properties of some (essentially conditional least squares) parameter estimators for the subcritical Heston model based on discrete time observations derived from conditional least squares estimators of some modified parameters.

  15. Coupled Subcritical Water and Solid Phase Extraction for In-Situ Chemical Analysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Leiden Measurement Technology (LMT) will design and develop a low volume analyte separation, concentration, and transfer system (ConTech), that couples a Subcritical...

  16. Subcritical Crack-Growth and Lifetime Behavior of Glass and SiC under Static Load

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Crack initiation and subcritical crack growth in glass sheet and SiC bar specimen under static loading were investigated to study the failure process. It has been demonstrated that the lifetime process of brittle materials involves three possible forms of crack growth: subcritical crack growth,partly subcritical crack growth and instantaneous fracture without subcritical crack growth.Curves of v-K obtained in step-by-step static fatigue tests and in constant loading rate tests showed different trends for borosilicate glass sheet. α-SiC that is generally considered immune to mechanical fatigue effect and environmental attack was also tested under static loading and the lifetime was measured. The results showed that the threshold load to damage effect was over 80% of the initial strength for the SiC.

  17. SELECTIVE EXTRACTION OF OXYGENATES FROM SAVORY AND PEPPERMINT USING SUBCRITICAL WATER. (R825394)

    Science.gov (United States)

    The yields of oxygenated and non-oxygenated flavour and fragrance compounds from savory (Satureja hortensis) and peppermint (Mentha piperita) were compared using subcritical water extraction, supercritical carbon dioxide extraction (SFE) and hydrodistillation. Extraction rates wi...

  18. Infinitely many solutions of p-Laplacian equations with limit subcritical growth

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We discussed a class of p-Laplacian boundary problems on a bounded smooth domain, the nonlinearity is odd symmetric and limit subcritical growing at infinite. A sequence of critical values of the variational functional was constructed after the generalized Palais-Smale condition was verified.We obtain that the problem possesses infinitely many solutions and corresponding energy levels of the functional pass to positive infinite.The result is a generalization of a similar problem in the case of subcritical.

  19. Physics-Based Identification, Modeling and Risk Management for Aeroelastic Flutter and Limit-Cycle Oscillations (LCO) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed research program will develop a physics-based identification, modeling and risk management infrastructure for aeroelastic transonic flutter and...

  20. Parametric study on supersonic flutter of angle-ply laminated plates using shear deformable finite element method

    Institute of Scientific and Technical Information of China (English)

    Wei Xia; Qiao Ni

    2011-01-01

    The influence of fiber orientation,flow yaw angle and length-to-thickness ratio on flutter characteristics of angle-ply laminated plates in supersonic flow is studied by finite element approach.The structural model is established using the Reissner-Mindlin theory in which the transverse shear deformation is considered.The aerodynamic pressure is evaluated by the quasi-steady first-order piston theory.The equations of motion are formulated based on the principle of virtual work.With the harmonic motion assumption,the flutter boundary is determined by solving a series of complex eigenvalue problems.Numerical study shows that (1)The flutter dynamic pressure and the coalescence of flutter modes depend on fiber orientation,flow yaw angle and length-to-thickness ratio; (2) The laminated plate with all fibers aligned with the flow direction gives the highest flutter dynamic pressure,but a slight yawing of the flow from the fiber orientation results in a sharp decrease of the flutter dynamic pressure; (3) The angle-ply laminated plate with fiber orientation angle equal to flow yaw angle gives high flutter dynamic pressure,but not the maximum flutter dynamic pressure; (4) With the decrease of length-to-thickness ratio,an adverse effect due to mode transition on the flutter dynamic pressure is found.

  1. Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications

    Science.gov (United States)

    Powell, Thomas; Bowra, Steve; Cooper, Helen J.

    2017-09-01

    Previously we have shown that subcritical water may be used as an alternative to enzymatic digestion in the proteolysis of proteins for bottom-up proteomics. Subcritical water hydrolysis of proteins was shown to result in protein sequence coverages greater than or equal to that obtained following digestion with trypsin; however, the percentage of peptide spectral matches for the samples treated with trypsin were consistently greater than for those treated with subcritical water. This observation suggests that in addition to cleavage of the peptide bond, subcritical water treatment results in other hydrolysis products, possibly due to modifications of amino acid side chains. Here, a model peptide comprising all common amino acid residues (VQSIKCADFLHYMENPTWGR) and two further model peptides (VCFQYMDRGDR and VQSIKADFLHYENPTWGR) were treated with subcritical water with the aim of probing any induced amino acid side-chain modifications. The hydrolysis products were analyzed by direct infusion electrospray tandem mass spectrometry, either collision-induced dissociation or electron transfer dissociation, and liquid chromatography collision-induced dissociation tandem mass spectrometry. The results show preferential oxidation of cysteine to sulfinic and sulfonic acid, and oxidation of methionine. In the absence of cysteine and methionine, oxidation of tryptophan was observed. In addition, water loss from aspartic acid and C-terminal amidation were observed in harsher subcritical water conditions. [Figure not available: see fulltext.

  2. Numerical simulations of subcritical reactor kinetics in thermal hydraulic transient phases

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Park, W. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute (KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons, external neutrons form spallation reactions are essentially required for operating the reactor in its steady state. Furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance to the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases. 5 refs., 8 figs. (Author)

  3. Testing study of subcritical crack growth rate and fracture toughness in different rocks

    Institute of Scientific and Technical Information of China (English)

    CAO Ping; LI Jiang-teng; YUAN Hai-ping

    2006-01-01

    Subcritical crack growth of double torsion specimens made of ore, lherzolite, marble and granite was studied using Instron1342 type electro hydraulic servo test machine. The relations of the mode-Ⅰ stress intensity factor KI versus the subcritical crack growth velocity v and the fracture toughness KIC were obtained by the double torsion constant displacement load relaxation method. The behavior of subcritical crack growth was analyzed for different rocks. The results show that lgKI-lgv relations of four kinds of rocks measured by this method accord with linear rule, i.e. the relations between subcritical crack growth velocity and stress intensity factor have a power law, which is in good agreement with CHARLES theory. lgKI-lgv curves move to top left corner with the decrease of the elastic modulus, which implies that the subcritical crack growth velocity speeds up. The maximum subcritical crack growth velocity exhibits negative exponential increase, and mode-Ⅰ fracture toughness KIC decreases with the decrease of elastic modulus. The testing results provide a basis for time-dependence of rock engineering stability.

  4. Subcritical Noise Analysis Measurements with Fresh and Spent Research Reactor Fuels Elements

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, T.E.; Mihalczo, J.T.; Kryter, R.C.; Miller, V.C.

    1999-02-01

    The verification of the subcriticality is of utmost importance for the safe transportation and storage of nuclear reactor fuels. Transportation containers and storage facilities are designed such that nuclear fuels remain in a subcritical state. Such designs often involve excess conservatism because of the lack of relevant experimental data to verify the accuracy of Monte Carlo codes used in nuclear criticality safety analyses. A joint experimental research program between Oak Ridge National Laboratory, Westinghouse Safety Management Solutions, Inc., and the University of Missouri was initiated to obtain measured quantities that could be directly related to the subcriticality of simple arrays of Missouri University Research Reactor (MURR) fuel elements. A series of measurement were performed to assess the reactivity of materials such as BORAL, stainless steel, aluminum, and lead that are typically used in the construction of shipping casks. These materials were positioned between the fuel elements. In addition, a limited number of measurements were performed with configurations of fresh and spent (irradiated) fuel elements to ascertain the reactivity of the spent fuel elements. In these experiments, fresh fuel elements were replaced by spent fuel elements such that the subcritical reactivity change could be measured. The results of these measurements were used by Westinghouse Safety Management Solutions to determine the subcriticality of MURR fuel elements isolated by absorbing materials. The measurements were interpreted using the MCNP-DSP Monte Carlo code to obtain the subcritical neutron multiplication factor k(sub eff), and the bias in K(sub eff) that are used in criticality safety analyses.

  5. Effect of Subcritical Annealing Temperature on Microstructure and Mechanical Properties of SCM435 Steel

    Institute of Scientific and Technical Information of China (English)

    Cheng JI; Lei WANG; Miao-yong ZHU

    2015-01-01

    The effect of subcritical annealing temperature on microstructure and mechanical properties of SCM435 steel was inves-tigated through changing the heating and soaking temperature as 660 °C, 680 °C, 700 °C, 720 °C and 745 °C. The microstructure and mechanical properties of intercritically annealed specimens were analyzed. With increasing the subcritical annealing tempera-ture from 660 °C to 720 °C, the spheroidization ratio gradually increased, and the mechanical properties, formability and Vickers hardness were improved. According to the comprehensive comparison of mechanical properties and formability, the subcritical process at soaking temperature of 680−720 °C could achieve similar annealing effect as that of intercritical process. Therefore, the subcritical annealing temperature could be set as 700 °C in practice, with theAc1 temperature lfuctuation within ±20 °C, and the applicability and stability of subcritical annealing were guaranteed in industrial application. The plant results of the cold heading showed that the subcritical annealing could replace original intercritical annealing successfully with signiifcantly saving time and energy.

  6. Submersion-Subcritical Safe Space (S{sup 4}) reactor

    Energy Technology Data Exchange (ETDEWEB)

    King, Jeffrey C. [Institute for Space and Nuclear Power Studies, Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM 87131 (United States)]. E-mail: isnps@unm.edu; El-Genk, Mohamed S. [Institute for Space and Nuclear Power Studies, Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM 87131 (United States)]. E-mail: mgenk@unm.edu

    2006-09-15

    The Submersion-Subcritical Safe Space (S{sup 4}) reactor, developed for future space power applications and avoidance of single point failures, is presented. The S{sup 4} reactor has a Mo-14% Re solid core, loaded with uranium nitride fuel, cooled by He-30% Xe and sized to provide 550 kWth for 7 years of equivalent full power operation. The beryllium oxide reflector of the S{sup 4} reactor is designed to completely disassemble upon impact on water or soil. The potential of using Spectral Shift Absorber (SSA) materials in different forms to ensure that the reactor remains subcritical in the worst-case submersion accident is investigated. Nine potential SSAs are considered in terms of their effect on the thickness of the radial reflector and on the combined mass of the reactor and the radiation shadow shield. The SSA materials are incorporated as a thin (0.1 mm) coating on the outside surface of the reactor core and as core additions in three possible forms: 2.0 mm diameter pins in the interstices of the core block, 0.25 mm thick sleeves around the fuel stacks and/or additions to the uranium nitride fuel. Results show that with a boron carbide coating and 0.25 mm iridium sleeves around the fuel stacks the S{sup 4} reactor has a reflector outer diameter of 43.5 cm with a combined reactor and shadow shield mass of 935.1 kg. The S{sup 4} reactor with 12.5 at.% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide interstitial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating has a slightly smaller reflector outer diameter of 43.0 cm, resulting in a smaller total reactor and shield mass of 901.7 kg. With 8.0 at.% europium-151 added to the fuel, along with europium-151 sesquioxide for the pins and coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respectively.

  7. Clinical Differences between Subtypes of Atrial Fibrillation and Flutter: Cross-Sectional Registry of 407 Patients

    Directory of Open Access Journals (Sweden)

    Eduardo Dytz Almeida

    2015-01-01

    Full Text Available Introduction: Atrial fibrillation and atrial flutter account for one third of hospitalizations due to arrhythmias, determining great social and economic impacts. In Brazil, data on hospital care of these patients is scarce. Objective: To investigate the arrhythmia subtype of atrial fibrillation and flutter patients in the emergency setting and compare the clinical profile, thromboembolic risk and anticoagulants use. Methods: Cross-sectional retrospective study, with data collection from medical records of every patient treated for atrial fibrillation and flutter in the emergency department of Instituto de Cardiologia do Rio Grande do Sul during the first trimester of 2012. Results: We included 407 patients (356 had atrial fibrillation and 51 had flutter. Patients with paroxysmal atrial fibrillation were in average 5 years younger than those with persistent atrial fibrillation. Compared to paroxysmal atrial fibrillation patients, those with persistent atrial fibrillation and flutter had larger atrial diameter (48.6 ± 7.2 vs. 47.2 ± 6.2 vs. 42.3 ± 6.4; p < 0.01 and lower left ventricular ejection fraction (66.8 ± 11 vs. 53.9 ± 17 vs. 57.4 ± 16; p < 0.01. The prevalence of stroke and heart failure was higher in persistent atrial fibrillation and flutter patients. Those with paroxysmal atrial fibrillation and flutter had higher prevalence of CHADS2 score of zero when compared to those with persistent atrial fibrillation (27.8% vs. 18% vs. 4.9%; p < 0.01. The prevalence of anticoagulation in patients with CHA2DS2-Vasc ≤ 2 was 40%. Conclusions: The population in our registry was similar in its comorbidities and demographic profile to those of North American and European registries. Despite the high thromboembolic risk, the use of anticoagulants was low, revealing difficulties for incorporating guideline recommendations. Public health strategies should be adopted in order to improve these rates.

  8. Clinical Differences between Subtypes of Atrial Fibrillation and Flutter: Cross-Sectional Registry of 407 Patients

    Science.gov (United States)

    Almeida, Eduardo Dytz; Guimarães, Raphael Boesche; Stephan, Laura Siga; Medeiros, Alexandre Kreling; Foltz, Katia; Santanna, Roberto Tofani; Pires, Leonardo Martins; Kruse, Marcelo Lapa; de Lima, Gustavo Glotz; Leiria, Tiago Luiz Luz

    2015-01-01

    Introduction Atrial fibrillation and atrial flutter account for one third of hospitalizations due to arrhythmias, determining great social and economic impacts. In Brazil, data on hospital care of these patients is scarce. Objective To investigate the arrhythmia subtype of atrial fibrillation and flutter patients in the emergency setting and compare the clinical profile, thromboembolic risk and anticoagulants use. Methods Cross-sectional retrospective study, with data collection from medical records of every patient treated for atrial fibrillation and flutter in the emergency department of Instituto de Cardiologia do Rio Grande do Sul during the first trimester of 2012. Results We included 407 patients (356 had atrial fibrillation and 51 had flutter). Patients with paroxysmal atrial fibrillation were in average 5 years younger than those with persistent atrial fibrillation. Compared to paroxysmal atrial fibrillation patients, those with persistent atrial fibrillation and flutter had larger atrial diameter (48.6 ± 7.2 vs. 47.2 ± 6.2 vs. 42.3 ± 6.4; p < 0.01) and lower left ventricular ejection fraction (66.8 ± 11 vs. 53.9 ± 17 vs. 57.4 ± 16; p < 0.01). The prevalence of stroke and heart failure was higher in persistent atrial fibrillation and flutter patients. Those with paroxysmal atrial fibrillation and flutter had higher prevalence of CHADS2 score of zero when compared to those with persistent atrial fibrillation (27.8% vs. 18% vs. 4.9%; p < 0.01). The prevalence of anticoagulation in patients with CHA2DS2-Vasc ≤ 2 was 40%. Conclusions The population in our registry was similar in its comorbidities and demographic profile to those of North American and European registries. Despite the high thromboembolic risk, the use of anticoagulants was low, revealing difficulties for incorporating guideline recommendations. Public health strategies should be adopted in order to improve these rates. PMID:26016782

  9. Outcomes after ablation for typical atrial flutter (from the Loire Valley Atrial Fibrillation Project).

    Science.gov (United States)

    Clementy, Nicolas; Desprets, Laurent; Pierre, Bertrand; Lallemand, Bénédicte; Simeon, Edouard; Brunet-Bernard, Anne; Babuty, Dominique; Fauchier, Laurent

    2014-11-01

    Similar predisposing factors are found in most types of atrial arrhythmias. The incidence of atrial fibrillation (AF) among patients with atrial flutter is high, suggesting similar outcomes in patients with those arrhythmias. We sought to investigate the long-term outcomes and prognostic factors of patients with AF and/or atrial flutter with contemporary management using radiofrequency ablation. In an academic institution, we retrospectively examined the clinical course of 8,962 consecutive patients admitted to our department with a diagnosis of AF and/or atrial flutter. After a median follow-up of 934 ± 1,134 days, 1,155 deaths and 715 stroke and/thromboembolic (TE) events were recorded. Patients with atrial flutter undergoing cavotricuspid isthmus ablation (n = 875, 37% with a history of AF) had a better survival rate than other patients (hazard ratio [HR] 0.35, 95% confidence interval [CI] 0.25 to 0.49, p <0.0001). Using Cox proportional hazards model and propensity score model, after adjustment for main other confounders, ablation for atrial flutter was significantly associated with a lower risk of all-cause mortality (HR 0.55, 95% CI 0.36 to 0.84, p = 0.006) and stroke and/or TE events (HR 0.53, 95% CI 0.30 to 0.92, p = 0.02). After ablation, there was no significant difference in the risk of TE between patients with a history of AF and those with atrial flutter alone (HR 0.83, 95% CI 0.41 to 1.67, p = 0.59). In conclusion, in patients with atrial tachyarrhythmias, those with atrial flutter with contemporary management who undergo cavotricuspid isthmus radiofrequency ablation independently have a lower risk of stroke and/or TE events and death of any cause, whether a history of AF is present or not.

  10. Response of SI cortex to ipsilateral, contralateral and bilateral flutter stimulation in the cat

    Directory of Open Access Journals (Sweden)

    Favorov Oleg

    2005-04-01

    Full Text Available Abstract Background While SII cortex is considered to be the first cortical stage of the pathway that integrates tactile information arising from both sides of the body, SI cortex is generally not considered as a region in which neuronal response is modulated by simultaneous stimulation of bilateral (and mirror-image skin sites. Results Optical intrinsic signal imaging was used to evaluate the response of SI and SII in the same hemisphere to 25 Hz sinusoidal vertical skin displacement stimulation ("skin flutter" applied contralaterally, ipsilaterally, and bilaterally (simultaneously to the central pads of the forepaws. A localized increase in absorbance in both SI and SII occurred in response to both contralateral and bilateral flutter stimulation. Ipsilateral flutter stimulation evoked a localized increase in absorbance in SII, but little or no change in SI absorbance. In the forepaw representational region of SI, however, bilateral stimulation of the central pads evoked a response substantially smaller (approximately 30–35% smaller than the response to flutter stimulation of the contralateral central pad. Conclusion The finding that the response of SI cortex to bilateral central pad flutter stimulation is substantially smaller than the response evoked by a contralateral flutter stimulus, together with the recently published observation that a region located posteriorly in SII responds with a substantially larger response to a bilateral flutter stimulus than the response evoked from the contralateral central pad, lead us to propose that the SI activity evoked by contralateral skin stimulation is suppressed/inhibited (via corticocortical connections between SII and SI in the same hemisphere by the activity a simultaneous ipsilateral skin stimulus evokes in posterior SII.

  11. Development study on subcriticality monitor. 1. Report under business contract with Japan Nuclear Fuel Cycle Development Institute

    CERN Document Server

    Yamada, S

    2002-01-01

    In this trust fund, we reviewed subcriticality measuring methods and neutron or gamma ray measuring and date transmission systems appropriate for realizing inexpensive on-line criticality surveillance systems, which is required for ensuring the safety of nuclear fuel reprocessing plants. Since the neutron flux level in subcritical systems is fairly low without external neutron sources, it is desirable to use pulse type neutron detectors for subcritical measurement systems. This logically implies that subcriticality measurement methods based on the temporal domain should be used for developing an on-line criticality surveillance system. In the deep subcriticality conditions, a strong external neutron source is needed for eactivity measurement and a D-T tube can be used in order to improve the accuracy of the measurement. A D-T tube is convenient since it is free from Tritium problem since Tritium is sealed in an airtight container and also can be controlled by power supply. Hence, under deep subcritical condit...

  12. Retention behavior of phenols, anilines, and alkylbenzenes in liquid chromatographic separations using subcritical water as the mobile phase.

    Science.gov (United States)

    Yang, Y; Jones, A D; Eaton, C D

    1999-09-01

    The unique characteristic of subcritical water is its widely tunable physical properties. For example, the polarity (measured by dielectric constant) of water is significantly decreased by raising water temperature. At temperatures of 200-250 °C (under moderate pressure to keep water in the liquid state), the polarity of pure water is similar to that of pure methanol or acetonitrile at ambient conditions. Therefore, pure subcritical water may be able to serve as the mobile phase for reversed-phase separations. To investigate the retention behavior in subcritical water separation, the retention factors of BTEX (benzene, toluene, ethylbenzene, and m-xylene), phenol, aniline, and their derivatives have been determined using subcritical water, methanol/water, and acetonitrile/water systems. Subcritical water separations were also performed using alumina, silica-bonded C18, and poly(styrene-divinylbenzene) columns to study the influence of the stationary phase on analyte retention under subcritical water conditions.

  13. Subcritical Transition to Turbulence in Couette-Poiseuille flow

    Science.gov (United States)

    Wesfreid, Jose Eduardo; Klotz, Lukasz

    2016-11-01

    We study the subcritical transition to turbulence in the plane Couette-Poiseuille shear flow with zero mean advection velocity. Our experimental configuration consists on one moving wall of the test section (the second one remains stationary), which acts like a driving force for the flow, imposing linear streamwise velocity profile (Couette) and adverse pressure gradient in the streamwise direction (Poiseuille) at the same time. This flow, which had only been studied theoretically up to now, is always linearly stable. The transition to turbulence is forced by a very well controlled finite-size perturbation by injection, into the test section, of a water jet during a very short time. Using PIV technique, we characterized quantitatively the initial development of the triggered turbulent spot and compared its energy evolution with the theoretical predictions of the transient growth theory. In addition, we show results concerning the importance of nonlinearities, when waviness of streaks in streamwise direction induced self-sustained process in the turbulent spot. We also measured precisely the large-scale flow which is generated around the turbulent spot and studied its strength as a function of the Reynolds number.

  14. Onset of Fast Magnetic Reconnection via Subcritical Bifurcation

    Directory of Open Access Journals (Sweden)

    ZHIBIN eGUO

    2015-04-01

    Full Text Available We report a phase transition model for the onset of fast magnetic reconnection. By investigating the joint dynamics of streaming instability(i.e., current driven ion acoustic in this paper and current gradient driven whistler wave {color{blue} {prior to the onset of fast reconnection}}, we show that the nonlinear evolution of current sheet(CS can be described by a Landau-Ginzburg equation. The phase transition from slow reconnection to fast reconnection occurs at a critical thickness, $Delta_csimeq frac{2}{sqrt{pi}}left|frac{v_{the}}{v_c}right|d_e$, where $v_{the}$ is electron thermal velocity and $v_c$ is the velocity threshold of the streaming instability. For current driven ion acoustic, $Delta_c$ is $leq10d_e$. If the thickness of the CS is narrower than $Delta_c$, the CS subcritically bifurcates into a rough state, which facilitates breakage of the CS, and consequently initiates fast reconnection.

  15. Monte Carlo Modeling Electronuclear Processes in Cascade Subcritical Reactor

    CERN Document Server

    Bznuni, S A; Zhamkochyan, V M; Polyanskii, A A; Sosnin, A N; Khudaverdian, A G

    2000-01-01

    Accelerator driven subcritical cascade reactor composed of the main thermal neutron reactor constructed analogous to the core of the VVER-1000 reactor and a booster-reactor, which is constructed similar to the core of the BN-350 fast breeder reactor, is taken as a model example. It is shown by means of Monte Carlo calculations that such system is a safe energy source (k_{eff}=0.94-0.98) and it is capable of transmuting produced radioactive wastes (neutron flux density in the thermal zone is PHI^{max} (r,z)=10^{14} n/(cm^{-2} s^{-1}), neutron flux in the fast zone is respectively equal PHI^{max} (r,z)=2.25 cdot 10^{15} n/(cm^{-2} s^{-1}) if the beam current of the proton accelerator is k_{eff}=0.98 and I=5.3 mA). Suggested configuration of the "cascade" reactor system essentially reduces the requirements on the proton accelerator current.

  16. Subcritical hydrothermal conversion of organic wastes and biomass. Reaction pathways

    Directory of Open Access Journals (Sweden)

    Alejandro Amadeus Castro Vega

    2010-04-01

    Full Text Available Hydrothermal conversion is a procedure which emulates organic matter’s natural conversion into bio-crude having physical and chemical properties analogous to petroleum. The artificial transformation of biomass requi- res previous knowledge of the main reaction routes and product availability. The main component of biomass (depolymerisation by hydrolysis is presented in hydrothermal cellulose conversion, producing oligosaccharides which exhibit dehydration and retro-aldol condensation reactions for transforming into furfurals and carboxylic acids. Other biomass components (such as lignin, proteins, and fat esters present both hydrolysis and pyrolysis reaction routes. As long as biomass mainly contains carbohydrates, subcritical hydrothermal conversion products and their wastes will be fundamentally analogous to those displaying cellulose. These substances have added- value by far surpassing raw material’s acquisition cost. When the main hydrothermal conversion products’ O/C, H/C molar ratios as reported in literature are plotted, an evolutionary tralectory for conversion products appears to be closely or even overlapped with fossil fuels’ geological evolution.

  17. Subcritical Water Extraction of Ursolic Acid from Hedyotis diffusa

    Directory of Open Access Journals (Sweden)

    Shangzhen Xiao

    2017-02-01

    Full Text Available An efficient and environmental-friendly extraction method has been developed for extraction of ursolic acid (UA from Hedyotis diffusa by using subcritical water extraction (SWE. The experiments were carried out at different particle sizes (20–100 mesh, extraction temperature (120–200 °C, extraction time (10–50 min, solvent/solid ratio (20–40 mL/g, and extraction pressure (0.6–3.0 MPa. Response surface methodology (RSM was employed to optimize SWE conditions, and the maximum UA yield was 6.45 mg/g material. Optimal conditions are as follows: Particle size of 80 mesh, extraction temperature at 157 °C and a solvent/solid ratio of 30 mL/g. The model of experimental response was proved to predict the experimental results very well and demonstrated that UA yield was mainly depended on solvent/solid ratio, followed by particle size and temperature. The purified extract was analyzed by electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS. The acquired precursor ion was m/z 455.3532, which is consistent with calculated value of UA. Furthermore, different extraction methods, including maceration extraction, heat reflux extraction, ultrasonic extraction, microwave-assisted extraction, and SWE were comparatively analyzed, which indicated that SWE was a time-saving, cost-saving and environment-friendly extraction technology for extraction of UA from Hedyotis diffusa.

  18. Effective Subcritical Butane Extraction of Bifenthrin Residue in Black Tea

    Directory of Open Access Journals (Sweden)

    Yating Zhang

    2017-03-01

    Full Text Available As a natural and healthy beverage, tea is widely enjoyed; however, the pesticide residues in tea leaves affect the quality and food safety. To develop a highly selective and efficient method for the facile removal of pesticide residues, the subcritical butane extraction (SBE technique was employed, and three variables involving temperature, time and extraction cycles were studied. The optimum SBE conditions were found to be as follows: extraction temperature 45 °C, extraction time 30 min, number of extraction cycles 1, and in such a condition that the extraction efficiency reached as high as 92%. Further, the catechins, theanine, caffeine and aroma components, which determine the quality of the tea, fluctuated after SBE treatment. Compared with the uncrushed leaves, pesticide residues can more easily be removed from crushed leaves, and the practical extraction efficiency was 97%. These results indicate that SBE is a useful method to efficiently remove the bifenthrin, and as appearance is not relevant in the production process, tea leaves should first be crushed and then extracted in order that residual pesticides are thoroughly removed.

  19. Catalytic upgrading of duckweed biocrude in subcritical water.

    Science.gov (United States)

    Zhang, Caicai; Duan, Peigao; Xu, Yuping; Wang, Bing; Wang, Feng; Zhang, Lei

    2014-08-01

    Herein, a duckweed biocrude produced from the hydrothermal liquefaction of Lemna minor was treated in subcritical water with added H₂. Effects of several different commercially available materials such as Ru/C, Pd/C, Pt/C, Pt/γ-Al₂O₃, Pt/C-sulfide, Rh/γ-Al₂O₃, activated carbon, MoS₂, Mo₂C, Co-Mo/γ-Al₂O₃, and zeolite on the yields of product fractions and the deoxygenation, denitrogenation, and desulfurization of biocrude at 350°C were examined, respectively. All the materials showed catalytic activity for deoxygenation and desulfurization of the biocrude and only Ru/C showed activity for denitrogenation. Of those catalysts examined, Pt/C showed the best performance for deoxygenation. Among all the upgraded oils, the oil produced with Ru/C shows the lowest sulfur, the highest hydrocarbon content (25.6%), the highest energy recovery (85.5%), and the highest higher heating value (42.6 MJ/kg). The gaseous products were mainly unreacted H₂, CH₄, CO₂, and C₂H6.

  20. The Chain-Length Distribution in Subcritical Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nolen, Steven Douglas [Texas A & M Univ., College Station, TX (United States)

    2000-06-01

    The individual fission chains that appear in any neutron multiplying system provide a means, via neutron noise analysis, to unlock a wealth of information regarding the nature of the system. This work begins by determining the probability density distributions for fission chain lengths in zero-dimensional systems over a range of prompt neutron multiplication constant (K) values. This section is followed by showing how the integral representation of the chain-length distribution can be used to obtain an estimate of the system's subcritical prompt multiplication (MP). The lifetime of the chains is then used to provide a basis for determining whether a neutron noise analysis will be successful in assessing the neutron multiplication constant, k, of the system in the presence of a strong intrinsic source. A Monte Carlo transport code, MC++, is used to model the evolution of the individual fission chains and to determine how they are influenced by spatial effects. The dissertation concludes by demonstrating how experimental validation of certain global system parameters by neutron noise analysis may be precluded in situations in which the system K is relatively low and in which realistic detector efficiencies are simulated.

  1. Enhanced Capabilities for Subcritical Experiments (ECSE) Risk Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Mary Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Process Modeling and Analysis Group

    2016-05-02

    Risk is a factor, element, constraint, or course of action that introduces an uncertainty of outcome that could impact project objectives. Risk is an inherent part of all activities, whether the activity is simple and small, or large and complex. Risk management is a process that identifies, evaluates, handles, and monitors risks that have the potential to affect project success. The risk management process spans the entire project, from its initiation to its successful completion and closeout, including both technical and programmatic (non-technical) risks. This Risk Management Plan (RMP) defines the process to be used for identifying, evaluating, handling, and monitoring risks as part of the overall management of the Enhanced Capabilities for Subcritical Experiments (ECSE) ‘Project’. Given the changing nature of the project environment, risk management is essentially an ongoing and iterative process, which applies the best efforts of a knowledgeable project staff to a suite of focused and prioritized concerns. The risk management process itself must be continually applied throughout the project life cycle. This document was prepared in accordance with DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets, its associated guide for risk management DOE G 413.3-7, Risk Management Guide, and LANL ADPM AP-350-204, Risk and Opportunity Management.

  2. Reduction of statistic error in Mihalczo subcriticality measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hazama, Taira [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-08-01

    The theoretical formula for the statistical error estimation in Mihalczo method was derived, and the dependence of the error were investigated on the facility to be measured and on the parameter in the data analysis. The formula was derived based on the reactor noise theory and the error theory for the frequency analysis, and found that the error depends on such parameters as the prompt neutron decay constant, detector efficiencies, and the frequency bandwidth. Statistical errors estimated with the formula was compared with experimental values and verified to be reasonable. Through parameter surveys, it is found that there is an optimum combination of the parameters to reduce the magnitude of the errors. In the experiment performed in DCA subcriticality measurement facility, it is estimated experimentally that the measurement requires 20 minutes to obtain the statistic error of 1% for the keff 0.9. According to the error theory, this might be reduced to 3 seconds in the aqueous fuel system typical in fuel reprocessing plant. (J.P.N.)

  3. T-tail flutter: Potential-flow modelling, experimental validation and flight tests

    Science.gov (United States)

    Murua, Joseba; Martínez, Pablo; Climent, Héctor; van Zyl, Louw; Palacios, Rafael

    2014-11-01

    Flutter of T-tail configurations is caused by the aeroelastic coupling between the vertical fin and the horizontal stabiliser. The latter is mounted on the fin instead of the fuselage, and hence the arrangement presents distinct characteristics compared to other typical empennage setups; specifically, T-tail aeroelasticity is governed by inplane dynamics and steady aerodynamic loading, which are typically not included in flutter clearance methodologies based on the doublet lattice method. As the number of new aircraft featuring this tail configuration increases, there is a need for precise understanding of the phenomenon, appropriate tools for its prediction, and reliable benchmarking data. This paper addresses this triple challenge by providing a detailed explanation of T-tail flutter physics, describing potential-flow modelling alternatives, and presenting detailed numerical and experimental results to compensate for the shortage of reproducible data in the literature. A historical account of the main milestones in T-tail aircraft development is included, followed by a T-tail flutter research review that emphasises the latest contributions from industry as well as academia. The physical problem is dissected next, highlighting the individual and combined effects that drive the phenomenon. Three different methodologies, all based on potential-flow aerodynamics, are considered for T-tail subsonic flutter prediction: (i) direct incorporation of supplementary T-tail effects as additional terms in the flutter equations; (ii) a generalisation of the boundary conditions and air loads calculation on the double lattice; and (iii) a linearisation of the unsteady vortex lattice method with arbitrary kinematics. Comparison with wind-tunnel experimental results evidences that all three approaches are consistent and capture the key characteristics in the T-tail dynamics. The validated numerical models are then exercised in easy-to-duplicate canonical test cases. These

  4. Physics analyses of an accelerator-driven sub-critical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Naberezhnev, Dmitry G. [Nuclear Engineering Division, Argonne National Laboratory, 9700 S. Cass Av., Argonne, IL 60439 (United States)]. E-mail: dimitri@anl.gov; Gohar, Yousry [Nuclear Engineering Division, Argonne National Laboratory, 9700 S. Cass Av., Argonne, IL 60439 (United States); Bailey, James [Nuclear Engineering Division, Argonne National Laboratory, 9700 S. Cass Av., Argonne, IL 60439 (United States); Belch, Henry [Nuclear Engineering Division, Argonne National Laboratory, 9700 S. Cass Av., Argonne, IL 60439 (United States)

    2006-06-23

    Physics analyses have been performed for an accelerator-driven sub-critical assembly as a part of the Argonne National Laboratory activity in preparation for a joint conceptual design with the Kharkov Institute of Physics and Technology (KIPT) of Ukraine. KIPT has a plan to construct an accelerator-driven sub-critical assembly targeted towards the medical isotope production and the support of the Ukraine nuclear industry. The external neutron source is produced either through photonuclear reactions in tungsten or uranium targets, or deuteron reactions in a beryllium target. KIPT intends using the high-enriched uranium (HEU) for the fuel of the sub-critical assembly. The main objective of this paper is to study the possibility of utilizing low-enriched uranium (LEU) fuel instead of HEU fuel without penalizing the sub-critical assembly performance, in particular the neutron flux level. In the course of this activity, several studies have been carried out to investigate the main choices for the system's parameters. The external neutron source has been characterized and a pre-conceptual target design has been developed. Several sub-critical configurations with different fuel enrichments and densities have been considered. Based on our analysis, it was shown that the performance of the LEU fuel is comparable with that of the HEU fuel. The LEU fuel sub-critical assembly with 200-MeV electron energy and 100-kW electron beam power has an average total flux of {approx}2.50x10{sup 13} n/s cm{sup 2} in the irradiation channels. The corresponding total facility power is {approx}204 kW divided into 91 and 113 kW deposited in the target and sub-critical assemblies, respectively.

  5. Structural Nonlinear Flutter Characteristics Analysis for an Actuator-fin System with Dynamic Stiffness

    Institute of Scientific and Technical Information of China (English)

    YANG Ning; WU Zhigang; YANG Chao

    2011-01-01

    The flutter characteristics of an actuator-fin system are investigated with structural nonlinearity and dynamic stiffness of the electric motor.The component mode substitution method is used to establish the nonlinear governing equations in time domain and frequency domain based on the fundamental dynamic equations of the electric motor and decelerator.The existing describing function method and a proposed iterative method are used to obtain the flutter characteristics containing preload freeplay nonlinearity when the control command is zero.A comparison between the results of frequency domain and those of time domain is studied.Simulations are carried out when the control command is not zero and further analysis is conducted when the freeplay angle is changed.The results show that structural nonlinearity and dynamic stiffness have a significant influence on the flutter characteristics.Limit cycle oscillations(LCOs)are observed within linear flutter boundary.The response of the actuator-fin system is related to the initial disturbance.In the nonlinear condition,the amplitude of the control command has an influence on the flutter characteristics.

  6. Flight Flutter Modal Parameters Identification with Atmospheric Turbulence Excitation Based on Wavelet Transformation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters is presented. This approach firstly uses random decrement technique to gain free decays corresponding to the acceleration response of the structure to some non-zero initial conditions. Then the continuous Morlet wavelet transformation of the free decays is performed; and the Parseval formula and residue theorem are used to simplify the transformation. The maximal wavelet transformation coefficients in different scales are searched out by means of band-filtering characteristic of Morlet wavelet, and then the modal parameters are identified according to the relationships with maximal modulus and angle of the wavelet transform. In addition, the condition of modal uncoupling is discussed according to variation trend of flight flutter modal parameters in the flight flutter state. The analysis results of simulation and flight flutter test data show that this approach is not only simple, effective and feasible, but also having good noise immunity.

  7. Flutter performance of bend-twist coupled large-scale wind turbine blades

    Science.gov (United States)

    Hayat, Khazar; de Lecea, Alvaro Gorostidi Martinez; Moriones, Carlos Donazar; Ha, Sung Kyu

    2016-05-01

    The bend-twist coupling (BTC) is proven to be effective in mitigating the fatigue loads for large-scale wind turbine blades, but at the same time it may cause the risk of flutter instability. The BTC is defined as a feature of twisting of the blade induced by the primary bending deformation. In the classical flutter, the BTC arises from the aerodynamic loads changing with the angle of attack. In this study, the effects of the structural BTC on the flutter are investigated by considering the layup unbalances (ply angle, material and thickness of the composite laminates) in the NREL 5-MW wind turbine rotor blade of glass fiber/epoxy [02/+45/-45]S laminates. It is numerically shown that the flutter speed may decrease by about 5 percent with unbalanced ply-angle only (one side angle, from 45° to 25°). It was then demonstrated that the flutter performance of the wind turbine blade can be increased by using lighter and stiffer carbon fibers which ensures the higher structural BTC at the same time.

  8. Reliability and Sensitivity Analysis of Transonic Flutter Using Improved Line Sampling Technique

    Institute of Scientific and Technical Information of China (English)

    Song Shufang; Lu Zhenzhou; Zhang Weiwei; Ye Zhengyin

    2009-01-01

    The improved line sampling (LS) technique, an effective numerical simulation method, is employed to analyze the probabilistic characteristics and reliability sensitivity of flutter with random structural parameter in transonic flow. The improved LS technique is a novel methodology for reliability and sensitivity analysis of high dimensionality and low probability problem with implicit limit state function, and it does not require any approximating surrogate of the implicit limit state equation. The improved LS is used to estimate the flutter reliability and the sensitivity of a two-dimensional wing, in which some structural properties, such as frequency, parameters of gravity center and mass ratio, are considered as random variables. Computational fluid dynamics (CFD) based unsteady aerodynamic reduced order model (ROM) method is used to construct the aerodynamic state equations. Coupling structural state equations with aerodynamic state equations, the safety margin of flutter is founded by using the critical velocity of flutter. The results show that the improved LS technique can effectively decrease the computational cost in the random uncertainty analysis of flutter. The reliability sensitivity, defined by the partial derivative of the failure probability with respect to the distribution parameter of random variable, can help to identify the important parameters and guide the structural optimization design.

  9. Flight test of a decoupler pylon for wing/store flutter suppression

    Science.gov (United States)

    Cazier, F. W., Jr.; Kehoe, M. W.

    1986-01-01

    The decoupler pylon is a NASA concept of passive wing-store flutter suppression achieved by providing a low store-pylon pitch frequency. Flight tests were performed on an F-16 aircraft carrying on each wing an AIM-9J wingtip missile, a GBU-8 bomb near midspan, and an external fuel tank. Baseline flights with the GBU-8 mounted on a standard pylon established that this configuration is characterized by an antisymmetric limited amplitude flutter oscillation within the operational envelope. The airplane was then flown with the GBU-8 mounted on the decoupler pylon. The decoupler pylon successfully suppressed wing-store flutter throughout the flight envelope. A 37-percent increase in flutter velocity over the standard pylon was demonstrated. Maneuvers with load factors to 4g were performed. Although the static store displacements during maneuvers were not sufficiently large to be of concern, a store pitch alignment system was tested and performed successfully. One GBU-8 was ejected demonstrating that weapon separation from the decoupler pylon is normal. Experience with the present decoupler pylon design indicated that friction in the pivoting mechanism could affect its proper functioning as a flutter suppressor.

  10. [The value of physical therapy with VRP 1-Desitin ("Flutter")].

