African Journals Online (AJOL)
1971-01-02
Jan 2, 1971 ... Athero- sclerotic cardiovascular disease was present in 23 patients, of whom 3 had ... primum defect, atrial flutter was precipitated by cardiac catheterization. ..... Heart J., 70, 505. UNDERSTANDING REACTIVE DEPRESSION*
Atrial fibrillation or flutter
... this page: //medlineplus.gov/ency/article/000184.htm Atrial fibrillation or flutter To use the sharing features on this page, please enable JavaScript. Atrial fibrillation or flutter is a common type of abnormal ...
Nonlinear Characteristics of Randomly Excited Transonic Flutter
DEFF Research Database (Denmark)
Christiansen, Lasse Engbo; Lehn-Schiøler, Tue; Mosekilde, Erik
2002-01-01
. When this model is extended by the introduction of nonlinear terms, it can reproduce the subcritical Hopf bifurcation. We hereafter consider the effects of subjecting simplified versions of the model to random external excitations representing the fluctuations present in the airflow. These models can......The paper describes the effects of random external excitations on the onset and dynamical characteristics of transonic flutter (i.e. large-amplitude, self-sustained oscillations) for a high aspect ratio wing. Wind tunnel experiments performed at the National Aerospace Laboratory (NAL) in Japan have...
Nonlinear dynamics approach of modeling the bifurcation for aircraft wing flutter in transonic speed
DEFF Research Database (Denmark)
Matsushita, Hiroshi; Miyata, T.; Christiansen, Lasse Engbo
2002-01-01
The procedure of obtaining the two-degrees-of-freedom, finite dimensional. nonlinear mathematical model. which models the nonlinear features of aircraft flutter in transonic speed is reported. The model enables to explain every feature of the transonic flutter data of the wind tunnel tests...... conducted at National Aerospace Laboratory in Japan for a high aspect ratio wing. It explains the nonlinear features of the transonic flutter such as the subcritical Hopf bifurcation of a limit cycle oscillation (LCO), a saddle-node bifurcation, and an unstable limit cycle as well as a normal (linear...
Beam Flutter and Energy Harvesting in Internal Flow
Tosi, Luis Phillipe; Colonius, Tim; Sherrit, Stewart; Lee, Hyeong Jae
2017-11-01
Aeroelastic flutter, largely studied for causing engineering failures, has more recently been used as a means of extracting energy from the flow. Particularly, flutter of a cantilever or an elastically mounted plate in a converging-diverging flow passage has shown promise as an energy harvesting concept for internal flow applications. The instability onset is observed as a function of throat velocity, internal wall geometry, fluid and structure material properties. To enable these devices, our work explores features of the fluid-structure coupled dynamics as a function of relevant nondimensional parameters. The flutter boundary is examined through stability analysis of a reduced order model, and corroborated with numerical simulations at low Reynolds number. Experiments for an energy harvester design are qualitatively compared to results from analytical and numerical work, suggesting a robust limit cycle ensues due to a subcritical Hopf bifurcation. Bosch Corporation.
Geared-elevator flutter study. [transonic flutter characteristics of empennage
Ruhlin, C. L.; Doggett, R. V., Jr.; Gregory, R. A.
1976-01-01
The paper describes an experimental and analytical study of the transonic flutter characteristics of an empennage flutter model having an all-movable horizontal tail with a geared elevator. Two configurations were flutter tested: one with a geared elevator and one with a locked elevator with the model cantilever-mounted on a sting in the wind tunnel. The geared-elevator configuration fluttered experimentally at about 20% higher dynamic pressures than the locked-elevator configuration. The experimental flutter boundary was nearly flat at transonic speeds for both configurations. It was found that an analysis which treated the elevator as a discrete surface predicted flutter dynamic pressure levels better than analyses which treated the stabilizer and elevator as a warped surface. Warped-surface methods, however, predicted more closely the experimental flutter frequencies and Mach number trends.
Empirical Flutter Prediction Method.
1988-03-05
been used in this way to discover species or subspecies of animals, and to discover different types of voter or comsumer requiring different persuasions...respect to behavior or performance or response variables. Once this were done, corresponding clusters might be sought among descriptive or predictive or...jump in a response. The first sort of usage does not apply to the flutter prediction problem. Here the types of behavior are the different kinds of
An alternative to the flutter derivatives
DEFF Research Database (Denmark)
Andersen, Michael Styrk; Brandt, Anders
A new simplified framework to study flutter and assess the full scale flutter wind speed is suggested. The flutter instability problem is reduced from a problem involving 8 flutter derivatives to only 4 coefficients. With this method it is possible to estimate the self-excited forces with increased...... precision by using stability diagrams. Furthermore, the physical transparency of the aerodynamic damping and stiffness terms is increased because the development in vertical and torsional damping and stiffness is analysed instead of flutter derivatives....
Subcriticality determination of nuclear reactor
International Nuclear Information System (INIS)
Borisenko, V.I.; Goranchuk, V.V.; Sidoruk, N.M.; Volokh, A.F.
2014-01-01
In this article the subcriticality determination of nuclear reactor is considered. Emphasized that, despite the requirements of regulatory documents on the subcriticality determination of WWER from the beginning of their operation, so far, this problem has not been solved. The results of subcriticality determination of Rossi-α method of the WWER-M is presented. The possibility of subcriticality determination of WWER is considered. The possibility of subcriticality determination of Rossi-α method with time resolution is of about 100 microseconds is also considered. The possible reasons for the error in subcriticality determination of the reactor are indicated
International Nuclear Information System (INIS)
Vega C, H. R.
2014-08-01
A Subcritical Nuclear Assembly is a device where the nuclear-fission chain reaction is initiated and maintained using an external neutron source. It is a valuable educational and research tool where in a safe way many reactor parameters can be measured. Here, we have used the Wigner-Seitz method in the six-factor formula to calculate the effective multiplication factor of a subcritical nuclear reactor Nuclear Chicago model 9000. This reactor has approximately 2500 kg of natural uranium heterogeneously distributed in slugs. The reactor uses a 239 PuBe neutron source that is located in the center of an hexagonal array. Using Monte Carlo methods, with the MCNP5 code, a three-dimensional model of the subcritical reactor was designed to estimate the effective multiplication factor, the neutron spectra, the total and thermal neutron fluences along the radial and axial axis. With the neutron spectra in two locations outside the reactor the ambient dose equivalent were estimated. (Author)
BRAHMMA - accelerator driven subcritical facility
International Nuclear Information System (INIS)
Roy, Tushar; Shukla, Shefali; Shukla, M.; Ray, N.K.; Kashyap, Y.S.; Patel, T.; Gadkari, S.C.
2017-01-01
Accelerator Driven Subcritical systems are being studied worldwide for their potential in burning minor actinides and reducing long term radiotoxicity of spent nuclear fuels. In order to pursue the physics studies of Accelerator Driven Subcritical systems, a thermal subcritical assembly BRAHMMA (BeOReflectedAndHDPeModeratedMultiplying Assembly) has been developed at Purnima Labs, BARC. The facility consists of two major components: Subcritical core and Accelerator (DT/ DD Purnima Neutron Generator)
Energy Technology Data Exchange (ETDEWEB)
Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)
2014-08-15
A Subcritical Nuclear Assembly is a device where the nuclear-fission chain reaction is initiated and maintained using an external neutron source. It is a valuable educational and research tool where in a safe way many reactor parameters can be measured. Here, we have used the Wigner-Seitz method in the six-factor formula to calculate the effective multiplication factor of a subcritical nuclear reactor Nuclear Chicago model 9000. This reactor has approximately 2500 kg of natural uranium heterogeneously distributed in slugs. The reactor uses a {sup 239}PuBe neutron source that is located in the center of an hexagonal array. Using Monte Carlo methods, with the MCNP5 code, a three-dimensional model of the subcritical reactor was designed to estimate the effective multiplication factor, the neutron spectra, the total and thermal neutron fluences along the radial and axial axis. With the neutron spectra in two locations outside the reactor the ambient dose equivalent were estimated. (Author)
A formalization of the flutter shutter
Tendero, Yohann; Rougé, Bernard; Morel, Jean-Michel
2012-09-01
Acquiring good quality images of moving objects by a digital camera remains a valid question. If the velocity of the photographed object is not known, it is virtually impossible to tune an optimal exposure time. For this reason the recent Agrawal et al. flutter shutter apparatus has generated much interest. In this communication, we propose a mathematical formalization of a general flutter shutter method, also permitting non-binary shutter sequences. Thanks to this formalization, the question of the optimal flutter shutter code can be defined and solved. The method gives analytic formulas for the best attainable SNR for the restored image. It also gives a way to compute optimal flutter shutter codes.
Subcriticality monitoring method for reactor
International Nuclear Information System (INIS)
Ueda, Makoto.
1991-01-01
The present invention accurately monitors the reactor subcriticality and ensures the critical safety, irrespective of the presence or absence of artificial neutron sources. That is, when the subcriticality is monitored upon reactivity changing operation which causes reactivity change to the reactor during shutdown, neutron monitors are disposed at a plurality of monitoring positions. Then, neutron counting ratio before and after conducting the reactivity changing operation is determined. The subcriticality of the reactor is monitored by the ratio and the state of scattering of the ratio of neutron counting rate between each of the neutron monitors. With such procedures, signals of the neutron monitors are used, the characteristic that the change of the signals depend on the change of the neutron multiplication of the reactor core can be utilized whether artificial neutron sources (external neutron sources) are disposed or not. Accordingly, the subcriticality can be monitored more reliably. (I.S.)
Accelerator driven sub-critical core
McIntyre, Peter M; Sattarov, Akhdiyor
2015-03-17
Systems and methods for operating an accelerator driven sub-critical core. In one embodiment, a fission power generator includes a sub-critical core and a plurality of proton beam generators. Each of the proton beam generators is configured to concurrently provide a proton beam into a different area of the sub-critical core. Each proton beam scatters neutrons within the sub-critical core. The plurality of proton beam generators provides aggregate power to the sub-critical core, via the proton beams, to scatter neutrons sufficient to initiate fission in the sub-critical core.
Accelerator driven subcritical reactors
International Nuclear Information System (INIS)
Salvatores, M.
2001-01-01
ADS concepts have been proposed in the last decade for a variety of applications. However, there is a convergence of interest of several countries and laboratories on the application of ADS to transmutation. This applies to plutonium, and/or minor actinides (MA) and long-lived fission products (LLFP). As far as the so-called partitioning and transmutation (PIT) strategies, it was indicated that they can be clarified according to the option taken with respect to Pu and MA, i.e., a) keep Pu and MA together, b) separate Pu from MA. At present several programs are going on ADS: in Japan, USA Europe, where activities in 9 countries are coordinated by a European Technical Working Group (ETWG), and in Russia. As far as the implications for the definition of nuclear data needs, dedicated subcritical cores should have new type of fuels (Pu+MA in different proportions). Proposals are being worked out. For example, composite (such as ceramic-metallic or ceramic-ceramic) fuels are presently under study. The actinide oxide is dispersed in a metallic matrix (Zr, or W or Mo) or in an oxide matrix (e.g., MgO). In these cases, reliable data are required for the matrix materials. As far as coolants, Pb/Bi, Pb, and gas are considered, besides Na. Hard (or very hard) fast neutron spectrum is required. As far as LLFP, transmutation strategies in ADS are proposed. Candidates are 129 I, 99 Tc, 135 Cs, but also 79 Se, 107 Pd, 93 Zr etc. At present, there is no clear option for their transmutation (one needs a high level of thermalized neutrons, support matrixes for target irradiation, isotopic separations, reprocessing techniques, etc.). Finally, ADS transmutation will give rise to fuel cycles, where very active materials will be present. Cm and higher mass isotopes (up to 252 Cf) will be contributors to dose and neutron source strength. This area will deserve attention in future, in order to define the relevant data needs. It is recommended to coordinate work on MA data as a priority
Subcritical assemblies, use and their feasibility assessment
International Nuclear Information System (INIS)
Haroon, M.R.
1982-03-01
In developing countries, subcritical assemblies can be a useful tool for training and research in the field of nuclear technology with minimum cost. The historical development of subcritical assemblies and the reactor physics experiments which can be carried out using this facility are outlined. The different types of subcritical assemblies have been described and material requirements for each assembly have been pointed out. (author)
Investigations on precursor measures for aeroelastic flutter
Venkatramani, J.; Sarkar, Sunetra; Gupta, Sayan
2018-04-01
Wind tunnel experiments carried out on a pitch-plunge aeroelastic system in the presence of fluctuating flows reveal that flutter instability is presaged by a regime of intermittency. It is observed that as the flow speed gradually increases towards the flutter speed, there appears intermittent bursts of periodic oscillations which become more frequent as the wind speed increases and eventually the dynamics transition into fully developed limit cycle oscillations, marking the onset of flutter. The signature from these intermittent oscillations are exploited to develop measures that forewarn a transition to flutter and can serve as precursors. This study investigates a suite of measures that are obtained directly from the time history of measurements and are hence model independent. The dependence of these precursors on the size of the measured data set and the time required for their computation is investigated. These measures can be useful in structural health monitoring of aeroelastic structures.
[Typical atrial flutter: Diagnosis and therapy].
Thomas, Dierk; Eckardt, Lars; Estner, Heidi L; Kuniss, Malte; Meyer, Christian; Neuberger, Hans-Ruprecht; Sommer, Philipp; Steven, Daniel; Voss, Frederik; Bonnemeier, Hendrik
2016-03-01
Typical, cavotricuspid-dependent atrial flutter is the most common atrial macroreentry tachycardia. The incidence of atrial flutter (typical and atypical forms) is age-dependent with 5/100,000 in patients less than 50 years and approximately 600/100,000 in subjects > 80 years of age. Concomitant heart failure or pulmonary disease further increases the risk of typical atrial flutter.Patients with atrial flutter may present with symptoms of palpitations, reduced exercise capacity, chest pain, or dyspnea. The risk of thromboembolism is probably similar to atrial fibrillation; therefore, the same antithrombotic prophylaxis is required in atrial flutter patients. Acutely symptomatic cases may be subjected to cardioversion or pharmacologic rate control to relieve symptoms. Catheter ablation of the cavotricuspid isthmus represents the primary choice in long-term therapy, associated with high procedural success (> 97 %) and low complication rates (0.5 %).This article represents the third part of a manuscript series designed to improve professional education in the field of cardiac electrophysiology. Mechanistic and clinical characteristics as well as management of isthmus-dependent atrial flutter are described in detail. Electrophysiological findings and catheter ablation of the arrhythmia are highlighted.
EFFECT OF EXERCISE ON CYCLE LENGTH IN ATRIAL-FLUTTER
VANDENBERG, MP; CRIJNS, HJGM; SZABO, BM; BROUWER, J; LIE, KI
Objective-To examine the effect of exercise on cycle length in atrial flutter. Patients-15 patients with chronic atrial flutter. Seven patients were taking digoxin and six verapamil; two were not taking medication. Methods-All patients underwent bicycle ergometry. Flutter cycle length was measured
Digoxin for atrial fibrillation and atrial flutter
DEFF Research Database (Denmark)
Sethi, Naqash J; Nielsen, Emil E; Safi, Sanam
2018-01-01
BACKGROUND: During recent years, systematic reviews of observational studies have compared digoxin to no digoxin in patients with atrial fibrillation or atrial flutter, and the results of these reviews suggested that digoxin seems to increase the risk of all-cause mortality regardless...... of concomitant heart failure. Our objective was to assess the benefits and harms of digoxin for atrial fibrillation and atrial flutter based on randomized clinical trials. METHODS: We searched CENTRAL, MEDLINE, Embase, LILACS, SCI-Expanded, BIOSIS for eligible trials comparing digoxin versus placebo......, no intervention, or other medical interventions in patients with atrial fibrillation or atrial flutter in October 2016. Our primary outcomes were all-cause mortality, serious adverse events, and quality of life. Our secondary outcomes were heart failure, stroke, heart rate control, and conversion to sinus rhythm...
Radiofrequency catheter oblation in atrial flutter
International Nuclear Information System (INIS)
Yan Ji; Wang Heping; Xu Jian; Liu Fuyuan; Fan Xizhen; An Chunsheng; Han Xiaoping; Ding Xiaomei; Wang Jiasheng; Gu Tongyuan
2002-01-01
Objective: To evaluate the radiofrequency catheter ablation for type I atrial flutter through application of Holo catheter labelling with anatomic imaging localization to ablate the isthmus of IVCTA during complete double-way block. Methods: Eleven cases with type I atrial flutter undergone Holo catheter labelling technique and consecution with conduction time change of coronary venous sinus orifice with-right atrial lower lateral wall pace excitation, were performed with radiofrequency catheter ablation for the isthmus outcoming with complete double-way conduction block. Results: All together 11 cases with 4 of atrial flutter and 7 of sinus rhythm were undergone radiofrequency catheter ablation resulting with double-way conduction block of the isthmus accompanied by prolongation of right atrial conduction time 56.0 ± 2.3 ms and 53.0 ± 4.6 ms respectively. The right atrial excitation appeared to be in clockwise and counter-clockwise of single direction. No recurrence occurred during 3-34 months follow up with only one showing atrial fibrillation. Conclusions: The application of Holo catheter labelling technique with anatomic imaging localization to achieve the double-way conduction block by radiofrequency catheter ablation of TVC-TA isthmus, is a reliable method for treating atrial flutter
Workshop on Subcritical Neutron Production
International Nuclear Information System (INIS)
Walter Sadowski; Roald Sagdeev
2006-01-01
Executive Summary of the Workshop on Subcritical Neutron Production A workshop on Subcritical Neutron Production was sponsored by the East-West Center of the University of Maryland on October 11-13, 2004. The subject of the workshop was the application of subcritical neutrons to transmutation of actinides. The workshop was attended by members of the fission, accelerator and fusion communities. Papers on the state of development of neutron production by accelerators, fusion devices, and fission reactors were presented. Discussions were held on the potential of these technologies to solve the problems of spent nuclear waste storage and nuclear non-proliferation presented by current and future nuclear power reactors. A list of participants including their affiliation and their E-Mail addresses is attached. The workshop concluded that the technologies, presently available or under development, hold out the exciting possibility of improving the environmental quality and long term energy resources of nuclear power while strengthening proliferation resistance. The workshop participants agreed on the following statements. The workshop considered a number of technologies to deal with spent nuclear fuels and current actinide inventories. The conclusion was reached that substantial increase in nuclear power production will require that the issue of spent nuclear fuel be resolved. The Workshop concluded that 14 MeV fusion neutrons can be used to destroy nuclear reactor by-products, some of which would otherwise have to be stored for geologic periods of time. The production of 14 MeV neutrons is based on existing fusion technologies at different research institutions in several countries around the world. At the present time this technology is used to produce 14 MeV neutrons in JET. More development work will be required, however, to bring fusion technology to the level where it can be used for actinide burning on an industrial scale. The workshop concluded that the potential
Magnetic-flutter-induced pedestal plasma transport
International Nuclear Information System (INIS)
Callen, J.D.; Hegna, C.C.; Cole, A.J.
2013-01-01
Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δB ρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δB ρ s induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δB ρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δB ρ /B 0 ) 2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an
Magnetic-flutter-induced pedestal plasma transport
Callen, J. D.; Hegna, C. C.; Cole, A. J.
2013-11-01
Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δBρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δBρs induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δBρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δBρ/B0)2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an electron
Benchmarking criticality safety calculations with subcritical experiments
International Nuclear Information System (INIS)
Mihalczo, J.T.
1984-06-01
Calculation of the neutron multiplication factor at delayed criticality may be necessary for benchmarking calculations but it may not be sufficient. The use of subcritical experiments to benchmark criticality safety calculations could result in substantial savings in fuel material costs for experiments. In some cases subcritical configurations could be used to benchmark calculations where sufficient fuel to achieve delayed criticality is not available. By performing a variety of measurements with subcritical configurations, much detailed information can be obtained which can be compared directly with calculations. This paper discusses several measurements that can be performed with subcritical assemblies and presents examples that include comparisons between calculation and experiment where possible. Where not, examples from critical experiments have been used but the measurement methods could also be used for subcritical experiments
Measurement of subcriticality by a pulsing α-method
International Nuclear Information System (INIS)
Jitarev, V.E.; Kachanov, V.M.; Kuzmin, A.N.
1999-01-01
The report presents results of a pulsing α-method [1] for determination of the WWER system subcriticality. The pulsing α-method permits to conduct measurements of system subcriticality in conditions of subcritical state and large neutron background. Therefore this method can be used for the control of a subcriticality of storehouses of a burn up nuclear fuel and stopped reactor. (Authors)
Structural resonance and mode of flutter of hummingbird tail feathers.
Clark, Christopher J; Elias, Damian O; Girard, Madeline B; Prum, Richard O
2013-09-15
Feathers can produce sound by fluttering in airflow. This flutter is hypothesized to be aeroelastic, arising from the coupling of aerodynamic forces to one or more of the feather's intrinsic structural resonance frequencies. We investigated how mode of flutter varied among a sample of hummingbird tail feathers tested in a wind tunnel. Feather vibration was measured directly at ~100 points across the surface of the feather with a scanning laser Doppler vibrometer (SLDV), as a function of airspeed, Uair. Most feathers exhibited multiple discrete modes of flutter, which we classified into types including tip, trailing vane and torsional modes. Vibratory behavior within a given mode was usually stable, but changes in independent variables such as airspeed or orientation sometimes caused feathers to abruptly 'jump' from one mode to another. We measured structural resonance frequencies and mode shapes directly by measuring the free response of 64 feathers stimulated with a shaker and recorded with the SLDV. As predicted by the aeroelastic flutter hypothesis, the mode shape (spatial distribution) of flutter corresponded to a bending or torsional structural resonance frequency of the feather. However, the match between structural resonance mode and flutter mode was better for tip or torsional mode shapes, and poorer for trailing vane modes. Often, the 3rd bending structural harmonic matched the expressed mode of flutter, rather than the fundamental. We conclude that flutter occurs when airflow excites one or more structural resonance frequencies of a feather, most akin to a vibrating violin string.
ENHANCED ELECTROCHEMICAL PROCESSES IN SUBCRITICAL WATER
Energy Technology Data Exchange (ETDEWEB)
Steven B. Hawthorne
2000-07-01
This project involved designing and performing preliminary electrochemical experiments in subcritical water. An electrochemical cell with substantially better performance characteristics than presently available was designed, built, and tested successfully. The electrochemical conductivity of subcritical water increased substantially with temperature, e.g., conductivities increased by a factor of 120 when the temperature was increased from 25 to 250 C. Cyclic voltammograms obtained with platinum and nickel demonstrated that the voltage required to produce hydrogen and oxygen from water can be dropped by a factor of three in subcritical water compared to the voltages required at ambient temperatures. However, no enhancement in the degradation of 1,2-dichlorobenzene and the polychlorinated biphenyl 3,3',4,4'-tetrachlorobiphenyl was observed with applied potential in subcritical water.
Implementation of the non-flutter design principle
DEFF Research Database (Denmark)
Andersen, Michael Styrk; Sahin, Emrah; Laustsen, Benjamin
2014-01-01
The non-flutter design principle is introduced. Aerodynamically stable section model tests performed by three different research groups indicate, that flutter might be avoided if the torsional-to-vertical frequency ratio is kept below 1. A case study of a suspension bridge spanning 3:7 km...
Non-Flutter Design Principle for long Span Bridges
DEFF Research Database (Denmark)
Johansson, Jens; Andersen, Michael Styrk; Starch Øvre, Michele
velocity for a thin airfoil shows an asymptotical behavior. In traditional bridge design the torsional-to-vertical frequency ratio is increased to obtain higher flutter wind velocities. In the present study, we investigate, what we will label the non-flutter design principle, in which the torsional...
Panel Flutter Emulation Using a Few Concentrated Forces
Dhital, Kailash; Han, Jae-Hung
2018-04-01
The objective of this paper is to study the feasibility of panel flutter emulation using a few concentrated forces. The concentrated forces are considered to be equivalent to aerodynamic forces. The equivalence is carried out using surface spline method and principle of virtual work. The structural modeling of the plate is based on the classical plate theory and the aerodynamic modeling is based on the piston theory. The present approach differs from the linear panel flutter analysis in scheming the modal aerodynamics forces with unchanged structural properties. The solutions for the flutter problem are obtained numerically using the standard eigenvalue procedure. A few concentrated forces were considered with an optimization effort to decide their optimal locations. The optimization process is based on minimizing the error between the flutter bounds from emulated and linear flutter analysis method. The emulated flutter results for the square plate of four different boundary conditions using six concentrated forces are obtained with minimal error to the reference value. The results demonstrated the workability and viability of using concentrated forces in emulating real panel flutter. In addition, the paper includes the parametric studies of linear panel flutter whose proper literatures are not available.
Analysis of tiltrotor whirl flutter in time and frequency domain
DEFF Research Database (Denmark)
Kim, Taeseong; Shin, SanJoon; Kim, Taehyoun
2009-01-01
The whirl flutter phenomenon in a rotor is induced by in-plane hub forces, and imposes a serious limit on the forward speed. In this paper, based on Greenberg’s model, quasi-steady and unsteady aerodynamic forces are formulated to examine the whirl flutter stability for a three-bladed rotor witho...
Flutter analysis of low aspect ratio wings
Parnell, L. A.
1986-01-01
Several very low aspect ratio flat plate wing configurations are analyzed for their aerodynamic instability (flutter) characteristics. All of the wings investigated are delta planforms with clipped tips, made of aluminum alloy plate and cantilevered from the supporting vehicle body. Results of both subsonic and supersonic NASTRAN aeroelastic analyses as well as those from another version of the program implementing the supersonic linearized aerodynamic theory are presented. Results are selectively compared with the experimental data; however, supersonic predictions of the Mach Box method in NASTRAN are found to be erratic and erroneous, requiring the use of a separate program.
RMP-Flutter-Induced Pedestal Plasma Transport
Energy Technology Data Exchange (ETDEWEB)
Callen, J. D.; Hegna, C., E-mail: callen@engr.wisc.edu [University of Wisconsin, Madison (United States); Cole, A. J. [Columbia University, New York (United States)
2012-09-15
Full text: Plasma toroidal rotation can prevent or limit reconnection of externally applied resonant magnetic perturbation (RMP) fields {delta}B on rational magnetic flux surfaces. Hence, it causes the induced radial perturbations to vanish or be small there, and thereby inhibits magnetic island formation and stochasticity in the edge of high (H-mode) confinement tokamak plasmas. However, the radial component of the spatial magnetic flutter induced by RMP fields off rational surfaces causes a radial electron thermal diffusivity of (1/2)({delta}B{sub p}/B){sup 2} times a magnetic-shear-influenced effective parallel electron thermal diffusivity. The resultant RMP-flutter-induced electron thermal diffusivity can be comparable to experimentally inferred values at the top of H-mode pedestals. This process also causes a factor of about 3 smaller RMP-induced electron density diffusivity there. Because this electron density transport is non-ambipolar, it produces a toroidal torque on the plasma, which is usually in the co-current direction. Kinetic-based cylindrical screw-pinch and toroidal models of these RMP-flutter-induced plasma transport effects have been developed. The RMP-induced increases in these diffusive plasma transport processes are typically spatially inhomogeneous in that they are strongly peaked near the rational surfaces in low collisionality pedestals, which may lead to resonant sensitivities to the local safety factor q. The effects can be large enough to reduce the radially averaged gradients of the electron temperature and density at the top of H-mode edge pedestals, and modify the plasma toroidal rotation and radial electric field there. At high collisionality the various effects are less strongly peaked at rational surfaces and thus less likely to exhibit RMP-induced resonant behavior. These RMP-flutter-induced plasma transport processes provide a new paradigm for developing an understanding of how RMPs modify the pedestal structure to stabilize
Cygnus Performance in Subcritical Experiments
International Nuclear Information System (INIS)
G Corrow; M Hansen; D Henderson; S Lutz; C Mitton
2008-01-01
The Cygnus Dual Beam Radiographic Facility consists of two identical radiographic sources with the following specifications: 4-rad dose at 1 m, 1-mm spot size, 50-ns pulse length, 2.25-MeV endpoint energy. The facility is located in an underground tunnel complex at the Nevada Test Site. Here SubCritical Experiments (SCEs) are performed to study the dynamic properties of plutonium. The Cygnus sources were developed as a primary diagnostic for these tests. Since SCEs are single-shot, high-value events - reliability and reproducibility are key issues. Enhanced reliability involves minimization of failure modes through design, inspection, and testing. Many unique hardware and operational features were incorporated into Cygnus to insure reliability. Enhanced reproducibility involves normalization of shot-to-shot output also through design, inspection, and testing. The first SCE to utilize Cygnus, Armando, was executed on May 25, 2004. A year later, April - May 2005, calibrations using a plutonium step wedge were performed. The results from this series were used for more precise interpretation of the Armando data. In the period February - May 2007 Cygnus was fielded on Thermos, which is a series of small-sample plutonium shots using a one-dimensional geometry. Pulsed power research generally dictates frequent change in hardware configuration. Conversely, SCE applications have typically required constant machine settings. Therefore, while operating during the past four years we have accumulated a large database for evaluation of machine performance under highly consistent operating conditions. Through analysis of this database Cygnus reliability and reproducibility on Armando, Step Wedge, and Thermos is presented
Cygnus Performance in Subcritical Experiments
Energy Technology Data Exchange (ETDEWEB)
G. Corrow, M. Hansen, D. Henderson, S. Lutz, C. Mitton, et al.
2008-02-01
The Cygnus Dual Beam Radiographic Facility consists of two identical radiographic sources with the following specifications: 4-rad dose at 1 m, 1-mm spot size, 50-ns pulse length, 2.25-MeV endpoint energy. The facility is located in an underground tunnel complex at the Nevada Test Site. Here SubCritical Experiments (SCEs) are performed to study the dynamic properties of plutonium. The Cygnus sources were developed as a primary diagnostic for these tests. Since SCEs are single-shot, high-value events - reliability and reproducibility are key issues. Enhanced reliability involves minimization of failure modes through design, inspection, and testing. Many unique hardware and operational features were incorporated into Cygnus to insure reliability. Enhanced reproducibility involves normalization of shot-to-shot output also through design, inspection, and testing. The first SCE to utilize Cygnus, Armando, was executed on May 25, 2004. A year later, April - May 2005, calibrations using a plutonium step wedge were performed. The results from this series were used for more precise interpretation of the Armando data. In the period February - May 2007 Cygnus was fielded on Thermos, which is a series of small-sample plutonium shots using a one-dimensional geometry. Pulsed power research generally dictates frequent change in hardware configuration. Conversely, SCE applications have typically required constant machine settings. Therefore, while operating during the past four years we have accumulated a large database for evaluation of machine performance under highly consistent operating conditions. Through analysis of this database Cygnus reliability and reproducibility on Armando, Step Wedge, and Thermos is presented.
Large subcriticality measurement by pulsed neutron method
International Nuclear Information System (INIS)
Yamane, Y.; Yoshida, A.; Nishina, K.; Kobayashi, K.; Kanda, K.
1985-01-01
To establish the method determining large subcriticalities in the field of nuclear criticality safety, the authors performed pulsed neutron experiments using the Kyoto University Critical Assembly (KUCA) at Research Reactor Institute, Kyoto University and the Cockcroft-Walton type accelerator attached to the assembly. The area-ratio method proposed by Sjoestrand was employed to evaluate subcriticalities from neutron decay curves measured. This method has the shortcomings that the neutron component due to a decay of delayed neutrons remarkably decreases as the subcriticality of an objective increases. To overcome the shortcoming, the authors increased the frequency of pulsed neutron generation. The integral-version of the area-ratio method proposed by Kosaly and Fisher was employed in addition in order to remove a contamination of spatial higher modes from the decay curve. The latter becomes significant as subcriticality increases. The largest subcriticality determined in the present experiments was 125.4 dollars, which was equal to 0.5111 in a multiplication factor. The calculational values evaluated by the computer code KENO-IV with 137 energy groups based on the Monte Carlo method agreed well with those experimental values
Ensuring the validity of calculated subcritical limits
International Nuclear Information System (INIS)
Clark, H.K.
1977-01-01
The care taken at the Savannah River Laboratory and Plant to ensure the validity of calculated subcritical limits is described. Close attention is given to ANSI N16.1-1975, ''Validation of Calculational Methods for Nuclear Criticality Safety.'' The computer codes used for criticality safety computations, which are listed and are briefly described, have been placed in the SRL JOSHUA system to facilitate calculation and to reduce input errors. A driver module, KOKO, simplifies and standardizes input and links the codes together in various ways. For any criticality safety evaluation, correlations of the calculational methods are made with experiment to establish bias. Occasionally subcritical experiments are performed expressly to provide benchmarks. Calculated subcritical limits contain an adequate but not excessive margin to allow for uncertainty in the bias. The final step in any criticality safety evaluation is the writing of a report describing the calculations and justifying the margin
Modeling of Parameters of Subcritical Assembly SAD
Petrochenkov, S; Puzynin, I
2005-01-01
The accepted conceptual design of the experimental Subcritical Assembly in Dubna (SAD) is based on the MOX core with a nominal unit capacity of 25 kW (thermal). This corresponds to the multiplication coefficient $k_{\\rm eff} =0.95$ and accelerator beam power 1 kW. A subcritical assembly driven with the existing 660 MeV proton accelerator at the Joint Institute for Nuclear Research has been modelled in order to make choice of the optimal parameters for the future experiments. The Monte Carlo method was used to simulate neutron spectra, energy deposition and doses calculations. Some of the calculation results are presented in the paper.
Continuous reactivity calculation for subcritical system
International Nuclear Information System (INIS)
Silva, Cristiano; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da
2011-01-01
With the rise of a new generation of nuclear reactors as for existence the ADS (Accelerator-Driven System), it is important to have a fast and accurate prediction of the variation in reactivity during a possible variation in the intensity of external sources. This paper presents a formulation for the calculation of reactivity in subcritical systems using the inverse method related only to nuclear power derivatives. One of the applications of the proposed method is the possibility of developing reactimeters that allow the continuous monitoring of subcritical systems. (author)
Continuous reactivity calculation for subcritical system
Energy Technology Data Exchange (ETDEWEB)
Silva, Cristiano; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da, E-mail: cristiano@herzeleid.net, E-mail: aquilino@lmp.ufrj.br, E-mail: fernando@con.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Palma, Daniel A.P., E-mail: dapalma@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)
2011-07-01
With the rise of a new generation of nuclear reactors as for existence the ADS (Accelerator-Driven System), it is important to have a fast and accurate prediction of the variation in reactivity during a possible variation in the intensity of external sources. This paper presents a formulation for the calculation of reactivity in subcritical systems using the inverse method related only to nuclear power derivatives. One of the applications of the proposed method is the possibility of developing reactimeters that allow the continuous monitoring of subcritical systems. (author)
Subcritical calculation of the nuclear material warehouse
International Nuclear Information System (INIS)
Garcia M, T.; Mazon R, R.
2009-01-01
In this work the subcritical calculation of the nuclear material warehouse of the Reactor TRIGA Mark III labyrinth in the Mexico Nuclear Center is presented. During the adaptation of the nuclear warehouse (vault I), the fuel was temporarily changed to the warehouse (vault II) and it was also carried out the subcritical calculation for this temporary arrangement. The code used for the calculation of the effective multiplication factor, it was the Monte Carlo N-Particle Extended code known as MCNPX, developed by the National Laboratory of Los Alamos, for the particles transport. (Author)
Neutron chain length distributions in subcritical systems
International Nuclear Information System (INIS)
Nolen, S.D.; Spriggs, G.
1999-01-01
In this paper, the authors present the results of the chain-length distribution as a function of k in subcritical systems. These results were obtained from a point Monte Carlo code and a three-dimensional Monte Carlo code, MC++. Based on these results, they then attempt to explain why several of the common neutron noise techniques, such as the Rossi-α and Feynman's variance-to-mean techniques, are difficult to perform in highly subcritical systems using low-efficiency detectors
Preliminary Evaluation of Nonlinear Effects on TCA Flutter
Arslan, Alan E.; Hartwich, Peter M.; Baker, Myles L.
1998-01-01
The objective of this study is to investigate the effect of nonlinear aerodynamics, especially at high angles-of-attack with leading-edge separation, on the TCA flutter properties at transonic speeds. In order to achieve that objective, flutter simulations with Navier-Stokes CFD must be performed. To this end, time-marching Navier-Stokes solutions are computed for the TCA wing/body configuration at high angles-of-attack in transonic flight regimes. The approach is to perform non-linear flutter calculations on the TCA at two angles-of-attack, the first one being a case with attached flow (a=2.8 degrees) and the second one being a high angle-of-attack case with a wing leading edge vortex (a=12.11 degrees). Comparisons of the resulting histories and frequency damping information for both angles-of-attack will evaluate the impact of high-alpha aerodynamics on flutter.
Holistic approach to flutter clearance using classical methods
CSIR Research Space (South Africa)
Van Zyl, Lourens H
2006-09-01
Full Text Available is validated by determining and eigenvalue solution from the state-space model and comparing it to the frequency domain solution. This model is then used to generate time histories of the responses of the different sensors that will be used in flutter... flight testing for a given excitation configuration. The time histories are processed by the flutter flight test software to assess how well the vibration modes are excited and to determine the effect of the finite frequency resolution...
A MODELING METHOD OF FLUTTERING LEAVES BASED ON POINT CLOUD
J. Tang; Y. Wang; Y. Zhao; Y. Zhao; W. Hao; X. Ning; K. Lv; Z. Shi; M. Zhao
2017-01-01
Leaves falling gently or fluttering are common phenomenon in nature scenes. The authenticity of leaves falling plays an important part in the dynamic modeling of natural scenes. The leaves falling model has a widely applications in the field of animation and virtual reality. We propose a novel modeling method of fluttering leaves based on point cloud in this paper. According to the shape, the weight of leaves and the wind speed, three basic trajectories of leaves falling are defined, which ar...
Proposed aeroelastic and flutter tests for the National Transonic Facility
Stevenson, J. R.
1981-01-01
Tests that can exploit the capability of the NTF and the transonic cryogenic tunnel, or lead to improvements that could enhance testing in the NTF are discussed. Shock induced oscillation, supersonic single degree control surface flutter, and transonic flutter speed as a function of the Reynolds number are considered. Honeycombs versus screens to smooth the tunnel flow and a rapid tunnel dynamic pressure reducer are recommended to improve tunnel performance.
Atrial flutter: from ECG to electroanatomical 3D mapping
Directory of Open Access Journals (Sweden)
Livio Dei Cas
2009-08-01
Full Text Available Atrial flutter is a common arrhythmia that may cause significant symptoms, including palpitations, dyspnea, chest pain and even syncope. Frequently it’s possible to diagnose atrial flutter with a 12-lead surface ECG, looking for distinctive waves in leads II, III, aVF, aVL, V1,V2. Puech and Waldo developed the first classification of atrial flutter in the 1970s. These authors divided the arrhythmia into type I and type II. Therefore, in 2001 the European Society of Cardiology and the North American Society of Pacing and Electrophysiology developed a new classification of atrial flutter, based not only on the ECG, but also on the electrophysiological mechanism. New developments in endocardial mapping, including the electroanatomical 3D mapping system, have greatly expanded our understanding of the mechanism of arrhythmias. More recently, Scheinman et al, provided an updated classification and nomenclature. The terms like common, uncommon, typical, reverse typical or atypical flutter are abandoned because they may generate confusion. The authors worked out a new terminology, which differentiates atrial flutter only on the basis of electrophysiological mechanism. (Heart International 2006; 3-4: 161-70
National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes to develop an on-line flutter prediction tool for wind tunnel model using the parameter varying estimation (PVE) technique to...
Subcritical limits for special fissile actinides
International Nuclear Information System (INIS)
Clark, H.K.
1980-01-01
Critical masses and subcritical mass limits in oxide-water mixtures were calculated for actinide nuclides other than /sup 233/U, /sup 235/U, and /sup 239/Pu that have an odd number of neutrons in the nucleus; S/sub n/ transport theory was used together with cross sections, drawn from the GLASS multigroup library, developed to provide accurate forecasts of actinide production at Savannah River
Isthmus Dependent Atrial Flutter Cycle Length Correlates with Right Atrial Cross-Sectional Area
Directory of Open Access Journals (Sweden)
Kousik Krishnan
2009-05-01
Full Text Available Background: Right atrial flutter cycle length can prolong in the presence of antiarrhythmic drug therapy. We hypothesized that the cycle length of right atrial isthmus dependent flutter would correlate with right atrial cross-sectional area measurements. Methods: 60 patients who underwent ablation for electrophysiologically proven isthmus dependent right atrial flutter, who were not on Class I or Class III antiarrhythmic drugs and had recent 2-dimensional echocardiographic data comprised the study group. Right atrial length and width were measured in the apical four chamber view. Cross-sectional area was estimated by multiplying the length and width. 35 patients had an atrial flutter rate ≥250 bpm (Normal Flutter Group and 25 patients had an atrial flutter rate < 250 bpm (Slow Flutter Group. Results: Mean atrial flutter rate was 283 bpm in the normal flutter group and 227 bpm in the slow flutter group. Mean atrial flutter cycle length was 213 ms in the Normal Flutter Group and 265 ms in the Slow Flutter Group (p<0.0001. Mean right atrial cross sectional area was 1845 mm2 in the Normal Flutter group and 2378 mm2 in the Slow Flutter Group, (p< 0.0001. Using linear regression, CSA was a significant predictor of cycle length (β =0.014 p = 0.0045. For every 1 mm2 increase in cross-sectional area, cycle length is 0.014 ms longer.Conclusion: In the absence of antiarrhythmic medications, right atrial cross sectional area enlargement correlates with atrial flutter cycle length. These findings provide further evidence that historical rate-related definitions of typical isthmus dependent right atrial are not mechanistically valid.
Deep subcritical levels measurements dependents upon kinetic distortion factors
International Nuclear Information System (INIS)
Pan Shibiao; Li Xiang; Fu Guo'en; Huang Liyuan; Mu Keliang
2013-01-01
The measurement of deep subcritical levels, with the increase of subcriticality, showed that the results impact on the kinetic distortion effect, along with neutron flux strongly deteriorated. Using the diffusion theory, calculations have been carried out to quantify the kinetic distortion correction factors in subcritical systems, and these indicate that epithermal neutron distributions are strongly affected by kinetic distortion. Subcriticality measurements in four different rod-state combination at the zero power device was carried out. The test data analysis shows that, with increasing subcriticality, kinetic distortion effect correction factor gradually increases from 1.052 to 1.065, corresponding reactive correction amount of 0.78β eff ∼ 3.01β eff . Thus, it is necessary to consider the kinetic distortion effect in the deep subcritical reactivity measurements. (authors)
Bending mode flutter in a transonic linear cascade
Govardhan, Raghuraman; Jutur, Prahallada
2017-11-01
Vibration related issues like flutter pose a serious challenge to aircraft engine designers. The phenomenon has gained relevance for modern engines that employ thin and long fan blade rows to satisfy the growing need for compact and powerful engines. The tip regions of such blade rows operate with transonic relative flow velocities, and are susceptible to bending mode flutter. In such cases, the flow field around individual blades of the cascade is dominated by shock motions generated by the blade motions. In the present work, a new transonic linear cascade facility with the ability to oscillate a blade at realistic reduced frequencies has been developed. The facility operates at a Mach number of 1.3, with the central blade being oscillated in heave corresponding to the bending mode of the rotor. The susceptibility of the blade to undergo flutter at different reduced frequencies is quantified by the cycle-averaged power transfer to the blade calculated using the measured unsteady load on the oscillating blade. These measurements show fluid excitation (flutter) at low reduced frequencies and fluid damping (no flutter) at higher reduced frequencies. Simultaneous measurements of the unsteady shock motions are done with high speed shadowgraphy to elucidate the differences in shock motions between the excitation and damping cases.
Design project of fast subcritical system 'Mala Lasta'
International Nuclear Information System (INIS)
Milosevic, M.; Stefanovic, D.; Popovic, D.; Pesic, M.; Zavaljevski, N.; Nikolic, D.; Arsenovic, M.
1988-10-01
This report contains two parts. Part one covers the objective and fundamental elements for the choice of fast subcritical system 'Mala Lasta', review of the existing fast subcritical assemblies, and a description of the available domestic computer codes applied for calculating neutron reactor parameters. Comparison of results obtained by these codes for a number of existing subcritical assemblies was used for the choice of the design project described in part two of this report. It contains detailed description of the operating parameters of the chosen subcritical system based on the obtained calculated parameters
Gravity effects on wind-induced flutter of leaves
Clemmer, Nickalaus; Kopperstad, Karsten; Solano, Tomas; Shoele, Kourosh; Ordonez, Juan
2017-11-01
Wind-Induced flutter of leaves depends on both wind velocity and the gravity. To study the gravitational effects on the oscillatory behavior of leaves in the wind, a wind tunnel that can be tilted about the center of the test section is created. This unique rotation capability allows systematic investigation of gravitational effects on the fluttering response of leaves. The flow-induced vibration will be studied for three different leaves at several different tilting angles including the wind travels horizontally, vertically downward and vertically upward. In each situation, the long axis of a leaf is placed parallel to the wind direction and its response is studied at different flow speed. Oscillation of the leaf is recorded via high-speed camera at each of setup, and the effect of the gravity on stabilizing or destabilizing the fluttering response is investigated. Summer REU student at Florida State University.
Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter
Wilson, William C.; Moore, Jason P.; Juarez, Peter D.
2016-01-01
Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.
International Nuclear Information System (INIS)
Lu Li; Yang Yiren
2009-01-01
The responses and limit cycle flutter of a plate-type structure with cubic stiffness in viscous flow were studied. The continuous system was dispersed by utilizing Galerkin Method. The equivalent linearization concept was performed to predict the ranges of limit cycle flutter velocities. The coupled map of flutter amplitude-equivalent linear stiffness-critical velocity was used to analyze the stability of limit cycle flutter. The theoretical results agree well with the results of numerical integration, which indicates that the equivalent linearization concept is available to the analysis of limit cycle flutter of plate-type structure. (authors)
Large Scale Flutter Data for Design of Rotating Blades Using Navier-Stokes Equations
Guruswamy, Guru P.
2012-01-01
A procedure to compute flutter boundaries of rotating blades is presented; a) Navier-Stokes equations. b) Frequency domain method compatible with industry practice. Procedure is initially validated: a) Unsteady loads with flapping wing experiment. b) Flutter boundary with fixed wing experiment. Large scale flutter computation is demonstrated for rotating blade: a) Single job submission script. b) Flutter boundary in 24 hour wall clock time with 100 cores. c) Linearly scalable with number of cores. Tested with 1000 cores that produced data in 25 hrs for 10 flutter boundaries. Further wall-clock speed-up is possible by performing parallel computations within each case.
Superfluid helium at subcritical active core
International Nuclear Information System (INIS)
Vasil'ev, V.V.; Lopatkin, A.V.; Muratov, V.G.; Rakhno, I.L.
2002-01-01
Power range and neutron flux wherein super thermal source was realized at high volume of superfluid helium were investigated. MCU, BRAND, MCNP codes were used for the calculation of reactors. It is shown that the availability of full-size diameter for cryogenic source of ultracold neutrons, as the source with superfluid helium is considered, is possible in the reflector of subcritical assembly. Results obtained from the MCNP-4B code application demonstrated that the density of thermal neutron flux in helium must be not higher than 2.3 x 10 11 s -1 cm -2 [ru
Hydrolysis of corn oil using subcritical water
Directory of Open Access Journals (Sweden)
Pinto Jair Sebastião S.
2006-01-01
Full Text Available This work presents the results of a study on the use of subcritical water as both solvent and reactant for the hydrolysis of corn oil without the use of acids or alkalis at temperatures of 150-280 degreesC. Corn oil hydrolysis leads to the formation of its respective fatty acids with the same efficiency of conventional methods. Fatty acids form an important group of products, which are used in a range of applications. The confirmation and identification of the hydrolysis products was done by HT-HRGC-FID and HRGC/MS.
Results of Two Free-fall Experiments on Flutter of Thin Unswept Wings in the Transonic Speed Range
Lauten, William T , Jr; Nelson, Herbert C
1957-01-01
Results of four thin, unswept, flutter airfoils attached to two freely falling bodies are reported. Two airfoils fluttered at a Mach number of 0.85, a third airfoil fluttered at a Mach number of 1.03, and a fourth fluttered at a Mach number of 1.07. Results of calculations of flutter speed using incompressible and compressible air-force coefficients, including a Mach number of 1.0, are presented.
Some neutronics of innovative subcritical assembly with fast neutron spectrum
International Nuclear Information System (INIS)
Kiyavitskaya, H.; Fokov, Yu.; Rutkovskaya, Ch.; Sadovich, S.; Kasuk, D.; Gohar, Y.; Bolshinsky, I.
2013-01-01
Conclusion: • New assembly can be used to: • develop the experimental techniques and adapt the existing ones for monitoring the sub-criticality level, neutron spectra measurements, etc; • study the spatial kinetics of sub-critical and critical systems with fast neutron spectra; • measure the transmutation reaction rates of minor-actinides etc
Choosing the optimal parameters of subcritical reactors driven by accelerators
International Nuclear Information System (INIS)
Khudaverdyan, A.G.; Zhamkochyan, V.M.
1998-03-01
Physical aspects of a subcritical Nuclear Power Plants (NPP) driven by proton accelerators are considered. Estimated theoretical calculations are made for subcritical regimes of various types of reactors. It was shown that the creation of the quite effective explosion-safe NPP is real at an existing level of the accelerator technique by using available reactor units (including the serial ones). (author)
Steady squares and hexagons on a subcritical ramp
International Nuclear Information System (INIS)
Hoyle, R.B.
1995-01-01
Steady squares and hexagons on a subcritical ramp are studied, both analytically and numerically, within the framework of the lowest-order amplitude equations. On the subcritical ramp, the external stress or control parameter varies continuously in space from subcritical to supercritical values. At the subcritical end of the ramp, pattern formation is suppressed, and patterns fade away into the conduction solution. It is shown that three-dimensional patterns may change shape on a subcritical ramp. A square pattern becomes a pattern of rolls as it fades, with the roll axes aligned in the direction orthogonal to that in which the control parameter varies. Hexagons in systems with horizontal midplane symmetry become a pattern of rectangles before reaching the conduction solution. There is a suggestion that hexagons in systems which lack this symmetry might fade away through a roll pattern. Numerical simulations are used to illustrate these phenomena
Determination of Flutter Derivatives for the Great Belt Bridge
DEFF Research Database (Denmark)
Poulsen, Niels Kjølstad; Damsgaard, Aage; Reinhold, Thim A.
1992-01-01
A new method which combines control theory and system identification techniques has been used to extract flutter derivatives from section model tests for the Great Belt East Bridge. Tests were conducted by exciting the section model simultaneously in vertical and torsional modes of vibration. Tests...
Quinidine-induced ventricular flutter and fibrillation without digitalis therapy
Koster, R. W.; Wellens, H. J.
1976-01-01
Three cases are described with documented ventricular flutter and fibrillation during quinidine medication without concomitant digitalis therapy. In all three patients the arrhythmia developed while they were receiving moderate doses of quinidine. Although no changes in QRS width were observed after
Cardiac Arrhythmia: Atrial Flutter in a Newborn. Case Study
Directory of Open Access Journals (Sweden)
T.M. Klimenko
2014-09-01
Full Text Available The article gives case report of rare in neonatal period cardiac arrhythmia — atrial flutter. The disease is one of the manifestations of life-threatening heart rhythm disorders, has no characteristic clinical picture, is diagnosed only by means of an electrocardiogram.
Subcritical limits for special fissile actinides
International Nuclear Information System (INIS)
Clark, H.K.
1980-01-01
Critical masses and subcritical mass limits in oxide-water mixtures were calculated for actinide nuclides other than 233 U, 235 U, and 239 Pu that have an odd number of neutrons in the nucleus: S/sub n/ transport theory was used together with cross sections, drawn from the GLASS multigroup library, developed to provide accurate forecasts of actinide production at Savannah River. The subcritical limits are 201 g for 241 Pu, 13 g for 242 /sup m/Am, 90 g for 243 Cm, 30 g for 245 Cm, 900 g for 247 Cm, 10 g for 249 Cf, and 5 g for 251 Cf. Association of 241 Pu with an equal mass of 240 Pu increases the 241 Pu limit to a value greater than that for pure 239 Pu. Association of 242 /sup m/Am with 241 Am increases the limit for the mixture to that for dry, theoretical density AmO 2 at isotopic concentrations of 242 /sup m/Am less than approx. 6%. Association of 245 Cm with 244 Cm increases the limit according to the formula 30 + 0.3 244 Cm/ 245 Cm up to the limit for dry CmO 2 . A limiting mass of 8.15 kg for plutonium containing at least 67% 238 Pu as oxide was calculated that applies (provided 240 Pu exceeds 241 Pu) with no limit on moderation. 1 figure, 5 tables
Criticality Analysis of SAMOP Subcritical Assembly
International Nuclear Information System (INIS)
Tegas-Sutondo; Syarip; Triwulan-Tjiptono
2005-01-01
A critically analysis has been performed for homogenous system of uranyl nitrate solution, as part of a preliminary design assessment on neutronic aspect of SAMOP sub-critical assembly. The analysis is intended to determine some critical parameters such as the minimum of critical dimension and critical mass for the desired concentration. As the basis of this analysis, it has been defined a fuel system with an enrichment of 20% for cylindrical geometry of both bare and graphite reflected of 30 cm thickness. The MCNP code has been utilized for this purpose, for variation of concentrations ranging from 150 g/l to 500 g/l. It is found that the best concentration giving the minimum geometrical dimension is around 400 g/l, for both the bare and reflected systems. Whilst the best one, of minimum critical mass is corresponding to the concentration of around 200 g/l with critical mass around 14.1 kg and 4.2 kg for the bare and reflected systems respectively. Based on the result of calculations, it is concluded that by taking into consideration of the critical limit, the SAMOP subcritical assembly is neutronically can be made. (author)
Cardiorespiratory interactions in patients with atrial flutter.
Masè, Michela; Disertori, Marcello; Ravelli, Flavia
2009-01-01
Respiratory sinus arrhythmia (RSA) is generally known as the autonomically mediated modulation of the sinus node pacemaker frequency in synchrony with respiration. Cardiorespiratory interactions have been largely investigated during sinus rhythm, whereas little is known about interactions during reentrant arrhythmias. In this study, cardiorespiratory interactions at the atrial and ventricular level were investigated during atrial flutter (AFL), a supraventricular arrhythmia based on a reentry, by using cross-spectral analysis and computer modeling. The coherence and phase between respiration and atrial (gamma(AA)(2), phi(AA)) and ventricular (gamma(RR)(2), phi(RR)) interval series were estimated in 20 patients with typical AFL (68.0 +/- 8.8 yr) and some degree of atrioventricular (AV) conduction block. In all patients, atrial intervals displayed oscillations strongly coupled and in phase with respiration (gamma(AA)(2)= 0.97 +/- 0.05, phi(AA) = 0.71 +/- 0.31 rad), corresponding to a paradoxical lengthening of intervals during inspiration. The modulation pattern was frequency independent, with in-phase oscillations and short time delays (0.40 +/- 0.15 s) for respiratory frequencies in the range 0.1-0.4 Hz. Ventricular patterns were affected by AV conduction type. In patients with fixed AV conduction, ventricular intervals displayed oscillations strongly coupled (gamma(RR)(2)= 0.97 +/- 0.03) and in phase with respiration (phi(RR) = 1.08 +/- 0.80 rad). Differently, in patients with variable AV conduction, respiratory oscillations were secondary to Wencheback rhythmicity, resulting in a decreased level of coupling (gamma(RR)(2)= 0.50 +/- 0.21). Simulations with a simplified model of AV conduction showed ventricular patterns to originate from the combination of a respiratory modulated atrial input with the functional properties of the AV node. The paradoxical frequency-independent modulation pattern of atrial interval, the short time delays, and the complexity of
Massive subcritical compact arrays of plutonium metal
Energy Technology Data Exchange (ETDEWEB)
Rothe, R.E.
1998-04-01
Two experimental critical-approach programs are reported. Both were performed at the Rocky Flats Plant near Denver, Colorado; and both date back to the late 1960s. Both involve very large arrays of massive plutonium ingots. These ingots had been cast in the foundry at the Rocky Flats Plant as part of their routine production operations; they were not specially prepared for either study. Consequently, considerable variation in ingot mass is encountered. This mass varied between approximately 7 kg and a little more than 10 kg. One program, performed in the spring of 1969, involved stacked arrays of ingots contained within cylindrical, disk-shaped, thin, steel cans. This program studied four arrays defined by the pattern of steel cans in a single layer. The four were: 1 x N, 3 x N, 2 x 2 x N, and 3 x 3 x N. The second was a tightly-packed, triangular-pitched patterns; the last two were square-pitched patterns. The other program, performed about a year earlier, involved similar ingots also contained in similar steel cans, but these canned plutonium ingots were placed in commercial steel drums. This study pertained to one-, two-, and three-layered horizontal arrays of drums. All cases proved to be well subcritical. Most would have remained subcritical had the parameters of the array under study been continued infinitely beyond the reciprocal multiplication safety limit. In one case for the drum arrays, an uncertain extrapolation of the data of the earlier program suggests that criticality might have eventually been attained had several thousand additional kilograms of plutonium been available for use.
Nonlinear dead water resistance at subcritical speed
Grue, John
2015-08-01
The dead water resistance F 1 = /1 2 C d w ρ S U 2 (ρ fluid density, U ship speed, S wetted body surface, Cdw resistance coefficient) on a ship moving at subcritical speed along the upper layer of a two-layer fluid is calculated by a strongly nonlinear method assuming potential flow in each layer. The ship dimensions correspond to those of the Polar ship Fram. The ship draught, b0, is varied in the range 0.25h0-0.9h0 (h0 the upper layer depth). The calculations show that Cdw/(b0/h0)2 depends on the Froude number only, in the range close to critical speed, Fr = U/c0 ˜ 0.875-1.125 (c0 the linear internal long wave speed), irrespective of the ship draught. The function Cdw/(b0/h0)2 attains a maximum at subcritical Froude number depending on the draught. Maximum Cdw/(b0/h0)2 becomes 0.15 for Fr = 0.76, b0/h0 = 0.9, and 0.16 for Fr = 0.74, b0/h0 = 1, where the latter extrapolated value of the dead water resistance coefficient is about 60 times higher than the frictional drag coefficient and relevant for the historical dead water observations. The nonlinear Cdw significantly exceeds linear theory (Fr < 0.85). The ship generated waves have a wave height comparable to the upper layer depth. Calculations of three-dimensional wave patterns at critical speed compare well to available laboratory experiments. Upstream solitary waves are generated in a wave tank of finite width, when the layer depths differ, causing an oscillation of the force. In a wide ocean, a very wide wave system develops at critical speed. The force approaches a constant value for increasing time.
Massive subcritical compact arrays of plutonium metal
International Nuclear Information System (INIS)
Rothe, R.E.
1998-01-01
Two experimental critical-approach programs are reported. Both were performed at the Rocky Flats Plant near Denver, Colorado; and both date back to the late 1960s. Both involve very large arrays of massive plutonium ingots. These ingots had been cast in the foundry at the Rocky Flats Plant as part of their routine production operations; they were not specially prepared for either study. Consequently, considerable variation in ingot mass is encountered. This mass varied between approximately 7 kg and a little more than 10 kg. One program, performed in the spring of 1969, involved stacked arrays of ingots contained within cylindrical, disk-shaped, thin, steel cans. This program studied four arrays defined by the pattern of steel cans in a single layer. The four were: 1 x N, 3 x N, 2 x 2 x N, and 3 x 3 x N. The second was a tightly-packed, triangular-pitched patterns; the last two were square-pitched patterns. The other program, performed about a year earlier, involved similar ingots also contained in similar steel cans, but these canned plutonium ingots were placed in commercial steel drums. This study pertained to one-, two-, and three-layered horizontal arrays of drums. All cases proved to be well subcritical. Most would have remained subcritical had the parameters of the array under study been continued infinitely beyond the reciprocal multiplication safety limit. In one case for the drum arrays, an uncertain extrapolation of the data of the earlier program suggests that criticality might have eventually been attained had several thousand additional kilograms of plutonium been available for use
Modeling of the CTEx subcritical unit using MCNPX code
International Nuclear Information System (INIS)
Santos, Avelino; Silva, Ademir X. da; Rebello, Wilson F.; Cunha, Victor L. Lassance
2011-01-01
The present work aims at simulating the subcritical unit of Army Technology Center (CTEx) namely ARGUS pile (subcritical uranium-graphite arrangement) by using the computational code MCNPX. Once such modeling is finished, it could be used in k-effective calculations for systems using natural uranium as fuel, for instance. ARGUS is a subcritical assembly which uses reactor-grade graphite as moderator of fission neutrons and metallic uranium fuel rods with aluminum cladding. The pile is driven by an Am-Be spontaneous neutron source. In order to achieve a higher value for k eff , a higher concentration of U235 can be proposed, provided it safely remains below one. (author)
Supersonic Panel Flutter Test Results for Flat Fiber-Glass Sandwich Panels with Foamed Cores
Tuovila, W. J.; Presnell, John G., Jr.
1961-01-01
Flutter tests have been made on flat panels having a 1/4 inch-thick plastic-foam core covered with thin fiber-glass laminates. The testing was done in the Langley Unitary Plan wind tunnel at Mach numbers from 1.76 t o 2.87. The flutter boundary for these panels was found to be near the flutter boundary of thin metal panels when compared on the basis of an equivalent panel stiffness. The results also demonstrated that the depth of the cavity behind the panel has a pronounced influence on flutter. Changing the cavity depth from 1 1/2 inches to 1/2 inch reduced the dynamic pressure at start of flutter by 40 percent. No flutter was obtained when the spacers on the back of the panel were against the bottom of the cavity.
a Modeling Method of Fluttering Leaves Based on Point Cloud
Tang, J.; Wang, Y.; Zhao, Y.; Hao, W.; Ning, X.; Lv, K.; Shi, Z.; Zhao, M.
2017-09-01
Leaves falling gently or fluttering are common phenomenon in nature scenes. The authenticity of leaves falling plays an important part in the dynamic modeling of natural scenes. The leaves falling model has a widely applications in the field of animation and virtual reality. We propose a novel modeling method of fluttering leaves based on point cloud in this paper. According to the shape, the weight of leaves and the wind speed, three basic trajectories of leaves falling are defined, which are the rotation falling, the roll falling and the screw roll falling. At the same time, a parallel algorithm based on OpenMP is implemented to satisfy the needs of real-time in practical applications. Experimental results demonstrate that the proposed method is amenable to the incorporation of a variety of desirable effects.
A MODELING METHOD OF FLUTTERING LEAVES BASED ON POINT CLOUD
Directory of Open Access Journals (Sweden)
J. Tang
2017-09-01
Full Text Available Leaves falling gently or fluttering are common phenomenon in nature scenes. The authenticity of leaves falling plays an important part in the dynamic modeling of natural scenes. The leaves falling model has a widely applications in the field of animation and virtual reality. We propose a novel modeling method of fluttering leaves based on point cloud in this paper. According to the shape, the weight of leaves and the wind speed, three basic trajectories of leaves falling are defined, which are the rotation falling, the roll falling and the screw roll falling. At the same time, a parallel algorithm based on OpenMP is implemented to satisfy the needs of real-time in practical applications. Experimental results demonstrate that the proposed method is amenable to the incorporation of a variety of desirable effects.
Flutter instability of freely hanging articulated pipes conveying fluid
Schouveiler, Lionel; Chermette, Félix
2018-03-01
We experimentally investigate the stability of freely hanging articulated pipes made of rigid segments connected by flexible joints and with their displacements constrained in a vertical plane. When the velocity of the fluid conveyed by the pipe is increased, flutter-type instability occurs above a critical value. The critical velocity and the characteristics of the flutter modes (frequency, amplitude, and shape) are determined as a function of the number n of segments into the pipe which is varied from 2 to 5. Experimental results are compared to predictions from linear stability analysis extending previous studies by taking into account damping due to the dissipation in the joints. Qualitative agreement is found and the limits of the analysis are discussed.
Aeroelastic flutter energy harvesters self-polarized by triboelectric effects
Perez, M.; Boisseau, S.; Geisler, M.; Gasnier, P.; Willemin, J.; Despesse, G.; Reboud, J. L.
2018-01-01
This paper presents the performances of several electrostatic flutter energy harvesters tested in a wind tunnel between 0 and 20 m s-1. The main idea is to use the flutter capability of thin flexible films confined between lateral walls to induce simultaneously the capacitance variations and the electrostatic polarization required by the triboelectric/electrostatic conversion. This technology provides thin and flexible devices and solve the electret’s stability issue (Perez et al 2015 Smart Mater. Struct., Perez et al 2015 New Circuits and Systems). Our prototypes (management circuit has finally been used to supply an 868 MHz wireless sensor node with temperature and acceleration measurements, validating the complete energy harvesting chain.
Aeroelastic Flutter of Subsonic Aircraft Wing Section with Control Surface
Directory of Open Access Journals (Sweden)
Aeroelastic Flutter of Subsonic Aircraft Wing Section with Control Surface
2015-12-01
Full Text Available Aeroelastic flutter in aircraft mechanisms is unavoidable, essentially in the wing and control surface. In this work a three degree-of-freedom aeroelastic wing section with trailing edge flap is modeled numerically and theoretically. FLUENT code based on the steady finite volume is used for the prediction of the steady aerodynamic characteristics (lift, drag, pitching moment, velocity, and pressure distribution as well as the Duhamel formulation is used to model the aerodynamic loads theoretically. The system response (pitch, flap pitch and plunge was determined by integration the governing equations using MATLAB with a standard Runge–Kutta algorithm in conjunction with Henon’s method. The results are compared with previous experimental data. The results show that the aerodynamic loads and wing-flap system response are increased when increasing the flow speed. On the other hand the aeroelastic response led up to limit cycle oscillation when the flow equals or more than flutter speed.
Flutter Analysis of RX-420 Balistic Rocket Fin Involving Rigid Body Modes of Rocket Structures
Directory of Open Access Journals (Sweden)
Novi Andria
2013-03-01
Full Text Available Flutter is a phenomenon that has brought a catastrophic failure to the flight vehicle structure. In this experiment, flutter was analyzed for its symmetric and antisymmetric configuration to understand the effect of rocket rigid modes to the fin flutter characteristic. This research was also expected to find out the safety level of RX-420 structure design. The analysis was performed using half rocket model. Fin structure used in this research was a fin which has semispan 600 mm, thickness 12 mm, chord root 700 mm, chord tip 400 mm, made by Al 6061-T651, double spar configuration with skin thickness of 2 mm. Structural dynamics and flutter stability were analyzed using finite element software implemented on MSC. Nastran. The analysis shows that the antisymmetric flutter mode is more critical than symmetric flutter mode. At sea level altitude, antisymmetric flutter occurs at 6.4 Mach, and symmetric flutter occurs at 10.15 Mach. Compared to maximum speed of RX-420 which is 4.5 Mach at altitude 11 km or equivalent to 2.1 Mach at sea level, it can be concluded that the RX-420 structure design is safe, and flutter will not occur during flight.
Application of a flight test and data analysis technique to flutter of a drone aircraft
Bennett, R. M.
1981-01-01
Modal identification results presented were obtained from recent flight flutter tests of a drone vehicle with a research wing (DAST ARW-1 for Drones for Aerodynamic and Structural Testing, Aeroelastic Research Wing-1). This vehicle is equipped with an active flutter suppression system (FSS). Frequency and damping of several modes are determined by a time domain modal analysis of the impulse response function obtained by Fourier transformations of data from fast swept sine wave excitation by the FSS control surface on the wing. Flutter points are determined for two different altitudes with the FSS off. Data are given for near the flutter boundary with the FSS on.
Nuclear data requirements for accelerator driven sub-critical systems
Indian Academy of Sciences (India)
The development of accelerator driven sub-critical systems (ADSS) require significant amount of new nuclear data in extended energy regions as well as for a variety of new materials. This paper reviews these perspectives in the Indian context.
Sub-criticality monitoring for ADTR trademark control
International Nuclear Information System (INIS)
Ashworth, Roger
2014-01-01
Following the debut of the Accelerator Driven Thorium Reactor (ADTR trademark) Power Station at ENC 2010 in Barcelona, thorium as a reactor fuel has gained increasing support. The ADTR trademark concept reactor introduced the combination of an accelerator driven system (ADS) with traditional control rod technology, to provide a very high gain novel sub-critical ADS reactor design. The high gain of the system, while significantly reducing the demands on the accelerator design, pushes up operational sub-criticality (k eff ) closer to unity. In this paper we review this design and the progress made since ENC 2010. We compare 2 different methods of measuring the sub-critical neutron multiplication factor as the fuel cycle develops. The paper discusses the most recent work on k eff measurement and the interesting relationship between neutron flux, accelerator current and fuel temperature when using beam pulse methods to determine operational sub-criticality, of which a European patent is being granted. (orig.)
Physics of subcritical multiplying regions and experimental validation
International Nuclear Information System (INIS)
Salvatores, M.
1996-01-01
The coupling of a particle accelerator with a spallation target and with a subcritical multiplying region has been proposed in the fifties and is called here a hybrid system. This article gives some ideas about the energetic balance of such a system. The possibilities of experimental validation of some properties of a subcritical multiplying region by using MASURCA facility at CEA-Cadarache are examined. The results of a preliminary experiment called MUSE are presented. (A.C.)
Pulsed neutron source based on accelerator-subcritical-assembly
Energy Technology Data Exchange (ETDEWEB)
Inoue, Makoto; Noda, Akira; Iwashita, Yoshihisa; Okamoto, Hiromi; Shirai, Toshiyuki [Kyoto Univ., Uji (Japan). Inst. for Chemical Research
1997-03-01
A new pulsed neutron source which consists of a 300MeV proton linac and a nuclear fuel subcritical assembly is proposed. The proton linac produces pulsed spallation neutrons, which are multipied by the subcritical assembly. A prototype proton linac that accelerates protons up to 7MeV has been developed and a high energy section of a DAW structure is studied with a power model. Halo formations in high intensity beam are also being studied. (author)
The influence of trailed vorticity on flutter speed estimations
International Nuclear Information System (INIS)
Pirrung, Georg R; Madsen, Helge Aa; Kim, Taeseong
2014-01-01
This paper briefly describes the implementation of a coupled near and far wake model for wind turbine rotor induction in the aeroelastic code HAWC2 and its application for flutter analysis of the NREL 5 MW wind turbine. The model consists of a far wake part based on Blade Element Momentum (BEM) theory, which is coupled with Beddoes' near wake model for trailed vorticity. The first part of this work outlines the implementation in HAWC2, with a focus on the interaction of the induction from the blade based near wake model with the induction from the polar grid based BEM model in HAWC2. The influence of the near wake model on the aeroelastic stability of the blades of the NREL 5 MW turbine in overspeed conditions is investigated in the second part of the paper. The analysis is based on a runaway case in which the turbine is free to speed up without generator torque and vibrations start building up at a critical rotor speed. Blades with modified torsional and flapwise stiffness are also investigated. A flutter analysis is often part of the stability investigations for new blades but is normally carried out with engineering models that do not include the influence of unsteady trailed vorticity. Including this influence results in a slightly increased safety margin against classical flutter in all simulated cases
Flutter and divergence instability of supported piezoelectric nanotubes conveying fluid
Bahaadini, Reza; Hosseini, Mohammad; Jamali, Behnam
2018-01-01
In this paper, divergence and flutter instabilities of supported piezoelectric nanotubes containing flowing fluid are investigated. To take the size effects into account, the nonlocal elasticity theory is implemented in conjunction with the Euler-Bernoulli beam theory incorporating surface stress effects. The Knudsen number is applied to investigate the slip boundary conditions between the flow and wall of nanotube. The nonlocal governing equations of nanotube are obtained using Newtonian method, including the influence of piezoelectric voltage, surface effects, Knudsen number and nonlocal parameter. Applying Galerkin approach to transform resulting equations into a set of eigenvalue equations under the simple-simple (S-S) and clamped-clamped (C-C) boundary conditions. The effects of the piezoelectric voltage, surface effects, Knudsen number, nonlocal parameter and boundary conditions on the divergence and flutter boundaries of nanotubes are discussed. It is observed that the fluid-conveying nanotubes with both ends supported lose their stability by divergence first and then by flutter with increase in fluid velocity. Results indicate the importance of using piezoelectric voltage, nonlocal parameter and Knudsen number in decrease of critical flow velocities of system. Moreover, the surface effects have a significant role on the eigenfrequencies and critical fluid velocity.
Vibration and flutter of mistuned bladed-disk assemblies
Kaza, K. R. V.; Kielb, R. E.
1984-01-01
An analytical model for investigating vibration and flutter of mistuned bladed disk assemblies is presented. This model accounts for elastic, inertial and aerodynamic coupling between bending and torsional motions of each individual blade, elastic and inertial couplings between the blades and the disk, and aerodynamic coupling among the blades. The disk was modeled as a circular plate with constant thickness and each blade was represented by a twisted, slender, straight, nonuniform, elastic beam with a symmetric cross section. The elastic axis, inertia axis, and the tension axis were taken to be noncoincident and the structural warping of the section was explicitly considered. The blade aerodynamic loading in the subsonic and supersonic flow regimes was obtained from two-dimensional unsteady, cascade theories. All the possible standing wave modes of the disk and traveling wave modes of the blades were included. The equations of motion were derived by using the energy method in conjunction with the assumed mode shapes for the disk and the blades. Continuities of displacement and slope at the blade-disk junction were maintained. The equations were solved to investigate the effects of blade-disk coupling and blade frequency mistuning on vibration and flutter. Results showed that the flexibility of practical disks such as those used for current generation turbofans did not have a significant influence on either the tuned or mistuned flutter characteristics. However, the disk flexibility may have a strong influence on some of the system frequencies and on forced response.
C.M. van Winden; A. Visser (Adriaan); P.J. Sterk (Peter); S. Beckers; J.C. de Jongste (Johan); W.C.J. Hop (Wim)
1998-01-01
textabstractRecently, the flutter was introduced as a new device to improve sputum expectoration. Preliminary data suggested a significant improvement in expectoration and lung function during flutter treatment in patients with cystic fibrosis (CF). The aim of the
Labyrinth Seal Flutter Analysis and Test Validation in Support of Robust Rocket Engine Design
El-Aini, Yehia; Park, John; Frady, Greg; Nesman, Tom
2010-01-01
High energy-density turbomachines, like the SSME turbopumps, utilize labyrinth seals, also referred to as knife-edge seals, to control leakage flow. The pressure drop for such seals is order of magnitude higher than comparable jet engine seals. This is aggravated by the requirement of tight clearances resulting in possible unfavorable fluid-structure interaction of the seal system (seal flutter). To demonstrate these characteristics, a benchmark case of a High Pressure Oxygen Turbopump (HPOTP) outlet Labyrinth seal was studied in detail. First, an analytical assessment of the seal stability was conducted using a Pratt & Whitney legacy seal flutter code. Sensitivity parameters including pressure drop, rotor-to-stator running clearances and cavity volumes were examined and modeling strategies established. Second, a concurrent experimental investigation was undertaken to validate the stability of the seal at the equivalent operating conditions of the pump. Actual pump hardware was used to construct the test rig, also referred to as the (Flutter Rig). The flutter rig did not include rotational effects or temperature. However, the use of Hydrogen gas at high inlet pressure provided good representation of the critical parameters affecting flutter especially the speed of sound. The flutter code predictions showed consistent trends in good agreement with the experimental data. The rig test program produced a stability threshold empirical parameter that separated operation with and without flutter. This empirical parameter was used to establish the seal build clearances to avoid flutter while providing the required cooling flow metering. The calibrated flutter code along with the empirical flutter parameter was used to redesign the baseline seal resulting in a flutter-free robust configuration. Provisions for incorporation of mechanical damping devices were introduced in the redesigned seal to ensure added robustness
Grand unification and subcritical hybrid inflation
International Nuclear Information System (INIS)
Buchmueller, Wilfried; Ishiwata, Koji
2014-12-01
We consider hybrid inflation for small couplings of the inflaton to matter such that the critical value of the inflaton field exceeds the Planck mass. It has recently been shown that inflation then continues at subcritical inflaton field values where quantum fluctuations generate an effective inflaton mass. The effective inflaton potential interpolates between a quadratic potential at small field values and a plateau at large field values. An analysis of the allowed parameter space leads to predictions for the scalar spectral index n s and the tensor-to-scalar ratio r similar to those of natural inflation. Using the range for n s and r favoured by the Planck data, we find that the energy scale of the plateau is constrained to the interval (1.6-2.4) x 10 16 GeV which includes the energy scale of gauge coupling unification in the supersymmetric standard model. The tensor-to-scalar ratio is predicted to have the lower bound r>0.049 for 60 e-folds before the end of inflation.
Safety features of subcritical fluid fueled systems
International Nuclear Information System (INIS)
Bell, C.R.
1995-01-01
Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitative in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible
Safety features of subcritical fluid fueled systems
International Nuclear Information System (INIS)
Bell, C.R.
1994-01-01
Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitative in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved in very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible
Safety features of subcritical fluid fueled systems
Energy Technology Data Exchange (ETDEWEB)
Bell, C.R. [Los Alamos National Laboratory, NM (United States)
1995-10-01
Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitative in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible.
Influence of Shock Wave on the Flutter Behavior of Fan Blades Investigated
Srivastava, Rakesh; Bakhle, Milind A.; Stefko, George L.
2003-01-01
Modern fan designs have blades with forward sweep; a lean, thin cross section; and a wide chord to improve performance and reduce noise. These geometric features coupled with the presence of a shock wave can lead to flutter instability. Flutter is a self-excited dynamic instability arising because of fluid-structure interaction, which causes the energy from the surrounding fluid to be extracted by the vibrating structure. An in-flight occurrence of flutter could be catastrophic and is a significant design issue for rotor blades in gas turbines. Understanding the flutter behavior and the influence of flow features on flutter will lead to a better and safer design. An aeroelastic analysis code, TURBO, has been developed and validated for flutter calculations at the NASA Glenn Research Center. The code has been used to understand the occurrence of flutter in a forward-swept fan design. The forward-swept fan, which consists of 22 inserted blades, encountered flutter during wind tunnel tests at part speed conditions.
Parametric Flutter Analysis of the TCA Configuration and Recommendation for FFM Design and Scaling
Baker, Myles; Lenkey, Peter
1997-01-01
The current HSR Aeroelasticity plan to design, build, and test a full span, free flying transonic flutter model in the TDT has many technical obstacles that must be overcome for a successful program. One technical obstacle is the determination of a suitable configuration and point in the sky to use in setting the scaling point for the ASE models program. Determining this configuration and point in the sky requires balancing several conflicting requirements, including model buildability, tunnel test safety, and the ability of the model to represent the flutter mechanisms of interest. As will be discussed in detail in subsequent sections, the current TCA design exhibits several flutter mechanisms of interest. It has been decided that the ASE models program will focus on the low frequency symmetric flutter mechanism, and will make no attempt to investigate high frequency flutter mechanisms. There are several reasons for this choice. First, it is believed that the high frequency flutter mechanisms are similar in nature to classical wing bending/torsion flutter, and therefore there is more confidence that this mechanism can be predicted using current techniques. The low frequency mode, on the other hand, is a highly coupled mechanism involving wing, body, tail, and engine motion which may be very difficult to predict. Second, the high frequency flutter modes result in very small weight penalties (several hundred pounds), while suppression of the low frequency mechanism inside the flight envelope causes thousands of pounds to be added to the structure. In order to successfully test the low frequency flutter mode of interest, a suitable starting configuration and point in the sky must be identified. The configuration and point in the sky must result in a wind tunnel model that (1) represents the low-frequency wing/body/engine/empennage flutter mechanisms that are unique to HSCT configurations, (2) flutters at an acceptably low frequency in the tunnel, (3) flutters at an
Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water
Olanrewaju, Kazeem Bode
The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in
Analysis of the MUSE-3 subcritical experiment
Energy Technology Data Exchange (ETDEWEB)
Aliberti, G; Rimpault, G; Jacqmin, R; Lebrat, J F; Chauvin, J P; Granget, G [CEA Cadarache, Dept. d' Etudes des Reacteurs 13 - Saint Paul lez Durance (France); Salvatores, M [CEA Saclay, Dir. de l' Energie Nucleaire, 91 - Gif sur Yvette (France)
2001-07-01
The purpose of the MUSE (MUltiplication avec Source Externe) experimental programme is to investigate the neutronic properties of fast sub-critical cores coupled with known external sources of neutrons. Measurements of the MUSE-3 experiments (third phase of the MUSE program) included reactivity, U-235 fission rates across various traverses, absolute fission rates and dynamic measurements. Special care was taken in assessing the various sources of errors and uncertainties affecting the results when modelling and analysing MUSE-3 experiments with the ERANOS neutronic code system. Measured and calculated values agree well with each other (discrepancies within the uncertainty bars) except absolute fission rates which are affected by the large uncertainties associated with the inherent source (30 %) and with the strength of the fusion source (25%). However, such uncertainties do not contribute to the uncertainty in the importance of the source, {phi}{sup *}, which is linked to the ratio of the measured reaction rate with and without the fusion source (the generator being switched off and on). The analysis yielded therefore valuable results, in particular on the relative importance of the source from one configuration to another. The uncertainty in the calculated {phi}{sup *}, is of 1-2% (JEF2 and ERALIB1) for configurations without diffuser and 6% for the configuration with a Pb diffuser. There is therefore no bias in this important ADS characteristic as calculations lie within the measured error bars. From this analysis, it can be concluded that MUSE-3-type experiments are suitable for the assessment of tools used for designing ADS. (author)
The spatial kinetic analysis of accelerator-driven subcritical reactor
International Nuclear Information System (INIS)
Takahashi, H.; An, Y.; Chen, X.
1998-02-01
The operation of the accelerator driven reactor with subcritical condition provides a more flexible choice of the reactor materials and of design parameters. A deep subcriticality is chosen sometime from the analysis of point kinetics. When a large reactor is operated in deep subcritical condition by using a localized spallation source, the power distribution has strong spatial dependence, and point kinetics does not provide proper analysis for reactor safety. In order to analyze the spatial and energy dependent kinetic behavior in the subcritical reactor, the authors developed a computation code which is composed of two parts, the first one is for creating the group cross section and the second part solves the multi-group kinetic diffusion equations. The reactor parameters such as the cross section of fission, scattering, and energy transfer among the several energy groups and regions are calculated by using a code modified from the Monte Carlo codes MCNPA and LAHET instead of the usual analytical method of ANISN, TWOTRAN codes. Thus the complicated geometry of the accelerator driven reactor core can be precisely taken into account. The authors analyzed the subcritical minor actinide transmutor studied by Japan Atomic Energy Research Institute (JAERI) using the code
A novel concept for CRIEC-driven subcritical research reactors
International Nuclear Information System (INIS)
Nieto, M.; Miley, G.H.
2001-01-01
A novel scheme is proposed to drive a low-power subcritical fuel assembly by means of a long Cylindrical Radially-convergent Inertial Electrostatic Confinement (CRIEC) used as a neutron source. The concept is inherently safe in the sense that the fuel assembly remains subcritical at all times. Previous work has been done for the possible implementation of CRIEC as a subcritical assembly driver for power reactors. However, it has been found that the present technology and stage of development of IEC-based neutron sources can not meet the neutron flux requirements to drive a system as big as a power reactor. Nevertheless, smaller systems, such as research and training reactors, could be successfully driven with levels of neutron flux that seem more reasonable to be achieved in the near future by IEC devices. The need for custom-made expensive nuclear fission fuel, as in the case of the TRIGA reactors, is eliminated, and the CRIEC presents substantial advantages with respect to the accelerator-driven subcritical reactors in terms of simplicity and cost. In the present paper, a conceptual design for a research/training CRIEC-driven subcritical assembly is presented, emphasizing the description, principle of operation and performance of the CRIEC neutron source, highlighting its advantages and discussing some key issues that require study for the implementation of this concept. (author)
Measurements relevant to simulating subcriticality in ADS facilities with blanket
International Nuclear Information System (INIS)
Titarenko, Yu. E.; Batyaev, V.F.; Borovlev, S.P.; Gladkikh, N.G.; Igumnov, M.M.; Legostaev, V.O.; Karpikhin, E.I.; Konev, V.N.; Kushnerev, Yu.T.; Popkov, V.N.; Ryazhsky, V.I.; Spiridonov, V.G.; Chernyavsky, E.V.; Shvedov, O.V.
2009-10-01
The work presents the results of determining the blanket subcriticality for a zero-power heavy water reactor MAKET at the Institute for Theoretical and Experimental Physics, Moscow. The blanket is hexagonal lattice made of 36 90%-enriched 235U fuel rods spaced 173mm apart. The subcriticality was varied from ∼0.3% to 5% by adjusting the heavy water level. The subcriticality values were calibrated using the dependence of reactivity on heavy water level. The pulsed neutron source technique was used to measure the temporal dependence of neutron field at different blanket points for the calibrated subcriticality values. The subciticality values obtained in terms of the 'inverse clock' formulae using the decay constants of the measured dependences proved to differ from the calibrated subcriticalities by not more than 7% at the average. The MCNP code-aided simulations of the experiment made has given the calibrated keff values at prescribed heavy water levels and led to the neutron field decay constants at given points, which differ on the average from their experimental values by not more than 7% too. (author)
Subcriticality determination of nuclear fuel assembly by Mihalczo method
International Nuclear Information System (INIS)
Yamane, Yoshihiro; Watanabe, Shoji; Nishina, Kojiro; Miyoshi, Yoshinori; Suzaki, Takenori; Kobayashi, Iwao.
1986-01-01
To establish a technique of on-site subcriticality determination suitable for the criticality safety management of nuclear fuel assembly, the applicability of the method proposed by Mihalczo was examined with the Tank-type Critical Assembly (TCA) of the Japan Atomic Energy Research Institute. In the Mihalczo method, cross power spectral densities and auto power spectral densities are evaluated from the output currents of an ionization chamber containing 252 Cf neutron source and two neutron detectors. The principle of this method is that the spectral ratio formed by the power spectral densities mentioned can be related to the subcriticality by the help of a stochastic theory. Throughout our data processing, an improved formula taking account of the neutron extinction at a detection process was used. Up to the subcriticality of 15 dollars, the Mihalczo method agreed with the water-level worth method, which has been a standard method of reactivity determination at the TCA facility. The systems treated in the present report hold symmetry concerning the nuclear fuel configuration and the 252 Cf chamber position. It was clarified that, contrary to Mihalczo's assertion, the factor converting the spectral ratio to a subcriticality depends on subcriticality itself. (author)
Long-term endurance sport is a risk factor for development of lone atrial flutter.
Claessen, Guido; Colyn, Erwin; La Gerche, André; Koopman, Pieter; Alzand, Becker; Garweg, Christophe; Willems, Rik; Nuyens, Dieter; Heidbuchel, Hein
2011-06-01
To evaluate whether in a population of patients with 'lone atrial flutter', the proportion of those engaged in long-term endurance sports is higher than that observed in the general population. An age and sex-matched retrospective case-control study. A database with 638 consecutive patients who underwent ablation for atrial flutter at the University of Leuven. Sixty-one patients (55 men, 90%) fitted the inclusion criteria of 'lone atrial flutter', ie, aged 65 years or less, without documented atrial fibrillation and without identifiable underlying disease (including hypertension). Sex, age and inclusion criteria-matched controls, two for each flutter patient, were selected in a general practice in the same geographical region. Sports activity was evaluated by detailed questionnaires, which were available in 58 flutter patients (95%). A transthoracic echocardiogram was performed in all lone flutter patients. Types of sports, number of years of participation and average number of hours per week. The proportion of regular sportsmen (≥3 h of sports practice per week) among patients with lone atrial flutter was significantly higher than that observed in the general population (50% vs 17%; pendurance sports (participation in cycling, running or swimming for ≥3 h/week) was also significantly higher in lone flutter patients than in controls (31% vs 8%; p=0.0003). Those flutter patients performing endurance sports had a larger left atrium than non-sportsmen (p=0.04, by one-way analysis of variance). A history of endurance sports and subsequent left atrial remodelling may be a risk factor for the development of atrial flutter.
Structural testing for static failure, flutter and other scary things
Ricketts, R. H.
1983-01-01
Ground test and flight test methods are described that may be used to highlight potential structural problems that occur on aircraft. Primary interest is focused on light-weight general aviation airplanes. The structural problems described include static strength failure, aileron reversal, static divergence, and flutter. An example of each of the problems is discussed to illustrate how the data acquired during the tests may be used to predict the occurrence of the structural problem. While some rules of thumb for the prediction of structural problems are given the report is not intended to be used explicitly as a structural analysis handbook.
Suspension Bridge Flutter for Girder with Separate Control Flaps
DEFF Research Database (Denmark)
Huynh, T.; Thoft-Christensen, Palle
Active vibration control of long span suspension bridge flutter using separated control flaps (SFSC) has shown to increase effectively the critical wind speed of bridges. In this paper, an SFSC calculation based on modal equations of the vertical and torsional motions of the bridge girder including...... the flaps is presented. The length of the flaps attached to the girder, the flap configuration and the flap rotational angles are parameters used to increase the critical wind speed of the bridge. To illustrate the theory a numerical example is shown for a suspension bridge of 1000m+2500m+1000m span based...... on the Great Belt Bridge streamlined girder....
New Flutter Analysis Technique for Time-Domain Computational Aeroelasticity
Pak, Chan-Gi; Lung, Shun-Fat
2017-01-01
A new time-domain approach for computing flutter speed is presented. Based on the time-history result of aeroelastic simulation, the unknown unsteady aerodynamics model is estimated using a system identification technique. The full aeroelastic model is generated via coupling the estimated unsteady aerodynamic model with the known linear structure model. The critical dynamic pressure is computed and used in the subsequent simulation until the convergence of the critical dynamic pressure is achieved. The proposed method is applied to a benchmark cantilevered rectangular wing.
Development of Active Flutter Suppression Wind Tunnel Testing Technology
1975-01-01
inch stainless steel precision haft ng out to the aileron surfaces. Torque was then transmitted aft through another crank-pushrod linkage...NMMltetiM Clllir llllisi Sl> ptT »I»" CmrN StiiiH tli!ii<ti> »ir|wu ŗK kUfej •*! AFFDL-TR-74-126 o 00 DEVELOPMENT OF ACTIVE FLUTTER...Installations . . 28 14. Outboard Aileron Installation 30 15. Airplane FMCS Block Diagram 35 16. Model FMCS Block Diagram 36 17. Model FMCS
Contributions of Transonic Dynamics Tunnel Testing to Airplane Flutter Clearance
Rivera, Jose A.; Florance, James R.
2000-01-01
The Transonic Dynamics Tunnel (TDT) became in operational in 1960, and since that time has achieved the status of the world's premier wind tunnel for testing large in aeroelastically scaled models at transonic speeds. The facility has many features that contribute to its uniqueness for aeroelastic testing. This paper will briefly describe these capabilities and features, and their relevance to aeroelastic testing. Contributions to specific airplane configurations and highlights from the flutter tests performed in the TDT aimed at investigating the aeroelastic characteristics of these configurations are presented.
Subcritical reactivity measurement at Angra 1 nuclear power plant
International Nuclear Information System (INIS)
Kuramoto, Renato Yoichi Ribeiro; Miranda, Anselmo Ferreira
2011-01-01
In order to speed up the Angra 1 NPP physics tests, this work intends to develop a digital reactivity meter combined with a methodology of the modified Neutron Source Multiplication (NSM) method with correction factors for subcriticality measurements at Angra 1 NPP. In the first part of this work, we have applied the Modified Neutron Source Multiplication (MNSM) Method with fundamental mode extraction, in order to improve the monitoring of the subcriticality at Angra 1 NPP during the criticality approach. In the second part, we developed a preliminary subcritical reactivity meter algorithm based on the point-reactor inverse kinetic model with six delayed neutron groups and external neutron source. The source strength was obtained through the Least Squares Inverse Kinetics Method (LSIKM). (author)
Reactor Dynamics Experiments with a Sub-Critical Assembly
International Nuclear Information System (INIS)
Miley, G.H.; Yang, Y.; Wu, L.; Momota, H.
2004-01-01
A resurgence in use of nuclear power is now underway worldwide. However due to the shutdown of many university research reactors , student laboratories must rely more heavily on use of sub-critical assemblies. Here a driven sub-critical is described that uses a cylindrical Inertial Electrostatic Confinement (IEC) device to provide a fusion neutron source. The small IEC neutron source would be inserted in a fuel element position, with its power input controlled externally at a control panel. This feature opens the way to use of the critical assembly for a number of transient experiments such as sub-critical pulsing and neutron wave propagation. That in turn adds important new insights and excitement for the student teaching laboratory
Evaluating Subcriticality during the Ebola Epidemic in West Africa.
Directory of Open Access Journals (Sweden)
Wayne T A Enanoria
Full Text Available The 2014-2015 Ebola outbreak is the largest and most widespread to date. In order to estimate ongoing transmission in the affected countries, we estimated the weekly average number of secondary cases caused by one individual infected with Ebola throughout the infectious period for each affected West African country using a stochastic hidden Markov model fitted to case data from the World Health Organization. If the average number of infections caused by one Ebola infection is less than 1.0, the epidemic is subcritical and cannot sustain itself. The epidemics in Liberia and Sierra Leone have approached subcriticality at some point during the epidemic; the epidemic in Guinea is ongoing with no evidence that it is subcritical. Response efforts to control the epidemic should continue in order to eliminate Ebola cases in West Africa.
Development of High Flux Isotope Reactor (HFIR) subcriticality monitoring methods
International Nuclear Information System (INIS)
Rothrock, R.B.
1991-01-01
Use of subcritical source multiplication measurements during refueling has been investigated as a possible replacement for out-of-reactor subcriticality measurements formerly made on fresh HFIR fuel elements at the ORNL Critical Experiment Facility. These measurements have been used in the past for preparation of estimated critical rod positions, and as a partial verification, prior to reactor startup, that the requirements for operational shutdown margin would be met. Results of subcritical count rate data collection during recent HFIR refuelings and supporting calculations are described illustrating the intended measurement method and its expected uncertainty. These results are compared to historical uses of the out-of-reactor core measurements and their accuracy requirements, and a planned in-reactor test is described which will establish the sensitivity of the method and calibrate it for future routine use during HFIR refueling. 2 refs., 1 fig., 2 tabs
Estimation of subcriticality with the computed values. 2
Energy Technology Data Exchange (ETDEWEB)
Sakurai, Kiyoshi; Arakawa, Takuya; Naito, Yoshitaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1996-02-01
For measurements of reactivities and neutron count rate space distributions, seven subcritical cores including non-square array cores were constructed using critical assembly TCA. MCNP-4A was used for the experimental analysis. The calculational results of the neutron count rate space distributions agreed with the measured ones within the each error range. It means that for calculation error indirect estimation method, the calculated neutron multiplication factors are equal to ones of experimental reactivities. It is shown that from these experiments and calculations estimation method of subcriticality with the computed values based on the calculation error indirect estimation method is also applicable to six non-square array cores. (author).
ITEP Subcritical Neutron Generator driven by charged particle accelerator
Energy Technology Data Exchange (ETDEWEB)
Shvedov, O.V.; Chuvilo, I.V.; Vasiliev, V.V. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation)] [and others
1995-10-01
A research facility prototype including a combination of a linear accelerator, a neutron generating target, a nuclear safety ensuring and means of its attainment for Subcritical Neutron Generator are considered. The scheme of the multiplying is shown. The assembly will be mounted in the body of the partly dismantled ITEP HWR. Requirements for subcritical assembly are worked out and their feasibility within the framework of the heavy-water blanket is shown. The facility`s application as a full-scale model of more powerful installations of this kind and for fundamental experimental research has been investigated.
Subcritical crack growth along polymer interfaces
Gurumurthy, Charavana Kumara
2000-10-01
The adhesion characteristics have been investigated for a polyimide (PI)/model epoxy (ME) interface that is important for microelectronic applications. The fracture toughness (G*c) of this interface has been measured using an asymmetric double cantilever beam (ADCB) technique. The G*c is low, 10-25 J/m 2, and is sensitive to the mechanical phase angle psi. A modified ADCB setup has been used to measure the subcritical crack growth velocity v due to the stress-assisted water attack (SAWA) at various relative humidities (RH) and temperatures (T) as a function of its driving force (the strain energy release rate) G*. The threshold G* decreases remarkably. Above the threshold log v rises linearly with √ G* (a hydrolysis controlled regime) but then enters a regime where the crack velocity is almost independent of √G*, i.e., v = v* (a transport controlled regime). A model for SAWA has been developed based on thermally-activated kinetics for hydrolysis of the ester covalent bonds that bridge from one side to the other of the interface. A new technique has been developed for the determination of the fatigue crack growth under thermal (T) and hydro-thermal (HT) conditions as a function of the range in the strain energy release rate (DeltaG). Under T-fatigue, the fatigue crack growth per unit temperature cycle (da/dN) increases as a power of DeltaG, i.e., a Paris law relationship holds. The HT da/dN measured is higher than da/dN under T-fatigue conditions and has been successfully modeled as a summation of two components: (a) the da/dN due to T-fatigue and (b) the da/dN due to the SAWA along the interface for a given T-cycle. A surface modification procedure that converts a thin interpenetrated by a solvent cast ME is used to strengthen ME/PI interface. The G* c increases with the interpenetration distance w. Increasing w also improves the resistance of the PI/ME interface to SAWA with the threshold G* increasing and the water transport controlled velocity (v
Designing a mini subcritical nuclear reactor
International Nuclear Information System (INIS)
Escobedo G, C. R.; Vega C, H. R.; Davila H, V. M.
2015-10-01
In this work the design of a mini subcritical nuclear reactor formed by means of light water moderator, uranium as fuel, and isotopic neutron source of 239 PuBe was carried out. The design was done by Monte Carlo methods with the code MCNP5 in which uranium was modeled in an array of concentric holes cylinders of 8.5, 14.5, 20.5, 26.5, 32.5 cm of internal radius and 3 cm of thickness, 36 cm of height. Different models were made from a single fuel cylinder (natural uranium) to five. The neutron source of 239 PuBe was situated in the center of the mini reactor; in each arrangement was used water as moderator. Cross sections libraries Endf/Vi were used and the number of stories was large enough to ensure less uncertainty than 3%. For each case the effective multiplication factor k e -f f , the amplification factor and the power was calculated. Outside the mini reactor the ambient dose equivalent H (10) was calculated for different cases. The value of k eff , the amplification factor and power are directly related to the number of cylinders of uranium as fuel. Although the average energy of the neutrons 239 PuBe is between 4.5 and 5 MeV in the case of the mini reactor for a cylinder, in the neutron spectrum the presence of thermal neutrons does not exist, so that produced fissions are generated with fast neutrons, and in designs of two and three rings the neutron spectra shows the presence of thermal neutrons, however the fissions are being generated with fast neutrons. Finally in the four and five cases the amount of moderator is enough to thermalized the neutrons and thereby produce the fission. The maximum value for k eff was 0.82; this value is very close to the assembly of Universidad Autonoma de Zacatecas generating a k eff of 0.86. According to the safety and radiation protection standards for the design of mini reactor of one, two and three cylinders they comply with the established safety, while designs of four and five cylinders not met. (Author)
Effects of large bending deflections on blade flutter limits
Energy Technology Data Exchange (ETDEWEB)
Kallesoee, Bjarne Skovmose; Hartvig Hansen, Morten
2008-04-15
The coupling of bending and torsion due to large blade bending are assumed to have some effects of the flutter limits of wind turbines. In the present report, the aeroelastic blade model suggested by Kallesoee, which is similar to a second order model, is used to investigate the aeroelastic stability limits of the RWT blade with and without the effects of the large blade deflection. The investigation shows no significant change of the flutter limit on the rotor speed due to the blade deflection,whereas the first edgewise bending mode becomes negatively damped due to the coupling with blade torsion which causes a change of the effective direction of blade vibration. These observations are confirmed by nonlinear aeroelastic simulations using HAWC2. This work is part of the UpWind project funded by the European Commission under the contract number SES6-CT-2005-019945 which is gratefully acknowledged. This report is the deliverable D2.3 of the UpWind project. (au)
Experimental Methods Applied in a Study of Stall Flutter in an Axial Flow Fan
Directory of Open Access Journals (Sweden)
John D. Gill
2004-01-01
Full Text Available Flutter testing is an integral part of aircraft gas turbine engine development. In typical flutter testing blade mounted sensors in the form of strain gages and casing mounted sensors in the form of light probes (NSMS are used. Casing mounted sensors have the advantage of being non-intrusive and can detect the vibratory response of each rotating blade. Other types of casing mounted sensors can also be used to detect flutter of rotating blades. In this investigation casing mounted high frequency response pressure transducers are used to characterize the part-speed stall flutter response of a single stage unshrouded axial-flow fan. These dynamic pressure transducers are evenly spaced around the circumference at a constant axial location upstream of the fan blade leading edge plane. The pre-recorded experimental data at 70% corrected speed is analyzed for the case where the fan is back-pressured into the stall flutter zone. The experimental data is analyzed using two probe and multi-probe techniques. The analysis techniques for each method are presented. Results from these two analysis methods indicate that flutter occurred at a frequency of 411 Hz with a dominant nodal diameter of 2. The multi-probe analysis technique is a valuable method that can be used to investigate the initiation of flutter in turbomachines.