    Science.gov (United States)

    Lindemann, H

    1992-12-01

    Preliminary examinations with an innovative device for physiotherapy, VRP 1-Desitin ("Flutter"), in patients suffering from chronic mucus retention and bronchial collapse gave encouraging results. Therefore, we tried to confirm these findings and to evaluate the use of this new physiotherapy. It is based on oscillations of air in the respiratory tract during expiration (rate about 2 to 32 Hertz) diminishing adhesiveness of bronchial mucus and bronchial collapse. Pressure and flow changing depend on the position of mouth-piece and effort of breathing. In order to establish the efficiency of the VRP 1 a comparing investigation was initiated. 20 patients with cystic fibrosis, aged 7 to 28 years, performed physiotherapy with VRP 1 and autogenic drainage (AD), respectively, in a randomized order one after another, each physiotherapy taking twenty minutes. The expectorated sputum was weighed by means of a precision balance. Mean values during VRP 1 treatment were 5.0 g (range 0 to 12.0 g), during AD 4.8 g (range 0 to 11.7 g). There was no statistical difference (p VRP 1 physiotherapy is as effective as AD with respect to sputum elimination. In opposite to other methods not requiring a helping person it is simple to teach and to learn. It may be performed by young children (> or = 3 years) and adults, also in combination with inhalation. Thus, VRP 1 appears to be a real enrichment in physiotherapy.

  11. High power ring methods and accelerator driven subcritical reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Tahar, Malek Haj [Univ. of Grenoble (France)

    2016-08-07

    High power proton accelerators allow providing, by spallation reaction, the neutron fluxes necessary in the synthesis of fissile material, starting from Uranium 238 or Thorium 232. This is the basis of the concept of sub-critical operation of a reactor, for energy production or nuclear waste transmutation, with the objective of achieving cleaner, safer and more efficient process than today’s technologies allow. Designing, building and operating a proton accelerator in the 500-1000 MeV energy range, CW regime, MW power class still remains a challenge nowadays. There is a limited number of installations at present achieving beam characteristics in that class, e.g., PSI in Villigen, 590 MeV CW beam from a cyclotron, SNS in Oakland, 1 GeV pulsed beam from a linear accelerator, in addition to projects as the ESS in Europe, a 5 MW beam from a linear accelerator. Furthermore, coupling an accelerator to a sub-critical nuclear reactor is a challenging proposition: some of the key issues/requirements are the design of a spallation target to withstand high power densities as well as ensure the safety of the installation. These two domains are the grounds of the PhD work: the focus is on the high power ring methods in the frame of the KURRI FFAG collaboration in Japan: upgrade of the installation towards high intensity is crucial to demonstrate the high beam power capability of FFAG. Thus, modeling of the beam dynamics and benchmarking of different codes was undertaken to validate the simulation results. Experimental results revealed some major losses that need to be understood and eventually overcome. By developing analytical models that account for the field defects, one identified major sources of imperfection in the design of scaling FFAG that explain the important tune variations resulting in the crossing of several betatron resonances. A new formula is derived to compute the tunes and properties established that characterize the effect of the field imperfections on the

  12. Flutter Sensitivity to Boundary Layer Thickness, Structural Damping, and Static Pressure Differential for a Shuttle Tile Overlay Repair Concept

    Science.gov (United States)

    Scott, Robert C.; Bartels, Robert E.

    2009-01-01

    This paper examines the aeroelastic stability of an on-orbit installable Space Shuttle patch panel. CFD flutter solutions were obtained for thick and thin boundary layers at a free stream Mach number of 2.0 and several Mach numbers near sonic speed. The effect of structural damping on these flutter solutions was also examined, and the effect of structural nonlinearities associated with in-plane forces in the panel was considered on the worst case linear flutter solution. The results of the study indicated that adequate flutter margins exist for the panel at the Mach numbers examined. The addition of structural damping improved flutter margins as did the inclusion of nonlinear effects associated with a static pressure difference across the panel.

  13. Sub-Critical Nuclear Reactor Based on FFAG-Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Seok; Kang, Hung Sik; Lee, Tae Yeon [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)

    2011-10-15

    After the East-Japan earthquake and the subsequent nuclear disaster, the anti-nuclear mood has been wide spread. It is very unfortunate both for nuclear science community and for the future of mankind, which is threatened by two serious challenges, the global warming caused by the greenhouse effect and the shortage of energy cause by the petroleum exhaustion. While the nuclear energy seemed to be the only solution to these problems, it is clear that it has its own problems, one of which broke out so strikingly in Japan. There are also other problems such as the radiotoxic nuclear wastes that survive up to even tens of thousands years and the limited reserves of Uranium. To solve these problems of nuclear fission energy, accelerator-based sub-critical nuclear reactor was once proposed. (Its details will be explained below.) First of all, it is safe in a disaster such as an earthquake, because the deriving accelerator stops immediately by the earthquake. It also minimizes the nuclear waste problem by reducing the amount of the toxic waste and shortening their half lifetime to only a few hundred years. Finally, it solves the Uranium reserve problem because it can use Thorium as its fuel. The Thorium reserve is much larger than that of Uranium. Although the idea of the accelerator-driven nuclear reactor was proposed long time ago, it has not been utilized yet first by technical difficulty and economical reasons. The accelerator-based system needs 1 GeV, 10 MW power proton accelerator. A conventional linear accelerator would need several hundred m length, which is highly costly particularly in Korea because of the high land cost. However, recent technologies make it possible to realize that scale accelerator by a reasonable size. That is the fixed-field alternating gradient (FFAG) accelerator that is described in this article

  14. Subcritical water extraction of flavoring and phenolic compounds from cinnamon bark (Cinnamomum zeylanicum).

    Science.gov (United States)

    Khuwijitjaru, Pramote; Sayputikasikorn, Nucha; Samuhasaneetoo, Suched; Penroj, Parinda; Siriwongwilaichat, Prasong; Adachi, Shuji

    2012-01-01

    Cinnamon bark (Cinnamomum zeylanicum) powder was treated with subcritical water at 150 and 200°C in a semi-continuous system at a constant flow rate (3 mL/min) and pressure (6 MPa). Major flavoring compounds, i.e., cinnamaldehyde, cinnamic acid, cinnamyl alcohol and coumarin, were extracted at lower recoveries than the extraction using methanol, suggesting that degradation of these components might occur during the subcritical water treatment. Caffeic, ferulic, p-coumaric, protocatechuic and vanillic acids were identified from the subcritical water treatment. Extraction using subcritical water was more effective to obtain these acids than methanol (50% v/v) in both number of components and recovery, especially at 200°C. Subcritical water treatment at 200°C also resulted in a higher total phenolic content and DPPH radical scavenging activity than the methanol extraction. The DPPH radical scavenging activity and total phenolic content linearly correlated but the results suggested that the extraction at 200°C might result in other products that possessed a free radical scavenging activity other than the phenolic compounds.

  15. Subcritical crack growth in oxide and non-oxide ceramics using the Constant Stress Rate Test

    Directory of Open Access Journals (Sweden)

    Agnieszka Wojteczko

    2015-12-01

    Full Text Available Fracture toughness is one of the most important parameters for ceramics description. In some cases, material failure occurs at lower stresses than described by KIc parameter. In these terms, determination of fracture toughness only, proves to be insufficient. This may be due to environmental factors, such as humidity, which might cause subcritical crack propagation in a material. Therefore, it is very important to estimate crack growth velocities to predict lifetime of ceramics used under specific conditions. Constant Stress Rate Test is an indirect method of subcritical crack growth parameters estimation. Calculations are made by using strength data, thus avoiding crack measurement. The expansion of flaws causes reduction of material strength. If subcritical crack growth phenomenon occurs, critical value of crack lengths increases with decreasing stress rate due to longer time for flaw to grow before the critical crack propagation at KIc takes place. Subcritical crack growth phenomenon is particularly dangerous for oxide ceramics due to chemical interactions occurring as a result of exposure to humidity. This paper presents results of Constant Stress Rate Test performed for alumina, zirconia, silicon carbide and silicon nitride in order to demonstrate the differences in subcritical crack propagation phenomenon course.

  16. Classical Flutter and Active Control of Wind Turbine Blade Based on Piezoelectric Actuation

    Directory of Open Access Journals (Sweden)

    Tingrui Liu

    2015-01-01

    Full Text Available The aim of this article is to analyze classical flutter and active control of single-cell thin-walled composite wind turbine blade beam based on piezoelectric actuation. Effects of piezoelectric actuation for classical flutter suppression on wind turbine blade beam subjected to combined transverse shear deformation, warping restraint effect, and secondary warping are investigated. The extended Hamilton’s principle is used to set up the equations of motion, and the Galerkin method is applied to reduce the aeroelastic coupled equations into a state-space form. Active control is developed to enhance the vibrational behavior and dynamic response to classical aerodynamic excitation and stabilize structures that might be damaged in the absence of control. Active optimal control scheme based on linear quadratic Gaussian (LQG controller is implemented. The research provides a way for rare study of classical flutter suppression and active control of wind turbine blade based on piezoelectric actuation.

  17. Intermittent changing axis deviation with intermittent left anterior hemiblock during atrial flutter with subclinical hyperthyroidism.

    Science.gov (United States)

    Patanè, Salvatore; Marte, Filippo

    2009-06-26

    Subclinical hyperthyroidism is an increasingly recognized entity that is defined as a normal serum free thyroxine and free triiodothyronine levels with a thyroid-stimulating hormone level suppressed below the normal range and usually undetectable. It has been reported that subclinical hyperthyroidism is not associated with CHD or mortality from cardiovascular causes but it is usually associated with a higher heart rate and a higher risk of supraventricular arrhythmias including atrial fibrillation and atrial flutter. Intermittent changing axis deviation during atrial fibrillation has also rarely been reported. We present a case of intermittent changing axis deviation with intermittent left anterior hemiblock in a 59-year-old Italian man with atrial flutter and subclinical hyperthyroidism. To our knowledge, this is the first report of intermittent changing axis deviation with intermittent left anterior hemiblock in a patient with atrial flutter.

  18. Changing axis deviation and paroxysmal atrial flutter associated with subclinical hyperthyroidism.

    Science.gov (United States)

    Patanè, Salvatore; Marte, Filippo

    2010-10-08

    Subclinical hyperthyroidism is an increasingly recognized entity that is defined as a normal serum free thyroxine and free triiodothyronine levels with a thyroid-stimulating hormone level suppressed below the normal range and usually undetectable. It has been reported that subclinical hyperthyroidism is not associated with coronary heart disease or mortality from cardiovascular causes but it is sufficient to induce arrhythmias including atrial fibrillation and atrial flutter. It has also been reported that increased factor X activity in patients with subclinical hyperthyroidism represents a potential hypercoagulable state. Rarely, it has also been reported intermittent changing axis deviation during atrial fibrillation and during atrial flutter. We present a case of paroxysmal atrial flutter and changing axis deviation associated with subclinical hyperthyroidism, in a 76-year-old Italian man. Also this case focuses attention on the importance of a correct evaluation of subclinical hyperthyroidism.

  19. Comparison of analysis and flight test data for a drone aircraft with active flutter suppression

    Science.gov (United States)

    Newsom, J. R.; Pototzky, A. S.

    1981-01-01

    A drone aircraft equipped with an active flutter suppression system is considered with emphasis on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are given for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. The mathematical models are included and existing analytical techniques are described as well as an alternative analytical technique for obtaining closed-loop results.

  20. Flutter parametric studies of cantilevered twin-engine-transport type wing with and without winglet. Volume 1: Low-speed investigations

    Science.gov (United States)

    Bhatia, K. G.; Nagaraja, K. S.

    1984-01-01

    Flutter characteristics of a cantilevered high aspect ratio wing with winglet were investigated. The configuration represented a current technology, twin-engine airplane. A low-speed and high-speed model were used to evaluate compressibility effects through transonic Mach numbers and a wide range of mass-density ratios. Four flutter mechanisms were obtained in test, as well as analysis from various combinations of configuration parameters. The coupling between wing tip vertical and chordwise motions was shown to have significant effect under some conditions. It is concluded that for the flutter model configurations studied, the winglet related flutter was amenable to the conventional flutter analysis techniques.

  1. Identification of Flutter Derivatives of Bridge Decks in Wind Tunnel Test by Stochastic Subspace Identification

    Directory of Open Access Journals (Sweden)

    T. Janesupasaeree

    2009-01-01

    Full Text Available Problem statement: Flutter derivatives are the essential parameters in the estimations of the flutter critical wind velocity and the responses of long-span cable supported bridges. These derivatives can be experimentally estimated from wind tunnel test results. Generally, wind tunnel test methods can be divided into free decay test and buffeting test. Compared with the free decay method, the buffeting test is simpler but its outputs appear random-like. This makes the flutter derivatives extraction from its outputs more difficult and then a more advanced system identification is required. Most of previous studies have used deterministic system identification techniques, in which buffeting forces and responses are considered as noises. These previous techniques were applicable only to the free decay method. They also confronted some difficulties in extracting flutter derivatives at high wind speeds and under turbulence flow cases where the buffeting responses dominate. Approach: In this study, the covariance-driven stochastic subspace identification technique (SSI-COV was presented to extract the flutter derivatives of bridge decks from the buffeting test results. An advantage of this method is that it considers the buffeting forces and responses as inputs rather than as noises. Numerical simulations and wind tunnel tests of a streamlined thin plate model conducted under smooth flow by the free decay and the buffeting tests were used to validate the applicability of the SSI-COV method. Then, wind tunnel tests of a two-edge girder blunt type of Industrial-Ring-Road Bridge deck (IRR were conducted under smooth and turbulence flow. Results: The identified flutter derivatives of the thin plate model by the SSI-COV technique agree well with those obtained theoretically. The results from the thin plate and the IRR Bridge deck validated the reliability and applicability of the SSI-COV technique to various experimental methods and conditions of wind flow

  2. Stall flutter and nonlinear divergence of a two-dimensional flat plate wing

    Science.gov (United States)

    Dugundji, J.; Aravamudan, K.

    1976-01-01

    Tests were conducted in a small wind tunnel to study the torsional stall flutter behavior of a two-dimensional flat-plate wing pivoted about the midchord. The nonlinear static divergence equilibrium properties of the wing were well predicted from the measured static moment characteristics. Large amplitude limit cycles ranging from plus or minus 11 degrees to plus or minus 100 degrees were observed. Stall flutter occurred above a critical value of a reduced frequency of about 2. Self-excitation occurred for initial angles of attack between 0 and 8 degrees. Nondimensional harmonic coefficients were extracted from the free transient vibration tests for amplitudes up to 80 degrees.

  3. Uncertainty Quantification of the FUN3D-Predicted NASA CRM Flutter Boundary

    Science.gov (United States)

    Stanford, Bret K.; Massey, Steven J.

    2017-01-01

    A nonintrusive point collocation method is used to propagate parametric uncertainties of the flexible Common Research Model, a generic transport configuration, through the unsteady aeroelastic CFD solver FUN3D. A range of random input variables are considered, including atmospheric flow variables, structural variables, and inertial (lumped mass) variables. UQ results are explored for a range of output metrics (with a focus on dynamic flutter stability), for both subsonic and transonic Mach numbers, for two different CFD mesh refinements. A particular focus is placed on computing failure probabilities: the probability that the wing will flutter within the flight envelope.

  4. Conditional limit theorems for intermediately subcritical branching processes in random environment

    CERN Document Server

    Afanasyev, Valeriy; Kersting, Götz; Vatutin, Vladimir

    2011-01-01

    For a branching process in random environment it is assumed that the offspring distribution of the individuals varies in a random fashion, independently from one generation to the other. For the subcritical regime a kind of phase transition appears. In this paper we study the intermediately subcritical case, which constitutes the borderline within this phase transition. We study the asymptotic behavior of the survival probability. Next the size of the population and the shape of the random environment conditioned on non-extinction is examined. Finally we show that conditioned on non-extinction periods of small and large population sizes alternate. This kind of 'bottleneck' behavior appears under the annealed approach only in the intermediately subcritical case.

  5. Production of rare sugars from common sugars in subcritical aqueous ethanol.

    Science.gov (United States)

    Gao, Da-Ming; Kobayashi, Takashi; Adachi, Shuji

    2015-05-15

    A new isomerization reaction was developed to synthesize rare ketoses. D-tagatose, D-xylulose, and D-ribulose were obtained in the maximum yields of 24%, 38%, and 40%, respectively, from the corresponding aldoses, D-galactose, D-xylose, and D-ribose, by treating the aldoses with 80% (v/v) subcritical aqueous ethanol at 180°C. The maximum productivity of D-tagatose was ca. 80 g/(Lh). Increasing the concentration of ethanol significantly increased the isomerization of D-galactose. Variation in the reaction temperature did not significantly affect the production of D-tagatose from D-galactose. Subcritical aqueous ethanol converted both 2,3-threo and 2,3-erythro aldoses to the corresponding C-2 ketoses in high yields. Thus, the treatment of common aldoses in subcritical aqueous ethanol can be regarded as a new method to synthesize the corresponding rare sugars.

  6. Incubation time for sub-critical crack propagation in SiC-SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    El-Azab, A.; Ghoniem, N.M. [Univ. of California, Los Angeles, CA (United States)

    1995-04-01

    The objective of this work is to investigate the time for sub-critical crack propagation is SiC-SiC composites at high temperatures. The effects of fiber thermal creep on the relaxation of crack bridging tractions in SiC-SiC ceramic matrix composites (CMCs) is considered in the present work, with the objective of studying the time-to propagation of sub-critical matrix cracks in this material at high temperatures. Under the condition of fiber stress relaxation in the bridiging zone, it is found that the crack opening and the stress intensity factor increase with time for sub-critical matrix cracks. The time elapsed before the stress intensity reaches the critical value for crack propagation is calculated as a function of the initial crack length, applied stress and temperature. Stability domains for matrix cracks are defined, which provide guidelines for conducting high-temperature crack propagation experiments.

  7. Invariance Under Quasi-isometries of Subcritical and Supercritical Behavior in the Boolean Model of Percolation

    Science.gov (United States)

    Coletti, Cristian F.; Miranda, Daniel; Mussini, Filipe

    2016-02-01

    In this work we study the Poisson Boolean model of percolation in locally compact Polish metric spaces and we prove the invariance of subcritical and supercritical phases under mm-quasi-isometries. More precisely, we prove that if a metric space M is mm-quasi-isometric to another metric space N and the Poisson Boolean model in M exhibits any of the following: (a) a subcritical phase; (b) a supercritical phase; or (c) a phase transition, then respectively so does the Poisson Boolean model of percolation in N. Then we use these results in order to understand the phase transition phenomenon in a large family of metric spaces. Indeed, we study the Poisson Boolean model of percolation in the context of Riemannian manifolds, in a large family of nilpotent Lie groups and in Cayley graphs. Also, we prove the existence of a subcritical phase in Gromov spaces with bounded growth at some scale.

  8. Flutter parametric studies of cantilevered twin-engine transport type wing with and without winglet. Volume 2: Transonic and density effect investigations

    Science.gov (United States)

    Bhatia, K. G.; Nagaraja, K. S.

    1984-01-01

    Flutter characteristics of a cantilevered high aspect ratio wing with winglet were investigated. The configuration represented a current technology, twin engine airplane. Compressibility effects through transonic Mach numbers and a wide range of mass-density ratios were evaluated on a low speed and high speed model. Four flutter mechanisms were obtained from test, and analysis from various combinations of configuration parameters. It is shown that the coupling between wing tip vertical and chordwise motions have significant effect under some conditions. It is concluded that for the flutter model configurations studied, the winglet related flutter is amenable to the conventional flutter analysis techniques. The low speed model flutter and the high-speed model flutter results are described.

  9. Geared-elevator flutter study. [wind tunnel tests of transonic flutter effects on control surfaces of supersonic transport tail assemblies, conducted in a NASA-Langley transonic wind tunnel

    Science.gov (United States)

    Ruhlin, C. L.; Doggett, R. V., Jr.; Gregory, R. A.

    1976-01-01

    An experimental and analytical study was made of the transonic flutter characteristics of a supersonic transport tail assembly model having an all-movable, horizontal tail with a geared elevator. Two model configurations, namely, one with a gear-elevator (2.8 to 1.0 gear ratio) and one with locked-elevator (1.0 to 1.0 gear ratio), were flutter tested in the Langley transonic dynamics tunnel with an empennage cantilever-mounted on a sting. The geared-elevator configuration fluttered experimentally at about 20% higher dynamic pressures than the locked-elevator configuration. The experimental flutter dynamic pressure boundaries for both configurations were nearly flat over a Mach number range from 0.9 to 1.1. Flutter calculations (mathematical models) were made for the geared-elevator configuration using three subsonic lifting-surface methods. In one method, the elevator was treated as a discrete surface, and in the other two methods, the stabilizer and elevator were treated as a single warped-surface with the primary difference between these two methods being in the mathematical implementation used. A comparison of the experimental and analytical results shows that the discrete-elevator method predicted best the experimental flutter dynamic pressure level. However, the single warped-surface methods predicts more closely the experimental flutter frequencies and Mach number trends.

  10. Subcritical calculation of the nuclear material warehouse;Calculo de subcriticidad del almacen del material nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Garcia M, T.; Mazon R, R., E-mail: teodoro.garcia@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-07-01

    In this work the subcritical calculation of the nuclear material warehouse of the Reactor TRIGA Mark III labyrinth in the Mexico Nuclear Center is presented. During the adaptation of the nuclear warehouse (vault I), the fuel was temporarily changed to the warehouse (vault II) and it was also carried out the subcritical calculation for this temporary arrangement. The code used for the calculation of the effective multiplication factor, it was the Monte Carlo N-Particle Extended code known as MCNPX, developed by the National Laboratory of Los Alamos, for the particles transport. (Author)

  11. Sub-critical Column and Capillary Chromatography with Water as Mobile Phase and Flame Ionization Detection

    Institute of Scientific and Technical Information of China (English)

    LuFeng; LiLing; SunPeng; WuYutian

    2001-01-01

    A sub-critical chromatography (SubWC) with water as mobile phase and FID detection system is employed to separate several alcohols with high or medium polarity, with pure water as the eluent. The flow rate gets up to 50 μ1-min-1 for packed column (1 mm i.d.) and 70 μ1-min-1 for capillary (50 μm i.d.). Increasing the temperatureup to 140℃, together with temperature programming, markedly improves the separation and peak shapes within short analysis time. Sub-critical state is guaranteed.

  12. An alternative experimental approach for subcritical configurations of the IPEN/MB-01 nuclear reactor

    Science.gov (United States)

    Gonnelli, E.; Lee, S. M.; Pinto, L. N.; Landim, H. R.; Diniz, R.; Jerez, R.; dos Santos, A.

    2015-07-01

    This work presents an alternative approach for the reactivity worth experiments analysis in the IPEN/MB-01 reactor considering highly subcritical arrays. In order to reach the subcritical levels, the removal of a specific number of fuel rods is proposed. Twenty three configurations were carried out for this purpose. The control bank insertion experiment was used only as reference for the fuel rod experiment and, in addition, the control banks were maintained completely withdrawn during all the fuel rods experiment. The theoretical simulation results using the MCNP5 code and the ENDF/B-VII.0 library neutron data are in a very good agreement to experimental results.

  13. Transonic flutter study of a wind-tunnel model of a supercritical wing with/without winglet

    Science.gov (United States)

    Ruhlin, C. L.; Rauch, F. J., Jr.; Waters, C.

    1982-01-01

    The scaled flutter model was a 1/6.5-size, semispan version of a supercritical wing (SCW) proposed for an executive-jet-transport airplane. The model was tested cantilever-mounted with a normal wingtip, a wingtip with winglet, and a normal wingtip ballasted to simulate the winglet mass properties. Flutter and aerodynamic data were acquired at Mach numbers from 0.6 to 0.95. The measured transonic flutter speed boundary for each wingtip configuration had roughly the same shape with a minimum flutter speed near M = 0.82. The winglet addition and wingtip mass ballast decreased the wing flutter speed by about 7 and 5%, respectively; thus, the winglet effect on flutter was more a mass effect than an aerodynamic effect. Flutter characteristics calculated using a doublet-lattice analysis (which included interference effects) were in good agreement with the experimental results up to M = 0.82. Comparisons of measured static aerodynamic data with predicted data indicated that the model was aerodynamically representative of the airplane SCW.

  14. Anisotropic etching of monocrystalline silicon under subcritical conditions

    Science.gov (United States)

    Gonzalez-Pereyra, Nestor Gabriel

    Sub- and supercritical fluids remain an underexploited resource for materials processing. Around its critical point a common compound such as water behaves like a different substance exhibiting changes in its properties that modify its behavior as a solvent and unlock reaction paths not viable in other conditions. In the subcritical region water's properties can be directed by controlling temperature and pressure. Water and silicon are two of the most abundant, versatile, environmentally non-harmful, and simplest substances on Earth. They are among the most researched and best-known substances. Both are ubiquitous and essential for present-day world. Silicon is fundamental in semiconductor fabrication, microelectromechanical systems, and photovoltaic cells. Wet etching of silicon is a fabrication strategy shared by these three applications. Processing of silicon requires large amounts of water, often involving dangerous and environmentally hazardous chemicals. Yet, minimal knowledge is available on the ways high temperature water interacts with crystalline silicon. The purpose of this project is to identify and implement a method for the modification of monocrystalline silicon surfaces with three important characteristics: 1) requires minimal amounts of added chemicals, 2) controllability of morphological features formed, 3) reduced processing time. This will be accomplished by subjecting crystalline silicon to diluted alkaline solutions working in the subcritical region of water. This approach allows for variations on surface morphologies and etching rates by adapting the reactions conditions, with focus on composition and temperature of the solutions used. The work reported discusses the techniques used for producing surfaces with a variety of morphologies that ultimately allowed to create patterns and textures on silicon wafers, using highly diluted alkaline solutions that can be used for photovoltaic applications. These morphologies were created with a

  15. Computed and Experimental Flutter/LCO Onset for the Boeing Truss-Braced Wing Wind-Tunnel Model

    Science.gov (United States)

    Bartels, Robert E.; Scott, Robert C.; Funk, Christie J.; Allen, Timothy J.; Sexton, Bradley W.

    2014-01-01

    This paper presents high fidelity Navier-Stokes simulations of the Boeing Subsonic Ultra Green Aircraft Research truss-braced wing wind-tunnel model and compares the results to linear MSC. Nastran flutter analysis and preliminary data from a recent wind-tunnel test of that model at the NASA Langley Research Center Transonic Dynamics Tunnel. The simulated conditions under consideration are zero angle of attack, so that structural nonlinearity can be neglected. It is found that, for Mach number greater than 0.78, the linear flutter analysis predicts flutter onset dynamic pressure below the wind-tunnel test and that predicted by the Navier-Stokes analysis. Furthermore, the wind-tunnel test revealed that the majority of the high structural dynamics cases were wing limit cycle oscillation (LCO) rather than flutter. Most Navier-Stokes simulated cases were also LCO rather than hard flutter. There is dip in the wind-tunnel test flutter/LCO onset in the Mach 0.76-0.80 range. Conditions tested above that Mach number exhibited no aeroelastic instability at the dynamic pressures reached in the tunnel. The linear flutter analyses do not show a flutter/LCO dip. The Navier-Stokes simulations also do not reveal a dip; however, the flutter/LCO onset is at a significantly higher dynamic pressure at Mach 0.90 than at lower Mach numbers. The Navier-Stokes simulations indicate a mild LCO onset at Mach 0.82, then a more rapidly growing instability at Mach 0.86 and 0.90. Finally, the modeling issues and their solution related to the use of a beam and pod finite element model to generate the Navier-Stokes structure mode shapes are discussed.

  16. Comparison of driven and simulated "free" stall flutter in a wind tunnel

    Science.gov (United States)

    Culler, Ethan; Farnsworth, John; Fagley, Casey; Seidel, Jurgen

    2016-11-01

    Stall flutter and dynamic stall have received a significant amount of attention over the years. To experimentally study this problem, the body undergoing stall flutter is typically driven at a characteristic, single frequency sinusoid with a prescribed pitching amplitude and mean angle of attack offset. This approach allows for testing with repeatable kinematics, however it effectively decouples the structural motion from the aerodynamic forcing. Recent results suggest that this driven approach could misrepresent the forcing observed in a "free" stall flutter scenario. Specifically, a dynamically pitched rigid NACA 0018 wing section was tested in the wind tunnel under two modes of operation: (1) Cyber-Physical where "free" stall flutter was physically simulated through a custom motor-control system modeling a torsional spring and (2) Direct Motor-Driven Dynamic Pitch at a single frequency sinusoid representative of the cyber-physical motion. The time-resolved pitch angle and moment were directly measured and compared for each case. It was found that small deviations in the pitch angle trajectory between these two operational cases generate significantly different aerodynamic pitching moments on the wing section, with the pitching moments nearly 180o out of phase in some cases. This work is supported by the Air Force Office of Scientific Research through the Flow Interactions and Control Program and by the National Defense Science and Engineering Graduate Fellowship Program.

  17. Study and Analysis on the Influence of Flutter Frequency on Airplane Stability

    Directory of Open Access Journals (Sweden)

    B. Janarthanan

    2013-10-01

    Full Text Available In the nationwide requirement of the growth in commercial aviation safety and profit, the field of Aeroelastic science plays a vital role. Flutter is one of the dynamic aeroelastic problems, it mainly occurs at lifting surfaces when the airplane cruises at high speeds. At relatively low speeds, the torsional stiffness of the wing is enough to counteract the twisting. However, the variation in flutter frequency causes the instability motion on aircraft. Therefore, the wing displacement against the flow field plays a vital role in dynamic stability analysis. As per the commercial aviation concern, an aircraft which is able to overcome the significant aeroelastic problems can yield maximum running profit. In order to maintain the airplane stability in high-speed, wings can be designed to minimize the distance between aerodynamic centre and shear centre (on the elastic axis. The main focus of this project is to calculate the frequency of an aircraft wing while it is subjected to aeroelastic (flutter instability. The analytical process identified for this work is the Eigen value method. By using MATLAB solver, the optimization has been carried out along the span of real-time model. In future, the efficient structural model is then simulated and analysis is carried out to evaluate the longitudinal stability due to flutter phenomena.

  18. Nonlinear flutter wind tunnel test and numerical analysis of folding fins with freeplay nonlinearities

    Directory of Open Access Journals (Sweden)

    Yang Ning

    2016-02-01

    Full Text Available The flutter characteristics of folding control fins with freeplay are investigated by numerical simulation and flutter wind tunnel tests. Based on the characteristics of the structures, fins with different freeplay angles are designed. For a 0° angle of attack, wind tunnel tests of these fins are conducted, and vibration is observed by accelerometers and a high-speed camera. By the expansion of the connected relationships, the governing equations of fit for the nonlinear aeroelastic analysis are established by the free-interface component mode synthesis method. Based on the results of the wind tunnel tests, the flutter characteristics of fins with different freeplay angles are analyzed. The results show that the vibration divergent speed is increased, and the divergent speed is higher than the flutter speed of the nominal linear system. The vibration divergent speed is increased along with an increase in the freeplay angle. The developed free-interface component mode synthesis method could be used to establish governing equations and to analyze the characteristics of nonlinear aeroelastic systems. The results of the numerical simulations and the wind tunnel tests indicate the same trends and critical velocities.

  19. Application of output feedback sliding mode control to active flutter suppression of two-dimensional airfoil

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The effectiveness of the sliding mode control(SMC) method for active flutter suppression(AFS) and the issues concerning control system discretization and control input constraints were studied using a typical two-dimensional airfoil.The airfoil has a trailing-edge flap for flutter control.The aeroelastic system involves a two-degrees-of-freedom motion(pitch and plunge),and the equations were constructed by utilizing quasi-steady aerodynamic forces.The control system,designed by the output feedback SMC method,was incorporated to suppress the pitch-plunge flutter.Meanwhile,the system discretization and the flap deflection constraints were implemented.Then,a classical Runge-Kutta(RK) algorithm was utilized for numerical calculations.The results indicated that the close-loop system with the SMC system could be stable at a speed above the flutter boundary.However,when the flap deflection limits are reached,the close-loop system with the simple discretized control system loses control.Furthermore,control compensation developed by theoretical analysis was proposed to make the system stable again.The parameter perturbations and the time delay effects were also discussed in this paper.

  20. Critical and post-critical behaviour of two-degree-of-freedom flutter-based generators

    Science.gov (United States)

    Pigolotti, Luca; Mannini, Claudio; Bartoli, Gianni; Thiele, Klaus

    2017-09-01

    Energy harvesting from flow-induced vibrations is a recent research field, which considers a diverse range of systems, among which two-degree-of-freedom flutter-based solutions were individuated as good candidates to obtain high energy performance. In the present work, numerical linear analyses and wind-tunnel tests were conducted on a flat-plate sectional model. The aim is to identify some design guidelines for generators exploiting the classical-flutter instability, through the investigation of the critical condition and the response during the post-critical regime. Many sets of governing parameters of interest from the energy-harvesting point of view were considered, including high levels of heaving damping to simulate the operation of a conversion apparatus. In particular, eccentricity of the elastic centre and small downstream mass unbalance can be introduced as solutions aiming at optimal operative ranges. The collected results suggest the high potentiality of flutter-based generators, and a significant enhancement of performance can be envisaged. Moreover, they contribute to improve the knowledge of the flutter excitation mechanism and to widen the dataset of measurements in the post-critical regime.

  1. Aircraft Flutter Modal Parameter Identification Using a Numerically Robust Least-squares Estimator in Frequency Domain

    Institute of Scientific and Technical Information of China (English)

    Tang Wei; Shi Zhongke; Chen Jie

    2008-01-01

    Recently, frequency-based least-squares (LS) estimators have found wide application in identifying aircraft flutter parameters. However, the frequency methods are often known to suffer from numerical difficulties when identifying a continuous-time model, espe-cially, of broader frequency or higher order. In this article, a numerically robust LS estimator based on vector orthogonal polynomial is proposed to solve the numerical problem of multivariable systems and applied to the flutter testing. The key idea of this method is to represent the frequency response function (FRF) matrix by a right matrix fraction description (RMFD) model, and expand the numerator and denominator polynomial matrices on a vector onhogonal basis. As a result, a perfect numerical condition (numerical condition equals 1) can be obtained for linear LS estimator. Finally, this method is verified by flutter test of a wing model in a wind tunnel and real flight flutter test of an aircraft. The results are compared to those with notably LMS PolyMAX, which is not troubled by the numerical problem as it is established in z domain (e.g. derived from a discrete-time model). The verification has evidenced that this method, apart from overcoming the numerical problem, yields the results comparable to those acquired with LMS PolyMAX, or even considerably better at some frequency bands.

  2. Flutter and thermal buckling control for composite laminated panels in supersonic flow

    Science.gov (United States)

    Li, Feng-Ming; Song, Zhi-Guang

    2013-10-01

    Aerothermoelastic analysis for composite laminated panels in supersonic flow is carried out. The flutter and thermal buckling control for the panels are also investigated. In the modeling for the equation of motion, the influences of in-plane thermal load on the transverse bending deflection are taken into account, and the unsteady aerodynamic pressure in supersonic flow is evaluated by the linear piston theory. The governing equation of the structural system is developed applying the Hamilton's principle. In order to study the influences of aerodynamic pressure on the vibration mode shape of the panel, both the assumed mode method (AMM) and the finite element method (FEM) are used to derive the equation of motion. The proportional feedback control method and the linear quadratic regulator (LQR) are used to design the controller. The aeroelastic stability of the structural system is analyzed using the frequency-domain method. The effects of ply angle of the laminated panel on the critical flutter aerodynamic pressure and the critical buckling temperature change are researched. The flutter and thermal buckling control effects using the proportional feedback control and the LQR are compared. An effective method which can suppress the flutter and thermal buckling simultaneously is proposed.

  3. Efficacy and safety of intravenous dofetilide for rapid termination of atrial fibrillation and atrial flutter

    NARCIS (Netherlands)

    Kingma, JH; Crijns, HJGM; Dunselman, PHJM

    2000-01-01

    Dofetilide may be advantageous in terminating atrial fibrillation/atrial flutter (AFl) when there are contraindications for class I drugs (left ventricular dysfunction and/or manifest myocardial ischemia) and beta blockers. In particular, its successful outcome in usually drug-resistant AFl is promi

  4. Aeroservoelastic Pitch Control of Stall-Induced Flap/Lag Flutter of Wind Turbine Blade Section

    Directory of Open Access Journals (Sweden)

    Tingrui Liu

    2015-01-01

    Full Text Available The aim of this paper is to analyze aeroelastic stability, especially flutter suppression for aeroelastic instability. Effects of aeroservoelastic pitch control for flutter suppression on wind turbine blade section subjected to combined flap and lag motions are rarely studied. The work is dedicated to solving destructive flapwise and edgewise instability of stall-induced flutter of wind turbine blade by aeroservoelastic pitch control. The aeroelastic governing equations combine a flap/lag structural model and an unsteady nonlinear aerodynamic model. The nonlinear resulting equations are linearized by small perturbation about the equilibrium point. The instability characteristics of stall-induced flap/lag flutter are investigated. Pitch actuator is described by a second-order model. The aeroservoelastic control is analyzed by three types of optimal PID controllers, two types of fuzzy PID controllers, and neural network PID controllers. The fuzzy controllers are developed based on Sugeno model and intuition method with good results achieved. A single neuron PID control strategy with improved Hebb learning algorithm and a radial basic function neural network PID algorithm are applied and performed well in the range of extreme wind speeds.

  5. Vibration and Flutter Analysis of the B-29 - F-84 Tip-to-Tip Configuration

    Science.gov (United States)

    1949-01-01

    OKT t.;. MDCEL JJL E-5JLF-MX1Q16- , B-29 - F-a’ and are taken outalde the Integral sign , however, the varying chord renaina under the... Integral sign * - c) Flutter Determinant igiai The lagran i n equations of notion may be written for a fixed value of ^ *i.(t

  6. Pharmacologic versus direct-current electrical cardioversion of atrial flutter and fibrillation

    NARCIS (Netherlands)

    Van Gelder, IC; Tuinenburg, AE; Schoonderwoerd, BS; Tieleman, RG; Crijns, HJGM

    1999-01-01

    Conversion of atrial flutter and atrial fibrillation (AF) can be achieved by either pharmacologic or direct-current (DC) electrical cardioversion. DC electrical cardioversion is more effective and restores sinus rhythm instantaneously; however, general anesthesia is necessary, which can cause severe

  7. On the interrelation of divergence, flutter and auto-parametric resonance.

    Science.gov (United States)

    Herrmann, G.; Hauger, W.

    1973-01-01

    The dependence between static instability and kinetic instability (flutter) on autoparameteric resonance is studied by taking compressibility into account in a model of a cantilever beam under the action of a follower force. It is shown that both instabilities are formally special cases of instabilities known as subharmonic and combination resonances.

  8. Effect of blade flutter and electrical loading on small wind turbine noise

    Science.gov (United States)

    The effect of blade flutter and electrical loading on the noise level of two different size wind turbines was investigated at the Conservation and Production Research Laboratory (CPRL) near Bushland, TX. Noise and performance data were collected on two blade designs tested on a wind turbine rated a...

  9. Flutter Analysis of the Thermal Protection Layer on the NASA HIAD

    Science.gov (United States)

    Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.

    2013-01-01

    A combination of classical plate theory and a supersonic aerodynamic model is used to study the aeroelastic flutter behavior of a proposed thermal protection system (TPS) for the NASA HIAD. The analysis pertains to the rectangular configurations currently being tested in a NASA wind-tunnel facility, and may explain why oscillations of the articles could be observed. An analysis using a linear flat plate model indicated that flutter was possible well within the supersonic flow regime of the wind tunnel tests. A more complex nonlinear analysis of the TPS, taking into account any material curvature present due to the restraint system or substructure, indicated that significantly greater aerodynamic forcing is required for the onset of flutter. Chaotic and periodic limit cycle oscillations (LCOs) of the TPS are possible depending on how the curvature is imposed. When the pressure from the base substructure on the bottom of the TPS is used as the source of curvature, the flutter boundary increases rapidly and chaotic behavior is eliminated.

  10. Nonlinear flutter wind tunnel test and numerical analysis of folding fins with freeplay nonlinearities

    Institute of Scientific and Technical Information of China (English)

    Yang Ning; Wang Nan; Zhang Xin; Liu Wei

    2016-01-01

    The flutter characteristics of folding control fins with freeplay are investigated by numer-ical simulation and flutter wind tunnel tests. Based on the characteristics of the structures, fins with different freeplay angles are designed. For a 0? angle of attack, wind tunnel tests of these fins are conducted, and vibration is observed by accelerometers and a high-speed camera. By the expansion of the connected relationships, the governing equations of fit for the nonlinear aeroelastic analysis are established by the free-interface component mode synthesis method. Based on the results of the wind tunnel tests, the flutter characteristics of fins with different freeplay angles are analyzed. The results show that the vibration divergent speed is increased, and the divergent speed is higher than the flutter speed of the nominal linear system. The vibration divergent speed is increased along with an increase in the freeplay angle. The developed free-interface component mode synthesis method could be used to establish governing equations and to analyze the characteristics of nonlinear aeroe-lastic systems. The results of the numerical simulations and the wind tunnel tests indicate the same trends and critical velocities.

  11. Experimental unsteady pressures at flutter on the Supercritical Wing Benchmark Model

    Science.gov (United States)

    Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Rivera, Jose A.; Silva, Walter A.; Wieseman, Carol D.; Turnock, David L.