Ruhlin, C. L.; Bhatia, K. G.; Nagaraja, K. S.
1986-01-01
A transonic model and a low-speed model were flutter tested in the Langley Transonic Dynamics Tunnel at Mach numbers up to 0.90. Transonic flutter boundaries were measured for 10 different model configurations, which included variations in wing fuel, nacelle pylon stiffness, and wingtip configuration. The winglet effects were evaluated by testing the transonic model, having a specific wing fuel and nacelle pylon stiffness, with each of three wingtips, a nonimal tip, a winglet, and a nominal tip ballasted to simulate the winglet mass. The addition of the winglet substantially reduced the flutter speed of the wing at transonic Mach numbers. The winglet effect was configuration-dependent and was primarily due to winglet aerodynamics rather than mass. Flutter analyses using modified strip-theory aerodynamics (experimentally weighted) correlated reasonably well with test results. The four transonic flutter mechanisms predicted by analysis were obtained experimentally. The analysis satisfactorily predicted the mass-density-ratio effects on subsonic flutter obtained using the low-speed model. Additional analyses were made to determine the flutter sensitivity to several parameters at transonic speeds.
Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter
Mahajan, A. J.; Kaza, K. R. V.; Dowell, E. H.
1993-01-01
A semi-empirical model is described for predicting unsteady aerodynamic forces on arbitrary airfoils under mildly stalled and unstalled conditions. Aerodynamic forces are modeled using second order ordinary differential equations for lift and moment with airfoil motion as the input. This model is simultaneously integrated with structural dynamics equations to determine flutter characteristics for a two degrees-of-freedom system. Results for a number of cases are presented to demonstrate the suitability of this model to predict flutter. Comparison is made to the flutter characteristics determined by a Navier-Stokes solver and also the classical incompressible potential flow theory.
Experimental transonic flutter characteristics of two 72 deg-sweep delta-wing models
Doggett, Robert V., Jr.; Soistmann, David L.; Spain, Charles V.; Parker, Ellen C.; Silva, Walter A.
1989-01-01
Transonic flutter boundaries are presented for two simple, 72 deg. sweep, low-aspect-ratio wing models. One model was an aspect-ratio 0.65 delta wing; the other model was an aspect-ratio 0.54 clipped-delta wing. Flutter boundaries for the delta wing are presented for the Mach number range of 0.56 to 1.22. Flutter boundaries for the clipped-delta wing are presented for the Mach number range of 0.72 to 0.95. Selected vibration characteristics of the models are also presented.
Energy Technology Data Exchange (ETDEWEB)
Matsudaira, Y.; Obara, H. [Tokyo Metropolitan Institute of Technology, Tokyo (Japan); Nakagawa, H. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan); Yoshida, H. [Tokyo Metropolitan Institute of Technology, Tokyo (Japan)
2000-08-25
Supercavitation hydrofoil applied to high-speed marine propeller or hydro-machinery blade runs into unsteady behaviors such as cavitation breakdown and hydraulic flutter in some operation range. The hydrofoil performance was experimentally estimated and compared with the wedge performance using the cavitation tunnel and the torsional vibration apparatus with three component load cells, This experiment was carried out at several angles of attack in the region from subcavitation to supercavitation. At a general steady state but including some cavitation breakdowns, the hydrofoil has the most superior time mean lift/drag ratio about 6 < C{sub l}/C{sub d} < 8 at in all cavitation regions. But, the ratio drastically decreases as the angle of attack increases. Fluctuating lift coefficient C{sub l}{sup '} due to the cavitation breakdown reaches up to about 10% of time mean lift coefficient C{sub l}. At the hydrofoil pitching motion, the torsional flutter margin of the hydrofoil extends to higher reduced frequency side as the angle of attack increases and has the nearly same margin of the wedge in all cavitation regions. (author)
Local energy losses at positive and negative steps in subcritical ...
African Journals Online (AJOL)
Local energy losses occur when there is a transition in open channel flow. Even though local losses in subcritical open channel flow due to changes in channel width have been studied, to date no studies have been reported for losses due to changes in bed elevations. Steps are commonly used in engineering applications ...
Improving subcritical crack growth resistance for alumina glass dental composite
Zhu, Q.; With, de G.
2005-01-01
The improvement of subcritical crack growth (SCG) resistance for alumina glass dental composites was explored in this study. The addition of nitrogen to the glass phases in the composite was found to increase the SCG resistance, where the SCG exponent n increases from 22 for the oxide glass
Extraction of antioxidants from Chlorella sp. using subcritical water treatment
Zakaria, S. M.; Mustapa Kamal, S. M.; Harun, M. R.; Omar, R.; Siajam, S. I.
2017-06-01
Chlorella sp. microalgae is one of the main source of natural bioactive compounds used in the food and pharmaceutical industries. Subcritical water extraction is the technique that offers an efficient, non-toxic, and environmental-friendly method to obtain natural ingredients. In this work, the extracts of Chlorella sp. microalgae was evaluated in terms of: chemical composition, extraction (polysaccharides) yield and antioxidant activity, using subcritical water extraction. Extractions were performed at temperatures ranging from 100°C to 300°C. The results show that by using subcritical water, the highest yield of polysaccharides is 23.6 that obtained at 150°C. Analysis on the polysaccharides yield show that the contents were highly influenced by the extraction temperature. The individual antioxidant activity were evaluated by in vitro assay using a free radical method. In general, the antioxidant activity of the extracts obtained at different water temperatures was high, with values of 31.08-54.29 . The results indicated that extraction by subcritical water was effective and Chlorella sp. can be a useful source of natural antioxidants.
Introduction of fusion driven subcritical system plasma design
International Nuclear Information System (INIS)
Bin Wu
2003-01-01
Fusion driven subcritical nuclear system (FDS) is a multifunctional hybrid reactor, which could breed nuclear fuel, transmute long-lived wastes, producing tritium and so on. This paper presents an introduction of FDS plasma design. Several different advance equilibrium configurations have been proposed and a 1.5-D discharge simulation of FDS was also present
Comparative analysis of sub-critical transmutation reactor concepts
International Nuclear Information System (INIS)
Chang, S. H.
1997-01-01
The long-lived nuclear wastes have been substantially generated from the light water reactor for a few decades. The toxicity of these spent fuels will be higher than that of the uranium ore, even if those will be stored in the repository more than ten thousands. Hence the means of transmuting the key long-lived nuclear wastes, primarily the minor actinides, using a hybrid proton accelerator and subcritical transmutation reactor, are proposed. Until now, the representative concepts for a subcritical transmutation reactor are the Energy Amplifier, the OMEGA project, the ATW and the MSBR. The detailed concepts and the specifications are illustrated in Table 1. The design requirements for the subcritical transmutation reactor are the high transmutation rate of long-lived nuclear wastes, safety and economics. And to propose the subcritical transmutation reactor concepts, the coolant, the target material and fuel type are carefully considered. In these aspects, the representative concepts for a subcritical transmutation reactor in Table 1 have been surveyed. The requirements for a target and a coolant are the reliable, low maintenance operation and safe operation to minimize the wastes. The reliable, low maintenance operation and safe operation to minimize the wastes. The reliable coolant must have the low melting point, high heat capacity and excellent physical properties. And the target material must have high neutron yield for a given proton condition and easy heat removal capability. Therefore in respect with the above requirements, Pb-Bi is proposed as the coolant and the target material for the subcritical reactor. Because the neutron yield for a given proton energy increases linearly with mass number up to bismuth but in heavier elements spallation events sharply increase both the neutron and heat outputs, Pb-Bi meets not only such the requirements as the above for the coolant but also those for the coolant and target, the simplification of system can be achieved
Influence of surrounding environment on subcritical crack growth in marble
Nara, Yoshitaka; Kashiwaya, Koki; Nishida, Yuki; , Toshinori, Ii
2017-06-01
Understanding subcritical crack growth in rock is essential for determining appropriate measures to ensure the long-term integrity of rock masses surrounding structures and for construction from rock material. In this study, subcritical crack growth in marble was investigated experimentally, focusing on the influence of the surrounding environment on the relationship between the crack velocity and stress intensity factor. The crack velocity increased with increasing temperature and/or relative humidity. In all cases, the crack velocity increased with increasing stress intensity factor. However, for Carrara marble (CM) in air, we observed a region in which the crack velocity still increased with temperature, but the increase in the crack velocity with increasing stress intensity factor was not significant. This is similar to Region II of subcritical crack growth observed in glass in air. Region II in glass is controlled by mass transport to the crack tip. In the case of rock, the transport of water to the crack tip is important. In general, Region II is not observed for subcritical crack growth in rock materials, because rocks contain water. Because the porosity of CM is very low, the amount of water contained in the marble is also very small. Therefore, our results imply that we observed Region II in CM. Because the crack velocity increased in both water and air with increasing temperature and humidity, we concluded that dry conditions at low temperature are desirable for the long-term integrity of a carbonate rock mass. Additionally, mass transport to the crack tip is an important process for subcritical crack growth in rock with low porosity.
Subcriticality determination in ADS: Valina-Booster experiments
International Nuclear Information System (INIS)
Persson, C. M.; Gudowski, W.; Fokau, A.; Bournos, V.; Fokov, Y.; Routkovskaia, C.; Serafimovich, I.; Kiyavitskaya, H.
2007-01-01
A major problem in operating a full-scale subcritical accelerator-driven system (ADS) is to ensure sufficient margin to criticality. Therefore, reliable techniques for subcriticality monitoring are required. In order to develop such techniques, a full understanding of existing reactivity determination methods is essential. In this work, reactivity determination methods, such as pulsed neutron source methods and noise methods, are studied experimentally in the subcritical facility YALINA-Booster. YALINA-Booster: The subcritical assembly YALINA-Booster: recently constructed at the Joint Institute for Power and Nuclear Research - Sosny, consists of a subcritical core driven by an external neutron source. The neutron source is a powerful neutron generator consisting of a deuteron accelerator and a target of deuterium or tritium embedded in titanium. Through (d, d) - or (d, t)-reactions neutrons are created with energy around 2.5 MeV and 14.1 MeV respectively. Neutrons are born in the centre of the core and multiply through a lead matrix fuelled with highly enriched uranium (90% and 36%). This zone is referred to as the booster zone and is surrounded by a thermal zone, moderated by polyethylene. In order to reach sufficient high effective multiplication factor, the thermal zone is fuelled by approximately one thousand rods of 10% enriched uranium dioxide in cylindrical geometry. To prevent thermal neutrons from diffusing into the fast booster zone, an interface, consisting of boron carbide and natural uranium rods, is located between the zones. YALINA-Booster has a radial graphite reflector of thickness 24 cm. Experiments: Experiments using the neutron source in pulsed mode will be presented, relying on methods such as the area method and the method of prompt neutron decay rate determination. Moreover, results from noise analysis using for instance the Feynman-α method will be presented
National Research Council Canada - National Science Library
Farhat, Charles
1998-01-01
... Parameter Identification of Accelerating Aircraft. Flutter clearance, which is part of any new aircraft or fighter weapon system development, is a lengthy and tedious process from both computational and flight testing viewpoint...
Coupled-Mode Flutter of Wind Turbines and its Suppression Using Torsional Viscous Damper
DEFF Research Database (Denmark)
Zhang, Zili; Chen, Bei; Nielsen, Søren R. K.
2017-01-01
The trend towards lighter and more flexible blades may lead to aeroelastic instability of wind turbines under certain circumstances, resulting in rapid destructive failure or limit-cycle oscillations of the structural components. For pitch-regulated wind turbines, classical flutter is believed...... between blade vibrations with tower and drivetrain motions are also considered, making this model capable for coupled-mode flutter analysis of a complete wind turbine system. The parameters of the model have been calibrated to the DTU 10MW wind turbine, and the critical flutter speed of the rotor is shown...... to be about 1.6 times its nominal rotational speed. A novel torsional viscous damper is then proposed to suppress torsional blade vibration and to enhance flutter stability of wind turbines....
Stability analysis of nonlinear autonomous systems - General theory and application to flutter
Smith, L. L.; Morino, L.
1975-01-01
The analysis makes use of a singular perturbation method, the multiple time scaling. Concepts of stable and unstable limit cycles are introduced. The solution is obtained in the form of an asymptotic expansion. Numerical results are presented for the nonlinear flutter of panels and airfoils in supersonic flow. The approach used is an extension of a method for analyzing nonlinear panel flutter reported by Morino (1969).
National Aeronautics and Space Administration — The proposed research program will develop a physics-based identification, modeling and risk management infrastructure for aeroelastic transonic flutter and...
Solubility and degradation of paracetamol in subcritical water
Directory of Open Access Journals (Sweden)
Emire Zuhal
2017-01-01
Full Text Available In this study, solubility and degradation of paracetamol were examined using subcritical water. Effect of temperature and static time was investigated during solubility process in subcritical water at constant pressure (50 bar. Experimental results show that temperature and static time have crucial effect on the degradation and solubility rates. Maximum mole fraction for solubility of paracetamol was obtained at 403 K as (14.68 ± 0.74×103. Approximation model for solubility of paracetamol was proposed. O2 and H2O2 were used in degradation process of paracetamol. Maximum degradation rate was found as 68.66 ± 1.05 and 100 ± 0.00 % using O2 and H2O2, respectively.
Subcriticality calculation in nuclear reactors with external neutron sources
Energy Technology Data Exchange (ETDEWEB)
Silva, Adilson Costa da; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mails: asilva@con.ufrj.br; aquilino@lmp.ufrj.br; fernando@con.ufrj.br
2007-07-01
The main objective of this paper consists on the development of a methodology to monitor subcriticality. We used the inverse point kinetic equation with 6 precursor groups and external neutron sources for the calculation of reactivity. The input data for the inverse point kinetic equation was adjusted, in order to use the neutron counting rates obtained from the subcritical multiplication (1/M) in a nuclear reactor. In this paper, we assumed that the external neutron sources strength is constant and we define it in terms of a known initial condition. The results obtained from inverse point kinetic equation with external neutron sources were compared with the results obtained with a benchmark calculation, and showed good accuracy (author)
Subcriticality calculation in nuclear reactors with external neutron sources
International Nuclear Information System (INIS)
Silva, Adilson Costa da; Martinez, Aquilino Senra; Silva, Fernando Carvalho da
2007-01-01
The main objective of this paper consists on the development of a methodology to monitor subcriticality. We used the inverse point kinetic equation with 6 precursor groups and external neutron sources for the calculation of reactivity. The input data for the inverse point kinetic equation was adjusted, in order to use the neutron counting rates obtained from the subcritical multiplication (1/M) in a nuclear reactor. In this paper, we assumed that the external neutron sources strength is constant and we define it in terms of a known initial condition. The results obtained from inverse point kinetic equation with external neutron sources were compared with the results obtained with a benchmark calculation, and showed good accuracy (author)
A microfluidic sub-critical water extraction instrument
Sherrit, Stewart; Noell, Aaron C.; Fisher, Anita; Lee, Mike C.; Takano, Nobuyuki; Bao, Xiaoqi; Kutzer, Thomas C.; Grunthaner, Frank
2017-11-01
This article discusses a microfluidic subcritical water extraction (SCWE) chip for autonomous extraction of amino acids from astrobiologically interesting samples. The microfluidic instrument is composed of three major components. These include a mixing chamber where the soil sample is mixed and agitated with the solvent (water), a subcritical water extraction chamber where the sample is sealed with a freeze valve at the chip inlet after a vapor bubble is injected into the inlet channels to ensure the pressure in the chip is in equilibrium with the vapor pressure and the slurry is then heated to ≤200 °C in the SCWE chamber, and a filter or settling chamber where the slurry is pumped to after extraction. The extraction yield of the microfluidic SCWE chip process ranged from 50% compared to acid hydrolysis and 80%-100% compared to a benchtop microwave SCWE for low biomass samples.
Evaluation of subcritical hybrid systems loaded with reprocessed fuel
International Nuclear Information System (INIS)
Velasquez, Carlos E.; Barros, Graiciany de P.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L.
2015-01-01
Highlights: • Accelerator driven systems (ADS) and fusion–fission systems are investigated for transmutation and fuel regeneration. • The calculations were performed using Monteburns code. • The results indicate the most suitable system for achieve transmutation. - Abstract: Two subcritical hybrid systems containing spent fuel reprocessed by Ganex technique and spiked with thorium were submitted to neutron irradiation of two different sources: ADS (Accelerator-driven subcritical) and Fusion. The aim is to investigate the nuclear fuel evolution using reprocessed fuel and the neutronic parameters under neutron irradiation. The source multiplication factor and fuel depletion for both systems were analysed during 10 years. The simulations were performed using MONTEBURNS code (MCNP/ORIGEN). The results indicate the main differences when irradiating the fuel with different neutron sources as well as the most suitable system for achieving transmutation
Subcritical to supercritical flow transition in a horizontal stratified flow
International Nuclear Information System (INIS)
Asaka, H.; Kukita, Y.
1995-01-01
The conditions for a transition from hydraulically subcritical to supercritical flow in the hot legs of a pressurized water reactor (PWR) were studied using data obtained from a two-phase natural circulation experiment conducted at the ROSA-IV Large Scale Test Facility (LSTF). The LSTF is a 1/48 volumetrically-scaled simulator of a Westinghouse-type PWR. The conditions for the transition were compared with the theory of Gardner. While the model explains the trend in the experimental data, the quantitative agreement was not satisfactory. It was found that the conditions for the transition from the subcritical to supercritical flow were predicted well by introducing energy loss term into the theory. (author)
Simulation an Accelerator driven Subcritical Reactor core with thorium fuel
International Nuclear Information System (INIS)
Shirmohammadi, L.; Pazirandeh, A.
2011-01-01
The main purpose of this work is simulation An Accelerator driven Subcritical core with Thorium as a new generation nuclear fuel. In this design core , A subcritical core coupled to an accelerator with proton beam (E p =1 GeV) is simulated by MCNPX code .Although the main purpose of ADS systems are transmutation and use MA (Minor Actinides) as a nuclear fuel but another use of these systems are use thorium fuel. This simulated core has two fuel assembly type : (Th-U) and (U-Pu) . Consequence , Neutronic parameters related to ADS core are calculated. It has shown that Thorium fuel is use able in this core and less nuclear waste ,Although Iran has not Thorium reserves but study on Thorium fuel cycle can open a new horizontal in use nuclear energy as a clean energy and without nuclear waste
Breaking rocks made easy: subcritical processes and tectonic predesign
Voigtlaender, Anne; Krautblatter, Michael
2017-04-01
In geomorphic studies, to change in landforms, e.g. by rock slope failure, fluvial or glacial erosion, a threshold is commonly assumed, which is crossed either by an increase in external driving or a decrease of internal resisting forces, respectively. If the threshold is crossed, bedrock breaks and slope fails, rivers incise and glaciers plug and sew their bed. Here we put forward a focus on the decrease of the resisting forces, as an increase in the driving forces, to match the strength of bedrock, is not that likely. We suggest that the degradation of resisting forces of bedrock can be better explained by subcritical processes like creep, fatigue and stress corrosion interplaying with tectonic predesign. Both concepts, subcritical processes and tectonic predesign have been issued in the last century, but have not been widely accepted nor have their assumptions been explicitly stressed in recent case studies. Moreover both concepts profit especially on scale issues if merged. Subcritical crack growth, includes different mechanisms promoting fractures well below the ultimate strength. Single infinitesimal but irreversible damage and deformations are induced in the material over time. They interact with inherent microstructural flaws and low applied stresses, limiting local strength and macroscopic behavior of bedrock. This reissues the concept of tectonic predesigned, as proposed by A.E. Scheidegger, which not only encompasses structural features that determine the routing of drainage patterns and shear planes, e.g. joints, faults and foliations, but also the (neo)tectonic stress-field and the (in-situ) strain state of bedrocks and mountains. Combining subcritical processes and tectonic predesign we can better explain, why and where we see a dissected, eroded and geomorphic divers' landscape. In this conceptual framework actual magnitudes of the driving forces are accounted for and so is the nature of the bedrock material, to better understand the trajectories of
A simple proof of exponential decay of subcritical contact processes
Czech Academy of Sciences Publication Activity Database
Swart, Jan M.
2018-01-01
Roč. 170, 1-2 (2018), s. 1-9 ISSN 0178-8051 R&D Projects: GA ČR(CZ) GA16-15238S Institutional support: RVO:67985556 Keywords : subcritical contact process * sharpness of the phase transition * eigenmeasure Subject RIV: BA - General Mathematics Impact factor: 1.895, year: 2016 http://library.utia.cas.cz/separaty/2016/SI/swart-0462694.pdf
Inverse kinetics for subcritical systems with external neutron source
International Nuclear Information System (INIS)
Carvalho Gonçalves, Wemerson de; Martinez, Aquilino Senra; Carvalho da Silva, Fernando
2017-01-01
Highlights: • It was developed formalism for reactivity calculation. • The importance function is related to the system subcriticality. • The importance function is also related with the value of the external source. • The equations were analyzed for seven different levels of sub criticality. • The results are physically consistent with others formalism discussed in the paper. - Abstract: Nuclear reactor reactivity is one of the most important properties since it is directly related to the reactor control during the power operation. This reactivity is influenced by the neutron behavior in the reactor core. The time-dependent neutrons behavior in response to any change in material composition is important for the reactor operation safety. Transient changes may occur during the reactor startup or shutdown and due to accidental disturbances of the reactor operation. Therefore, it is very important to predict the time-dependent neutron behavior population induced by changes in neutron multiplication. Reactivity determination in subcritical systems driven by an external neutron source can be obtained through the solution of the inverse kinetics equation for subcritical nuclear reactors. The main purpose of this paper is to find the solution of the inverse kinetics equation the main purpose of this paper is to device the inverse kinetics equations for subcritical systems based in a previous paper published by the authors (Gonçalves et al., 2015) and by (Gandini and Salvatores, 2002; Dulla et al., 2006). The solutions of those equations were also obtained. Formulations presented in this paper were tested for seven different values of k eff with external neutrons source constant in time and for a powers ratio varying exponentially over time.
Development and Investigation of Reactivity Measurement Methods in Subcritical Cores
Energy Technology Data Exchange (ETDEWEB)
Wright, Johanna
2005-05-01
Subcriticality measurements during core loading and in future accelerator driven systems have a clear safety relevance. In this thesis two subcriticality methods are treated: the Feynman-alpha and the source modulation method. The Feynman-alpha method is a technique to determine the reactivity from the relative variance of the detector counts during a measurement period. The period length is varied to get the full time dependence of the variance-to-mean. The corresponding theoretical formula was known only with stationary sources. In this thesis, due to its relevance for novel reactivity measurement methods, the Feynman-alpha formulae for pulsed sources for both the stochastic and the deterministic cases are treated. Formulae neglecting as well as including the delayed neutrons are derived. The formulae neglecting delayed neutrons are experimentally verified with quite good agreement. The second reactivity measurement technique investigated in this thesis is the so-called source modulation technique. The theory of the method was elaborated on the assumption of point kinetics, but in practice the method will be applied by using the signal from a single local neutron detector. Applicability of the method therefore assumes point kinetic behaviour of the core. Hence, first the conditions of the point kinetic behaviour of subcritical cores was investigated. After that the performance of the source modulation technique in the general case as well as and in the limit of exact point kinetic behaviour was examined. We obtained the unexpected result that the method has a finite, non-negligible error even in the limit of point kinetic behaviour, and a substantial error in the operation range of future accelerator driven subcritical reactors (ADS). In practice therefore the method needs to be calibrated by some other method for on-line applications.
Development and Investigation of Reactivity Measurement Methods in Subcritical Cores
International Nuclear Information System (INIS)
Wright, Johanna
2005-05-01
Subcriticality measurements during core loading and in future accelerator driven systems have a clear safety relevance. In this thesis two subcriticality methods are treated: the Feynman-alpha and the source modulation method. The Feynman-alpha method is a technique to determine the reactivity from the relative variance of the detector counts during a measurement period. The period length is varied to get the full time dependence of the variance-to-mean. The corresponding theoretical formula was known only with stationary sources. In this thesis, due to its relevance for novel reactivity measurement methods, the Feynman-alpha formulae for pulsed sources for both the stochastic and the deterministic cases are treated. Formulae neglecting as well as including the delayed neutrons are derived. The formulae neglecting delayed neutrons are experimentally verified with quite good agreement. The second reactivity measurement technique investigated in this thesis is the so-called source modulation technique. The theory of the method was elaborated on the assumption of point kinetics, but in practice the method will be applied by using the signal from a single local neutron detector. Applicability of the method therefore assumes point kinetic behaviour of the core. Hence, first the conditions of the point kinetic behaviour of subcritical cores was investigated. After that the performance of the source modulation technique in the general case as well as and in the limit of exact point kinetic behaviour was examined. We obtained the unexpected result that the method has a finite, non-negligible error even in the limit of point kinetic behaviour, and a substantial error in the operation range of future accelerator driven subcritical reactors (ADS). In practice therefore the method needs to be calibrated by some other method for on-line applications
Measurement of kinetic parameters in the fast subcritical core MASURCA
International Nuclear Information System (INIS)
Baeten, Peter; Abderrahim, Hamid Aiet
2004-01-01
In the MUSE shared cost action of the European Fifth Framework Program measurements have been performed to investigate the neutronic behavior of the fast subcritical core MASURCA coupled with the GENEPI accelerator. The aim is to examine the applicability of different measurement techniques for the determination of the main kinetic parameters. The measurement of Rossi-alpha distributions, recorded with the accelerator turned off, showed that the analysis of the obtained distributions is feasible for deep subcritical levels, but with strongly deteriorated statistics. From Rossi-alpha distributions, recorded with the pulsed neutron source in operation, the alpha decay constant was easily derived due to good statistics on the correlated signal resulting from the strong intensity of the neutron pulse. When applying the pulsed neutron source analysis, the reactivity (in dollars) together with the ratio of the mean neutron lifetime l and the effective delayed neutron fraction β eff is immediately derived. Although these first results are very promising, further measurements are needed to qualify the method at larger subcritical levels which are representative for future ADS
Calculated characteristics of subcritical assembly with anisotropic transport of neutrons
International Nuclear Information System (INIS)
Gorin, N.V.; Lipilina, E.N.; Lyutov, V.D.; Saukov, A.I.
2003-01-01
There was considered possibility of creating enough sub-critical system that multiply neutron fluence from a primary source by many orders. For assemblies with high neutron tie between parts, it is impossible. That is why there was developed a construction consisting of many units (cascades) having weak feedback with preceding cascades. The feedback attenuation was obtained placing layers of slow neutron absorber and moderators between the cascades of fission material. Anisotropy of fast neutron transport through the layers was used. The system consisted of many identical cascades aligning one by another. Each cascade consists of layers of moderator, fissile material and absorber of slow neutrons. The calculations were carried out using the code MCNP.4a with nuclear data library ENDF/B5. In this construction neutrons spread predominantly in one direction multiplying in each next fissile layer, and they attenuate considerably in the opposite direction. In a calculated construction, multiplication factor of one cascade is about 1.5 and multiplication factor of whole construction composed of n cascades is 1.5 n . Calculated keff value is 0.9 for one cascade and does not exceed 0.98 for a system containing any number of cascades. Therefore the assembly is always sub-critical and therefore it is safe in respect of criticality. There was considered using such a sub-critical assembly to create a powerful neutron fluence for neutron boron-capturing therapy. The system merits and demerits were discussed. (authors)
Accelerator-driven subcritical facility:Conceptual design development
Gohar, Yousry; Bolshinsky, Igor; Naberezhnev, Dmitry; Duo, Jose; Belch, Henry; Bailey, James
2006-06-01
A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron accelerator is considered to drive the subcritical assembly. The neutron source intensity and spectrum have been studied. The energy deposition, spatial neutron generation, neutron utilization fraction, and target dimensions have been quantified to define the main target performance parameters, and to select the target material and beam parameters. Different target conceptual designs have been developed based the engineering requirements including heat transfer, thermal hydraulics, structure, and material issues. The subcritical assembly is designed to obtain the highest possible neutron flux level with a Keff of 0.98. Different fuel materials, uranium enrichments, and reflector materials are considered in the design process. The possibility of using low enrichment uranium without penalizing the facility performance is carefully evaluated. The mechanical design of the facility has been developed to maximize its utility and minimize the time for replacing the target and the fuel assemblies. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements, upgrades, and new missions. In addition, it has large design margins to accommodate different operating conditions and parameters. In this paper, the conceptual design and the design analyses of the facility will be presented.
Directory of Open Access Journals (Sweden)
Eduardo Dytz Almeida
2015-01-01
Full Text Available Introduction: Atrial fibrillation and atrial flutter account for one third of hospitalizations due to arrhythmias, determining great social and economic impacts. In Brazil, data on hospital care of these patients is scarce. Objective: To investigate the arrhythmia subtype of atrial fibrillation and flutter patients in the emergency setting and compare the clinical profile, thromboembolic risk and anticoagulants use. Methods: Cross-sectional retrospective study, with data collection from medical records of every patient treated for atrial fibrillation and flutter in the emergency department of Instituto de Cardiologia do Rio Grande do Sul during the first trimester of 2012. Results: We included 407 patients (356 had atrial fibrillation and 51 had flutter. Patients with paroxysmal atrial fibrillation were in average 5 years younger than those with persistent atrial fibrillation. Compared to paroxysmal atrial fibrillation patients, those with persistent atrial fibrillation and flutter had larger atrial diameter (48.6 ± 7.2 vs. 47.2 ± 6.2 vs. 42.3 ± 6.4; p < 0.01 and lower left ventricular ejection fraction (66.8 ± 11 vs. 53.9 ± 17 vs. 57.4 ± 16; p < 0.01. The prevalence of stroke and heart failure was higher in persistent atrial fibrillation and flutter patients. Those with paroxysmal atrial fibrillation and flutter had higher prevalence of CHADS2 score of zero when compared to those with persistent atrial fibrillation (27.8% vs. 18% vs. 4.9%; p < 0.01. The prevalence of anticoagulation in patients with CHA2DS2-Vasc ≤ 2 was 40%. Conclusions: The population in our registry was similar in its comorbidities and demographic profile to those of North American and European registries. Despite the high thromboembolic risk, the use of anticoagulants was low, revealing difficulties for incorporating guideline recommendations. Public health strategies should be adopted in order to improve these rates.
Energy Technology Data Exchange (ETDEWEB)
Milosevic, M; Stefanovic, D; Popovic, D; Pesic, M; Zavaljevski, N; Nikolic, D; Arsenovic, M [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)
1988-10-15
This report contains two parts. Part one covers the objective and fundamental elements for the choice of fast subcritical system 'Mala Lasta', review of the existing fast subcritical assemblies, and a description of the available domestic computer codes applied for calculating neutron reactor parameters. Comparison of results obtained by these codes for a number of existing subcritical assemblies was used for the choice of the design project described in part two of this report. It contains detailed description of the operating parameters of the chosen subcritical system based on the obtained calculated parameters.
Subcritical tests - nuclear weapon testing under the Comprehensive Test Ban Treaty
International Nuclear Information System (INIS)
Hoeibraaten, S.
1998-10-01
The report discusses possible nuclear weapons related experiments and whether these are permitted under the 1996 Comprehensive Test Ban Treaty (CTBT). The term ''subcritical experiments'' as used in the United States includes experiments in which one studies fissile materials (so far only plutonium) under extreme conditions generated by conventional high explosives, and in which a self-sustained chain reaction never develops in the fissile material. The known facts about the American subcritical experiments are presented. There is very little reason to doubt that these experiments were indeed subcritical and therefore permitted under the CTBT. Little is known about the Russian efforts that are being made on subcritical experiments
Time simulation of flutter with large stiffness changes
Karpel, Mordechay; Wieseman, Carol D.
1992-01-01
Time simulation of flutter, involving large local structural changes, is formulated with a state-space model that is based on a relatively small number of generalized coordinates. Free-free vibration modes are first calculated for a nominal finite-element model with relatively large fictitious masses located at the area of structural changes. A low-frequency subset of these modes is then transformed into a set of structural modal coordinates with which the entire simulation is performed. These generalized coordinates and the associated oscillatory aerodynamic force coefficient matrices are used to construct an efficient time-domain, state-space model for a basic aeroelastic case. The time simulation can then be performed by simply changing the mass, stiffness, and damping coupling terms when structural changes occur. It is shown that the size of the aeroelastic model required for time simulation with large structural changes at a few apriori known locations is similar to that required for direct analysis of a single structural case. The method is applied to the simulation of an aeroelastic wind-tunnel model. The diverging oscillations are followed by the activation of a tip-ballast decoupling mechanism that stabilizes the system but may cause significant transient overshoots.
Validation of double-spike electrograms as markers of conduction delay or block in atrial flutter.
Cosio, F G; Arribas, F; Barbero, J M; Kallmeyer, C; Goicolea, A
1988-04-01
Recent mapping studies of atrial flutter have shown that fragmented electrograms can be found in most cases from the posterior, posteroseptal and posterolateral walls of the right atrium. The fragmentation pattern most often consists of a double spike. To further assess double-spike electrograms as a possible marker of conduction delay, bipolar electrograms were continuously recorded during atrial overdrive pacing of common flutter from the right atrium (7 patients) and from the proximal coronary sinus (5). Baseline double-spike separation of 50 to 130 ms was unchanged in 1 patient and slightly increased (5 to 25 ms) in 4 by coronary sinus pacing. The electrogram sequence was unchanged and the surface morphology was similar to that of basal flutter. Right atrial pacing decreased double-spike separation by 25 to 85 ms from basal values of 45 to 175 ms (23 to 83%), suggesting fusion in the area of fragmented electrograms. These findings suggest that double-spike electrograms represent activation on both sides of a conduction delay zone. The changes induced in these electrograms by pacing from the anterior right atrium and the coronary sinus are consistent with flutter circuits rotating counterclockwise (frontal plane) in the posterior right atrial wall in common atrial flutter.
van Winden, C. M.; Visser, A.; Hop, W.; Sterk, P. J.; Beckers, S.; de Jongste, J. C.
1998-01-01
Recently, the flutter was introduced as a new device to improve sputum expectoration. Preliminary data suggested a significant improvement in expectoration and lung function during flutter treatment in patients with cystic fibrosis (CF). The aim of the present study was to compare the effects of the
Scott, Robert C.; Bartels, Robert E.
2009-01-01
This paper examines the aeroelastic stability of an on-orbit installable Space Shuttle patch panel. CFD flutter solutions were obtained for thick and thin boundary layers at a free stream Mach number of 2.0 and several Mach numbers near sonic speed. The effect of structural damping on these flutter solutions was also examined, and the effect of structural nonlinearities associated with in-plane forces in the panel was considered on the worst case linear flutter solution. The results of the study indicated that adequate flutter margins exist for the panel at the Mach numbers examined. The addition of structural damping improved flutter margins as did the inclusion of nonlinear effects associated with a static pressure difference across the panel.
The application of digital computers to near-real-time processing of flutter test data
Hurley, S. R.
1976-01-01
Procedures used in monitoring, analyzing, and displaying flight and ground flutter test data are presented. These procedures include three digital computer programs developed to process structural response data in near real time. Qualitative and quantitative modal stability data are derived from time history response data resulting from rapid sinusoidal frequency sweep forcing functions, tuned-mode quick stops, and pilot induced control pulses. The techniques have been applied to both fixed and rotary wing aircraft, during flight, whirl tower rotor systems tests, and wind tunnel flutter model tests. An hydraulically driven oscillatory aerodynamic vane excitation system utilized during the flight flutter test programs accomplished during Lockheed L-1011 and S-3A development is described.
DEFF Research Database (Denmark)
Frost, L; Frost, P; Vestergaard, P
2005-01-01
of atrial fibrillation or flutter associated with sedentary work in a standing position, light workload, or heavy workload in men or women. CONCLUSION: No evidence was found of an association between physical activities during working hours and risk of a hospital discharge diagnosis of atrial fibrillation......, Cancer, and Health Study. The physical strain during working hours was categorised as sedentary, light, or heavy, and analysed using proportional hazard models. Subjects were followed up in the Danish National Registry of Patients and in the Danish Civil Registration System. RESULTS: During follow up...... (mean 5.7 years) a hospital discharge diagnosis of atrial fibrillation or flutter occurred in 305 men and 113 women. When using the risk of atrial fibrillation or flutter associated with sedentary work at a sitting position as a reference, no excess risk (unadjusted as well as adjusted) was found...
Comparison of analysis and flight test data for a drone aircraft with active flutter suppression
Newsom, J. R.; Pototzky, A. S.
1981-01-01
A drone aircraft equipped with an active flutter suppression system is considered with emphasis on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are given for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. The mathematical models are included and existing analytical techniques are described as well as an alternative analytical technique for obtaining closed-loop results.
Flutter analysis of hybrid metal-composite low aspect ratio trapezoidal wings in supersonic flow
Directory of Open Access Journals (Sweden)
Shokrollahi Saeed
2017-02-01
Full Text Available An effective 3D supersonic Mach box approach in combination with non-classical hybrid metal-composite plate theory has been used to investigate flutter boundaries of trapezoidal low aspect ratio wings. The wing structure is composed of two main components including aluminum material (in-board section and laminated composite material (out-board section. A global Ritz method is used with simple polynomials being employed as the trial functions. The most important objective of the present research is to study the effect of composite to metal proportion of hybrid wing structure on flutter boundaries in low supersonic regime. In addition, the effect of some important geometrical parameters such as sweep angle, taper ratio and aspect ratio on flutter boundaries were studied. The results obtained by present approach for special cases like pure metallic wings and results for high supersonic regime based on piston theory show a good agreement with those obtained by other investigators.
Subcritical enhanced safety molten-salt reactor concept
International Nuclear Information System (INIS)
Alekseev, P.N.; Ignatiev, V.V.; Men'shikov, L.I.; Prusakov, V.N.; Ponomarev-Stepnoy, N.N.; Subbotin, S.A.; Krasnykh, A.K.; Rudenko, V.T.; Somov, L.N.
1995-01-01
The nuclear power and its fuel cycle safety requirements can be met in the main by providing nuclear power with subcritical molten salt reactors (SMSR) - 'burner' with an external neutron source. The utilized molten salt fuel is the decisive advantage of the SMSR over other burners. Fissile and fertile nuclides in the burner are solved in a liquid salt in the form of fluorides. This composition acts simultaneously as: a) fuel, b) coolant, c) medium for chemical partitioning and reprocessing. The effective way of reducing the external source power consists in the cascade neutron multiplication in the system of coupled reactors with suppressed feedback between them. (author)
Spatial and spectral effects in subcritical system pulsed experiments
International Nuclear Information System (INIS)
Dulla, S.; Nervo, M.; Ravetto, P.; Carta, M.
2013-01-01
Accurate neutronic models are needed for the interpretation of pulsed experiments in subcritical systems. In this work, the extent of spatial and spectral effects in the pulse propagation phenomena is investigated and the analysis is applied to the GUINEVERE experiment. The multigroup cross section data is generated by the Monte Carlo SERPENT code and the neutronic evolution following the source pulse is simulated by a kinetic diffusion code. The results presented show that important spatial and spectral aspects need to be properly accounted for and that a detailed energy approach may be needed to adequately capture the physical features of the system to the pulse injection. (authors)
Treatment of fluctuations of startup rates for core subcriticality monitoring
International Nuclear Information System (INIS)
Mol, Antonio Carlos de Abreu; Martinez, Aquilino Senra
1996-01-01
In this paper it is presented a method to eliminate the variations in the source and intermediate range count rate, which are used for the on-line and real time monitoring of the critical safety function Subcriticality. The method may be applied to a safety parameters display system, because it is very simple and precise, which it will not affect the real time requirements of such systems. Variations in the count range could cause a temporary positive startup rate, that could lead to incorrect addressing of function restoration guideline. (author)
Orbital storage and supply of subcritical liquid nitrogen
Aydelott, John C.
1990-01-01
Subcritical cryogenic fluid management has long been recognized as an enabling technology for key propulsion applications, such as space transfer vehicles (STV) and the on-orbit cryogenic fuel depots which will provide STV servicing capability. The LeRC Cryogenic Fluids Technology Office (CFTO), under the sponsorship of OAST, has the responsibility of developing the required technology via a balanced program involving analytical modeling, ground based testing, and in-space experimentation. Topics covered in viewgraph form include: cryogenic management technologies; nitrogen storage and supply; cryogenic nitrogen cooling capability; and LN2 system demonstration technical objectives.
Measurement of subcritical multiplication by the interval distribution method
International Nuclear Information System (INIS)
Nelson, G.W.
1985-01-01
The prompt decay constant or the subcritical neutron multiplication may be determined by measuring the distribution of the time intervals between successive neutron counts. The distribution data is analyzed by least-squares fitting to a theoretical distribution function derived from a point reactor probability model. Published results of measurements with one- and two-detector systems are discussed. Data collection times are shorter, and statistical errors are smaller the nearer the system is to delayed critical. Several of the measurements indicate that a shorter data collection time and higher accuracy are possible with the interval distribution method than with the Feynman variance method
Uncertainty Quantification of the FUN3D-Predicted NASA CRM Flutter Boundary
Stanford, Bret K.; Massey, Steven J.
2017-01-01
A nonintrusive point collocation method is used to propagate parametric uncertainties of the flexible Common Research Model, a generic transport configuration, through the unsteady aeroelastic CFD solver FUN3D. A range of random input variables are considered, including atmospheric flow variables, structural variables, and inertial (lumped mass) variables. UQ results are explored for a range of output metrics (with a focus on dynamic flutter stability), for both subsonic and transonic Mach numbers, for two different CFD mesh refinements. A particular focus is placed on computing failure probabilities: the probability that the wing will flutter within the flight envelope.
On One Means of Hard Excitation of Oscillations in Nonlinear Flutter Systems
Directory of Open Access Journals (Sweden)
S. D. Glyzin
2014-01-01
Full Text Available Considered are so-called finite-dimensional flutter systems, i.e. systems of ordinary differential equations, arising from Galerkin approximations of certain boundary value problems of aeroelasticity theory as well as from a number of radiophysics applications. We study small oscillations of these equations in case of 1 : 3 resonance. By combining analytical and numerical methods, it is concluded that the mentioned resonance can cause a hard excitation of oscillations. Namely, for flutter systems shown is the possibility of coexistence, along with the stable zero state, of stable invariant tori of arbitrary finite dimension as well as chaotic attractors.
International Nuclear Information System (INIS)
2004-03-01
Under the Research Committee on Reactor Physics, the Working Party on Reactor Physics of Subcritical System (ADS-WP) was set in July 2001 to research reactor physics of subcritical system such as Accelerator-Driven System (ADS). The WP, at the first meeting, discussed a guideline of its activity for two years and decided to perform theoretical research for the following subjects: (1) study of reactor physics for a subcritical core, (2) benchmark problems for a subcritical core and their calculations, (3) study of physical parameters affecting to set subcriticality of ADS, and (4) study of measurement and surveillance methods of subcriticality of a subcritical core. The activity of ADS-WP continued up to March 2003. In this duration, the members of the WP met together eight times, including four meetings jointly held with the Workshop on Accelerator-Driven Subcritical Reactor at Kyoto University Research Reactor Institute. This report summarizes the result obtained by the above WP activity and research. (author)
International Nuclear Information System (INIS)
Jesus Barbosa, S. de.
1987-01-01
The effective multiplication factor and the nuclear parameters associated with the variation of (RESUCO- Subcritical Experimental Reactor of Uranium with Oxygen) Subcritical Assembly Configuration, using pulsed neutron technique are analysed. BF3 detectors were used to detect the variation of thermal neutrons in the system, positioned parallelly to fuel elements, and a proton recoil detector was used for monitoring the neutron generation. (M.C.K.) [pt
International Nuclear Information System (INIS)
Takahashi, Hiroshi
1994-01-01
I suggest that an accelerator can be used to increase the safety and neutron economy of a power reactor and a transmutor of long-lived radioactive wastes, such as minor actinides and fission products, by providing neutrons for its subcritical operation. Instead of the large subcriticality k=0.9-0.95 which we originally proposed for such transmutor, we propose to use a slightly subcritical reactor, such as k=0.99, which will avoid many of the technical difficulties that are associated with large subcriticality, such as localized power peaking, radiation damage due to injection of medium-energy protons, the high current accelerator, and the requirement for a long beam-expansion section. We analyze the power drop that occurred in Phenix reactor, and show that the operating this reactor in subcritical conditions improves safety. (author). 13 refs., 5 figs
International Nuclear Information System (INIS)
Takahashi, Hiroshi.
1994-01-01
This report describes methods in which an accelerator can be used to increase the safety and neutron economy of a power reactor and transmutor of long-lived radioactive wastes, such as minor actinides and fission products, by providing neutrons for its subcritical operation. Instead of the rather large subcriticality of k=0.9--0.95 which we originally proposed for such a transmutor, we propose to use a slightly subcritical reactor, such as k=0.99, which will avoid many of the technical difficulties that are associated with large subcriticality, such as localized power peaking, radiation damage due to the injection of medium-energy protons, the high current accelerator, and the requirement for a long beam-expansion section. We analyzed the power drop that occurred in Phoenix reactor, and show that the operating this reactor in subcritical condition improves its safety
Ruhlin, C. L.; Doggett, R. V., Jr.; Gregory, R. A.
1976-01-01
An experimental and analytical study was made of the transonic flutter characteristics of a supersonic transport tail assembly model having an all-movable, horizontal tail with a geared elevator. Two model configurations, namely, one with a gear-elevator (2.8 to 1.0 gear ratio) and one with locked-elevator (1.0 to 1.0 gear ratio), were flutter tested in the Langley transonic dynamics tunnel with an empennage cantilever-mounted on a sting. The geared-elevator configuration fluttered experimentally at about 20% higher dynamic pressures than the locked-elevator configuration. The experimental flutter dynamic pressure boundaries for both configurations were nearly flat over a Mach number range from 0.9 to 1.1. Flutter calculations (mathematical models) were made for the geared-elevator configuration using three subsonic lifting-surface methods. In one method, the elevator was treated as a discrete surface, and in the other two methods, the stabilizer and elevator were treated as a single warped-surface with the primary difference between these two methods being in the mathematical implementation used. A comparison of the experimental and analytical results shows that the discrete-elevator method predicted best the experimental flutter dynamic pressure level. However, the single warped-surface methods predicts more closely the experimental flutter frequencies and Mach number trends.
Yalina booster subcritical assembly performance with low enriched uranium fuel
International Nuclear Information System (INIS)
Talamo, Alberto; Gohar, Yousry
2011-01-01
The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)
Yalina booster subcritical assembly performance with low enriched uranium fuel
Energy Technology Data Exchange (ETDEWEB)
Talamo, Alberto; Gohar, Yousry, E-mail: alby@anl.gov [Argonne National Laboratory, Lemont, IL (United States)
2011-07-01
The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)
Estimation of subcriticality by neutron source multiplication method
International Nuclear Information System (INIS)
Sakurai, Kiyoshi; Suzaki, Takenori; Arakawa, Takuya; Naito, Yoshitaka
1995-03-01
Subcritical cores were constructed in a core tank of the TCA by arraying 2.6% enriched UO 2 fuel rods into nxn square lattices of 1.956 cm pitch. Vertical distributions of the neutron count rates for the fifteen subcritical cores (n=17, 16, 14, 11, 8) with different water levels were measured at 5 cm interval with 235 U micro-fission counters at the in-core and out-core positions arranging a 252 C f neutron source at near core center. The continuous energy Monte Carlo code MCNP-4A was used for the calculation of neutron multiplication factors and neutron count rates. In this study, important conclusions are as follows: (1) Differences of neutron multiplication factors resulted from exponential experiment and MCNP-4A are below 1% in most cases. (2) Standard deviations of neutron count rates calculated from MCNP-4A with 500000 histories are 5-8%. The calculated neutron count rates are consistent with the measured one. (author)
Candidate molten salt investigation for an accelerator driven subcritical core
Energy Technology Data Exchange (ETDEWEB)
Sooby, E., E-mail: soobyes@tamu.edu [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Baty, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Beneš, O. [European Commission, DG Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); McIntyre, P.; Pogue, N. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Salanne, M. [Université Pierre et Marie Curie, CNRS, Laboratoire PECSA, F-75005 Paris (France); Sattarov, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States)
2013-09-15
Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated.
Candidate molten salt investigation for an accelerator driven subcritical core
International Nuclear Information System (INIS)
Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.
2013-01-01
Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated
Neutronic calculations for a subcritical system with external source
International Nuclear Information System (INIS)
Cintas, A; Lopasso, E.M; Marquez Damian, J. I
2006-01-01
We present a neutronic study on an A D S, systems capable of transmute minor actinides and fission products in order to reduce their radiotoxicity and mean-life.We compare neutronic parameters obtained with Scale/Tort and M C N P modelling a sub-critical system with source from a N E A Benchmark.Due to lack of nuclear data at the temperature of the system, we perform calculations at available temperature of libraries (300 K); to compensate the reactivity insertion due to the temperature change we reduce the size of the fuel zone in order to get a sub-critical system that allow u s to evaluate neutronic parameters of the system with source.We have found that the numerical results (neutron spectrum, neutron flux distributions and other neutronic parameters) are in agreement with the M C N P and with those of the benchmark participants even though the geometric models used are not exactly the same. We conclude that with the real temperature cross sections, the calculation scheme developed (Scale/Tort and M C N P) will give reliable results in A D S evaluations [es
Neutron noise measurements at the Delphi subcritical assembly
International Nuclear Information System (INIS)
Szieberth, M.; Klujber, G.; Kloosterman, J. L.; De Haas, D.
2012-01-01
The paper presents the results and evaluations of a comprehensive set of neutron noise measurements on the Delphi subcritical assembly of the Delft Univ. of Technology. The measurements investigated the effect of different source distributions (inherent spontaneous fission and 252 Cf) and the position of the detectors applied (both radially and vertically). The evaluation of the measured data has been performed by the variance-to-mean ratio (VTMR, Feynman-α), the autocorrelation (ACF, Rossi-α) and the cross-correlation (CCF) methods. The values obtained for the prompt decay constant show a strong bias, which depends both on the detector position and on the source distribution. This is due to the presence of higher modes in the system. It has been observed that the α value fitted is higher when the detector is close to the boundary of the core or to the 252 Cf point-source. The higher alpha-modes have also been observed by fitting functions describing two alpha-modes. The successful set of measurement also provides a good basis for further theoretical investigations including the Monte Carlo simulation of the noise measurements and the calculation of the alpha-modes in the Delphi subcritical assembly. (authors)
Transonic flutter study of a wind-tunnel model of a supercritical wing with/without winglet
Ruhlin, C. L.; Rauch, F. J., Jr.; Waters, C.
1982-01-01
The scaled flutter model was a 1/6.5-size, semispan version of a supercritical wing (SCW) proposed for an executive-jet-transport airplane. The model was tested cantilever-mounted with a normal wingtip, a wingtip with winglet, and a normal wingtip ballasted to simulate the winglet mass properties. Flutter and aerodynamic data were acquired at Mach numbers from 0.6 to 0.95. The measured transonic flutter speed boundary for each wingtip configuration had roughly the same shape with a minimum flutter speed near M = 0.82. The winglet addition and wingtip mass ballast decreased the wing flutter speed by about 7 and 5%, respectively; thus, the winglet effect on flutter was more a mass effect than an aerodynamic effect. Flutter characteristics calculated using a doublet-lattice analysis (which included interference effects) were in good agreement with the experimental results up to M = 0.82. Comparisons of measured static aerodynamic data with predicted data indicated that the model was aerodynamically representative of the airplane SCW.
International Nuclear Information System (INIS)
Song, Zhi-Guang; Li, Feng-Ming
2011-01-01
The active vibration control of all kinds of structures by using the piezoelectric material has been extensively investigated. In this paper, the active aeroelastic flutter characteristics and vibration control of supersonic beams applying the piezoelectric material are studied further. The piezoelectric materials are bonded on the top and bottom surfaces of the beams to act as the actuator and sensor so that the active aeroelastic flutter suppression for the supersonic beams can be conducted. The supersonic piston theory is adopted to evaluate the aerodynamic pressure. Hamilton's principle with the assumed mode method is used to develop the dynamical model of the structural systems. By using the standard eigenvalue methodology, the solutions for the complex eigenvalue problem are obtained. A negative velocity feedback control strategy is used to obtain active damping. The aeroelastic flutter bounds are calculated and the active aeroelastic flutter characteristics are analyzed. The impulse responses of the structural system are obtained by using the Houbolt numerical algorithm to study the active aeroelastic vibration control. The influences of the non-dimensional aerodynamic pressure on the active flutter control are analyzed. From the numerical results it is observed that the aeroelastic flutter characteristics of the supersonic beams can be significantly improved and that the aeroelastic vibration amplitudes can be remarkably reduced, especially at the flutter points, by using the piezoelectric actuator/sensor pairs which can provide an active damping. Within a certain value of the feedback control gain, with the increase of it, the flutter aerodynamic pressure (or flutter velocity) can be increased and the control results are also improved
Effect of blade flutter and electrical loading on small wind turbine noise
The effect of blade flutter and electrical loading on the noise level of two different size wind turbines was investigated at the Conservation and Production Research Laboratory (CPRL) near Bushland, TX. Noise and performance data were collected on two blade designs tested on a wind turbine rated a...
Comparison of driven and simulated "free" stall flutter in a wind tunnel
Culler, Ethan; Farnsworth, John; Fagley, Casey; Seidel, Jurgen
2016-11-01
Stall flutter and dynamic stall have received a significant amount of attention over the years. To experimentally study this problem, the body undergoing stall flutter is typically driven at a characteristic, single frequency sinusoid with a prescribed pitching amplitude and mean angle of attack offset. This approach allows for testing with repeatable kinematics, however it effectively decouples the structural motion from the aerodynamic forcing. Recent results suggest that this driven approach could misrepresent the forcing observed in a "free" stall flutter scenario. Specifically, a dynamically pitched rigid NACA 0018 wing section was tested in the wind tunnel under two modes of operation: (1) Cyber-Physical where "free" stall flutter was physically simulated through a custom motor-control system modeling a torsional spring and (2) Direct Motor-Driven Dynamic Pitch at a single frequency sinusoid representative of the cyber-physical motion. The time-resolved pitch angle and moment were directly measured and compared for each case. It was found that small deviations in the pitch angle trajectory between these two operational cases generate significantly different aerodynamic pitching moments on the wing section, with the pitching moments nearly 180o out of phase in some cases. This work is supported by the Air Force Office of Scientific Research through the Flow Interactions and Control Program and by the National Defense Science and Engineering Graduate Fellowship Program.
Flutter Analysis of the Thermal Protection Layer on the NASA HIAD
Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.
2013-01-01
A combination of classical plate theory and a supersonic aerodynamic model is used to study the aeroelastic flutter behavior of a proposed thermal protection system (TPS) for the NASA HIAD. The analysis pertains to the rectangular configurations currently being tested in a NASA wind-tunnel facility, and may explain why oscillations of the articles could be observed. An analysis using a linear flat plate model indicated that flutter was possible well within the supersonic flow regime of the wind tunnel tests. A more complex nonlinear analysis of the TPS, taking into account any material curvature present due to the restraint system or substructure, indicated that significantly greater aerodynamic forcing is required for the onset of flutter. Chaotic and periodic limit cycle oscillations (LCOs) of the TPS are possible depending on how the curvature is imposed. When the pressure from the base substructure on the bottom of the TPS is used as the source of curvature, the flutter boundary increases rapidly and chaotic behavior is eliminated.
Measuring of the profile vibration on the flutter critic flow velocity
Czech Academy of Sciences Publication Activity Database
Zolotarev, Igor; Vlček, Václav; Kozánek, Jan
2015-01-01
Roč. 4, č. 2 (2015), s. 45-45 ISSN 2168-9792. [International Conference and Exhibition on MECHANICAL & AEROSPACE ENGINEERING /3./. 05.10.2015-07.10.2015, San Francisco] R&D Projects: GA ČR GA13-10527S Institutional support: RVO:61388998 Keywords : aeroelasticity * flutter * subsonic flow Subject RIV: BI - Acoustics
The flow field acting on the fluttering profile, kinematics, forces and total moment
Czech Academy of Sciences Publication Activity Database
Kozánek, Jan; Vlček, Václav; Zolotarev, Igor
2013-01-01
Roč. 13, č. 7 (2013), s. 1-7 ISSN 0219-4554 R&D Projects: GA ČR GA101/09/1522 Institutional support: RVO:61388998 Keywords : fluttering profile * interferometry visualization * acting forces and moment Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts Impact factor: 1.059, year: 2013
Atrial flutter ablation in a case of diuretic resistant constrictive pericarditis
Directory of Open Access Journals (Sweden)
James F. Pittaway
2015-07-01
This is the first reported case of symptomatic improvement in a patient with constrictive pericarditis and persistent atrial flutter with targeted treatment of the dysrhythmia. This offers a possible short-term palliation option in a group of patients where definitive surgical management carries too high a risk.
Critical and post-critical behaviour of two-degree-of-freedom flutter-based generators
Pigolotti, Luca; Mannini, Claudio; Bartoli, Gianni; Thiele, Klaus
2017-09-01
Energy harvesting from flow-induced vibrations is a recent research field, which considers a diverse range of systems, among which two-degree-of-freedom flutter-based solutions were individuated as good candidates to obtain high energy performance. In the present work, numerical linear analyses and wind-tunnel tests were conducted on a flat-plate sectional model. The aim is to identify some design guidelines for generators exploiting the classical-flutter instability, through the investigation of the critical condition and the response during the post-critical regime. Many sets of governing parameters of interest from the energy-harvesting point of view were considered, including high levels of heaving damping to simulate the operation of a conversion apparatus. In particular, eccentricity of the elastic centre and small downstream mass unbalance can be introduced as solutions aiming at optimal operative ranges. The collected results suggest the high potentiality of flutter-based generators, and a significant enhancement of performance can be envisaged. Moreover, they contribute to improve the knowledge of the flutter excitation mechanism and to widen the dataset of measurements in the post-critical regime.
DEFF Research Database (Denmark)
Sethi, Naqash; Safi, Sanam; Feinberg, Joshua
2017-01-01
BACKGROUND: Atrial fibrillation is the most common arrhythmia of the heart with a prevalence of approximately 2% in the western world. Atrial flutter, another arrhythmia, occurs less often with an incidence of approximately 200,000 new patients per year in the USA. Patients with atrial fibrillati...
Colosimo, Sarah M; Montoya, Jose G; Westley, Benjamin P; Jacob, Jack; Isada, Nelson B
2013-09-01
Consumption of undercooked game meat during pregnancy is considered a risk factor for congenital toxoplasmosis, but cases definitively linking ingestion of infected meat to clinical disease are lacking. We report a confirmed case of congenital toxoplasmosis identified because of atrial flutter in the fetus and linked to maternal consumption of Toxoplasma gondii PCR-positive moose meat.
Flutter suppression and stability analysis for a variable-span wing via morphing technology
Li, Wencheng; Jin, Dongping
2018-01-01
A morphing wing can enhance aerodynamic characteristics and control authority as an alternative to using ailerons. To use morphing technology for flutter suppression, the dynamical behavior and stability of a variable-span wing subjected to the supersonic aerodynamic loads are investigated numerically in this paper. An axially moving cantilever plate is employed to model the variable-span wing, in which the governing equations of motion are established via the Kane method and piston theory. A morphing strategy based on axially moving rates is proposed to suppress the flutter that occurs beyond the critical span length, and the flutter stability is verified by Floquet theory. Furthermore, the transient stability during the morphing motion is analyzed and the upper bound of the morphing rate is obtained. The simulation results indicate that the proposed morphing law, which is varying periodically with a proper amplitude, could accomplish the flutter suppression. Further, the upper bound of the morphing speed decreases rapidly once the span length is close to its critical span length.
Pharmacologic versus direct-current electrical cardioversion of atrial flutter and fibrillation
Van Gelder, IC; Tuinenburg, AE; Schoonderwoerd, BS; Tieleman, RG; Crijns, HJGM
1999-01-01
Conversion of atrial flutter and atrial fibrillation (AF) can be achieved by either pharmacologic or direct-current (DC) electrical cardioversion. DC electrical cardioversion is more effective and restores sinus rhythm instantaneously; however, general anesthesia is necessary, which can cause severe
The influence of Flutter®VRP1 components on mucus transport of patients with bronchiectasis.
Tambascio, Joana; de Souza, Léa Tatiana; Lisboa, Roberta M; Passarelli, Rita de Cássia V; de Souza, Hugo Celso Dutra; Gastaldi, Ada Clarice
2011-09-01
The Flutter(®)VRP1 combines high frequency oscillation and positive expiratory pressure (PEP). To separately evaluate the effect of the Flutter(®)VRP1 components (high frequency oscillation and PEP) on mucus transportability in patients with bronchiectasis. Eighteen patients with bronchiectasis received sessions with the Flutter(®)VRP1 or PEP for 30 min daily in a randomized, crossover study. The treatment duration was four weeks with one of the therapies, one week of a "wash-out" period and followed by four more weeks with the other treatment. Weekly secretion samples were collected and evaluated for mucociliary relative transport velocity (RTV), displacement in a simulated cough machine (SCM) and contact angle measurement (CAM). For the proposed comparisons, a linear regression model was used with mixed effects with a significance level of 5%. The Flutter(®)VRP1 treatment resulted in greater displacement in SCM and lower CAM when comparing results from the first (9.6 ± 3.4 cm and 29.4 ± 5.7°, respectively) and fourth weeks of treatment (12.44 ± 10.5 cm and 23.28 ± 6.2°, respectively; p component. Copyright © 2011 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Chen Sen; Wu Yican; Jin Ming; Chen Zhibin; Bai Yunqing; Zhao Zhumin
2014-01-01
Accelerator Driven Sub-critical System (ADS) has particular neutronics behaviors compared with the critical system. Prompt jump approximation point reactor kinetics equations taken external source into account have been deduced using an approach of prompt jump approximation. And the relationship between injection reactivity and power ampliation has been achieved. In addition, based on the RELAP5 code the prolong development of point reactor kinetics code used into assessing sub-critical system have been promoted. Different sub-criticality (k eff = 0.90, 0.95, 0.97, 0.98 and 0.99) have been assessed in preliminary design of a type of natural circulation cooling sub-critical reactor under conditions of reactivity injection +1 β in one second. It shows that the external source prompt transient approximation method has an accurate solution after injecting reactivity around short time and has a capacity to solve the dynamic equation, and the sub-critical system has an inner stability while the deeper sub-criticality the less impact on the sub-critical system. (authors)
On the numerical simulation of flutter and its suppression by active control
International Nuclear Information System (INIS)
Dong, B.; Mook, D.T.
1994-01-01
The classic problem of predicting the motion (flutter) of a rigid airfoil mounted on an elastic support in a steady freestream is revisited. In the classic approach, the equations of motion were linearized, the supports were linear springs, the motion was assumed to be periodic, the aerodynamic loads were predicted by Wagner's function, and the solution was obtained in the so-called frequency domain. In the present approach, the equations of motion are in their fully nonlinear form, the supports may be nonlinear springs, the motion is not assumed to be periodic, the loads are predicted by a general unsteady vorticity-panel method, and the solution is obtained in the so-called time domain. After it is demonstrated that the present approach predicts the onset of flutter and the post-flutter behavior for flat-plate as well as thick airfoils, the airfoil -is modified by the addition of a flap at the trailing edge. The flap is part of an actively controlled servomechanism, and it is demonstrated that flutter can be readily controlled with very little effort by a variety of feedback-control laws. In the present approach, emphasis is placed on considering the airfoil, its supports, the flowing air and the control/servo mechanism collectively to be a single dynamic system. All the equations of motion and control laws are solved simultaneously and interactively; thus, complete interactions among the various subsystems are captured. The present simulation of an oscillating airfoil provides some characteristics of the flutter phenomenon that were missed in previous studies: for example, it is shown that, in the absence of flaps, the motion in heave (the translational part of the motion) is responsible for adding energy to (exciting) the structural subsystem while the motion in pitch is responsible for extracting energy from (damping) the structural subsystem. Below the critical speed, there is more dissipation than excitation and hence all initial disturbances decay
Multirate flutter suppression system design for the Benchmark Active Controls Technology Wing
Berg, Martin C.; Mason, Gregory S.
1994-01-01
To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies will be applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing (also called the PAPA wing). Eventually, the designs will be implemented in hardware and tested on the BACT wing in a wind tunnel. This report describes a project at the University of Washington to design a multirate flutter suppression system for the BACT wing. The objective of the project was two fold. First, to develop a methodology for designing robust multirate compensators, and second, to demonstrate the methodology by applying it to the design of a multirate flutter suppression system for the BACT wing. The contributions of this project are (1) development of an algorithm for synthesizing robust low order multirate control laws (the algorithm is capable of synthesizing a single compensator which stabilizes both the nominal plant and multiple plant perturbations; (2) development of a multirate design methodology, and supporting software, for modeling, analyzing and synthesizing multirate compensators; and (3) design of a multirate flutter suppression system for NASA's BACT wing which satisfies the specified design criteria. This report describes each of these contributions in detail. Section 2.0 discusses our design methodology. Section 3.0 details the results of our multirate flutter suppression system design for the BACT wing. Finally, Section 4.0 presents our conclusions and suggestions for future research. The body of the report focuses primarily on the results. The associated theoretical background appears in the three technical papers that are included as Attachments 1-3. Attachment 4 is a user's manual for the software that is key to our design methodology.
Pati-Salam version of subcritical hybrid inflation
Bryant, B. Charles; Raby, Stuart
2016-05-01
In this paper we present a model of subcritical hybrid inflation with a Pati-Salam (PS) symmetry group. Both the inflaton and waterfall fields contribute to the necessary e -foldings of inflation, while only the waterfall field spontaneously breaks PS hence monopoles produced during inflation are diluted during the inflationary epoch. The model is able to produce a tensor-to-scalar ratio, r model also incorporates a Z4R symmetry which can resolve the μ problem and suppress dimension 5 operators for proton decay, leaving over an exact R parity. Finally the model allows for a complete three-family extension with a D4 family symmetry which reproduces low energy precision electroweak and LHC data.
International conference on sub-critical accelerator driven systems. Proceedings
International Nuclear Information System (INIS)
Litovkina, L.P.; Titarenko, Yu.E.
1999-01-01
The International Meeting on Sub-Critical Accelerator Driven Systems was organized by the State Scientific Center - Institute for Theoretical and Experimental Physics with participation of Atomic Ministry of RF. The Meeting objective was to analyze the recent achievements and tendencies of the accelerator-driven systems development. The Meeting program covers a broad range of problems including the accelerator-driven systems (ADS) conceptual design; analyzing the ADS role in nuclear fuel cycle; accuracy of modeling the main parameters of ADS; conceptual design of high-current accelerators. Moreover, the results of recent experimental and theoretical studies on nuclear data accumulation to support the ADS technologies are presented. About 70 scientists from the main scientific centers of Russia, as well as scientists from USA, France, Belgium, India, and Yugoslavia, attended the meeting and presented 44 works [ru
Experimental Study of Subcritical Water Liquefaction of Biomass
DEFF Research Database (Denmark)
Zhu, Zhe; Toor, Saqib; Rosendahl, Lasse
2014-01-01
In this work, hydrothermal liquefaction (HTL) of wood industry residues (wood, bark, sawdust) and macroalgae for producing biofuels has been investigated under subcritical water conditions (at temperature of 300 C), with and without the presence of catalyst. The effects of catalyst and biomass type...... bio-crudes were analyzed. The results showed that the higher heating values (HHVs) were in the range of 24.15 to 31.79 MJ/kg, and they were enhanced in the presence of catalyst, except for that of the macroalgae. The solid residues were characterized by heating value, SEM and FTIR. It was found...... that the addition of K2CO3 lowered the solids quality in terms of the heating values, while it did not have apparent effect on the functional groups of solid residues. SEM analysis of the raw biomass and solid residues revealed that the char formation for wood, sawdust and macroalgae had initially finished when...
Monitoring of MNSR operation by measuring subcritical photoneutron flux
International Nuclear Information System (INIS)
Haddad, Kh.; Alsomel, N.
2011-01-01
Passive nondestructive assay methods are used to monitor the reactor's operation. It is required for nuclear regulatory, calculation validation and safeguards purposes. So, it plays a vital role in the safety and security of the nuclear plants. The possibility of MNSR operation monitoring by measuring the subcritical state photoneutron flux were investigated in this work. The photoneutron flux is induced by the fuels hard gamma radiation in the beryllium reflector. Theoretical formulation and experimental tests were performed. The results show that within a specified cooling time range, the photoneutron flux is induced by a single dominant hard gamma emitter such as 117 Cd (activation product) and 140 Ba ( 140 La fission product). This phenomenon was utilized to monitor the cooling time and the operation neutron flux during the last campaign. Thus a passive nondestructive assay method is proposed with regard to the reactor operation's monitoring.
Dynamic subcriticality measurements using the CF neutron noise method: Videotape
Energy Technology Data Exchange (ETDEWEB)
Mihalczo, J.T.; Blakeman, E.D.; Ragan, G.E.; Johnson, E.B.
1987-01-01
The capability to measure the subcriticality for a multiplying system with k-effective values as low as 0.3 was demonstrated for measurement times of approximately 10 s; the measured k-effective values obtained do not depend on the speed with which the solution height is changed or on whether the tank is filling or draining. As in previous experiments, the low-frequency ratios of spectral densities are all that are needed to obtain the k-effective value. This method's effectiveness for systems where conditions are changing with time as demonstrated, probably exceeds the dynamic requirements for most nuclear fuel plant processing applications. The calculated k-effective values using the KENO code and Hansen-Roach cross-sections compare well with the experimental values. Before the dynamic capability of the method can be considered fully explored, additional dynamic experiments are required for other geometries and fuel concentrations.
Economic analysis of the fusion-driven subcritical system
International Nuclear Information System (INIS)
Huang Desuo; Wu Yican; Chu Delin; Hu Liqin
2004-01-01
The economic performance of the Fusion-Driven Subcritical system (FDS) is discussed. At first, as an example, the impacts of parameters, such as plasma aspect-ratio, elongation, normalized beta, on-axis toroidal field and the blanket energy-gain are analyzed on the costs of the typical case (moderate aspect-ratio) of FDS. Then, the economic characteristics of the 3 possible scenarios of FDS are estimated with respect to the neutronics parameters. The results calculated with the SYSCODE developed by the FDS team show that the cost of electricity of Scenario-1 (low aspect-ratio) and Scenario-2 (moderate aspect-ratio) of FDS is cheaper than that of pure fusion power plant at the same plane size (1 GW e ). The cost of electricity of the FDS power plant depends heavily on the functions of blanket and the blanket energy-gain. (authors)
Measurement of material buckling of subcritical assembly CAPITU
International Nuclear Information System (INIS)
Pombo, J.B.S.M.
1976-11-01
Material buckling and cadmium ratio measurements for 5 lattices of the subcritical assembly CAPITU with UO 2 as fuel (French fuel elements) and D 2 O as moderator are reported. Flux shape method from foil activation data has been used. Some developed accessories, experimental procedures and the counting system used are also described. Flux distributions were analysed by least squares fitting method and by a moments method. Final results for material buckling were confronted with theoretical values and with values obtained by pulsed neutron techniques. A summary of the programs used for preliminary processing of counting data and for least squares fitting are included. Although the measurements involved some problems which were not definitively solved, results seem to be reasonably reliable and the methodology well implemented. (Author) [pt
Subcritical Water Extraction of Monosaccharides from Oil Palm Fronds Hemicelluloses
International Nuclear Information System (INIS)
Norsyabilah, R.; Hanim, S.S.; Norsuhaila, M.H.; Noraishah, A.K.; Siti Kartina
2013-01-01
Oil palm plantations in Malaysia generate more than 36 million tones of pruned and felled oil palm fronds (OPF) and are generally considered as waste. The composition of monosaccharide in oil palm frond can be extracted using hydrothermal treatment for useful applications. The objectives of this study were to quantify the yield of monosaccharides at various reaction conditions; temperature 170 to 200 degree Celsius, pressure from 500 psi to 800 psi, reaction time from 5 to 15 min using subcritical water extraction and to determine the composition of oil palm frond hemicelluloses at optimum condition. The monosaccharides composition of oil palm frond hemicelluloses were analysed using High Performance Liquid Chromatography (HPLC). The highest yield of monosaccharides can be extracted from OPF at temperature of 190 degree Celsius, pressure of 600 psi and 10 min of contact time which is xylose the most abundant composition (11.79 %) followed with arabinose (2.82 %), glucose (0.61 %) and mannose (0.66 %). (author)
Subcritical crack growth in a phosphate laser glass
Energy Technology Data Exchange (ETDEWEB)
Crichton, S.N.; Tomozawa, M.; Hayden, J.S.; Suratwala, T.I.; Campbell, J.H.
1999-11-01
The rate of subcritical crack growth in a metaphosphate Nd-doped laser glass was measured using the double-cleavage-drilled compression (DCDC) method. The crack velocity is reported as a function of stress intensity at temperatures ranging from 296 to 573 K and in nitrogen with water vapor pressures ranging from 40 Pa (0.3 mmHg) to 4.7 x 10{sup 4} Pa (355 mmHg). The measured crack velocities follow region I, II, and III behavior similar to that reported for silicate glasses. A chemical and mass-transport-limited reaction rate model explains the behavior of the data except at high temperatures and high water vapor pressures where crack tip blunting is observed. Blunting is characterized to reinitiate slow crack growth at higher stresses. A dynamic crack tip blunting mechanism is proposed to explain the deviation from the reaction rate model.
Selection of initial events of accelerator driven subcritical system
International Nuclear Information System (INIS)
Wang Qianglong; Hu Liqin; Wang Jiaqun; Li Yazhou; Yang Zhiyi
2013-01-01
The Probabilistic Safety Assessment (PSA) is an important tool in reactor safety analysis and a significant reference to the design and operation of reactor. It is the origin and foundation of the PSA for a reactor to select the initial events. Accelerator Driven Subcritical System (ADS) has advanced design characteristics, complicated subsystems and little engineering and operating experience, which makes it much more difficult to identify the initial events of ADS. Based on the current design project of ADS, the system's safety characteristics and special issues were analyzed in this article. After a series of deductions with Master Logic Diagram (MLD) and considering the relating experience of other advanced research reactors, a preliminary initial events was listed finally, which provided the foundation for the next safety assessment. (authors)
Safety and control of accelerator-driven subcritical systems
Energy Technology Data Exchange (ETDEWEB)
Rief, H. [Ispra Establishment (Italy); Takahashi, H. [Brookhaven National Laboratory, Long Island, NY (United States)
1995-10-01
To study control and safety of accelertor driven nuclear systems, a one point kinetic model was developed and programed. It deals with fast transients as a function of reactivity insertion. Doppler feedback, and the intensity of an external neutron source. The model allows for a simultaneous calculation of an equivalent critical reactor. It was validated by a comparison with a benchmark specified by the Nuclear Energy Agency Committee of Reactor Physics. Additional features are the possibility of inserting a linear or quadratic time dependent reactivity ramp which may account for gravity induced accidents like earthquakes, the possibility to shut down the external neutron source by an exponential decay law of the form exp({minus}t/{tau}), and a graphical display of the power and reactivity changes. The calculations revealed that such boosters behave quite benignly even if they are only slightly subcritical.
Subcritical Water Extraction of Amino Acids from Atacama Desert Soils
Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.
2007-01-01
Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.
Subcritical-Water Extraction of Organics from Solid Matrices
Amashukeli, Xenia; Grunthaner, Frank; Patrick, Steven; Kirby, James; Bickler, Donald; Willis, Peter; Pelletier, Christine; Bryson, Charles
2009-01-01
An apparatus for extracting organic compounds from soils, sands, and other solid matrix materials utilizes water at subcritical temperature and pressure as a solvent. The apparatus, called subcritical water extractor (SCWE), is a prototype of subsystems of future instrumentation systems to be used in searching for organic compounds as signs of past or present life on Mars. An aqueous solution generated by an apparatus like this one can be analyzed by any of a variety of established chromatographic or spectroscopic means to detect the dissolved organic compound( s). The apparatus can be used on Earth: indeed, in proof-of-concept experiments, SCWE was used to extract amino acids from soils of the Atacama Desert (Chile), which was chosen because the dryness and other relevant soil conditions there approximate those on Mars. The design of the apparatus is based partly on the fact that the relative permittivity (also known as the dielectric constant) of liquid water varies with temperature and pressure. At a temperature of 30 C and a pressure of 0.1 MPa, the relative permittivity of water is 79.6, due to the strong dipole-dipole electrostatic interactions between individual molecular dipoles. As the temperature increases, increasing thermal energy causes increasing disorientation of molecular dipoles, with a consequent decrease in relative permittivity. For example, water at a temperature of 325 C and pressure of 20 MPa has a relative permittivity of 17.5, which is similar to the relative permittivities of such nonpolar organic solvents as 1-butanol (17.8). In the operation of this apparatus, the temperature and pressure of water are adjusted so that the water can be used in place of commonly used organic solvents to extract compounds that have dissimilar physical and chemical properties.
Methods for the reactivity evaluation in subcritical systems analysis: a review
International Nuclear Information System (INIS)
Dulla, S.; Picca, P.; Carta, M.
2011-01-01
The assessment of the subcritical source-driven system technology for waste incineration and power production requires the development of reliable and efficient techniques for the reactivity evaluation and monitoring. Starting from the standard methods developed for close-to-criticality systems, extensive research activities have been carried out to analyze the behavior of subcritical assembly in time-dependent condition and to infer the subcriticality level from local flux values. In the present work, a review of some key aspects in the method development for ADS analysis is proposed, with special attention to the techniques for reactivity evaluation. (author)
National Research Council Canada - National Science Library
Woolston, Donald
1949-01-01
The present paper reports the results of a series of flutter studies including comparisons of experimental results with calculations based on a Rayleigh type analysis, in which chosen modes are assumed...
International Nuclear Information System (INIS)
Kostic, Lj.
2003-01-01
The influence of the stochastically pulsed Poisson source to the statistical properties of the subcritical multiplying system is analyzed in the paper. It is shown a strong dependence on the pulse period and pulse width of the source (author)
Final report for fuel acquisition and design of a fast subcritical blanket facility
International Nuclear Information System (INIS)
Clikeman, F.M.; Ott, K.O.
1976-01-01
A summary is presented of work leading to the design of a subcritical facility for the study of fast reactor blankets. Included are activities related to fuel acquisition, design of the facility, and experiment planning
International Nuclear Information System (INIS)
Arthur, E.; Busksa, J.; Davidson, W.; Poston, D.
1995-05-01
Discriminators are described that quantify enhancements added to plutonium destruction and/or nuclear waste transmutation systems through use of an accelerator/fluid fuel combination. This combination produces a robust and flexible nuclear system capable of the destruction of all major long-lived actinides (including plutonium) and fission products. The discriminators discussed in this report are (1) impact of subcritical operation on safety, (2) impact of subcritical and fluid fuel operation on plutonium burnout scenarios, and (3) neutron economy enhancements brought about by subcritical operation. Neutron economy enhancements are quantified through assessment of long-term dose reduction resulting from transmutation of key fission products along with relaxation of processing frequencies afforded by subcritical operation
International Nuclear Information System (INIS)
Suzaki, T.
1987-01-01
Buckling measurement methods in subcritical nuclear fuel systems (negative buckling measurements in small systems are well-known as the exponential experiment) were discussed from the viewpoint of the applicability to on-site monitorings of subcriticality and fuel characteristics of interest. From demonstration experiments using the TCA, it was revealed that the method is quite promising. Applicability of the method to the critical approach in critical assemblies was also discussed. (author)
International Nuclear Information System (INIS)
Voi, Dante Luiz; Santos Bastos, Wilma dos
1995-01-01
Subcritical and exponential experiments are important for Reactor Physics integral parameter determinations both to validate and confirm theoretical models for reactor calculations. An exponential and subcritical facility has been constructed to be used on the internal thermal column of the Argonauta reactor at IEN-CNEN- Rio de Janeiro. An experimental research program has been developed for the determination of fundamental reactor constants as buckling, migration areas, resonance escape probabilities, thermal utilization, fast fission and fuel eta factors. (author) 23 refs
International Nuclear Information System (INIS)
Carluccio, Thiago
2011-01-01
This works had as goal to investigate calculational methodologies on subcritical source driven reactor, such as Accelerator Driven Subcritical Reactor (ADSR) and Fusion Driven Subcritical Reactor (FDSR). Intense R and D has been done about these subcritical concepts, mainly due to Minor Actinides (MA) and Long Lived Fission Products (LLFP) transmutation possibilities. In this work, particular emphasis has been given to: (1) complement and improve calculation methodology with neutronic transmutation and decay capabilities and implement it computationally, (2) utilization of this methodology in the Coordinated Research Project (CRP) of the International Atomic Energy Agency Analytical and Experimental Benchmark Analysis of ADS and in the Collaborative Work on Use of Low Enriched Uranium in ADS, especially in the reproduction of the experimental results of the Yalina Booster subcritical assembly and study of a subcritical core of IPEN / MB-01 reactor, (3) to compare different nuclear data libraries calculation of integral parameters, such as k eff and k src , and differential distributions, such as spectrum and flux, and nuclides inventories and (4) apply the develop methodology in a study that may help future choices about dedicated transmutation system. The following tools have been used in this work: MCNP (Monte Carlo N particle transport code), MCB (enhanced version of MCNP that allows burnup calculation) and NJOY to process nuclear data from evaluated nuclear data files. (author)
Subcritical Noise Analysis Measurements with Fresh and Spent Research Reactor Fuels Elements
International Nuclear Information System (INIS)
Valentine, T.E.; Mihalczo, J.T.; Kryter, R.C.; Miller, V.C.
1999-01-01
The verification of the subcriticality is of utmost importance for the safe transportation and storage of nuclear reactor fuels. Transportation containers and storage facilities are designed such that nuclear fuels remain in a subcritical state. Such designs often involve excess conservatism because of the lack of relevant experimental data to verify the accuracy of Monte Carlo codes used in nuclear criticality safety analyses. A joint experimental research program between Oak Ridge National Laboratory, Westinghouse Safety Management Solutions, Inc., and the University of Missouri was initiated to obtain measured quantities that could be directly related to the subcriticality of simple arrays of Missouri University Research Reactor (MURR) fuel elements. A series of measurement were performed to assess the reactivity of materials such as BORAL, stainless steel, aluminum, and lead that are typically used in the construction of shipping casks. These materials were positioned between the fuel elements. In addition, a limited number of measurements were performed with configurations of fresh and spent (irradiated) fuel elements to ascertain the reactivity of the spent fuel elements. In these experiments, fresh fuel elements were replaced by spent fuel elements such that the subcritical reactivity change could be measured. The results of these measurements were used by Westinghouse Safety Management Solutions to determine the subcriticality of MURR fuel elements isolated by absorbing materials. The measurements were interpreted using the MCNP-DSP Monte Carlo code to obtain the subcritical neutron multiplication factor k(sub eff), and the bias in K(sub eff) that are used in criticality safety analyses
Numerical simulations of subcritical reactor kinetics in thermal hydraulic transient phases
Energy Technology Data Exchange (ETDEWEB)
Yoo, J; Park, W S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1999-12-31
A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute (KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons, external neutrons form spallation reactions are essentially required for operating the reactor in its steady state. Furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance to the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases. 5 refs., 8 figs. (Author)
Numerical simulations of subcritical reactor kinetics in thermal hydraulic transient phases
Energy Technology Data Exchange (ETDEWEB)
Yoo, J.; Park, W. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute (KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons, external neutrons form spallation reactions are essentially required for operating the reactor in its steady state. Furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance to the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases. 5 refs., 8 figs. (Author)
Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications
Powell, Thomas; Bowra, Steve; Cooper, Helen J.
2017-09-01
Previously we have shown that subcritical water may be used as an alternative to enzymatic digestion in the proteolysis of proteins for bottom-up proteomics. Subcritical water hydrolysis of proteins was shown to result in protein sequence coverages greater than or equal to that obtained following digestion with trypsin; however, the percentage of peptide spectral matches for the samples treated with trypsin were consistently greater than for those treated with subcritical water. This observation suggests that in addition to cleavage of the peptide bond, subcritical water treatment results in other hydrolysis products, possibly due to modifications of amino acid side chains. Here, a model peptide comprising all common amino acid residues (VQSIKCADFLHYMENPTWGR) and two further model peptides (VCFQYMDRGDR and VQSIKADFLHYENPTWGR) were treated with subcritical water with the aim of probing any induced amino acid side-chain modifications. The hydrolysis products were analyzed by direct infusion electrospray tandem mass spectrometry, either collision-induced dissociation or electron transfer dissociation, and liquid chromatography collision-induced dissociation tandem mass spectrometry. The results show preferential oxidation of cysteine to sulfinic and sulfonic acid, and oxidation of methionine. In the absence of cysteine and methionine, oxidation of tryptophan was observed. In addition, water loss from aspartic acid and C-terminal amidation were observed in harsher subcritical water conditions. [Figure not available: see fulltext.
Investigation of the Flutter Suppression by Fuzzy Logic Control for Hypersonic Wing
Li, Dongxu; Luo, Qing; Xu, Rui
This paper presents a fundamental study of flutter characteristics and control performance of an aeroelastic system based on a two-dimensional double wedge wing in the hypersonic regime. Dynamic equations were established based on the modified third order nonlinear piston theory and some nonlinear structural effects are also included. A set of important parameters are observed. And then aeroelastic control law is designed to suppress the amplitude of the LCOs for the system in the sub/supercritical speed range by applying fuzzy logic control on the input of the deflection of the flap. The overall effects of the parameters on the aeroelastic system were outlined. Nonlinear aeroelastic responses in the open- and closed-loop system are obtained through numerical methods. The simulations show fuzzy logic control methods are effective in suppressing flutter and provide a smart approach for this complicated system.
Nonlinear panel flutter in a rarefied atmosphere - Aerodynamic shear stress effects
Resende, Hugo B.
1991-01-01
The panel flutter phenomenon is studied assuming free-molecule flow. This kind of analysis is relevant in the case of hypersonic flight vehicles traveling at high altitudes, especially in the leeward portion of the vehicle. In these conditions the aerodynamic shear can be expected to be considerably larger than the pressure at a given point, so that the effects of such a loading are incorporated into the structural model. This is accomplished by introducing distributed longitudinal and bending moment loads. The former can lead to buckling of the panel, with the second mode in the case of a simply-supported panel playing a important role, and becoming the dominant mode in the solution. The presence of equivalent springs in the longitudinal direction at the panel's ends also becomes of relative importance, even for the evaluation of the linear flutter parameter. Finally, the behavior of the system is studied in the presence of applied compressive forces, that is, classical buckling.
1C-INDUCED ATRIAL FLUTTER IN A PATIENT WITH WPW SYNDROME: CASE REPORT AND REVIEW
Directory of Open Access Journals (Sweden)
R. R. Mamatkazina
2015-12-01
Full Text Available The clinical case of a rare proarrhythmic effect of antiarrhythmic drugs with a poor prognosis (medication-induced atrial flutter in a patient with "malignant" Kent’s bundle is presented. Radiofrequency ablation (RFA is the most justified treatment method in patients with WPW-syndrome and "malignant" Kent’s bundle. RFA in descripted case has been postponed due to technical reasons. While waiting for RFA and after consideration of the potential risks and benefits the decision to use antiarrhythmic drugs to block the additional bundle was made. Paroxysm of broad-complex tachycardia developed on the third day of the treatment. It was regarded as a paroxysm of atrial fibrillation/flutter in the patient with WPW syndrome induced by taking antiarrhythmic drugs class 1C (allapinine. Review of the literature on the atrial fibrillation induced by antiarrhythmic of 1C class, and association of atrial fibrillation with WPW-syndrome is presented.
1C-INDUCED ATRIAL FLUTTER IN A PATIENT WITH WPW SYNDROME: CASE REPORT AND REVIEW
Directory of Open Access Journals (Sweden)
R. R. Mamatkazina
2012-01-01
Full Text Available The clinical case of a rare proarrhythmic effect of antiarrhythmic drugs with a poor prognosis (medication-induced atrial flutter in a patient with "malignant" Kent’s bundle is presented. Radiofrequency ablation (RFA is the most justified treatment method in patients with WPW-syndrome and "malignant" Kent’s bundle. RFA in descripted case has been postponed due to technical reasons. While waiting for RFA and after consideration of the potential risks and benefits the decision to use antiarrhythmic drugs to block the additional bundle was made. Paroxysm of broad-complex tachycardia developed on the third day of the treatment. It was regarded as a paroxysm of atrial fibrillation/flutter in the patient with WPW syndrome induced by taking antiarrhythmic drugs class 1C (allapinine. Review of the literature on the atrial fibrillation induced by antiarrhythmic of 1C class, and association of atrial fibrillation with WPW-syndrome is presented.
Computational and experimental investigation of free vibration and flutter of bridge decks
Helgedagsrud, Tore A.; Bazilevs, Yuri; Mathisen, Kjell M.; Øiseth, Ole A.
2018-06-01
A modified rigid-object formulation is developed, and employed as part of the fluid-object interaction modeling framework from Akkerman et al. (J Appl Mech 79(1):010905, 2012. https://doi.org/10.1115/1.4005072) to simulate free vibration and flutter of long-span bridges subjected to strong winds. To validate the numerical methodology, companion wind tunnel experiments have been conducted. The results show that the computational framework captures very precisely the aeroelastic behavior in terms of aerodynamic stiffness, damping and flutter characteristics. Considering its relative simplicity and accuracy, we conclude from our study that the proposed free-vibration simulation technique is a valuable tool in engineering design of long-span bridges.
Flight Flutter Testing of Rotary Wing Aircraft Using a Control System Oscillation Technique
Yen, J. G.; Viswanathan, S.; Matthys, C. G.
1976-01-01
A flight flutter testing technique is described in which the rotor controls are oscillated by series actuators to excite the rotor and airframe modes of interest, which are then allowed to decay. The moving block technique is then used to determine the damped frequency and damping variation with rotor speed. The method proved useful for tracking the stability of relatively well damped modes. The results of recently completed flight tests of an experimental soft-in-plane rotor are used to illustrate the technique. Included is a discussion of the application of this technique to investigation of the propeller whirl flutter stability characteristics of the NASA/Army XV-15 VTOL tilt rotor research aircraft.
Flutter analysis of an airfoil with nonlinear damping using equivalent linearization
Directory of Open Access Journals (Sweden)
Chen Feixin
2014-02-01
Full Text Available The equivalent linearization method (ELM is modified to investigate the nonlinear flutter system of an airfoil with a cubic damping. After obtaining the linearization quantity of the cubic nonlinearity by the ELM, an equivalent system can be deduced and then investigated by linear flutter analysis methods. Different from the routine procedures of the ELM, the frequency rather than the amplitude of limit cycle oscillation (LCO is chosen as an active increment to produce bifurcation charts. Numerical examples show that this modification makes the ELM much more efficient. Meanwhile, the LCOs obtained by the ELM are in good agreement with numerical solutions. The nonlinear damping can delay the occurrence of secondary bifurcation. On the other hand, it has marginal influence on bifurcation characteristics or LCOs.
Submersion-Subcritical Safe Space (S4) reactor
International Nuclear Information System (INIS)
King, Jeffrey C.; El-Genk, Mohamed S.
2006-01-01
The Submersion-Subcritical Safe Space (S 4 ) reactor, developed for future space power applications and avoidance of single point failures, is presented. The S 4 reactor has a Mo-14% Re solid core, loaded with uranium nitride fuel, cooled by He-30% Xe and sized to provide 550 kWth for 7 years of equivalent full power operation. The beryllium oxide reflector of the S 4 reactor is designed to completely disassemble upon impact on water or soil. The potential of using Spectral Shift Absorber (SSA) materials in different forms to ensure that the reactor remains subcritical in the worst-case submersion accident is investigated. Nine potential SSAs are considered in terms of their effect on the thickness of the radial reflector and on the combined mass of the reactor and the radiation shadow shield. The SSA materials are incorporated as a thin (0.1 mm) coating on the outside surface of the reactor core and as core additions in three possible forms: 2.0 mm diameter pins in the interstices of the core block, 0.25 mm thick sleeves around the fuel stacks and/or additions to the uranium nitride fuel. Results show that with a boron carbide coating and 0.25 mm iridium sleeves around the fuel stacks the S 4 reactor has a reflector outer diameter of 43.5 cm with a combined reactor and shadow shield mass of 935.1 kg. The S 4 reactor with 12.5 at.% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide interstitial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating has a slightly smaller reflector outer diameter of 43.0 cm, resulting in a smaller total reactor and shield mass of 901.7 kg. With 8.0 at.% europium-151 added to the fuel, along with europium-151 sesquioxide for the pins and coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respectively
Rejman, Marek; Wiesner, Wojciech; Silakiewicz, Piotr; Klarowicz, Andrzej; Abraldes, J. Arturo
2012-01-01
The aim of this study was an analysis of the time required to swim to a victim and tow them back to shore, while perfoming the flutter-kick and the dolphin-kick using fins. It has been hypothesized that using fins while using the dolphin-kick when swimming leads to reduced rescue time. Sixteen lifeguards took part in the study. The main tasks performed by them, were to approach and tow (double armpit) a dummy a distance of 50m while applying either the flutter-kick, or the dolphin-kick with fins. The analysis of the temporal parameters of both techniques of kicking demonstrates that, during the approach to the victim, neither the dolphin (tmean = 32.9s) or the flutter kick (tmean = 33.0s) were significantly faster than the other. However, when used for towing a victim the flutter kick (tmean = 47.1s) was significantly faster when compared to the dolphin-kick (tmean = 52.8s). An assessment of the level of technical skills in competitive swimming, and in approaching and towing the victim, were also conducted. Towing time was significantly correlated with the parameter that linked the temporal and technical dimensions of towing and swimming (difference between flutter kick towing time and dolphin-kick towing time, 100m medley time and the four swimming strokes evaluation). No similar interdependency has been discovered in flutter kick towing time. These findings suggest that the dolphin-kick is a more difficult skill to perform when towing the victim than the flutter-kick. Since the hypothesis stated was not confirmed, postulates were formulated on how to improve dolphin-kick technique with fins, in order to reduce swimming rescue time. Key points The source of reduction of swimming rescue time was researched. Time required to approach and to tow the victim while doing the flutter kick and the dolphin-kick with fins was analyzed. The propulsion generated by dolphin-kick did not make the approach and tow faster than the flutter kick. More difficult skill to realize of
Environmental Effects on Flutter Characteristics of Laminated Composite Rectangular and Skew Panels
Directory of Open Access Journals (Sweden)
T.V.R. Chowdary
1996-01-01
Full Text Available A finite element method is presented for predicting the flutter response of laminated composite panels subjected to moisture concentration and temperature. The analysis accounts for material properties at elevated temperature and moisture concentration. The analysis is based on the first-order approximation to the linear piston theory and laminated plate theory that includes shear deformation. Both rectangular and skew panels are considered. Stability boundaries at moisture concentrations and temperatures for various lamination schemes and boundary conditions are discussed.
Song, Changho; Jin, Moo-Nyun; Lee, Jung-Hee; Kim, In-Soo; Uhm, Jae-Sun; Pak, Hui-Nam; Lee, Moon-Hyoung; Joung, Boyoung
2014-01-01
Purpose The identification of sick sinus syndrome (SSS) in patients with atrial flutter (AFL) is difficult before the termination of AFL. This study investigated the patient characteristics used in predicting a high risk of SSS after AFL ablation. Materials and Methods Out of 339 consecutive patients who had undergone radiofrequency ablation for AFL from 1991 to 2012, 27 (8%) had SSS (SSS group). We compared the clinical characteristics of patients with and without SSS (n=312, no-SSS group). ...
Robust Switching Control and Subspace Identification for Flutter of Flexible Wing
Directory of Open Access Journals (Sweden)
Yizhe Wang
2018-01-01
Full Text Available Active flutter suppression and subspace identification for a flexible wing model using micro fiber composite actuator were experimentally studied in a low speed wind tunnel. NACA0006 thin airfoil model was used for the experimental object to verify the performance of identification algorithm and designed controller. The equation of the fluid, vibration, and piezoelectric coupled motion was theoretically analyzed and experimentally identified under the open-loop and closed-loop condition by subspace method for controller design. A robust pole placement algorithm in terms of linear matrix inequality that accommodates the model uncertainty caused by identification deviation and flow speed variation was utilized to stabilize the divergent aeroelastic system. For further enlarging the flutter envelope, additional controllers were designed subject to the models beyond the flutter speed. Wind speed was measured online as the decision parameter of switching between the controllers. To ensure the stability of arbitrary switching, Common Lyapunov function method was applied to design the robust pole placement controllers for different models to ensure that the closed-loop system shared a common Lyapunov function. Wind tunnel result showed that the designed controllers could stabilize the time varying aeroelastic system over a wide range under arbitrary switching.
Atrial flutter with 1:1 conduction in undiagnosed Wolff-Parkinson-White syndrome.
Nelson, Jessie G; Zhu, Dennis W
2014-05-01
Atrial flutter with 1:1 atrioventricular conduction via an accessory pathway is an uncommon presentation of Wolff-Parkinson-White syndrome not previously reported in the emergency medicine literature. Wolff-Parkinson-White syndrome, a form of ventricular preexcitation sometimes initially seen and diagnosed in the emergency department (ED), can present with varied tachydysrhythmias for which certain treatments are contraindicated. For instance, atrial fibrillation with preexcited conduction needs specific consideration of medication choice to avoid potential degeneration into ventricular fibrillation. We describe an adult female presenting with a very rapid, regular wide complex tachycardia successfully cardioverted in the ED followed by a normal electrocardiogram (ECG). Electrophysiology study confirmed atrial flutter with 1:1 conduction and revealed an accessory pathway consistent with Wolff-Parkinson-White syndrome, despite lack of ECG findings of preexcitation during sinus rhythm. Why should an emergency physician be aware of this? Ventricular tachycardia must be the first consideration in patients with regular wide complex tachycardia. However, clinicians should consider atrial flutter with 1:1 conduction related to an accessory pathway when treating patients with the triad of very rapid rate (>250 beats/min), wide QRS complex, and regular rhythm, especially when considering pharmacologic treatment. Emergency physicians also should be aware of electrocardiographically concealed accessory pathways, and that lack of delta waves does not rule out preexcitation syndromes such as Wolff-Parkinson-White syndrome. Copyright © 2014 Elsevier Inc. All rights reserved.
Influence of upstream stator on rotor flutter stability in a low pressure steam turbine stage
Energy Technology Data Exchange (ETDEWEB)
Huang, X.; He, L. [University of Durham (United Kingdom). School of Engineering; Bell, D. [ALSTOM Power Ltd., Rugby (United Kingdom)
2006-07-01
Conventional blade flutter prediction is normally based on an isolated blade row model, however, little is known about the influence of adjacent blade rows. In this article, an investigation is presented into the influence of the upstream stator row on the aero-elastic stability of rotor blades in the last stage of a low pressure (LP) steam turbine. The influence of the upstream blade row is computed directly by a time-marching, unsteady, Navier-Stokes flow solver in a stator-rotor coupled computational domain. The three-dimensional flutter solution is obtained, with adequate mesh resolution, in a single passage domain through application of the Fourier-Transform based Shape-Correction method. The capability of this single-passage method is examined through comparison with predictions obtained from a complete annulus model, and the results demonstrate a good level of accuracy, while achieving a speed up factor of 25. The present work shows that the upstream stator blade row can significantly change the aero-elastic behaviour of an LP steam turbine rotor. Caution is, therefore, advised when using an isolated blade row model for blade flutter prediction. The results presented also indicated that the intra-row interaction is of a strong three-dimensional nature. (author)
Cunha-Filho, A. G.; Briend, Y. P. J.; de Lima, A. M. G.; Donadon, M. V.
2018-05-01
The flutter boundary prediction of complex aeroelastic systems is not an easy task. In some cases, these analyses may become prohibitive due to the high computational cost and time associated with the large number of degrees of freedom of the aeroelastic models, particularly when the aeroelastic model incorporates a control strategy with the aim of suppressing the flutter phenomenon, such as the use of viscoelastic treatments. In this situation, the use of a model reduction method is essential. However, the construction of a modal reduction basis for aeroviscoelastic systems is still a challenge, owing to the inherent frequency- and temperature-dependent behavior of the viscoelastic materials. Thus, the main contribution intended for the present study is to propose an efficient and accurate iterative enriched Ritz basis to deal with aeroviscoelastic systems. The main features and capabilities of the proposed model reduction method are illustrated in the prediction of flutter boundary for a thin three-layer sandwich flat panel and a typical aeronautical stiffened panel, both under supersonic flow.