    1993-01-01

    This paper describes selected results from the flutter testing of the Supercritical Wing (SW) model. This model is a rigid semispan wing having a rectangular planform and a supercritical airfoil shape. The model was flutter tested in the Langley Transonic Dynamics Tunnel (TDT) as part of the Benchmark Models Program, a multi-year wind tunnel activity currently being conducted by the Structural Dynamics Division of NASA Langley Research Center. The primary objective of this program is to assist in the development and evaluation of aeroelastic computational fluid dynamics codes. The SW is the second of a series of three similar models which are designed to be flutter tested in the TDT on a flexible mount known as the Pitch and Plunge Apparatus. Data sets acquired with these models, including simultaneous unsteady surface pressures and model response data, are meant to be used for correlation with analytical codes. Presented in this report are experimental flutter boundaries and corresponding steady and unsteady pressure distribution data acquired over two model chords located at the 60 and 95 percent span stations.

  12. The effects of rhythm control strategies versus rate control strategies for atrial fibrillation and atrial flutter

    DEFF Research Database (Denmark)

    Sethi, Naqash; Safi, Sanam; Nielsen, Emil E

    2017-01-01

    BACKGROUND: Atrial fibrillation is the most common arrhythmia of the heart with a prevalence of approximately 2% in the western world. Atrial flutter, another arrhythmia, occurs less often with an incidence of approximately 200,000 new patients per year in the USA. Patients with atrial fibrillation...... as healthcare systems and healthcare economy. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42016051433....

  13. China ADS sub-critical experimental assembly-Venus-1 and preliminary experiment

    Institute of Scientific and Technical Information of China (English)

    SHI Yongqian; ZHANG Wei; CAO Jian; QUAN Yanhui; LUO Huangda; WU Xiaofei; XIA Pu; LUO Zhanglin; ZHAO Zhixiang; DING Dazhao; LI Yiguo; ZHU Qinfu; XIA Haihong; LI Jien

    2007-01-01

    China's accelerator-driven sub-critical system (ADS) sub-critical experimental assembly--Venus-1 and the preliminary experiment is presented. The core of Venus-1 is a coupled one of a fast neutron zone and a thermal neutron zone. The fast neutron zone is at the centre of the core and formed by natural uranium fuel. A fast neutron spectrum field can be produced in the fast neutron zone and used for the transmutation of minor actinides (Mas). The thermal neutron zone surrounds the fast neutron zone and is formed by low-enriched uranium fuel. It is a fission zone. An epithermal neutron zone between the fast neutron zone and the thermal neutron zone can be established for the transmutation of longlived fission products (LLFP). On July 18, 2005, the first fuel element was loaded into the Venus-Ⅰ sub-critical assembly and some preliminary experiments about the subcritical neutronics were performed. The Venus-1 can be driven by an Am-Be source or other steady neutron source (Cf-252, D-D reaction and D-T reaction) to study the effect of the external neutron source with different energies or a D-T pulsed neutron source on the dynamic characteristics.

  14. Nonlinear dynamics aspects of subcritical transitions and singular flows in viscoelastic fluids

    NARCIS (Netherlands)

    Becherer, Paul

    2008-01-01

    Recently, there has been a renewed interest in theoretical aspects of flows of viscoelastic fluids (such as dilute polymer solutions). This thesis addresses two distinct issues related to such flows. Motivated by the possible occurrence of subcritical (finite-amplitude) instabilities in parallel flo

  15. Singular Solutions to Special Lagrangian Equations with Subcritical Phases and Minimal Surface Systems

    CERN Document Server

    Wang, Dake

    2011-01-01

    We construct singular solutions to special Lagrangian equa- tions with subcritical phases and minimal surface systems. A priori estimate breaking families of smooth solutions are also produced cor- respondingly. A priori estimates for special Lagrangian equations with certain convexity are largely known by now.

  16. ELUTION OF ORGANIC SOLUTES FROM DIFFERENT POLARITY SORBENTS USING SUBCRITICAL WATER. (R825394)

    Science.gov (United States)

    The intermolecular interactions between organic solutes and sorbent matrices under subcritical water conditions have been investigated at a pressure of 50 bar and temperatures ranging from 50 to 250°C. Both polar and nonpolar organics (chlorophenols, amines, n-alkanes...

  17. Focusing of Spherical Nonlinear Pulses for Nonlinear Wave Equations Ⅲ. Subcritical Case

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper studied spherical pulses of solutions of the system of semilinear wave equations with the pulses focusing at a point in three space variables. It is shown that there is no nonlinear effect at leading terms of pulses, when the initial data is subcritical.

  18. A mild and effective method for the conversion of alkenes into alcohols in subcritical water

    Directory of Open Access Journals (Sweden)

    RECEP OZEN

    2007-10-01

    Full Text Available Alkenes were oxidized to alcohols in subcritical water. A number of alkenes were oxidized directly to their alcohols in excellent yields. The syntheses were performed in 215 cm3 stainless steel high pressure reactor at 120 ºC in 150 cm3 water. The yields of alcohols increased with the nitrogen pressure.

  19. Subcritical localization in the discrete nonlinear Schrödinger equation with arbitrary power nonlinearity

    DEFF Research Database (Denmark)

    Bang, O.; Juul Rasmussen, J.; Christiansen, P.L.

    1994-01-01

    Discretizing the continuous nonlinear Schrodinger equation with arbitrary power nonlinearity influences the time evolution of its ground state solitary solution. In the subcritical case, for grid resolutions above a certain transition value, depending on the degree of nonlinearity, the solution w...

  20. Subcritical crack growth behavior of AI2O3-Glass dental composites

    NARCIS (Netherlands)

    Zhu, Q.; With, G. de; Dortmans, L.J.M.G.; Feenstra, F.

    2003-01-01

    The purpose of this study is to investigate the subcritical crack growth (SCG) behavior of alumina-glass dental composites. Alumina-glass composites were fabricated by infiltrating molten glass to porous alumina preforms. Rectangular bars of the composite were subject to dynamic loading in air, with

  1. Critical and Subcritical 0-Power Experiment at Rensselaer (CaSPER)

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Jennifer Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-09

    This report discusses the 0-power experiment at Rensselaer Polytechnic Institute (CaSPER). Keff simulation results, list-mode multiplication results, and related work are included. The aim of the work is subcritical measurements for code and nuclear data validation.

  2. Subcritical crack growth behavior of AI2O3-Glass dental composites

    NARCIS (Netherlands)

    Zhu, Q.; With, G. de; Dortmans, L.J.M.G.; Feenstra, F.

    2003-01-01

    The purpose of this study is to investigate the subcritical crack growth (SCG) behavior of alumina-glass dental composites. Alumina-glass composites were fabricated by infiltrating molten glass to porous alumina preforms. Rectangular bars of the composite were subject to dynamic loading in air, with

  3. Plutonium Critical Mass Curve Comparison to Mass at Upper Subcritical Limit (USL) Using Whisper

    Energy Technology Data Exchange (ETDEWEB)

    Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Codes; Zhang, Ning [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Criticality Safety Division

    2016-09-27

    Whisper is computational software designed to assist the nuclear criticality safety analyst with validation studies with the MCNP® Monte Carlo radiation transport package. Standard approaches to validation rely on the selection of benchmarks based upon expert judgment. Whisper uses sensitivity/uncertainty (S/U) methods to select relevant benchmarks to a particular application or set of applications being analyzed. Using these benchmarks, Whisper computes a calculational margin. Whisper attempts to quantify the margin of subcriticality (MOS) from errors in software and uncertainties in nuclear data. The combination of the Whisper-derived calculational margin and MOS comprise the baseline upper subcritical limit (USL), to which an additional margin may be applied by the nuclear criticality safety analyst as appropriate to ensure subcriticality. A series of critical mass curves for plutonium, similar to those found in Figure 31 of LA-10860-MS, have been generated using MCNP6.1.1 and the iterative parameter study software, WORM_Solver. The baseline USL for each of the data points of the curves was then computed using Whisper 1.1. The USL was then used to determine the equivalent mass for plutonium metal-water system. ANSI/ANS-8.1 states that it is acceptable to use handbook data, such as the data directly from the LA-10860-MS, as it is already considered validated (Section 4.3 4) “Use of subcritical limit data provided in ANSI/ANS standards or accepted reference publications does not require further validation.”). This paper attempts to take a novel approach to visualize traditional critical mass curves and allows comparison with the amount of mass for which the keff is equal to the USL (calculational margin + margin of subcriticality). However, the intent is to plot the critical mass data along with USL, not to suggest that already accepted handbook data should have new and more rigorous requirements for validation.

  4. The occurrence and prognostic significance of atrial fibrillation/-flutter following acute myocardial infarction. TRACE Study group. TRAndolapril Cardiac Evalution

    DEFF Research Database (Denmark)

    Pedersen, O D; Bagger, H; Køber, L;

    1999-01-01

    AIMS: To investigate the occurrence and prognostic significance of atrial fibrillation/-flutter following acute myocardial infarction. METHODS AND RESULTS: The occurrence and prognostic significance of atrial fibrillation/-flutter were studied in 6676 consecutive patients with acute myocardial...... extensive, thrombolytic therapy was received less frequently, and anterior Q wave myocardial infarction was experienced more frequently than patients without atrial fibrillation/-flutter. History of acute myocardial infarction and/or angina pectoris was similar in patients with and without atrial......, relative risk=1.4 (95% Cl: 1.2-1.7). CONCLUSION: Atrial fibrillation/-flutter often occurs after acute myocardial infarction and our analysis demonstrated that it was an independent predictor of an increased short and long-term mortality....

  5. Physical Insights, Steady Aerodynamic Effects, and a Design Tool for Low-Pressure Turbine Flutter

    Science.gov (United States)

    Waite, Joshua Joseph

    The successful, efficient, and safe turbine design requires a thorough understanding of the underlying physical phenomena. This research investigates the physical understanding and parameters highly correlated to flutter, an aeroelastic instability prevalent among low pressure turbine (LPT) blades in both aircraft engines and power turbines. The modern way of determining whether a certain cascade of LPT blades is susceptible to flutter is through time-expensive computational fluid dynamics (CFD) codes. These codes converge to solution satisfying the Eulerian conservation equations subject to the boundary conditions of a nodal domain consisting fluid and solid wall particles. Most detailed CFD codes are accompanied by cryptic turbulence models, meticulous grid constructions, and elegant boundary condition enforcements all with one goal in mind: determine the sign (and therefore stability) of the aerodynamic damping. The main question being asked by the aeroelastician, "is it positive or negative?'' This type of thought-process eventually gives rise to a black-box effect, leaving physical understanding behind. Therefore, the first part of this research aims to understand and reveal the physics behind LPT flutter in addition to several related topics including acoustic resonance effects. A percentage of this initial numerical investigation is completed using an influence coefficient approach to study the variation the work-per-cycle contributions of neighboring cascade blades to a reference airfoil. The second part of this research introduces new discoveries regarding the relationship between steady aerodynamic loading and negative aerodynamic damping. Using validated CFD codes as computational wind tunnels, a multitude of low-pressure turbine flutter parameters, such as reduced frequency, mode shape, and interblade phase angle, will be scrutinized across various airfoil geometries and steady operating conditions to reach new design guidelines regarding the influence

  6. Investigation of the Flow Physics Driving Stall-Side Flutter in Advanced Forward Swept Fan Designs

    Science.gov (United States)

    Sanders, Albert J.; Liu, Jong S.; Panovsky, Josef; Bakhle, Milind A.; Stefko, George; Srivastava, Rakesh

    2003-01-01

    Flutter-free operation of advanced transonic fan designs continues to be a challenging task for the designers of aircraft engines. In order to meet the demands of increased performance and lighter weight, these modern fan designs usually feature low-aspect ratio shroudless rotor blade designs that make the task of achieving adequate flutter margin even more challenging for the aeroelastician. This is especially true for advanced forward swept designs that encompass an entirely new design space compared to previous experience. Fortunately, advances in unsteady computational fluid dynamic (CFD) techniques over the past decade now provide an analysis capability that can be used to quantitatively assess the aeroelastic characteristics of these next generation fans during the design cycle. For aeroelastic applications, Mississippi State University and NASA Glenn Research Center have developed the CFD code TURBO-AE. This code is a time-accurate three-dimensional Euler/Navier-Stokes unsteady flow solver developed for axial-flow turbomachinery that can model multiple blade rows undergoing harmonic oscillations with arbitrary interblade phase angles, i.e., nodal diameter patterns. Details of the code can be found in Chen et al. (1993, 1994), Bakhle et al. (1997, 1998), and Srivastava et al. (1999). To assess aeroelastic stability, the work-per-cycle from TURBO-AE is converted to the critical damping ratio since this value is more physically meaningful, with both the unsteady normal pressure and viscous shear forces included in the work-per-cycle calculation. If the total damping (aerodynamic plus mechanical) is negative, then the blade is unstable since it extracts energy from the flow field over the vibration cycle. TURBO-AE is an integral part of an aeroelastic design system being developed at Honeywell Engines, Systems & Services for flutter and forced response predictions, with test cases from development rig and engine tests being used to validate its predictive

  7. Nuclear data requirements for accelerator driven sub-critical systems – A roadmap in the Indian context

    Indian Academy of Sciences (India)

    S Ganesan

    2007-02-01

    The development of accelerator driven sub-critical systems (ADSS) require significant amount of new nuclear data in extended energy regions as well as for a variety of new materials. This paper reviews these perspectives in the Indian context.

  8. Flutter and Forced Response Analyses of Cascades using a Two-Dimensional Linearized Euler Solver

    Science.gov (United States)

    Reddy, T. S. R.; Srivastava, R.; Mehmed, O.

    1999-01-01

    Flutter and forced response analyses for a cascade of blades in subsonic and transonic flow is presented. The structural model for each blade is a typical section with bending and torsion degrees of freedom. The unsteady aerodynamic forces due to bending and torsion motions. and due to a vortical gust disturbance are obtained by solving unsteady linearized Euler equations. The unsteady linearized equations are obtained by linearizing the unsteady nonlinear equations about the steady flow. The predicted unsteady aerodynamic forces include the effect of steady aerodynamic loading due to airfoil shape, thickness and angle of attack. The aeroelastic equations are solved in the frequency domain by coupling the un- steady aerodynamic forces to the aeroelastic solver MISER. The present unsteady aerodynamic solver showed good correlation with published results for both flutter and forced response predictions. Further improvements are required to use the unsteady aerodynamic solver in a design cycle.

  9. Investigation of the Flutter Suppression by Fuzzy Logic Control for Hypersonic Wing

    Science.gov (United States)

    Li, Dongxu; Luo, Qing; Xu, Rui

    This paper presents a fundamental study of flutter characteristics and control performance of an aeroelastic system based on a two-dimensional double wedge wing in the hypersonic regime. Dynamic equations were established based on the modified third order nonlinear piston theory and some nonlinear structural effects are also included. A set of important parameters are observed. And then aeroelastic control law is designed to suppress the amplitude of the LCOs for the system in the sub/supercritical speed range by applying fuzzy logic control on the input of the deflection of the flap. The overall effects of the parameters on the aeroelastic system were outlined. Nonlinear aeroelastic responses in the open- and closed-loop system are obtained through numerical methods. The simulations show fuzzy logic control methods are effective in suppressing flutter and provide a smart approach for this complicated system.

  10. Flutter Characteristic Study of Composite Sandwich Panel with Functionally Graded Foam Core

    Directory of Open Access Journals (Sweden)

    Peng Jin

    2016-01-01

    Full Text Available This paper attempts to investigate the flutter characteristic of sandwich panel composed of laminated facesheets and a functionally graded foam core. The macroscopic properties of the foam core change continuously along this direction parallel to the facesheet lamina. The model used in the study is a simple sandwich panel-wing clamped at the root, with three simple types of grading strategies for FGM core: (1 linear grading strategy in the chord-wise direction, (2 linear grading strategy in the span-wise direction, and (3 bilinear grading of properties of foam core across the panel. The results show that use of FGM core has the potential to increase the flutter speed of the sandwich panel. Finally, a minimum weight design of composite sandwich panel with lamination parameters of facesheet and density distribution of foam core as design variables is conducted using particle swarm optimization (PSO.

  11. Design and experiment of data-driven modeling and flutter control of a prototype wing

    Science.gov (United States)

    Lum, Kai-Yew; Xu, Cai-Lin; Lu, Zhenbo; Lai, Kwok-Leung; Cui, Yongdong

    2017-06-01

    This paper presents an approach for data-driven modeling of aeroelasticity and its application to flutter control design of a wind-tunnel wing model. Modeling is centered on system identification of unsteady aerodynamic loads using computational fluid dynamics data, and adopts a nonlinear multivariable extension of the Hammerstein-Wiener system. The formulation is in modal coordinates of the elastic structure, and yields a reduced-order model of the aeroelastic feedback loop that is parametrized by airspeed. Flutter suppression is thus cast as a robust stabilization problem over uncertain airspeed, for which a low-order H∞ controller is computed. The paper discusses in detail parameter sensitivity and observability of the model, the former to justify the chosen model structure, and the latter to provide a criterion for physical sensor placement. Wind tunnel experiments confirm the validity of the modeling approach and the effectiveness of the control design.

  12. Coupling MCNP-DSP and LAHET Monte Carlo codes for designing subcriticality monitors for accelerator-driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, T.; Perez, R. [Oak Ridge National Lab., TN (United States); Rugama, Y.; Munoz-Cobo, J.L. [Poly. Tech. Univ. of Valencia (Spain). Chemical and Nuclear Engineering Dept.

    2001-07-01

    The design of reactivity monitoring systems for accelerator-driven systems must be investigated to ensure that such systems remain subcritical during operation. The Monte Carlo codes LAHET and MCNP-DSP were combined together to facilitate the design of reactivity monitoring systems. The coupling of LAHET and MCNP-DSP provides a tool that can be used to simulate a variety of subcritical measurements such as the pulsed neutron, Rossi-{alpha}, or noise analysis measurements. (orig.)

  13. Coupling MCNP-DSP and LAHET Monte Carlo Codes for Designing Subcriticality Monitors for Accelerator-Driven Systems

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, T.E.; Rugama, Y. Munoz-Cobos, J.; Perez, R.

    2000-10-23

    The design of reactivity monitoring systems for accelerator-driven systems must be investigated to ensure that such systems remain subcritical during operation. The Monte Carlo codes LAHET and MCNP-DSP were combined together to facilitate the design of reactivity monitoring systems. The coupling of LAHET and MCNP-DSP provides a tool that can be used to simulate a variety of subcritical measurements such as the pulsed neutron, Rossi-{alpha}, or noise analysis measurements.

  14. Comparison of Temporal Parameters of Swimming Rescue Elements When Performed Using Dolphin and Flutter Kick with Fins - Didactical Approach

    Science.gov (United States)

    Rejman, Marek; Wiesner, Wojciech; Silakiewicz, Piotr; Klarowicz, Andrzej; Abraldes, J. Arturo

    2012-01-01

    The aim of this study was an analysis of the time required to swim to a victim and tow them back to shore, while perfoming the flutter-kick and the dolphin-kick using fins. It has been hypothesized that using fins while using the dolphin-kick when swimming leads to reduced rescue time. Sixteen lifeguards took part in the study. The main tasks performed by them, were to approach and tow (double armpit) a dummy a distance of 50m while applying either the flutter-kick, or the dolphin-kick with fins. The analysis of the temporal parameters of both techniques of kicking demonstrates that, during the approach to the victim, neither the dolphin (tmean = 32.9s) or the flutter kick (tmean = 33.0s) were significantly faster than the other. However, when used for towing a victim the flutter kick (tmean = 47.1s) was significantly faster when compared to the dolphin-kick (tmean = 52.8s). An assessment of the level of technical skills in competitive swimming, and in approaching and towing the victim, were also conducted. Towing time was significantly correlated with the parameter that linked the temporal and technical dimensions of towing and swimming (difference between flutter kick towing time and dolphin-kick towing time, 100m medley time and the four swimming strokes evaluation). No similar interdependency has been discovered in flutter kick towing time. These findings suggest that the dolphin-kick is a more difficult skill to perform when towing the victim than the flutter-kick. Since the hypothesis stated was not confirmed, postulates were formulated on how to improve dolphin-kick technique with fins, in order to reduce swimming rescue time. Key points The source of reduction of swimming rescue time was researched. Time required to approach and to tow the victim while doing the flutter kick and the dolphin-kick with fins was analyzed. The propulsion generated by dolphin-kick did not make the approach and tow faster than the flutter kick. More difficult skill to realize of

  15. Flutter and forced response of turbomachinery with frequency mistuning and aerodynamic asymmetry

    Science.gov (United States)

    Miyakozawa, Tomokazu

    This dissertation provides numerical studies to improve bladed disk assembly design for preventing blade high cycle fatigue failures. The analyses are divided into two major subjects. For the first subject presented in Chapter 2, the mechanisms of transonic fan flutter for tuned systems are studied to improve the shortcoming of traditional method for modern fans using a 3D time-linearized Navier-Stokes solver. Steady and unsteady flow parameters including local work on the blade surfaces are investigated. It was found that global local work monotonically became more unstable on the pressure side due to the flow rollback effect. The local work on the suction side significantly varied due to nodal diameter and flow rollback effect. Thus, the total local work for the least stable mode is dominant by the suction side. Local work on the pressure side appears to be affected by the shock on the suction side. For the second subject presented in Chapter 3, sensitivity studies are conducted on flutter and forced response due to frequency mistuning and aerodynamic asymmetry using the single family of modes approach by assuming manufacturing tolerance. The unsteady aerodynamic forces are computed using CFD methods assuming aerodynamic symmetry. The aerodynamic asymmetry is applied by perturbing the influence coefficient matrix. These aerodynamic perturbations influence both stiffness and damping while traditional frequency mistuning analysis only perturbs the stiffness. Flutter results from random aerodynamic perturbations of all blades showed that manufacturing variations that effect blade unsteady aerodynamics may cause a stable, perfectly symmetric engine to flutter. For forced response, maximum blade amplitudes are significantly influenced by the aerodynamic perturbation of the imaginary part (damping) of unsteady aerodynamic modal forces. This is contrary to blade frequency mistuning where the stiffness perturbation dominates.

  16. Research Programme for the 660 Mev Proton Accelerator Driven MOX-Plutonium Subcritical Assembly

    CERN Document Server

    Barashenkov, V S; Buttseva, G L; Dudarev, S Yu; Polanski, A; Puzynin, I V; Sissakian, A N

    2000-01-01

    The paper presents a research programme of the Experimental Acclerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton acceletator operating at the Laboratory of Nuclear Problems of the JINR, Dubna. MOX fuel (25% PuO_2 + 75% UO_2) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core of a nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient k_eff = 0.945, energetic gain G = 30 and the accelerator beam power 0.5 kW.

  17. Temperature Profile of the Solution Vessel of an Accelerator-Driven Subcritical Fissile Solution System

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Determan, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-14

    Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument’s LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.

  18. Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity.

    Science.gov (United States)

    Wang, Yongqiang; Gao, Yujie; Ding, Hui; Liu, Shejiang; Han, Xu; Gui, Jianzhou; Liu, Dan

    2017-03-01

    A large-scale process to extract flavonoids from Moringa oleifera leaf by subcritical ethanol was developed and HPLC-MS analysis was conducted to qualitatively identify the compounds in the extracts. To optimize the effects of process parameters on the yield of flavonoids, a Box-Behnken design combined with response surface methodology was conducted in the present work. The results indicated that the highest extraction yield of flavonoids by subcritical ethanol extraction could reach 2.60% using 70% ethanol at 126.6°C for 2.05h extraction. Under the optimized conditions, flavonoids yield was substantially improved by 26.7% compared with the traditional ethanol reflux method while the extraction time was only 2h, and obvious energy saving was observed. FRAP and DPPH assays showed that the extracts had strong antioxidant and free radical scavenging activities.

  19. Novel Production Method for Plant Polyphenol from Livestock Excrement Using Subcritical Water Reaction

    Directory of Open Access Journals (Sweden)

    Mayu Yamamoto

    2008-01-01

    Full Text Available Plant polyphenol, including vanillin, is often used as the intermediate materials of the medicines and vanilla flavoring. In agriculture generally vanillin is produced from vanilla plant and in industry from lignin of disposed wood pulp. We have recently developed a method for the production of plant polyphenol with the excrement as a natural resource of lignin, of the herbivorous animals, by using the subcritical water. The method for using the subcritical water is superior to that of the supercritical water because in the latter complete decomposition occurs. We have successfully produced the vanillin, protocatechuic acid, vanillic acid, and syringic acid in products. Our method is simpler and more efficient not only because it requires the shorter treatment time but also because it releases less amount of carbon dioxide into the atmosphere.

  20. Theoretical Analysis for Heat Transfer Optimization in Subcritical Electrothermal Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Peng Hu

    2017-02-01

    Full Text Available Electrothermal energy storage (ETES provides bulk electricity storage based on heat pump and heat engine technologies. A subcritical ETES is described in this paper. Based on the extremum principle of entransy dissipation, a geometry model is developed for heat transfer optimization for subcritical ETES. The exergy during the heat transfer process is deduced in terms of entropy production. The geometry model is validated by the extremum principle of entropy production. The theoretical analysis results show that the extremum principle of entransy dissipation is an effective criterion for the optimization, and the optimum heat transfer for different cases with the same mass flux or pressure has been discussed. The optimum heat transfer can be achieved by adjusting the mass flux and pressure of the working fluid. It also reveals that with the increase of mass flux, there is a minimum exergy in the range under consideration, and the exergy decreases with the increase of the pressure.

  1. Sub-critical water hydrolysis of hog hair for amino acid production.

    Science.gov (United States)

    Esteban, M B; García, A J; Ramos, P; Márquez, M C

    2010-04-01

    A recycling method using sub-critical water hydrolysis to convert hog hair from slaughterhouses into amino acids was developed. The influence of the reaction parameters such as temperature, time of reaction and initial substrate concentration were investigated in a batch reactor. The quality and quantity of amino acids in hydrolysates were determined and 17 kinds of amino acids were obtained. Under the tested conditions, the highest amino acid yield (325 mg/g protein) was reached at an initial substrate concentration of 10 g/l, a temperature of 250 degrees C and a reaction time of 60 min. A large amount of low-molecular weight amino acids, such alanine and glycine, was observed at these operating conditions. Sub-critical water hydrolysis was confirmed as an effective and practical process to recover amino acids from hog hair waste.

  2. Simulation of molecular dynamics of silver subcritical nuclei and crystal clusters during solidification

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Molecular dynamics simulation is carried out to investigate the effects of cooling rate on the final configurations of silver after rapid solidification. The cooling rate for the formation of a silver amorphous phase is determined by analyzing its pair distribution function, H-A bond index, and the largest crystal cluster. Further, the equilibrium structures of the subcritical nuclei and crystal clusters are studied. The results show that the solidified microstructure is composed of a mixture of crystal clusters and amorphous phases at a certain cooling rate range. The size of the largest crystal cluster decreases with the increasing cooling rate, and it completely disappears when the cooling rate exceeds a critical value. The structures of the subcritical nuclei and the largest crystal cluster are composed of lamellar structures of fcc and hcp atoms, indicating that the lamellar structure of fcc and hcp atoms in the silver crystal originates from nucleation, and not from the growth of crystals.

  3. Temperature Profile of the Solution Vessel of an Accelerator-Driven Subcritical Fissile Solution System

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Determan, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-14

    Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument’s LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.

  4. Empirical Verification of Fault Models for FPGAs Operating in the Subcritical Voltage Region

    DEFF Research Database (Denmark)

    Birklykke, Alex Aaen; Koch, Peter; Prasad, Ramjee

    2013-01-01

    fault models might provide insight that would allow subcritical scaling by changing digital design practices or by simply accepting errors if possible. To facilitate further work in this direction, we present probabilistic error models that allow us to link error behavior with statistical properties...... of the binary signals, and based on a two-FPGA setup we experimentally verify the correctness of candidate models. For all experiments, the observed error rates exhibit a polynomial dependency on outcome probability of the binary inputs, which corresponds to the behavior predicted by the proposed timing error...... model. Furthermore, our results show that the fault mechanism is fully deterministic - mimicking temporary stuck-at errors. As a result, given knowledge about a given signal, errors are fully predictable in the subcritical voltage region....

  5. Identification of reduced-order model for an aeroelastic system from flutter test data

    Directory of Open Access Journals (Sweden)

    Wei Tang

    2017-02-01

    Full Text Available Recently, flutter active control using linear parameter varying (LPV framework has attracted a lot of attention. LPV control synthesis usually generates controllers that are at least of the same order as the aeroelastic models. Therefore, the reduced-order model is required by synthesis for avoidance of large computation cost and high-order controller. This paper proposes a new procedure for generation of accurate reduced-order linear time-invariant (LTI models by using system identification from flutter testing data. The proposed approach is in two steps. The well-known poly-reference least squares complex frequency (p-LSCF algorithm is firstly employed for modal parameter identification from frequency response measurement. After parameter identification, the dominant physical modes are determined by clear stabilization diagrams and clustering technique. In the second step, with prior knowledge of physical poles, the improved frequency-domain maximum likelihood (ML estimator is presented for building accurate reduced-order model. Before ML estimation, an improved subspace identification considering the poles constraint is also proposed for initializing the iterative procedure. Finally, the performance of the proposed procedure is validated by real flight flutter test data.

  6. Flutter Derivatives Identification and Aerodynamic Performance of an Optimized Multibox Bridge Deck

    Directory of Open Access Journals (Sweden)

    Zhida Wang

    2016-01-01

    Full Text Available The bridge deck sections used for long-span suspension bridges have evolved through the years, from the compact box deck girders geometrical configurations to twin-box and three-box bridge decks sections. The latest generation of split and multiple-box bridge decks proved to have better aerodynamic behavior; thus further optimization methods are sought for such geometrical configurations. A new type of multibox bridge deck, consisting of four aerodynamically shaped deck boxes, two side decks for the traffic lanes and two middle decks for the railway traffic, connected between them by stabilizing beams, was tested in the wind tunnel for identifying the flutter derivatives and to verify the aerodynamic performance of the proposed multibox deck. Aerodynamic static force coefficients were measured for the multibox bridge deck model, scaled 1 : 80, for Reynolds numbers up to 5.1 × 105, under angles of attack between −8° and 8°. Iterative Least Squares (ILS method was employed for identifying the flutter derivatives of the multibox bridge deck model, based on the results obtained from the free vibration tests and based on the frequency analysis the critical flutter wind speed for the corresponding prototype of the multibox bridge was estimated at 188 m/s.

  7. Flutter Analysis of a Morphing Wing Technology Demonstrator: Numerical Simulation and Wind Tunnel Testing

    Directory of Open Access Journals (Sweden)

    Andreea KOREANSCHI

    2016-03-01

    Full Text Available As part of a morphing wing technology project, the flutter analysis of two finite element models and the experimental results of a morphing wing demonstrator equipped with aileron are presented. The finite element models are representing a wing section situated at the tip of the wing; the first model corresponds to a traditional aluminium upper surface skin of constant thickness and the second model corresponds to a composite optimized upper surface skin for morphing capabilities. The two models were analyzed for flutter occurrence and effects on the aeroelastic behaviour of the wing were studied by replacing the aluminium upper surface skin of the wing with a specially developed composite version. The morphing wing model with composite upper surface was manufactured and fitted with three accelerometers to record the amplitudes and frequencies during tests at the subsonic wind tunnel facility at the National Research Council. The results presented showed that no aeroelastic phenomenon occurred at the speeds, angles of attack and aileron deflections studied in the wind tunnel and confirmed the prediction of the flutter analysis on the frequencies and modal displacements.

  8. A model of a subcritical Joule-Thomson cryocooler with condensation inside the recuperator

    Science.gov (United States)

    Shusser, M.; Ben-Zvi, I.; Maytal, B.-Z.; Grossman, G.

    2009-08-01

    To develop a tool for predicting of heat and mass transfer in Joule-Thomson cryocoolers working at subcritical pressures, we study a counter flow heat exchanger with condensation by employing the integral method. The effects of inlet pressure and working fluid are predicted. We also show that there is an optimal value of the enthalpy difference along the heat exchanger for which its length is minimal.

  9. A model of a subcritical Joule-Thomson cryocooler with condensation inside the recuperator

    Energy Technology Data Exchange (ETDEWEB)

    Shusser, M.; Grossman, G. [Technion, Faculty of Mechanical Engineering, Haifa (Israel); Ben-Zvi, I.; Maytal, B.Z. [Rafael Ltd., Haifa (Israel)

    2009-08-15

    To develop a tool for predicting of heat and mass transfer in Joule-Thomson cryocoolers working at subcritical pressures, we study a counter flow heat exchanger with condensation by employing the integral method. The effects of inlet pressure and working fluid are predicted. We also show that there is an optimal value of the enthalpy difference along the heat exchanger for which its length is minimal. (orig.)

  10. Determination of the subcriticality level using the {sup 252}Cf source-detector method

    Energy Technology Data Exchange (ETDEWEB)

    Baeten, P. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Lafuente, A., E-mail: anlafuente@etsii.upm.e [Universidad Politecnica de Madrid, 28006 Madrid (Spain); Janssens, J.; Kochetkov, A. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Pazsit, I. [Chalmers University of Technology, SE-412 96 Goteborg (Sweden); Van Grieken, G.; Van den Eynde, G. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)

    2010-05-15

    Measurement and monitoring of reactivity in a subcritical state, e.g. during the loading of a power reactor, has a clear safety relevance. The methods currently available for the measurement of k{sub eff} in stationary subcritical conditions should be improved as they refer to the critical state. This is also very important in the framework of ADS (accelerator driven systems) where the measurement of a subcritical level without knowledge of the critical state is looked for. An alternative way to achieve this is by mean of the {sup 252}Cf source-detector method. The method makes use of three detectors inserted in the reactor: two 'ordinary' neutron detectors and one {sup 252}Cf source-detector which contains a small amount of {sup 252}Cf that introduces neutrons in the system through spontaneous fission. By observing fissions through the detection system and correlating the signals of the three detectors, the reactivity rho (and hence the multiplication factor k) can be determined. Before the actual measurements took place, a suitable data acquisition system was realized in order to process the signals and compute the auto and cross power spectral densities. The measurements were then performed in the VENUS reactor, using the {sup 252}Cf source-detector and two BF{sub 3} neutron detectors. The multiplication factor was determined using the Cf source method and compared with measurements using other methods and with computational results (Monte Carlo simulations). The Cf method was benchmarked at a UOX core to other experimental methods that used the critical state as reference and to calculations. Afterwards, the Cf source technique was analyzed in a MOX core to study the possible impact of a significant intrinsic source on the results. This benchmarking gives the possibility to validate the Cf method as a reliable technique for the measurement of subcritical levels in steady state and for cores with an intrinsic source like MOX or burnt fuel cores.

  11. A Family of Prediction Tools for Fine Ceramic Fibers Subcritical Cracking

    OpenAIRE

    Genet, Martin; Ladevèze, Pierre

    2010-01-01

    International audience; Ceramic Matrix Composites reinforced with long fibers are potential candidates for high-temperature structural applications. Their lifetime is mainly controlled by the fibers. The rupture mechanism of fibers under environmental conditions and mechanical stress is the environmentally assisted propagation of their surface defects toward their core.The analysis of cracks subcritical propagation is called static fatigue, because most works use a Paris-like law relating the...

  12. On the speed of sound and heat capacity of liquid neon in the subcritical region

    CERN Document Server

    Goncharov, A L; Postnikov, E B

    2016-01-01

    The data (the speed of sound, the isobaric and isochoric heat capacities as well as the heat capacity ratio) for liquid neon presented in NIST Chemistry WebBook are analyzed. It has been shown, basing on the representation of the inverse reduced volume fluctuations, that they consist of sufficient discrepancies in the subcritical region. The correction of data in this region of the coexistence curve is evaluated using the fluctuation approach and the theory of thermodynamic similarity.

  13. Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors

    Science.gov (United States)

    Lebedev, G. V.; Petrov, V. V.; Bobylyov, V. T.; Butov, R. I.; Zhukov, A. M.; Sladkov, A. A.

    2014-12-01

    According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 1-20 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ˜0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator.

  14. Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence

    Science.gov (United States)

    Muthukumaran, C. K.; Vaidyanathan, Aravind

    2015-03-01

    The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical and near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed.

  15. Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in [Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India)

    2015-03-15

    The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical and near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed.

  16. Th and U fuel photofission study by NTD for AD-MSR subcritical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Sajo-Bohus, Laszlo; Greaves, Eduardo D.; Barros, Haydn; Pino, Felix; Barrera, Maria T.; Farina, Fulvio [Universidad Simón Bolívar, Nuclear Physics Laboratory, Apdo 89000, Caracas 1080A (Venezuela, Bolivarian Republic of); Davila, Jesus [Física Médica C. A. and Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of)

    2015-07-23

    During the last decade a considerable effort has been devoted for developing energy generating systems based on advanced nuclear technology within the design concepts of GEN-IV. Thorium base fuel systems such as accelerator driven nuclear reactors are one of the often mentioned attractive and affordable options. Several radiotherapy linear accelerators are on the market and due to their reliability, they could be employed as drivers for subcritical liquid fuel assemblies. Bremsstrahlung photons with energies above 5.5MeV, induce (γ,n) and (e,e’n) reactions in the W-target. Resulting gamma radiation and photo or fission neutrons may be absorbed in target materials such as thorium and uranium isotopes to induce sustained fission or nuclear transmutation in waste radioactive materials. Relevant photo driven and photo-fission reaction cross sections are important for actinides {sup 232}Th, {sup 238}U and {sup 237}Np in the radiotherapy machines energy range of 10-20 MV. In this study we employ passive nuclear track detectors (NTD) to determine fission rates and neutron production rates with the aim to establish the feasibility for gamma and photo-neutron driven subcritical assemblies. To cope with these objectives a 20 MV radiotherapy machine has been employed with a mixed fuel target. Results will support further development for a subcritical assembly employing a thorium containing liquid fuel. It is expected that acquired technological knowledge will contribute to the Venezuelan nuclear energy program.

  17. Optimization of subcritical fluid extraction of bioactive compounds using Hansen solubility parameters.

    Science.gov (United States)

    Srinivas, K; King, J W; Monrad, J K; Howard, L R; Hansen, C M

    2009-08-01

    Process engineering operations in food and nutraceutical industries pertaining to the design of extraction of value-added products from biomass using pressurized liquids involve a careful selection of the solvent and optimal temperature conditions to achieve maximum yield. Complex molecular structure and limited physical property data in the literature of biological solutes extracted from biomass compounds have necessitated the process modeling of such operations. In this study, we have applied the Hansen 3-dimensional solubility parameter concept to optimize the extraction of molecularly complex solutes using subcritical fluid solvents. Hansen solubility spheres characterized by the relative energy differences (RED) have been used to characterize and quantify the solute-subcritical solvent interactions as a function of temperature. The solvent power of subcritical water and compressed hydroethanolic mixtures above their boiling points has been characterized using the above-mentioned method. The use of group contribution methods in collaboration with computerized algorithms to plot the Hansen spheres provides a quantitative prediction tool for optimizing the design of extraction conditions. The method can be used to estimate conditions for solute-solvent miscibility, an optimum temperature range for conducting extractions under pressurized conditions, and approximate extraction conditions of solutes from natural matrices.

  18. Hydrothermal decomposition of pentachlorophenol in subcritical and supercritical water with sodium hydroxide addition

    Institute of Scientific and Technical Information of China (English)

    PRABOWO Benedictus; VERIANSYAH Bambang; KIM Jae-Duck

    2007-01-01

    Hydrothermal decomposition of pentachlorophenol (PCP), (C6HCl5O), as the probable human carcinogen, was investigated in a tubular reactor under subcritical and supercritical water with sodium hydroxide (NaOH) addition. The experiments were conducted at a temperature of 300-420℃ and a fixed pressure of 25 MPa, with a residence time that ranged from 10 s to 70 s. Under the reaction conditions, the initial PCP concentrations were varied from 0.25 to 1.39 mmol/L and the NaOH concentrations were varied from 2.5 to 25 times of the concentrations of PCP. The result of this study showed that PCP conversion in supercritical water is highly dependent on the reaction temperature, residence times, and NaOH concentration. PCP conversion in subcritical water is, however, only dependent on reaction temperature. NaOH concentration and residence times were found to have little effect on PCP conversion in subcritical condition. It was found that NaOH concentration affected the dechlorinations of PCP in the supercritical water. The intermediates detected products were proposed to be tetrachlorophenol and trichlorophenol, respectively.

  19. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-06-01

    This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.

  20. Th and U fuel photofission study by NTD for AD-MSR subcritical assembly

    Science.gov (United States)

    Sajo-Bohus, Laszlo; Greaves, Eduardo D.; Davila, Jesus; Barros, Haydn; Pino, Felix; Barrera, Maria T.; Farina, Fulvio

    2015-07-01

    During the last decade a considerable effort has been devoted for developing energy generating systems based on advanced nuclear technology within the design concepts of GEN-IV. Thorium base fuel systems such as accelerator driven nuclear reactors are one of the often mentioned attractive and affordable options. Several radiotherapy linear accelerators are on the market and due to their reliability, they could be employed as drivers for subcritical liquid fuel assemblies. Bremsstrahlung photons with energies above 5.5MeV, induce (γ,n) and (e,e'n) reactions in the W-target. Resulting gamma radiation and photo or fission neutrons may be absorbed in target materials such as thorium and uranium isotopes to induce sustained fission or nuclear transmutation in waste radioactive materials. Relevant photo driven and photo-fission reaction cross sections are important for actinides 232Th, 238U and 237Np in the radiotherapy machines energy range of 10-20 MV. In this study we employ passive nuclear track detectors (NTD) to determine fission rates and neutron production rates with the aim to establish the feasibility for gamma and photo-neutron driven subcritical assemblies. To cope with these objectives a 20 MV radiotherapy machine has been employed with a mixed fuel target. Results will support further development for a subcritical assembly employing a thorium containing liquid fuel. It is expected that acquired technological knowledge will contribute to the Venezuelan nuclear energy program.