Identification of reduced-order model for an aeroelastic system from flutter test data
Directory of Open Access Journals (Sweden)
Wei Tang
2017-02-01
Full Text Available Recently, flutter active control using linear parameter varying (LPV framework has attracted a lot of attention. LPV control synthesis usually generates controllers that are at least of the same order as the aeroelastic models. Therefore, the reduced-order model is required by synthesis for avoidance of large computation cost and high-order controller. This paper proposes a new procedure for generation of accurate reduced-order linear time-invariant (LTI models by using system identification from flutter testing data. The proposed approach is in two steps. The well-known poly-reference least squares complex frequency (p-LSCF algorithm is firstly employed for modal parameter identification from frequency response measurement. After parameter identification, the dominant physical modes are determined by clear stabilization diagrams and clustering technique. In the second step, with prior knowledge of physical poles, the improved frequency-domain maximum likelihood (ML estimator is presented for building accurate reduced-order model. Before ML estimation, an improved subspace identification considering the poles constraint is also proposed for initializing the iterative procedure. Finally, the performance of the proposed procedure is validated by real flight flutter test data.
Yamada, S
2002-01-01
In this trust fund, we reviewed subcriticality measuring methods and neutron or gamma ray measuring and date transmission systems appropriate for realizing inexpensive on-line criticality surveillance systems, which is required for ensuring the safety of nuclear fuel reprocessing plants. Since the neutron flux level in subcritical systems is fairly low without external neutron sources, it is desirable to use pulse type neutron detectors for subcritical measurement systems. This logically implies that subcriticality measurement methods based on the temporal domain should be used for developing an on-line criticality surveillance system. In the deep subcriticality conditions, a strong external neutron source is needed for eactivity measurement and a D-T tube can be used in order to improve the accuracy of the measurement. A D-T tube is convenient since it is free from Tritium problem since Tritium is sealed in an airtight container and also can be controlled by power supply. Hence, under deep subcritical condit...
Onset of Fast Magnetic Reconnection via Subcritical Bifurcation
Directory of Open Access Journals (Sweden)
ZHIBIN eGUO
2015-04-01
Full Text Available We report a phase transition model for the onset of fast magnetic reconnection. By investigating the joint dynamics of streaming instability(i.e., current driven ion acoustic in this paper and current gradient driven whistler wave {color{blue} {prior to the onset of fast reconnection}}, we show that the nonlinear evolution of current sheet(CS can be described by a Landau-Ginzburg equation. The phase transition from slow reconnection to fast reconnection occurs at a critical thickness, $Delta_csimeq frac{2}{sqrt{pi}}left|frac{v_{the}}{v_c}right|d_e$, where $v_{the}$ is electron thermal velocity and $v_c$ is the velocity threshold of the streaming instability. For current driven ion acoustic, $Delta_c$ is $leq10d_e$. If the thickness of the CS is narrower than $Delta_c$, the CS subcritically bifurcates into a rough state, which facilitates breakage of the CS, and consequently initiates fast reconnection.
The Chain-Length Distribution in Subcritical Systems
International Nuclear Information System (INIS)
Nolen, Steven Douglas
2000-01-01
The individual fission chains that appear in any neutron multiplying system provide a means, via neutron noise analysis, to unlock a wealth of information regarding the nature of the system. This work begins by determining the probability density distributions for fission chain lengths in zero-dimensional systems over a range of prompt neutron multiplication constant (K) values. This section is followed by showing how the integral representation of the chain-length distribution can be used to obtain an estimate of the system's subcritical prompt multiplication (MP). The lifetime of the chains is then used to provide a basis for determining whether a neutron noise analysis will be successful in assessing the neutron multiplication constant, k, of the system in the presence of a strong intrinsic source. A Monte Carlo transport code, MC++, is used to model the evolution of the individual fission chains and to determine how they are influenced by spatial effects. The dissertation concludes by demonstrating how experimental validation of certain global system parameters by neutron noise analysis may be precluded in situations in which the system K is relatively low and in which realistic detector efficiencies are simulated
Effective Subcritical Butane Extraction of Bifenthrin Residue in Black Tea
Directory of Open Access Journals (Sweden)
Yating Zhang
2017-03-01
Full Text Available As a natural and healthy beverage, tea is widely enjoyed; however, the pesticide residues in tea leaves affect the quality and food safety. To develop a highly selective and efficient method for the facile removal of pesticide residues, the subcritical butane extraction (SBE technique was employed, and three variables involving temperature, time and extraction cycles were studied. The optimum SBE conditions were found to be as follows: extraction temperature 45 °C, extraction time 30 min, number of extraction cycles 1, and in such a condition that the extraction efficiency reached as high as 92%. Further, the catechins, theanine, caffeine and aroma components, which determine the quality of the tea, fluctuated after SBE treatment. Compared with the uncrushed leaves, pesticide residues can more easily be removed from crushed leaves, and the practical extraction efficiency was 97%. These results indicate that SBE is a useful method to efficiently remove the bifenthrin, and as appearance is not relevant in the production process, tea leaves should first be crushed and then extracted in order that residual pesticides are thoroughly removed.
Effective Subcritical Butane Extraction of Bifenthrin Residue in Black Tea.
Zhang, Yating; Gu, Lingbiao; Wang, Fei; Kong, Lingjun; Qin, Guangyong
2017-03-30
As a natural and healthy beverage, tea is widely enjoyed; however, the pesticide residues in tea leaves affect the quality and food safety. To develop a highly selective and efficient method for the facile removal of pesticide residues, the subcritical butane extraction (SBE) technique was employed, and three variables involving temperature, time and extraction cycles were studied. The optimum SBE conditions were found to be as follows: extraction temperature 45 °C, extraction time 30 min, number of extraction cycles 1, and in such a condition that the extraction efficiency reached as high as 92%. Further, the catechins, theanine, caffeine and aroma components, which determine the quality of the tea, fluctuated after SBE treatment. Compared with the uncrushed leaves, pesticide residues can more easily be removed from crushed leaves, and the practical extraction efficiency was 97%. These results indicate that SBE is a useful method to efficiently remove the bifenthrin, and as appearance is not relevant in the production process, tea leaves should first be crushed and then extracted in order that residual pesticides are thoroughly removed.
Subcritical hydrothermal conversion of organic wastes and biomass. Reaction pathways
Directory of Open Access Journals (Sweden)
Alejandro Amadeus Castro Vega
2007-01-01
Full Text Available Hydrothermal conversion is a procedure which emulates organic matter’s natural conversion into bio-crude having physical and chemical properties analogous to petroleum. The artificial transformation of biomass requi- res previous knowledge of the main reaction routes and product availability. The main component of biomass (depolymerisation by hydrolysis is presented in hydrothermal cellulose conversion, producing oligosaccharides which exhibit dehydration and retro-aldol condensation reactions for transforming into furfurals and carboxylic acids. Other biomass components (such as lignin, proteins, and fat esters present both hydrolysis and pyrolysis reaction routes. As long as biomass mainly contains carbohydrates, subcritical hydrothermal conversion products and their wastes will be fundamentally analogous to those displaying cellulose. These substances have added- value by far surpassing raw material’s acquisition cost. When the main hydrothermal conversion products’ O/C, H/C molar ratios as reported in literature are plotted, an evolutionary tralectory for conversion products appears to be closely or even overlapped with fossil fuels’ geological evolution.
Monte Carlo Modeling Electronuclear Processes in Cascade Subcritical Reactor
Bznuni, S A; Zhamkochyan, V M; Polyanskii, A A; Sosnin, A N; Khudaverdian, A G
2000-01-01
Accelerator driven subcritical cascade reactor composed of the main thermal neutron reactor constructed analogous to the core of the VVER-1000 reactor and a booster-reactor, which is constructed similar to the core of the BN-350 fast breeder reactor, is taken as a model example. It is shown by means of Monte Carlo calculations that such system is a safe energy source (k_{eff}=0.94-0.98) and it is capable of transmuting produced radioactive wastes (neutron flux density in the thermal zone is PHI^{max} (r,z)=10^{14} n/(cm^{-2} s^{-1}), neutron flux in the fast zone is respectively equal PHI^{max} (r,z)=2.25 cdot 10^{15} n/(cm^{-2} s^{-1}) if the beam current of the proton accelerator is k_{eff}=0.98 and I=5.3 mA). Suggested configuration of the "cascade" reactor system essentially reduces the requirements on the proton accelerator current.
Candidate molten salt investigation for an accelerator driven subcritical core
Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.
2013-09-01
We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated. A special thanks is due to Prof. Paul Madden for introducing the ADSMS group to the concept of using the molten salt as the spallation target, rather than a conventional heavy metal spallation target. This feature helps to optimize this core as a Pu/TRU burner.
The Chain-Length Distribution in Subcritical Systems
Energy Technology Data Exchange (ETDEWEB)
Nolen, Steven Douglas [Texas A & M Univ., College Station, TX (United States)
2000-06-01
The individual fission chains that appear in any neutron multiplying system provide a means, via neutron noise analysis, to unlock a wealth of information regarding the nature of the system. This work begins by determining the probability density distributions for fission chain lengths in zero-dimensional systems over a range of prompt neutron multiplication constant (K) values. This section is followed by showing how the integral representation of the chain-length distribution can be used to obtain an estimate of the system's subcritical prompt multiplication (MP). The lifetime of the chains is then used to provide a basis for determining whether a neutron noise analysis will be successful in assessing the neutron multiplication constant, k, of the system in the presence of a strong intrinsic source. A Monte Carlo transport code, MC++, is used to model the evolution of the individual fission chains and to determine how they are influenced by spatial effects. The dissertation concludes by demonstrating how experimental validation of certain global system parameters by neutron noise analysis may be precluded in situations in which the system K is relatively low and in which realistic detector efficiencies are simulated.
Enhanced Capabilities for Subcritical Experiments (ECSE) Risk Management Plan
Energy Technology Data Exchange (ETDEWEB)
Urban, Mary Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Process Modeling and Analysis Group
2016-05-02
Risk is a factor, element, constraint, or course of action that introduces an uncertainty of outcome that could impact project objectives. Risk is an inherent part of all activities, whether the activity is simple and small, or large and complex. Risk management is a process that identifies, evaluates, handles, and monitors risks that have the potential to affect project success. The risk management process spans the entire project, from its initiation to its successful completion and closeout, including both technical and programmatic (non-technical) risks. This Risk Management Plan (RMP) defines the process to be used for identifying, evaluating, handling, and monitoring risks as part of the overall management of the Enhanced Capabilities for Subcritical Experiments (ECSE) ‘Project’. Given the changing nature of the project environment, risk management is essentially an ongoing and iterative process, which applies the best efforts of a knowledgeable project staff to a suite of focused and prioritized concerns. The risk management process itself must be continually applied throughout the project life cycle. This document was prepared in accordance with DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets, its associated guide for risk management DOE G 413.3-7, Risk Management Guide, and LANL ADPM AP-350-204, Risk and Opportunity Management.
Mechanical weathering and rock erosion by climate-dependent subcritical cracking
Eppes, Martha-Cary; Keanini, Russell
2017-06-01
This work constructs a fracture mechanics framework for conceptualizing mechanical rock breakdown and consequent regolith production and erosion on the surface of Earth and other terrestrial bodies. Here our analysis of fracture mechanics literature explicitly establishes for the first time that all mechanical weathering in most rock types likely progresses by climate-dependent subcritical cracking under virtually all Earth surface and near-surface environmental conditions. We substantiate and quantify this finding through development of physically based subcritical cracking and rock erosion models founded in well-vetted fracture mechanics and mechanical weathering, theory, and observation. The models show that subcritical cracking can culminate in significant rock fracture and erosion under commonly experienced environmental stress magnitudes that are significantly lower than rock critical strength. Our calculations also indicate that climate strongly influences subcritical cracking—and thus rock weathering rates—irrespective of the source of the stress (e.g., freezing, thermal cycling, and unloading). The climate dependence of subcritical cracking rates is due to the chemophysical processes acting to break bonds at crack tips experiencing these low stresses. We find that for any stress or combination of stresses lower than a rock's critical strength, linear increases in humidity lead to exponential acceleration of subcritical cracking and associated rock erosion. Our modeling also shows that these rates are sensitive to numerous other environment, rock, and mineral properties that are currently not well characterized. We propose that confining pressure from overlying soil or rock may serve to suppress subcritical cracking in near-surface environments. These results are applicable to all weathering processes.
Experimental subcritical facility driven by D-D/D-T neutron generator at BARC, India
Energy Technology Data Exchange (ETDEWEB)
Sinha, Amar, E-mail: image@barc.gov.in; Roy, Tushar; Kashyap, Yogesh; Ray, Nirmal; Shukla, Mayank; Patel, Tarun; Bajpai, Shefali; Sarkar, P.S.; Bishnoi, Saroj
2015-05-01
Highlights: •Experimental subcritical facility BRAHMMA coupled to D-D/D-T neutron generator. •Preliminary results of PNS experiments reported. •Feynman-alpha noise measurements explored with continuous source. -- Abstract: The paper presents design of an experimental subcritical assembly driven by D-D/D-T neutron and preliminary experimental measurements. The system has been developed for investigating the static and dynamic neutronic properties of accelerator driven sub-critical systems. This system is modular in design and it is first in the series of subcritical assemblies being designed. The subcritical core consists of natural uranium fuel with high density polyethylene as moderator and beryllium oxide as reflector. The fuel is embedded in high density polyethylene moderator matrix. Estimated k{sub eff} of the system is ∼0.89. One of the unique features of subcritical core is the use of Beryllium oxide (BeO) as reflector and HDPE as moderator making the assembly a compact modular system. The subcritical core is coupled to Purnima Neutron Generator which works in D-D and D-T mode with both DC and pulsed operation. It has facility for online source strength monitoring using neutron tagging and programmable source modulation. Preliminary experiments have been carried out for spatial flux measurement and reactivity estimation using pulsed neutron source (PNS) techniques with D-D neutrons. Further experiments are being planned to measure the reactivity and other kinetic parameters using noise methods. This facility would also be used for carrying out studies on effect of source importance and measurement of source multiplication factor k{sub s} and external neutron source efficiency φ{sup ∗} in great details. Experiments with D-T neutrons are also underway.
Physics analyses of an accelerator-driven sub-critical assembly
Naberezhnev, Dmitry G.; Gohar, Yousry; Bailey, James; Belch, Henry
2006-06-01
Physics analyses have been performed for an accelerator-driven sub-critical assembly as a part of the Argonne National Laboratory activity in preparation for a joint conceptual design with the Kharkov Institute of Physics and Technology (KIPT) of Ukraine. KIPT has a plan to construct an accelerator-driven sub-critical assembly targeted towards the medical isotope production and the support of the Ukraine nuclear industry. The external neutron source is produced either through photonuclear reactions in tungsten or uranium targets, or deuteron reactions in a beryllium target. KIPT intends using the high-enriched uranium (HEU) for the fuel of the sub-critical assembly. The main objective of this paper is to study the possibility of utilizing low-enriched uranium (LEU) fuel instead of HEU fuel without penalizing the sub-critical assembly performance, in particular the neutron flux level. In the course of this activity, several studies have been carried out to investigate the main choices for the system's parameters. The external neutron source has been characterized and a pre-conceptual target design has been developed. Several sub-critical configurations with different fuel enrichments and densities have been considered. Based on our analysis, it was shown that the performance of the LEU fuel is comparable with that of the HEU fuel. The LEU fuel sub-critical assembly with 200-MeV electron energy and 100-kW electron beam power has an average total flux of ˜2.50×10 13 n/s cm 2 in the irradiation channels. The corresponding total facility power is ˜204 kW divided into 91 and 113 kW deposited in the target and sub-critical assemblies, respectively.
High power ring methods and accelerator driven subcritical reactor application
Energy Technology Data Exchange (ETDEWEB)
Tahar, Malek Haj [Univ. of Grenoble (France)
2016-08-07
High power proton accelerators allow providing, by spallation reaction, the neutron fluxes necessary in the synthesis of fissile material, starting from Uranium 238 or Thorium 232. This is the basis of the concept of sub-critical operation of a reactor, for energy production or nuclear waste transmutation, with the objective of achieving cleaner, safer and more efficient process than today’s technologies allow. Designing, building and operating a proton accelerator in the 500-1000 MeV energy range, CW regime, MW power class still remains a challenge nowadays. There is a limited number of installations at present achieving beam characteristics in that class, e.g., PSI in Villigen, 590 MeV CW beam from a cyclotron, SNS in Oakland, 1 GeV pulsed beam from a linear accelerator, in addition to projects as the ESS in Europe, a 5 MW beam from a linear accelerator. Furthermore, coupling an accelerator to a sub-critical nuclear reactor is a challenging proposition: some of the key issues/requirements are the design of a spallation target to withstand high power densities as well as ensure the safety of the installation. These two domains are the grounds of the PhD work: the focus is on the high power ring methods in the frame of the KURRI FFAG collaboration in Japan: upgrade of the installation towards high intensity is crucial to demonstrate the high beam power capability of FFAG. Thus, modeling of the beam dynamics and benchmarking of different codes was undertaken to validate the simulation results. Experimental results revealed some major losses that need to be understood and eventually overcome. By developing analytical models that account for the field defects, one identified major sources of imperfection in the design of scaling FFAG that explain the important tune variations resulting in the crossing of several betatron resonances. A new formula is derived to compute the tunes and properties established that characterize the effect of the field imperfections on the
Concept of turbines for ultrasupercritical, supercritical, and subcritical steam conditions
Mikhailov, V. E.; Khomenok, L. A.; Pichugin, I. I.; Kovalev, I. A.; Bozhko, V. V.; Vladimirskii, O. A.; Zaitsev, I. V.; Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G.
2017-11-01
The article describes the design features of condensing turbines for ultrasupercritical initial steam conditions (USSC) and large-capacity cogeneration turbines for super- and subcritical steam conditions having increased steam extractions for district heating purposes. For improving the efficiency and reliability indicators of USSC turbines, it is proposed to use forced cooling of the head high-temperature thermally stressed parts of the high- and intermediate-pressure rotors, reaction-type blades of the high-pressure cylinder (HPC) and at least the first stages of the intermediate-pressure cylinder (IPC), the double-wall HPC casing with narrow flanges of its horizontal joints, a rigid HPC rotor, an extended system of regenerative steam extractions without using extractions from the HPC flow path, and the low-pressure cylinder's inner casing moving in accordance with the IPC thermal expansions. For cogeneration turbines, it is proposed to shift the upper district heating extraction (or its significant part) to the feedwater pump turbine, which will make it possible to improve the turbine plant efficiency and arrange both district heating extractions in the IPC. In addition, in the case of using a disengaging coupling or precision conical bolts in the coupling, this solution will make it possible to disconnect the LPC in shifting the turbine to operate in the cogeneration mode. The article points out the need to intensify turbine development efforts with the use of modern methods for improving their efficiency and reliability involving, in particular, the use of relatively short 3D blades, last stages fitted with longer rotor blades, evaporation techniques for removing moisture in the last-stage diaphragm, and LPC rotor blades with radial grooves on their leading edges.
Electric field measurements at subcritical, oblique bow shock crossings
International Nuclear Information System (INIS)
Wygant, J.R.; Bensadoun, M.; Mozer, F.S.
1987-01-01
Electric field measurements at oblique, subcritical bow shock crossings are presented from the ISEE 1 University of California, Berkeley, double-probe electric field experiment. The measurements averaged over the 3-s spin period of the spacecraft provide the first observations of the large-scale (100 km) laminar oscillations in the longitudinal component of the electric field associated with the whistler precursor which is characteristic of these dispersive shocks. The amplitude of the oscillations increases from ∼0.5 mV/m to a maximum of 6 mV/m across the magnetic ramp of the shock (directed along the shock normal). The calculated electric potential drops across the shocks varied from 340 to 550 volts, which is 40-60% of the observed loss of kinetic energy associated with the bulk flow of the ions. These measurements suggest that at these shocks the additional deceleration of incident ions is due to the Lorentz force. The contributions to the normal component of the large-scale electric field at the shock due to the parallel and perpendicular components (relative to the magnetic field) of the electric field are evaluated. It is shown that the perpendicular component of the electric field dominates, accounting for most of the cross-shock potential, but that there is a nonnegligible parallel component. This large-scale parallel component has a magnitude of 1-2 mV/m which sometimes results in a potential well for electrons with a depth of ∼150 eV. It is experimentally demonstrated that the dominance of the perpendicular over the parallel component of the electric field resulted in a correlation between the longitudinal component of the large-scale electric field and the fluctuations in the magnetic field component perpendicular to the coplanarity plane
Sub-Critical Nuclear Reactor Based on FFAG-Accelerator
Energy Technology Data Exchange (ETDEWEB)
Lee, Hee Seok; Kang, Hung Sik; Lee, Tae Yeon [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)
2011-10-15
After the East-Japan earthquake and the subsequent nuclear disaster, the anti-nuclear mood has been wide spread. It is very unfortunate both for nuclear science community and for the future of mankind, which is threatened by two serious challenges, the global warming caused by the greenhouse effect and the shortage of energy cause by the petroleum exhaustion. While the nuclear energy seemed to be the only solution to these problems, it is clear that it has its own problems, one of which broke out so strikingly in Japan. There are also other problems such as the radiotoxic nuclear wastes that survive up to even tens of thousands years and the limited reserves of Uranium. To solve these problems of nuclear fission energy, accelerator-based sub-critical nuclear reactor was once proposed. (Its details will be explained below.) First of all, it is safe in a disaster such as an earthquake, because the deriving accelerator stops immediately by the earthquake. It also minimizes the nuclear waste problem by reducing the amount of the toxic waste and shortening their half lifetime to only a few hundred years. Finally, it solves the Uranium reserve problem because it can use Thorium as its fuel. The Thorium reserve is much larger than that of Uranium. Although the idea of the accelerator-driven nuclear reactor was proposed long time ago, it has not been utilized yet first by technical difficulty and economical reasons. The accelerator-based system needs 1 GeV, 10 MW power proton accelerator. A conventional linear accelerator would need several hundred m length, which is highly costly particularly in Korea because of the high land cost. However, recent technologies make it possible to realize that scale accelerator by a reasonable size. That is the fixed-field alternating gradient (FFAG) accelerator that is described in this article
Sub-Critical Nuclear Reactor Based on FFAG-Accelerator
International Nuclear Information System (INIS)
Lee, Hee Seok; Kang, Hung Sik; Lee, Tae Yeon
2011-01-01
After the East-Japan earthquake and the subsequent nuclear disaster, the anti-nuclear mood has been wide spread. It is very unfortunate both for nuclear science community and for the future of mankind, which is threatened by two serious challenges, the global warming caused by the greenhouse effect and the shortage of energy cause by the petroleum exhaustion. While the nuclear energy seemed to be the only solution to these problems, it is clear that it has its own problems, one of which broke out so strikingly in Japan. There are also other problems such as the radiotoxic nuclear wastes that survive up to even tens of thousands years and the limited reserves of Uranium. To solve these problems of nuclear fission energy, accelerator-based sub-critical nuclear reactor was once proposed. (Its details will be explained below.) First of all, it is safe in a disaster such as an earthquake, because the deriving accelerator stops immediately by the earthquake. It also minimizes the nuclear waste problem by reducing the amount of the toxic waste and shortening their half lifetime to only a few hundred years. Finally, it solves the Uranium reserve problem because it can use Thorium as its fuel. The Thorium reserve is much larger than that of Uranium. Although the idea of the accelerator-driven nuclear reactor was proposed long time ago, it has not been utilized yet first by technical difficulty and economical reasons. The accelerator-based system needs 1 GeV, 10 MW power proton accelerator. A conventional linear accelerator would need several hundred m length, which is highly costly particularly in Korea because of the high land cost. However, recent technologies make it possible to realize that scale accelerator by a reasonable size. That is the fixed-field alternating gradient (FFAG) accelerator that is described in this article
Subcriticality of accelerator driven system by AESJ/JAERI working party
International Nuclear Information System (INIS)
Iwasaki, Tomohiko
2002-01-01
Under Atomic Energy Society of Japan (AESJ) and Japan Atomic Energy Research Institute (JAERI), a Working Party on Reactor Physics of Accelerator-Driven System (ADS-WP) has been set since March 1999 to review and investigate special subjects related to reactor physics research of Accelerator-Driven System (ADS). In the ADS-WP, the extensive and aggressive activity is being made by 25 professional members in the field of reactor physics in Japan. The ADS is now studying three subjects related to subcriticality of ADS; (1) calculation accuracy of subcriticality on ADS, (2) critical safety issues of ADS, and (3) theoretical review of subcriticality and its measurement methods. This paper describes two topics related to the subjects (1) and (2); one is an analysis of maximum reactivity potentially inserted to a subcritical core and the other is a benchmark proposal for checking calculation accuracy of subcriticality on ADS. The full specification of the calculation benchmark will be supplied by June 2002. Researchers from overseas, especially from Korea, are welcome to join this benchmark
Burning of spent fuel of an accelerator-driven modular HTGR in sub-critical condition
International Nuclear Information System (INIS)
Jing Xingqing; Yang Yongwei; Chang Hong; Wu Zongxin; Gu Yuxiang
2002-01-01
The modular high temperature gas cooled reactor (MHTGR) has good safety characteristics because of the use of coated particles in the fuel element. After the particles cool outside of the reactor for some time, the spent fuel can be re-utilized. The author describes a physics feasibility study for the burning of spent fuel from a 350 MW ring-shaped modular high temperature gas cooled reactor in an accelerator-driven sub-critical reactor. A conceptual design is given for the 30 MW accelerator-driven sub-critical reactor. The neutron transport in the sub-critical reactor was simulated using the MCNP code, and the burnup was calculated using the ORIGEN2 code. The results show that the accelerator-driven sub-critical gas-cooled reactor has reliable sub-criticality and low power density and that the spent fuel from a 350 MW ring-shaped modular high temperature gas cooled reactor can be burned to provide 20% more energy
Solubility of Benzo[a]pyrene and Organic Matter of Soil in Subcritical Water
Directory of Open Access Journals (Sweden)
Svetlana Sushkova
2015-12-01
Full Text Available A dynamic subcritical water extraction method of benzo[a]pyrene from soils is under consideration. The optimum conditions for benzo[a]pyrene extraction from soil are described including the soil treatment by subcritical water at 250 °C and 100 atm for 30 min. The effectiveness of developed method was determined using the matrix spiking recovery technique. A comparative analysis was made to evaluate the results of benzo[a]pyrene extraction from soils using the subcritical water and organic solvents. The advantages of the subcritical water extraction involve the use of ecologically friendly solvent, a shorter time for the analysis and a higher amount of benzo[a]pyrene extracted from soil (96 %. The influence of subcritical water extraction on soil properties was measured the investigation of the processes occurring within soil under the influence the high temperature and pressure. Under appropriate conditions of the experiment there is the destruction of the soil organic matter while the composition of the soil mineral fraction remains practically unchanged.
Physics study of D-D/D-T neutron driven experimental subcritical assembly
International Nuclear Information System (INIS)
Sinha, Amar
2015-01-01
An experimental program to design and study external source driven subcritical assembly has been initiated at BARC. This program is aimed at understanding neutronic characteristics of accelerator driven system at low power level. In this series, a zero-power, sub-critical assembly driven by a D-D/D-T neutron generator has been developed. This system is modular in design and it is first in the series of subcritical assemblies being designed. The subcritical core consists of natural uranium fuel with high density polyethylene as moderator and beryllium oxide as reflector. The subcritical core is coupled to Purnima Neutron Generator. Preliminary experiments have been carried out for spatial flux measurement and reactivity estimation using pulsed neutron source (PNS) techniques. Further experiments are being planned to measure the reactivity and other kinetic parameters using noise methods. This facility would also be used for carrying out studies on effect of source importance and measurement of source multiplication factor k s and external neutron source efficiency φ* in great details. Some experiments with D-D and D-T neutrons have been presented. (author)
Ruhlin, C. L.; Rauch, F. J., Jr.; Waters, C.
1982-01-01
The model was a 1/6.5-size, semipan version of a wing proposed for an executive-jet-transport airplane. The model was tested with a normal wingtip, a wingtip with winglet, and a normal wingtip ballasted to simulate the winglet mass properties. Flutter and aerodynamic data were acquired at Mach numbers (M) from 0.6 to 0.95. The measured transonic flutter speed boundary for each wingtip configuration had roughly the same shape with a minimum flutter speed near M=0.82. The winglet addition and wingtip mass ballast decreased the wing flutter speed by about 7 and 5 percent, respectively; thus, the winglet effect on flutter was more a mass effect than an aerodynamic effect.
International Nuclear Information System (INIS)
Iwasaki, T.; Tsujimoto, K.; Nishihara, K.; Kitamura, Y.
2004-01-01
The Research Committee on Reactor Physics under the Atomic Energy Society of Japan and the Japan Atomic Energy Research Inst. organized the working party (ADS-WP) on S ubcritical Core of Accelerator-Driven System . The ADS-WP investigated reactor physics of subcriticality from the viewpoint of the accelerator driven system (ADS) since subcriticality has been almost studied from the viewpoint of critical safety. The working party was set in July 2001 and it worked for two years. The activities of the ADS-WP are (Work-I) theory of subcriticality, (Work-II) benchmark of subcritical core, (Work-III) setting of subcriticality level of ADS and (Work-JAO monitoring of subcriticality. These activities clarified about the important issues related to the subcriticality or the subcritical core from the wide ranges of theory, analysis, calculation, design and monitoring for ADS. The activities were already summarized and the report will be published in March 2004. (authors)
Calculation and analysis of burnup and optimum core design in accelerator driven sub-critical system
International Nuclear Information System (INIS)
Wang Yuwei; Yang Yongwei; Cui Pengfei
2011-01-01
The premise of the accelerator driven sub-critical system (ADS) in the accident is still subcritical, the biggest k eff change with burn time is less than 1.5% and the cladding material, HT9 steel, can withstand the maximum radiation damage, core fuel area is divided into fuel transmutation area and fuel multiplication area, and fuel transmutation area maintains the same fuel composition in the whole process. Through the analysis of the composition of the fuel, shape of core layout and the power distribution, etc., supposed outer and inner Pu enrichment ratio range of 1.0-1.5, then the fuel components of fuel multiplication area was adjusted. Time evolution of k eff was calculated by COUPLED2 which coupled with MCNP and ORIGEN. At the same time the power peaking factors, minoractinides transmutation rate desired to maximization and burnup were considered. A sub-critical system fitting for engineering practice was established. (authors)
A new formulation for the importance function in the kinetics of subcritical reactors
International Nuclear Information System (INIS)
Silva, Cristiano da; Senra Martinez, Aquilino; Carvalho da Silva, Fernando
2012-01-01
Highlights: ► In this paper we propose a new formulation for the importance function in the kinetics of subcritical systems. ► We analyze the relevance of an external neutron source for the subcritical interval 0.95 eff eff is the multiplication factor according to the physical properties of the nuclear reactor. For the purposes of validation of the proposed method we will use, as a reference method, the expansion in modes of the time-dependent neutron flux for the solution of the onedimensional diffusion equation. It will be presented results that demonstrate the precision of the proposed method when compared to the conventional point kinetic equations. The results show that the new point kinetic equations are rather precise in the subcriticality range considered.
Production of rare sugars from common sugars in subcritical aqueous ethanol.
Gao, Da-Ming; Kobayashi, Takashi; Adachi, Shuji
2015-05-15
A new isomerization reaction was developed to synthesize rare ketoses. D-tagatose, D-xylulose, and D-ribulose were obtained in the maximum yields of 24%, 38%, and 40%, respectively, from the corresponding aldoses, D-galactose, D-xylose, and D-ribose, by treating the aldoses with 80% (v/v) subcritical aqueous ethanol at 180°C. The maximum productivity of D-tagatose was ca. 80 g/(Lh). Increasing the concentration of ethanol significantly increased the isomerization of D-galactose. Variation in the reaction temperature did not significantly affect the production of D-tagatose from D-galactose. Subcritical aqueous ethanol converted both 2,3-threo and 2,3-erythro aldoses to the corresponding C-2 ketoses in high yields. Thus, the treatment of common aldoses in subcritical aqueous ethanol can be regarded as a new method to synthesize the corresponding rare sugars. Copyright © 2014 Elsevier Ltd. All rights reserved.
Transient subcritical crack-growth behavior in transformation-toughened ceramics
International Nuclear Information System (INIS)
Dauskardt, R.H.; Ritchie, R.O.; Carter, W.C.; Veirs, D.K.
1990-01-01
Transient subcritical crack-growth behavior following abrupt changes in the applied load are studied in transformation-toughened ceramics. A mechanics analysis is developed to model the transient nature of transformation shielding of the crack tip, K s , with subcritical crack extension following the applied load change. conditions for continued crack growth, crack growth followed by arrest, and no crack growth after the load change, are considered and related to the magnitude and sign of the applied load change and to materials properties such as the critical transformation stress. The analysis is found to provide similar trends in K s compared to values calculated from experimentally measured transformation zones in a transformation-toughened Mg-PSZ. In addition, accurate prediction of the post load-change transient crack-growth behavior is obtained using experimentally derived steady-state subcritical crack-growth relationships for cyclic fatigue in the same material
International Nuclear Information System (INIS)
Soule, R.; Salvatores, M.; Jacqmin, R.; Martini, M.; Lebrat, J.F.; Bertrand, P.; Broccoli, U.; Peluso, V.
1997-01-01
In the framework of the French SPIN program devoted to the separation and the transmutation of radioactive wastes, the CEA has launched the ISAAC program to investigate the potential of accelerator-driven systems and to provide an experimental validation of the physics characteristics of these systems. The neutronics of the subcritical core needs experimental validation. This can be done by decoupling the problem of the neutron source from the problem of the subcritical medium. Experiments with a well known external source placed in a subcritical medium have been performed in the MASURCA facility. The results confirm the high accuracy achievable with such experiments and the good quality of the ERANOS code system predictions. (author)
Energy Technology Data Exchange (ETDEWEB)
Soule, R; Salvatores, M; Jacqmin, R; Martini, M; Lebrat, J F; Bertrand, P [CEA Centre d` Etudes de Cadarache, Service de Physique des Reacteurs et du Cycle, 13 - Saint-Paul-lez-Durance (France); Broccoli, U; Peluso, V
1998-12-31
In the framework of the French SPIN program devoted to the separation and the transmutation of radioactive wastes, the CEA has launched the ISAAC program to investigate the potential of accelerator-driven systems and to provide an experimental validation of the physics characteristics of these systems. The neutronics of the subcritical core needs experimental validation. This can be done by decoupling the problem of the neutron source from the problem of the subcritical medium. Experiments with a well known external source placed in a subcritical medium have been performed in the MASURCA facility. The results confirm the high accuracy achievable with such experiments and the good quality of the ERANOS code system predictions. (author)
International Nuclear Information System (INIS)
Sanchez, R.; Jaegers, P.
1998-01-01
Rossi-Alpha measurements were performed on the SHEBA assembly to determine the prompt neutron decay constants. These prompt neutron decay constants represent an eigenvalue characteristic of this particular assembly, which can be used to infer the amount of fissile material in the assembly. In addition, subcritical measurements using Rossi-Alpha and the source-jerk techniques were also performed on the SHEBA assembly. These measurements were compared against TWODANT calculations and agreed quite well. The subcritical measurements were also used to obtain a unique signature that represented the amount of material associated with the degree of subcriticality of the SHEBA assembly. Finally, the Feynman variance-to-mean technique in conjunction with TWODANT, were used to determine the effective delayed neutron fraction for the SHEBA assembly
Proposed sub-criticality level for an 80 MWTHd-bismuth-cooled Ads
International Nuclear Information System (INIS)
Mansani, L.; Monti, R.; Neuhold, P.
2003-01-01
The degree of operational sub-criticality of an Accelerator-driven System (ADS) on the one hand directly affects key accelerator system parameters, such as the proton beam current required to sustain the selected rated power level and, on the other, the likelihood of approaching or attaining criticality under abnormal or accident conditions. Then, if in all such conditions the safety goal is pursued to design the sub-critical core so that it stays away from criticality with adequate margin, the required operational sub-criticality level must be determined by a properly balanced approach between excessively demanding accelerator system performances and risk of accidental criticality. The approach must necessarily include evaluation and appropriate combination of the relevant reactivity effects (e.g. from system cool-down, postulated accident scenarios, geometrical variations) and proper consideration of specific design features (such as, for instance, the absence of safety rods, intended as neutron absorbing devices having a role equivalent to the shutdown rods in critical reactors). The paper presents a possible approach to the determination of the operational sub-criticality level of an 80 MWth Lead-Bismuth-cooled pool type ADS, initially conceived and developed by a team of Italian Organisations led by Ansaldo, with funding from the Ministry of University and Scientific and Technological Research, and currently in the process of being assessed, versus a gas-cooled concept, in the frame of a contract with the Commission of the European Communities. After a brief description of the Lead-Bismuth-cooled ADS concept relevant features and of the key safety goals in terms of required sub-criticality margin, the evaluated reactivity effects are presented, a method to combine them is discussed and a proposed operational sub-criticality level is derived. (author)
Experimental determination of the neutron source for the Argonauta reactor subcritical assembly
Energy Technology Data Exchange (ETDEWEB)
Renke, Carlos A.C.; Furieri, Rosanne C.A.A.; Pereira, Joao C.S.; Voi, Dante L.; Barbosa, Andre L.N., E-mail: renke@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2011-07-01
The utilization of a subcritical assembly for the determination of nuclear parameters in a multiplier medium requires a well defined neutron source to carry out the experiments necessary for the acquisition of the desired data. The Argonauta research reactor installed at the Instituto de Engenharia Nuclear has a subcritical assembly, under development, to be coupled at the upper part of the reactor core that will provide the needed neutrons emerging from its internal thermal column made of graphite. In order to perform neutronic calculations to compare with the experimental results, it is necessary a precise knowledge of the emergent neutron flux that will be used as neutron source in the subcritical assembly. In this work, we present the thermal neutron flux profile determined experimentally via the technique of neutron activation analysis, using dysprosium wires uniformly distributed at the top of the internal thermal neutron column of the Argonauta reactor and later submitted to a detection system using Geiger-Mueller detector. These experimental data were then compared with those obtained through neutronic calculation using HAMMER and CITATION codes in order to validate this calculation system and to define a correct neutron source distribution to be used in the subcritical assembly. This procedure avoids a coupled neutronic calculation of the subcritical assembly and the reactor core. It has also been determined the dimension of the graphite pedestal to be used in the bottom of the subcritical assembly tank in order to smooth the emergent neutron flux at the reactor top. Finally, it is estimated the thermal neutron flux inside the assembly tank when filled with water. (author)
Aerothermoelastic analysis of panel flutter based on the absolute nodal coordinate formulation
Energy Technology Data Exchange (ETDEWEB)
Abbas, Laith K., E-mail: laithabbass@yahoo.com; Rui, Xiaoting, E-mail: ruixt@163.com [Nanjing University of Science and Technology, Institute of Launch Dynamics (China); Marzocca, Piergiovanni, E-mail: pmarzocc@clarkson.edu [Clarkson University, Mechanical and Aeronautical Engineering Department (United States)
2015-02-15
Panels of reentry vehicles are subjected to a wide range of flow conditions during ascent and reentry phases. The flow can vary from subsonic continuum flow to hypersonic rarefied flow with wide ranging dynamic pressure and associated aerodynamic heating. One of the main design considerations is the assurance of safety against panel flutter under the flow conditions characterized by sever thermal environment. This paper deals with supersonic/hypersonic flutter analysis of panels exposed to a temperature field. A 3-D rectangular plate element of variable thickness based on absolute nodal coordinate formulation (ANCF) has been developed for the structural model and subjected to an assumed thermal profile that can result from any residual heat seeping into the metallic panels through the thermal protection systems. A continuum mechanics approach for the definition of the elastic forces within the finite element is considered. Both shear strain and transverse normal strain are taken into account. The aerodynamic force is evaluated by considering the first-order piston theory to linearize the potential flow and is coupled with the structural model to account for pressure loading. A provision is made to take into account the effect of arbitrary flow directions with respect to the panel edges. Aerothermoelastic equations using ANCF are derived and solved numerically. Values of critical dynamic pressure are obtained by a modal approach, in which the mode shapes are obtained by ANCF. A detailed parametric study is carried out to observe the effects of different temperature loadings, flow angle directions, and aspect ratios on the flutter boundary.
Aerothermoelastic analysis of panel flutter based on the absolute nodal coordinate formulation
International Nuclear Information System (INIS)
Abbas, Laith K.; Rui, Xiaoting; Marzocca, Piergiovanni
2015-01-01
Panels of reentry vehicles are subjected to a wide range of flow conditions during ascent and reentry phases. The flow can vary from subsonic continuum flow to hypersonic rarefied flow with wide ranging dynamic pressure and associated aerodynamic heating. One of the main design considerations is the assurance of safety against panel flutter under the flow conditions characterized by sever thermal environment. This paper deals with supersonic/hypersonic flutter analysis of panels exposed to a temperature field. A 3-D rectangular plate element of variable thickness based on absolute nodal coordinate formulation (ANCF) has been developed for the structural model and subjected to an assumed thermal profile that can result from any residual heat seeping into the metallic panels through the thermal protection systems. A continuum mechanics approach for the definition of the elastic forces within the finite element is considered. Both shear strain and transverse normal strain are taken into account. The aerodynamic force is evaluated by considering the first-order piston theory to linearize the potential flow and is coupled with the structural model to account for pressure loading. A provision is made to take into account the effect of arbitrary flow directions with respect to the panel edges. Aerothermoelastic equations using ANCF are derived and solved numerically. Values of critical dynamic pressure are obtained by a modal approach, in which the mode shapes are obtained by ANCF. A detailed parametric study is carried out to observe the effects of different temperature loadings, flow angle directions, and aspect ratios on the flutter boundary
Conceptual design of the fusion-driven subcritical system FDS-I
International Nuclear Information System (INIS)
Wu, Y.; Zheng, S.; Zhu, X.; Wang, W.; Wang, H.; Liu, S.; Bai, Y.; Chen, H.; Hu, L.; Chen, M.; Huang, Q.; Huang, D.; Zhang, S.; Li, J.; Chu, D.; Jiang, J.; Song, Y.
2006-01-01
The fusion-driven subcritical system (named FDS-I) was previously proposed as an intermediate step toward the final application of fusion energy. A conceptual design of the FDS-I is presented, which consists of the fusion neutron driver with relatively easy-achieved plasma parameters, and the He-gas/liquid lithium-lead Dual-cooled subcritical Waste Transmutation (DWT) blanket used to transmute long-lived radioactive wastes and to generate energy on the basis of self-sustainable fission and fusion fuel cycle. An overview of the FDS-I is given and the specifications of the design analysis are summarized
Subcritical Measurements Research Program for Fresh and Spent Materials Test Reactor Fuels
International Nuclear Information System (INIS)
Blanchard, A.
1999-01-01
'A series of subcritical noise measurements were performed on fresh and spent University of Missouri Research Reactor fuel assemblies. These experimental measurements were performed for the purposes of providing benchmark quality data for validating transport theory computer codes and nuclear cross-section data used to perform criticality safety analyses for highly enriched, uranium-aluminum Material Test Reactor fuel assemblies. A mechanical test rig was designed and built to hold up to four fuel assemblies and neutron detectors in a subcritical array. The rig provided researchers with the ability to evaluate the reactivity effects of variable fuel/detector spacing, fuel rotation, and insertion of metal reflector plates into the lattice.'
Preliminary analysis of advanced equilibrium configuration for the fusion-driven subcritical system
International Nuclear Information System (INIS)
Chu Delin; Wu Bin; Wu Yican
2003-01-01
The Fusion-Driven Subcritical System (FDS) is a subcritical nuclear energy system driven by fusion neutron source. In this paper, an advanced plasma configuration for FDS system has been proposed, which aims at high beta, high bootstrap current and good confinement. A fixed-boundary equilibrium code has been used to obtain ideal equilibrium configuration. In order to determine the feasibility of FDS operation, a two-dimensional time-dependent free boundary simulation code has been adopted to simulate time-scale evolution of plasma current profile and boundary position. By analyses, the Reversed Shear mode as the most attractive one has been recommended for the FDS equilibrium configuration design
Feasibility of waste transmutation using accelerator-driven IRIS subcritical system
International Nuclear Information System (INIS)
Petroviae, B.; Carelli, M.; Paramonov, D.
2001-01-01
Waste transmutation is considered for reducing radio-toxicity of nuclear waste generated in power reactors. Accelerator driven subcritical systems (ADS) offer certain advantages over the use of nuclear reactors. Transmutation of fission products (e.g. 99 Tc) generally requires thermal neutron spectrum, while for actinides fast spectrum provides better performance. Proposed solutions to this problem include a multi-strata approach as well as a multi-zone (thermal/fast-spectrum) single systems. In this paper we examine the feasibility of employing a dual-spectrum two-zone accelerator-driven IRIS subcritical for waste transmutation. (author)
Benchmarks of subcriticality in accelerator-driven system at Kyoto University Critical Assembly
Directory of Open Access Journals (Sweden)
Cheol Ho Pyeon
2017-09-01
Full Text Available Basic research on the accelerator-driven system is conducted by combining 235U-fueled and 232Th-loaded cores in the Kyoto University Critical Assembly with the pulsed neutron generator (14 MeV neutrons and the proton beam accelerator (100 MeV protons with a heavy metal target. The results of experimental subcriticality are presented with a wide range of subcriticality level between near critical and 10,000 pcm, as obtained by the pulsed neutron source method, the Feynman-α method, and the neutron source multiplication method.
Conceptual research on reactor core physics for accelerator driven sub-critical reactor
International Nuclear Information System (INIS)
Zhao Zhixiang; Ding Dazhao; Liu Guisheng; Fan Sheng; Shen Qingbiao; Zhang Baocheng; Tian Ye
2000-01-01
The main properties of reactor core physics are analysed for accelerator driven sub-critical reactor. These properties include the breeding of fission nuclides, the condition of equilibrium, the accumulation of long-lived radioactive wastes, the effect from poison of fission products, as well as the thermal power output and the energy gain for sub-critical reactor. The comparison between thermal and fast system for main properties are carried out. The properties for a thermal-fast coupled system are also analysed
Motiwalla, S. K.
1973-01-01
Using the first and the second derivative of flutter velocity with respect to the parameters, the velocity hypersurface is made quadratic. This greatly simplifies the numerical procedure developed for determining the values of the design parameters such that a specified flutter velocity constraint is satisfied and the total structural mass is near a relative minimum. A search procedure is presented utilizing two gradient search methods and a gradient projection method. The procedure is applied to the design of a box beam, using finite-element representation. The results indicate that the procedure developed yields substantial design improvement satisfying the specified constraint and does converge to near a local optimum.
Subcritical water extraction of amino acids from Mars analog soils.
Noell, Aaron C; Fisher, Anita M; Fors-Francis, Kisa; Sherrit, Stewart
2018-01-18
For decades, the Martian regolith has stymied robotic mission efforts to catalog the organic molecules present. Perchlorate salts, found widely throughout Mars, are the main culprit as they breakdown and react with organics liberated from the regolith during pyrolysis, the primary extraction technique attempted to date on Mars. This work further develops subcritical water extraction (SCWE) as a technique for extraction of amino acids on future missions. The effect of SCWE temperature (185, 200, and 215°C) and duration of extraction (10-120 min) on the total amount and distribution of amino acids recovered was explored for three Mars analog soils (JSC Mars-1A simulant, an Atacama desert soil, and an Antarctic Dry Valleys soil) and bovine serum albumin (as a control solution of known amino acid content). Total amounts of amino acids extracted increased with both time and temperature; however, the distribution shifted notably due to the destruction of the amino acids with charged or polar side chains at the higher temperatures. The pure bovine serum albumin solution and JSC Mars 1A also showed lower yields than the Atacama and Antarctic extractions suggesting that SCWE may be less effective at hydrolyzing large or aggregated proteins. Changing solvent from water to a dilute (10 mM) HCl solution allowed total extraction efficiencies comparable to the higher temperature/time combinations while using the lowest temperature/time (185°C/20 min). The dilute HCl extractions also did not lead to the shift in amino acid distribution observed at the higher temperatures. Additionally, adding sodium perchlorate salt to the extraction did not interfere with recoveries. Native magnetite in the JSC Mars-1A may have been responsible for destruction of glycine, as evidenced by its uncharacteristic decrease as the temperature/time of extraction increased. This work shows that SCWE can extract high yields of native amino acids out of Mars analog soils with minimal disruption of the
Flutter and galloping of cable-supported bridges with porous wind barriers
Czech Academy of Sciences Publication Activity Database
Buljac, A.; Kozmar, H.; Pospíšil, S.; Macháček, Michael
2017-01-01
Roč. 171, December (2017), s. 304-318 ISSN 0167-6105 R&D Projects: GA ČR(CZ) GA15-01035S; GA MŠk(CZ) LO1219 Keywords : cable-supported bridges * porous wind barriers * aerodynamic forces and moments * flutter * galloping * wind-tunnel experiments Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering , Municipal and structural engineering Impact factor: 2.049, year: 2016 http://www.sciencedirect.com/science/ article /pii/S016761051730435X
Merrett, Craig G.
-partial differential equations. The spatial component of the governing equations is eliminated using a series expansion of basis functions and by applying Galerkin's method. The number of terms in the series expansion affects the convergence of the spatial component, and convergence is best determined by the von Koch rules that previously appeared for column buckling problems. After elimination of the spatial component, an ordinary integral-differential equation in time remains. The dynamic stability of elastic and viscoelastic problems is assessed using the determinant of the governing system of equations and the time component of the solution in the form exp (lambda t). The determinant is in terms of lambda where the values of lambda are the latent roots of the aero-servo-viscoelastic system. The real component of lambda dictates the stability of the system. If all the real components are negative, the system is stable. If at least one real component is zero and all others are negative, the system is neutrally stable. If one or more real components are positive, the system is unstable. In aero-servo-viscoelasticity, the neutrally stable condition is termed flutter. For an aero-servo-viscoelastic lifting surface, the unstable condition is historically termed torsional divergence. The more general aero-servo-viscoelastic theory has produced a number of important results, enumerated in the following list: 1. Subsonic panel flutter can occur before panel instability. This result overturned a long held assumption in aeroelasticity, and was produced by the novel application of the von Koch rules for convergence. Further, experimental results from the 1950s by the Air Force were retrieved to provide additional proof. 2. An expanded definition for flutter of a lifting surface. The legacy definition is that flutter is the first occurrence of simple harmonic motion of a structure, and the flight velocity at which this motion occurs is taken as the flutter speed. The expanded definition
International Nuclear Information System (INIS)
Gulik, Volodymyr; Tkaczyk, Alan H.
2014-01-01
Highlights: • The optimization of two-zone homogeneous subcritical systems has been performed. • A Serpent model for two-zone heterogeneous subcritical systems has been developed. • The optimization of two-zone heterogeneous subcritical systems has been carried out. • Economically optimal core composition of two-zone subcritical system was found. • The neutron spectra of the heterogeneous subcritical systems have been obtained. - Abstract: Subcritical systems driven by external neutron sources, commonly known as Accelerator-Driven System (ADS), are one type of advanced nuclear reactor exhibiting attractive characteristics, distinguished from the traditional critical systems by their intrinsic safety features. In addition, an ADS can be used for the transmutation of the nuclear waste, accumulated during the operation of existing reactors. The optimization of a subcritical nuclear reactor in terms of materials (fuel content, coolant, etc.), geometrical, and economical parameters is a crucial step in the process of their design and construction. This article describes the optimization modeling performed for homogeneous and heterogeneous two-zone subcritical systems in terms of geometry of the fuel zones. Economical assessment was also carried out for the costs of the fuel in the core of the system. Optimization modeling was performed with the Serpent-1.1.18 Monte Carlo code. The model of a two-zone subcritical system with a fast inner and a thermal gas-cooled graphite-moderated outer zone was developed, simulated, and analyzed. The optimal value for the pitch of fuel elements in the thermal outer zone was investigated from the viewpoint of the cost of subcritical system. As the main goal of ADS development is nuclear waste transmutation, neutron spectra for both fast and thermal zones were obtained for different system configurations. The results of optimization modeling of homogeneous and heterogeneous two-zone subcritical systems show that an optimal
Reduced-Order Modeling for Flutter/LCO Using Recurrent Artificial Neural Network
Yao, Weigang; Liou, Meng-Sing
2012-01-01
The present study demonstrates the efficacy of a recurrent artificial neural network to provide a high fidelity time-dependent nonlinear reduced-order model (ROM) for flutter/limit-cycle oscillation (LCO) modeling. An artificial neural network is a relatively straightforward nonlinear method for modeling an input-output relationship from a set of known data, for which we use the radial basis function (RBF) with its parameters determined through a training process. The resulting RBF neural network, however, is only static and is not yet adequate for an application to problems of dynamic nature. The recurrent neural network method [1] is applied to construct a reduced order model resulting from a series of high-fidelity time-dependent data of aero-elastic simulations. Once the RBF neural network ROM is constructed properly, an accurate approximate solution can be obtained at a fraction of the cost of a full-order computation. The method derived during the study has been validated for predicting nonlinear aerodynamic forces in transonic flow and is capable of accurate flutter/LCO simulations. The obtained results indicate that the present recurrent RBF neural network is accurate and efficient for nonlinear aero-elastic system analysis
Rotor Design Options for Improving XV-15 Whirl-Flutter Stability Margins
Acree, C. W., Jr.; Peyran, R. J.; Johnson, Wayne
2004-01-01
Rotor design changes intended to improve tiltrotor whirl-flutter stability margins were analyzed. A baseline analytical model of the XV-15 was established, and then a thinner, composite wing was designed to be representative of a high-speed tiltrotor. The rotor blade design was modified to increase the stability speed margin for the thin-wing design. Small rearward offsets of the aerodynamic-center locus with respect to the blade elastic axis created large increases in the stability boundary. The effect was strongest for offsets at the outboard part of the blade, where an offset of the aerodynamic center by 10% of tip chord improved the stability margin by over 100 knots. Forward offsets of the blade center of gravity had similar but less pronounced effects. Equivalent results were seen for swept-tip blades. Appropriate combinations of sweep and pitch stiffness completely eliminated whirl flutter within the speed range examined; alternatively, they allowed large increases in pitch-flap coupling (delta-three) for a given stability margin. A limited investigation of the rotor loads in helicopter and airplane configuration showed only minor increases in loads.
Directory of Open Access Journals (Sweden)
Braunstein Volker A
2010-06-01
Full Text Available Abstract Background Thoracic injuries play an important role in major trauma patients due to their high incidence and critical relevance. A serious consequence of thoracic trauma is pneumothorax, a condition that quickly can become life-threatening and requires immediate treatment. Decompression is the state of the art for treating tension pneumothorax. There are many different methods of decompression using different techniques, devices, valves and drainage systems. Referring to our case report we would like to discuss the utilization of these devices. Case presentation We report of a patient suffering from tension pneumothorax despite insertion of a chest drain at the accident scene. The decompression was by tube thoracostomy which was connected to a Heimlich flutter valve. During air transportation the patient suffered from cardiorespiratory arrest with asystole and was admitted to the trauma room undergoing manual chest compressions. The initial chest film showed a persisting tension pneumothorax, despite the chest tube that had been correctly placed and connected properly to the Heimlich valve. We assume that the Heimlich valve leaves did not open up and thus tension pneumothorax was not released. Conclusion We would like to raise awareness to the fact that if a Heimlich flutter valve is applied in the pre-hospital setting it should be used with caution. Failure in this type of valve may lead to recurrent tension pneumothorax.
A Comparative Assessment of Aerodynamic Models for Buffeting and Flutter of Long-Span Bridges
Directory of Open Access Journals (Sweden)
Igor Kavrakov
2017-12-01
Full Text Available Wind-induced vibrations commonly represent the leading criterion in the design of long-span bridges. The aerodynamic forces in bridge aerodynamics are mainly based on the quasi-steady and linear unsteady theory. This paper aims to investigate different formulations of self-excited and buffeting forces in the time domain by comparing the dynamic response of a multi-span cable-stayed bridge during the critical erection condition. The bridge is selected to represent a typical reference object with a bluff concrete box girder for large river crossings. The models are viewed from a perspective of model complexity, comparing the influence of the aerodynamic properties implied in the aerodynamic models, such as aerodynamic damping and stiffness, fluid memory in the buffeting and self-excited forces, aerodynamic nonlinearity, and aerodynamic coupling on the bridge response. The selected models are studied for a wind-speed range that is typical for the construction stage for two levels of turbulence intensity. Furthermore, a simplified method for the computation of buffeting forces including the aerodynamic admittance is presented, in which rational approximation is avoided. The critical flutter velocities are also compared for the selected models under laminar flow. Keywords: Buffeting, Flutter, Long-span bridges, Bridge aerodynamics, Bridge aeroelasticity, Erection stage
Energy Technology Data Exchange (ETDEWEB)
Zhou, Shengcheng; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn; Huang, Kai; He, Mingtao; Li, Xunzhao
2014-10-15
Highlights: • A new code system for design studies of accelerator driven subcritical reactors (ADSRs) is developed. • S{sub N} transport solver in triangular-z meshes, fine deletion analysis and multi-channel thermal-hydraulics analysis are coupled in the code. • Numerical results indicate that the code is reliable and efficient for design studies of ADSRs. - Abstract: Accelerator driven subcritical reactors (ADSRs) have been proposed and widely investigated for the transmutation of transuranics (TRUs). ADSRs have several special characteristics, such as the subcritical core driven by spallation neutrons, anisotropic neutron flux distribution and complex geometry etc. These bring up requirements for development or extension of analysis codes to perform design studies. A code system named LAVENDER has been developed in this paper. It couples the modules for spallation target simulation and subcritical core analysis. The neutron transport-depletion calculation scheme is used based on the homogenized cross section from assembly calculations. A three-dimensional S{sub N} nodal transport code based on triangular-z meshes is employed and a multi-channel thermal-hydraulics analysis model is integrated. In the depletion calculation, the evolution of isotopic composition in the core is evaluated using the transmutation trajectory analysis algorithm (TTA) and fine depletion chains. The new code is verified by several benchmarks and code-to-code comparisons. Numerical results indicate that LAVENDER is reliable and efficient to be applied for the steady-state analysis and reactor core design of ADSRs.
Analysis on burn-up behaviors for accelerator-driven sub-critical facility
International Nuclear Information System (INIS)
Liu Guisheng; Zhao Zhixiang; Zhang Baocheng; Shen Qinbiao; Ding Dazhao
2000-01-01
An analysis is performed on burn-up behaviors for accelerator-driven sub-critical reactor by means of the code PASC-1 for neutronics calculation, the code CBURN for burn-up calculation and 44 group constants is processed by CENDL-2 and ENDF/B-6 using NJOY-91.91
Subcritical molten salt reactor with fast/intermediate spectrum for minor actinides transmutation
International Nuclear Information System (INIS)
Degtyarev, Alexey M.; Feinberg, Olga S.; Kolyaskin, Oleg E.; Myasnikov, Andrey A.; Karmanov, Fedor I.; Kuznetsov, Andrey Yu.; Ponomarev, Leonid I.; Seregin, Mikhail B.; Sidorkin, Stanislav F.
2011-01-01
The subcritical molten-salt reactor for transmutation of Am and Cm with the fast-intermediate neutron spectrum is suggested. It is shown that ∼10 such reactor-burners is enough to support the future nuclear power based on the fast reactors as well as for the transmutation of Am and Cm accumulated in the spent fuel storages. (author)
K/sub infinity/-meter concept verified via subcritical-critical TRIGA experiments
International Nuclear Information System (INIS)
Ocampo Mansilla, H.
1983-01-01
This work presents a technique for building a device to measure the k/sub infinity/ of a spent nuclear fuel assembly discharged from the core of a nuclear power plant. The device, called a k/sub infinity/-meter, consists of a cross-shaped subcritical assembly, two artificial neutron sources, and two separate neutron counting systems. The central position of the subcritical assembly is used to measure k/sub infinity/ of the spent fuel assembly. The initial subcritical assembly is calibrated to determine its k/sub eff/ and verify the assigned k/sub infinity/ of a selected fuel assembly placed in the central position. Count rates are taken with the fuel assembly of known k/sub infinity/'s placed in the central position and then repeated with a fuel assembly of unknown k/sub infinity/ placed in the central position. The count rate ratio of the unknown fuel assembly to the known fuel assembly is used to determine the k/sub infinity/ of the unknown fuel assembly. The k/sub infinity/ of the unknown fuel assembly is represented as a polynomial function of the count rate ratios. The coefficients of the polynomial equation are determined using the neutronic codes LEOPARD and EXTERMINATOR-II. The analytical approach has been validated by performing several subcritical/critical experiments, using the Penn State Breazeale TRIGA Reactor (PSBR), and comparing the experimental results with the calculations
International Nuclear Information System (INIS)
Kitano, A.; Nishi, H.; Suzuki, T.; Okajima, S.; Kanemoto, S.
2012-01-01
The first-of-a-kind reactor has been licensed by a safety examination of the plant design based on the measured data in precedent mock-up experiments. The validity of the safety design can be confirmed without a mock-up experiment, if the reactor feed-back characteristics can be measured before operation, with the constructed reactor itself. The 'Synthesis Method', a systematic and sophisticated method of sub-criticality measurement, is proposed in this work to ensure the safety margin before operation. The 'Synthesis Method' is based on the modified source multiplication method (MSM) combined with the noise analysis method to measure the reference sub-criticality level for MSM. A numerical simulation for the control-rod reactivity worth and the isothermal feed-back reactivity was conducted for typical fast reactors of 100 MWe-size, 300 MWe-size, 750 MWe-size, and 1500 MWe-size to investigate the applicability of Synthesis Method. The number of neutron detectors and their positions necessary for the measurement were investigated for both methods of MSM and the noise analysis by a series of parametric survey calculations. As a result, it was suggested that a neutron detector located above the core center and three or more neutron detectors located above the radial blanket region enable the measurement of sub-criticality within 10% uncertainty from -$0.5 to -$2 and within 15% uncertainty for the deeper sub-criticality. (authors)
International Nuclear Information System (INIS)
Zhong, Z.; Gohar, Y.; Talamo, A.
2009-01-01
Argonne National Laboratory (ANL) of USA and Kharkov Inst. of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical facility (ADS). The facility will be utilized for basic research, medical isotopes production, and training young nuclear specialists. The burnup methodology and analysis of the KIPT ADS are presented in this paper. MCNPX and MCB Monte Carlo computer codes have been utilized. MCNPX has the capability of performing electron, photon and neutron coupled transport problems, but it lacks the burnup capability for driven subcritical systems. MCB has the capability for performing the burnup calculation of driven subcritical systems, while it cannot transport electrons. A calculational methodology coupling MCNPX and MCB has been developed, which can exploit the electrons transport capability of MCNPX for neutron production and the burnup capability of MCB for driven subcritical systems. In this procedure, a neutron source file is generated using MCNPX transport calculation, preserving the neutrons yield from photonuclear reactions initiated by electrons, and this source file is utilized by MCB for the burnup analyses with the same geometrical model. In this way, the ADS depletion calculation can be accurately. (authors)
Subcritical wet air oxidation of organic solvents and chelating agents of the nuclear fuel
International Nuclear Information System (INIS)
Bachir, Souley
1999-01-01
This document deals with the environment control, more specially organic solvents and chelating agents destruction, employed in the nuclear industry. This work details the subcritical wet air oxidation process. Another part of the document deals with the possible coupling between this process and the biodegradation technic in the framework of the sewage sludges treatment. (A.L.B.)
Subcritical crack growth behavior of AI2O3-Glass dental composites
Zhu, Q.; With, G. de; Dortmans, L.J.M.G.; Feenstra, F.
2003-01-01
The purpose of this study is to investigate the subcritical crack growth (SCG) behavior of alumina-glass dental composites. Alumina-glass composites were fabricated by infiltrating molten glass to porous alumina preforms. Rectangular bars of the composite were subject to dynamic loading in air, with
Gao, Da-Ming; Kobayashi, Takashi; Adachi, Shuji
2015-01-01
The influence of water-miscible alcohols (methanol, 1-propanol, 2-propanol, and t-butyl alcohol) on the isomerization of glucose to fructose and mannose was investigated under subcritical aqueous conditions (180-200 °C). Primary and secondary alcohols promoted the conversion and isomerization of glucose to afford fructose and mannose with high and low selectivity, respectively. On the other hand, the decomposition (side-reaction) of glucose was suppressed in the presence of the primary and secondary alcohols compared with that in subcritical water. The yield of fructose increased with increasing concentration of the primary and secondary alcohols, and the species of the primary and secondary alcohols tested had little effect on the isomerization behavior of glucose. In contrast, the isomerization of glucose was suppressed in subcritical aqueous t-butyl alcohol. Both the conversion of glucose and the yield of fructose decreased with increasing concentration of t-butyl alcohol. In addition, mannose was not detected in reactions using subcritical aqueous t-butyl alcohol.
Nuclear power history calculation for subcritical systems using Euler-MacLaurin formula
International Nuclear Information System (INIS)
Henrice Junior, Edson; Goncalves, Alessandro da Cruz
2013-01-01
This paper presents an efficient method for calculating the reactivity using inverse point kinetic equation for subcritical systems by applying the Euler-MacLaurin summation formula to calculate the nuclear power history. In accordance with the accuracy of the numerical results, this method does not require a large number of points for calculation, providing accurate results with low computational cost. (author)
Accelerator Driven Sub-Critical System for the Radioactive Waste Transmutation
International Nuclear Information System (INIS)
Avramovic, I.; Pesic, M.
2008-01-01
Spent nuclear fuel discharged from nuclear power plants is the main problem during design of radioactive waste disposal. Most of the hazard stems from only a few chemical elements. The radiotoxicity of these elements can be efficiently reduced using partitioning and transmutation in fast reactors and accelerator driven subcritical systems. (author)
Energy Technology Data Exchange (ETDEWEB)
Zhou, Cheng
2014-05-01
Highlights: • Hybrid solar and geothermal energy conversion system was modelled using subcritical and supercritical ORCs. • Solar thermal and geothermal energy can be effectively hybridised. • Greater thermodynamic advantages and economic benefits can be achieved using the supercritical hybrid plant. • Hybrid plants can produce up to 19% more annual electricity than the two stand-alone plants. • Solar-to-electricity cost in the supercritical hybrid plant is about 4–19% less than in the subcritical plant. - Abstract: A supercritical Organic Rankine Cycle (ORC) is renowned for higher conversion efficiency than the conventional ORC due to a better thermal match (i.e. reduced irreversibility) presented in the heat exchanger unit. This improved thermal match is a result of the obscured liquid-to-vapor boundary of the organic working fluid at supercritical states. Stand-alone solar thermal power generation and stand-alone geothermal power generation using a supercritical ORC have been widely investigated. However, the power generation capability of a single supercritical ORC using combined solar and geothermal energy has not been examined. This paper thus investigates the hybridisation of solar and geothermal energy in a supercritical ORC to explore the benefit from the potential synergies of such a hybrid platform. Its performances were also compared with those of a subcritical hybrid plant, stand-alone solar and geothermal plants. All simulations and modelling of the power cycles were carried out using process simulation package Aspen HYSYS. The performances of the hybrid plant were then assessed using technical analysis, economic analysis, and the figure of merit analysis. The results of the technical analysis show that thermodynamically, the hybrid plant using a supercritical ORC outperforms the hybrid plant using a subcritical ORC if at least 66% of its exergy input is met by solar energy (i.e. a solar exergy fraction of >66%), namely producing 4–17
International Nuclear Information System (INIS)
Zhou, Cheng
2014-01-01
Highlights: • Hybrid solar and geothermal energy conversion system was modelled using subcritical and supercritical ORCs. • Solar thermal and geothermal energy can be effectively hybridised. • Greater thermodynamic advantages and economic benefits can be achieved using the supercritical hybrid plant. • Hybrid plants can produce up to 19% more annual electricity than the two stand-alone plants. • Solar-to-electricity cost in the supercritical hybrid plant is about 4–19% less than in the subcritical plant. - Abstract: A supercritical Organic Rankine Cycle (ORC) is renowned for higher conversion efficiency than the conventional ORC due to a better thermal match (i.e. reduced irreversibility) presented in the heat exchanger unit. This improved thermal match is a result of the obscured liquid-to-vapor boundary of the organic working fluid at supercritical states. Stand-alone solar thermal power generation and stand-alone geothermal power generation using a supercritical ORC have been widely investigated. However, the power generation capability of a single supercritical ORC using combined solar and geothermal energy has not been examined. This paper thus investigates the hybridisation of solar and geothermal energy in a supercritical ORC to explore the benefit from the potential synergies of such a hybrid platform. Its performances were also compared with those of a subcritical hybrid plant, stand-alone solar and geothermal plants. All simulations and modelling of the power cycles were carried out using process simulation package Aspen HYSYS. The performances of the hybrid plant were then assessed using technical analysis, economic analysis, and the figure of merit analysis. The results of the technical analysis show that thermodynamically, the hybrid plant using a supercritical ORC outperforms the hybrid plant using a subcritical ORC if at least 66% of its exergy input is met by solar energy (i.e. a solar exergy fraction of >66%), namely producing 4–17
Rodríguez-Mañero, Moisés; González-Melchor, Layla; Ballesteros, Gabriel; Raposeiras-Roubín, Sergio; García-Seara, Javier; López, Xesús Alberte Fernández; Cambeiro, Cristina González; Alcalde, Oscar; García-Bolao, Ignacio; Martínez-Sande, Luis; González-Juanatey, José Ramón
2016-01-01
Little is known about the risk of pacemaker implantation after common atrial flutter ablation in the long-term. We retrospectively reviewed the electrophysiology laboratory database at two Spanish University Hospitals from 1998 to 2012 to identify patients who had undergone successful ablation for cavotricuspid dependent atrial flutter. Cox regression analysis was used to examine the risk of pacemaker implantation. A total of 298 patients were considered eligible for inclusion. The mean age of the enrolled patients was 65.7±11. During 57.7±42.8 months, 30 patients (10.1%) underwent pacemaker implantation. In the stepwise multivariate models only heart rate at the time of the ablation (OR: 0.96; 95% CI: 0.93-0.98; ppacemaker implantation. A heart rate of ≤65 bpm was identified as the optimal cut-off value to predict the need of pacemaker implantation in the follow-up (sensitivity: 79%, specificity: 74%) by ROC curve analyses. This is the first study of an association between the slow conducting common atrial flutter and subsequent risk of pacemaker implantation. In light of these findings, assessing it prior to ablation can be helpful for the risk stratification of sinus node disease or atrioventricular conduction disease requiring a pacemaker implantation in patients with persistent atrial flutter. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Abbas, L.K.; Rui, X.; Marzocca, P.; Abdalla, M.; De Breuker, R.
2011-01-01
In this paper, the effect of the system parameters on the flutter of a curved skin panel forced by a supersonic/hypersonic unsteady flow is numerically investigated. The aeroelastic model investigated includes the third-order piston theory aerodynamics for modeling the flow-induced forces and the
Comparison of the transient behavior of lead-based advanced critical and sub-critical reactors
International Nuclear Information System (INIS)
Wang Gang; Gu Zhixing; Wang Zhen; Jin Ming; Bai Yunqing
2014-01-01
A lead-based reactor developed by FDS Team is proposed in 2011 and designed to be 10 MW. It is a pool type reactor and the primary coolant is driven by natural circulation. The reactor has two operation modes, which are a lead-based critical fast reactor mode and a lead-based sub-critical reactor mode. The conceptual designs of the two modes are both completed by 2013. In this paper, four transient accidents were simulated for both the critical and sub-critical reactors above by NTC-2D code, which is developed by FDS Team for advanced reactor safety analysis. The four accidents were protected and unprotected loss of heat sink accidents (PLOHS and ULOHS), protected and unprotected transient overpower accidents (PTOP and UTOP). The simulation results of the two reactors were compared and analyzed. The results showed that during PLOHS and PTOP accidents for both the two modes, all the key parameters (core power, fuel, cladding and coolant temperatures in the hottest channel) decreased to very small values after the reactor scrammed, which meant the reactors under the two modes were both safe. For ULOHS, the fuel, cladding and coolant temperatures of the sub-critical reactor increased bigger than those of the critical one. For UTOP, the parameters above of the critical fast reactor were much bigger than those of the sub-critical one. The analysis results showed different safety advantages of the lead-based critical fast and sub-critical reactors during different transient accidents. (author)
Plutonium Critical Mass Curve Comparison to Mass at Upper Subcritical Limit (USL) Using Whisper
International Nuclear Information System (INIS)
Alwin, Jennifer Louise; Zhang, Ning
2016-01-01
Whisper is computational software designed to assist the nuclear criticality safety analyst with validation studies with the MCNP ® Monte Carlo radiation transport package. Standard approaches to validation rely on the selection of benchmarks based upon expert judgment. Whisper uses sensitivity/uncertainty (S/U) methods to select relevant benchmarks to a particular application or set of applications being analyzed. Using these benchmarks, Whisper computes a calculational margin. Whisper attempts to quantify the margin of subcriticality (MOS) from errors in software and uncertainties in nuclear data. The combination of the Whisper-derived calculational margin and MOS comprise the baseline upper subcritical limit (USL), to which an additional margin may be applied by the nuclear criticality safety analyst as appropriate to ensure subcriticality. A series of critical mass curves for plutonium, similar to those found in Figure 31 of LA-10860-MS, have been generated using MCNP6.1.1 and the iterative parameter study software, WORM S olver. The baseline USL for each of the data points of the curves was then computed using Whisper 1.1. The USL was then used to determine the equivalent mass for plutonium metal-water system. ANSI/ANS-8.1 states that it is acceptable to use handbook data, such as the data directly from the LA-10860-MS, as it is already considered validated (Section 4.3 4) ''Use of subcritical limit data provided in ANSI/ANS standards or accepted reference publications does not require further validation.''). This paper attempts to take a novel approach to visualize traditional critical mass curves and allows comparison with the amount of mass for which the k eff is equal to the USL (calculational margin + margin of subcriticality). However, the intent is to plot the critical mass data along with USL, not to suggest that already accepted handbook data should have new and more rigorous requirements for validation.
Energy Technology Data Exchange (ETDEWEB)
Hoeibraaten, S
1998-10-01
The report discusses possible nuclear weapons related experiments and whether these are permitted under the 1996 Comprehensive Test Ban Treaty (CTBT). The term ''subcritical experiments'' as used in the United States includes experiments in which one studies fissile materials (so far only plutonium) under extreme conditions generated by conventional high explosives, and in which a self-sustained chain reaction never develops in the fissile material. The known facts about the American subcritical experiments are presented. There is very little reason to doubt that these experiments were indeed subcritical and therefore permitted under the CTBT. Little is known about the Russian efforts that are being made on subcritical experiments.
Subcritical water (hot water under enough pressure to maintain the liquid state) was used to remove polycyclic aromatic hydrocarbons (PAHs) and pesticides from highly contaminated soils. Laboratory-scale (8 g of soil) experiments were used to determine conditions f...
Directory of Open Access Journals (Sweden)
Zolotarova T. V.
2017-12-01
Full Text Available The study involved 76 patients with atrial fibrillation and atrial flutter (AF/AFL who were divided into groups depending on conducted surgery (radiofrequency ablation of pulmonary veins (RFA PV, cavo-tricuspid isthmus (CTI, a combined strategy (PV + CTI. We evaluated the sex and age of patients, AF and AFL form, duration of AF/AFL, classification of AF / AFL by the different scales, stage and degree of hypertension (AT; types of coronary heart disease (CHD; diabetes mellitus type 2; acute cerebrovascular accident history; functional class and stage of chronic heart failure (FC CHF. The frequency distribution of basic cardiovascular diseases and their clinical signs are observed equally in patients with AF/AFL, regardless of the type of surgery carried out and they do not influence the choice of the latter. Male patients often held RFA CTI and women – RFA PV. Patients with persistent AF often require alternative treatments, especially catheter ablation of arrhythmic substrate.
DEFF Research Database (Denmark)
Sethi, Naqash; Safi, Sanam; Nielsen, Emil E
2017-01-01
by Jakobsen and colleagues. We plan to include all relevant randomised clinical trials assessing the effects of any rhythm control strategy versus any rate control strategy. We plan to search the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, LILACS, Science Citation Index Expanded...... on Web of Science, and BIOSIS to identify relevant trials. Any eligible trial will be assessed and classified as either high risk of bias or low risk of bias, and our conclusions will be based on trials with low risk of bias. The analyses of the extracted data will be performed using Review Manager 5....... This protocol for a systematic review aims at identifying the best overall treatment strategy for atrial fibrillation and atrial flutter. METHODS: This protocol for a systematic review was performed following the recommendations of the Cochrane Collaboration and the eight-step assessment procedure suggested...
Influence of magnetic flutter on tearing growth in linear and nonlinear theory
Kreifels, L.; Hornsby, W. A.; Weikl, A.; Peeters, A. G.
2018-06-01
Recent simulations of tearing modes in turbulent regimes show an unexpected enhancement in the growth rate. In this paper the effect is investigated analytically. The enhancement is linked to the influence of turbulent magnetic flutter, which is modelled by diffusion terms in magnetohydrodynamics (MHD) momentum balance and Ohm’s law. Expressions for the linear growth rate as well as the island width in nonlinear theory for small amplitudes are derived. The results indicate an enhanced linear growth rate and a larger linear layer width compared with resistive MHD. Also the island width in the nonlinear regime grows faster in the diffusive model. These observations correspond well to simulations in which the effect of turbulence on the magnetic island width and tearing mode growth is analyzed.
Directory of Open Access Journals (Sweden)
Řidký Václav
2014-03-01
Full Text Available The work is devoted to 3D and 2D parallel numerical computation of pressure and velocity fields around an elastically supported airfoil self-oscillating due to interaction with the airflow. Numerical solution is computed in the OpenFOAM package, an open-source software package based on finite volume method. Movement of airfoil is described by translation and rotation, identified from experimental data. A new boundary condition for the 2DOF motion of the airfoil was implemented. The results of numerical simulations (velocity are compared with data measured in a wind tunnel, where a physical model of NACA0015 airfoil was mounted and tuned to exhibit the flutter instability. The experimental results were obtained previously in the Institute of Thermomechanics by interferographic measurements in a subsonic wind tunnel in Nový Knín.
Goltz, Dominique; Pleger, Burkhard; Thiel, Sabrina; Villringer, Arno; Müller, Matthias M.
2013-01-01
The present functional magnetic resonance imaging (fMRI) study was designed to get a better understanding of the brain regions involved in sustained spatial attention to tactile events and to ascertain to what extent their activation was correlated. We presented continuous 20 Hz vibrotactile stimuli (range of flutter) concurrently to the left and right index fingers of healthy human volunteers. An arrow cue instructed subjects in a trial-by-trial fashion to attend to the left or right index finger and to detect rare target events that were embedded in the vibrotactile stimulation streams. We found blood oxygen level-dependent (BOLD) attentional modulation in primary somatosensory cortex (SI), mainly covering Brodmann area 1, 2, and 3b, as well as in secondary somatosensory cortex (SII), contralateral to the to-be-attended hand. Furthermore, attention to the right (dominant) hand resulted in additional BOLD modulation in left posterior insula. All of the effects were caused by an increased activation when attention was paid to the contralateral hand, except for the effects in left SI and insula. In left SI, the effect was related to a mixture of both a slight increase in activation when attention was paid to the contralateral hand as well as a slight decrease in activation when attention was paid to the ipsilateral hand (i.e., the tactile distraction condition). In contrast, the effect in left posterior insula was exclusively driven by a relative decrease in activation in the tactile distraction condition, which points to an active inhibition when tactile information is irrelevant. Finally, correlation analyses indicate a linear relationship between attention effects in intrahemispheric somatosensory cortices, since attentional modulation in SI and SII were interrelated within one hemisphere but not across hemispheres. All in all, our results provide a basis for future research on sustained attention to continuous vibrotactile stimulation in the range of flutter
International Nuclear Information System (INIS)
Cui Kejian; Gu Shuiming; Ding Yueyou; Zheng Hongchao; Zhang Yachen; Li Yigang
2008-01-01
Objective: To evaluate the influnce of atrial fibrillation(AF)/atrial flutter on the mortality and prognosis of patients with AMI. Methods: A total of 297 consecutive patients were studied from Jan. 2001 to Dec. 2005 and were categorized into 2 groups according to the presence or absence of AF/atrial flutter. The 30 d and 6 mo mortalities, Killip Grades, cardiogenic shock, arrhythmia and left ventricular ejectory functional (LVEF) 6 months after AMI with Doppler US between the 2 groups were compared. Results: The incidence of AF/atrial fluttler was 12.5% with older age, higher Killip Gorade, higher CPK peak, higher rates of previous myocardial infarction and multivascular involvement than those without AF/ atrial flutter. The short and medium-term mortalities in AF/atriat flutter group were both significantly higher than those of non-AF/atrial flutter group (P<0.05). Conclusions: The short and medium-term mortalities increase obviously in AMI complicated with AF/atrial flutter, probably related to the severity of atherosclerosis. (authors)
Xia, H; Matharu, A S
2017-09-21
Mango peel is the major by-product of mango processing, and compromises 7-24% of the total mango weight. In this study, pectin was extracted from mango peel waste by using subcritical water extraction (SWE) in the absence of mineral acid. A highest yield of 18.34% was achieved from the Kesar variety and the pectin was characterised using ATR-IR spectroscopy, TGA and 13 C solid-state NMR spectroscopy to confirm the structure. The degree of esterification (DE) of the pectin was analysed with both titrimetry and 13 C solid-state NMR spectroscopy, and a high DE (>70%) was observed for all three varieties (Keitt, Sindhri and Kesar). This is the first report on acid-free subcritical water extraction of pectin from mango peel, which provides a green route for the valorisation of mango peel waste and contributes to a source of biobased materials and chemicals for a sustainable 21 st century.
Research Programme for the 660 Mev Proton Accelerator Driven MOX-Plutonium Subcritical Assembly
Barashenkov, V S; Buttseva, G L; Dudarev, S Yu; Polanski, A; Puzynin, I V; Sissakian, A N
2000-01-01
The paper presents a research programme of the Experimental Acclerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton acceletator operating at the Laboratory of Nuclear Problems of the JINR, Dubna. MOX fuel (25% PuO_2 + 75% UO_2) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core of a nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient k_eff = 0.945, energetic gain G = 30 and the accelerator beam power 0.5 kW.
Directory of Open Access Journals (Sweden)
Mayu Yamamoto
2008-01-01
Full Text Available Plant polyphenol, including vanillin, is often used as the intermediate materials of the medicines and vanilla flavoring. In agriculture generally vanillin is produced from vanilla plant and in industry from lignin of disposed wood pulp. We have recently developed a method for the production of plant polyphenol with the excrement as a natural resource of lignin, of the herbivorous animals, by using the subcritical water. The method for using the subcritical water is superior to that of the supercritical water because in the latter complete decomposition occurs. We have successfully produced the vanillin, protocatechuic acid, vanillic acid, and syringic acid in products. Our method is simpler and more efficient not only because it requires the shorter treatment time but also because it releases less amount of carbon dioxide into the atmosphere.
Directory of Open Access Journals (Sweden)
Zafar Faisal
2017-09-01
Full Text Available The presence of naphthenic acids (NAs in crude oil is the major cause of corrosion in the refineries and its processing equipment. The goal of this study is to reduce the total acid number (TAN of NAs by treating them with subcritical methanol in the presence of acidic ionic liquid (AIL catalysts. Experiments were carried out in an autoclave batch reactor and the effect of different reaction parameters was investigated. It was observed that TAN reduction was positively dependent on the temperature and concentration of the AIL whereas excess of methanol has a negative effect. Approximately 90% TAN reduction was achieved under the optimized reaction conditions using [BMIM]HSO4 as catalyst. It was also perceived from the experimental results that the AILs with longer alkyl chain exhibited higher catalytic activity. The activity and stability of AIL showed that they can be promising catalyst to esterify NAs under subcritical methanol.
Prospects of subcritical molten salt reactor for minor actinides incineration in closed fuel cycle
Energy Technology Data Exchange (ETDEWEB)
Alekseev, Pavel N.; Balanin, Andrey L.; Dudnikov, Anatoly A.; Fomichenko, Petr A.; Nevinitsa, Vladimir A.; Frolov, Aleksey A.; Lubina, Anna S.; Sedov, Aleksey A.; Subbotin, Aleksey S.; Blandinsky, Viktor Yu. [Nuclear Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)
2015-09-15
A subcritical molten salt reactor is proposed for minor actinides (separated from spent fuel VVER-1000 light water reactor) incineration and for {sup 233}U conversion from {sup 232}Th. Here the subcritical molten salt reactor with fuel composition of heavy nuclide fluorides in molten LiF - NaF - KF salt and with external neutron source, based on 1 GeV proton accelerator and molten salt cooled tungsten target is considered. The paper presents the results of parametrical analysis of equilibrium nuclide composition of molten salt reactor with minor actinides feed in dependence of core dimensions, average neutron flux and external neutron source intensity. Reactor design is defined; requirements to external neutron source are posed; heavy nuclides equilibrium and fuel cycle main parameters are calculated.
Directory of Open Access Journals (Sweden)
Peng Hu
2017-02-01
Full Text Available Electrothermal energy storage (ETES provides bulk electricity storage based on heat pump and heat engine technologies. A subcritical ETES is described in this paper. Based on the extremum principle of entransy dissipation, a geometry model is developed for heat transfer optimization for subcritical ETES. The exergy during the heat transfer process is deduced in terms of entropy production. The geometry model is validated by the extremum principle of entropy production. The theoretical analysis results show that the extremum principle of entransy dissipation is an effective criterion for the optimization, and the optimum heat transfer for different cases with the same mass flux or pressure has been discussed. The optimum heat transfer can be achieved by adjusting the mass flux and pressure of the working fluid. It also reveals that with the increase of mass flux, there is a minimum exergy in the range under consideration, and the exergy decreases with the increase of the pressure.
Observations of the severity of notch-root radius in initiation of subcritical crack growth
International Nuclear Information System (INIS)
Reuter, W.G.; Eiholzer, C.R.; Tupper, M.A.
1981-01-01
Slow bend tests were conducted on Charpy specimens containing precracks or machined notches of 0.10 or 0.25 mm radius. The test specimens were fabricated from three heats of annealed Type 304 stainless steel. The purpose of these tests was to examine the effects of notch root radius, in very ductile materials, on initiation of subcritical crack growth. In addition, it was intended to establish the critical values of J, COD, etc. for the single-edge notch specimen for comparison with results obtained from specimens containing surface flaws. This paper will briefly describe only those results of the calculation for J. The tests were monitored by acoustic emission to identify the load corresponding to initiation of subcritical crack growth, by a crack-opening displacement gage (COD), by cross-head displacement, and by stop-action photography
Comparison between two gas-cooled TRU burner subcritical reactors: fusion-fission and ADS
International Nuclear Information System (INIS)
Carluccio, T.; Rossi, P.C.R.; Angelo, G.; Maiorino, J.R.
2011-01-01
This work shows a preliminary comparative study between two gas cooled subcritical fast reactor as dedicated transuranics (TRU) transmuters: using a spallation neutron source or a D-T fusion neutron source based on ITER. The two concepts are compared in terms of a minor actinides burning performance. Further investigations are required to choose the best partition and transmutation strategy. Mainly due to geometric factors, the ADS shows better neutron multiplication. Other designs, like SABR and lead cooled ADS may show better performances than a Gas Coolead Subcritical Fast Reactors and should be investigated. We noticed that both designs can be utilized to transmutation. Besides the diverse source neutron spectra, we may notice that the geometric design and cycle parameters play a more important role. (author)
Energy Technology Data Exchange (ETDEWEB)
Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Determan, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-09-14
Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument’s LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.
International Nuclear Information System (INIS)
Klein, Steven Karl; Determan, John C.
2015-01-01
Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument's LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.
Wang, Yongqiang; Gao, Yujie; Ding, Hui; Liu, Shejiang; Han, Xu; Gui, Jianzhou; Liu, Dan
2017-03-01
A large-scale process to extract flavonoids from Moringa oleifera leaf by subcritical ethanol was developed and HPLC-MS analysis was conducted to qualitatively identify the compounds in the extracts. To optimize the effects of process parameters on the yield of flavonoids, a Box-Behnken design combined with response surface methodology was conducted in the present work. The results indicated that the highest extraction yield of flavonoids by subcritical ethanol extraction could reach 2.60% using 70% ethanol at 126.6°C for 2.05h extraction. Under the optimized conditions, flavonoids yield was substantially improved by 26.7% compared with the traditional ethanol reflux method while the extraction time was only 2h, and obvious energy saving was observed. FRAP and DPPH assays showed that the extracts had strong antioxidant and free radical scavenging activities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sub-critical pulsed neutron experiments with uranyl nitrate solutions in spherical geometry
International Nuclear Information System (INIS)
Gurin, Victor N.; Ryazanov, Boris G.; Sviridov, Victor I.; Volnistov, Vladimir V.
2003-01-01
The pulse source method is used to study homogeneous solution assemblies. Three sets of sub-critical pulse experiments with spherical tanks filled with water solution of uranyl nitrate (90% enrichment) were carried out at the RF-GS facility, Obninsk, Russia. Seven spherical tanks with the volume within the range of 1.29 L to 19.8 L were used in the experiments. Three uranium concentrations were studied, i.e. 20.7, 29.6 and 37.5 g/L. The sub-critical experiments were analyzed with the MCNP 4A code based on the Monte-Carlo method, and with ENDF/B-V library. (author)
International Nuclear Information System (INIS)
Sakurai, Kiyoshi; Yamamoto, Toshihiro; Arakawa, Takuya; Naito, Yoshitaka
1998-01-01
Experiments on coupled cores performed at TCA were analysed using continuous energy Monte Carlo calculation code MCNP 4A. Errors of neutron multiplication factors are evaluated using Indirect Bias Estimation Method proposed by authors. Calculation for simulation of pulsed neutron method was performed for 17 X 17 + 5G + 17 x 17 core system and its of exponential experiment method was also performed for 16 x 9 + 3G + 16 x 9 and 16 x 9 + 5G + 16 x 9 core systems. Errors of neutron multiplication factors are estimated to be (-1.5) - (-0.6)% evaluated by Indirect Bias Estimation Method. Its errors evaluated by conventional pulsed neutron method and exponential experiment method are estimated to be 7%, but it is below 1% for estimation of subcriticality with the computed values by applying Indirect Bias Estimation Method. Feasibility of subcriticality management is higher by application of the method to full scale fuel strage facility. (author)
Research programme for the 660 MeV proton accelerator driven MOX-plutonium subcritical assembly
International Nuclear Information System (INIS)
Barashenkov, V.S.; Buttsev, V.S.; Buttseva, G.L.; Dudarev, S.Yu.; Polanski, A.; Puzynin, I.V.; Sissakyan, A.N.
2000-01-01
The paper presents a research programme of the Experimental Accelerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton accelerator operating at the Laboratory of Nuclear Problems of the JINR, Dubna. MOX fuel (25% PuO 2 + 75% UO 2 ) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core of a nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient k eff = 0.945, energetic gain G=30 and the accelerator beam power 0.5 kW
Influence of moderator to fuel ratio (MFR) on burning thorium in a subcritical assembly
International Nuclear Information System (INIS)
Wojciechowski, Andrzej
2014-01-01
The conversion ratio (CR) of Th-232 to U-233 calculation results for a subcritical reactor assembly is presented as a function of MFR, burnup, power density (PD) and fissile concentration. The calculated model is based on subcritical assembly which makes configuration of fuel rods and volumes of moderator and coolant changes possible. This comfortable assembly enables investigation of CR in a thorium cycle for different value of MFR. Additionally, the calculation results of U-233 saturation concentration are explained by mathematical model. The value of MFR main influences the saturation concentration of U-233 and fissile and the fissile concentration dependence of CR. The saturation value of CR is included in the range CR ∈ (0.911, 0.966) and is a slowly increasing function of MFR. The calculations were done with a MCNPX 2.7 code
On the estimation of subcritical reactivity by the pulsed α-method
International Nuclear Information System (INIS)
Shulepin, V.S.
1974-01-01
A technique for calculating the neutron generation time is considered. It is based on the use of only basic (non-conjugate) conditionally critical reactor equations. The formula is drawn to show the relation between the reactivity coefficient Ksub(eff), damping decrement and neutron generation time. Some transformations result in a conditionally critical equation at Ksub(eff) equal to unit, from which the neutron generation time is found that is necessary to measure subcritical reactivity by the α-method
Numerical investigation of the flow over a golf ball in the subcritical and supercritical regimes
International Nuclear Information System (INIS)
Smith, C.E.; Beratlis, N.; Balaras, E.; Squires, K.; Tsunoda, M.
2010-01-01
In order to understand the role of surface dimpling on the flow over a golf ball, direct numerical simulations (DNS) are conducted within the framework of an immersed boundary approach for two physical regimes. Computations of the flow over a non-rotating golf ball are reported for a subcritical flow at a Reynolds number of 2.5 x 10 4 and a supercritical case at a Reynolds number of 1.1 x 10 5 . Grid refinement studies for both Reynolds numbers indicated that characteristics of the subcritical flow could be captured using a mesh of 337 x 10 6 points, and for the supercritical case using a grid with 1.2 x 10 9 points. Flow visualizations reveal the differences in separation characteristics between the two Reynolds numbers. Profiles of the mean velocity indicate that the flow detaches completely at approximately 84 o in the subcritical case (measured from the stagnation point at the front of the ball), while in the supercritical regime there are alternating regions of reattachment and separation within dimples with complete detachment around 110 o . Energy spectra highlight frequencies associated with vortex formation over the dimples prior to complete detachment in the supercritical regime. Reynolds stresses quantify momentum transport in the near-wall region, showing that the axial stress increases around 90 o for the subcritical case. In the supercritical regime these stress components alternately increase and decrease, corresponding to local separation and reattachment. Prediction of the drag coefficient for both Reynolds numbers is in reasonable agreement with measurements.
A new approach to make collapsed cross section for burnup calculation of subcritical system
International Nuclear Information System (INIS)
Matsunaka, Masayuki; Kondo, Keitaro; Miyamaru, Hiroyuki; Murata, Isao
2008-01-01
A general-purpose transport and burnup code system for precise analysis of subcritical reactors like a fusion-fission (FF) hybrid reactor was developed and used for analyzing their performance. The FF hybrid reactor is a subcritical system, which has a concept of fusion reactor with a blanket region containing nuclear fuel and has been under discussion by author's group for years because the present burnup calculation system mainly consists of a general-purpose Monte Carlo code MCNP-4B, a point burnup code ORIGEN2. JENDL-3.3 pointwise cross section library and JENDL Activation Cross Section File 96 were used as base cross section libraries to make group constant for burnup calculation. A new method has been proposed to make group constant for the burnup calculation as accurate as possible directly using output data of the neutron transport calculation by MCNP and evaluated nuclear data libraries. This method is strict and a general procedure to make one group cross sections in Monte Carlo calculations, while it takes very long computation time. Some speed-up techniques were discussed for the present group constant making process so as to decrease calculation time. Adoption of postprocessing to make group constant improved the calculation accuracy because of increasing number of cross sections to be updated in each burnup cycle. The present calculation system is capable of performing neutronics analysis of subcritical reactors more precise than our previous one. However, at the moment, it still takes long computation time to make group constants. Further speed-up techniques are now under investigation so as to apply the present system to neutronics design analysis for various subcritical systems. (author)
International Nuclear Information System (INIS)
Kwok, K.S.; Bernard, J.A.; Lanning, D.D.
1992-01-01
The perturbed reactivity method is a general technique for the estimation of reactivity. It is particularly suited to the determination of a reactor's initial degree of subcriticality and was developed to facilitate the automated startup of both spacecraft and multi-modular reactors using model-based control laws. It entails perturbing a shutdown reactor by the insertion of reactivity at a known rate and then estimating the initial degree of subcriticality from observation of the resulting reactor period. While similar to inverse kinetics, the perturbed reactivity method differs in that the net reactivity present in the core is treated as two separate entities. The first is that associated with the known perturbation. This quantity, together with the observed period and the reactor's describing parameters, are the inputs to the method's implementing algorithm. The second entity, which is the algorithm;s output, is the sum of all other reactivities including those resulting from inherent feedback and the initial degree of subcriticality. During an automated startup, feedback effects will be minimal. Hence, when applied to a shutdown reactor, the output of the perturbed reactivity method will be a constant that is equal to the initial degree of subcriticality. This is a major advantage because repeated estimates can be made of this one quantity and signal smoothing techniques can be applied to enhance accuracy. In addition to describing the theoretical basis for the perturbed reactivity method, factors involved in its implementation such as the movement of control devices other than those used to create the perturbation, source estimation, and techniques for data smoothing are presented
Analytical solution of point kinetic equations for sub-critical systems
International Nuclear Information System (INIS)
Henrice Junior, Edson; Goncalves, Alessandro C.
2013-01-01
This article presents an analytical solution for the set of point kinetic equations for sub-critical reactors. This solution stems from the ordinary, non-homogeneous differential equation that rules the neutron density and that presents the incomplete Gamma function in its functional form. The method used proved advantageous and allowed practical applications such as the linear insertion of reactivity, considering an external constant source or with both varying linearly. (author)
International Nuclear Information System (INIS)
Pesic, Milan; Neskovic, Nebojsa
2006-01-01
Study of a small accelerator-driven subcritical research reactor in the Vinca Institute of Nuclear Sciences was initiated in 1999. The idea was to extract a beam of medium-energy protons or deuterons from the TESLA accelerator installation, and to transport and inject it into the reactor. The reactor core was to be composed of the highly enriched uranium fuel elements. The reactor was designated as ADSRR-H. Since the use of this type of fuel elements was not recommended any more, the study of a small accelerator-driven subcritical research reactor employing the low-enriched uranium fuel elements began in 2004. The reactor was designated as ADSRR-L. We compare here the results of the initial computer simulations of ADSRR-H and ADSRR-L. The results have confirmed that our concept could be the basis for designing and construction of a low neutron flux model of the proposed accelerator-driven subcritical power reactor to be moderated and cooled by lead. Our objective is to study the physics and technologies necessary to design and construct ADSRR-L. The reactor would be used for development of nuclear techniques and technologies, and for basic and applied research in neutron physics, metrology, radiation protection and radiobiology
3D CAD model of the subcritical nuclear reactor of IPN
International Nuclear Information System (INIS)
Pahuamba V, F. de J.; Delfin L, A.; Gomez T, A.; Ibarra R, G.; Del Valle G, E.; Sanchez R, A.
2016-09-01
The three-dimensional (3D) CAD model of the subcritical reactor Chicago model 9000 of Instituto Politecnico Nacional (IPN) allows obtaining a 3D view with the dimensions of each of its components, such as: natural uranium cylindrical rods, fuel elements, hexagonal reactor core arrangement, cylindrical stainless steel tank containing the core, fuel element support grids and reactor water cleaning system. As a starting point for the development of the model, the Chicago model 9000 subcritical reactor manual provided by the manufacturer was used, the measurement and verification of the components to adapt the geometric, physical and mechanical characteristics was carried out and materials standards were used to obtain a design that allows to elaborate a new manual according to the specifications. In addition, the 3D models of the building of the Advanced Physics Laboratory, neutron generator, cobalt source and the corridors connecting to the subcritical reactor facility were developed, allowing an animated ride, developed by computer-aided design software. The manual provided by the company Nuclear Chicago, dates from the year 1959 and presents diverse deviations in the design and dimensions of the reactor components. The model developed; in addition to supporting the development of the new manual represents a learning tool to visualize the reactor components. (Author)
Noise method for monitoring the sub-criticality in accelerator driven systems
International Nuclear Information System (INIS)
Rugama, Y.; Munoz-Cobo, J.L.; Valentine, T.E.; Mihalczo, J.T.; Perez, R.B.; Perez-Navarro, A.
2001-01-01
In this paper, an absolute measurements technique for the sub-criticality determination is presented. The development of ADS, requires of methods to monitor and control the sub-criticality of this kind of systems, without interfering it's normal operation mode. This method is based on the Stochastic Neutron and Photon Transport Theory developed by Munoz-Cobo et al., and which can be implemented in presently available neutron transport codes. As a by-product of the methodology a monitoring measurement technique has been developed and verified using two coupled Monte Carlo programs. The spallation collisions and the high-energy transport are simulated with LAHET. The neutrons transports with energies less than 20 MeV and the estimation of the count statistics for neutron and/or gamma ray counters in fissile systems, is simulated with MCNP-DSP. It is possible to get the kinetics parameters and the k eff value of the sub-critical system through the analysis of the counter detectors. (author)
Energy Technology Data Exchange (ETDEWEB)
Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in [Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India)
2015-03-15
The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical and near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed.
International Nuclear Information System (INIS)
Gao, Mingming; Hong, Feng; Liu, Jizhen
2017-01-01
Highlights: • The model of energy storage of subcritical CFB boilers is established. • The capacity and increment rate of heat storage are quantified. • A novel load control strategy is proposed to improve the quick load change ability. • An application on the 300 MW CFB unit proves the load change rate to 5–8 MW/min. - Abstract: The energy storage of circulating fluidized bed (CFB) boilers on fuel side cannot be ignored due to the special combustion type different from pulverized coal boilers. The sizable energy storage makes it possible for CFB units to enhance the quick load change ability and to increase the scale of new energy power connected into grid. Through mechanism analysis, the model of energy storage of subcritical CFB boilers has been established for the first time. Then by the project practice, the quantitative analysis is demonstrated for the capacity and control characteristics of energy storage on fuel side and steam water side. Based on the control characteristics and the transformation of the energy storage, a coordinated control system (CCS) control strategy named advanced energy balance (AEB) is designed to shorten the response time through the use of energy storage and to accelerate the load change speed of subcritical CFB units. Finally, a case study on a 300 MW CFB unit proves the feasibility of the proposed control strategy.