  1. COMPARISON OF TEMPORAL PARAMETERS OF SWIMMING RESCUE ELEMENTS WHEN PERFORMED USING DOLPHIN AND FLUTTER KICK WITH FINS - DIDACTICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Marek Rejman

    2012-12-01

    Full Text Available The aim of this study was an analysis of the time required to swim to a victim and tow them back to shore, while perfoming the flutter-kick and the dolphin-kick using fins. It has been hypothesized that using fins while using the dolphin-kick when swimming leads to reduced rescue time. Sixteen lifeguards took part in the study. The main tasks performed by them, were to approach and tow (double armpit a dummy a distance of 50m while applying either the flutter-kick, or the dolphin-kick with fins. The analysis of the temporal parameters of both techniques of kicking demonstrates that, during the approach to the victim, neither the dolphin (tmean = 32.9s or the flutter kick (tmean = 33.0s were significantly faster than the other. However, when used for towing a victim the flutter kick (tmean = 47.1s was significantly faster when compared to the dolphin-kick (tmean = 52.8s. An assessment of the level of technical skills in competitive swimming, and in approaching and towing the victim, were also conducted. Towing time was significantly correlated with the parameter that linked the temporal and technical dimensions of towing and swimming (difference between flutter kick towing time and dolphin-kick towing time, 100m medley time and the four swimming strokes evaluation. No similar interdependency has been discovered in flutter kick towing time. These findings suggest that the dolphin-kick is a more difficult skill to perform when towing the victim than the flutter-kick. Since the hypothesis stated was not confirmed, postulates were formulated on how to improve dolphin-kick technique with fins, in order to reduce swimming rescue time

  2. Comparison of temporal parameters of swimming rescue elements when performed using dolphin and flutter kick with fins - didactical approach.

    Science.gov (United States)

    Rejman, Marek; Wiesner, Wojciech; Silakiewicz, Piotr; Klarowicz, Andrzej; Abraldes, J Arturo

    2012-01-01

    The aim of this study was an analysis of the time required to swim to a victim and tow them back to shore, while perfoming the flutter-kick and the dolphin-kick using fins. It has been hypothesized that using fins while using the dolphin-kick when swimming leads to reduced rescue time. Sixteen lifeguards took part in the study. The main tasks performed by them, were to approach and tow (double armpit) a dummy a distance of 50m while applying either the flutter-kick, or the dolphin-kick with fins. The analysis of the temporal parameters of both techniques of kicking demonstrates that, during the approach to the victim, neither the dolphin (tmean = 32.9s) or the flutter kick (tmean = 33.0s) were significantly faster than the other. However, when used for towing a victim the flutter kick (tmean = 47.1s) was significantly faster when compared to the dolphin-kick (tmean = 52.8s). An assessment of the level of technical skills in competitive swimming, and in approaching and towing the victim, were also conducted. Towing time was significantly correlated with the parameter that linked the temporal and technical dimensions of towing and swimming (difference between flutter kick towing time and dolphin-kick towing time, 100m medley time and the four swimming strokes evaluation). No similar interdependency has been discovered in flutter kick towing time. These findings suggest that the dolphin-kick is a more difficult skill to perform when towing the victim than the flutter-kick. Since the hypothesis stated was not confirmed, postulates were formulated on how to improve dolphin-kick technique with fins, in order to reduce swimming rescue time.

  3. Results of Atrial Fibrillation Ablation in Patients With or Without a History of Atrial Flutter

    Institute of Scientific and Technical Information of China (English)

    Lu chunshan; Liu Xingpeng; Dong Jianzeng; Ma Changsheng

    2006-01-01

    Objectives There are two kind of atrial flutter during circumferential ablation for atrial fibrillation (AF): new onset left atrial flutter (LAFL), with a history of atrial flutter (AFL). What is the relationship of AFL and AF? Whether there are some differences in clinical course and mechanism between the new onset LAFL and the with a history of AFL remained unclear. The aim of this study was to assess the impacts of circumferential ablation on the occurrence of arrhythmias in follow-up in 2 groups:( 1 ) patients with a history of AFL and AF, and (2)patients with new onset LAFL. Methods Data from 465 patients who had circumferential pulmonary vein ablation (CPVA) or segmental pulmonary vein ablation (SPVA) were analyzed. Patients with a history of AFL ablation and patients who had concomitant AFL ablation were included from analysis. Forty-one patients constituted the history of AFL group (group 1, aged 57±13 years, 7 females) and twenty-eight patients constituted the new onset LAFL group (group 2, aged 55±12 years, 6 females). bipolar recordings were obtained from the tricuspid annulus, coronary sinus,interatrial septum and left atrium. Target sites were identified by early, fragmented or double potentials and by concealed entrainment. Linear lesions were created between target sites and nearby anatomical barriers (1) typical atrial flutter (cycle length, 242±39 ms). cavotricuspid isthmus ablation was performed.(2) new onset LAFL (cycle length, 282±153 ms). 20 episodes of AAFs were documented in 20/28 (71.4%)patients. Target sites were identified around pulmonary veins (n=10), gap in linear lesion (n=7), left atrial roof lines (1 case). For those cases the ablation line between PV and mitral annulus was performed.Patients in Group 2 had larger left atria, higher incidence of AFL pre-CPVA, and lower ejection fraction. Results There was no significant difference in post-CPVA AF recurrence between Groups 1 and 2, but AFL incidence after CPVA was higher in Group

  4. Optimization of geometry, material and economic parameters of a two-zone subcritical reactor for transmutation of nuclear waste with SERPENT Monte Carlo code

    Science.gov (United States)

    Gulik, Volodymyr; Tkaczyk, Alan Henry

    2014-06-01

    An optimization study of a subcritical two-zone homogeneous reactor was carried out, taking into consideration geometry, material, and economic parameters. The advantage of a two-zone subcritical system over a single-zone system is demonstrated. The study investigated the optimal volume ratio for the inner and outer zones of the subcritical reactor, in terms of the neutron-physical parameters as well as fuel cost. Optimal geometrical parameters of the system are suggested for different material compositions.

  5. Dissipation-induced pure Gaussian state

    CERN Document Server

    Koga, Kei

    2011-01-01

    This paper provides some necessary and sufficient conditions for a general Markovian Gaussian master equation to have a unique pure steady state. The conditions are described by simple matrix equations, thus they can be easily applied to the so-called environment engineering for pure Gaussian state preparation. In particular, it is shown that for any given pure Gaussian state we can actually construct a dissipative process yielding that state as the unique steady state.

  6. An analytical and experimental study to investigate flutter suppression via piezoelectric actuation. M.S. Thesis - George Washington Univ., 1991

    Science.gov (United States)

    Heeg, Jennifer

    1991-01-01

    The objective was to analytically and experimentally study the capabilities of adaptive material plate actuators for suppressing flutter. The validity of analytical modeling techniques for piezoelectric materials was also investigated. Piezoelectrics are materials which are characterized by their ability to produce voltage when subjected to a mechanical strain. The converse piezoelectric effect can be utilized to actuate a structure by applying a voltage. For this investigation, a two degree of freedom wind tunnel model was designed, analyzed, and tested. The model consisted of a rigid airfoil and a flexible mount system which permitted a translational and a rotational degree of freedom. It was designed such that flutter was encounted within the testing envelope of the wind tunnel. Actuators, made of piezoelectric material were affixed to leaf springs of the mount system. Each degree of freedom was controlled by a separate leaf spring. Command signals, applied to the piezoelectric actuators, exerted control over the damping and stiffness properties. A mathematical aeroservoelastic model was constructed using finite element methods, laminated plate theory, and aeroelastic analysis tools. Plant characteristics were determined from this model and verified by open loop experimental tests. A flutter suppression control law was designed and implemented on a digital control computer. Closed loop flutter testing was conducted. The experimental results represent the first time that adaptive materials have been used to actively suppress flutter. It demonstrates that small, carefully placed actuating plates can be used effectively to control aeroelastic response.

  7. Detection of paroxysmal atrial fibrillation or flutter in patients with acute ischemic stroke or transient ischemic attack by Holter monitoring.

    Science.gov (United States)

    Thakkar, Sandeep; Bagarhatta, Rajeev

    2014-01-01

    Paroxysmal atrial fibrillation and flutter are strong risk factors for stroke. Due to high recurrence rate of ischemic events and given the benefit of oral anticoagulation over antiplatelet drugs, it is important to identify this arrhythmia. Unfortunately, paroxysmal AF or flutter is asymptomatic in majority and therefore, difficult to detect. Consecutive patients presenting with symptoms of acute ischemic stroke or transient ischemic attack were included. All patients free of AF or flutter on presentation underwent 24 h Holter monitoring within 7 days of admission. Overall, fifty two (52) patients (mean age 59.51 ± 13.45 years) with acute stroke (80.8%) and TIA (19.8%) underwent 24 h Holter monitoring. Paroxysmal AF was detected in 3 cases (5.8%), all 3 patients had acute stroke and were older than age 60 years. Type of stroke was the only factor which was associated with greater risk of having paroxysmal AF or flutter, AF accounted for 50% cases (2 out of 4) of clinically suspected cardio embolic stroke. Screening consecutive patients with ischemic stroke with routine Holter monitoring will identify new atrial fibrillation/flutter in approximately one in 17 patients. Older age and type of stroke are strongly associated with increased risk. By carefully selecting the patients, the detection rates could be further increased. Copyright © 2014 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  8. Flutter Phenomenon in Flow Driven Energy Harvester-A Unified Theoretical Model for “Stiff” and “Flexible” Materials

    Science.gov (United States)

    Chen, Yu; Mu, Xiaojing; Wang, Tao; Ren, Weiwei; Yang, Ya; Wang, Zhong Lin; Sun, Chengliang; Gu, Alex Yuandong

    2016-10-01

    Here, we report a stable and predictable aero-elastic motion in the flow-driven energy harvester, which is different from flapping and vortex-induced-vibration (VIV). A unified theoretical frame work that describes the flutter phenomenon observed in both “stiff” and “flexible” materials for flow driven energy harvester was presented in this work. We prove flutter in both types of materials is the results of the coupled effects of torsional and bending modes. Compared to “stiff” materials, which has a flow velocity-independent flutter frequency, flexible material presents a flutter frequency that almost linearly scales with the flow velocity. Specific to “flexible” materials, pre-stress modulates the frequency range in which flutter occurs. It is experimentally observed that a double-clamped “flexible” piezoelectric P(VDF-TrFE) thin belt, when driven into the flutter state, yields a 1,000 times increase in the output voltage compared to that of the non-fluttered state. At a fixed flow velocity, increase in pre-stress level of the P(VDF-TrFE) thin belt up-shifts the flutter frequency. In addition, this work allows the rational design of flexible piezoelectric devices, including flow-driven energy harvester, triboelectric energy harvester, and self-powered wireless flow speed sensor.

  9. Acute success and short-term follow-up of catheter ablation of isthmus-dependent atrial flutter; a comparison of 8 mm tip radiofrequency and cryothermy catheters

    NARCIS (Netherlands)

    A.S. Thornton (Andrew); P. Janse (Petter); M. Alings (Marco); M.F. Scholten (Marcoen); J.M. Mekel (Joris); M. Miltenburg (Max); E. Jessurun; L.J.L.M. Jordaens (Luc)

    2008-01-01

    textabstractObjectives: To compare the acute success and short-term follow-up of ablation of atrial flutter using 8 mm tip radiofrequency (RF) and cryocatheters. Methods: Sixty-two patients with atrial flutter were randomized to RF or cryocatheter (cryo) ablation. Right atrial angiography was perfor

  10. Transonic flutter study of a wind-tunnel model of a supercritical wing with/without winglet. [conducted in Langley Transonic Dynamics Tunnel

    Science.gov (United States)

    Ruhlin, C. L.; Rauch, F. J., Jr.; Waters, C.

    1982-01-01

    The model was a 1/6.5-size, semipan version of a wing proposed for an executive-jet-transport airplane. The model was tested with a normal wingtip, a wingtip with winglet, and a normal wingtip ballasted to simulate the winglet mass properties. Flutter and aerodynamic data were acquired at Mach numbers (M) from 0.6 to 0.95. The measured transonic flutter speed boundary for each wingtip configuration had roughly the same shape with a minimum flutter speed near M=0.82. The winglet addition and wingtip mass ballast decreased the wing flutter speed by about 7 and 5 percent, respectively; thus, the winglet effect on flutter was more a mass effect than an aerodynamic effect.

  11. Stability analysis of the fluttering and autorotation of flow-induced rotation of a hinged flat plate

    Institute of Scientific and Technical Information of China (English)

    MIRZAEISEFAT Sina; FERNANDES Antonio Carlos

    2013-01-01

    This work describes investigations performed on the interaction of uniform current and freely rotating plate about a fixed vertical axis. Fluttering and autorotation are two different motions that may occur during the flow induced rotation. The dimensional analysis proves that the motion in flow induced rotation motion is governed essentially by the dimensionless moment of inertia and Reynolds number. Certain combinations define the stability boundaries between fluttering and autorotation. Fluttering is oscillation of body about a vertical axis and the autorotation is a name given to the case when the body turns continuously about the vertical axis. First, the loads and moment coefficients are calculated by experiments and streamline theory for different angles of attack for a fixed flat plate. Then for dynamic case, a bifurcation diagram is presented based on experiments to classify different motion states of flow induced rotation. Finally, a dynamical model is proposed for stability analysis of flow induced rotation of a flat plate.

  12. Accelerator-driven sub-critical research facility with low-enriched fuel in lead matrix: Neutron flux calculation

    Directory of Open Access Journals (Sweden)

    Avramović Ivana

    2007-01-01

    Full Text Available The H5B is a concept of an accelerator-driven sub-critical research facility (ADSRF being developed over the last couple of years at the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. Using well-known computer codes, the MCNPX and MCNP, this paper deals with the results of a tar get study and neutron flux calculations in the sub-critical core. The neutron source is generated by an interaction of a proton or deuteron beam with the target placed inside the sub-critical core. The results of the total neutron flux density escaping the target and calculations of neutron yields for different target materials are also given here. Neutrons escaping the target volume with the group spectra (first step are used to specify a neutron source for further numerical simulations of the neutron flux density in the sub-critical core (second step. The results of the calculations of the neutron effective multiplication factor keff and neutron generation time L for the ADSRF model have also been presented. Neutron spectra calculations for an ADSRF with an uranium tar get (highest values of the neutron yield for the selected sub-critical core cells for both beams have also been presented in this paper.

  13. Oxidative degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) in subcritical and supercritical waters.

    Science.gov (United States)

    Hashimoto, M; Taniguchi, S; Takanami, R; Giri, R R; Ozaki, H

    2010-01-01

    Presence of chlorinated organic compounds in water bodies has become a concern among governments, health authorities and general public. Oxidation of organic compounds in water under high temperature and pressure is considered as a promising technique, but usefulness of the technique to mineralize 2,4-dichlorophenoxyacetic acid (2,4-D) is not well understood. This article aimed to elucidate degradation characteristics of 2,4-D in both subcritical and supercritical waters by laboratory batch experiments. 2,4-D degradation, total organic carbon (TOC) removal and dechlorination increased with increasing reaction time and temperature especially in subcritical waters, while dechlorination was a major step. 2,4-dichlorophenol (2,4-DCP) and acetic acid were the main degradation intermediates both in subcritical and supercritical waters. Though 2,4-D disappeared almost completely in subcritical waters near critical region ( approximately 99%), significant amounts of TOC and organic chlorine still remained as 2,4-DCP and acetic acid. But TOC removal and dechlorination were significantly enhanced ( approximately 95 and 91% respectively) in supercritical waters. Complete mineralization of 2,4-D in subcritical waters required a considerably longer reaction period, while the mineralization was almost complete within a short reaction period in supercritical waters. This is an important information of practical significance for oxidative degradation of chlorinated pesticides similar to 2,4-D.

  14. Monte Carlo MSM correction factors for control rod worth estimates in subcritical and near-critical fast neutron reactors

    Directory of Open Access Journals (Sweden)

    Lecouey Jean-Luc

    2015-01-01

    Full Text Available The GUINEVERE project was launched in 2006, within the 6th Euratom Framework Program IP-EUROTRANS, in order to study the feasibility of transmutation in Accelerator Driven subcritical Systems (ADS. This zero-power facility hosted at the SCK·CEN site in Mol (Belgium couples the fast subcritical lead reactor VENUS-F with an external neutron source provided by interaction of deuterons delivered by the GENEPI-3C accelerator and a tritiated target located at the reactor core center. In order to test on-line subcriticality monitoring techniques, the reactivity of all the VENUS-F configurations used must be known beforehand to serve as benchmark values. That is why the Modified Source Multiplication Method (MSM is under consideration to estimate the reactivity worth of the control rods when the reactor is largely subcritical as well as near-critical. The MSM method appears to be a technique well adapted to measure control rod worth over a large range of subcriticality levels. The MSM factors which are required to account for spatial effects in the reactor can be successfully calculated using a Monte Carlo neutron transport code.

  15. Incidence and clinical predictors of subsequent atrial fibrillation requiring additional ablation after cavotricuspid isthmus ablation for typical atrial flutter.

    Science.gov (United States)

    De Bortoli, Alessandro; Shi, Li-Bin; Ohm, Ole-Jørgen; Hoff, Per Ivar; Schuster, Peter; Solheim, Eivind; Chen, Jian

    2017-06-01

    We sought to investigate the incidence of atrial fibrillation after catheter ablation for typical atrial flutter and to determine the predictors for symptomatic atrial fibrillation that required a further additional dedicated ablation procedure. 127 patients underwent elective cavotricuspid isthmus ablation with the indication of symptomatic, typical atrial flutter. The occurrence of atrial flutter, atrial fibrillation, cerebrovascular events and the need for additional ablation procedures for symptomatic atrial fibrillation was assessed during long-term follow-up. The majority of patients (70%) manifested atrial fibrillation during a follow-up period of 68 ± 24 months, and a significant proportion (42%) underwent one or multiple atrial fibrillation ablation procedures after an average of 26 months from the index procedure. Recurrence of typical atrial flutter was rare. Ten patients (8%) suffered cerebrovascular events. Earlier documentation of atrial fibrillation (OR 3.53), previous use of flecainide (OR 3.33) and left atrial diameter (OR 2.96) independently predicted occurrence of atrial fibrillation during the follow-up. A combination of pre- and intra-procedural documentation of atrial fibrillation (OR 3.81) and previous use of flecainide (OR 2.43) independently predicted additional atrial fibrillation ablation. Atrial fibrillation occurred in the majority of patients after ablation for typical atrial flutter and 42% of them required an additional dedicated ablation procedure. Pre- and intraprocedural documentation of atrial fibrillation together with previous use of flecainide independently predicted atrial fibrillation occurrence and a need for additional ablation. Anticoagulation treatment should be continued in high-risk patients in spite of clinical disappearance of atrial flutter.

  16. Intra-atrial reentry as a mechanism for atrial flutter induced by acetylcholine and rapid pacing in the dog.

    Science.gov (United States)

    Allessie, M A; Lammers, W J; Bonke, I M; Hollen, J

    1984-07-01

    In the isolated blood-perfused canine heart we produced episodes of rapid atrial flutter by continuous infusion of acetylcholine and rapid pacing. The spread of excitation during atrial flutter was mapped with the aid of two endocavitary mapping electrodes containing 960 leads and recording from 192 different sites simultaneously. The flutter maps clearly showed that intra-atrial reentry was the mechanism responsible for the arrhythmia. However, the localization and size of the intra-atrial circuits differed from case to case even in the same heart. The orifices of the venae cavae or the atrioventricular ring did not serve as a central anatomic obstacle for circus movement. We also failed to identify a special role of the internodal pathways in the formation of the loop. Instead, the intra-atrial circuits could be found everywhere, provided sufficient atrial mass was available to accommodate the circuit. The diameter of the circuits varied between 1.5 and 3 cm at a cycle length between 65 and 155 msec. The average conduction velocity of the circulating impulse varied between 60 and 80 cm/sec. Spontaneous termination of atrial flutter frequently occurred and was based on local conduction block in a narrow part of the circuit. Another interesting aspect of these studies is the finding that during continuous circus movement of the impulse, the amount of myocardium that is activated may vary considerably. This marked periodicity in excited tissue mass during atrial flutter could adequately explain the continuously undulating baseline or typical sawtoothlike F waves as seen in the surface electrocardiogram during atrial flutter.

  17. Evaluation of reactivity monitoring techniques at the Yalina - Booster sub-critical facility

    Energy Technology Data Exchange (ETDEWEB)

    Becares Palacios, V.

    2014-07-01

    The management of long-lived radioactive wastes produced by nuclear reactors constitutes one of the main challenges of nuclear technology nowadays. A possible option for its management consists in the transmutation of long lived nuclides into shorter lived ones. Accelerator Driven Subcritical Systems (ADS) are one of the technologies in development to achieve this goal. An ADS consists in a subcritical nuclear reactor maintained in a steady state by an external neutron source driven by a particle accelerator. The interest of these systems lays on its capacity to be loaded with fuels having larger contents of minor actinides than conventional critical reactors, and in this way, increasing the transmutation rates of these elements, that are the main responsible of the long-term radiotoxicity of nuclear waste. One of the key points that have been identified for the operation of an industrial-scale ADS is the need of continuously monitoring the reactivity of the subcritical system during operation. For this reason, since the 1990s a number of experiments have been conducted in zero-power subcritical assemblies (MUSE, RACE, KUCA, Yalina, GUINEVERE/FREYA) in order to experimentally validate these techniques. In this context, the present thesis is concerned with the validation of reactivity monitoring techniques at the Yalina-Booster subcritical assembly. This assembly belongs to the Joint Institute for Power and Nuclear Research (JIPNR-Sosny) of the National Academy of Sciences of Belarus. Experiments concerning reactivity monitoring have been performed in this facility under the EUROTRANS project of the 6th EU Framework Program in year 2008 under the direction of CIEMAT. Two types of experiments have been carried out: experiments with a pulsed neutron source (PNS) and experiments with a continuous source with short interruptions (beam trips). For the case of the first ones, PNS experiments, two fundamental techniques exist to measure the reactivity, known as the prompt

  18. Dronedarone for the treatment of atrial fibrillation and atrial flutter: approval and efficacy

    Directory of Open Access Journals (Sweden)

    Deborah Wolbrette

    2010-06-01

    Full Text Available Deborah Wolbrette, Mario Gonzalez, Soraya Samii, Javier Banchs, Erica Penny-Peterson, Gerald NaccarelliPenn State Heart and Vascular Institute, Penn State Milton S Hershey Medical Center, Hershey, Pennsylvania, USAAbstract: Dronedarone, a new Class III antiarrhythmic agent, has now been approved by the US Food and Drug Administration for use in patients with atrial fibrillation or atrial flutter. Approval came in March 2009 due to the positive results of the ATHENA trial showing significant reductions in all-cause mortality and cardiovascular hospitalization with dronedarone use. A post hoc analysis of the ATHENA data also suggested a decrease in stroke risk with this agent. However, due to safety concerns in the heart failure population in the earlier ANDROMEDA trial, dronedarone is not recommended for patients with an ejection fraction <35% and recent decompensated heart failure. Dronedarone is an amiodarone analog with multichannel blocking electrophysiologic properties similar to those of amiodarone, but several structural differences. Dronedarone’s lack of the iodine moiety reduces its potential for thyroid and pulmonary toxicity. Preliminary data from the DIONYSOS trial, and an indirect meta-analysis comparing amiodarone with dronedarone, showed amiodarone to be more effective in maintaining sinus rhythm, while dronedarone was associated with fewer adverse effects resulting in early termination of the drug. Dronedarone is the first antiarrhythmic drug for the treatment of atrial fibrillation and atrial flutter shown to reduce cardiovascular hospitalizations. In patients with structural heart disease who have an ejection fraction >35% and no recent decompensated heart failure, dronedarone should be considered earlier than amiodarone in the treatment algorithm.Keywords: dronedarone, amiodarone, atrial fibrillation, atrial flutter

  19. Aerothermoelastic analysis of panel flutter based on the absolute nodal coordinate formulation

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Laith K., E-mail: laithabbass@yahoo.com; Rui, Xiaoting, E-mail: ruixt@163.com [Nanjing University of Science and Technology, Institute of Launch Dynamics (China); Marzocca, Piergiovanni, E-mail: pmarzocc@clarkson.edu [Clarkson University, Mechanical and Aeronautical Engineering Department (United States)

    2015-02-15

    Panels of reentry vehicles are subjected to a wide range of flow conditions during ascent and reentry phases. The flow can vary from subsonic continuum flow to hypersonic rarefied flow with wide ranging dynamic pressure and associated aerodynamic heating. One of the main design considerations is the assurance of safety against panel flutter under the flow conditions characterized by sever thermal environment. This paper deals with supersonic/hypersonic flutter analysis of panels exposed to a temperature field. A 3-D rectangular plate element of variable thickness based on absolute nodal coordinate formulation (ANCF) has been developed for the structural model and subjected to an assumed thermal profile that can result from any residual heat seeping into the metallic panels through the thermal protection systems. A continuum mechanics approach for the definition of the elastic forces within the finite element is considered. Both shear strain and transverse normal strain are taken into account. The aerodynamic force is evaluated by considering the first-order piston theory to linearize the potential flow and is coupled with the structural model to account for pressure loading. A provision is made to take into account the effect of arbitrary flow directions with respect to the panel edges. Aerothermoelastic equations using ANCF are derived and solved numerically. Values of critical dynamic pressure are obtained by a modal approach, in which the mode shapes are obtained by ANCF. A detailed parametric study is carried out to observe the effects of different temperature loadings, flow angle directions, and aspect ratios on the flutter boundary.

  20. Response of SII cortex to ipsilateral, contralateral and bilateral flutter stimulation in the cat

    Directory of Open Access Journals (Sweden)

    Favorov Oleg

    2005-02-01

    Full Text Available Abstract Background A distinctive property of SII is that it is the first cortical stage of the somatosensory projection pathway that integrates information arising from both sides of the body. However, there is very little known about how inputs across the body mid-line are processed within SII. Results Optical intrinsic signal imaging was used to evaluate the response of primary somatosensory cortex (SI and SII in the same hemisphere to 25 Hz sinusoidal vertical skin displacement stimulation ("skin flutter" applied contralaterally, ipsilaterally, and bilaterally to the central pads of the forepaws. A localized increase in absorbance in both SI and SII was evoked by both contralateral and bilateral flutter stimulation. Ipsilateral flutter stimulation evoked a localized increase in absorbance in SII, but not in SI. The SII region that responded with an increase in absorbance to ipsilateral stimulation was posterior to the region in which absorbance increased maximally in response to stimulation of the contralateral central pad. Additionally, in the posterior SII region that responded maximally to ipsilateral stimulation of the central pad, bilateral central pad stimulation approximated a linear summation of the SII responses to independent stimulation of the contralateral and ipsilateral central pads. Conversely, in anterior SII (the region that responded maximally to contralateral stimulation, bilateral stimulation was consistently less than the response evoked from the contralateral central pad. Conclusions The results indicate that two regions located at neighboring, but distinctly different A-P levels of the anterior ectosylvian gyrus process input from opposite sides of the body midline in very different ways. The results suggest that the SII cortex, in the cat, can be subdivided into at least two functionally distinct regions and that these functionally distinct regions demonstrate a laterality preference within SII.

  1. Internal hydrogen-induced subcritical crack growth in austenitic stainless steels

    Science.gov (United States)

    Huang, J. H.; Altstetter, C. J.

    1991-11-01

    The effects of small amounts of dissolved hydrogen on crack propagation were determined for two austenitic stainless steel alloys, AISI 301 and 310S. In order to have a uniform distribution of hydrogen in the alloys, they were cathodically charged at high temperature in a molten salt electrolyte. Sustained load tests were performed on fatigue precracked specimens in air at 0 ‡C, 25 ‡C, and 50 ‡C with hydrogen contents up to 41 wt ppm. The electrical potential drop method with optical calibration was used to continuously monitor the crack position. Log crack velocity vs stress intensity curves had definite thresholds for subcritical crack growth (SCG), but stage II was not always clearly delineated. In the unstable austenitic steel, AISI 301, the threshold stress intensity decreased with increasing hydrogen content or increasing temperature, but beyond about 10 wt ppm, it became insensitive to hydrogen concentration. At higher concentrations, stage II became less distinct. In the stable stainless steel, subcritical crack growth was observed only for a specimen containing 41 wt ppm hydrogen. Fractographic features were correlated with stress intensity, hydrogen content, and temperature. The fracture mode changed with temperature and hydrogen content. For unstable austenitic steel, low temperature and high hydrogen content favored intergranular fracture while microvoid coalescence dominated at a low hydrogen content. The interpretation of these phenomena is based on the tendency for stress-induced phase transformation, the different hydrogen diffusivity and solubility in ferrite and austenite, and outgassing from the crack tip. After comparing the embrittlement due to internal hydrogen with that in external hydrogen, it is concluded that the critical hydrogen distribution for the onset of subcritical crack growth is reached at a location that is very near the crack tip.

  2. Conversion of Japanese red pine wood (Pinus densiflora) into valuable chemicals under subcritical water conditions.

    Science.gov (United States)

    Asghari, Feridoun Salak; Yoshida, Hiroyuki

    2010-01-11

    A comparative study on the decomposition of Japanese red pine wood under subcritical water conditions in the presence and absence of phosphate buffer was investigated in a batch-type reaction vessel. Since cellulose makes up more than 40-45% of the components found in most wood species, a series of experiments were also carried out using pure cellulose as a model for woody biomass. Several parameters such as temperature and residence time, as well as pH effects, were investigated in detail. The best temperature for decomposition and hydrolysis of pure cellulose was found around 270 degrees C. The effects of the initial pH of the solution which ranged from 1.5 to 6.5 were studied. It was found that the pH has a considerable effect on the hydrolysis and decomposition of the cellulose. Several products in the aqueous phase were identified and quantified. The conditions obtained from the subcritical water treatment of pure cellulose were applied for the Japanese red pine wood chips. As a result, even in the absence of acid catalyst, a large amount of wood sample was hydrolyzed in water; however, by using phosphate buffer at pH 2, there was an increase in the hydrolysis and dissolution of the wood chips. In addition to the water-soluble phase, acetone-soluble and water-acetone-insoluble phases were also isolated after subcritical water treatment (which can be attributed mainly to the degraded lignin, tar, and unreacted wood chips, respectively). The initial wood:acid ratio in the case of reactions catalyzed by phosphate buffer was also investigated. The results showed that this weight ratio can be as high as 3:1 without changing the catalytic activity. The size of the wood chips as one of the most important experimental parameters was also investigated.

  3. Subcritical and supercritical technology for the production of second generation bioethanol.

    Science.gov (United States)

    Rostagno, Mauricio A; Prado, Juliana M; Mudhoo, Ackmez; Santos, Diego T; Forster-Carneiro, Tânia; Meireles, M Angela A

    2015-01-01

    There is increased interest in reducing our reliance on fossil fuels and increasing the share of renewable raw materials in our energy supply chain due to environmental and economic concerns. Ethanol is emerging as a potential alternative to liquid fuels due to its eco-friendly characteristics and relatively low production costs. As ethanol is currently produced from commodities also used for human and animal consumption, there is an urgent need of identifying renewable raw materials that do not pose a competitive problem. Lignocellulosic agricultural residues are an ideal choice since they can be effectively hydrolyzed to fermentable sugars and integrated in the context of a biorefinery without competing with the food supply chain. However, the conventional hydrolysis methods still have major issues that need to be addressed. These issues are related to the processing rate and generation of fermentation inhibitors, which can compromise the quality of the product and the cost of the process. As the knowledge of the processes taking place during hydrolysis of agricultural residues is increasing, new techniques are being exploited to overcome these drawbacks. This review gives an overview of the state-of-the-art of hydrolysis with subcritical and supercritical water in the context of reusing agricultural residues for the production of suitable substrates to be processed during the fermentative production of bioethanol. Presently, subcritical and/or supercritical water hydrolysis has been found to yield low sugar contents mainly due to concurrent competing degradation of sugars during the hydrothermal processes. In this line of thinking, the present review also revisits the recent applications and advances to provide an insight of future research trends to optimize on the subcritical and supercritical process kinetics.

  4. A parametric sensitivity and optimization study for the active flexible wing wind-tunnel model flutter characteristics

    Science.gov (United States)

    Rais-Rohani, Masoud

    1991-01-01

    In this paper an effort is made to improve the analytical open-loop flutter predictions for the Active Flexible Wing wind-tunnel model using a sensitivity based optimization approach. The sensitivity derivatives of the flutter frequency and dynamic pressure of the model with respect to the lag terms appearing in the Roger's unsteady aerodynamics approximations are evaluated both analytical and by finite differences. Then, the Levenberg-Marquardt method is used to find the optimum values for these lag-terms. The results obtained here agree much better with the experimental (wind tunnel) results than those found in the previous studies.

  5. Investigation of an Improved Flutter Speed Prediction Technique for Damaged T-38 Horizontal Stabilators Using NASTRAN.

    Science.gov (United States)

    1980-12-01

    Figures Ai-A5 show the stif- fened model has approximated the experimental results much more closely in pure bending. The largest errors result from...but no wing. In ReF 15 the wing is said to be stable up to 115 percent of the flight envelope. Perturbations to the wing may cause it to oscillate ...but within the flight envelope the motion damps out. At some frequency of oscillation it is probable that flutter in the 55 stab may be excited by the

  6. Transonic test of a forward swept wing configuration exhibiting Body Freedom Flutter

    Science.gov (United States)

    Chipman, R.; Rauch, F.; Rimer, M.; Muniz, B.; Ricketts, R. H.

    1985-01-01

    The aeroelastic dynamic instability designated Body Freedom Flutter (BFF) involves aircraft pitch and wing bending motions characteristic of forward swept wing (FSW) aircraft. Attention is presently given to the results of tests conducted on a 1/2-scale cable-mounted FSW wind tunnel model, with and without relaxed static stability (RSS) control conditions. BFF instability boundaries were found to occur at significantly lower air speeds than those associated with aeroelastic wing divergence on the same model. Servoaeroelastic stability analyses have been conducted which proved capable of predicting the measured onset of BFF, in both the statically stable and RSS configurations tested.

  7. Finite element modal formulation for panel flutter at hypersonic speeds and elevated temperatures

    Science.gov (United States)

    Cheng, Guanfeng

    A finite element time domain modal formulation for analyzing flutter behavior of aircraft surface panels in hypersonic airflow has been developed and presented for the first time. Von Karman large deflection plate theory is used for description of the structural nonlinearity and third order piston theory is employed to account for the aerodynamic nonlinearity. The thermal loadings of uniformly distributed temperature and temperature gradients across the panel thickness are incorporated into the finite element formulation. By applying the modal reduction technique, the number of governing equations of motion is reduced dramatically so that the computational time of direct numerical integration is dropped significantly. All possible types of panel behavior, including flat, buckled but dynamically stable, limit cycle oscillation (LCO), periodic motion, and chaotic motion can be observed and analyzed. As examples of the applications of the proposed methodology, flutter responses of isotropic, specially orthotropic and laminated composite panels are investigated. Special emphasis is put on the boundary between LCO and chaos, as well as the routes to chaos. A systematic mode filtering procedure that helps mode selection without specific knowledge of the complex mode shapes is presented and illustrated. Influences of aerodynamic parameters, including aerodynamic damping and Mach number, on the panel flutter responses are studied. The importance of nonlinear aerodynamic terms is examined in detail. The supporting conditions and panel aspect ratio on the onset condition of chaos are also investigated as an illustration of optimization among different design options. Several mathematical tools, including the time history, phase plane plot, Poincare map, and bifurcation diagram are employed in the chaos study. The largest Lyapunov exponent is also evaluated to assist in detection of chaos. It is found that at low or moderately high nondimensional dynamic pressures, the

  8. Three-dimensional nonlinear flutter analysis of long-span suspension bridges during erection.

    Science.gov (United States)

    Zhang, Xin-jun; Sun, Bing-nan; Xiang, Hai-fan

    2003-01-01

    In this work, the aerodynamic stability of the Yichang Suspension Bridge over Yangtze River during erection was determined by three-dimensional nonlinear flutter analysis, in which the nonlinearities of structural dynamic characteristics and aeroelastic forces caused by large deformation are fully considered. An interesting result obtained was that the bridge was more stable when the stiffening girders were erected in a non-symmetrical manner as opposed to the traditional symmetrical erection schedule. It was also found that the severe decrease in the aerodynamic stability was due to the nonlinear effects. Therefore, the nonlinear factors should be considered accurately in aerodynamic stability analysis of long-span suspension bridges during erection.

  9. Three-dimensional nonlinear flutter analysis of long-span suspension bridges during erection

    Institute of Scientific and Technical Information of China (English)

    张新军; 孙炳楠; 项海帆

    2003-01-01

    In this work, the aerodynamic stability of the Yichang Suspension Bridge over Yangtze River during erection was determined by three-dimensional nonlinear flutter analysis, in which the nonlinearities of structural dynamic characteristics and aeroelastic forces caused by large deformation are fully considered. An interesting result obtained was that the bridge was more stable when the stiffening girders were erected in a non-symmetrical manner as opposed to the traditional symmetrical erection schedule. It was also found that the severe decrease in the aerodynamic stability was due to the nonlinear effects. Therefore, the nonlinear factors should be considered accurately in aerodynamic stability analysis of long-span suspension bridges during erection.

  10. Three-dimensional nonlinear flutter analysis of long-span suspension bridges during erection

    Institute of Scientific and Technical Information of China (English)

    张新军; 孙炳楠; 项海帆

    2003-01-01

    In this work, the aerodynamic stability of the Yichang Suspension Bridge over Yangtze River during erection was determined by three-dimensional nonlinear flutter analysis, in which the nonlinearities of structural dynamic characteristics and aeroelastic forces caused by large deformation are fully considered. An interesting resuh obtained was that the bridge was more stable when the stiffening girders were erected in a non-symmetrical manner as opposed to the traditional symmetrical erection schedule. It was also found that the severe decrease in the aerodynamic stability was due to the nonlinear effects. Therefore, the nonlinear factors should be considered accurately in aerodynamic stability analysis of long-span suspension bridges during erection.

  11. Aero-servo-viscoelasticity theory: Lifting surfaces, plates, velocity transients, flutter, and instability

    Science.gov (United States)

    Merrett, Craig G.

    -partial differential equations. The spatial component of the governing equations is eliminated using a series expansion of basis functions and by applying Galerkin's method. The number of terms in the series expansion affects the convergence of the spatial component, and convergence is best determined by the von Koch rules that previously appeared for column buckling problems. After elimination of the spatial component, an ordinary integral-differential equation in time remains. The dynamic stability of elastic and viscoelastic problems is assessed using the determinant of the governing system of equations and the time component of the solution in the form exp (lambda t). The determinant is in terms of lambda where the values of lambda are the latent roots of the aero-servo-viscoelastic system. The real component of lambda dictates the stability of the system. If all the real components are negative, the system is stable. If at least one real component is zero and all others are negative, the system is neutrally stable. If one or more real components are positive, the system is unstable. In aero-servo-viscoelasticity, the neutrally stable condition is termed flutter. For an aero-servo-viscoelastic lifting surface, the unstable condition is historically termed torsional divergence. The more general aero-servo-viscoelastic theory has produced a number of important results, enumerated in the following list: 1. Subsonic panel flutter can occur before panel instability. This result overturned a long held assumption in aeroelasticity, and was produced by the novel application of the von Koch rules for convergence. Further, experimental results from the 1950s by the Air Force were retrieved to provide additional proof. 2. An expanded definition for flutter of a lifting surface. The legacy definition is that flutter is the first occurrence of simple harmonic motion of a structure, and the flight velocity at which this motion occurs is taken as the flutter speed. The expanded definition

  12. Digoxin versus placebo, no intervention, or other medical interventions for atrial fibrillation and atrial flutter

    DEFF Research Database (Denmark)

    Sethi, Naqash; Safi, Sanam; Feinberg, Joshua

    2017-01-01

    BACKGROUND: Atrial fibrillation is the most common arrhythmia of the heart with a prevalence of approximately 2% in the western world. Atrial flutter, another arrhythmia, occurs less often with an incidence of approximately 200,000 new patients per year in the USA. Patients with atrial fibrillation...... and secondary outcomes, we will create a 'Summary of Findings' table based on GRADE assessments of the quality of the evidence. DISCUSSION: The results of this systematic review have the potential to benefit millions of patients worldwide as well as healthcare economy. SYSTEMATIC REVIEW REGISTRATION: PROSPERO...