International Nuclear Information System (INIS)
Kugo, Teruhiko
1992-01-01
The author examined the validity to estimate the subcriticality of a test region in a coupled reactor system using only measurable quantities on the basis of Avery's coupled reactor theory. For the purpose, we analyzed coupled reactor experiments performed at the Tank-type Critical Assembly in Japan Atomic Energy Research Institute by using two region systems and evaluated the subcriticality of the test region through a numerical study. Coupling coefficients were redefined at the quasi-static state because their definitions by Avery were not clear. With the coupling coefficients obtained by the numerical calculation, the multiplication factor of the test region was evaluated by two formulas; one for the evaluation using only the measurable quantities and the other for the accurate evaluation which contains the terms dropped in the former formula by assuming the unchangeableness for the perturbation induced in a driver region. From the comparison between the results of the evaluations, it was found that the estimation using only the measurable quantities is valid only for the coupled reactor system where the subcriticality of the test region was very small within a few dollars in reactivity. Consequently, it is concluded that the estimation using only the measurable quantities is not applicable to a general coupled reactor system. (author)
Fast accelerator driven subcritical system for energy production: nuclear fuel evolution
International Nuclear Information System (INIS)
Barros, Graiciany de P.; Pereira, Claubia; Veloso, Maria A.F.; Costa, Antonella L.
2011-01-01
Accelerators Driven Systems (ADS) are an innovative type of nuclear system, which is useful for long-lived fission product transmutation and fuel regeneration. The ADS consist of a coupling of a sub-critical nuclear core reactor and a proton beam produced by a particle accelerator. These particles are injected into a target for the neutrons production by spallation reactions. The neutrons are then used to maintain the fission chain in the sub-critical core. The aim of this study is to investigate the nuclear fuel evolution of a lead cooled accelerator driven system used for energy production. The fuel studied is a mixture based upon "2"3"2Th and "2"3"3U. Since thorium is an abundant fertile material, there is hope for the thorium-cycle fuels for an accelerator driven sub-critical system. The target is a lead spallation target and the core is filled with a hexagonal lattice. High energy neutrons are used to reduce the negative reactivity caused by the presence of protoactinium, since this effect is most pronounced in the thermal range of the neutron spectrum. For that reason, such material is not added moderator to the system. In this work is used the Monte Carlo code MCNPX 2.6.0, that presents the the depletion/ burnup capability. The k_e_f_f evolution, the neutron energy spectrum in the core and the nuclear fuel evolution using ADS source (SDEF) and kcode-mode are evaluated during the burnup. (author)
International Nuclear Information System (INIS)
Muthukumaran, C. K.; Vaidyanathan, Aravind
2015-01-01
The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical and near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed
Th and U fuel photofission study by NTD for AD-MSR subcritical assembly
Energy Technology Data Exchange (ETDEWEB)
Sajo-Bohus, Laszlo; Greaves, Eduardo D.; Barros, Haydn; Pino, Felix; Barrera, Maria T.; Farina, Fulvio [Universidad Simón Bolívar, Nuclear Physics Laboratory, Apdo 89000, Caracas 1080A (Venezuela, Bolivarian Republic of); Davila, Jesus [Física Médica C. A. and Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of)
2015-07-23
During the last decade a considerable effort has been devoted for developing energy generating systems based on advanced nuclear technology within the design concepts of GEN-IV. Thorium base fuel systems such as accelerator driven nuclear reactors are one of the often mentioned attractive and affordable options. Several radiotherapy linear accelerators are on the market and due to their reliability, they could be employed as drivers for subcritical liquid fuel assemblies. Bremsstrahlung photons with energies above 5.5MeV, induce (γ,n) and (e,e’n) reactions in the W-target. Resulting gamma radiation and photo or fission neutrons may be absorbed in target materials such as thorium and uranium isotopes to induce sustained fission or nuclear transmutation in waste radioactive materials. Relevant photo driven and photo-fission reaction cross sections are important for actinides {sup 232}Th, {sup 238}U and {sup 237}Np in the radiotherapy machines energy range of 10-20 MV. In this study we employ passive nuclear track detectors (NTD) to determine fission rates and neutron production rates with the aim to establish the feasibility for gamma and photo-neutron driven subcritical assemblies. To cope with these objectives a 20 MV radiotherapy machine has been employed with a mixed fuel target. Results will support further development for a subcritical assembly employing a thorium containing liquid fuel. It is expected that acquired technological knowledge will contribute to the Venezuelan nuclear energy program.
Th and U fuel photofission study by NTD for AD-MSR subcritical assembly
Sajo-Bohus, Laszlo; Greaves, Eduardo D.; Davila, Jesus; Barros, Haydn; Pino, Felix; Barrera, Maria T.; Farina, Fulvio
2015-07-01
During the last decade a considerable effort has been devoted for developing energy generating systems based on advanced nuclear technology within the design concepts of GEN-IV. Thorium base fuel systems such as accelerator driven nuclear reactors are one of the often mentioned attractive and affordable options. Several radiotherapy linear accelerators are on the market and due to their reliability, they could be employed as drivers for subcritical liquid fuel assemblies. Bremsstrahlung photons with energies above 5.5MeV, induce (γ,n) and (e,e'n) reactions in the W-target. Resulting gamma radiation and photo or fission neutrons may be absorbed in target materials such as thorium and uranium isotopes to induce sustained fission or nuclear transmutation in waste radioactive materials. Relevant photo driven and photo-fission reaction cross sections are important for actinides 232Th, 238U and 237Np in the radiotherapy machines energy range of 10-20 MV. In this study we employ passive nuclear track detectors (NTD) to determine fission rates and neutron production rates with the aim to establish the feasibility for gamma and photo-neutron driven subcritical assemblies. To cope with these objectives a 20 MV radiotherapy machine has been employed with a mixed fuel target. Results will support further development for a subcritical assembly employing a thorium containing liquid fuel. It is expected that acquired technological knowledge will contribute to the Venezuelan nuclear energy program.
Energy Technology Data Exchange (ETDEWEB)
Talamo, Alberto [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division
2016-06-01
This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.
MCNPX, MONK, and ERANOS analyses of the YALINA Booster subcritical assembly
Energy Technology Data Exchange (ETDEWEB)
Talamo, Alberto, E-mail: alby@anl.go [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Gohar, Y.; Aliberti, G.; Cao, Y.; Smith, D.; Zhong, Z. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Serafimovich, I. [Joint Institute for Power and Nuclear Research - Sosny, National Academy of Sciences of Belarus, 99 Acad. Krasin Str., Minsk 220109 (Belarus)
2011-05-15
This paper compares the numerical results obtained from various nuclear codes and nuclear data libraries with the YALINA Booster subcritical assembly (Minsk, Belarus) experimental results. This subcritical assembly was constructed to study the physics and the operation of accelerator-driven subcritical systems (ADS) for transmuting the light water reactors (LWR) spent nuclear fuel. The YALINA Booster facility has been accurately modeled, with no material homogenization, by the Monte Carlo codes MCNPX (MCNP/MCB) and MONK. The MONK geometrical model matches that of MCNPX. The assembly has also been analyzed by the deterministic code ERANOS. In addition, the differences between the effective neutron multiplication factor and the source multiplication factors have been examined by alternative calculational methodologies. The analyses include the delayed neutron fraction, prompt neutron lifetime, generation time, neutron flux profiles, and spectra in various experimental channels. The accuracy of the numerical models has been enhanced by accounting for all material impurities and the actual density of the polyethylene material used in the assembly (the latter value was obtained by dividing the total weight of the polyethylene by its volume in the numerical model). There is good agreement between the results from MONK, MCNPX, and ERANOS. The ERANOS results show small differences relative to the other results because of material homogenization and the energy and angle discretizations.The MCNPX results match the experimental measurements of the {sup 3}He(n,p) reaction rates obtained with the californium neutron source.
International Nuclear Information System (INIS)
Talamo, Alberto; Gohar, Yousry
2016-01-01
This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.
MCNPX, MONK, and ERANOS analyses of the YALINA Booster subcritical assembly
International Nuclear Information System (INIS)
Talamo, Alberto; Gohar, Y.; Aliberti, G.; Cao, Y.; Smith, D.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Serafimovich, I.
2011-01-01
This paper compares the numerical results obtained from various nuclear codes and nuclear data libraries with the YALINA Booster subcritical assembly (Minsk, Belarus) experimental results. This subcritical assembly was constructed to study the physics and the operation of accelerator-driven subcritical systems (ADS) for transmuting the light water reactors (LWR) spent nuclear fuel. The YALINA Booster facility has been accurately modeled, with no material homogenization, by the Monte Carlo codes MCNPX (MCNP/MCB) and MONK. The MONK geometrical model matches that of MCNPX. The assembly has also been analyzed by the deterministic code ERANOS. In addition, the differences between the effective neutron multiplication factor and the source multiplication factors have been examined by alternative calculational methodologies. The analyses include the delayed neutron fraction, prompt neutron lifetime, generation time, neutron flux profiles, and spectra in various experimental channels. The accuracy of the numerical models has been enhanced by accounting for all material impurities and the actual density of the polyethylene material used in the assembly (the latter value was obtained by dividing the total weight of the polyethylene by its volume in the numerical model). There is good agreement between the results from MONK, MCNPX, and ERANOS. The ERANOS results show small differences relative to the other results because of material homogenization and the energy and angle discretizations.The MCNPX results match the experimental measurements of the 3 He(n,p) reaction rates obtained with the californium neutron source.
Energy Technology Data Exchange (ETDEWEB)
Talamo, Alberto, E-mail: alby@anl.gov [Argonne National Laboratory, 9700S. Cass Avenue, Argonne, IL 60439 (United States); Gohar, Y.; Cao, Y.; Zhong, Z. [Argonne National Laboratory, 9700S. Cass Avenue, Argonne, IL 60439 (United States); Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C. [Joint Institute for Power and Nuclear Research-Sosny, National Academy of Sciences of Belarus, 99 acad. Krasin str., Minsk 220109 (Belarus)
2012-03-11
In subcritical assemblies, the Bell and Glasstone spatial correction factor is used to correct the measured reactivity from different detector positions. In addition to the measuring position, several other parameters affect the correction factor: the detector material, the detector size, and the energy-angle distribution of source neutrons. The effective multiplication factor calculated by computer codes in criticality mode slightly differs from the average value obtained from the measurements in the different experimental channels of the subcritical assembly, which are corrected by the Bell and Glasstone spatial correction factor. Generally, this difference is due to (1) neutron counting errors; (2) geometrical imperfections, which are not simulated in the calculational model, and (3) quantities and distributions of material impurities, which are missing from the material definitions. This work examines these issues and it focuses on the detector choice and the calculation methodologies. The work investigated the YALINA Booster subcritical assembly of Belarus, which has been operated with three different fuel enrichments in the fast zone either: high (90%) and medium (36%), medium (36%), or low (21%) enriched uranium fuel.
International Nuclear Information System (INIS)
Talamo, Alberto; Gohar, Y.; Cao, Y.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.
2012-01-01
In subcritical assemblies, the Bell and Glasstone spatial correction factor is used to correct the measured reactivity from different detector positions. In addition to the measuring position, several other parameters affect the correction factor: the detector material, the detector size, and the energy-angle distribution of source neutrons. The effective multiplication factor calculated by computer codes in criticality mode slightly differs from the average value obtained from the measurements in the different experimental channels of the subcritical assembly, which are corrected by the Bell and Glasstone spatial correction factor. Generally, this difference is due to (1) neutron counting errors; (2) geometrical imperfections, which are not simulated in the calculational model, and (3) quantities and distributions of material impurities, which are missing from the material definitions. This work examines these issues and it focuses on the detector choice and the calculation methodologies. The work investigated the YALINA Booster subcritical assembly of Belarus, which has been operated with three different fuel enrichments in the fast zone either: high (90%) and medium (36%), medium (36%), or low (21%) enriched uranium fuel.
Transmutation of uranium and thorium in the particle field of the Quinta sub-critical assembly
Hashemi-Nezhad, S. R.; Asquith, N. L.; Voronko, V. A.; Sotnikov, V. V.; Zhadan, Alina; Zhuk, I. V.; Potapenko, A.; Husak, Krystsina; Chilap, V.; Adam, J.; Baldin, A.; Berlev, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Kudashkin, I.; Mar'in, I.; Paraipan, M.; Pronskih, V.; Solnyshkin, A.; Tyutyunnikov, S.
2018-03-01
The fission rates of natural uranium and thorium were measured in the particle field of Quinta, a 512 kg natural uranium target-blanket sub-critical assembly. The Quinta assembly was irradiated with deuterons of energy 4 GeV from the Nuclotron accelerator of the Joint Institute for Nuclear Research (JINR), Dubna, Russia. Fission rates of uranium and thorium were measured using Gamma spectroscopy and fission track techniques. The production rate of 239Np was also measured. The obtained experimental results were compared with Monte Carlo predictions using the MCNPX 2.7 code employing the physics and fission-evaporation models of INCL4-ABLA, CEM03.03 and LAQGSM03.03. Some of the neutronic characteristics of the Quinta are compared with the "Energy plus Transmutation (EpT)" subcritical assembly, which is composed of a lead target and natU blanket. This comparison clearly demonstrates the importance of target material, neutron moderator and reflector types on the performance of a spallation neutron driven subcritical system. As the dimensions of the Quinta are very close to those of an optimal multi-rod-uranium target, the experimental and Monte Carlo calculation results presented in this paper provide insights on the particle field within a uranium target as well as in Accelerator Driven Systems in general.
Su, Y C; Huang, C P; Pan, Jill R; Lee, H C
2008-01-01
Recently, the membrane bioreactor (MBR) process has become one of the novel technologies to enhance the performance of biological treatment of wastewater. Membrane bioreactor process uses the membrane unit to replace a sediment tank, and this can greatly enhance treatment performance. However, membrane fouling in MBR restricts its widespread application because it leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary, which then increases operating and maintenance costs. This study investigated the sludge characteristics in membrane fouling under sub-critical flux operation and also assessed the effect of shear stress on membrane fouling. Membrane fouling was slow under sub-critical flux operation. However, as filamentous microbes became dominant in the reactor, membrane fouling increased dramatically due to the increased viscosity and polysaccharides. A close link was found between membrane fouling and the amount of polysaccharides in soluble EPS. The predominant resistance was the cake resistance which could be minimized by increasing the shear stress. However, the resistance of colloids and solutes was not apparently reduced by increasing shear stress. Therefore, smaller particles such as macromolecules (e.g. polysaccharides) may play an important role in membrane fouling under sub-critical flux operation.
Neutronics of a sub-critical system burning non-recycled LWR waste
International Nuclear Information System (INIS)
Wallenius, J.; Tucek, K.; Gudowski, W.; Sanders, C.
1999-01-01
We have investigated neutronic properties of a subcritical system designed for transmutation of non-recycled TRU discharges from commercial light water reactors. Burnable absorbers (BA) and depleted uranium in variable concentrations are introduced in order to maximize fission to absorption ratios, and to minimize power peaking as well as reactivity losses. The use of nitride fuel raises linear power ratings to 60-110 kW/m while keeping fuel center line temperatures below 1400 K after gap closure. A comparatively small power peaking of 1.5 at a subcriticality level of 0.97 allows for a total core power of 1200 MWth with a corresponding proton beam power of 20 MW at BOL. Core averaged fission to absorption ratios for Np and Am as high as 0.5 are achieved using 10 B enriched B 4 C as BA. Hence, both Pu and minor actinide inventories are reduced during burnup in the here proposed system, mitigating swelling problems arising due to high-activity in MA-based fuels. Disadvantages following BA introduction, such as increase of void coefficients and decrease of negative doppler feedback in conjunction with small values of β eff , are addressed by setting the BOL subcriticality level to 0.97. (author)
Plant Outage Time Savings Provided by Subcritical Physics Testing at Vogtle Unit 2
International Nuclear Information System (INIS)
Cupp, Philip; Heibel, M.D.
2006-01-01
The most recent core reload design verification physics testing done at Southern Nuclear Company's (SNC) Vogtle Unit 2, performed prior to initial power operations in operating cycle 12, was successfully completed while the reactor was at least 1% ΔK/K subcritical. The testing program used was the first application of the Subcritical Physics Testing (SPT) program developed by the Westinghouse Electric Company LLC. The SPT program centers on the application of the Westinghouse Subcritical Rod Worth Measurement (SRWM) methodology that was developed in cooperation with the Vogtle Reactor Engineering staff. The SRWM methodology received U. S. Nuclear Regulatory Commission (NRC) approval in August of 2005. The first application of the SPT program occurred at Vogtle Unit 2 in October of 2005. The results of the core design verification measurements obtained during the SPT program demonstrated excellent agreement with prediction, demonstrating that the predicted core characteristics were in excellent agreement with the actual operating characteristics of the core. This paper presents an overview of the SPT Program used at Vogtle Unit 2 during operating cycle 12, and a discussion of the critical path outage time savings the SPT program is capable of providing. (authors)
Subcritical thermal convection of liquid metals in a rapidly rotating sphere
Cardin, P.; Schaeffer, N.; Guervilly, C.; Kaplan, E.
2017-12-01
Planetary cores consist of liquid metals (low Prandtl number Pr) that convect as the core cools. Here we study nonlinear convection in a rotating (low Ekman number Ek) planetary core using a fully 3D direct (down to Ek=10-7) and a quasi geostrophic (down to Ek=10-10) numerical simulations. Near the critical thermal forcing (Rayleigh number Ra), convection onsets as thermal Rossby waves, but as Ra increases, this state is superceded by one dominated by advection. At moderate rotation, these states (here called the weak branch and strong branch, respectively) are continuously connected. As the planetary core rotates faster, the continuous transition is replaced by hysteresis cycles and subcriticality until the weak branch disappears entirely and the strong branch onsets in a turbulent state at Ekforcing decreases well below the linear onset of convection (Ra 0.4Racrit in this study for Ek=10-10 and Pr=0.01). We highlight the importance of the Reynolds stress, which is required for convection to persist below the linear onset. We further note the presence of a strong zonal flow that is nonetheless unimportant to the convective subcritical state. Our study suggests that, in the asymptotic regime of rapid rotation relevant for planetary interiors, thermal convection of liquid metals in a sphere onsets and shuts down through a subcritical bifurcation. This scenario may be relevant to explain the lunar and martian dynamo extinctions.
Magnaudet, Jacques; Tchoufag, Joel; Fabre, David
2015-11-01
Gravity/buoyancy-driven bodies moving in a slightly viscous fluid frequently follow fluttering or helical paths. Current models of such systems are largely empirical and fail to predict several of the key features of their evolution, especially close to the onset of path instability. Using a weakly nonlinear expansion of the full set of governing equations, we derive a new generic reduced-order model of this class of phenomena based on a pair of amplitude equations with exact coefficients that drive the evolution of the first pair of unstable modes. We show that the predictions of this model for the style (eg. fluttering or spiraling) and characteristics (eg. frequency and maximum inclination angle) of path oscillations compare well with various recent data for both solid disks and air bubbles.
Tchoufag, Joël; Fabre, David; Magnaudet, Jacques
2015-09-01
Gravity- or buoyancy-driven bodies moving in a slightly viscous fluid frequently follow fluttering or helical paths. Current models of such systems are largely empirical and fail to predict several of the key features of their evolution, especially close to the onset of path instability. Here, using a weakly nonlinear expansion of the full set of governing equations, we present a new generic reduced-order model based on a pair of amplitude equations with exact coefficients that drive the evolution of the first pair of unstable modes. We show that the predictions of this model for the style (e.g., fluttering or spiraling) and characteristics (e.g., frequency and maximum inclination angle) of path oscillations compare well with various recent data for both solid disks and air bubbles.
Wu, Jun; Yu, Zhijing; Wang, Tao; Zhuge, Jingchang; Ji, Yue; Xue, Bin
2017-06-01
Airplane wing deformation is an important element of aerodynamic characteristics, structure design, and fatigue analysis for aircraft manufacturing, as well as a main test content of certification regarding flutter for airplanes. This paper presents a novel real-time detection method for wing deformation and flight flutter detection by using three-dimensional speckle image correlation technology. Speckle patterns whose positions are determined through the vibration characteristic of the aircraft are coated on the wing; then the speckle patterns are imaged by CCD cameras which are mounted inside the aircraft cabin. In order to reduce the computation, a matching technique based on Geodetic Systems Incorporated coded points combined with the classical epipolar constraint is proposed, and a displacement vector map for the aircraft wing can be obtained through comparing the coordinates of speckle points before and after deformation. Finally, verification experiments containing static and dynamic tests by using an aircraft wing model demonstrate the accuracy and effectiveness of the proposed method.
Directory of Open Access Journals (Sweden)
Chonghui Shao
2016-01-01
Full Text Available The flutter and thermal buckling behavior of laminated composite panels embedded with shape memory alloy (SMA wires are studied in this research. The classical plate theory and nonlinear von-Karman strain-displacement relation are employed to investigate the aeroelastic behavior of the smart laminated panel. The thermodynamic behaviors of SMA wires are simulated based on one-dimensional Brinson SMA model. The aerodynamic pressure on the panel is described by the nonlinear piston theory. Nonlinear governing partial differential equations of motion are derived for the panel via the Hamilton principle. The effects of ply angle of the composite panel, SMA layer location and orientation, SMA wires temperature, volume fraction and prestrain on the buckling, flutter boundary, and amplitude of limit cycle oscillation of the panel are analyzed in detail.
Directory of Open Access Journals (Sweden)
Anthony Grosso
Full Text Available A recent trial unexpectedly reported that atrial fibrillation, when defined as serious, occurred more often in participants randomized to an annual infusion of the relatively new parenteral bisphosphonate, zoledronic acid, than among those given placebo, but had limited power. Two subsequent population-based case-control studies of patients receiving a more established oral bisphosphonate, alendronic acid, reported conflicting results, possibly due to uncontrolled confounding factors.We used the United Kingdom General Practice Research Database to assess the risk of atrial fibrillation and flutter in women exposed to the oral bisphosphonates, alendronic acid and risedronate sodium. The self-controlled case-series method was used to minimise the potential for confounding. The age-adjusted incidence rate ratio for atrial fibrillation or flutter in individuals during their exposure to these oral bisphosphonates (n = 2195 was 1.07 (95% CI 0.94-1.21. The age-adjusted incidence rate ratio for alendronic acid (n = 1489 and risedronate sodium (n = 649 exposed individuals were 1.09 (95% CI 0.93-1.26 and 0.99 (95% CI 0.78-1.26 respectively. In post-hoc analyses, an increased risk of incident atrial fibrillation or flutter was detected for patients during their first few months of alendronic acid therapy.We found no robust evidence of an overall long-term increased risk of atrial fibrillation or flutter associated with continued exposure to the oral bisphosphonates, alendronic acid and risedronate sodium. A possible signal for an increase in risk during the first few months of therapy with alendronic acid needs to be re-assessed in additional studies.
International Nuclear Information System (INIS)
Ma Aifeng; Jiang Xiaofeng; Zhang Shaohong
2007-01-01
A new methodology based on rigorous reactor physics theory astead of the point reactor assumption was proposed to determine or monitor the sub-criticality ora reactor, especially the sub-critical reactor of ADS, via the measurement of in-core flux spatial distribution. Preliminary numerical studies on the 1st ADS sub-critical experimental facilities-Venus No.1 in China have demonstrated the feasibility of this new method. Related discussions pointed out the potential applications of the method. (authors)
Energy Technology Data Exchange (ETDEWEB)
Bahaadini, Reza [Department of Mechanical Engineering, Sirjan University of Technology, 78137-33385 Sirjan, Islamic Republic of Iran (Iran, Islamic Republic of); Hosseini, Mohammad, E-mail: hosseini@sirjantech.ac.ir [Department of Mechanical Engineering, Sirjan University of Technology, 78137-33385 Sirjan, Islamic Republic of Iran (Iran, Islamic Republic of); Jamalpoor, Ali [Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of)
2017-03-15
On the basis of nonlocal elasticity theory, this paper studies the dynamic structural instability behavior of cantilever nanotubes conveying fluid incorporating end concentrated follower force and distributed tangential load, resting on the visco-Pasternak substrate. In order to improve the accuracy of the results, surface effects, i.e. surface elasticity and residual stresses are considered. Extended Hamilton’s principle is implemented to obtain the nonlocal governing partial differential equation and related boundary conditions. Then, the extended Galerkin technique is used to convert partial differential equations into a general set of ordinary differential equations. Numerical results are expressed to reveal the variations of the critical flow velocity for flutter phenomenon of cantilever nanotubes with the various values of nonlocal parameter, mass ratios, nanotubes thickness, surface effects, various parameters of the visco-Pasternak medium, constant follower force and distributed compressive tangential load. Some numerical results of this research illustrated that the values of critical flutter flow velocity and stable region increase by considering surface effects. Also, critical flutter flow velocity decreases towards zero by increasing the value of the distributed compressive tangential load and constant follower force.
Colera, Manuel; Pérez-Saborid, Miguel
2018-06-01
We have carried out a numerical study of the influence of the upstream Mach number on the flutter of a two-dimensional, cantilevered, flexible plate subject to a subsonic, inviscid, open flow. We have assumed a linear elastic model for the plate and that the fluid flow is governed by the linearized potential theory. The fluid equations are solved with a novel frequency-domain, finite differences method to obtain the generalized aerodynamic forces as a function of the plate displacements. Then, these generalized forces are coupled to the equation of motion of the plate and an eigenvalue analysis is performed to find the flutter point. The obtained results are in good agreement with those of related theoretical and experimental studies found in the literature. To the best of our knowledge, the analysis performed here is the first self-consistent, parametric study of the influence of the compressibility on the flutter point of a two-dimensional cantilevered plate in subsonic flow.
International Nuclear Information System (INIS)
Nezami, M; Gholami, B
2016-01-01
The active flutter control of supersonic sandwich panels with regular honeycomb interlayers under impact load excitation is studied using piezoelectric patches. A non-dominated sorting-based multi-objective evolutionary algorithm, called non-dominated sorting genetic algorithm II (NSGA-II) is suggested to find the optimal locations for different numbers of piezoelectric actuator/sensor pairs. Quasi-steady first order supersonic piston theory is employed to define aerodynamic loading and the p-method is applied to find the flutter bounds. Hamilton’s principle in conjunction with the generalized Fourier expansions and Galerkin method are used to develop the dynamical model of the structural systems in the state-space domain. The classical Runge–Kutta time integration algorithm is then used to calculate the open-loop aeroelastic response of the system. The maximum flutter velocity and minimum voltage applied to actuators are calculated according to the optimal locations of piezoelectric patches obtained using the NSGA-II and then the proportional feedback is used to actively suppress the closed loop system response. Finally the control effects, using the two different controllers, are compared. (paper)
International Nuclear Information System (INIS)
Moraes, Leonardo R.C.; Alves Filho, Hermes; Barros, Ricardo C.
2017-01-01
Accelerator Driven Systems (ADS) are sub-critical systems stabilized by stationary external sources of neutrons. A system is subcritical when the removal by absorption and leakage exceeds the production by fission and tends to shut down. On the other hand, any subcritical system can be stabilized by including time-independent external sources of neutrons. The goal of this work is to determine the intensity of uniform and isotropic sources of neutrons that must be added inside all fuel regions of a subcritical system so that it becomes stabilized, generating a prescribed distribution of electric power. A computer program has been developed in Java language to estimate the intensity of stationary sources of neutrons that must be included in the fuel regions to drive the subcritical system with a fixed power distribution prescribed by the user. The mathematical model used to achieve this goal was the energy multigroup, slab-geometry neutron transport equation in the discrete ordinates (S N ) formulation and the response matrix method was applied to solve the forward and the adjoint S N problems. Numerical results are given to verify the present. (author)
Energy Technology Data Exchange (ETDEWEB)
Moraes, Leonardo R.C.; Alves Filho, Hermes; Barros, Ricardo C., E-mail: lrcmoraes@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: ricardob@iprj.uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Programa de Pós-Graduação em Modelagem Computacional
2017-07-01
Accelerator Driven Systems (ADS) are sub-critical systems stabilized by stationary external sources of neutrons. A system is subcritical when the removal by absorption and leakage exceeds the production by fission and tends to shut down. On the other hand, any subcritical system can be stabilized by including time-independent external sources of neutrons. The goal of this work is to determine the intensity of uniform and isotropic sources of neutrons that must be added inside all fuel regions of a subcritical system so that it becomes stabilized, generating a prescribed distribution of electric power. A computer program has been developed in Java language to estimate the intensity of stationary sources of neutrons that must be included in the fuel regions to drive the subcritical system with a fixed power distribution prescribed by the user. The mathematical model used to achieve this goal was the energy multigroup, slab-geometry neutron transport equation in the discrete ordinates (S{sub N}) formulation and the response matrix method was applied to solve the forward and the adjoint S{sub N} problems. Numerical results are given to verify the present. (author)
Arkhipkin, D. A.; Buttsev, V. S.; Chigrinov, S. E.; Kutuev, R. Kh.; Polanski, A.; Rakhno, I. L.; Sissakian, A.; Zulkarneev, R. Ya.; Zulkarneeva, Yu. R.
2003-07-01
The paper deals with theoretical and experimental investigation of transmutation rates for a number of long-lived fission products and minor actinides, as well as with neutron spectra formed in a subcritical assembly driven with the following monodirectional beams: 660-MeV protons and 14-MeV neutrons. In this work, the main objective is the comparison of neutron spectra in the MOX assembly for different external driving sources: a 660-MeV proton accelerator and a 14-MeV neutron generator. The SAD project (JINR, Russia) has being discussed. In the context of this project, a subcritical assembly consisting of a cylindrical lead target surrounded by a cylindrical MOX fuel layer will be constructed. Present conceptual design of the subcritical assembly is based on the core with a nominal unit capacity of 15 kW (thermal). This corresponds to a multiplication coefficient, keff= 0.945, and an accelerator beam power of 0.5 kW. The results of theoretical investigations on the possibility of incinerating long-lived fission products and minor actinides in fast neutron spectrum and formation of neutron spectra with different hardness in subcritical systems based on the MOX subcritical assembly are discussed. Calculated neutron spectra emitted from a lead target irradiated by a 660-MeV protons are also presented.
Directory of Open Access Journals (Sweden)
Avramović Ivana
2007-01-01
Full Text Available The H5B is a concept of an accelerator-driven sub-critical research facility (ADSRF being developed over the last couple of years at the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. Using well-known computer codes, the MCNPX and MCNP, this paper deals with the results of a tar get study and neutron flux calculations in the sub-critical core. The neutron source is generated by an interaction of a proton or deuteron beam with the target placed inside the sub-critical core. The results of the total neutron flux density escaping the target and calculations of neutron yields for different target materials are also given here. Neutrons escaping the target volume with the group spectra (first step are used to specify a neutron source for further numerical simulations of the neutron flux density in the sub-critical core (second step. The results of the calculations of the neutron effective multiplication factor keff and neutron generation time L for the ADSRF model have also been presented. Neutron spectra calculations for an ADSRF with an uranium tar get (highest values of the neutron yield for the selected sub-critical core cells for both beams have also been presented in this paper.
International Nuclear Information System (INIS)
Mihalczo, J.T.; Valentine, T.E.
1995-01-01
The development of MCNP-DSP, which allows direct calculation of the measured time and frequency analysis parameters from subcritical measurements using the 252 Cf-source-driven noise analysis method, permits the validation of calculational methods for criticality safety with in-plant subcritical measurements. In addition, a method of obtaining the bias in the calculations, which is essential to the criticality safety specialist, is illustrated using the results of measurements with 17.771-cm-diam, enriched (93.15), unreflected, and unmoderated uranium metal cylinders. For these uranium metal cylinders the bias obtained using MCNP-DSP and ENDF/B-V cross-section data increased with subcriticality. For a critical experiment [height (h) = 12.629 cm], it was -0.0061 ± 0.0003. For a 10.16-cm-high cylinder (k ∼ 0.93), it was 0.0060 ± 0.0016, and for a subcritical cylinder (h = 8.13 cm, k ∼ 0.85), the bias was -0.0137 ± 0.0037, more than a factor of 2 larger in magnitude. This method allows the nuclear criticality safety specialist to establish the bias in calculational methods for criticality safety from in-plant subcritical measurements by the 252 Cf-source-driven noise analysis method
Heidbüchel, H; Willems, R; van Rensburg, H; Adams, J; Ector, H; Van de Werf, F
2000-05-09
Gaining anatomic information about the posterior isthmus is not generally part of flutter ablation procedures. We postulated that right atrial (RA) angiography could rationalize the ablation approach by revealing the conformation of the isthmus. In 100 consecutive patients, biplane RA angiography was performed before ablation to guide catheter contact with the isthmus along its length. Angiography showed a wide variation in the width of the isthmus (17 to 54 mm; 31.3+/-7.9), its angle with the inferior vena cava in the right anterior oblique projection (68 degrees to 114 degrees; 90.3+/-9.0 degrees ), and its lateral position relative to the inferior vena cava in the left anterior oblique projection. A deep sub-Eustachian recess was revealed in 47%, with a mean depth of 4.3+/-2.1 mm (1.5 to 9.4). A Eustachian valve was visualized in 24%. Ablation resulted in bidirectional conduction block (which could be transient) in all, with a median of 2 dragging radiofrequency (RF) applications (2.3+/-2.5 RF applications; 57 degrees C, deep pouches. The number of RF applications decreased statistically throughout the study, indicating a learning curve. No patient had a recurrence after a follow-up of 13+/-11 months. Right atrial angiography reveals a highly variable isthmus anatomy, often showing particular configurations that can make ablation more laborious. Rational adaptation of the ablation approach to these anatomic findings may contribute to successful ablation.
International Nuclear Information System (INIS)
Ahmad Fazelzadeh, S; Mohammad Jafari, S
2008-01-01
This paper presents an active optimal integral/feedforward control for a supersonic panel under gust disturbance effects with piezoelectric actuators. Classical laminate theory with induced strain actuation and a generalized form of Hamilton's principle are used to formulate the governing equations of motion. The total charge developed on the sensor layer is calculated from the direct piezoelectric equation. The piezoelectric sensor distributed output is also integrated, since the output voltage is dependent on the integrated strain rates over the sensor area. Aerodynamic modeling is accomplished by first-order piston theory with gust velocity effects. The model reduction is performed to the state space system of equations for the control design and the time domain simulation. Moreover, the disturbance dynamics are modeled through the addition to the equations of motion for various conditions. The optimal control problem is set up to minimize the panel deflection using a linear quadratic regulator (LQR). Using an integral control model as a part of the feedback loop, together with a feedforward of the disturbances, greatly enhances the transient response, and the steady state error characteristics of this system are observed. Also, parametric studies for three piezoelectric actuator configurations are demonstrated. Simulation results show that the controller model is effective for flutter suppression and gust alleviation for various piezo configurations
LPV Modeling and Control for Active Flutter Suppression of a Smart Airfoil
Al-Hajjar, Ali M. H.; Al-Jiboory, Ali Khudhair; Swei, Sean Shan-Min; Zhu, Guoming
2018-01-01
In this paper, a novel technique of linear parameter varying (LPV) modeling and control of a smart airfoil for active flutter suppression is proposed, where the smart airfoil has a groove along its chord and contains a moving mass that is used to control the airfoil pitching and plunging motions. The new LPV modeling technique is proposed that uses mass position as a scheduling parameter to describe the physical constraint of the moving mass, in addition the hard constraint at the boundaries is realized by proper selection of the parameter varying function. Therefore, the position of the moving mass and the free stream airspeed are considered the scheduling parameters in the study. A state-feedback based LPV gain-scheduling controller with guaranteed H infinity performance is presented by utilizing the dynamics of the moving mass as scheduling parameter at a given airspeed. The numerical simulations demonstrate the effectiveness of the proposed LPV control architecture by significantly improving the performance while reducing the control effort.
New Look at Nonlinear Aerodynamics in Analysis of Hypersonic Panel Flutter
Directory of Open Access Journals (Sweden)
Dan Xie
2017-01-01
Full Text Available A simply supported plate fluttering in hypersonic flow is investigated considering both the airflow and structural nonlinearities. Third-order piston theory is used for nonlinear aerodynamic loading, and von Karman plate theory is used for modeling the nonlinear strain-displacement relation. The Galerkin method is applied to project the partial differential governing equations (PDEs into a set of ordinary differential equations (ODEs in time, which is then solved by numerical integration method. In observation of limit cycle oscillations (LCO and evolution of dynamic behaviors, nonlinear aerodynamic loading produces a smaller positive deflection peak and more complex bifurcation diagrams compared with linear aerodynamics. Moreover, a LCO obtained with the linear aerodynamics is mostly a nonsimple harmonic motion but when the aerodynamic nonlinearity is considered more complex motions are obtained, which is important in the evaluation of fatigue life. The parameters of Mach number, dynamic pressure, and in-plane thermal stresses all affect the aerodynamic nonlinearity. For a specific Mach number, there is a critical dynamic pressure beyond which the aerodynamic nonlinearity has to be considered. For a higher temperature, a lower critical dynamic pressure is required. Each nonlinear aerodynamic term in the full third-order piston theory is evaluated, based on which the nonlinear aerodynamic formulation has been simplified.
Evaluation of diffuse-illumination holographic cinematography in a flutter cascade
Decker, A. J.
1986-01-01
Since 1979, the Lewis Research Center has examined holographic cinematography for three-dimensional flow visualization. The Nd:YAG lasers used were Q-switched, double-pulsed, and frequency-doubled, operating at 20 pulses per second. The primary subjects for flow visualization were the shock waves produced in two flutter cascades. Flow visualization was by diffuse-illumination, double-exposure, and holographic interferometry. The performances of the lasers, holography, and diffuse-illumination interferometry are evaluated in single-window wind tunnels. The fringe-contrast factor is used to evaluate the results. The effects of turbulence on shock-wave visualization in a transonic flow are discussed. The depth of field for visualization of a turbulent structure is demonstrated to be a measure of the relative density and scale of that structure. Other items discussed are the holographic emulsion, tests of coherence and polarization, effects of windows and diffusers, hologram bleaching, laser configurations, influence and handling of specular reflections, modes of fringe localization, noise sources, and coherence requirements as a function of the pulse energy. Holography and diffuse illumination interferometry are also reviewed.
International Nuclear Information System (INIS)
Rodriguez, David; Merwin, Augustus; Karmiol, Zachary; Chidambaram, Dev
2017-01-01
Highlights: • Mixtures of oxides containing Ni, Fe, Cr and Nb formed on the surface. • Short term exposure tests observed breakdown of native film. • Formation of a Fe rich oxide layer on Inconel 718 prevents mass loss. - Abstract: Corrosion behavior of Inconel 625 and 718 in subcritical, supercritical and ultrasupercritical water was studied as a function of temperature and time. The change in the chemistry of the as-received surface film on Inconel 625 and 718 after exposure to subcritical water at 325 °C and supercritical water at 425 °C and 527.5 °C for 2 h was studied. After exposure to 325 °C subcritical water, the CrO_4"2"− based film formed; however minor quantities of NiFe_xCr_2_-_xO_4 spinel compounds were observed. The oxide film formed on both alloys when exposed to supercritical water at 425 °C consisted of NiFe_xCr_2_-_xO_4 spinel. The surface films on both alloys were identified as NiFe_2O_4 when exposed to supercritical water at 527.5 °C. To characterize the fully developed oxide layer, studies were conducted at test solution temperatures of 527.5 and 600 °C. Samples were exposed to these temperatures for 24, 96, and 200 h. Surface chemistry was analyzed using X-ray diffraction, as well as Raman and X-ray photoelectron spectroscopies. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. The differences in corrosion behavior of the two alloys are attributed to the lower content of chromium and increased iron content of Inconel 718 as compared to Inconel 625.
Rodriguez, David; Merwin, Augustus; Karmiol, Zachary; Chidambaram, Dev
2017-05-01
Corrosion behavior of Inconel 625 and 718 in subcritical, supercritical and ultrasupercritical water was studied as a function of temperature and time. The change in the chemistry of the as-received surface film on Inconel 625 and 718 after exposure to subcritical water at 325 °C and supercritical water at 425 °C and 527.5 °C for 2 h was studied. After exposure to 325 °C subcritical water, the CrO42- based film formed; however minor quantities of NiFexCr2-xO4 spinel compounds were observed. The oxide film formed on both alloys when exposed to supercritical water at 425 °C consisted of NiFexCr2-xO4 spinel. The surface films on both alloys were identified as NiFe2O4 when exposed to supercritical water at 527.5 °C. To characterize the fully developed oxide layer, studies were conducted at test solution temperatures of 527.5 and 600 °C. Samples were exposed to these temperatures for 24, 96, and 200 h. Surface chemistry was analyzed using X-ray diffraction, as well as Raman and X-ray photoelectron spectroscopies. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. The differences in corrosion behavior of the two alloys are attributed to the lower content of chromium and increased iron content of Inconel 718 as compared to Inconel 625.
Internal hydrogen-induced subcritical crack growth in austenitic stainless steels
Huang, J. H.; Altstetter, C. J.
1991-11-01
The effects of small amounts of dissolved hydrogen on crack propagation were determined for two austenitic stainless steel alloys, AISI 301 and 310S. In order to have a uniform distribution of hydrogen in the alloys, they were cathodically charged at high temperature in a molten salt electrolyte. Sustained load tests were performed on fatigue precracked specimens in air at 0 ‡C, 25 ‡C, and 50 ‡C with hydrogen contents up to 41 wt ppm. The electrical potential drop method with optical calibration was used to continuously monitor the crack position. Log crack velocity vs stress intensity curves had definite thresholds for subcritical crack growth (SCG), but stage II was not always clearly delineated. In the unstable austenitic steel, AISI 301, the threshold stress intensity decreased with increasing hydrogen content or increasing temperature, but beyond about 10 wt ppm, it became insensitive to hydrogen concentration. At higher concentrations, stage II became less distinct. In the stable stainless steel, subcritical crack growth was observed only for a specimen containing 41 wt ppm hydrogen. Fractographic features were correlated with stress intensity, hydrogen content, and temperature. The fracture mode changed with temperature and hydrogen content. For unstable austenitic steel, low temperature and high hydrogen content favored intergranular fracture while microvoid coalescence dominated at a low hydrogen content. The interpretation of these phenomena is based on the tendency for stress-induced phase transformation, the different hydrogen diffusivity and solubility in ferrite and austenite, and outgassing from the crack tip. After comparing the embrittlement due to internal hydrogen with that in external hydrogen, it is concluded that the critical hydrogen distribution for the onset of subcritical crack growth is reached at a location that is very near the crack tip.
Synthesis of biodiesel from soybean oil by coupling catalysis with subcritical methanol
International Nuclear Information System (INIS)
Yin Jianzhong; Xiao Min; Wang Aiqin; Xiu Zhilong
2008-01-01
Biodiesel synthesis from soybean oil and methanol was investigated under supercritical and subcritical conditions. Under the supercritical conditions, the maximum methyl ester yield exceeded 98% when the molar ratio of methanol to oil was 42:1 and the reaction temperature ranged from 260 deg. C to 350 deg. C. In order to decrease the operational temperature and pressures and to increase the conversion efficiency of methanol, first co-solvent was added to the reaction mixture to improve the reaction process, and then a novel idea was presented in which catalysis and supercritical effect were coupled together. Thus, with 2.5 wt% hexane, temperature of 300 deg. C, methanol to oil ratio of 42, a 85.5% conversion is observed in 30 min, while a 62.2% conversion is observed without hexane in the same condition; with less carbon dioxide, temperature of 300 deg. C, methanol to oil ratio of 42, a 91.6% conversion is observed in 20 min, while a 51.4% conversion is observed without carbon dioxide in the same condition; With only a little amount of potassium hydroxide as the catalyst (KOH/oil = 0.1 wt%), a 98% yield of methyl esters was obtained in 10 min at a reaction temperature of 160 deg. C and the molar ratio (methanol/oil) of 24:1. In contrast, above 1 wt% of catalyst is required in the conventional alkali-catalyzed method; while only 6% yield of methyl ester was obtained at 260 deg. C (corresponding to subcritical conditions) without the catalyst. This result demonstrated that by coupling the catalysis and subcritical operation, the amount of catalyst could be largely reduced and the methanol utilization could be significantly enhanced. Thus, the present method offers some advantages over both the conventional alkali-catalyst method and the expensive supercritical method
Energy Technology Data Exchange (ETDEWEB)
Rodriguez, David; Merwin, Augustus; Karmiol, Zachary; Chidambaram, Dev, E-mail: dcc@unr.edu
2017-05-15
Highlights: • Mixtures of oxides containing Ni, Fe, Cr and Nb formed on the surface. • Short term exposure tests observed breakdown of native film. • Formation of a Fe rich oxide layer on Inconel 718 prevents mass loss. - Abstract: Corrosion behavior of Inconel 625 and 718 in subcritical, supercritical and ultrasupercritical water was studied as a function of temperature and time. The change in the chemistry of the as-received surface film on Inconel 625 and 718 after exposure to subcritical water at 325 °C and supercritical water at 425 °C and 527.5 °C for 2 h was studied. After exposure to 325 °C subcritical water, the CrO{sub 4}{sup 2−} based film formed; however minor quantities of NiFe{sub x}Cr{sub 2-x}O{sub 4} spinel compounds were observed. The oxide film formed on both alloys when exposed to supercritical water at 425 °C consisted of NiFe{sub x}Cr{sub 2-x}O{sub 4} spinel. The surface films on both alloys were identified as NiFe{sub 2}O{sub 4} when exposed to supercritical water at 527.5 °C. To characterize the fully developed oxide layer, studies were conducted at test solution temperatures of 527.5 and 600 °C. Samples were exposed to these temperatures for 24, 96, and 200 h. Surface chemistry was analyzed using X-ray diffraction, as well as Raman and X-ray photoelectron spectroscopies. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. The differences in corrosion behavior of the two alloys are attributed to the lower content of chromium and increased iron content of Inconel 718 as compared to Inconel 625.
International Nuclear Information System (INIS)
Miyoshi, Y.; Suzaki, T.; Kobayashi, I.
1984-01-01
From the view point of nuclear criticality safety for fuel storage, transport and processing, a series of critical experiments have been performed using a Tank-type Critical Assembly (TCA) at the Japan Atomic Energy Research Institute. The first series of experiments are concerned with the neutron interaction effects between two cores composed of BWR-type fuel rods in water. The reactivity contribution from one core to another have been measured by the water level worth method and a pulsed neutron source method. Two symmetrical rectangular cores were composed in TCA and the water gap between two cores were parametrically changed. The volume ratios of water to fuel are 1.83 and 2.48 of which lattice pitches are 1.96 cm and 2.15 cm respectively. As for the pulsed neutron experiment, Gozani's area ratio method is theoretically extended to a coupled-core system, and the applicability of this method has been studied for determination of the reactivity at a subcritical state and the coupling coefficient that represents reactivity contribution from one core to another. The object of the second series of experiment is development of the technique which determine the reactivity at a high sub-critical state. The CF-252 source driven neutron noise analysis method proposed by Mihalczo has been tested in order to examine whether it could be available for measuring the subcriticality for the light water moderated system. The tested core was water reflected annular type which consisted of 308 UO 2 fuel rods and had a void region at the core center
Catalytic subcritical water liquefaction of flax straw for high yield of furfural
International Nuclear Information System (INIS)
Harry, Inibehe; Ibrahim, Hussameldin; Thring, Ron; Idem, Raphael
2014-01-01
There is substantial interest in the application of biomass as a renewable fuel or for production of chemicals. Flax straw can be converted into valuable chemicals and biofuels via liquefaction in sub-critical water. In this study, the yield of furfural and the kinetics of flax straw liquefaction under sub-critical water conditions were investigated using a high-pressure autoclave reactor. The liquefaction was conducted in the temperature range of 175–325 °C, pressure of 0.1 MPa–8 MPa, retention time in the range of 0 min–120 min, and flax straw mass fraction (w F ) of 5–20 %. Also, the effect of acid catalysts on furfural yield was studied. The kinetic parameters of flax straw liquefaction were determined using nonlinear regression of the experimental data, assuming second-order kinetics. The apparent activation energy was found to be 27.97 kJ mol −1 while the reaction order was 2.0. The optimum condition for furfural yield was at 250 °C, 6.0 MPa, w F of 5% and 0 retention time after reaching set conditions. An acid catalyst was found to selectively favour furfural yield with 40% flax straw conversion. - Highlights: • Flax straw liquefaction in subcritical water. • Creation of a reaction pathway that can be used to optimized furfural production. • Acid catalyst selectively favoured furfural yield with respect to other liquid products. • At the highest process temperature of 325 °C, a carbon conversion of 40% was achieved. • Activation energy and reaction order was 28 kJ/mol and 2.0 respectively
Measurement of multiple α-modes at the Delphi subcritical assembly by neutron noise techniques
International Nuclear Information System (INIS)
Szieberth, Máté; Klujber, Gergely; Kloosterman, Jan Leen; Haas, Dick de
2015-01-01
Highlights: • Neutron noise measurements were performed at the Delphi subcritical assembly. • Bias in the fitted prompt decay constant was observed due to higher modes. • Spatial dependence of the higher mode was surveyed. • Effect of two different source distributions was investigated. • An estimation of the prompt decay constant is given for the Delphi. - Abstract: The paper presents the results and evaluations of a comprehensive set of neutron noise measurements on the Delphi subcritical assembly of the Delft University of Technology. The measurements investigated the effect of different source distributions (inherent spontaneous fission and 252 Cf) and the position of the detectors applied (both radially and vertically). The evaluation of the measured data has been performed by the variance-to-mean (VTM, Feynman-α), the autocorrelation (ACF, Rossi-α) and the cross-correlation (CCF) methods. The values obtained for the prompt decay constant show a strong bias, which depends both on the detector position and on the source distribution. This is due to the presence of higher modes in the system. It has been observed that the α value fitted is higher when the detector is close to the boundary of the core or to the 252 Cf point-source. The higher alpha-modes have also been observed by fitting functions describing two alpha-modes. The successful set of measurements also provides a good basis for further theoretical investigations including the Monte Carlo simulation of the noise measurements and the calculation of the alpha-modes in the Delphi subcritical assembly
Critical and sub-critical experiments on U-BeO lattices
International Nuclear Information System (INIS)
Benoist, P.; Gourdon, Ch.; Martelly, J.; Sagot, M.; Wanner, G.