  13. Numerical simulations of flow field in the target region of accelerator-driven subcritical reactor system

    CERN Document Server

    Chen Hai Yan

    2002-01-01

    Numerical simulations of flow field were performed by using the PHOENICS 3.2 code for the proposed spallation target of accelerator-driven subcritical reactor system (ADS). The fluid motion in the target is axisymmetric and is treated as a 2-D steady-state problem. A body-fitted coordinate system (BFC) is then chosen and a two-dimensional mesh of the flow channel is generated. Results are presented for the ADS target under both upward and downward flow, and for the target with diffuser plate installed below the window under downward flow

  14. High brightness 50 MeV Cyclotron for Accelerator-Driven Subcritical Fission

    Science.gov (United States)

    Assadi, Saeed; Badgley, Karie; Mann, Thomas; McIntyre, Peter; Pogue, Nathaniel; Sattarov, Akhdiyor

    2011-10-01

    The Accelerator Research Lab at Texas A&M University is developing new accelerator technology for a high-brightness, high-current cyclotron with capabilities that will be beneficial for applications to accelerator-driven subcritical fission, medical isotope production, and proton therapy. As a first embodiment of the technology, we are developing a detailed design for TAMU-50, a 50 MeV, 5 mA proton cyclotron with high beam brightness. In this presentation we present devices and beamline components for injection, extraction, controls and diagnostics. We emphasize the system integration and implementation of TAMU-50 for production of medical radioisotopes.

  15. Accelerator-driven sub-critical reactor system (ADS) for nuclear energy generation

    Indian Academy of Sciences (India)

    S S Kapoor

    2002-12-01

    In this talk we present an overview of accelerator-driven sub-critical reactor systems (ADS), and bring out their attractive features for the elimination of troublesome long-lived components of the spent fuel, as well as for nuclear energy generation utilizing thorium as fuel. In India, there is an interest in the programmes of development of high-energy and high-current accelerators due to the potential of ADS in utilizing the vast resources of thorium in the country for nuclear power generation. The accelerator related activities planned in this direction will be outlined.

  16. Subcritical experiments at the FREYA experiment; Experimentos subcriticos en el proyecto FREYA

    Energy Technology Data Exchange (ETDEWEB)

    Becares Palacios, V.; Villamarin fernandez, D.

    2013-07-01

    The FREYA Project of the 7th Framework Program is aimed to the study of the kinetics of subcritical reactors coupled to an external neutron source, and, more specifically, to the validation of reactivity monitoring techniques. CIEMAT activities within the frame of this project have consisted in analyzing the possible ways of correcting the spatial and energy effects on these reactivity monitoring techniques, as well as analyzing the effects that may have on them the presence of different materials in the reflector and the position of the neutron source.

  17. The super- and sub-critical effects for dielectric constant in diethyl ether

    Science.gov (United States)

    Drozd-Rzoska, Aleksandra; Rzoska, Sylwester J.

    2016-06-01

    Results of dielectric constant (ɛ) studies in diethyl ether for the surrounding of the gas - liquid critical point, TC - 130 K curve, along its diameter (d(T)) and in the supercritical domain for T > TC. For the ultrasound sonicated system, the split into coexisting phases disappeared and dielectric constant approximately followed the pattern of the diameter. This may indicate the possibility of the extension of the "supercritical technology" into the ultrasound "homogenized" subcritical domain: the "strength" and the range of the precritical effect of d(T) are ca. 10× larger than for ɛ (T > TC).

  18. Criticality Safety Evaluation of the LLNL Inherently Safe Subcritical Assembly (ISSA)

    Energy Technology Data Exchange (ETDEWEB)

    Percher, Catherine [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-06-19

    The LLNL Nuclear Criticality Safety Division has developed a training center to illustrate criticality safety and reactor physics concepts through hands-on experimental training. The experimental assembly, the Inherently Safe Subcritical Assembly (ISSA), uses surplus highly enriched research reactor fuel configured in a water tank. The training activities will be conducted by LLNL following the requirements of an Integration Work Sheet (IWS) and associated Safety Plan. Students will be allowed to handle the fissile material under the supervision of LLNL instructors. This report provides the technical criticality safety basis for instructional operations with the ISSA experimental assembly.

  19. Study on design of superconducting proton linac for accelerator driven subcritical nuclear power system

    CERN Document Server

    Yu Qi; Xu Tao Guang

    2002-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac (SCL) is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. It is constitute by a series of the superconducting accelerating cavities. The cavity geometry is determined by means of the electromagnetic field computation. The SCL main parameters are determined by the particle dynamics computation

  20. Final Progress Report: FRACTURE AND SUBCRITICAL DEBONDING IN THIN LAYERED STRUCTURES: EXPERIMENTS AND MULTI-SCALE MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold H. Dauskardt

    2005-08-30

    Final technical report detailing unique experimental and multi-scale computational modeling capabilities developed to study fracture and subcritical cracking in thin-film structures. Our program to date at Stanford has studied the mechanisms of fracture and fatigue crack-growth in structural ceramics at high temperature, bulk and thin-film glasses in selected moist environments where we demonstrated the presence of a true mechanical fatigue effect in some glass compositions. We also reported on the effects of complex environments and fatigue loading on subcritical cracking that effects the reliability of MEMS and other micro-devices using novel micro-machined silicon specimens and nanomaterial layers.

  1. Spectra of random Hermitian matrices with a small-rank external source: supercritical and subcritical regimes

    CERN Document Server

    Bertola, Marco; Lee, Seung-Yeop; Pierce, Virgil U

    2010-01-01

    Random Hermitian matrices with a source term arise, for instance, in the study of non-intersecting Brownian walkers \\cite{Adler:2009a, Daems:2007} and sample covariance matrices \\cite{Baik:2005}. We consider the case when the $n\\times n$ external source matrix has two distinct real eigenvalues: $a$ with multiplicity $r$ and zero with multiplicity $n-r$. The source is small in the sense that $r$ is finite or $r=\\mathcal O(n^\\gamma)$, for $0< \\gamma<1$. For a Gaussian potential, P\\'ech\\'e \\cite{Peche:2006} showed that for $|a|$ sufficiently small (the subcritical regime) the external source has no leading-order effect on the eigenvalues, while for $|a|$ sufficiently large (the supercritical regime) $r$ eigenvalues exit the bulk of the spectrum and behave as the eigenvalues of $r\\times r$ Gaussian unitary ensemble (GUE). We establish the universality of these results for a general class of analytic potentials in the supercritical and subcritical regimes.

  2. Initial instability of round liquid jet at subcritical and supercritical environments

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in [Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India)

    2016-07-15

    In the present experimental work, the behavior of laminar liquid jet in its own vapor as well as supercritical fluid environment is conducted. Also the study of liquid jet injection into nitrogen (N{sub 2}) environment is carried out at supercritical conditions. It is expected that the injected liquid jet would undergo thermodynamic transition to the chamber condition and this would alter the behavior of the injected jet. Moreover at such conditions there is a strong dependence between thermodynamic and fluid dynamic processes. Thus the thermodynamic transition has its effect on the initial instability as well as the breakup nature of the injected liquid jet. In the present study, the interfacial disturbance wavelength, breakup characteristics, and mixing behavior are analysed for the fluoroketone liquid jet that is injected into N{sub 2} environment as well as into its own vapor at subcritical to supercritical conditions. It is observed that at subcritical chamber conditions, the injected liquid jet exhibits classical liquid jet characteristics with Rayleigh breakup at lower Weber number and Taylor breakup at higher Weber number for both N{sub 2} and its own environment. At supercritical chamber conditions with its own environment, the injected liquid jet undergoes sudden thermodynamic transition to chamber conditions and single phase mixing characteristics is observed. However, the supercritical chamber conditions with N{sub 2} as ambient fluid does not have significant effect on the thermodynamic transition of the injected liquid jet.

  3. Initial instability of round liquid jet at subcritical and supercritical environments

    Science.gov (United States)

    Muthukumaran, C. K.; Vaidyanathan, Aravind

    2016-07-01

    In the present experimental work, the behavior of laminar liquid jet in its own vapor as well as supercritical fluid environment is conducted. Also the study of liquid jet injection into nitrogen (N2) environment is carried out at supercritical conditions. It is expected that the injected liquid jet would undergo thermodynamic transition to the chamber condition and this would alter the behavior of the injected jet. Moreover at such conditions there is a strong dependence between thermodynamic and fluid dynamic processes. Thus the thermodynamic transition has its effect on the initial instability as well as the breakup nature of the injected liquid jet. In the present study, the interfacial disturbance wavelength, breakup characteristics, and mixing behavior are analysed for the fluoroketone liquid jet that is injected into N2 environment as well as into its own vapor at subcritical to supercritical conditions. It is observed that at subcritical chamber conditions, the injected liquid jet exhibits classical liquid jet characteristics with Rayleigh breakup at lower Weber number and Taylor breakup at higher Weber number for both N2 and its own environment. At supercritical chamber conditions with its own environment, the injected liquid jet undergoes sudden thermodynamic transition to chamber conditions and single phase mixing characteristics is observed. However, the supercritical chamber conditions with N2 as ambient fluid does not have significant effect on the thermodynamic transition of the injected liquid jet.

  4. Subcritical convection in a rapidly rotating sphere at low Prandtl number

    CERN Document Server

    Guervilly, Celine

    2016-01-01

    We study non-linear convection in a low Prandtl number fluid ($Pr = 0.01-0.1$) in a rapidly rotating sphere with internal heating. We use a numerical model based on the quasi-geostrophic approximation, in which variations of the axial vorticity along the rotation axis are neglected, whereas the temperature field is fully three-dimensional. We identify two separate branches of convection close to onset: (i) a well-known weak branch for Ekman numbers greater than $10^{-6}$, which is continuous at the onset (supercritical bifurcation) and consists of a superposition of thermal Rossby waves, and (ii) a novel strong branch at lower Ekman numbers, which is discontinuous at the onset. The strong branch becomes subcritical for Ekman numbers of the order of $10^{-8}$. On the strong branch, the Reynolds number of the flow is greater than $10^3$, and a strong zonal flow with multiple jets develops, even close to the non-linear onset of convection. We find that the subcriticality is amplified by decreasing the Prandtl nu...

  5. Fatigue of Self-Healing Nanofiber-based Composites: Static Test and Subcritical Crack Propagation.

    Science.gov (United States)

    Lee, Min Wook; Sett, Soumyadip; Yoon, Sam S; Yarin, Alexander L

    2016-07-20

    Here, we studied the self-healing of composite materials filled with epoxy-containing nanofibers. An initial incision in the middle of a composite sample stretched in a static fatigue test can result in either crack propagation or healing. In this study, crack evolution was observed in real time. A binary epoxy, which acted as a self-healing agent, was encapsulated in two separate types of interwoven nano/microfibers formed by dual-solution blowing, with the core containing either epoxy or hardener and the shell being formed from poly(vinylidene fluoride)/ poly(ethylene oxide) mixture. The core-shell fibers were encased in a poly(dimethylsiloxane) matrix. When the fibers were damaged by a growing crack in this fiber-reinforced composite material because of static stretching in the fatigue test, they broke and released the healing agent into the crack area. The epoxy used in this study was cured and solidified for approximately an hour at room temperature, which then conglutinated and healed the damaged location. The observations were made for at least several hours and in some cases up to several days. It was revealed that the presence of the healing agent (the epoxy) in the fibers successfully prevented the propagation of cracks in stretched samples subjected to the fatigue test. A theoretical analysis of subcritical cracks was performed, and it revealed a jumplike growth of subcritical cracks, which was in qualitative agreement with the experimental results.

  6. Pyrolysis of low density polyethylene waste in subcritical water optimized by response surface methodology.

    Science.gov (United States)

    Wong, S L; Ngadi, N; Amin, N A S; Abdullah, T A T; Inuwa, I M

    2016-01-01

    Pyrolysis of low density polyethylene (LDPE) waste from local waste separation company in subcritical water was conducted to investigate the effect of reaction time, temperature, as well as the mass ratio of water to polymer on the liquid yield. The data obtained from the study were used to optimize the liquid yield using response surface methodology. The range of reaction temperature used was 162-338°C, while the reaction time ranged from 37 min to 143 min, and the ratio of water to polymer ranged from 1.9 to 7.1. It was found that pyrolysis of LDPE waste in subcritical water produced hydrogen, methane, carbon monoxide and carbon dioxide, while the liquid product contained alkanes and alkenes with 10-50 carbons atoms, as well as heptadecanone, dichloroacetic acid and heptadecyl ester. The optimized conditions were 152.3°C, reaction time of 1.2 min and ratio of water solution to polymer of 32.7, with the optimum liquid yield of 13.6 wt% and gases yield of 2.6 wt%.

  7. Activation Characteristics of Fuel Breeding Blanket Module in Fusion Driven Subcritical System

    Institute of Scientific and Technical Information of China (English)

    HUANG Qun-Ying; LI Jian-Gang; CHEN Yi-Xue

    2004-01-01

    @@ Shortage of energy resources and production of long-lived radioactivity wastes from fission reactors are among the main problems which will be faced in the world in the near future. The conceptual design of a fusion driven subcritical system (FDS) is underway in Institute of Plasma Physics, Chinese Academy of Sciences. There are alternative designs for multi-functional blanket modules of the FDS, such as fuel breeding blanket module (FBB)to produce fuels for fission reactors, tritium breeding blanket module to produce the fuel, i.e. tritium, for fusion reactor and waste transmutation blanket module to try to permanently dispose of long-lived radioactivity wastes from fission reactors, etc. Activation of the fuel breeding blanket of the fusion driven subcritical system (FDS-FBB) by D-T fusion neutrons from the plasma and fission neutrons from the hybrid blanket are calculated and analysed under the neutron wall loading 0.5 MW/m2 and neutron fluence 15 MW. yr/m2. The neutron spectrum is calculated with the worldwide-used transport code MCNP/4C and activation calculations are carried out with the well known European inventory code FISPACT/99 with the latest released IAEA Fusion Evaluated Nuclear Data Library FENDL-2.0 and the ENDF/B-V uranium evaluated data. Induced radioactivities, dose rates and afterheats, etc, for different components of the FDS-FBB are compared and analysed.

  8. Nonlinear transverse cascade and two-dimensional magnetohydrodynamic subcritical turbulence in plane shear flows.

    Science.gov (United States)

    Mamatsashvili, G R; Gogichaishvili, D Z; Chagelishvili, G D; Horton, W

    2014-04-01

    We find and investigate via numerical simulations self-sustained two-dimensional turbulence in a magnetohydrodynamic flow with a maximally simple configuration: plane, noninflectional (with a constant shear of velocity), and threaded by a parallel uniform background magnetic field. This flow is spectrally stable, so the turbulence is subcritical by nature and hence it can be energetically supported just by a transient growth mechanism due to shear flow non-normality. This mechanism appears to be essentially anisotropic in the spectral (wave-number) plane and operates mainly for spatial Fourier harmonics with streamwise wave numbers less than the ratio of flow shear to Alfvén speed, kymagnetohydrodynamic (MHD) turbulence research. We find similarity of the nonlinear dynamics to the related dynamics in hydrodynamic flows: to the bypass concept of subcritical turbulence. The essence of the analyzed nonlinear MHD processes appears to be a transverse redistribution of kinetic and magnetic spectral energies in the wave-number plane [as occurs in the related hydrodynamic flow; see Horton et al., Phys. Rev. E 81, 066304 (2010)] and differs fundamentally from the existing concepts of (anisotropic direct and inverse) cascade processes in MHD shear flows.

  9. Extraction of Astaxanthin from Euphausia pacific Using Subcritical 1,1,1,2-tetrafluoroethane

    Institute of Scientific and Technical Information of China (English)

    HAN Yuqian; MA Qinchuan; WANG Lan; XUE Changhu

    2012-01-01

    Euphausia pacific is an important source of natural astaxanthin.Studies were carried out to assess the extractability of astaxanthin from E.pacific using subcritical 1,1,1,2-tetrafluoroethane (R134a).To examine the effects of multiple process variables on the extraction yield,astaxanthin was extracted under various conditions of pressure (30-150 bar),temperature (303-343 K),time (10-50min),flow rate (2-10gmin-1),moisture content (5.5%-63.61%),and particle size (0.25-0.109mm).The results showed that the extraction yield increased with temperature,pressure,time and flow rate,but decreased with moisture content and particle size.A maximum yield of 87.74% was obtained under conditions of 100bar,333 K,and 30min with a flow rate of 6g min-1 and a moisture content of 5.5%.The substantial astaxanthin yield obtained under low-pressure conditions demonstrates that subcritical R134a is a good alternative to CO2 for extraction of astaxanthin from E.pacific.

  10. Extraction of astaxanthin from Euphausia pacific using subcritical 1, 1, 1, 2-tetrafluoroethane

    Science.gov (United States)

    Han, Yuqian; Ma, Qinchuan; Wang, Lan; Xue, Changhu

    2012-12-01

    Euphausia pacific is an important source of natural astaxanthin. Studies were carried out to assess the extractability of astaxanthin from E. pacific using subcritical 1, 1, 1, 2-tetrafluoroethane (R134a). To examine the effects of multiple process variables on the extraction yield, astaxanthin was extracted under various conditions of pressure (30-150 bar), temperature (303-343 K), time (10-50 min), flow rate (2-10 g min-1), moisture content (5.5%-63.61%), and particle size (0.25-0.109 mm). The results showed that the extraction yield increased with temperature, pressure, time and flow rate, but decreased with moisture content and particle size. A maximum yield of 87.74% was obtained under conditions of 100 bar, 333 K, and 30 min with a flow rate of 6 g min-1 and a moisture content of 5.5%. The substantial astaxanthin yield obtained under low-pressure conditions demonstrates that subcritical R134a is a good alternative to CO2 for extraction of astaxanthin from E. pacific.

  11. Functional properties and structure changes of soybean protein isolate after subcritical water treatment.

    Science.gov (United States)

    Zhang, Qiu-Ting; Tu, Zong-Cai; Wang, Hui; Huang, Xiao-Qin; Fan, Liang-Liang; Bao, Zhong-Yu; Xiao, Hui

    2015-06-01

    Subcritical water is an emerging method in food industry. In this study, soybean protein isolate (SPI) was treated by subcritical water (SBW) at various temperatures (0, 120, 160, 200 °C) for 20 min. The changes in the appearances, physicochemical properties and structural changes were investigated. After SBW treatment, the color of SPI solution modified turned to be yellow. The mean particle size and turbidity of SPI had similar behaviors. The mean particle size was decreased from 263.7 nm to 116.8 nm at 120 °C and then reached the maximum at 160 °C (1446.1 nm) due to the aggregation of protein. Then it was decreased to 722.9 nm at 200 °C caused by the protein degradation. SBW treatment could significantly enhance the solubility, emulsifying and foaming properties of SPI. With increasing temperature, the crystalline structure of protein was gradually collapsed. The degradation of the protein advanced structure occurred, especially at 200 °C revealed by ultra-high resolution mass spectrometry. Better functional properties exhibited in hydrolysis products indicating that SBW treatment could be used as a good method to modify the properties of soy proteins isolate for specific purposes under appropriate treatment condition.

  12. Large Eddy Simulation of the Subcritical Flow over a U-Grooved Circular Cylinder

    Directory of Open Access Journals (Sweden)

    A. Alonzo-García

    2014-07-01

    Full Text Available With the aim of numerically replicating a drag reduction phenomenon induced by grooves presence, this paper presents a comparative large eddy simulation study of the flow over a smooth circular cylinder, and the flow over a U-grooved cylinder, at Re = 140,000, which is near transition between the subcritical and critical flow regimes. The grid densities were 2.6 million cells and 20.7 million cells for the smooth and the U-grooved cylinder, respectively. Both meshes were composed of hexahedral cells disposed in a structured form with additional refinements in near-wall regions, in order to obtain y+< 5 values. The cases were simulated during 25 vortex shedding cycles with the purpose of obtaining significant statistic data through the commercial software FLUENT V.12.1, which solved the Navier-Stokes equations in their unsteady and incompressible forms. Regarding the U-grooved cylinder flow, parameters such as the drag coefficient, lengths of recirculation, the transition from subcritical to critical flow, and the formation of a wake formed by secondary vortices of smaller sizes were predicted satisfactorily by the LES technique. From the manner in which the flow separates at different angles for both valleys and peaks of the U-grooves, a distinctive transitional mechanism induced by grooves presence is conjectured.

  13. Ultrasound-Enhanced Subcritical CO2 Extraction of Lutein from Chlorella pyrenoidosa.

    Science.gov (United States)

    Fan, Xiao-Dan; Hou, Yan; Huang, Xing-Xin; Qiu, Tai-Qiu; Jiang, Jian-Guo

    2015-05-13

    Lutein is an important pigment of Chlorella pyrenoidosa with many beneficial functions in human health. The main purpose of this study was to extract lutein from C. pyrenoidosa using ultrasound-enhanced subcritical CO2 extraction (USCCE). Effects of operating conditions on the extraction, including extraction pretreatment, temperature, pressure, time, CO2 flow rate, and ultrasonic power, were investigated, and an orthogonal experiment was designed to study the effects of extraction pressure, temperature, cosolvent amount, and time on the extraction yields. The USCCE method was compared with other extraction methods in terms of the yields of lutein and the microstructure of C. pyrenoidosa powder by scanning electron microscopy. A maximal extraction yield of 124.01 mg lutein/100 g crude material was achieved under optimal conditions of extraction temperature at 27 °C, extraction pressure at 21 MPa, cosolvent amount at 1.5 mL/g ethanol, and ultrasound power at 1000 W. Compared to other methods, USCCE could significantly increase the lutein extraction yield at lower extraction temperature and pressure. Furthermore, the kinetic models of USCCE and subcritical CO2 extraction (SCCE) of lutein from C. pyrenoidosa were set as E = 130.64 × (1 - e(-0.6599t)) and E = 101.82 × (1 - e(-0.5683t)), respectively. The differences of parameters in the kinetic models indicate that ultrasound was able to enhance the extraction process of SCCE.

  14. Optimization of Subcritical Water Extraction of Resveratrol from Grape Seeds by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Yajie Tian

    2017-03-01

    Full Text Available The subcritical water extraction (SWE is a high-efficiency and environment-friendly extraction method. The extraction of resveratrol (RES of grape seeds obtained from the wine production process was proposed using subcritical water extraction (SWE. The effects of different extraction process parameters on RES yield were investigated by single factors. Extraction optimization was conducted using response surface methodology (RSM. Extraction temperature was proven to be the most significant factor influencing RES yield. The optimal conditions was as follows: extraction pressure of 1.02 MPa, temperature of 152.32 °C, time of 24.89 min, and a solid/solvent ratio of 1:15 g/mL. Under these optimal conditions, the predicted extraction RES yield was 6.90 μg/g and the recoveries was up to 91.98%. Compared to other previous studies, this method required less pollution and less treatment time to extract RES from grape seeds. From these results, added economic value to this agroindustrial residue is proposed using environmentally friendly extraction techniques.

  15. Beam transient analyses of Accelerator Driven Subcritical Reactors based on neutron transport method

    Energy Technology Data Exchange (ETDEWEB)

    He, Mingtao; Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, Beijing 100082 (China); Li, Xunzhao; Zhou, Shengcheng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China)

    2015-12-15

    Highlights: • A transport-based kinetics code for Accelerator Driven Subcritical Reactors is developed. • The performance of different kinetics methods adapted to the ADSR is investigated. • The impacts of neutronic parameters deteriorating with fuel depletion are investigated. - Abstract: The Accelerator Driven Subcritical Reactor (ADSR) is almost external source dominated since there is no additional reactivity control mechanism in most designs. This paper focuses on beam-induced transients with an in-house developed dynamic analysis code. The performance of different kinetics methods adapted to the ADSR is investigated, including the point kinetics approximation and space–time kinetics methods. Then, the transient responds of beam trip and beam overpower are calculated and analyzed for an ADSR design dedicated for minor actinides transmutation. The impacts of some safety-related neutronics parameters deteriorating with fuel depletion are also investigated. The results show that the power distribution varying with burnup leads to large differences in temperature responds during transients, while the impacts of kinetic parameters and feedback coefficients are not very obvious. Classification: Core physic.

  16. Kinetics and reaction pathways of total acid number reduction of cyclopentane carboxylic acid using subcritical methanol

    Directory of Open Access Journals (Sweden)

    Mandal Pradip C.

    2016-09-01

    Full Text Available Cyclopentane carboxylic acid (CPCA is a model compound of Naphthenic acids (NAs. This objective of this paper is to discover total acid number (TAN reduction kinetics and pathways of the reaction between CAPA and subcritical methanol (SubC-MeOH. The experiments were carried out in an autoclave reactor at temperatures of 180-220°C, a methanol partial pressure (MPP of 3 MPa, reaction times of 0-30 min and CPCA initial gas phase concentrations of 0.016-0.04 g/mL. TAN content of the samples were analyzed using ASTM D 974 techniques. The reaction products were identified and quantified with the help of GC/MS and GC-FID respectively. Experimental results reveal that TAN removal kinetics followed first order kinetics with an activation energy of 13.97 kcal/mol and a pre-exponential factor of 174.21 s-1. Subcritical methanol is able to reduce TAN of CPCA decomposing CPCA into new compounds such as cyclopentane, formaldehyde, methyl acetate and 3-pentanol.

  17. Dynamic stiffness testing-based flutter analysis of a fin with an actuator

    Institute of Scientific and Technical Information of China (English)

    Zhang Renjia; Wu Zhigang; Yang Chao

    2015-01-01

    Engineering-oriented modeling and synthesized modeling of the fin-actuator system of a missile fin are introduced, including mathematical modeling of the fin, motor and multi-stage gear reducer. The fin-actuator model is verified using dynamic stiffness testing. Good agreement is achieved between the test and theoretical results. The parameter-variable analysis indicates that the inertia of the motor rotor, reduction ratio of the reducer, connection stiffness and damping between the actuator and fin shaft have significant impacts on the dynamic stiffness characteristics. In flutter analysis, test data are directly used in the frequency domain method and indirectly used in the time domain method through the updated fin-actuator model. The two methods play different roles in engineering applications but are of equal importance. The results indicate that dynamic stiffness and constant stiffness treatments may lead to completely different flutter characteristics. Attention should be paid to the design of the fin-actuator system of a missile.

  18. Steady dynein forces induce flutter instability and propagating waves in mathematical models of flagella.

    Science.gov (United States)

    Bayly, P V; Dutcher, S K

    2016-10-01

    Cilia and flagella are highly conserved organelles that beat rhythmically with propulsive, oscillatory waveforms. The mechanism that produces these autonomous oscillations remains a mystery. It is widely believed that dynein activity must be dynamically regulated (switched on and off, or modulated) on opposite sides of the axoneme to produce oscillations. A variety of regulation mechanisms have been proposed based on feedback from mechanical deformation to dynein force. In this paper, we show that a much simpler interaction between dynein and the passive components of the axoneme can produce coordinated, propulsive oscillations. Steady, distributed axial forces, acting in opposite directions on coupled beams in viscous fluid, lead to dynamic structural instability and oscillatory, wave-like motion. This 'flutter' instability is a dynamic analogue to the well-known static instability, buckling. Flutter also occurs in slender beams subjected to tangential axial loads, in aircraft wings exposed to steady air flow and in flexible pipes conveying fluid. By analysis of the flagellar equations of motion and simulation of structural models of flagella, we demonstrate that dynein does not need to switch direction or inactivate to produce autonomous, propulsive oscillations, but must simply pull steadily above a critical threshold force.

  19. Control on a 2-D Wing Flutter Using an AdaptiveNonlinear Neural Controller

    Directory of Open Access Journals (Sweden)

    Hayder S. Abd Al-Amir

    2011-01-01

    Full Text Available An adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO. The structure of the controller consists of two models :the modified Elman neural network (MENN and the feed forward multi-layer Perceptron (MLP. The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. The feed forward neural controller is trained off-line and adaptive weights are implemented on-line to find the flap angles, which controls the plunge and pitch motion of the wing. The general back propagation algorithm is used to learn the feed forward neural controller and the neural identifier. The simulation results show the effectiveness of the proposed control algorithm; this is demonstrated by the minimized tracking error to zero approximation with very acceptable settling time even with the existence of bounded external disturbances.

  20. Adaptive Flutter Suppression for a Fighter Wing via Recurrent Neural Networks over a Wide Transonic Range

    Directory of Open Access Journals (Sweden)

    Haojie Liu

    2016-01-01

    Full Text Available The paper presents a digital adaptive controller of recurrent neural networks for the active flutter suppression of a wing structure over a wide transonic range. The basic idea behind the controller is as follows. At first, the parameters of recurrent neural networks, such as the number of neurons and the learning rate, are initially determined so as to suppress the flutter under a specific flight condition in the transonic regime. Then, the controller automatically adjusts itself for a new flight condition by updating the synaptic weights of networks online via the real-time recurrent learning algorithm. Hence, the controller is able to suppress the aeroelastic instability of the wing structure over a range of flight conditions in the transonic regime. To demonstrate the effectiveness and robustness of the controller, the aeroservoelastic model of a typical fighter wing with a tip missile was established and a single-input/single-output controller was synthesized. Numerical simulations of the open/closed-loop aeroservoelastic simulations were made to demonstrate the efficacy of the adaptive controller with respect to the change of flight parameters in the transonic regime.

  1. Transient aeroelastic responses and flutter analysis of a variable-span wing during the morphing process

    Institute of Scientific and Technical Information of China (English)

    Huang Ren; Qiu Zhiping

    2013-01-01

    To investigate the transient aeroelastic responses and flutter characteristics of a variable-span wing during the morphing process, a novel first-order state-space aeroelastic model is pro-posed. The time-varying structural model of the morphing wing is established based on the Euler-Bernoulli beam theory with time-dependent boundary conditions. A nondimensionalization method is used to translate the time-dependent boundary conditions to be time-independent. The time-domain aerodynamic forces are calculated by the reduced-order unsteady vortex lattice method. The morphing parameters, i.e., wing span length and morphing speed, are of particular interest for understanding the fundamental aeroelastic behavior of variable-span wings. A test case is proposed and numerical results indicate that the flutter characteristics are sensitive to both of the two morphing parameters. It could be noticed that the aeroelastic characteristics during the wing extracting process are more serious than those during the extending process at the same morphing speed by transient aeroelastic response analysis. In addition, a faster morphing process can get bet-ter aeroelastic performance while the mechanism comlexity will arise.

  2. Effects of a novel class III antiarrhythmic agent, NIP-142, on canine atrial fibrillation and flutter.

    Science.gov (United States)

    Nagasawa, Hidehiko; Fujiki, Akira; Fujikura, Naoki; Matsuda, Tomoyuki; Yamashita, Toru; Inoue, Hiroshi

    2002-02-01

    The effects of a new benzopyran derivative, NIP-142, on atrial fibrillation (AF) and flutter (AFL) and on electrophysiological variables were studied in the dog. NIP-142 (3mg/kg) was administered intravenously to pentobarbital-anesthetized beagles during vagally-induced AF and during AFL induced after placement of an intercaval crush. Isolated canine atrial tissues were studied using standard microelectrode technique. NIP-142 terminated AF in 5 of 6 dogs after an increase in fibrillation cycle length (CL) and prevented reinitiation of AF in all 6 dogs. NIP-142 terminated AFL in all 6 dogs without any appreciable change in flutter CL, and prevented reinitiation of AFL in all 6 dogs. NIP-142 prolonged atrial effective refractory periods (11+/-5%, 3+/-3%, 12+/-3%, and 10+/-5% from the baseline value at basic CLs of 150, 200, 300, and 350ms, respectively) without changes in intraatrial conduction time. The prolongation of the atrial effective refractory period was greater in the presence of vagal stimulation. NIP-142 decreased action potential phase-1 notch and increased phase-2 plateau height without making any changes in the action potential duration, although it did reverse carbachol-induced shortening of the action potential duration. In conclusion, NIP-142 is effective in treating AFL and vagally-induced AF by prolonging atrial refractoriness.

  3. Reduced-Order Modeling for Flutter/LCO Using Recurrent Artificial Neural Network

    Science.gov (United States)

    Yao, Weigang; Liou, Meng-Sing

    2012-01-01

    The present study demonstrates the efficacy of a recurrent artificial neural network to provide a high fidelity time-dependent nonlinear reduced-order model (ROM) for flutter/limit-cycle oscillation (LCO) modeling. An artificial neural network is a relatively straightforward nonlinear method for modeling an input-output relationship from a set of known data, for which we use the radial basis function (RBF) with its parameters determined through a training process. The resulting RBF neural network, however, is only static and is not yet adequate for an application to problems of dynamic nature. The recurrent neural network method [1] is applied to construct a reduced order model resulting from a series of high-fidelity time-dependent data of aero-elastic simulations. Once the RBF neural network ROM is constructed properly, an accurate approximate solution can be obtained at a fraction of the cost of a full-order computation. The method derived during the study has been validated for predicting nonlinear aerodynamic forces in transonic flow and is capable of accurate flutter/LCO simulations. The obtained results indicate that the present recurrent RBF neural network is accurate and efficient for nonlinear aero-elastic system analysis

  4. Malfunction of a Heimlich flutter valve causing tension pneumothorax: case report of a rare complication

    Directory of Open Access Journals (Sweden)

    Braunstein Volker A

    2010-06-01

    Full Text Available Abstract Background Thoracic injuries play an important role in major trauma patients due to their high incidence and critical relevance. A serious consequence of thoracic trauma is pneumothorax, a condition that quickly can become life-threatening and requires immediate treatment. Decompression is the state of the art for treating tension pneumothorax. There are many different methods of decompression using different techniques, devices, valves and drainage systems. Referring to our case report we would like to discuss the utilization of these devices. Case presentation We report of a patient suffering from tension pneumothorax despite insertion of a chest drain at the accident scene. The decompression was by tube thoracostomy which was connected to a Heimlich flutter valve. During air transportation the patient suffered from cardiorespiratory arrest with asystole and was admitted to the trauma room undergoing manual chest compressions. The initial chest film showed a persisting tension pneumothorax, despite the chest tube that had been correctly placed and connected properly to the Heimlich valve. We assume that the Heimlich valve leaves did not open up and thus tension pneumothorax was not released. Conclusion We would like to raise awareness to the fact that if a Heimlich flutter valve is applied in the pre-hospital setting it should be used with caution. Failure in this type of valve may lead to recurrent tension pneumothorax.

  5. Reduced-Order Modeling for Flutter/LCO Using Recurrent Artificial Neural Network

    Science.gov (United States)

    Yao, Weigang; Liou, Meng-Sing

    2012-01-01

    The present study demonstrates the efficacy of a recurrent artificial neural network to provide a high fidelity time-dependent nonlinear reduced-order model (ROM) for flutter/limit-cycle oscillation (LCO) modeling. An artificial neural network is a relatively straightforward nonlinear method for modeling an input-output relationship from a set of known data, for which we use the radial basis function (RBF) with its parameters determined through a training process. The resulting RBF neural network, however, is only static and is not yet adequate for an application to problems of dynamic nature. The recurrent neural network method [1] is applied to construct a reduced order model resulting from a series of high-fidelity time-dependent data of aero-elastic simulations. Once the RBF neural network ROM is constructed properly, an accurate approximate solution can be obtained at a fraction of the cost of a full-order computation. The method derived during the study has been validated for predicting nonlinear aerodynamic forces in transonic flow and is capable of accurate flutter/LCO simulations. The obtained results indicate that the present recurrent RBF neural network is accurate and efficient for nonlinear aero-elastic system analysis

  6. Benzo(a)pyrene accumulation in soils of technogenic emission zone by subcritical water extraction method

    Science.gov (United States)

    Sushkova, Svetlana; Minkina, Tatiana; Kizilkaya, Ridvan; Mandzhieva, Saglara; Batukaev, Abdulmalik; Bauer, Tatiana; Gulser, Coskun

    2016-04-01

    The purpose of research is the assessment of main marker of polycyclic aromatic hydrocarbons contamination, benzo[a]pyrene (BaP) content in soils of emission zone of the power complex plant in soils with use of ecologically clean and effective subcritical water extraction method. Studies were conducted on the soils of monitoring plots subjected to Novocherkassk Power Plant emissions from burning coal. In 2000, monitoring plots were established at different distances from the NPS (1.0-20.0 km). Soil samples for the determination of soil properties and the contents of BaP were taken from a depth of 0-20 cm. The soil cover in the region under study consisted of ordinary chernozems, meadow-chernozemic soils, and alluvial meadow soils. This soil revealed the following physical and chemical properties: Corg-3.1-5.0%, pH-7.3-7.6, ECE-31.2-47.6 mmol(+)/100g; CaCO3-0.2-1.0%, the content of physical clay - 51-67% and clay - 3-37%. BaP extraction from soils was carried out by a subcritical water extraction method. Subcritical water extraction of BaP from soil samples was conducted in a specially developed extraction cartridge made of stainless steel and equipped with screw-on caps at both ends. It was also equipped with a manometer that included a valve for pressure release to maintain an internal pressure of 100 atm. The extraction cartridge containing a sample and water was placed into an oven connected to a temperature regulator under temperature 250oC and pressure 60 atm. The BaP concentration in the acetonitrile extract was determined by HPLC. The efficiency of BaP extraction from soil was determined using a matrix spike. The main accumulation of pollutant in 20 cm layer of soils is noted directly in affected zone on the plots situated at 1.2, 1.6, 5.0, 8.0 km from emission source in the direction of prevailing winds. The maximum quantity of a pollutant was founded in the soil of the plot located mostly close to a source of pollution in the direction of prevailing winds

  7. Some key issues of aircraft T-Tail flutter calculation%飞机T型尾翼颤振计算的若干关键问题

    Institute of Scientific and Technical Information of China (English)

    杨飞; 杨智春

    2011-01-01

    由于飞机T型尾翼的结构与气动布局特点,T型尾翼颤振计算不能套用常规尾翼的分析方法,而需要考虑平尾面内运动以及静升力等因素的影响.从T型尾翼的工程颤振分析出发,讨论了T型尾翼颤振计算中的若干关键问题,阐述了T型尾翼颤振特性的特点和影响T型尾翼颤振特性的关键参数,分别介绍了现有的几种T型尾翼颤振计算中的气动力修正方法,提出了T型尾翼颤振工程计算中必须注意的问题.%The flutter calculation method for convensional aircraft tail wing can not be used directly to T-tail flutter analysis due to T-Tail features in structural and aerodynamic configurations, and the effects of in-plane motion and steady aerodynamic force of horizontal plane must be considered in T-tail flutter calculation.From the view point of engineering analysis for T-tail flutter, some key issues of T-tail flutter calculation were discussed here, the characteristics of T-tail flutter problem and the key parameters affecting T-tail flutter properties were described.Especially, four methods to correct aerodynamic force of T-tail in its flutter calculation were intrduced and finally some specific problems to be noticed in T-tail flutter analysis were presented.

  8. Sputum rheology changes in cystic fibrosis lung disease following two different types of physiotherapy: flutter vs autogenic drainage.

    Science.gov (United States)

    App, E M; Kieselmann, R; Reinhardt, D; Lindemann, H; Dasgupta, B; King, M; Brand, P

    1998-07-01

    The aim of the present study was to investigate the efficacy of two frequently used physiotherapies (PTs) for the removal of bronchial secretions in cystic fibrosis (CF) lung disease: autogenic drainage (AD) and the Flutter (Desitin in Germany). AD is believed to improve mucus clearance from peripheral to central airways due to airway caliber changes in combination with a special breathing technique. The Flutter is an easy-to-use physiotherapy device based on oscillations of a steel ball during expiration through a pipe-type device. To evaluate the acute and chronic physiotherapy effects of these two techniques, 14 CF patients underwent either twice daily AD or Flutter treatment for 4 consecutive weeks in a randomized crossover design. Prior to each therapy interval, for a 1-week wash-out period, no PT was administered, but patients continued regular medication. At the beginning and end of each 4-week interval, pulmonary function was measured before and after an acute 30-min therapy. At the end of the PT session, sputum was collected, weighed, and deep frozen until analyzed. The viscoelasticity of the sputum was evaluated using a magnetic microrheometer. No significant changes were noted for FVC, FEV1, or sputum volume throughout the study. Sputum viscoelasticity (rigidity index), however, was significantly lower (pairways at frequencies and amplitudes achievable with the Flutter device, and provide direct evidence that PT can reduce the viscoelasticity of sputum.

  9. INCIDENCE AND CLINICAL-SIGNIFICANCE OF ST SEGMENT ELEVATION AFTER ELECTRICAL CARDIOVERSION OF ATRIAL-FIBRILLATION AND ATRIAL-FLUTTER

    NARCIS (Netherlands)

    VANGELDER, IC; CRIJNS, HJ; VANDERLAARSE, A; VANGILST, WH; LIE, KI

    1991-01-01

    To study the incidence and clinical significance of postshock ST segment elevations, we recorded 12-lead ECGs immediately after transthoracic direct-current electrical cardioversion in 146 patients with atrial fibrillation or flutter. Among 23 patients (19%), acute ST segment elevations amounted to

  10. Whirl Flutter Stability and Its Influence on the Design of the Distributed Electric Propeller Aircraft X- 57

    Science.gov (United States)

    Hoover, Christian B.; Shen, Jinwei; Kreshock, Andrew R.; Stanford, Bret K.; Piatak, David J.; Heeg, Jennifer

    2017-01-01

    This paper studies the whirl flutter stability of the NASA experimental electric propulsion aircraft designated the X-57 Maxwell. whirl flutter stability is studied at two flight conditions: sea level at 2700 RPM to represent take-off and landing and 8000 feet at 2250 RPM to represent cruise. Two multibody dynamics analyses are used: CAMRAD II and Dymore. The CAMRAD II model is a semi-span X-57 model with a modal representation for the wing/pylon system. The Dymore model is a semi-span wing with a propeller composed of beam elements for the wing/pylon system that airloads can be applied to. The two multibody dynamics analyses were verified by comparing structural properties between each other and the NASTRAN analysis. For whirl flutter, three design revisions of the wing and pylon mount system are studied. The predicted frequencies and damping ratio of the wing modes show good agreements between the two analyses. Dymore tended to predict a slightly lower damping ratio as velocity increased for all three dynamic modes presented. Whirl flutter for the semi-span model was not present up to 500 knots for the latest design, well above the operating range of the X-57.

  11. Sick sinus syndrome, progressive cardiac conduction disease, atrial flutter and ventricular tachycardia caused by a novel SCN5A mutation

    DEFF Research Database (Denmark)

    Holst, Anders G; Liang, Bo; Jespersen, Thomas

    2010-01-01

    Mutations in the cardiac sodium channel encoded by the gene SCN5A can result in a wide array of phenotypes. We report a case of a young male with a novel SCN5A mutation (R121W) afflicted by sick sinus syndrome, progressive cardiac conduction disorder, atrial flutter and ventricular tachycardia. His...

  12. RECURRENCE OF PAROXYSMAL ATRIAL-FIBRILLATION OR FLUTTER AFTER SUCCESSFUL CARDIOVERSION IN PATIENTS WITH NORMAL LEFT-VENTRICULAR FUNCTION

    NARCIS (Netherlands)

    SUTTORP, MJ; KINGMA, JH; KOOMEN, EM; VANTHOF, A; TIJSSEN, JGP; LIE, KI

    1993-01-01

    One hundred twenty-four consecutive patients (85%) with paroxysmal atrial fibrillation (AF) and 21 (15%) with atrial flutter (AFI) were studied immediately after pharmacologic or electrical cardioversion to sinus rhythm. Mean age was 59 +/- 13 years (range 23 to 79). Patients with reduced left ventr

  13. A parametric study on supersonic/hypersonic flutter behavior of aero-thermo-elastic geometrically imperfect curved skin panel

    NARCIS (Netherlands)

    Abbas, L.K.; Rui, X.; Marzocca, P.; Abdalla, M.; De Breuker, R.

    2011-01-01

    In this paper, the effect of the system parameters on the flutter of a curved skin panel forced by a supersonic/hypersonic unsteady flow is numerically investigated. The aeroelastic model investigated includes the third-order piston theory aerodynamics for modeling the flow-induced forces and the V

  14. Vortex dynamics at subcritical currents at microwave frequencies in DyBa2Cu3O7-δ thin films

    NARCIS (Netherlands)

    Banerjee, Tamalika; Bagwe, V.C.; John, J.; Pai, S.P.; Kanjilal, D.

    2004-01-01

    We have investigated the dynamics of vortices at subcritical microwave currents in dc magnetic fields (up to 0.8 T) in epitaxial DyBa2Cu3O7-δ (DBCO) thin films. Microwave measurements were performed using microstrip resonators as test vehicles at 4.88 GHz and 9.55 GHz on laser ablated DBCO thin film

  15. Estimation of subcriticality with the computed values. 3. Application of `indirect estimation method for calculation error` to exponential experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Kiyoshi; Arakawa, Takuya; Yamamoto, Toshihiro; Naito, Yoshitaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-08-01

    Estimation accuracy for subcriticality on `Indirect Estimation Method for Calculation Error` is expressed in form of {rho}{sub m} - {rho}{sub C} = K ({gamma}{sub zc}{sup 2} - {gamma}{sub zm}{sup 2}). This expression means that estimation accuracy for subcriticality is proportional to ({gamma}{sub zc}{sup 2} - {gamma}{sub zm}{sup 2}) as estimation accuracy of buckling for axial direction. The proportional constant K is calculated, but the influence of the uncertainty of K to estimation accuracy for subcriticality is smaller than in case of comparison for {rho}{sub m} = -K ({gamma}{sub zm}{sup 2} + B{sub z}{sup 2}) with calculated {rho}{sub c}. When the values of K were calculated, the estimation accuracy is kept enough. If {gamma}{sub zc}{sup 2} equal to {gamma}{sub zm}{sup 2}, {rho}{sub c} equal to {rho}{sub m}. Reliability of this method is shown on base of results in which are calculated using MCNP 4A for four subcritical cores of TCA. (author)

  16. Analysis of product distribution and characteristics in hydrothermal liquefaction of barley straw in subcritical and supercritical water

    DEFF Research Database (Denmark)

    Zhu, Zhe; Toor, Saqib; Rosendahl, Lasse

    2014-01-01

    In this study, hydrothermal liquefaction of barley straw in subcritical and supercritical water with potassium carbonate catalyst was performed in the temperatures range of 280-400°C. The influence of final reaction temperature on products yield was investigated and some physicochemical properties...

  17. Hydrolysis of polycarbonate in sub-critical water in fused silica capillary reactor with in situ Raman spectroscopy

    Science.gov (United States)

    Pan, Z.; Chou, I.-Ming; Burruss, R.C.

    2009-01-01

    The advantages of using fused silica capillary reactor (FSCR) instead of conventional autoclave for studying chemical reactions at elevated pressure and temperature conditions were demonstrated in this study, including the allowance for visual observation under a microscope and in situ Raman spectroscopic characterization of polycarbonate and coexisting phases during hydrolysis in subcritical water. ?? 2009 The Royal Society of Chemistry.

  18. Radioactive isotope production for medical applications using Kharkov electron driven subcritical assembly facility.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y.; Nuclear Engineering Division

    2007-05-15

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,{gamma}), (n,2n), (n,p), and ({gamma},n). In the second part

  19. Large eddy simulation of the subcritical flow over a V grooved circular cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Alonzo-García, A. [Instituto Politécnico Nacional, SEPI-ESIME Zacatenco, U.P. Adolfo López Mateos Edif. 5, 3er. Piso, LABINTHAP, Av. Instituto Politénicno Nacional s/n, Col. Lindavista, C.P. 07738, México D.F., México (Mexico); Gutiérrez-Torres, C. del C., E-mail: cgutierrezt@ipn.mx [Instituto Politécnico Nacional, SEPI-ESIME Zacatenco, U.P. Adolfo López Mateos Edif. 5, 3er. Piso, LABINTHAP, Av. Instituto Politénicno Nacional s/n, Col. Lindavista, C.P. 07738, México D.F., México (Mexico); Jiménez-Bernal, J.A. [Instituto Politécnico Nacional, SEPI-ESIME Zacatenco, U.P. Adolfo López Mateos Edif. 5, 3er. Piso, LABINTHAP, Av. Instituto Politénicno Nacional s/n, Col. Lindavista, C.P. 07738, México D.F., México (Mexico); and others

    2015-09-15

    Highlights: • We compared numerically the turbulent flow over a smooth circular cylinder and a V grooved cylinder in the subcritical regime. • Turbulence intensities in both streamwise and normal direction suffered attenuations. • The swirls structures on grooves peaks seemed to have a cyclic behavior. • The evolution of the flow inside grooves showed that swirls structures located in peaks suffered elongations in the normal direction. • The secondary vortex structures formed in the grooved cylinder near wake were smaller in comparison of the smooth cylinder flow. - Abstract: In this paper, a comparative numerical study of the subcritical flow over a smooth cylinder and a cylinder with V grooves (Re = 140,000) is presented. The implemented technique was the Large Eddy Simulation (LES), which according to Kolmogorov's theory, resolves directly the most energetic largest eddies and models the smallest and considered universal high frequency ones. The Navier-Stokes (N-S) equations were solved using the commercial software ANSYS FLUENT V.12.1, which applied the finite volume method (FVM) to discretize these equations in their unsteady and incompressible forms. The grid densities were 2.6 million cells and 13.5 million cells for the smooth and V grooved cylinder, respectively. Both meshes were composed of structured hexahedral cells and close to the wall of the cylinders, additional refinements were employed in order to obtain y{sup +<5} values. All cases were simulated during at least 15 vortex shedding cycles with the aim of obtaining significant statistical data. Results: showed that for both cases (smooth and V grooved cylinder flow), the numerical code was capable of reproducing the most important physical quantities of the subcritical regime. Velocity distribution and turbulence intensity in the flow direction suffered a slight attenuation along the wake, as a consequence of grooves perturbation, which also caused an increase in the pressure

  20. Subcritical crack growth and mechanical weathering: a new consideration of how moisture influences rock erosion rates.

    Science.gov (United States)

    Eppes, Martha-Cary; Keanini, Russell; Hancock, Gregory S.

    2016-04-01

    The contributions of moisture to the mechanical aspects of rock weathering and regolith production are poorly quantified. In particular, geomorphologists have largely overlooked the role of subcritical crack growth processes in physical weathering and the fact that moisture strongly influences the rates of those processes. This influence is irrespective of the function that moisture plays in stress loading mechanisms like freezing or hydration. Here we present a simple numerical model that explores the efficacy of subcritical crack growth in granite rock subaerially exposed under a range of moisture conditions. Because most weathering-related stress loading for rocks found at, or near, Earth's surface (hereafter surface rocks) is cyclic, we modeled crack growth using a novel combination of Paris' Law and Charles' Law. This combination allowed us to apply existing empirically-derived data for the stress corrosion index of Charles' Law to fatigue cracking. For stress, we focused on the relatively straightforward case of intergranular stresses that arise during solar-induced thermal cycling by conductive heat transfer, making the assumption that such stresses represent a universal minimum weathering stress experienced by all surface rocks. Because all other tensile weathering-related stresses would be additive in the context of crack growth, however, our model can be adapted to include other stress loading mechanisms. We validated our calculations using recently published thermal-stress-induced cracking rates. Our results demonstrate that 1) weathering-induced stresses as modeled herein, and as published by others, are sufficient to propagate fractures subcritically over long timescales with or without the presence of water 2) fracture propagation rates increase exponentially with respect to moisture, specifically relative humidity 3) fracture propagation rates driven by thermal cycling are strongly dependent on the magnitude of diurnal temperature ranges and the

  1. Benchmark Analysis of Subcritical Noise Measurements on a Nickel-Reflected Plutonium Metal Sphere

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Jesson Hutchinson

    2009-09-01

    Subcritical experiments using californium source-driven noise analysis (CSDNA) and Feynman variance-to-mean methods were performed with an alpha-phase plutonium sphere reflected by nickel shells, up to a maximum thickness of 7.62 cm. Both methods provide means of determining the subcritical multiplication of a system containing nuclear material. A benchmark analysis of the experiments was performed for inclusion in the 2010 edition of the International Handbook of Evaluated Criticality Safety Benchmark Experiments. Benchmark models have been developed that represent these subcritical experiments. An analysis of the computed eigenvalues and the uncertainty in the experiment and methods was performed. The eigenvalues computed using the CSDNA method were very close to those calculated using MCNP5; however, computed eigenvalues are used in the analysis of the CSDNA method. Independent calculations using KENO-VI provided similar eigenvalues to those determined using the CSDNA method and MCNP5. A slight trend with increasing nickel-reflector thickness was seen when comparing MCNP5 and KENO-VI results. For the 1.27-cm-thick configuration the MCNP eigenvalue was approximately 300 pcm greater. The calculated KENO eigenvalue was about 300 pcm greater for the 7.62-cm-thick configuration. The calculated results were approximately the same for a 5-cm-thick shell. The eigenvalues determined using the Feynman method are up to approximately 2.5% lower than those determined using either the CSDNA method or the Monte Carlo codes. The uncertainty in the results from either method was not large enough to account for the bias between the two experimental methods. An ongoing investigation is being performed to assess what potential uncertainties and/or biases exist that have yet to be properly accounted for. The dominant uncertainty in the CSDNA analysis was the uncertainty in selecting a neutron cross-section library for performing the analysis of the data. The uncertainty in the

  2. Experimental investigation of inclination effect on subcritical and supercritical water flows heat transfer in an internally ribbed tube

    Science.gov (United States)

    Taklifi, Alireza; Akhavan-Behabadi, Mohammad Ali; Hanafizadeh, Pedram; Aliabadi, Abbas

    2017-02-01

    The effect of various inclination angles on heat transfer of water at subcritical and supercritical operating pressures is investigated experimentally. The test section was a SA213T12 steel six-headed internally ribbed tube with minimum inner diameter of 19.5 mm. The operating test pressures were 15, 21.5, 22.5, 25 and 28 MPa, the mass flux was 800 kg/m2 s and the heat flux was 400 kW/m2. To keep the mass flux to heat flux ratio equal to 2 kg/kJ. These operating conditions covered subcritical, near critical and supercritical water flows and also refers to low mass flux conditions. The inclination angles were 5, 20, 30, 45 and 90 (vertical) degrees respecting to horizontal plane. The heat flux was kept constant along the test tube by controlling of electric heating. As a result the inner wall temperature and convective heat transfer coefficient variations with respect to heated length and bulk enthalpy of fluid were considered in order to study the heat transfer characteristics of various flows at different inclinations. The corresponding correlation for heat transfer coefficient was developed which is applicable for wide range of inclination angles. The heat transfer enhancement was obvious for inclination angles other than 90°, however, this effect was more obvious in 5° and 20° in some operating conditions. It was also concluded that the effect of inclination on heat transfer of water was more considerable in subcritical flow conditions than supercritical ones. Also, it was observed that angle of 20° seems to be the best for subcritical flows from heat transfer point of view, but for supercritical flows 5 or 45 seem to be more advantageous. These differences could be related to different heat transfer mechanisms of subcritical and supercritical flows.

  3. Experimental investigation of inclination effect on subcritical and supercritical water flows heat transfer in an internally ribbed tube

    Science.gov (United States)

    Taklifi, Alireza; Akhavan-Behabadi, Mohammad Ali; Hanafizadeh, Pedram; Aliabadi, Abbas

    2016-06-01

    The effect of various inclination angles on heat transfer of water at subcritical and supercritical operating pressures is investigated experimentally. The test section was a SA213T12 steel six-headed internally ribbed tube with minimum inner diameter of 19.5 mm. The operating test pressures were 15, 21.5, 22.5, 25 and 28 MPa, the mass flux was 800 kg/m2 s and the heat flux was 400 kW/m2. To keep the mass flux to heat flux ratio equal to 2 kg/kJ. These operating conditions covered subcritical, near critical and supercritical water flows and also refers to low mass flux conditions. The inclination angles were 5, 20, 30, 45 and 90 (vertical) degrees respecting to horizontal plane. The heat flux was kept constant along the test tube by controlling of electric heating. As a result the inner wall temperature and convective heat transfer coefficient variations with respect to heated length and bulk enthalpy of fluid were considered in order to study the heat transfer characteristics of various flows at different inclinations. The corresponding correlation for heat transfer coefficient was developed which is applicable for wide range of inclination angles. The heat transfer enhancement was obvious for inclination angles other than 90°, however, this effect was more obvious in 5° and 20° in some operating conditions. It was also concluded that the effect of inclination on heat transfer of water was more considerable in subcritical flow conditions than supercritical ones. Also, it was observed that angle of 20° seems to be the best for subcritical flows from heat transfer point of view, but for supercritical flows 5 or 45 seem to be more advantageous. These differences could be related to different heat transfer mechanisms of subcritical and supercritical flows.

  4. Subcritical transition to turbulence of a precessing flow in a cylindrical vessel

    Science.gov (United States)

    Herault, Johann; Gundrum, Thomas; Giesecke, André; Stefani, Frank

    2015-12-01

    The transition to turbulence in a precessing cylindrical vessel is experimentally investigated. Our measurements are performed for a nearly resonant configuration with an initially laminar flow dominated by an inertial mode with azimuthal wave number m = 1 superimposed on a solid body rotation. By increasing the precession ratio, we observe a transition from the laminar to a non-linear regime, which then breakdowns to turbulence for larger precession ratio. Our measurements show that the transition to turbulence is subcritical, with a discontinuity of the wall-pressure and the power consumption at the threshold ɛLT. The turbulence is self-sustained below this threshold, describing a bifurcation diagram with a hysteresis. In this range of the control parameters, the turbulent flows can suddenly collapse after a finite duration, leading to a definitive relaminarization of the flow. The average lifetime of the turbulence increases rapidly when ɛ tends to ɛLT.

  5. Surface Plasmon States in Inhomogeneous Media at Critical and Subcritical Metal Concentrations

    Directory of Open Access Journals (Sweden)

    Katyayani Seal

    2012-01-01

    Full Text Available Semicontinuous metal-dielectric films are composed of a wide range of metal clusters of various geometries—sizes as well as structures. This ensures that at any given wavelength of incident radiation, clusters exist in the film that will respond resonantly, akin to resonating nanoantennas, resulting in the broad optical response (absorption that is a characteristic of semicontinuous films. The physics of the surface plasmon states that are supported by such systems is complex and can involve both localized and propagating plasmons. This chapter describes near-field experimental and numerical studies of the surface plasmon states in semicontinuous films at critical and subcritical metal concentrations and evaluates the local field intensity statistics to discuss the interplay between various eigenmodes.

  6. The mechanism of lipids extraction from wet microalgae Scenedesmus sp. by ionic liquid assisted subcritical water

    Science.gov (United States)

    Yu, Zhuanni; Chen, Xiaolin; Xia, Shuwei

    2016-06-01

    In this paper, the total sugar concentration, protein concentration, lipid yield and morphology characteristics of the algae residue were determined to explain the mechanism of lipids extraction from wet microalgae Scenedesmus sp. by ionic liquid assisted subcritical water. The results showed similar variation for the sugar, protein and lipid. However, the total sugar was more similar to lipids yield, so the results showed that the reaction between ionic liquid and cellulose and hemicellulose in cell wall was the most important step which determined the lipids extration directly. And the total sugar variation may be representing the lipids yield. For later lipids extraction, we can determine the total sugar concentration to predict the extraction end product.

  7. Conceptual design based on scale laws and algorithms for sub-critical transmutation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Gu; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    In order to conduct the effective integration of computer-aided conceptual design for integrated nuclear power reactor, not only is a smooth information flow required, but also decision making for both conceptual design and construction process design must be synthesized. In addition to the aboves, the relations between the one step and another step and the methodologies to optimize the decision variables are verified, in this paper especially, that is, scaling laws and scaling criteria. In the respect with the running of the system, the integrated optimization process is proposed in which decisions concerning both conceptual design are simultaneously made. According to the proposed reactor types and power levels, an integrated optimization problems are formulated. This optimization is expressed as a multi-objective optimization problem. The algorithm for solving the problem is also presented. The proposed method is applied to designing a integrated sub-critical reactors. 6 refs., 5 figs., 1 tab. (Author)

  8. Understanding the sub-critical transition to turbulence in wall flows

    CERN Document Server

    Manneville, Paul

    2008-01-01

    Contrasting with free shear flows presenting velocity profiles with inflection points which cascade to turbulence in a relatively mild way, wall bounded flows are deprived of (inertial) instability modes at low Reynolds numbers and become turbulent in a much wilder way, most often marked by the coexistence of laminar and turbulent domains at intermediate Reynolds numbers, well below the range where (viscous) instabilities can show up. There can even be no unstable mode at all, as for plane Couette flow (pCf) or for Poiseuille pipe flow (Ppf) that currently are the subject of intense research. Though the mechanisms involved in the transition to turbulence in wall flows are now better understood, statistical properties of the transition itself are yet unsatisfactorily assessed. A review of the situation is given. An alternative to the temporal theory of the transition to turbulence in terms of chaotic transients in such globally subcritical flows is proposed, which invokes spatio-temporal intermittence and the ...

  9. Biomass conversions in subcritical and supercritical water: driving force, phase equilibria, and thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Feng, W.; Kooi, H.J. van der; Swaan Arons, J. de [Physical Chemistry and Molecular Thermodynamics, Delft University of Technology, Delft (Netherlands)

    2004-07-01

    Two biomass conversion processes have been studied: hydrothermal upgrading (HTU) under subcritical water conditions; supercritical water gasification (SCWG) in supercritical water. For the design of the two biomass conversion processes, the following contributions of thermodynamics have been presented: phase behaviour and phase equilibria in the reactor and separators; indication of the favourable operation conditions and the trends in product distribution for the conversion reactions; construction of heat exchange network and exergy analysis. A wide variety of fluids have been dealt with, from small molecules to large molecules, including non-polar and polar substances. The statistical association fluids theory (SAFT) equation of state has been applied to calculate the mass distribution in different phases and to estimate the entropy and enthalpy values for different mass streams. (author)

  10. Identification of the heat transfer frequency response in pulsating laminar and subcritical flow across a cylinder

    Science.gov (United States)

    Witte, A.; Cabrera, A.; Polifke, W.

    2016-09-01

    The steady-state heat transfer from a cylinder in cross-flow is a prototype problem in thermo-fluiddynamics. However, in many applications such as the Rijke tube, the flow may fluctuate. This work analyses the phenomenon combining numerical simulation with system identification. Direct numerical simulation of laminar flow and Large Eddy Simulation at subcritical flow at Reynolds number equal to 3900 are used, respectively. Fluctuations of the inlet velocity in the simulation are excited over a wide range of frequencies. Time series of unsteady heat release and velocity are post-processed to identify dynamic models, which may be represented as transfer functions. They accurately describe the dynamic behavior and can be used for further modeling.

  11. Beyond the ponderomotive limit: direct laser acceleration of relativistic electrons in sub-critical plasmas

    CERN Document Server

    Arefiev, A V; Robinson, A P L; Shvets, G; Willingale, L; Schollmeier, M

    2016-01-01

    We examine a regime in which a linearly-polarized laser pulse with relativistic intensity irradiates a sub-critical plasma for much longer than the characteristic electron response time. A steady-state channel is formed in the plasma in this case with quasi-static transverse and longitudinal electric fields. These relatively weak fields significantly alter the electron dynamics. The longitudinal electric field reduces the longitudinal dephasing between the electron and the wave, leading to an enhancement of the electron energy gain from the pulse. The energy gain in this regime is ultimately limited by the superluminosity of the wave fronts induced by the plasma in the channel. The transverse electric field alters the oscillations of the transverse electron velocity, allowing it to remain anti-parallel to laser electric field and leading to a significant energy gain. The energy enhancement is accompanied by development of significant oscillations perpendicular to the plane of the driven motion, making traject...

  12. Subcritical transition to turbulence of a precessing flow in a cylindrical vessel

    CERN Document Server

    Herault, Johann; Giesecke, Andre; Stefani, Frank

    2015-01-01

    The transition to turbulence in a precessing cylindrical vessel is experimentally investigated. Our measurements are performed for a { nearly-resonant} configuration with an initially laminar flow dominated by an inertial mode with azimuthal wave number $m=1$ superimposed on a solid body rotation. By increasing the precession ratio, we observe a transition from the laminar to a non-linear regime, which then breakdowns to turbulence for larger precession ratio. Our measurements show that the transition to turbulence is subcritical, with a discontinuity of the wall-pressure and the power consumption at the threshold $\\epsilon_{LT}$. The turbulence is self-sustained below this threshold, describing a bifurcation diagram with a hysteresis. In this range of the control parameters, the turbulent flows can suddenly collapse after a finite duration, leading to a definitive relaminarization of the flow. The average lifetime $\\langle \\tau \\rangle$ of the turbulence increases rapidly when $\\epsilon$ tends to $\\epsilon_{...

  13. Hydrothermal liquefaction of Spirulina and Nannochloropsis Salina under subcritical and supercritical water conditions

    DEFF Research Database (Denmark)

    Toor, Saqib; Reddy, H.; Deng, S.

    2013-01-01

    Six hydrothermal liquefaction experiments on Nannochloropsis salina and Spirulina platensis at subcritical and supercritical water conditions (220-375 °C, 20-255 bar) were carried out to explore the feasibility of extracting lipids from wet algae, preserving nutrients in lipid-extracted algae solid...... residue, and recycling process water for algae cultivation. GC-MS, elemental analyzer, FT-IR, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-crude yield of 46% was obtained...... on Nannochloropsis salina at 350 °C and 175 bar. For Spirulina platensis algae sample, the optimal hydrothermal liquefaction condition appears to be at 310 °C and 115 bar, while the optimal condition for Nannochloropsis salina is at 350 °C and 175 bar. Preliminary data also indicate that a lipid-extracted algae...

  14. Impact of bleaching on subcritical water- and Formosolv-pretreated tulip tree to enhance enzyme accessibility.

    Science.gov (United States)

    Myint, Aye Aye; Kim, Dae Sung; Lee, Hun Wook; Yoon, Junho; Choi, In-Gyu; Choi, Joon Weon; Lee, Youn-Woo

    2013-10-01

    A novel method was developed for fractionating cellulose microfibrils from forest residue (tulip tree sawdust) to enhance cellulose digestibility, particularly at minimum enzyme loadings. This method involved three main stages: selective hemicellulose solubilization by subcritical water (SCW) pretreatment, delignification of the SCW-pretreated solids using the Formosolv process, and deformylation/bleaching of the cellulose pulp with alkaline hydrogen peroxide solution. This process produced nearly 98% white cellulose microfibrils with 23-fold higher conversion to glucose as compared to the raw substrate after 72 h of enzymatic hydrolysis. This study showed that cellulose swelling had the greatest effect on the enzymatic hydrolysis efficiency of delignified pulp obtained by the Formosolv process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Simultaneous extraction of oil- and water-soluble phase from sunflower seeds with subcritical water.

    Science.gov (United States)

    Ravber, Matej; Knez, Željko; Škerget, Mojca

    2015-01-01

    In this study, the subcritical water extraction is proposed as an alternative and greener processing method for simultaneous removal of oil- and water-soluble phase from sunflower seeds. Extraction kinetics were studied at different temperatures and material/solvent ratios in a batch extractor. Degree of hydrothermal degradation of oils was observed by analysing amount of formed free fatty acids and their antioxidant capacities. Results were compared to oils obtained by conventional methods. Water soluble extracts were analysed for total proteins, carbohydrates and phenolics and some single products of hydrothermal degradation. Highest amount of oil was obtained at 130 °C at a material/solvent ratio of 1/20 g/mL after 30 min of extraction. For all obtained oils minimal degree of hydrothermal degradation could be identified. High antioxidant capacities of oil samples could be observed. Water soluble extracts were degraded at temperatures ≥100 °C, producing various products of hydrothermal degradation.

  16. Convective instability in inhomogeneous media: impulse response in the subcritical cylinder wake

    CERN Document Server

    Marais, Catherine; Barkley, Dwight; Wesfreid, José Eduardo

    2010-01-01

    We study experimentally the impulse response of a cylinder wake below the critical Reynolds number of the B\\'enard-von K\\'arm\\'an instability. In this subcritical regime, a localized inhomogeneous region of convective instability exists which causes initial perturbations to be transiently amplified. The aim of this work is to quantify the evolution resulting from this convective instability using two-dimensional particle image velocimetry in a hydrodynamic tunnel experiment. The velocity fields allow us to describe the evolution of wave packets in terms of two control parameters: the Reynolds number and the magnitude of the imposed perturbation. The temporal evolution of energy exhibits a transient algebraic growth at short times followed by an exponential decay.

  17. A review on green trend for oil extraction using subcritical water technology and biodiesel production.

    Science.gov (United States)

    Abdelmoez, Weal; Ashour, Eman; Naguib, Shahenaz M

    2015-01-01

    It became a global agenda to develop clean alternative fuels which were domestically available, environmentally acceptable and technically feasible. Thus, biodiesel was destined to make a substantial contribution to the future energy demands of the domestic and industrial economies. Utilization of the non edible vegetable oils as raw materials for biodiesel production had been handled frequently for the past few years. The oil content of these seeds could be extracted by different oil extraction methods, such as mechanical extraction, solvent extraction and by subcritical water extraction technology SWT. Among them, SWT represents a new promising green extraction method. Therefore this review covered the current used non edible oil seeds for biodiesel production as well as giving a sharp focus on the efficiency of using the SWT as a promising extraction method. In addition the advantages and the disadvantages of the different biodiesel production techniques would be covered.

  18. Families of subcritical spirals in highly counter-rotating Taylor-Couette flow.

    Science.gov (United States)

    Meseguer, Alvaro; Mellibovsky, Fernando; Avila, Marc; Marques, Francisco

    2009-03-01

    A comprehensive numerical exploration of secondary finite-amplitude solutions in small-gap Taylor-Couette flow for high counter-rotating Reynolds numbers is provided, using Newton-Krylov methods embedded within arclength continuation schemes. Two different families of rotating waves have been identified: short axial wavelength subcritical spirals ascribed to centrifugal mechanisms and large axial scale supercritical spirals and ribbons associated with shear dynamics in the outer linearly stable radial region. This study is a first step taken in order to provide the inner structure of the skeleton of equilibria that may be responsible for the intermittent regime usually termed as spiral turbulence that has been reported by many experimentalists in the past.

  19. Experimental study of subcritical laboratory magnetized collisionless shocks using a laser-driven magnetic piston

    Science.gov (United States)

    Schaeffer, D. B.; Everson, E. T.; Bondarenko, A. S.; Clark, S. E.; Constantin, C. G.; Winske, D.; Gekelman, W.; Niemann, C.

    2015-11-01

    Recent experiments at the University of California, Los Angeles have successfully generated subcritical magnetized collisionless shocks, allowing new laboratory studies of shock formation relevant to space shocks. The characteristics of these shocks are compared with new data in which no shock or a pre-shock formed. The results are consistent with theory and 2D hybrid simulations and indicate that the observed shock or shock-like structures can be organized into distinct regimes by coupling strength. With additional experiments on the early time parameters of the laser plasma utilizing Thomson scattering, spectroscopy, and fast-gate filtered imaging, these regimes are found to be in good agreement with theoretical shock formation criteria.

  20. Nuclear Waste Transmutation in Subcritical Reactors Driven by Target-Distributed Accelerators

    CERN Document Server

    Blanovsky, A

    2004-01-01

    A radioactive waste transmutation system based extensively on existing nuclear power technology is presented. By replacing the control rods with neutron sources, we could maintain good power distribution and perform long-lived waste burning in high flux subcritical reactors. The design is based on a small pressurized water reactor, fission electric cell (FEC), target-distributed accelerator (TDA) and power monitoring system with in-core gamma-ray detectors, now under development in several countries. The TDA, in which an FEC electric field compensates for lost beam energy in the target, offers a new approach to obtain large neutron fluxes. The analysis takes into consideration a wide range of TDA design aspects including the wave model of observed relativistic phenomena, in-core microwave power source, the FEC with a multistage collector (anode) and layered cathode.

  1. Decomposition of Cellulose to Produce 5-Hydroxymethyl-Furaldehyde in Subcritical Water

    Institute of Scientific and Technical Information of China (English)

    L(U) Huisheng; LI Xiangke; ZHANG Minhua

    2008-01-01

    A method for decomposition of cellulose to produce 5-hydroxymethyl-furaldehyde (5-HMF) in subcritical water-carbon dioxide binary system was proposed. A series of experiments were performed in a batch reaction vessel. Main products of the decomposition of cellulose are 5-HMF, furfural, levulinic acid and 1, 2, 4-benzenetriol. The optimum condition for the preparation of 5-HMF was found as 523.15 K, 5.0% carbon dioxide mole fraction, and 30 min reaction time. The addition of carbon dioxide to water conduced to the decomposition of cellulose to 5-HMF. As can be seen from the distribution of the prod-ucts, the decomposition mechanism of cellulose is similar to the hydrothermal reaction of D-glucose and D-fructose.

  2. Molten salt considerations for accelerator-driven subcritical fission to close the nuclear fuel cycle

    Science.gov (United States)

    Sooby, Elizabeth; Adams, Marvin; Baty, Austin; Gerity, James; McIntyre, Peter; Melconian, Karie; Phongikaroon, Supathorn; Pogue, Nathaniel; Sattarov, Akhdiyor; Simpson, Michael; Tripathy, Prabhat; Tsevkov, Pavel

    2013-04-01

    The host salt selection, molecular modeling, physical chemistry, and processing chemistry are presented here for an accelerator-driven subcritical fission in a molten salt core (ADSMS). The core is fueled solely with the transuranics (TRU) and long-lived fission products (LFP) from used nuclear fuel. The neutronics and salt composition are optimized to destroy the transuranics by fission and the long-lived fission products by transmutation. The cores are driven by proton beams from a strong-focusing cyclotron stack. One such ADSMS system can destroy the transuranics in the used nuclear fuel produced by a 1GWe conventional reactor. It uniquely provides a method to close the nuclear fuel cycle for green nuclear energy.

  3. Suppression of turbulence and subcritical fluctuations in differentially rotating gyrokinetic plasmas

    CERN Document Server

    Schekochihin, A A; Cowley, S C

    2011-01-01

    Differential rotation is known to suppress linear instabilities in fusion plasmas. However, even in the absence of growing eigenmodes, subcritical fluctuations that grow transiently can lead to sustained turbulence. Here transient growth of electrostatic fluctuations driven by the parallel velocity gradient (PVG) and the ion temperature gradient (ITG) in the presence of a perpendicular ExB velocity shear is considered. The maximally simplified case of zero magnetic shear is treated in the framework of a local shearing box. There are no linearly growing eigenmodes, so all excitations are transient. The maximal amplification factor of initial perturbations and the corresponding wavenumbers are calculated as functions of q/\\epsilon (=safety factor/aspect ratio), temperature gradient and velocity shear. Analytical results are corroborated and supplemented by linear gyrokinetic numerical tests. For sufficiently low values of q/\\epsilon (<7 in our model), regimes with fully suppressed ion-scale turbulence are po...

  4. Depolymerization of Poly(bisphenol A carbonate) in Subcritical and Supercritical Toluene

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The depolymerization of poly(bisphenol A carbonate)(PC) in subcritical and supercritical toluene was studied. The experimental parameters, which influence the depolymerization reaction such as temperature (570-633 K), pressure (4.0-7.0 MPa), reaction time (5-60 min), and toluene to PC weight ratio (3.0-11.0), were investigated, and the reaction products were determined by GC, GC/MS and FT-IR spectrometer. It was found that the main product of the depolymerization reaction was bisphenol A(BPA). BPA accounted for over 55.7% of the depolymerization products at reaction temperature 613 K, pressure 5.0-6.0 MPa, reaction time 15 min and toluene/PC weight ratio of around 7.0.

  5. Conceptual study of high power proton linac for accelerator driven subcritical nuclear power system

    CERN Document Server

    Yu Qi; Ouyang Hua Fu; Xu Tao Guang

    2001-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. The ADS accelerator presented by the consists of a 5 MeV radio-frequency quadrupole, a 100 MeV independently phased superconducting cavity linac and a 1 GeV elliptical superconducting cavity linac. The accelerating structures and main parameters are determined and the research and development plan is considered

  6. On the relevance of subcritical hydrodynamic turbulence to accretion disk transport

    CERN Document Server

    Lesur, G

    2005-01-01

    Hydrodynamic unstratified keplerian flows are known to be linearly stable at all Reynolds numbers, but may nevertheless become turbulent through nonlinear mechanisms. However, in the last ten years, conflicting points of view have appeared on this issue. We have revisited the problem through numerical simulations in the shearing sheet limit. It turns out that the effect of the Coriolis force in stabilizing the flow depends on whether the flow is cyclonic (cooperating shear and rotation vorticities) or anticyclonic (competing shear and rotation vorticities); keplerian flows are anticyclonic. We have obtained the following results: i/ The Coriolis force does not quench turbulence in subcritical flows; ii/ The resolution demand, when moving away from the marginal stability boundary, is much more severe for anticyclonic flows than for cyclonic ones. Presently available computer resources do not allow numerical codes to reach the keplerian regime. iii/ The efficiency of turbulent transport is directly correlated t...

  7. Monte Carlo modeling and analyses of YALINA- booster subcritical assembly Part II : pulsed neutron source.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, M. Y. A.; Rabiti, C.; Nuclear Engineering Division

    2008-10-22

    One of the most reliable experimental methods for measuring the kinetic parameters of a subcritical assembly is the Sjoestrand method applied to the reaction rate generated from a pulsed neutron source. This study developed a new analytical methodology for characterizing the kinetic parameters of a subcritical assembly using the Sjoestrand method, which allows comparing the analytical and experimental time dependent reaction rates and the reactivity measurements. In this methodology, the reaction rate, detector response, is calculated due to a single neutron pulse using MCNP/MCNPX computer code or any other neutron transport code that explicitly simulates the fission delayed neutrons. The calculation simulates a single neutron pulse over a long time period until the delayed neutron contribution to the reaction is vanished. The obtained reaction rate is superimposed to itself, with respect to the time, to simulate the repeated pulse operation until the asymptotic level of the reaction rate, set by the delayed neutrons, is achieved. The superimposition of the pulse to itself was calculated by a simple C computer program. A parallel version of the C program is used due to the large amount of data being processed, e.g. by the Message Passing Interface (MPI). The new calculation methodology has shown an excellent agreement with the experimental results available from the YALINA-Booster facility of Belarus. The facility has been driven by a Deuterium-Deuterium or Deuterium-Tritium pulsed neutron source and the (n,p) reaction rate has been experimentally measured by a {sup 3}He detector. The MCNP calculation has utilized the weight window and delayed neutron biasing variance reduction techniques since the detector volume is small compared to the assembly volume. Finally, this methodology was used to calculate the IAEA benchmark of the YALINA-Booster experiment.

  8. Application of supercritical and subcritical fluids for the extraction of hazardous materials from soil

    Directory of Open Access Journals (Sweden)

    Skorupan Dara

    2002-01-01

    Full Text Available Subcritical and supercritical extractions are novel, non destructive techniques which can be applied for the removal of hazardous compounds from contaminated soil without any changes of the soil composition and structure. The aim of the presented review paper is to give information on up-to day results of this method commonly applied by several institutions worldwide. Interest in the application of SC CO2 has been more expressed in the last two decades, which may be related to its favorable characteristics (non-toxic, non-flammable, increase diffusion into small pores, low viscosity under SC conditions, low price and others. However, interest in wet oxidation (WO and especially in SCWO (the application of water under supercritical conditions with air has also increased in the last few years. Interest in H2O as a SC fluid, as well as in extraction with water under subcritical conditions may also be related to specific characteristics and the enhanced rate of extraction. Moreover, the solubility of some specific compounds present in soil can be easily changed by adjusting the pressure and temperature of extraction. The high price of the units designed to operate safely at a pressure and temperature much higher than the a critical one of the applied fluids is the main reason why, at present, there is no more broader application of such techniques for the removal hazardous materials from contaminated soil. In the present paper, among many literature citations and their overall review, some specific details related to the development of specific analytical methods under SC conditions are also considered.

  9. Diethylstilbestrol in fish tissue determined through subcritical fluid extraction and with GC-MS

    Science.gov (United States)

    Qiao, Qinghui; Shi, Nianrong; Feng, Xiaomei; Lu, Jie; Han, Yuqian; Xue, Changhu

    2016-06-01

    As the key point in sex hormone analysis, sample pre-treatment technology has attracted scientists' attention all over the world, and the development trend of sample preparation forwarded to faster and more efficient technologies. Taking economic and environmental concerns into account, subcritical fluid extraction as a faster and more efficient method has stood out as a sample pre-treatment technology. This new extraction technology can overcome the shortcomings of supercritical fluid and achieve higher extraction efficiency at relatively low pressures and temperatures. In this experiment, a simple, sensitive and efficient method has been developed for the determination of diethylstilbestrol (DES) in fish tissue using subcritical 1,1,1,2-tetrafluoroethane (R134a) extraction in combination with gas chromatography-mass spectrometry (GC-MS). After extraction, freezing-lipid filtration was utilized to remove fatty co-extract. Further purification steps were performed with C18 and NH2 solid phase extraction (SPE). Finally, the analyte was derived by heptafluorobutyric anhydride (HFBA), followed by GC-MS analysis. Response surface methodology (RSM) was employed to optimizing the extraction condition, and the optimized was as follows: extraction pressure, 4.3 MPa; extraction temperature, 26°C; amount of co-solvent volume, 4.7 mL. Under this condition, at a spiked level of 1, 5, 10 μg kg-1, the mean recovery of DES was more than 90% with relative standard deviations (RSDs) less than 10%. Finally, the developed method has been successfully used to analyzing the real samples.

  10. TNT and RDX degradation and extraction from contaminated soil using subcritical water.

    Science.gov (United States)

    Islam, Mohammad Nazrul; Shin, Moon-Su; Jo, Young-Tae; Park, Jeong-Hun

    2015-01-01

    The use of explosives either for industrial or military operations have resulted in the environmental pollution, poses ecological and health hazard. In this work, a subcritical water extraction (SCWE) process at laboratory scale was used at varying water temperature (100-175 °C) and flow rate (0.5-1.5 mL min(-1)), to treat 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) contaminated soil, to reveal information with respect to the explosives removal (based on the analyses of soil residue after extraction), and degradation performance (based on the analyses of water extracts) of this process. Continuous flow subcritical water has been considered on removal of explosives to avoid the repartitioning of non-degraded compounds to the soil upon cooling which usually occurs in the batch system. In the SCWE experiments, near complete degradation of both TNT and RDX was observed at 175 °C based on analysis of water extracts and soil. Test results also indicated that TNT removal of >99% and a complete RDX removal were achieved by this process, when the operating conditions were 1 mL min(-1), and treatment time of 20 min, after the temperature reached 175 °C. HPLC-UV and ion chromatography analysis confirmed that the explosives underwent for degradation. The low concentration of explosives found in the process wastewater indicates that water recycling may be viable, to treat additional soil. Our results have shown in the remediation of explosives contaminated soil, the effectiveness of the continuous flow SCWE process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Dynamical analysis of an accelerator-based fluid-fueled subcritical radioactive waste burning system

    Science.gov (United States)

    Woosley, Michael Louis, Jr.

    The recent revival of interest in accelerator-driven subcritical fluid-fueled systems is documented. Several important applications of these systems are mentioned. In particular, new applications have focused on the destruction of high-level radioactive waste. Systems can be designed to quickly destroy the actinides and long-lived fission products from light water reactor fuel, weapons plutonium, and other high-level defense wastes. The proposed development of these systems is used to motivate the need for the development of dynamic analysis methods for their nuclear kinetics. A physical description of the Los Alamos Accelerator-Based Conversion (ABC) concept is provided. This system is used as the basis for the kinetics study in this research. The current approach to the dynamic simulation of an accelerator-driven subcritical fluid-fueled system includes three elements: A discrete ordinates model is used to calculate the flux distribution for the source-driven system; A nodal convection model is used to calculate time-dependent isotope and temperature distributions which impact reactivity; A nodal importance weighting model is used to calculate the reactivity impact of temperature and isotope distributions and to feed this information back to the time-dependent nodal convection model. Specific transients which have been analyzed with the current modeling system are discussed. These transients include loss-of-flow and loss-of-cooling accidents, xenon and samarium transients, and cold-plug and overfueling events. The results of various transients have uncovered unpredictable behavior, unresolved design issues, and the need for active control. Modest initiating events can cause significant swings in system temperature and power. The circulation of the fluid fuel can lead to oscillations on the relatively short scale of the loop circulation time. The system responds quickly to reactivity changes because the large neutron source overwhelms the damping effect of delayed

  12. Spike avalanches in vivo suggest a driven, slightly subcritical brain state.

    Science.gov (United States)

    Priesemann, Viola; Wibral, Michael; Valderrama, Mario; Pröpper, Robert; Le Van Quyen, Michel; Geisel, Theo; Triesch, Jochen; Nikolić, Danko; Munk, Matthias H J

    2014-01-01

    In self-organized critical (SOC) systems avalanche size distributions follow power-laws. Power-laws have also been observed for neural activity, and so it has been proposed that SOC underlies brain organization as well. Surprisingly, for spiking activity in vivo, evidence for SOC is still lacking. Therefore, we analyzed highly parallel spike recordings from awake rats and monkeys, anesthetized cats, and also local field potentials from humans. We compared these to spiking activity from two established critical models: the Bak-Tang-Wiesenfeld model, and a stochastic branching model. We found fundamental differences between the neural and the model activity. These differences could be overcome for both models through a combination of three modifications: (1) subsampling, (2) increasing the input to the model (this way eliminating the separation of time scales, which is fundamental to SOC and its avalanche definition), and (3) making the model slightly sub-critical. The match between the neural activity and the modified models held not only for the classical avalanche size distributions and estimated branching parameters, but also for two novel measures (mean avalanche size, and frequency of single spikes), and for the dependence of all these measures on the temporal bin size. Our results suggest that neural activity in vivo shows a mélange of avalanches, and not temporally separated ones, and that their global activity propagation can be approximated by the principle that one spike on average triggers a little less than one spike in the next step. This implies that neural activity does not reflect a SOC state but a slightly sub-critical regime without a separation of time scales. Potential advantages of this regime may be faster information processing, and a safety margin from super-criticality, which has been linked to epilepsy.

  13. Spike avalanches in vivo suggest a driven, slightly subcritical brain state

    Directory of Open Access Journals (Sweden)

    Viola ePriesemann

    2014-06-01

    Full Text Available In self-organized critical (SOC systems avalanche size distributions follow power-laws. Power-laws have also been observed for neural activity, and so it has been proposed that SOC underlies brain organization as well. Surprisingly, for spiking activity in vivo, evidence for SOC is still lacking. Therefore we analyzed highly parallel spike recordings from awake rats and monkeys, anaesthetized cats, and also local field potentials from humans. We compared these to spiking activity from two established critical models: the Bak-Tang-Wiesenfeld model, and a stochastic branching model. We found fundamental differences between the neural and the model activity. These differences could be overcome for both models through a combination of three modifications: (1 subsampling, (2 increasing the input to the model (this way eliminating the separation of time scales, which is fundamental to SOC and its avalanche definition, and (3 making the model slightly sub-critical. The match between the neural activity and the modified models held not only for the classical avalanche size distributions and estimated branching parameters, but also for two novel measures (mean avalanche size, and frequency of single spikes, and for the dependence of all these measures on the temporal bin size.Our results suggest that neural activity in vivo shows a mélange of avalanches, and not temporally separated ones, and that their global activity propagation can be approximated by the principle that one spike on average triggers a little less than one spike in the next step. This implies that neural activity does not reflect a SOC state but a slightly sub-critical regime without a separation of time scales. Potential advantages of this regime may be faster information processing, and a safety margin from super-criticality, which has been linked to epilepsy.

  14. Acute myocardial infarction after radiofrequency catheter ablation of typical atrial flutter.

    Science.gov (United States)

    Yune, Sehyo; Lee, Woo Joo; Hwang, Ji-won; Kim, Eun; Ha, Jung Min; Kim, June Soo

    2014-02-01

    A 53-yr-old man underwent radiofrequency ablation to treat persistent atrial flutter. After the procedure, the chest pain was getting worse, and the electrocardiogram showed ST-segment elevation in inferior leads with reciprocal changes. Immediate coronary angiography showed total occlusion with thrombi at the distal portion of the right coronary artery, which was very close to the ablation site. Intervention with thrombus aspiration and balloon dilatation was successful, and the patient recovered without any kind of sequelae. Although the exact mechanism is obscure, the most likely explanation is a thermal injury to the vascular wall that ruptured into the lumen and formed thrombus. Vasospasm and thromboembolism can also be other possibilities. This case raise the alarm to cardiologists who perform radiofrequency ablation to treat various kinds of cardiac arrhythmias, in that myocardial infarction has been rarely considered one of the complications.

  15. Episodic syncope caused by ventricular flutter in a tiger (Panthera tigris).

    Science.gov (United States)

    DeLillo, Daniel M; Jesty, Sophy A; Souza, Marcy J

    2013-06-01

    A captive, 9-yr-old castrated male tiger (Panthera tigris) from an exotic cat sanctuary and rescue facility was observed to have three collapsing episodes within a 2-wk interval prior to being examined by veterinarians. No improvement in clinical signs was noted after empiric treatment with phenobarbital. During a more complete workup for epilepsy, ventricular flutter was observed on electrocardiogram (ECG). The arrhythmia resolved with a single intravenous bolus of lidocaine. Cardiac structure and function were unremarkable on echocardiogram and cardiac troponin I levels were within normal limits for domestic felids. No significant abnormalities were noted on abdominal ultrasound. Complete blood count and biochemistry panel were unremarkable, and heartworm antigen and Blastomyces urine antigen enzyme-linked immunosorbent assays were negative. Antiarrhythmic treatment with sotalol was initiated. On follow-up ECG performed 1 mo later, no significant arrhythmias were noted, and clinical signs have completely resolved.

  16. Voltage-guided ablation technique for cavotricuspid isthmus-dependent atrial flutter: refining the continuous line.

    Science.gov (United States)

    Jacobsen, Peter K; Klein, George J; Gula, Lorne J; Krahn, Andrew D; Yee, Raymond; Leong-Sit, Peter; Mechulan, Alexis; Skanes, Allan C

    2012-06-01

    Ablation of the cavotricuspid isthmus has become first-line therapy for "isthmus-dependent" atrial flutter. The goal of ablation is to produce bidirectional cavotricuspid isthmus block. Traditionally, this has been obtained by creation of a complete ablation line across the isthmus from the ventricular end to the inferior vena cava. This article describes an alternative method used in our laboratory. There is substantial evidence that conduction across the isthmus occurs preferentially over discrete separate bundles of tissue. Consequently, voltage-guided ablation targeting only these bundles with large amplitude atrial electrograms results in a highly efficient alternate method for the interruption of conduction across the cavotricuspid isthmus. Understanding the bundle structure of conduction over the isthmus facilitates more flexible approaches to its ablation and targeting maximum voltages in our hands has resulted in reduction of ablation time and fewer recurrences.

  17. Neural codes for perceptual discrimination of acoustic flutter in the primate auditory cortex

    Science.gov (United States)

    Lemus, Luis; Hernández, Adrián; Romo, Ranulfo

    2009-01-01

    We recorded from single neurons of the primary auditory cortex (A1), while trained monkeys reported a decision based on the comparison of 2 acoustic flutter stimuli. Crucially, to form the decision, monkeys had to compare the second stimulus rate to the memory trace of the first stimulus rate. We found that the responses of A1 neurons encode stimulus rates both through their periodicity and through their firing rates during the stimulation periods, but not during the working memory and decision components of this task. Neurometric thresholds based on firing rate were very similar to the monkey's discrimination thresholds, whereas neurometric thresholds based on periodicity were lower than the experimental thresholds. Thus, an observer could solve this task with a precision similar to that of the monkey based only on the firing rates evoked by the stimuli. These results suggest that the A1 is exclusively associated with the sensory and not with the cognitive components of this task. PMID:19458263

  18. NACA 0012 benchmark model experimental flutter results with unsteady pressure distributions

    Science.gov (United States)

    Rivera, Jose A., Jr.; Dansberry, Bryan E.; Bennett, Robert M.; Durham, Michael H.; Silva, Walter A.

    1992-01-01

    The Structural Dynamics Division at NASA Langley Research Center has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of the program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type CFD codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. This paper describes results obtained from a second wind tunnel test of the first model in the Benchmark Models Program. This first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree-of-freedom mount system. Experimental flutter boundaries and corresponding unsteady pressure distribution data acquired over two model chords located at the 60 and 95 percent span stations are presented.

  19. Parallel numerical simulation of oscillating airfoil NACA0015 in the channel due to flutter instability

    Directory of Open Access Journals (Sweden)

    Řidký Václav

    2014-03-01

    Full Text Available The work is devoted to 3D and 2D parallel numerical computation of pressure and velocity fields around an elastically supported airfoil self-oscillating due to interaction with the airflow. Numerical solution is computed in the OpenFOAM package, an open-source software package based on finite volume method. Movement of airfoil is described by translation and rotation, identified from experimental data. A new boundary condition for the 2DOF motion of the airfoil was implemented. The results of numerical simulations (velocity are compared with data measured in a wind tunnel, where a physical model of NACA0015 airfoil was mounted and tuned to exhibit the flutter instability. The experimental results were obtained previously in the Institute of Thermomechanics by interferographic measurements in a subsonic wind tunnel in Nový Knín.

  20. Endurance sport practice as a risk factor for atrial fibrillation and atrial flutter.

    Science.gov (United States)

    Mont, Lluís; Elosua, Roberto; Brugada, Josep

    2009-01-01

    Although the benefits of regular exercise in controlling cardiovascular risk factors have been extensively proven, little is known about the long-term cardiovascular effects of regular and extreme endurance sport practice, such as jogging, cycling, rowing, swimming, etc. Recent data from a small series suggest a relationship between regular, long-term endurance sport practice and atrial fibrillation (AF) and flutter. Reported case control studies included less than 300 athletes, with mean age between 40 and 50. Most series recruited only male patients, or more than 70% males, who had been involved in intense training for many years. Endurance sport practice increases between 2 and 10 times the probability of suffering AF, after adjusting for other risk factors. The possible mechanisms explaining the association remain speculative. Atrial ectopic beats, inflammatory changes, and atrial size have been suggested. Some of the published studies found that atrial size was larger in athletes than in controls, and this was a predictor for AF. It has also been shown that the left atrium may be enlarged in as many as 20% of competitive athletes. Other proposed mechanisms are increased vagal tone and bradycardia, affecting the atrial refractory period; however, this may facilitate rather than cause the arrhythmia. In summary, recent data suggest an association between endurance sport practice and atrial fibrillation and flutter. The underlying mechanism explaining this association is unclear, although structural atrial changes (dilatation and fibrosis) are probably present. Larger longitudinal studies and mechanistic studies are needed to further characterize the association to clarify whether a threshold limit for the intensity and duration of physical activity may prevent AF, without limiting the cardiovascular benefits of exercise.

  1. [Catheter ablation of atrial flutter. Electrophysiological characterization of posterior and septal isthmus block].

    Science.gov (United States)

    Moreira, J M; Alessi, S R; Rezende, A G; Prudêncio, L A; de Paola, A A

    1998-07-01

    Evaluate the different types of conduction blocks obtained between inferior vena cava-tricuspid annulus (posterior isthmus) and between tricuspid annulus-coronary sinus ostium (septal isthmus) after radiofrequency (RF) catheter ablation of atrial flutter (AFL). In 16 procedures, 14 patients (pts), 9 male, with type I AFL underwent RF ablation. Atrial activation around tricuspid annulus was performed with a 10-bipole "Halo" catheter (H1-2; H19-20). In sinus rhythm, isthmus conduction was evaluated during proximal coronary sinus (PCS) and low lateral right atrium (H1-2) pacing, before and after linear ablation. According to the wave front of impulse propagation we assessed absence of block (bidirectional conduction); incomplete block (bidirectional conduction with delay in one front of impulse propagation) and complete block (absence of conduction). The PCS/H1-2 interval was measured before and after ablation. Complete isthmus block was achieved in 7 (44%) and incomplete block in 4 (25%) procedures. Conduction block was not achieved in 5 procedures. At a mean follow-up of 12 months, there were no recurrences in the pts with complete block, whereas AFL recurred in the 6 pts with incomplete or no conduction block (p < 0.001). Pts with complete block had delta PCS/H1-2 interval (74.0 +/- 26.0 ms) greater than incomplete (30.5 +/- 7.5 ms) or absent block (p < 0.05). The verification of complete isthmus conduction block with atrial multipolar mapping is an effective strategy to assess electrophysiological success and absence of late recurrence in common atrial flutter ablation.

  2. Sustained spatial attention to vibrotactile stimulation in the flutter range: relevant brain regions and their interaction.

    Science.gov (United States)

    Goltz, Dominique; Pleger, Burkhard; Thiel, Sabrina D; Thiel, Sabrina; Villringer, Arno; Müller, Matthias M

    2013-01-01

    The present functional magnetic resonance imaging (fMRI) study was designed to get a better understanding of the brain regions involved in sustained spatial attention to tactile events and to ascertain to what extent their activation was correlated. We presented continuous 20 Hz vibrotactile stimuli (range of flutter) concurrently to the left and right index fingers of healthy human volunteers. An arrow cue instructed subjects in a trial-by-trial fashion to attend to the left or right index finger and to detect rare target events that were embedded in the vibrotactile stimulation streams. We found blood oxygen level-dependent (BOLD) attentional modulation in primary somatosensory cortex (SI), mainly covering Brodmann area 1, 2, and 3b, as well as in secondary somatosensory cortex (SII), contralateral to the to-be-attended hand. Furthermore, attention to the right (dominant) hand resulted in additional BOLD modulation in left posterior insula. All of the effects were caused by an increased activation when attention was paid to the contralateral hand, except for the effects in left SI and insula. In left SI, the effect was related to a mixture of both a slight increase in activation when attention was paid to the contralateral hand as well as a slight decrease in activation when attention was paid to the ipsilateral hand (i.e., the tactile distraction condition). In contrast, the effect in left posterior insula was exclusively driven by a relative decrease in activation in the tactile distraction condition, which points to an active inhibition when tactile information is irrelevant. Finally, correlation analyses indicate a linear relationship between attention effects in intrahemispheric somatosensory cortices, since attentional modulation in SI and SII were interrelated within one hemisphere but not across hemispheres. All in all, our results provide a basis for future research on sustained attention to continuous vibrotactile stimulation in the range of flutter.

  3. Sustained spatial attention to vibrotactile stimulation in the flutter range: relevant brain regions and their interaction.

    Directory of Open Access Journals (Sweden)

    Dominique Goltz

    Full Text Available The present functional magnetic resonance imaging (fMRI study was designed to get a better understanding of the brain regions involved in sustained spatial attention to tactile events and to ascertain to what extent their activation was correlated. We presented continuous 20 Hz vibrotactile stimuli (range of flutter concurrently to the left and right index fingers of healthy human volunteers. An arrow cue instructed subjects in a trial-by-trial fashion to attend to the left or right index finger and to detect rare target events that were embedded in the vibrotactile stimulation streams. We found blood oxygen level-dependent (BOLD attentional modulation in primary somatosensory cortex (SI, mainly covering Brodmann area 1, 2, and 3b, as well as in secondary somatosensory cortex (SII, contralateral to the to-be-attended hand. Furthermore, attention to the right (dominant hand resulted in additional BOLD modulation in left posterior insula. All of the effects were caused by an increased activation when attention was paid to the contralateral hand, except for the effects in left SI and insula. In left SI, the effect was related to a mixture of both a slight increase in activation when attention was paid to the contralateral hand as well as a slight decrease in activation when attention was paid to the ipsilateral hand (i.e., the tactile distraction condition. In contrast, the effect in left posterior insula was exclusively driven by a relative decrease in activation in the tactile distraction condition, which points to an active inhibition when tactile information is irrelevant. Finally, correlation analyses indicate a linear relationship between attention effects in intrahemispheric somatosensory cortices, since attentional modulation in SI and SII were interrelated within one hemisphere but not across hemispheres. All in all, our results provide a basis for future research on sustained attention to continuous vibrotactile stimulation in the range

  4. Verification of the Mechanism of the Head-Positioning Error Caused by Disk Flutter and Slider Supporting Structure for Reducing Head-Positioning Error

    Science.gov (United States)

    Imai, Satomitsu

    In magnetic disk drives, the disk flutter due to high-rotational speed causes the increase of the head-positioning error. It is important to clear the mechanism of the head-positioning error caused by the disk flutter. This paper conducts the experiments to verify the mechanism proposed in the former report. The experiment was conducted by comparing the head-positioning error predicted by the proposed mechanism with the measured head-positioning error signal. It is confirmed that the proposed mechanism can predict the head-positioning error within the 10% error. The former reports also said that the flutter transfer ratio defined in the report could decrease the head-positioning error without reducing the amplitude of the disk flutter. This paper also verifies it experimentally. In the experiment, the thickness of the slider was changed to make the flutter transfer ratio small. This paper also proposes the method of making the beam angle of the gimbal slant to make the flutter transfer ratio small. The effectiveness was confirmed by the simulation.

  5. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    SCHWINKENDORF, K.N.

    2006-05-12

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can

  6. Pulmonary vein triggers play an important role in the initiation of atrial flutter: Initial results from the prospective randomized Atrial Fibrillation Ablation in Atrial Flutter (Triple A) trial.

    Science.gov (United States)

    Schneider, Ralph; Lauschke, Joerg; Tischer, Tina; Schneider, Cindy; Voss, Wolfgang; Moehlenkamp, Felix; Glass, Aenne; Diedrich, Doreen; Bänsch, Dietmar

    2015-05-01

    The incidence of atrial fibrillation (AF) after ablation of a cavotricuspid isthmus (CTI)-dependent atrial flutter (AFL) is high. The purpose of this study was to test the hypothesis that AFL and AF may be initiated by pulmonary vein triggers. This prospective randomized trial tested the efficacy of a standalone pulmonary vein isolation (PVI) in patients with AFL but without AF. Patients with AFL but without documented AF were randomly assigned to 1 of 3 treatment groups: (1) antiarrhythmic drugs (AAD), (2) CTI ablation, or (3) circumferential PVI. The primary end-point was defined as any recurrent atrial tachyarrhythmia and the secondary end-point as recurrence of AFL. In case of tachyarrhythmia recurrence in the PVI group, a second PVI was performed to close gaps in the ablation lines. Of the 60 patients, 17 were randomized to AAD, 23 to CTI ablation, and 20 to PVI. During follow-up of 1.42 ± 0.83 years, 14 of 17 patients (82.4%) in the AAD group, 14 of 23 patients (60.9%) in the CTI group, and 2 of 20 patients (10%) in the PVI group reached the primary end-point (P PVI procedures per patient. AFL reoccurred in 9 patients (52.9.%) in the AAD group, in 2 patients (8.7%) in the CTI group, and after a single PVI in 3 patients (15%) in the PVI group (P = .003). After closure of gaps, 1 patient (5%) in the PVI group presented with recurrent AFL. Pulmonary vein triggers play an important role in AFL. PVI can prevent the recurrence of AFL, even without CTI ablation. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  7. Flutter Atrial Fetal en Madre Portadora de Síndrome de Brugada: Caso Clínico

    Directory of Open Access Journals (Sweden)

    Gustavo Kiekebusch Hurel

    2011-01-01

    Full Text Available Se presenta el caso de mujer portadora de Síndrome de Brugada que cursa embarazo de 35 semanas, en cuyo control ecográfico prenatal se observa flutter atrial fetal. Se realizó interrupción del embarazo vía cesárea de urgencia, obteniéndose recién nacido de pretérmino sexo masculino, vivo, con taquiarritmia persistente, la cual requirió manejo con Adenosina. Este caso representa un gran desafío en cuanto a la asociación entre la patología materna y la fetal, además de su utilidad como orientación en el manejo de otros casos similares. Palabras Clave: Síndrome de Brugada, flutter atrial fetal, recién nacido de pretérmino, embarazo.

  8. Flutter and Thermal Buckling Analysis for Composite Laminated Panel Embedded with Shape Memory Alloy Wires in Supersonic Flow

    Directory of Open Access Journals (Sweden)

    Chonghui Shao

    2016-01-01

    Full Text Available The flutter and thermal buckling behavior of laminated composite panels embedded with shape memory alloy (SMA wires are studied in this research. The classical plate theory and nonlinear von-Karman strain-displacement relation are employed to investigate the aeroelastic behavior of the smart laminated panel. The thermodynamic behaviors of SMA wires are simulated based on one-dimensional Brinson SMA model. The aerodynamic pressure on the panel is described by the nonlinear piston theory. Nonlinear governing partial differential equations of motion are derived for the panel via the Hamilton principle. The effects of ply angle of the composite panel, SMA layer location and orientation, SMA wires temperature, volume fraction and prestrain on the buckling, flutter boundary, and amplitude of limit cycle oscillation of the panel are analyzed in detail.

  9. An experimental study of tip shape effects on the flutter of aft-swept, flat-plate wings

    Science.gov (United States)

    Dansberry, Bryan E.; Rivera, Jose A., Jr.; Farmer, Moses G.

    1990-01-01

    The effects of tip chord orientation on wing flutter are investigated experimentally using six cantilever-mounted, flat-plate wing models. Experimentally determined flutter characteristics of the six models are presented covering both the subsonic and transonic Mach number ranges. While all models have a 60 degree leading edge sweep, a 40.97 degree trailing edge sweep, and a root chord of 34.75 inches, they are subdivided into two series characterized by a higher aspect ratio and a lower aspect ratio. Each series is made up of three models with tip chord orientations which are parallel to the free-stream flow, perpendicular to the model mid-chord line, and perpendicular to the free-stream flow. Although planform characteristics within each series of models are held constant, structural characteristics such as mode shapes and natural frequencies are allowed to vary.

  10. Mechanisms of atrial flutter following epicardial high intensity focused ultrasound left atrial ablative procedures during concomitant cardiac surgery

    Directory of Open Access Journals (Sweden)

    Ahmed El-Damaty

    2014-12-01

    Conclusions: Re-entrant atrial flutter post-HIFU epicor Maze is caused by slow conduction at entry and exit sites from the otherwise isolated posterior LA wall. In both cases, gaps were found close to the LSPV and RIPV which may reflect difficulty in achieving proper contact between the HIFU device and the left atrial wall at these sites. These gaps are amenable to catheter ablation.

  11. Sick sinus syndrome, progressive cardiac conduction disease, atrial flutter and ventricular tachycardia caused by a novel SCN5A mutation

    DEFF Research Database (Denmark)

    Holst, Anders G; Liang, Bo; Jespersen, Thomas

    2010-01-01

    Mutations in the cardiac sodium channel encoded by the gene SCN5A can result in a wide array of phenotypes. We report a case of a young male with a novel SCN5A mutation (R121W) afflicted by sick sinus syndrome, progressive cardiac conduction disorder, atrial flutter and ventricular tachycardia. His...... the spectrum of SCN5A loss-of-function associated disease entities should be viewed as one syndrome....

  12. Nonlocal and surface effects on the flutter instability of cantilevered nanotubes conveying fluid subjected to follower forces

    Science.gov (United States)

    Bahaadini, Reza; Hosseini, Mohammad; Jamalpoor, Ali

    2017-03-01

    On the basis of nonlocal elasticity theory, this paper studies the dynamic structural instability behavior of cantilever nanotubes conveying fluid incorporating end concentrated follower force and distributed tangential load, resting on the visco-Pasternak substrate. In order to improve the accuracy of the results, surface effects, i.e. surface elasticity and residual stresses are considered. Extended Hamilton's principle is implemented to obtain the nonlocal governing partial differential equation and related boundary conditions. Then, the extended Galerkin technique is used to convert partial differential equations into a general set of ordinary differential equations. Numerical results are expressed to reveal the variations of the critical flow velocity for flutter phenomenon of cantilever nanotubes with the various values of nonlocal parameter, mass ratios, nanotubes thickness, surface effects, various parameters of the visco-Pasternak medium, constant follower force and distributed compressive tangential load. Some numerical results of this research illustrated that the values of critical flutter flow velocity and stable region increase by considering surface effects. Also, critical flutter flow velocity decreases towards zero by increasing the value of the distributed compressive tangential load and constant follower force.

  13. Alleviation of whirl-flutter on a joined-wing tilt-rotor aircraft configuration using active controls

    Science.gov (United States)

    Vanaken, Johannes M.

    1991-01-01

    The feasibility of using active controls to delay the onset of whirl-flutter on a joined-wing tilt rotor aircraft was investigated. The CAMRAD/JA code was used to obtain a set of linear differential equations which describe the motion of the joined-wing tilt-rotor aircraft. The hub motions due to wing/body motion is a standard input to CAMRAD/JA and were obtained from a structural dynamics model of a representative joined-wing tilt-rotor aircraft. The CAMRAD/JA output, consisting of the open-loop system matrices, and the airframe free vibration motion were input to a separate program which performed the closed-loop, active control calculations. An eigenvalue analysis was performed to determine the flutter stability of both open- and closed-loop systems. Sensor models, based upon the feedback of pure state variables and based upon hub-mounted sensors, providing physically measurable accelerations, were evaluated. It was shown that the onset of tilt-rotor whirl-flutter could be delayed from 240 to above 270 knots by feeding back vertical and span-wise accelerations, measured at the rotor hub, to the longitudinal cyclic pitch. Time response calculations at a 270-knot cruise condition showed an active cyclic pitch control level of 0.009 deg, which equates to a very acceptable 9 pound active-control force applied at the rotor hub.

  14. Nonlocal and surface effects on the flutter instability of cantilevered nanotubes conveying fluid subjected to follower forces

    Energy Technology Data Exchange (ETDEWEB)

    Bahaadini, Reza [Department of Mechanical Engineering, Sirjan University of Technology, 78137-33385 Sirjan, Islamic Republic of Iran (Iran, Islamic Republic of); Hosseini, Mohammad, E-mail: hosseini@sirjantech.ac.ir [Department of Mechanical Engineering, Sirjan University of Technology, 78137-33385 Sirjan, Islamic Republic of Iran (Iran, Islamic Republic of); Jamalpoor, Ali [Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of)

    2017-03-15

    On the basis of nonlocal elasticity theory, this paper studies the dynamic structural instability behavior of cantilever nanotubes conveying fluid incorporating end concentrated follower force and distributed tangential load, resting on the visco-Pasternak substrate. In order to improve the accuracy of the results, surface effects, i.e. surface elasticity and residual stresses are considered. Extended Hamilton’s principle is implemented to obtain the nonlocal governing partial differential equation and related boundary conditions. Then, the extended Galerkin technique is used to convert partial differential equations into a general set of ordinary differential equations. Numerical results are expressed to reveal the variations of the critical flow velocity for flutter phenomenon of cantilever nanotubes with the various values of nonlocal parameter, mass ratios, nanotubes thickness, surface effects, various parameters of the visco-Pasternak medium, constant follower force and distributed compressive tangential load. Some numerical results of this research illustrated that the values of critical flutter flow velocity and stable region increase by considering surface effects. Also, critical flutter flow velocity decreases towards zero by increasing the value of the distributed compressive tangential load and constant follower force.

  15. Optimal locations of piezoelectric patches for supersonic flutter control of honeycomb sandwich panels, using the NSGA-II method

    Science.gov (United States)

    Nezami, M.; Gholami, B.

    2016-03-01

    The active flutter control of supersonic sandwich panels with regular honeycomb interlayers under impact load excitation is studied using piezoelectric patches. A non-dominated sorting-based multi-objective evolutionary algorithm, called non-dominated sorting genetic algorithm II (NSGA-II) is suggested to find the optimal locations for different numbers of piezoelectric actuator/sensor pairs. Quasi-steady first order supersonic piston theory is employed to define aerodynamic loading and the p-method is applied to find the flutter bounds. Hamilton’s principle in conjunction with the generalized Fourier expansions and Galerkin method are used to develop the dynamical model of the structural systems in the state-space domain. The classical Runge-Kutta time integration algorithm is then used to calculate the open-loop aeroelastic response of the system. The maximum flutter velocity and minimum voltage applied to actuators are calculated according to the optimal locations of piezoelectric patches obtained using the NSGA-II and then the proportional feedback is used to actively suppress the closed loop system response. Finally the control effects, using the two different controllers, are compared.

  16. Apparent activation energy of subcritical crack growth of SiC/SiC composites at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Y.S.; Stackpoole, M.M.; Bordia, R. [Univ. of Washington, Seattle, WA (United States)] [and others

    1995-04-01

    The purpose of this study is to investigate the environmental effect of oxygen-containing gases on the subcritical crack growth of continuous fiber (Nicalon {open_quotes}SiC{close_quotes}) reinforced ceramic matrix (SiC) composites at elevated temperatures. This is a continuing project and the primary goal for this time period is to obtain an apparent activation energy for SiC/SiC materials with two different interfaces: carbon and boron nitride coatings. In the past six months, the authors have conducted studies of subcritical crack growth on SiC/SiC composite materials in a corrosive (O{sub 2}) as well as an inert (Ar) atmosphere for temperatures ranging from 800 to 1100{degree}C.

  17. Hydrothermal Liquefaction of Wheat Straw in Sub-critical Water/Ethanol with Ionic Liquid for Bio-oil Production

    Institute of Scientific and Technical Information of China (English)

    Wang Baofeng; Han Shaohua; Zhang Jinjun

    2015-01-01

    Hydrothermal liquefaction of wheat straw in sub-critical water with ionic liquid was investigated in an autoclave. The product distribution at different temperatures and pressures was studied. The liquid oil and the residuals were tested by 1H NMR, FTIR and SEM techniques. The results indicated that under the same conditions, the oil yield from liquefaction of wheat straw in water/ethanol was higher than that in sub-critical water. The result also showed that under the investigated conditions, adding 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) could increase the total conversion and gas yield, while at the same time the yield ofn-hexane insoluble fraction and the tetrahydrofuran soluble fraction was reduced. More-over, the results also showed that upon adding [Bmim]Cl the contents of the aliphatic hydrogen and phenols in liquid oil also increased along with improved oil quality.

  18. Ginger and turmeric starches hydrolysis using subcritical water + CO2: the effect of the SFE pre-treatment

    Directory of Open Access Journals (Sweden)

    S. R. M. Moreschi

    2006-06-01

    Full Text Available In this work, the hydrolysis of fresh and dried turmeric (Curcuma longa L. and ginger (Zingiber officinale R. in the presence of subcritical water + CO2 was studied. The hydrolysis of ginger and turmeric bagasses from supercritical fluid extraction was also studied. The reactions were done using subcritical water and CO2 at 150 bar, 200 °C and reaction time of 11 minutes; the degree of reaction was monitored through the amount of starch hydrolyzed. Process yields were calculated using the amount of reducing and total sugars formed. The effects of supercritical fluid extraction in the starchy structures were observed by scanning electron microscopy. Higher degree of hydrolysis (97- 98 % were obtained for fresh materials and the highest total sugar yield (74% was established for ginger bagasse. The supercritical fluid extraction did not significantly modify the degree of hydrolysis in the tested conditions.

  19. Determination of kinetic parameters for monitoring source driven subcritical transmutation devices

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Maarten

    2014-03-15

    ADS are considered as an option for the irradiation facility in partitioning and transmutation concepts for highly radioactive waste from spent nuclear fuel. Due to the hard neutron energy spectrum and the subcriticality of the reactor ADS provide a good compromise between transmutation performance and safety aspects. For the safe operation, but also for the overall optimization of the facility, the determination of the subcriticality level is essential. To investigate experimental methods in Pulsed Neutron Source (PNS) experiments for the determination of the subcriticality level the ADS experiment YALINA-Thermal is thoroughly analyzed in this work. The experiment has been performed from 2005-2010 in Minsk, Belarus. Most of the related experimental methods rely on point kinetic equations. This approach introduces two main approximations. Firstly, the point kinetic equation cannot describe the transition of the neutron distribution from the source operation to the source shutdown. After shutdown, the neutron population would redistribute to establish the fundamental decay mode. This violates the point kinetic assumption of neutron flux spectra constant in time. Secondly, to calculate kinetic parameters like the neutron mean generation time and the effective delayed neutron fraction the neutron flux distribution of the effective multiplication factor equation is typically used, which is equivalent to an artificial critical steady-state reactor. However, it is the time-dependence of the decay of the neutron populations including their redistribution in space and energy, which affects the analyzed kinetic parameters. Consequently, this work aims for the accurate simulation of these phenomena with particular emphasis on the quality of the effective neutron cross sections. In this work new microscopic master libraries based on the JEFF 3.1, JEFF 3.1.1 and ENDF/B VII.0 evaluations are developed with a general purpose 350 energy groups structure for the deterministic

  20. Monte Carlo modeling and analyses of YALINA booster subcritical assembly, Part III : low enriched uranium conversion analyses.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y. (Nuclear Engineering Division)

    2011-05-12

    This study investigates the performance of the YALINA Booster subcritical assembly, located in Belarus, during operation with high (90%), medium (36%), and low (21%) enriched uranium fuels in the assembly's fast zone. The YALINA Booster is a zero-power, subcritical assembly driven by a conventional neutron generator. It was constructed for the purpose of investigating the static and dynamic neutronics properties of accelerator driven subcritical systems, and to serve as a fast neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinides. The first part of this study analyzes the assembly's performance with several fuel types. The MCNPX and MONK Monte Carlo codes were used to determine effective and source neutron multiplication factors, effective delayed neutron fraction, prompt neutron lifetime, neutron flux profiles and spectra, and neutron reaction rates produced from the use of three neutron sources: californium, deuterium-deuterium, and deuterium-tritium. In the latter two cases, the external neutron source operates in pulsed mode. The results discussed in the first part of this report show that the use of low enriched fuel in the fast zone of the assembly diminishes neutron multiplication. Therefore, the discussion in the second part of the report focuses on finding alternative fuel loading configurations that enhance neutron multiplication while using low enriched uranium fuel. It was found that arranging the interface absorber between the fast and the thermal zones in a circular rather than a square array is an effective method of operating the YALINA Booster subcritical assembly without downgrading neutron multiplication relative to the original value obtained with the use of the high enriched uranium fuels in the fast zone.

  1. The procedure and results of calculations of the equilibrium isotopic composition of a demonstration subcritical molten salt reactor

    Science.gov (United States)

    Nevinitsa, V. A.; Dudnikov, A. A.; Blandinskiy, V. Yu.; Balanin, A. L.; Alekseev, P. N.; Titarenko, Yu. E.; Batyaev, V. F.; Pavlov, K. V.; Titarenko, A. Yu.

    2015-12-01

    A subcritical molten salt reactor with an external neutron source is studied computationally as a facility for incineration and transmutation of minor actinides from spent nuclear fuel of reactors of VVER-1000 type and for producing 233U from 232Th. The reactor configuration is chosen, the requirements to be imposed on the external neutron source are formulated, and the equilibrium isotopic composition of heavy nuclides and the key parameters of the fuel cycle are calculated.

  2. Large time behavior of solutions for critical and subcritical complex Ginzburg-Landau equations in H1

    Institute of Scientific and Technical Information of China (English)

    王保祥

    2003-01-01

    Considering the Cauchy problem for the critical complex Ginzburg-Landau equation in H1(Rn), weshall show the asymptotic behavior for its solutions in C(0, ∞; H1 (Rn)) ∩ L2(0, ∞; H1,2n/(n-2)(Rn )), n≥ 3.Analogous results also hold in the case that the nonlinearity has the subcritical power in H1(Rn), n≥ 1.

  3. The procedure and results of calculations of the equilibrium isotopic composition of a demonstration subcritical molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nevinitsa, V. A., E-mail: Neviniza-VA@nrcki.ru; Dudnikov, A. A.; Blandinskiy, V. Yu.; Balanin, A. L.; Alekseev, P. N. [National Research Centre Kurchatov Institute (Russian Federation); Titarenko, Yu. E.; Batyaev, V. F.; Pavlov, K. V.; Titarenko, A. Yu., E-mail: yuri.titarenko@itep.ru [Institute for Theoretical and Experimental Physics (Russian Federation)

    2015-12-15

    A subcritical molten salt reactor with an external neutron source is studied computationally as a facility for incineration and transmutation of minor actinides from spent nuclear fuel of reactors of VVER-1000 type and for producing {sup 233}U from {sup 232}Th. The reactor configuration is chosen, the requirements to be imposed on the external neutron source are formulated, and the equilibrium isotopic composition of heavy nuclides and the key parameters of the fuel cycle are calculated.

  4. Analysis of the Temporal Response of Coupled Asymmetrical Zero-Power Subcritical Bare Metal Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Klain, Kimberly L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-21

    The behavior of symmetrical coupled-core systems has been extensively studied, yet there is a dearth of research on asymmetrical systems due to the increased complexity of the analysis of such systems. In this research, the multipoint kinetics method is applied to asymmetrical zeropower, subcritical, bare metal reactor systems. Existing research on asymmetrical reactor systems assumes symmetry in the neutronic coupling; however, it will be shown that this cannot always be assumed. Deep subcriticality adds another layer of complexity and requires modification of the multipoint kinetics equations to account for the effect of the external neutron source. A modified set of multipoint kinetics equations is derived with this in mind. Subsequently, the Rossi-alpha equations are derived for a two-region asymmetrical reactor system. The predictive capabilities of the radiation transport code MCNP6 for neutron noise experiments are shown in a comparison to the results of a series of Rossi-alpha measurements performed by J. Mihalczo utilizing a coupled set of symmetrical bare highly-enriched uranium (HEU) cylinders. The ptrac option within MCNP6 can generate time-tagged counts in a cell (list-mode data). The list-mode data can then be processed similarly to measured data to obtain values for system parameters such as the dual prompt neutron decay constants observable in a coupled system. The results from the ptrac simulations agree well with the historical measured values. A series of case studies are conducted to study the effects of geometrical asymmetry in the coupling between two bare metal HEU cylinders. While the coupling behavior of symmetrical systems has been reported on extensively, that of asymmetrical systems remains sparse. In particular, it appears that there has been no previous research in obtaining the coupling time constants for asymmetrically-coupled systems. The difficulty in observing such systems is due in part to the inability to determine the

  5. Stabilization and control of subcritical semilinear wave equation in bounded domain with Cauchy-Ventcel boundary conditions

    Institute of Scientific and Technical Information of China (English)

    A.Kanoune; N.Mehidi

    2008-01-01

    We analyze the exponential decay property of solutions of the semilinear wave equation in bounded domain Q of RN with a damping term which is effective on the exterior of a ball and boundary conditions of the Cauchy-ventcel type.Under suitable and natural assumptions on the nonlinearity,we prove that the exponential decay holds locally uniformly for finite energy solutions provided the nonlinearity is subcritical at infinity.Subcriticality means,roughly speaking,that the nonlinearity grows at infinity at most as a power P<5.The results obtained in R3 and RN by B.Dehman,G.Lebeau and E.Zuazua on the inequalities of the classical energv(which estimate the total energy of solutions in terms of the energy localized in the exterior of a ball)and on Strichartz's estimates,allow us to give an application to the stabilization controllability of the semilinear wave equation in a bounded domain of RN with a subcritical nonlinearity on the domain and its boundary,and conditions on the boundary of Cauchy-Vlentcel type.

  6. Recovery of Palm Oil and Valuable Material from Oil Palm Empty Fruit Bunch by Sub-critical Water.

    Science.gov (United States)

    Ahmad Kurnin, Nor Azrin; Shah Ismail, Mohd Halim; Yoshida, Hiroyuki; Izhar, Shamsul

    2016-01-01

    Oil palm empty fruit bunch (EFB) is one of the solid wastes produced in huge volume by palm oil mill. Whilst it still contains valuable oil, approximately 22.6 million tons is generated annually and treated as solid waste. In this work, sub-critical water (sub-cw) was used to extract oil, sugar and tar from spikelet of EFB. The spikelet was treated with sub-cw between 180-280°C and a reaction time of 2 and 5 minutes. The highest yield of oil was 0.075 g-oil/g-dry EFB, obtained at 240°C and reaction time of 5 minutes. Astonishingly, oil that was extracted through this method was 84.5% of that obtained through Soxhlet method using hexane. Yield of oil extracted was strongly affected by the reaction temperature and time. Higher reaction temperature induces the dielectric constant of water towards the non-polar properties of solvent; thus increases the oil extraction capability. Meanwhile, the highest yield of sugar was 0.20 g-sugar/g-dry EFB obtained at 220°C. At this temperature, the ion product of water is high enough to enable maximum sub-critical water hydrolysis reaction. This study showed that oil and other valuable material can be recovered using water at sub-critical condition, and most attractive without the use of harmful organic solvent.

  7. 充气式机翼的颤振特性分析%Flutter analysis of inflatable wings

    Institute of Scientific and Technical Information of China (English)

    谢长川; 王伟建; 杨超

    2011-01-01

    充气式机翼的结构刚度由内充气压决定,其颤振特性需要建立静、动力学耦合的分析方法.机翼结构刚度和固有振动特性需要在静力分析基础上计算,进一步计算非定常气动力,从而采用传统的颤振计算方法分析其颤振特性.针对某一充气式机翼采用膜单元建立了有限元模型.在不同内充压条件下,对充气机翼进行了静力分析得到其结构刚度;然后对机翼进行模态计算和颤振分析.研究表明:各阶模态的频率随内充气压的升高而升高;除典型的弯扭模态外,充气机翼的弦向弯曲模态频率较低;充气机翼的颤振形式除常规的弯扭模态耦合外,弦向弯曲模态同样会发生颤振;机翼的临界颤振速度随内充压的变化近似呈分段线性变化;临界颤振模态及耦合分支在一定气压范围内保持不变.%The stiffness of inflatable wing is determined by the internal pressure,so the static and dynamic coupling method should be established to solve the flutter problems of such wings.The structural stiffness and the normal modes should be calculated on the base of the static analysis.Then the unsteady aerodynamics can be calculated and the flutter characteristics of the wing can be analyzed using the traditional methods.For an inflated wing,the finite element model was created using membrane elements.The structure stiffness of the wing was derived by the static analysis and the normal modes were calculated.Then the flutter of the wing was analyzed.The results show that,as the internal pressure increases,each mode's natural frequencies increases.Except for the typical bending and torsion modes,the chord-wise bending modes have low frequencies.The chord-warping modes can induce flutter besides the conventional bending-torsion flutter type.The critical flutter speed of the inflatable wing presents nearly linearity with internal pressure increased in specific range and the corresponding flutter modes dose

  8. Subcritical Water Induced Complexation of Soy Protein and Rutin: Improved Interfacial Properties and Emulsion Stability.

    Science.gov (United States)

    Chen, Xiao-Wei; Wang, Jin-Mei; Yang, Xiao-Quan; Qi, Jun-Ru; Hou, Jun-Jie

    2016-09-01

    Rutin is a common dietary flavonoid with important antioxidant and pharmacological activities. However, its application in the food industry is limited mainly because of its poor water solubility. The subcritical water (SW) treatment provides an efficient technique to solubilize and achieve the enrichment of rutin in soy protein isolate (SPI) by inducing their complexation. The physicochemical, interfacial, and emulsifying properties of the complex were investigated and compared to the mixtures. SW treatment had much enhanced rutin-combined capacity of SPI than that of conventional method, ascribing to the well-contacted for higher water solubility of rutin with stronger collision-induced hydrophobic interactions. Compared to the mixtures of rutin with proteins, the complex exhibited an excellent surface activity and improved the physical and oxidative stability of its stabilized emulsions. This improving effect could be attributed to the targeted accumulation of rutin at the oil-water interface accompanied by the adsorption of SPI resulting in the thicker interfacial layer, as evidenced by higher interfacial protein and rutin concentrations. This study provides a novel strategy for the design and enrichment of nanovehicle providing water-insoluble hydrophobic polyphenols for interfacial delivery in food emulsified systems.

  9. Production of medical radioactive isotopes using KIPT electron driven subcritical facility

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: alby@anl.gov; Gohar, Yousry [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2008-05-15

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, {gamma}), (n, 2n), (n, p), and ({gamma}, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope.

  10. Subcritical Butane Extraction of Wheat Germ Oil and Its Deacidification by Molecular Distillation.

    Science.gov (United States)

    Li, Jinwei; Sun, Dewei; Qian, Lige; Liu, Yuanfa

    2016-12-07

    Extraction and deacidification are important stages for wheat germ oil (WGO) production. Crude WGO was extracted using subcritical butane extraction (SBE) and compared with traditional solvent extraction (SE) and supercritical carbon dioxide extraction (SCE) based on the yield, chemical index and fatty acid profile. Furthermore, the effects of the molecular distillation temperature on the quality of WGO were also investigated in this study. Results indicated that WGO extracted by SBE has a higher yield of 9.10% and better quality; at the same time, its fatty acid composition has no significant difference compared with that of SE and SCE. The molecular distillation experiment showed that the acid value, peroxide value and p-anisidine value of WGO were reduced with the increase of the evaporation temperatures, and the contents of the active constituents of tocopherol, polyphenols and phytosterols are simultaneously decreased. Generally, the distillation temperature of 150 °C is an appropriate condition for WGO deacidification with the higher deacidification efficiency of 77.78% and the higher retention rate of active constituents.

  11. CFD Analysis and Design of Detailed Target Configurations for an Accelerator-Driven Subcritical System

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Adam; Merzari, Elia; Sofu, Tanju; Zhong, Zhaopeng; Gohar, Yousry

    2016-08-01

    High-fidelity analysis has been utilized in the design of beam target options for an accelerator driven subcritical system. Designs featuring stacks of plates with square cross section have been investigated for both tungsten and uranium target materials. The presented work includes the first thermal-hydraulic simulations of the full, detailed target geometry. The innovative target cooling manifold design features many regions with complex flow features, including 90 bends and merging jets, which necessitate three-dimensional fluid simulations. These were performed using the commercial computational fluid dynamics code STAR-CCM+. Conjugate heat transfer was modeled between the plates, cladding, manifold structure, and fluid. Steady-state simulations were performed but lacked good residual convergence. Unsteady simulations were then performed, which converged well and demonstrated that flow instability existed in the lower portion of the manifold. It was established that the flow instability had little effect on the peak plate temperatures, which were well below the melting point. The estimated plate surface temperatures and target region pressure were shown to provide sufficient margin to subcooled boiling for standard operating conditions. This demonstrated the safety of both potential target configurations during normal operation.

  12. Sub-critical crack growth in silicate glasses: Role of network topology

    Energy Technology Data Exchange (ETDEWEB)

    Smedskjaer, Morten M., E-mail: mos@bio.aau.dk [Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg (Denmark); Bauchy, Mathieu [Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095 (United States)

    2015-10-05

    The presence of water in the surrounding atmosphere can cause sub-critical crack growth (SCCG) in glasses, a phenomenon known as fatigue or stress corrosion. Here, to facilitate the compositional design of more fatigue-resistant glasses, we investigate the composition dependence of SCCG by studying fourteen silicate glasses. The fatigue curves (V-K{sub I}) have been obtained by indentation experiments through measurements of the crack length as a function of post-indentation fatigue duration. Interestingly, we find that the fatigue resistance parameter N is generally improved by increasing the alumina content and is thereby found to exhibit a fairly linear dependence on the measured Vickers hardness H{sub V} for a wide range of N and H{sub V} values. This finding highlights the important role of network topology in governing the SCCG in silicate glasses, since hardness has been shown to scale linearly with the number of atomic constraints. Our results therefore suggest that glasses showing under-constrained flexible networks, which feature floppy internal modes of deformation, are more readily attacked by water molecules, thus promoting stress corrosion and reducing the fatigue resistance.

  13. Joule-heating-supported plasma filamentation and branching during subcritical microwave irradiation

    Science.gov (United States)

    Takahashi, Masayuki; Kageyama, Yoshiaki; Ohnishi, Naofumi

    2017-05-01

    Breakdown physics induced by a subcritical microwave was numerically reproduced by using a two-dimensional effective diffusion model for plasma transport and combining it with Maxwell's equations and a neutral gas dynamics equation. A discrete plasma structure was obtained when E0,rms/Ec ≧0.69 , where E0,rms is the root-mean-square of the incident electric field and Ec is the breakdown threshold, because an overcritical field that exceeded the breakdown threshold was formed in a region away from the bulk plasma by the wave reflection when the plasma reflectivity was increased by joule heating. However, a continuous plasma structure with a branching pattern was formed when E0,rms/Ec <0.69 because the enhanced electric-field region away from the bulk plasma never exceeded the breakdown threshold even when the plasma reflectivity increased. The propagation speed of the plasma front drastically decreased when E0,rms/Ec <0.69 because the plasma propagation was sustained by strong gas expansion, which required more time than wave-reflection and ionization processes.

  14. Investigation of radiation fields outside the Sub-critical Assembly in Dubna.

    Science.gov (United States)

    Seltbor, P; Lopatkin, A; Gudowski, W; Shvetsov, V; Polanski, A

    2005-01-01

    The radiation fields outside the planned experimental Sub-critical Assembly in Dubna (SAD) have been studied in order to provide a basis for the design of the concrete shielding that cover the reactor core. The effective doses around the reactor, induced by leakage of neutrons and photons through the shielding, have been determined for a shielding thickness varying from 100 to 200 cm. It was shown that the neutron flux and the effective dose is higher above the shielding than at the side of it, owing to the higher fraction of high-energy spallation neutrons emitted in the direction of the incident beam protons. At the top, the effective dose was found to be -150 microSv s(-1) for a concrete thickness of 100 cm, while -2.5 microSv s(-1) for a concrete thickness of 200 cm. It was also shown that the high-energy neutrons (> 10 MeV), which are created in the proton-induced spallation interactions in the target, contribute for the major part of the effective doses outside the reactor.

  15. Structural elucidation and immunostimulatory activity of polysaccharide isolated by subcritical water extraction from Cordyceps militaris.

    Science.gov (United States)

    Luo, Xiaoping; Duan, Yuqing; Yang, Wenya; Zhang, Haihui; Li, Changzheng; Zhang, Jixian

    2017-02-10

    Water-soluble polysaccharides were obtained from Cordyceps militaris (C. militaris) (CMP) by subcritical water extraction (SWE). Two polysaccharides fractions, CMP-W1 and CMP-S1, were isolated from CMP using DEAE-52 cellulose and Sephadex G-150 column chromatography. The structural characteristics of CMP-W1 and CMP-S1 were investigated. The results showed that the molecular weight of CMP-W1 and CMP-S1 are 3.66×105Da and 4.60×105Da, respectively, and both of them were heteropolysaccharides composed of d-mannose, d-glucose, d-galactose with the molar ratios of 2.84:1:1.29 and 2.05:1:1.09, respectively. FT-IR spectra analysis suggested that CMP-W1 and CMP-S1 belonged to pyranose form sugar and protein free. For immunostimulatory activity assay in vitro, CMP-W1 and CMP-S1 significantly promoted lymphatic spleen cell proliferation of mice. Therefore, the polysaccharides obtained from C. militaris by SWE can be used as potential natural immunostimulant in functional foods or medicine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Combined subcritical water and enzymatic hydrolysis for reducing sugar production from coconut husk

    Science.gov (United States)

    Muharja, Maktum; Junianti, Fitri; Nurtono, Tantular; Widjaja, Arief

    2017-05-01

    Coconut husk wastes are abundantly available in Indonesia. It has a potential to be used into alternative renewable energy sources such as hydrogen using enzymatic hydrolysis followed by a fermentation process. Unfortunately, enzymatic hydrolysis is hampered by the complex structure of lignocellulose, so the cellulose component is hard to degrade. In this study, Combined Subcritical Water (SCW) and enzymatic hydrolysis are applied to enhance fermentable, thereby reducing production of sugar from coconut husk. There were two steps in this study, the first step was coconut husk pretreated by SCW in batch reactor at 80 bar and 150-200°C for 60 minutes reaction time. Secondly, solid fraction from the results of SCW was hydrolyzed using the mixture of pure cellulose and xylanase enzymes. Analysis was conducted on untreated and SCW-treated by gravimetric assay, liquid fraction after SCW and solid fraction after enzymatic hydrolysis using DNS assay. The maximum yield of reducing sugar (including xylose, arabinose glucose, galactose, mannose) was 1.254 gr per 6 gr raw material, representing 53.95% of total sugar in coconut husk biomass which was obtained at 150°C 80 bar for 60 minutes reaction time of SCW-treated and 6 hour of enzymatic hydrolysis using mixture of pure cellulose and xylanase enzymes (18.6 U /gram of coconut husk).

  17. The sup 252 Cf-source-driven noise measurements of unreflected uranium hydride cylinder subcriticality

    Energy Technology Data Exchange (ETDEWEB)

    Mihalczo, J.T.; Pare, V.K.; Blakeman, E.D. (Oak Ridge National Lab., TN (United States))

    1991-01-01

    Subcritical neutron multiplication factors have been measured by the {sup 252}Cf-source-driven noise analysis method for unreflected, 15.0-cm-diam uranium hydride cylinders of varying heights. Because of the difficulty and cost of controlling the H/U ratio in damp uranium (93.2 wt% {sup 235}U) oxide power and fabricating sufficient material for experiments, few experiments have been performed with materials of low H/U ratios. These measurements may provide alternate information that can be used for verifying calculational methods since the H/U ratio for this material is 3.00. These measurements, which are the first application of this method to uranium hydride, were performed at the Los Alamos National Laboratory Critical Experiments Facility in 1989. These measurements were used to demonstrate the capability of this measurement method for this type of material and to provide a benchmark experiment for calculational methods with slightly moderated systems. Previous experiments by this method were for a wide variety of well-moderated systems or unmoderated uranium metal cylinders.

  18. Large deviations for self-intersection local times in subcritical dimensions

    CERN Document Server

    Laurent, Clément

    2010-01-01

    Let $(X_t,t\\geq 0)$ be a random walk on $\\mathbb{Z}^d$. Let $ l_t(x)= \\int_0^t \\delta_x(X_s)ds$ be the local time at site $x$ and $ I_t= \\sum\\limits_{x\\in\\mathbb{Z}^d} l_t(x)^p $ the p-fold self-intersection local time (SILT). Becker and K\\"onig have recently proved a large deviations principle for $I_t$ for all $(p,d)\\in\\mathbb{R}^d\\times\\mathbb{Z}^d$ such that $p(d-2)<2$. We extend these results to a broader scale of deviations and to the whole subcritical domain $p(d-2)

  19. Microwave Assisted Extraction of Defatted Roselle (Hibiscus sabdariffa L. Seed at Subcritical Conditions with Statistical Analysis

    Directory of Open Access Journals (Sweden)

    N. I. Yusoff

    2017-01-01

    Full Text Available Roselle seeds are the waste product of roselle processing, but they are now labeled as a polyphenol source with great herbal quality. In this work, polyphenols were extracted using ethanol-water (70% (v/v in a closed vessel under microwave irradiation. The main objective was to determine the optimal parameters statistically. The influence of extraction time (4–10 min, microwave power (100–300 W, and solvent/solid ratio (25–100 mL/g was studied. The total phenolic and flavonoids content were determined using Folin-Ciocalteu and aluminum chloride methods, respectively. Without temperature control, the subcritical conditions could occur and the highest flavonoid content (14.4251 mg QE/g was achieved at 158°C and 16.4 bar. Although the optimum MAE conditions (10 min, 300 W, and 97.7178 mL/g resulted in the highest yield (65.0367% and phenolic content (18.2244 mg GAE/g, low flavonoids content (6.4524 mg QE/g was unexpectedly obtained due to degradation at 163°C.

  20. Decontamination of PCBs-containing soil using subcritical water extraction process.

    Science.gov (United States)

    Islam, Mohammad Nazrul; Park, Jeong-Hun; Shin, Moon-Su; Park, Ha-Seung

    2014-08-01

    Polychlorinated biphenyls (PCBs) are one of the excision compounds listed at the Stockholm convention in 2001. Although their use has been heavily restricted, PCBs can be found in some specific site-contaminated soils. Either removal or destruction is required prior to disposal. The subcritical water extraction (SCWE) of organic hazardous compounds from contaminated soils is a promising technique for hazardous waste contaminated-site cleanup. In this study, the removal of PCBs by the SCWE process was investigated. The effects of temperature and treatment time on removal efficiency have been determined. In the SCWE experiments, a removal percentage of 99.7% was obtained after 1h of treatment at 250°C. The mass removal efficiency of low-chlorinated species was higher than high-chlorinated congeners at lower temperatures, but it was oppositely observed at higher temperatures because the lower chlorinated congeners are formed by dechlorination of higher chlorinated congeners. Gas chromatography/mass spectrometry analysis confirmed that the PCBs underwent partial degradation. Several degradation products including mono- and di-chlorinated biphenyls, oxygen-containing aromatic compounds, and small-size hydrocarbons were identified in the effluent water, which were not initially present in the contaminated soil.

  1. Energy conversion of biomass with supercritical and subcritical water using large-scale plants.

    Science.gov (United States)

    Okajima, Idzumi; Sako, Takeshi

    2014-01-01

    Exploiting unused or waste biomass as an alternative fuel is currently receiving much attention because of the potential reductions in CO2 emissions and the lower cost in comparison to expensive fossil fuels. If we are to use biomass domestically or industrially, we must be able to convert biomass to high-quality and easy-to-use liquid, gas, or solid fuels that have high-calorific values, low moisture and ash contents, uniform composition, and suitable for stored over long periods. In biomass treatment, hot and high-pressure water including supercritical and subcritical water is an excellent solvent, as it is clean and safe and its action on biomass can be optimized by varying the temperature and pressure. In this article, the conversion of waste biomass to fuel using hot and high-pressure water is reviewed, and the following examples are presented: the production of large amounts of hydrogen from waste biomass, the production of cheap bioethanol from non-food raw materials, and the production of composite powder fuel from refractory waste biomass in the rubble from the Great East Japan Earthquake. Several promising techniques for the conversion of biomass have been demonstrated in large-scale plants and commercial deployment is expected in the near future. Copyright © 2013. Published by Elsevier B.V.

  2. Fusion-Driven Sub-Critical Dual-Cooled Waste Transmutation Blanket:Design and Analysis

    Institute of Scientific and Technical Information of China (English)

    Wang Weihua(汪卫华); Wu Yican(吴宜灿); Ke Yan(柯严); Kang Zhicheng(康志诚); Wang Hongyan(王红艳); Huang Qunying(黄群英)

    2003-01-01

    The Fusion-Driven Sub-critical System (FDS) is one of the Chinese programs to be further developed for fusion application. Its Dual-cooled Waste Transmutation Blanket (DWTB),as one the most important part of the FDS is cooled by helium and liquid metal, and have the features of safety, tritium self-sustaining, high efficiency and feasibility. Its conceptual design has been finished. This paper is mainly involved with the basic structure design and thermalhydraulics analysis of DWTB. On the basis of a three-dimensional (3-D) model of radial-toroidal sections of the segment box, thermal temperature gradients and structure analysis made with a comprehensive finite element method (FEM) have been performed with the computer code ANSYS5.7 and computational fluid dynamic finite element codes. The analysis refers to the steady-state operating condition of an outboard blanket segment. Furthermore, the mechanical loads due to coolant pressure in normal operating conditions have been also taken into account.All the above loads have been combined as an input for a FEM stress analysis and the resulting stress distribution has been evaluated. Finally, the structure design and Pb-17Li flow velocity has been optimized according to the calculations and analysis.

  3. On the unsteady inviscid force on cylinders and spheres in subcritical compressible flow.

    Science.gov (United States)

    Parmar, M; Haselbacher, A; Balachandar, S

    2008-06-28

    The unsteady inviscid force on cylinders and spheres in subcritical compressible flow is investigated. In the limit of incompressible flow, the unsteady inviscid force on a cylinder or sphere is the so-called added-mass force that is proportional to the product of the mass displaced by the body and the instantaneous acceleration. In compressible flow, the finite acoustic propagation speed means that the unsteady inviscid force arising from an instantaneously applied constant acceleration develops gradually and reaches steady values only for non-dimensional times c(infinity)t/R approximately >10, where c(infinity) is the freestream speed of sound and R is the radius of the cylinder or sphere. In this limit, an effective added-mass coefficient may be defined. The main conclusion of our study is that the freestream Mach number has a pronounced effect on both the peak value of the unsteady force and the effective added-mass coefficient. At a freestream Mach number of 0.5, the effective added-mass coefficient is about twice as large as the incompressible value for the sphere. Coupled with an impulsive acceleration, the unsteady inviscid force in compressible flow can be more than four times larger than that predicted from incompressible theory. Furthermore, the effect of the ratio of specific heats on the unsteady force becomes more pronounced as the Mach number increases.

  4. Hydrothermal liquefaction of Spirulina and Nannochloropsis salina under subcritical and supercritical water conditions.

    Science.gov (United States)

    Toor, Saqib S; Reddy, Harvind; Deng, Shuguang; Hoffmann, Jessica; Spangsmark, Dorte; Madsen, Linda B; Holm-Nielsen, Jens Bo; Rosendahl, Lasse A

    2013-03-01

    Six hydrothermal liquefaction experiments on Nannochloropsis salina and Spirulina platensis at subcritical and supercritical water conditions (220–375 °C, 20–255 bar) were carried out to explore the feasibility of extracting lipids from wet algae, preserving nutrients in lipid-extracted algae solid residue, and recycling process water for algae cultivation. GC–MS, elemental analyzer, FT-IR, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-crude yield of 46% was obtained on N. salina at 350 °C and 175 bar. For S. platensis algae sample, the optimal hydrothermal liquefaction condition appears to be at 310 °C and 115 bar, while the optimal condition for N. salina is at 350 °C and 175 bar. Preliminary data also indicate that a lipid-extracted algae solid residue sample obtained in the hydrothermal liquefaction process contains a high level of proteins.

  5. Nuclear fission sustainability with subcritical reactors driven by external neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Lafuente, A., E-mail: anlafuente@etsii.upm.es [ETSII-UPM, c/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain); Piera, M. [ETSII:UNED, c/Juan del Rosal, 12, 28040 Madrid (Spain)

    2011-04-15

    Although nuclear breeder reactors are a promising way to enhance the potential energy currently retrievable from the Uranium reserves, they still have disadvantages because of their safety features (i.e. poor stabilizing mechanisms) and the security of their fuel cycle (diversion of Pu for non-civilian purposes). Loading natural nuclear fuels to a reactor and completely burning them without reprocessing would be ideal, however, this is not possible in critical reactors due to the limitations imposed by the maximum achievable burn-up. An alternative option to attain very high percentages of nuclear natural materials exploitation, while meeting other objectives of Nuclear Sustainability, could consist of using externally-driven subcritical reactors to reach the desired high burn-ups (of the order of 30% and more) without reprocessing. Such scheme would lead to an efficient exploitation of the available raw material, without any risk of proliferation. Exploring this type of reactor concept, this paper analyzes the different ways to accomplish this goal while identifying potential setbacks.

  6. Acceleration and localization of subcritical crack growth in a natural composite material.

    Science.gov (United States)

    Lennartz-Sassinek, S; Main, I G; Zaiser, M; Graham, C C

    2014-11-01

    Catastrophic failure of natural and engineered materials is often preceded by an acceleration and localization of damage that can be observed indirectly from acoustic emissions (AE) generated by the nucleation and growth of microcracks. In this paper we present a detailed investigation of the statistical properties and spatiotemporal characteristics of AE signals generated during triaxial compression of a sandstone sample. We demonstrate that the AE event amplitudes and interevent times are characterized by scaling distributions with shapes that remain invariant during most of the loading sequence. Localization of the AE activity on an incipient fault plane is associated with growth in AE rate in the form of a time-reversed Omori law with an exponent near 1. The experimental findings are interpreted using a model that assumes scale-invariant growth of the dominating crack or fault zone, consistent with the Dugdale-Barenblatt "process zone" model. We determine formal relationships between fault size, fault growth rate, and AE event rate, which are found to be consistent with the experimental observations. From these relations, we conclude that relatively slow growth of a subcritical fault may be associated with a significantly more rapid increase of the AE rate and that monitoring AE rate may therefore provide more reliable predictors of incipient failure than direct monitoring of the growing fault.

  7. The Optimal Evaporation Temperature of Subcritical ORC Based on Second Law Efficiency for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Xu

    2012-03-01

    Full Text Available The subcritical Organic Rankine Cycle (ORC with 28 working fluids for waste heat recovery is discussed in this paper. The effects of the temperature of the waste heat, the critical temperature of working fluids and the pinch temperature difference in the evaporator on the optimal evaporation temperature (OET of the ORC have been investigated. The second law efficiency of the system is regarded as the objective function and the evaporation temperature is optimized by using the quadratic approximations method. The results show that the OET will appear for the temperature ranges investigated when the critical temperatures of working fluids are lower than the waste heat temperatures by 18 ± 5 K under the pinch temperature difference of 5 K in the evaporator. Additionally, the ORC always exhibits the OET when the pinch temperature difference in the evaporator is raised under the fixed waste heat temperature. The maximum second law efficiency will decrease with the increase of pinch temperature difference in the evaporator.

  8. Comparing methods for estimating R0 from the size distribution of subcritical transmission chains.

    Science.gov (United States)

    Blumberg, S; Lloyd-Smith, J O

    2013-09-01

    Many diseases exhibit subcritical transmission (i.e. 0distribution that permits a variable degree of transmission heterogeneity, we present a unified analysis of existing R0 estimation methods. Simulation studies show that the degree of transmission heterogeneity, when improperly modeled, can significantly impact the bias of R0 estimation methods designed for imperfect observation. These studies also highlight the importance of isolated cases in assessing whether an estimation technique is consistent with observed data. Analysis of data from measles outbreaks shows that likelihood scores are highest for models that allow a flexible degree of transmission heterogeneity. Aggregating intermediate sized chains often has similar performance to analyzing a complete chain size distribution. However, truncating isolated cases is beneficial only when surveillance systems clearly favor full observation of large chains but not small chains. Meanwhile, if data on the type and proportion of cases that are unobserved were known, we demonstrate that maximum likelihood inference of R0 could be adjusted accordingly. This motivates the need for future empirical and theoretical work to quantify observation error and incorporate relevant mechanisms into stuttering chain models used to estimate transmission parameters.

  9. Subcritical hydrothermal treatment for the recovery of liquid fertilizer from scallop entrails.

    Science.gov (United States)

    Hwang, In-Hee; Aoyama, Hiroya; Abe, Natsuki; Matsuo, Takayuki; Matsuto, Toshihiko

    2015-01-01

    Scallop entrails are organic wastes containing abundant proteins and minerals but are considered difficult to recycle because of high cadmium concentrations. In this work, the current problem of scallop entrails recycling was investigated and a subcritical hydrothermal treatment (SCHT) was examined for the recovery of liquid fertilizer from scallop entrails. Scallop entrails are mainly recycled for composting and feedstuff production. However, the dilution by mixing scallop entrails with other feed waste was the sole countermeasure to reduce the cadmium concentration of compost. For feedstuff production, whole product derived from scallop entrails was exported to other countries instead of domestic utilization. Temperature, retention time (RT) at given temperature, and liquid-to-solid (LS) ratio were examined as SCHT conditions for scallop entrails processing. The extraction ratio of each constituent mainly depends on the temperature rather than the RT or the LS ratio. Upon the SCHT of scallop entrails at 200°C, an RT of 20 min, and an LS ratio of 10, the extraction of fertilizer constituents such as nitrogen, phosphorus, and potassium from the liquid product was optimum, whereas the release of cadmium was suppressed. The concentrations of heavy metals in the liquid product obtained using the above-mentioned SCHT conditions were below the maximum permissible concentration stipulated by the Fertilizer Control Law. SCHT is considered to be a feasible recycling method for scallop entrails to recover fertilizer components with a concomitant separation of cadmium from the product.

  10. High performance curcumin subcritical water extraction from turmeric (Curcuma longa L.).

    Science.gov (United States)

    Valizadeh Kiamahalleh, Mohammad; Najafpour-Darzi, Ghasem; Rahimnejad, Mostafa; Moghadamnia, Ali Akbar; Valizadeh Kiamahalleh, Meisam

    2016-06-01

    Curcumin is a hydrophobic polyphenolic compound derived from turmeric rhizome, which consists about 2-5% of the total rhizome content and is a more valuable component of turmeric. For reducing the drawbacks of conventional extraction (using organic solvents) of curcumin, the water as a clean solvent was used for extracting curcumin. Subcritical water extraction (SWE) experimental setup was fabricated in a laboratory scale and the influences of some parameters (e.g. extraction temperature, particle size, retention time and pressure) on the yield of extraction were investigated. Optimum extraction conditions such as SWE pressure of 10bar, extractive temperature of 140°C, particle size of 0.71mm and retention time of 14min were defined. The maximum amount of curcumin extracted at the optimum condition was 3.8wt%. The yield of curcumin extraction was more than 76wt% with regards to the maximum possible curcumin content of turmeric, as known to be 5%. The scanning electron microscope (SEM) images from the outer surface of turmeric, before and after extraction, clearly demonstrated the effect of each parameter; changes in porosity and hardness of turmeric that is directly related to the amount of extracted curcumin in process optimization of the extraction parameters.

  11. LARGE-EDDY SIMULATION OF FLOW AROUND CYLINDER ARRAYS AT A SUBCRITICAL REYNOLDS NUMBER

    Institute of Scientific and Technical Information of China (English)

    ZOU Lin; LIN Yu-feng; LAM Kit

    2008-01-01

    The complex three-dimensional turbulent flows around a cylinder array with four cylinders in an in-line square configuration at a subcritical Reynolds number of 1.5 ×104 with the spacing ratio at and 3.5 were investigated using the Large Eddy Simulation (LES). The full field vorticity and velocity distributions as well as turbulent quantities were calculated in detail and the near wake structures were presented. The results show that the bi-stable flow nature was observed at and distinct vortex shedding of the upstream cylinders occurred at at . The techniques of Laser Doppler Anemometry (LDA) and Digital Particle Image Velocimetry (DPIV) are also employed to validate the present LES method. The results show that the numerical predictions are in excellent agreement with the experimental measurements. Therefore, the full field instantaneous and mean quantities of the flow field, velocity field and vorticity field can be extracted from the LES results for further study of the complex flow characteristics.

  12. Beyond the ponderomotive limit: Direct laser acceleration of relativistic electrons in sub-critical plasmas

    Science.gov (United States)

    Arefiev, A. V.; Khudik, V. N.; Robinson, A. P. L.; Shvets, G.; Willingale, L.; Schollmeier, M.

    2016-05-01

    We examine a regime in which a linearly polarized laser pulse with relativistic intensity irradiates a sub-critical plasma for much longer than the characteristic electron response time. A steady-state channel is formed in the plasma in this case with quasi-static transverse and longitudinal electric fields. These relatively weak fields significantly alter the electron dynamics. The longitudinal electric field reduces the longitudinal dephasing between the electron and the wave, leading to an enhancement of the electron energy gain from the pulse. The energy gain in this regime is ultimately limited by the superluminosity of the wave fronts induced by the plasma in the channel. The transverse electric field alters the oscillations of the transverse electron velocity, allowing it to remain anti-parallel to laser electric field and leading to a significant energy gain. The energy enhancement is accompanied by the development of significant oscillations perpendicular to the plane of the driven motion, making trajectories of energetic electrons three-dimensional. Proper electron injection into the laser beam can further boost the electron energy gain.

  13. Recycling high-performance carbon fiber reinforced polymer composites using sub-critical and supercritical water

    Science.gov (United States)

    Knight, Chase C.

    Carbon fiber reinforced plastics (CFRP) are composite materials that consist of carbon fibers embedded in a polymer matrix, a combination that yields materials with properties exceeding the individual properties of each component. CFRP have several advantages over metals: they offer superior strength to weight ratios and superior resistance to corrosion and chemical attack. These advantages, along with continuing improvement in manufacturing processes, have resulted in rapid growth in the number of CFRP products and applications especially in the aerospace/aviation, wind energy, automotive, and sporting goods industries. Due to theses well-documented benefits and advancements in manufacturing capabilities, CFRP will continue to replace traditional materials of construction throughout several industries. However, some of the same properties that make CFRP outstanding materials also pose a major problem once these materials reach the end of service life. They become difficult to recycle. With composite consumption in North America growing by almost 5 times the rate of the US GDP in 2012, this lack of recyclability is a growing concern. As consumption increases, more waste will inevitably be generated. Current composite recycling technologies include mechanical recycling, thermal processing, and chemical processing. The major challenge of CFRP recycling is the ability to recover materials of high-value and preserve their properties. To this end, the most suitable technology is chemical processing, where the polymer matrix can be broken down and removed from the fiber, with limited damage to the fibers. This can be achieved using high concentration acids, but such a process is undesirable due to the toxicity of such materials. A viable alternative to acid is water in the sub-critical and supercritical region. Under these conditions, the behavior of this abundant and most environmentally friendly solvent resembles that of an organic compound, facilitating the breakdown

  14. Effects of ELTGOL and Flutter VRP1® on the dynamic and static pulmonary volumes and on the secretion clearance of patients with bronchiectasis.

    Science.gov (United States)

    Guimarães, Fernando S; Moço, Vanessa J R; Menezes, Sara L S; Dias, Cristina M; Salles, Raquel E B; Lopes, Agnaldo J

    2012-04-01

    Although respiratory physical therapy is considered fundamental in the treatment of hypersecretive patients, there is little evidence of its physiological and therapeutic effects in bronchiectasis patients. To evaluate the acute physiological effects of ELTGOL and Flutter VRP1® in dynamic and static lung volumes in patients with bronchiectasis and, secondarily, to study the effect of these techniques in sputum elimination. Patients with clinical and radiological diagnosis of bronchiectasis were included. Patients underwent three interventions in a randomized order and with a one-week washout interval between them. Before all interventions patients inhaled two puffs of 100 mcg of salbutamol. There was a cough period of five minutes before and after the control protocol and the interventions (ELTGOL and Flutter VRP1®). After each cough series patients underwent assessments of dynamic and static lung volumes by spirometry and plethysmography. The expectorated secretions were collected during the interventions and during the second cough series, and quantified by its dry weight. We studied 10 patients, two males and eight females (mean age: 55.9±18.1 years). After using Flutter VRP1®and ELTGOL there was a significant decrease in residual volume (RV), functional residual capacity (FRC) and total lung capacity (TLC) (pELTGOL compared with Control and Flutter VRP1® (pELTGOL and Flutter VRP1® techniques acutely reduced lung hyperinflation, but only the ELTGOL increased the removal of pulmonary secretions from patients with bronchiectasis.

  15. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade

    Science.gov (United States)

    Decker, A. J.

    1986-01-01

    Since 1979, the Lewis Research Center has examined holographic cinematography for three-dimensional flow visualization. The Nd:YAG lasers used were Q-switched, double-pulsed, and frequency-doubled, operating at 20 pulses per second. The primary subjects for flow visualization were the shock waves produced in two flutter cascades. Flow visualization was by diffuse-illumination, double-exposure, and holographic interferometry. The performances of the lasers, holography, and diffuse-illumination interferometry are evaluated in single-window wind tunnels. The fringe-contrast factor is used to evaluate the results. The effects of turbulence on shock-wave visualization in a transonic flow are discussed. The depth of field for visualization of a turbulent structure is demonstrated to be a measure of the relative density and scale of that structure. Other items discussed are the holographic emulsion, tests of coherence and polarization, effects of windows and diffusers, hologram bleaching, laser configurations, influence and handling of specular reflections, modes of fringe localization, noise sources, and coherence requirements as a function of the pulse energy. Holography and diffuse illumination interferometry are also reviewed.

  16. Transesophageal cardioversion of atrial flutter and atrial fibrillation using an electric balloon electrode system

    Institute of Scientific and Technical Information of China (English)

    郑方胜; 祁学文; 刘海峰; 康宁宁

    2003-01-01

    Objective To determine the feasibility and efficiency of terminating atrial flutter (AFL) and atrial fibrillation (AF) using synchronous low-energy shocks delivered through a novel transesophageal electric balloon electrode system.Methods By using a novel electric balloon electrode system, we attempted 91 transesophageal cardioversions in 52 patients, to treat 53 episodes of AFL and 38 episodes of AF.Results Of the 40 patients of AFL that failed to respond to drug therapy, 37 (92.5%) were successfully countershocked to sinus rhythm by transesophageal cardioversion, with a mean energy of (22.70±4.50) J (20-30 J). Of the 19 patients in AF, transesophageal cardioversion was successful in 16 (84.2%) cases, requiring a mean delivered energy of (17.38±8.58) J (3-30 J). There were no complications such as heart block or ventricular fibrillation, and no evidence of esophageal injury. Conclusions Transesophageal cardioversion using an electric balloon electrode system is an effective and feasible method for the treatment of AFL and AF. It requires low energy and no anesthesia, leads to less trauma, and shows a high cardioversion success rate that may prove valuable in the management of tachyarrhythmias.

  17. Usefulness of unipolar electrograms to detect isthmus block after radiofrequency ablation of typical atrial flutter.

    Science.gov (United States)

    Villacastin, J; Almendral, J; Arenal, A; Castellano, N P; Gonzalez, S; Ortiz, M; García, J; Vallbona, B; Moreno, J; Portales, J F; Torrecilla, E G

    2000-12-19

    RS morphology of the unipolar electrogram is associated with propagation of the wave front through the exploring electrode, whereas positive uniphasic (R) unipolar electrograms are characteristic of the end of activation. Unipolar electrograms were recorded in 45 consecutive patients with atrial flutter who were undergoing radiofrequency ablation (RFA). Bidirectional cavotricuspid isthmus (CTI) block was achieved in 44 patients. The unipolar electrogram obtained before RFA at the low anterolateral right atrium during coronary sinus pacing changed from RS, rS, or QS to R or Rs in all patients after clockwise CTI block was obtained. The morphology of unipolar electrograms recorded close to the coronary sinus during pacing from the low anterolateral right atrium changed from RS or rS to R or Rs in all but 4 patients after counterclockwise CTI block. In the patient in whom CTI block was not achieved, the RS morphology of the unipolar electrogram remained unchanged. In 18 patients, the results of the RFA were assessed with only the unipolar electrogram. The unipolar electrogram correctly predicted 100% and 89% of the cases of clockwise and counterclockwise CTI block, respectively. The creation of CTI block is associated with an easily detectable loss of negative components and development of an R or Rs pattern of the unipolar electrogram recorded close to the ablation line while pacing at the opposite side of the CTI.

  18. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade

    Science.gov (United States)

    Decker, A. J.

    1986-07-01

    Since 1979, the Lewis Research Center has examined holographic cinematography for three-dimensional flow visualization. The Nd:YAG lasers used were Q-switched, double-pulsed, and frequency-doubled, operating at 20 pulses per second. The primary subjects for flow visualization were the shock waves produced in two flutter cascades. Flow visualization was by diffuse-illumination, double-exposure, and holographic interferometry. The performances of the lasers, holography, and diffuse-illumination interferometry are evaluated in single-window wind tunnels. The fringe-contrast factor is used to evaluate the results. The effects of turbulence on shock-wave visualization in a transonic flow are discussed. The depth of field for visualization of a turbulent structure is demonstrated to be a measure of the relative density and scale of that structure. Other items discussed are the holographic emulsion, tests of coherence and polarization, effects of windows and diffusers, hologram bleaching, laser configurations, influence and handling of specular reflections, modes of fringe localization, noise sources, and coherence requirements as a function of the pulse energy. Holography and diffuse illumination interferometry are also reviewed.

  19. Aeroelastic flutter enhancement by exploiting the combined use of shape memory alloys and nonlinear piezoelectric circuits

    Science.gov (United States)

    Sousa, Vagner Candido de; Silva, Tarcísio Marinelli Pereira; De Marqui Junior, Carlos

    2017-10-01

    In this paper, the combined effects of semi-passive control using shunted piezoelectric material and passive pseudoelastic hysteresis of shape memory springs on the aerolastic behavior of a typical section is investigated. An aeroelastic model that accounts for the presence of both smart materials employed as mechanical energy dissipation devices is presented. The Brinson model is used to simulate the shape memory material. New expressions for the modeling of the synchronized switch damping on inductor technique (developed for enhanced piezoelectric damping) are presented, resulting in better agreement with experimental data. The individual effects of each nonlinear mechanism on the aeroelastic behavior of the typical section are first verified. Later, the combined effects of semi-passive piezoelectric control and passive shape memory alloy springs on the post-critical behavior of the system are discussed in details. The range of post-flutter airflow speeds with stable limit cycle oscillations is significantly increased due to the combined effects of both sources of energy dissipation, providing an effective and autonomous way to modify the behavior of aeroelastic systems using smart materials.

  20. Indicial functions and flutter derivatives: A generalized approach to the motion-related wind loads

    Science.gov (United States)

    de Miranda, S.; Patruno, L.; Ubertini, F.; Vairo, G.

    2013-10-01

    This paper presents a general time-domain description of the loads acting on a moving cylindrical body immersed in a two-dimensional low-speed flow, aiming to consistently extend the framework of thin airfoil theory to mildly bluff sections, such as those usually employed for decks of modern long-span bridges. In order to systematically accommodate typical features of bluff-body aerodynamics, the classical Theodorsen and Wagner results are reorganized within a unified dimensionless approach, and generalized preserving their main formal structure. Accordingly, circulatory and non-circulatory contributions are separately described and superimposed, and generalized downwash-related terms are introduced. The strong duality between time-domain and frequency-domain representations is focused, and direct relationships between proper Wagner-like indicial functions and Theodorsen-like circulatory functions are deduced. Thereby, following the Scanlan formulation for bridge deck sections, flutter derivatives are represented by superimposing circulatory and non-circulatory effects, resulting in a frequency-domain description fully consistent with the Theodorsen's theory.