1958-01-01
Sub-critical experiments have allowed us to measure the material buckling of uranium natural oxide of beryllium lattices with a grid of 15 cm, and made up of uranium bars measuring 2.60 - 2.92 - 3.56 and 4.40 cm of diameter. A critical experiment has then been conducted with hollow 1.35 per cent enriched uranium bars. A study of U-BeO 18.03 cm grid lattices is at present being conducted. (author) [fr
Subcritical experiments at the FREYA experiment; Experimentos subcriticos en el proyecto FREYA
Energy Technology Data Exchange (ETDEWEB)
Becares Palacios, V.; Villamarin fernandez, D.
2013-07-01
The FREYA Project of the 7th Framework Program is aimed to the study of the kinetics of subcritical reactors coupled to an external neutron source, and, more specifically, to the validation of reactivity monitoring techniques. CIEMAT activities within the frame of this project have consisted in analyzing the possible ways of correcting the spatial and energy effects on these reactivity monitoring techniques, as well as analyzing the effects that may have on them the presence of different materials in the reflector and the position of the neutron source.
Decay constants of subcritical system by diffusion theory for two groups
International Nuclear Information System (INIS)
Moura Neto, C. de.
1977-01-01
The effects of a neutronic pulse applied to a subcritical multiplicative medium are analysed on the basis of the diffusion theory for one and two groups. The decay constants of the system for various values of geometric buckling were determined from the experimental data. A natural uranium-light water lattice was pulsed employing a Texas Nuclear 9905 neutron generator. The least square method was employed in the data reduction procedures to determine the decay constants. The separation of the decay constants associated with thermal and epithermal fluxes is attempted through two groups formulation. (author)
International Nuclear Information System (INIS)
Voi, Dante L.; Furieri, Rosane C.A.A.; Renke, Carlos A.C.; Bastos, Wilma S.; Ferreira, Francisco J.O.
1997-01-01
Initial measurements were performed on the exponential and subcritical facility installed on the internal thermal column of the Argonauta reactor at IEN-CNEN-Rio de Janeiro, Brazil. The measurements are include in the reactor physics experimental program for integral parameters determination, for both valid and confirmed theoretical models for reactor calculation. Gamma doses and neutron fluxes were measured with telescopic, proportional counters, wire and foil detectors. Experimental data were compared with results obtained by application of CITATION code. (author). 4 refs., 8 figs
Decay constants of a subcritical system by two-group diffusion theory
International Nuclear Information System (INIS)
Moura Neto, C. de.
1979-08-01
The effects of a neutronic pulse applied to a subcritical multiplicative medium are analyzed on the basis of the diffusion theory for one and two groups. The decay constants of the system were determined from the experimental data, for various values geometric buckling. A natural uranium light-water configuration was pulsed employing a Texas Nuclear 9905 neutron generator. The least square method was employed in the data reduction procedures to determine the decay constants. The separation of the decay constants associated with thermal and epithermal fluxes are verified through two groups formulation. (Author) [pt
Estimation of subcriticality of TCA using 'indirect estimation method for calculation error'
International Nuclear Information System (INIS)
Naito, Yoshitaka; Yamamoto, Toshihiro; Arakawa, Takuya; Sakurai, Kiyoshi
1996-01-01
To estimate the subcriticality of neutron multiplication factor in a fissile system, 'Indirect Estimation Method for Calculation Error' is proposed. This method obtains the calculational error of neutron multiplication factor by correlating measured values with the corresponding calculated ones. This method was applied to the source multiplication and to the pulse neutron experiments conducted at TCA, and the calculation error of MCNP 4A was estimated. In the source multiplication method, the deviation of measured neutron count rate distributions from the calculated ones estimates the accuracy of calculated k eff . In the pulse neutron method, the calculation errors of prompt neutron decay constants give the accuracy of the calculated k eff . (author)
Subcritical neutron generator-test facility for nuclear waste transmutation studies
Energy Technology Data Exchange (ETDEWEB)
Chuvilo, I.V.; Kolomiets, A.A.; Kozodaev, A.M. [ITEP, Moscow (Russian Federation)] [and others
1995-10-01
The development of the optimal design of high power facility for NPP transmutation and for a number of applications can not be carried out without preliminary tests of much cheaper prototypes. It has been proposed to combine in new test facility 36 MeV Linac ISTRA constructed in ITEP, original Be target and subcritical blanket that will be mounted on the place of partly disassembled heavy water ITEP experimental reactor. The basic parameters of Linac, schemes of the target and blanket are described. It will provide the direct experiments on installation which can be considered as prototype for future linac driven high power facilities.
International Nuclear Information System (INIS)
1983-01-01
This standard provides safety guidance for conducting subcritical neutron-multiplication measurements where physical protection of personnel against the consequences of a criticality accident is not provided. The objectives of in-situ measurements are either to confirm an adequate safety margin or to improve an estimate of such a margin. The first objective may constitute a test of the criticality safety of a design that is based on calculations. The second may effect improved operating conditions by reducing the uncertainty of safety margins and providing guidance to new designs
Neutron pulse propagation in natural UO sub(2) subcritical assembly moderated by heavy water
International Nuclear Information System (INIS)
Prado Souza, R.M.G. do.
1976-01-01
Short neutron bursts are fed to the graphite base of CAPITU, a D sub(2)O - natural uranium subcritical assembly. Due to the dispersive properties of the media the wave -components of the neutron pulses are attenuated and phase shifted along the axial direction. The experimental impulse response is Fourier transformed to yield the system's dispersion law, a relationship connecting the neutron diffusion parameters and the inverse complex relaxation length K (ω). The experimental results for five assemblies studied in CAPITU are compared with the theoretical dispersion law obtained from the two group diffusion theory. (author)
Sensitivity analysis of source driven subcritical systems by the HGPT methodology
International Nuclear Information System (INIS)
Gandini, A.
1997-01-01
The heuristically based generalized perturbation theory (HGPT) methodology has been extensively used in the last decades for analysis studies in the nuclear reactor field. Its use leads to fundamental reciprocity relationships from which perturbation, or sensitivity expressions can be derived, to first and higher order, in terms of simple integration operation of quantities calculated at unperturbed system conditions. Its application to subcritical, source-driven systems, now considered with increasing interest in many laboratories for their potential use as nuclear waste burners and/or safer energy producers, is here commented, with particular emphasis to problems implying an intensive system control variable. (author)
Directory of Open Access Journals (Sweden)
D. Lachos-Perez
2017-06-01
Full Text Available This review summarizes the recent essential aspects of subcritical and supercritical water technology applied tothe extraction, hydrolysis, carbonization, and gasification processes. These are clean and fast technologies which do not need pretreatment, require less reaction time, generate less corrosion and residues, do not usetoxic solvents, and reduce the synthesis of degradation byproducts. The equipment design, process parameters, and types of biomass used for subcritical and supercritical water process are presented. The benefits of catalysis to improve process efficiency are addressed. Bioactive compounds, reducing sugars, hydrogen, biodiesel, and hydrothermal char are the final products of subcritical and supercritical water processes. The present review also revisits advances of the research trends in the development of subcriticaland supercritical water process technologies.
International Nuclear Information System (INIS)
Guppy, C.B.
1964-11-01
In this report the frequency response characteristics for phase and gain of the fundamental reactor mode of the zero power kinetics are given for various subcritical reactivities in a fast reactor and in a thermal reactor. Results, of a study on harmonic effects based on a small zero energy thermal reactor are presented which demonstrate the importance of spatial harmonic effects. A harmonic theory for thermal reactors is developed. A new method of measuring, subcritical reactivity at moderately high frequencies is suggested which circumvents the harmonic problem. It is shown that at high frequencies there is more sensitivity than at low frequencies and that this could lead to an increased range over which subcritical reactivity can be measured. (author)
International Nuclear Information System (INIS)
Yamauchi, Hideto; Kitamura, Yasunori; Yamane, Yoshihiro; Misawa, Tsuyoshi; Unesaki, Hironobu
2003-01-01
Two types of the variance-to-mean methods for the subcritical system that was driven by the periodic and pulsed neutron source were developed and their experimental examination was performed with the Kyoto University Critical Assembly and a pulsed neutron generator. As a result, it was demonstrated that the prompt neutron decay constant could be measured by these methods. From this fact, it was concluded that the present variance-to-mean methods had potential for being used in the subcriticality monitor for the future accelerator driven system operated with the pulse-mode. (author)
International Nuclear Information System (INIS)
Castaneda Donate, S.; Quintero, B.; Santos, J.
1992-01-01
A detailed calculation of the core is necessary to analyze the influence of the neutron source on the neutron flux in the subcritical assembly of the Higher Institute Nuclear Science and Technology. A new calculation methodology for the neutronic characteristics of the subcritical assembly is presented, based on the calculation tools available nowadays in our department (WIMS, SNAP, etc). The main results are: Neutron-physical constants of the reactor cells; absolute neutron flux distribution and an estimation of the adequate regions for detector location based on higher armonic terms influence
Disintegration of the agricultural by-product wheat bran under subcritical conditions.
Reisinger, Michael; Tirpanalan, Özge; Pruksasri, Suwattana; Kneifel, Wolfgang; Novalin, Senad
2018-02-10
The disintegration of destarched wheat bran in water and sulfuric acid (pH 3) under subcritical conditions (275-300 °C) and at short reaction times (1-4 min) was investigated. A cascade process comprising a stepwise separation of the liquid was applied to reduce the formation of undesired degradation products. The highest degree of biomass disintegration (67% dry mass solubilization) was achieved by application of a cascade process at 275 °C (pH 3). Regarding the dissolution of carbohydrates (monomeric and oligomeric form), the total glucose yields remained below 60%, while the total xylose and arabinose yields were about 76% and 67%. Approximately 74% of the protein and 95% of the mineral fraction could be extracted. The application of the cascade process enabled a substantially reduced formation of degradation products. When operating hydrothermally and subcritically in order to avoid some problematic aspects of a biorefinery, an extensive disintegration and monomerization of wheat bran and its constituents remains difficult even under the tested conditions (300 °C, pH 3). However, the applied cascade process proved to be useful to increase the yields and to substantially reduce the formation of undesired degradation products. Despite this fact, increased water consumption has to be conceded. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui
2014-02-01
Active cooling with endothermic hydrocarbon fuel is proved to be one of the most promising approaches to solve the thermal problem for hypersonic aircraft such as scramjet. The flow patterns of two-phase flow inside the cooling channels have a great influence on the heat transfer characteristics. In this study, phase transition processes of RP-3 kerosene flowing inside a square quartz-glass tube were experimentally investigated. Three distinct phase transition phenomena (liquid-gas two phase flow under sub-critical pressures, critical opalescence under critical pressure, and corrugation under supercritical pressures) were identified. The conventional flow patterns of liquid-gas two phase flow, namely bubble flow, slug flow, churn flow and annular flow are observed under sub-critical pressures. Dense bubble flow and dispersed flow are recognized when pressure is increased towards the critical pressure whilst slug flow, churn flow and annular flow disappear. Under critical pressure, the opalescence phenomenon is observed. Under supercritical pressures, no conventional phase transition characteristics, such as bubbles are observed. But some kind of corrugation appears when RP-3 transfers from liquid to supercritical. The refraction index variation caused by sharp density gradient near the critical temperature is thought to be responsible for this corrugation.
High order statistical signatures from source-driven measurements of subcritical fissile systems
International Nuclear Information System (INIS)
Mattingly, J.K.
1998-01-01
This research focuses on the development and application of high order statistical analyses applied to measurements performed with subcritical fissile systems driven by an introduced neutron source. The signatures presented are derived from counting statistics of the introduced source and radiation detectors that observe the response of the fissile system. It is demonstrated that successively higher order counting statistics possess progressively higher sensitivity to reactivity. Consequently, these signatures are more sensitive to changes in the composition, fissile mass, and configuration of the fissile assembly. Furthermore, it is shown that these techniques are capable of distinguishing the response of the fissile system to the introduced source from its response to any internal or inherent sources. This ability combined with the enhanced sensitivity of higher order signatures indicates that these techniques will be of significant utility in a variety of applications. Potential applications include enhanced radiation signature identification of weapons components for nuclear disarmament and safeguards applications and augmented nondestructive analysis of spent nuclear fuel. In general, these techniques expand present capabilities in the analysis of subcritical measurements
An MCNP parametric study of George C. Laurence's subcritical pile experiment
Energy Technology Data Exchange (ETDEWEB)
Dranga, R.; Blomeley, L., E-mail: ruxandra.dranga@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Carrington, R. [McGill Univ., Dept. of Mathematics and Statistics, Montreal, Quebec (Canada)
2014-12-01
In the early 1940s at the National Research Council (NRC) Laboratories in Ottawa, Canada, Dr. George Laurence conducted several experiments to determine if a sustained nuclear fission chain reaction in a carbon-uranium arrangement (or 'pile') was possible. Although Dr. Laurence did not achieve criticality, these pioneering experiments marked a significant historical event in nuclear science, and they provided a valuable reference for subsequent experiments that led to the design of Canada's first heavy-water reactors at the Chalk River Nuclear Laboratories. This paper summarizes the results of a recent collaborative project between Atomic Energy of Canada Limited and the Deep River Science Academy undertaken to numerically explore the experiments carried out at the NRC Laboratories by Dr. Laurence, while teaching high school students about nuclear science and technology. In this study, a modern Monte Carlo reactor physics code, MCNP6, was utilized to identify and study the key parameters impacting the subcritical pile's neutron multiplication factor (e.g., moderation, geometry, material impurities) and quantify their effect on the extent of subcriticality. The findings presented constitute the first endeavour to model, using a current computational reactor physics tool, the seminal experiment that provided the foundation of Canada's nuclear science and technology program. (author)
Beam transient analyses of Accelerator Driven Subcritical Reactors based on neutron transport method
Energy Technology Data Exchange (ETDEWEB)
He, Mingtao; Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, Beijing 100082 (China); Li, Xunzhao; Zhou, Shengcheng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China)
2015-12-15
Highlights: • A transport-based kinetics code for Accelerator Driven Subcritical Reactors is developed. • The performance of different kinetics methods adapted to the ADSR is investigated. • The impacts of neutronic parameters deteriorating with fuel depletion are investigated. - Abstract: The Accelerator Driven Subcritical Reactor (ADSR) is almost external source dominated since there is no additional reactivity control mechanism in most designs. This paper focuses on beam-induced transients with an in-house developed dynamic analysis code. The performance of different kinetics methods adapted to the ADSR is investigated, including the point kinetics approximation and space–time kinetics methods. Then, the transient responds of beam trip and beam overpower are calculated and analyzed for an ADSR design dedicated for minor actinides transmutation. The impacts of some safety-related neutronics parameters deteriorating with fuel depletion are also investigated. The results show that the power distribution varying with burnup leads to large differences in temperature responds during transients, while the impacts of kinetic parameters and feedback coefficients are not very obvious. Classification: Core physic.
Subcritical saturation of the magnetorotational instability through mean magnetic field generation
Xie, Jin-Han; Julien, Keith; Knobloch, Edgar
2018-03-01
The magnetorotational instability is widely believed to be responsible for outward angular momentum transport in astrophysical accretion discs. The efficiency of this transport depends on the amplitude of this instability in the saturated state. We employ an asymptotic expansion based on an explicit, astrophysically motivated time-scale separation between the orbital period, Alfvén crossing time and viscous or resistive dissipation time-scales, originally proposed by Knobloch and Julien, to formulate a semi-analytical description of the saturated state in an incompressible disc. In our approach a Keplerian shear flow is maintained by the central mass but the instability saturates via the generation of a mean vertical magnetic field. The theory assumes that the time-averaged angular momentum flux and the radial magnetic flux are constant and determines both self-consistently. The results predict that, depending on parameters, steady saturation may be supercritical or subcritical, and in the latter case that the upper (lower) solution branch is always stable (unstable). The angular momentum flux is always outward, consistent with the presence of accretion, and for fixed wavenumber peaks in the subcritical regime. The limit of infinite Reynolds number at large but finite magnetic Reynolds number is also discussed.
International Nuclear Information System (INIS)
Go, Alchris Woo; Sutanto, Sylviana; NguyenThi, Bich Thuyen; Cabatingan, Luis K.; Ismadji, Suryadi; Ju, Yi-Hsu
2014-01-01
Highlights: • (trans)Esterification of oils under subcritical conditions. • Acetic acid as catalyst and co-solvent in biodiesel production. • Influence of reactor hydrodynamic (loading and stirring) on FAME yield. • High methyl ester yield can be obtained at less severe reaction conditions. - Abstract: Soybean oil (56–80 g) was reacted with methanol (40–106 mL) to produce fatty acid methyl ester in the presence of 1–6% acetic acid under subcritical condition at 250 °C. Stirring and loading of the reaction system affected the yield and severity of the process. The presence of acetic acid improved the yield of FAME from 32.1% to 89.5% at a methanol to oil molar ratio of 20 mL/g. Acetic acid was found to act strongly as an acid catalyst and to some extent improved the solubility between oil and methanol. Reaction pressure higher than the supercritical pressure of methanol (7.85 MPa) was not required to achieve high FAME yield (89.5–94.8%) in short time (30–60 min)
International Nuclear Information System (INIS)
Talamo, Alberto; Gohar, Y.; Rabiti, C.; Aliberti, G.; Kondev, F.; Smith, D.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Serafimovich, I.
2009-01-01
One of the most reliable experimental methods for measuring the subcriticality level of a nuclear fuel assembly is the Sjoestrand method applied to the reaction rate generated from a pulsed neutron source. This study developed a new analytical methodology simulating the Sjoestrand method, which allows comparing the experimental and analytical reaction rates and the obtained subcriticality levels. In this methodology, the reaction rate is calculated due to a single neutron pulse using MCNP/MCNPX computer code or any other neutron transport code that explicitly simulates the delayed fission neutrons. The calculation simulates a single neutron pulse over a long time period until the delayed neutron contribution to the reaction rate is vanished. The obtained reaction rate is then superimposed to itself, with respect to the time, to simulate the repeated pulse operation until the asymptotic level of the reaction rate, set by the delayed neutrons, is achieved. The superimposition of the pulse to itself was calculated by a simple C computer program. A parallel version of the C program is used due to the large amount of data being processed, e.g. by the Message Passing Interface (MPI). The analytical results of this new calculation methodology have shown an excellent agreement with the experimental data available from the YALINA-Booster facility of Belarus. This methodology can be used to calculate Bell and Glasstone spatial correction factor.
Energy Technology Data Exchange (ETDEWEB)
Talamo, Alberto [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: atalamo@anl.gov; Gohar, Y. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Rabiti, C. [Idaho National Laboratory, P.O. Box 2528, Idaho Falls, ID 83403 (United States); Aliberti, G.; Kondev, F.; Smith, D.; Zhong, Z. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Serafimovich, I. [Joint Institute for Power and Nuclear Research-Sosny, National Academy of Sciences (Belarus)
2009-07-21
One of the most reliable experimental methods for measuring the subcriticality level of a nuclear fuel assembly is the Sjoestrand method applied to the reaction rate generated from a pulsed neutron source. This study developed a new analytical methodology simulating the Sjoestrand method, which allows comparing the experimental and analytical reaction rates and the obtained subcriticality levels. In this methodology, the reaction rate is calculated due to a single neutron pulse using MCNP/MCNPX computer code or any other neutron transport code that explicitly simulates the delayed fission neutrons. The calculation simulates a single neutron pulse over a long time period until the delayed neutron contribution to the reaction rate is vanished. The obtained reaction rate is then superimposed to itself, with respect to the time, to simulate the repeated pulse operation until the asymptotic level of the reaction rate, set by the delayed neutrons, is achieved. The superimposition of the pulse to itself was calculated by a simple C computer program. A parallel version of the C program is used due to the large amount of data being processed, e.g. by the Message Passing Interface (MPI). The analytical results of this new calculation methodology have shown an excellent agreement with the experimental data available from the YALINA-Booster facility of Belarus. This methodology can be used to calculate Bell and Glasstone spatial correction factor.
Neutronics analysis of minor actinides transmutation in a fusion-driven subcritical system
International Nuclear Information System (INIS)
Yang, Chao; Cao, Liangzhi; Wu, Hongchun; Zheng, Youqi; Zu, Tiejun
2013-01-01
Highlights: • A fusion fission hybrid system for MA transmutation is proposed. • The analysis of neutronics effects on the transmutation is performed. • The transmutation rate of MA reaches 86.5% by 25 times of recycling. -- Abstract: The minor actinides (MAs) transmutation in a fusion-driven subcritical system is analyzed in this paper. The subcritical reactor is driven by a tokamak D-T fusion device with relatively easily achieved plasma parameters and tokamak technologies. The MAs discharged from the light water reactor (LWR) are loaded in transmutation zone. Sodium is used as the coolant. The mass percentage of the reprocessed plutonium (Pu) in the fuel is raised from 0 to 48% and stepped by 12% to determine its effect on the MAs transmutation. The lesser the Pu is loaded, the larger the MAs transmutation rate is, but the smaller the energy multiplication factor is. The neutronics analysis of two loading patterns is performed and compared. The loading pattern where the mass percentage of Pu in two regions is 15% and 32.9% respectively is conducive to the improvement of the transmutation fraction within the limits of burn-up. The final transmutation fraction of MAs can reach 17.8% after five years of irradiation. The multiple recycling is investigated. The transmutation fraction of MAs can reach about 61.8% after six times of recycling, and goes up to about 86.5% after 25
Dynamic analysis of an accelerator-based subcritical radioactive waste burning system
International Nuclear Information System (INIS)
Woosley, M.L. Jr.; Rydin, R.A.
1997-01-01
There has been a recent revival of interest in accelerator-driven subcritical fluid-fueled systems for radioactive waste management. This motivates the need for dynamic analysis of the nuclear kinetics of such systems. A physical description of the Los Alamos Accelerator-Based Conversion (ABC) concept is provided. This system is used as the basis for the kinetic study in this research. The current approach to the dynamic simulation of an accelerator-driven subcritical fluid-fueled system includes four functional blocks: A discrete ordinates model is used to calculate the flux distribution for the source-driven system (DORT); A nodal convection model is used to calculate time-dependent isotope and temperature distributions which impact reactivity (ABCcore); A nodal importance weighting model is used to calculate the reactivity impact of temperature and isotope distributions and to feed this information back to the time-dependent nodal convection model (ABCvip); A transient driver simulates system transients and records simulation data (ABCtrans). Specific transients which have been analyzed with the current modeling system are discussed. These transients include loss-of-flow and loss-of-cooling accidents, xenon and samarium transients, and cold-plug and overfueling events. The results of various transients have uncovered unpredictable behavior, unresolved design issues, and the need for active control. 11 refs., 6 figs., 1 tab
Dynamic analysis of an accelerator-driven fluid-fueled subcritical radioactive waste burning system
International Nuclear Information System (INIS)
Woosley, M.L. Jr.; Rydin, R.A.
1998-01-01
The recent revival of interest in accelerator-driven subcritical fluid-fueled systems is documented. Several important applications of these systems are mentioned, and this is used to motivate the need for dynamic analysis of the nuclear kinetics of such systems. A physical description of the Los alamos National Laboratory accelerator-based conversion (ABC) concept is provided. This system is used as the basis for the kinetics study in this research. The current approach to the dynamic simulation of an accelerator-driven subcritical fluid-fueled system includes four functional elements: a discrete ordinates model is used to calculate the flux distribution for the source-driven system; a nodal convection model is used to calculate time-dependent isotope and temperature distributions that impact reactivity; a nodal importance weighting model is used to calculate the reactivity impact of temperature and isotope distributions and to feed this information back to the time-dependent nodal convection model; and a transient driver is used to simulate transients, model the balance of plant, and record simulation data. Specific transients that have been analyzed with the current modeling system are discussed. These transients include loss-of-flow and loss-of-cooling accidents, xenon and samarium transients, and cold-plug and overfueling events. The results of various transients have uncovered unpredictable behavior, unresolved design issues, and the need for active control. The need for the development of a nodal-coupling spatial kinetics model is mentioned
Subcritical thermal convection of liquid metals in a rotating sphere using a quasi-geostrophic model
Cardin, P.; Guervilly, C.
2016-12-01
We study non-linear convection in a rapidly rotating sphere with internal heating for values of the Prandtl number relevant for liquid metals (10-2-1). We use a numerical model based on the quasi-geostrophic approximation, in which variations of the axial vorticity along the rotation axis are neglected, whereas the temperature field is fully three-dimensional. We identify two separate branches of convection close to onset: (i) a well-known weak branch for Ekman numbers greater than 10-6, which is continuous at the onset (supercritical bifurcation) and consists of the interaction of thermal Rossby waves, and (ii) a novel strong branch at lower Ekman numbers, which is discontinuous at the onset. The strong branch becomes subcritical for Ekman numbers of the order of 10-8. On the strong branch, the Reynolds number of the flow is greater than 1000, and a strong zonal flow with multiple jets develops, even close to the non-linear onset of convection. We find that the subcriticality is amplified by decreasing the Prandtl number. The two branches can co-exist for intermediate Ekman numbers, leading to hysteresis (E = 10-6, Pr =10-2). Non-linear oscillations are observed near the onset of convection for E = 10-7 and Pr = 10-1.
Subcritical convection of liquid metals in a rotating sphere using a quasi-geostrophic model
Guervilly, Céline; Cardin, Philippe
2016-12-01
We study nonlinear convection in a rapidly rotating sphere with internal heating for values of the Prandtl number relevant for liquid metals ($Pr\\in[10^{-2},10^{-1}]$). We use a numerical model based on the quasi-geostrophic approximation, in which variations of the axial vorticity along the rotation axis are neglected, whereas the temperature field is fully three-dimensional. We identify two separate branches of convection close to onset: (i) a well-known weak branch for Ekman numbers greater than $10^{-6}$, which is continuous at the onset (supercritical bifurcation) and consists of thermal Rossby waves, and (ii) a novel strong branch at lower Ekman numbers, which is discontinuous at the onset. The strong branch becomes subcritical for Ekman numbers of the order of $10^{-8}$. On the strong branch, the Reynolds number of the flow is greater than $10^3$, and a strong zonal flow with multiple jets develops, even close to the nonlinear onset of convection. We find that the subcriticality is amplified by decreasing the Prandtl number. The two branches can co-exist for intermediate Ekman numbers, leading to hysteresis ($Ek=10^{-6}$, $Pr=10^{-2}$). Nonlinear oscillations are observed near the onset of convection for $Ek=10^{-7}$ and $Pr=10^{-1}$.
Subcriticality determination of low-enriched UO2 lattices in water by exponential experiment
International Nuclear Information System (INIS)
Suzaki, Takenori
1991-01-01
To determine the static k (effective neutron multiplication factor) ranging from the critical to an extremely subcritical states, the exponential experiments were performed using various sizes of light-water moderated and reflected low-enriched UO 2 lattice cores. For comparison, the pulsed neutron source experiments were also carried out. In the manner of the Gozani's bracketing method applied to the pulsed source experiment, a formula to obtain k from the measured spatial-decay constant was derived on the basis of diffusion theory. Parameters in the formulas needed to obtain k from the respective experiments were evaluated by 4-group neutron diffusion calculations. The results of the exponential experiments agreed well with those of the pulsed source experiments, the 4-group diffusion calculations and the 137-group Monte Carlo calculations. Therefore, the present data-processing method developed for the exponential experiment was demonstrated to be valid. Besides, through the examination on the parameters used in the data processing, it was found that the dependence of parameter value upon k is weak in the exponential experiment compared with that in the pulsed source experiment. This indicates the superiority of the exponential experiment over the pulsed source experiment for the subcriticality determination of a wide range. (author)
Transverse single-file diffusion and enhanced longitudinal diffusion near a subcritical bifurcation
Dessup, Tommy; Coste, Christophe; Saint Jean, Michel
2018-05-01
A quasi-one-dimensional system of repelling particles undergoes a configurational phase transition when the transverse confining potential decreases. Below a threshold, it becomes energetically favorable for the system to adopt one of two staggered raw patterns, symmetric with respect to the system axis. This transition is a subcritical pitchfork bifurcation for short range interactions. As a consequence, the homogeneous zigzag pattern is unstable in a finite zigzag amplitude range [hC 1,hC 2] . We exhibit strong qualitative effects of the subcriticality on the thermal motions of the particles. When the zigzag amplitude is close enough to the limits hC 1 and hC 2, a transverse vibrational soft mode occurs which induces a strongly subdiffusive behavior of the transverse fluctuations, similar to single-file diffusion. On the contrary, the longitudinal fluctuations are enhanced, with a diffusion coefficient which is more than doubled. Conversely, a simple measurement of the thermal fluctuations allows a precise determination of the bifurcation thresholds.
International Nuclear Information System (INIS)
Agliari, Anna
2006-01-01
In this paper we study some global bifurcations arising in the Puu's oligopoly model when we assume that the producers do not adjust to the best reply but use an adaptive process to obtain at each step the new production. Such bifurcations cause the appearance of a pair of closed invariant curves, one attracting and one repelling, this latter being involved in the subcritical Neimark bifurcation of the Cournot equilibrium point. The aim of the paper is to highlight the relationship between the global bifurcations causing the appearance/disappearance of two invariant closed curves and the homoclinic connections of some saddle cycle, already conjectured in [Agliari A, Gardini L, Puu T. Some global bifurcations related to the appearance of closed invariant curves. Comput Math Simul 2005;68:201-19]. We refine the results obtained in such a paper, showing that the appearance/disappearance of closed invariant curves is not necessarily related to the existence of an attracting cycle. The characterization of the periodicity tongues (i.e. a region of the parameter space in which an attracting cycle exists) associated with a subcritical Neimark bifurcation is also discussed
An MCNP parametric study of George C. Laurence's subcritical pile experiment
International Nuclear Information System (INIS)
Dranga, R.; Blomeley, L.; Carrington, R.
2014-01-01
In the early 1940s at the National Research Council (NRC) Laboratories in Ottawa, Canada, Dr. George Laurence conducted several experiments to determine if a sustained nuclear fission chain reaction in a carbon-uranium arrangement (or 'pile') was possible. Although Dr. Laurence did not achieve criticality, these pioneering experiments marked a significant historical event in nuclear science, and they provided a valuable reference for subsequent experiments that led to the design of Canada's first heavy-water reactors at the Chalk River Nuclear Laboratories. This paper summarizes the results of a recent collaborative project between Atomic Energy of Canada Limited and the Deep River Science Academy undertaken to numerically explore the experiments carried out at the NRC Laboratories by Dr. Laurence, while teaching high school students about nuclear science and technology. In this study, a modern Monte Carlo reactor physics code, MCNP6, was utilized to identify and study the key parameters impacting the subcritical pile's neutron multiplication factor (e.g., moderation, geometry, material impurities) and quantify their effect on the extent of subcriticality. The findings presented constitute the first endeavour to model, using a current computational reactor physics tool, the seminal experiment that provided the foundation of Canada's nuclear science and technology program. (author)
Critical and subcritical mass calculations of fissionable nuclides based on JENDL-3.2+
International Nuclear Information System (INIS)
Okuno, H.
2002-01-01
We calculated critical and subcritical masses of 10 fissionable actinides ( 233 U, 235 U, 238 Pu, 239 Pu, 241 Pu, 242m Am, 243 Cm, 244 Cm, 249 Cf and 251 Cf) in metal and in metal-water mixtures (except 238 Pu and 244 Cm). The calculation was made with a combination of a continuous energy Monte Carlo neutron transport code, MCNP-4B2, and the latest released version of the Japanese Evaluated Nuclear Data Library, JENDL-3.2. Other evaluated nuclear data files, ENDF/B-VI, JEF-2.2, and JENDL-3.3 in its preliminary version were also applied to find differences in results originated from different nuclear data files. For the so-called big three fissiles ( 233 U, 235 U and 239 Pu), analyzing the criticality experiments cited in ICSBEP Handbook validated the code-library combination, and calculation errors were consequently evaluated. Estimated critical and lower limit critical masses of the big three in a sphere with/without a water or SS-304 reflector were supplied, and they were compared with the subcritical mass limits of ANS-8.1. (author)
International Nuclear Information System (INIS)
Ommen, Torben; Elmegaard, Brian
2012-01-01
Highlights: ► A transcritical booster refrigeration plant is modelled. ► We examine changes in cost flow at different operation parameters. ► The use of characteristic curves for diagnosis is studied. - Abstract: Transcritical/subcritical booster refrigeration systems are increasingly installed and used in Danish supermarkets. The systems operate in both transcritical and subcritical conditions dependent on the heat rejection performance and the ambient conditions. The plant consists of one refrigerant cycle supplying refrigerant for evaporators in both chilled and frozen display cases. In the paper, thermoeconomic theory is used to establish the cost of cooling at each individual temperature level based on operating costs. With a high amount of operating systems, faulty operation becomes an economic, and environmental, interest. A general solution for evaluation of these systems is considered, with the objective to reduce cost and power consumption of malfunctioning equipment in operation. An analysis of the use of thermoeconomic diagnosis methods is required, as these methods may prove applicable. To accommodate the analysis, a numerical model of a transcritical booster refrigeration plant is considered in this paper. Additionally the characteristic curves method is applied to the high pressure compressor unit of the refrigeration plant. The approach successfully determine whether an anomaly is intrinsic or induced in the component when no uncertainties are introduced in the steady state model.
Initial instability of round liquid jet at subcritical and supercritical environments
International Nuclear Information System (INIS)
Muthukumaran, C. K.; Vaidyanathan, Aravind
2016-01-01
In the present experimental work, the behavior of laminar liquid jet in its own vapor as well as supercritical fluid environment is conducted. Also the study of liquid jet injection into nitrogen (N_2) environment is carried out at supercritical conditions. It is expected that the injected liquid jet would undergo thermodynamic transition to the chamber condition and this would alter the behavior of the injected jet. Moreover at such conditions there is a strong dependence between thermodynamic and fluid dynamic processes. Thus the thermodynamic transition has its effect on the initial instability as well as the breakup nature of the injected liquid jet. In the present study, the interfacial disturbance wavelength, breakup characteristics, and mixing behavior are analysed for the fluoroketone liquid jet that is injected into N_2 environment as well as into its own vapor at subcritical to supercritical conditions. It is observed that at subcritical chamber conditions, the injected liquid jet exhibits classical liquid jet characteristics with Rayleigh breakup at lower Weber number and Taylor breakup at higher Weber number for both N_2 and its own environment. At supercritical chamber conditions with its own environment, the injected liquid jet undergoes sudden thermodynamic transition to chamber conditions and single phase mixing characteristics is observed. However, the supercritical chamber conditions with N_2 as ambient fluid does not have significant effect on the thermodynamic transition of the injected liquid jet.
Directory of Open Access Journals (Sweden)
Yajie Tian
2017-03-01
Full Text Available The subcritical water extraction (SWE is a high-efficiency and environment-friendly extraction method. The extraction of resveratrol (RES of grape seeds obtained from the wine production process was proposed using subcritical water extraction (SWE. The effects of different extraction process parameters on RES yield were investigated by single factors. Extraction optimization was conducted using response surface methodology (RSM. Extraction temperature was proven to be the most significant factor influencing RES yield. The optimal conditions was as follows: extraction pressure of 1.02 MPa, temperature of 152.32 °C, time of 24.89 min, and a solid/solvent ratio of 1:15 g/mL. Under these optimal conditions, the predicted extraction RES yield was 6.90 μg/g and the recoveries was up to 91.98%. Compared to other previous studies, this method required less pollution and less treatment time to extract RES from grape seeds. From these results, added economic value to this agroindustrial residue is proposed using environmentally friendly extraction techniques.
Grammatikos, S. A.; Kordatos, E. Z.; Aggelis, D. G.; Matikas, T. E.; Paipetis, A. S.
2012-04-01
Infrared Thermography (IrT) has been shown to be capable of detecting and monitoring service induced damage of repair composite structures. Full-field imaging, along with portability are the primary benefits of the thermographic technique. On-line lock-in thermography has been reported to successfully monitor damage propagation or/and stress concentration in composite coupons, as mechanical stresses in structures induce heat concentration phenomena around flaws. During mechanical fatigue, cyclic loading plays the role of the heating source and this allows for critical and subcritical damage identification and monitoring using thermography. The Electrical Potential Change Technique (EPCT) is a new method for damage identification and monitoring during loading. The measurement of electrical potential changes at specific points of Carbon Fiber Reinforced Polymers (CFRPs) under load are reported to enable the monitoring of strain or/and damage accumulation. Along with the aforementioned techniques Finally, Acoustic Emission (AE) method is well known to provide information about the location and type of damage. Damage accumulation due to cyclic loading imposes differentiation of certain parameters of AE like duration and energy. Within the scope of this study, infrared thermography is employed along with AE and EPCT methods in order to assess the integrity of bonded repair patches on composite substrates and to monitor critical and subcritical damage induced by the mechanical loading. The combined methodologies were effective in identifying damage initiation and propagation of bonded composite repairs.
233U breeding in accelerator-driven sub-critical fast reactor
International Nuclear Information System (INIS)
Yang Yongwei; An Yu
1999-01-01
Accelerator-driven Sub-critical Fast Reactor (ADFR) is chosen as fissile-material-breeding reactor. (U-Pu)O x is chosen as fuel in the core and ThO 2 as fertile material in the blanket zone to breed 233 U. Molten lead is chosen as coolant because of its better neutronic and chemical characteristics over sodium. The program system used for neutronics study consists of: LAHET, for the simulation of the interaction between the proton with medium energy and the nuclei of the target; MCNP4A, for the simulation of neutron transport with energy below 20 MeV in the sub-critical reactor; CONNECT1, for the processing of some tallies provided by the output of MCNP4A in order to prepare micro-cross sections for elements used for burnup calculation; ORIGEN2, used for multi-region burnup calculation; CONNECT2, for the processing of atom densities of some elements provided in the output of ORIGEN2 in order to prepare input to LAHET calculation for next time step. The calculated results show that the proposed case is feasible for breeding fissile material considering the criticality safety, power density, burnup, etc
International Nuclear Information System (INIS)
Sales, Emerson A.; Ghirardi, Maria L.; Jorquera, Orlando
2017-01-01
Highlights: • Using ethanol in subcritical thermodynamic conditions, without catalysts. • The net energy ratio-NER identifies opportunities for industrial application. • The presence of water and free fatty acids improved the TG conversion. • Transesterification reactions of animal fat, soybean and palm oils. - Abstract: Ethylic transesterification process for biodiesel production without any chemical or biochemical catalysts at different subcritical thermodynamic conditions was performed using wet animal fat, soybean and palm oils as feedstock. The results indicate that 2 h of reaction at 240 °C with pressures varying from 20 to 45 bar was sufficient to transform almost all lipid fraction of the samples to biodiesel, depending on the reactor dead volume and proportions between reactants. Conversions of 100%, 84% and 98.5% were obtained for animal fat, soybean oil and palm oil, respectively, in the presence of water, with a net energy ration values of 2.6, 2.1 and 2.5 respectively. These results indicate that the process is energetically favorable, and thus represents a cleaner technology with environmental advantages when compared to traditional esterification or transesterification processes.
Sub-critical crack growth and clad integrity in a PWR reactor pressure vessel
International Nuclear Information System (INIS)
Tice, D.R.; Foreman, A.J.E.; Sharples, J.K.
1987-10-01
The possibility of in-service growth of sub-critical defects in a PWR reactor pressure vessel to a critical size which could result in vessel failure was addressed in both the 1976 and 1982 reports of the Light Water Reactor Study Group (LWRSG), under the Chairmanship of Dr W Marshall (now Lord Marshall). An addendum to this report was published by UKAEA in April 1987. The section of the addendum dealing with subcritical crack growth and the related issue of integrity of the stainless steel cladding on the inner vessel surface is reproduced in this report. This section of the LWRSG addendum provides a review of the current status of fatigue crack growth and environmentally assisted cracking research for pressure vessel steels in light water reactor environments, as well as a review of developments in crack growth assessment methods. The review concludes that the alternative assessment procedures now being developed give a more realistic prediction of in service crack growth than the ASME Section XI Appendix A fatigue crack growth curves. (author)
Directory of Open Access Journals (Sweden)
Bingfeng Ju
2011-03-01
Full Text Available In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin’s discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations.
Yan, Tianhong; Xu, Xinsheng; Han, Jianqiang; Lin, Rongming; Ju, Bingfeng; Li, Qing
2011-01-01
In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT) actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin's discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations.
Sushkova, Svetlana; Minkina, Tatiana; Kizilkaya, Ridvan; Mandzhieva, Saglara; Batukaev, Abdulmalik; Bauer, Tatiana; Gulser, Coskun
2016-04-01
The purpose of research is the assessment of main marker of polycyclic aromatic hydrocarbons contamination, benzo[a]pyrene (BaP) content in soils of emission zone of the power complex plant in soils with use of ecologically clean and effective subcritical water extraction method. Studies were conducted on the soils of monitoring plots subjected to Novocherkassk Power Plant emissions from burning coal. In 2000, monitoring plots were established at different distances from the NPS (1.0-20.0 km). Soil samples for the determination of soil properties and the contents of BaP were taken from a depth of 0-20 cm. The soil cover in the region under study consisted of ordinary chernozems, meadow-chernozemic soils, and alluvial meadow soils. This soil revealed the following physical and chemical properties: Corg-3.1-5.0%, pH-7.3-7.6, ECE-31.2-47.6 mmol(+)/100g; CaCO3-0.2-1.0%, the content of physical clay - 51-67% and clay - 3-37%. BaP extraction from soils was carried out by a subcritical water extraction method. Subcritical water extraction of BaP from soil samples was conducted in a specially developed extraction cartridge made of stainless steel and equipped with screw-on caps at both ends. It was also equipped with a manometer that included a valve for pressure release to maintain an internal pressure of 100 atm. The extraction cartridge containing a sample and water was placed into an oven connected to a temperature regulator under temperature 250oC and pressure 60 atm. The BaP concentration in the acetonitrile extract was determined by HPLC. The efficiency of BaP extraction from soil was determined using a matrix spike. The main accumulation of pollutant in 20 cm layer of soils is noted directly in affected zone on the plots situated at 1.2, 1.6, 5.0, 8.0 km from emission source in the direction of prevailing winds. The maximum quantity of a pollutant was founded in the soil of the plot located mostly close to a source of pollution in the direction of prevailing winds
DEFF Research Database (Denmark)
Holst, Anders G; Liang, Bo; Jespersen, Thomas
2010-01-01
father carried the same mutation, but had a milder phenotype, presenting with progressive cardiac conduction later in life. The mutation was found to result in a loss-of-function in the sodium current. In conclusion, the same SCN5A mutation can result in a wide array of clinical phenotypes and perhaps......Mutations in the cardiac sodium channel encoded by the gene SCN5A can result in a wide array of phenotypes. We report a case of a young male with a novel SCN5A mutation (R121W) afflicted by sick sinus syndrome, progressive cardiac conduction disorder, atrial flutter and ventricular tachycardia. His...
Directory of Open Access Journals (Sweden)
E. Margaret Warton
2018-02-01
Full Text Available Introduction: Many patients with atrial fibrillation or atrial flutter (AF/FL who are high risk for ischemic stroke are not receiving evidence-based thromboprophylaxis. We examined anticoagulant prescribing within 30 days of receiving dysrhythmia care for non-valvular AF/FL in the emergency department (ED. Methods: This prospective study included non-anticoagulated adults at high risk for ischemic stroke (ATRIA score ≥7 who received emergency AF/FL care and were discharged home from seven community EDs between May 2011 and August 2012. We characterized oral anticoagulant prescribing patterns and identified predictors of receiving anticoagulants within 30 days of the index ED visit. We also describe documented reasons for withholding anticoagulation. Results: Of 312 eligible patients, 128 (41.0% were prescribed anticoagulation at ED discharge or within 30 days. Independent predictors of anticoagulation included age (adjusted odds ratio [aOR] 0.89 per year, 95% confidence interval [CI] 0.82–0.96; ED cardiology consultation (aOR 1.89, 95% CI [1.10–3.23]; and failure of sinus restoration by time of ED discharge (aOR 2.65, 95% CI [1.35–5.21]. Reasons for withholding anticoagulation at ED discharge were documented in 139 of 227 cases (61.2%, the most common of which were deferring the shared decision-making process to the patient’s outpatient provider, perceived bleeding risk, patient refusal, and restoration of sinus rhythm. Conclusion: Approximately 40% of non-anticoagulated AF/FL patients at high risk for stroke who presented for emergency dysrhythmia care were prescribed anticoagulation within 30 days. Physicians were less likely to anticoagulate older patients and those with ED sinus restoration. Opportunities exist to improve rates of thromboprophylaxis in this high-risk population.
International Nuclear Information System (INIS)
Sembiring, T.M.; Kuntoro, I.
2003-01-01
The core conversion program of the RSG-GAS reactor is to convert the all-oxide to all-silicide core. The silicide equilibrium core with fuel meat density of 3.55 gU cm -3 is an optimal core for RSG-GAS reactor and it can significantly increase the operation cycle length from 25 to 32 full power days. Nevertheless, the subcriticality of the shutdown core and the shutdown margin are lower than of the oxide core. Therefore, the deviation of subcriticality condition in the higher silicide core caused by the fuel loading and shuffling error should be reanalysed. The objective of this work is to analyse the sufficiency of the subcriticality condition of the shutdown core to face the worst condition caused by an error during loading and shuffling operations. The calculations were carried out using the 2-dimensional multigroup neutron diffusion code of Batan-FUEL. In the fuel handling error, the calculated results showed that the subcriticality condition of the shutdown higher density silicide equilibrium core of RSG-GAS can be maintained. Therefore, all fuel management steps are fixed in the present reactor operation manual can be applied in the higher silicide equilibrium core of RSG-GAS reactor. (author)
International Nuclear Information System (INIS)
Mihalczo, J.T.; Ragan, G.E.; Blakeman, E.D.
1987-01-01
A portable measurement system consisting of a personal computer used as a Fourier analyzer and three detection channels (with associated electronics that provide the signals to analog-to-digital (A/D) convertors) has been assembled to measure subcriticality by the 252 Cf-source-driven neutron noise analysis method. 8 refs
International Nuclear Information System (INIS)
Ishitani, Kazuki; Yamane, Yoshihiro
1999-01-01
In nuclear fuel reprocessing plants, monitoring the spatial profile of neutron flux to infer subcriticality and distribution of fuel concentration using detectors such as PSPC, is very beneficial in sight of criticality safety. In this paper a method of subcriticality and fuel concentration estimation which is supposed to use under non-uniformed system is proposed. Its basic concept is the pattern matching between measured neutron flux distribution and beforehand calculated one. In any kind of subcriticality estimation, we can regard that measured neutron counts put any kind of black box, and then this black box outputs subcriticality. We proposed the use of artificial neural network or 'pattern matching' as black box which have no theoretical clear base. These method are wholly based on the calculated value as recently advancement of computer code accuracy for criticality safety. The most difference between indirect bias estimation method and our method is that our new approach target are the unknown non-uniform system. (J.P.N.)
Synthesis of nano-crystalline NiFe2O4 powders in subcritical and supercritical ethanol
Czech Academy of Sciences Publication Activity Database
Ćosović, A.; Žák, Tomáš; Glisić, S.; Sokić, M.; Lazarević, S.; Ćosović, V.; Orlović, A.
2016-01-01
Roč. 113, JUL (2016), s. 96-105 ISSN 0896-8446 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : supercritical * subcritical * nano-crystalline powders * nickel ferrite * metal oxide * magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.991, year: 2016
International Nuclear Information System (INIS)
Bécares, V.; Villamarín, D.; Fernández-Ordóñez, M.; González-Romero, E.M.; Berglöf, C.; Bournos, V.; Fokov, Y.; Mazanik, S.; Serafimovich, I.
2013-01-01
Highlights: ► New methodology proposed to determine the reactivity of subcritical systems. ► Methodology tested in PNS experiments at the Yalina-Booster subcritical assembly. ► The area-ratio and the prompt decay constant methods have been used for validation. ► The absolute reactivity of the system is determined in spite of large spatial effects. - Abstract: The prompt decay constant method and the area-ratio (Sjöstrand) method constitute the reference techniques for measuring the reactivity of a subcritical system using Pulsed Neutron Source experiments (PNS). However, different experiments have shown that in many cases it is necessary to apply corrections to the experimental results in order to take into account spectral and spatial effects. In these cases, the approach usually followed is to develop different specific correction procedures for each method. In this work we discuss the validity of prompt decay constant method and the area-ratio method in the Yalina-Booster subcritical assembly and propose a general correction procedure based on Monte Carlo simulations
Gann, V.V.; Guk, I.S.; Dovbnya, A.N.; Kononenko, S.G.; Kostromin, A.S.; Peev, F.A.; Prochorets, I.M.; Soldatov, C.A.; Tarasenko, A.S.; Wiel, van der M.J.; Botman, J.I.M.
2006-01-01
Recently opportunities of creation test facility with sub-crit. reactors controlled by accelerators of particles are actively discussed. At an initial stage of these researches it is the most expedient to use electron accelerators as cost of such facility will be much less, than at use of proton
International Nuclear Information System (INIS)
1964-01-01
The text of the Project Agreement between the Agency and the Government of Finland in connection with the Agency's assistance to that Government in establishing a sub-critical assemblies project is reproduced in Part I of this document for the information of all Members. This Agreement entered into force on 30 July 1963
Energy Technology Data Exchange (ETDEWEB)
NONE
1964-02-10
The text of the Project Agreement between the Agency and the Government of Finland in connection with the Agency's assistance to that Government in establishing a sub-critical assemblies project is reproduced in Part I of this document for the information of all Members. This Agreement entered into force on 30 July 1963.
Energy Technology Data Exchange (ETDEWEB)
Talamo, A.; Gohar, Y.; Nuclear Engineering Division
2007-05-15
Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,{gamma}), (n,2n), (n,p), and ({gamma},n). In the second part
Benchmark Analysis of Subcritical Noise Measurements on a Nickel-Reflected Plutonium Metal Sphere
Energy Technology Data Exchange (ETDEWEB)
John D. Bess; Jesson Hutchinson
2009-09-01
Subcritical experiments using californium source-driven noise analysis (CSDNA) and Feynman variance-to-mean methods were performed with an alpha-phase plutonium sphere reflected by nickel shells, up to a maximum thickness of 7.62 cm. Both methods provide means of determining the subcritical multiplication of a system containing nuclear material. A benchmark analysis of the experiments was performed for inclusion in the 2010 edition of the International Handbook of Evaluated Criticality Safety Benchmark Experiments. Benchmark models have been developed that represent these subcritical experiments. An analysis of the computed eigenvalues and the uncertainty in the experiment and methods was performed. The eigenvalues computed using the CSDNA method were very close to those calculated using MCNP5; however, computed eigenvalues are used in the analysis of the CSDNA method. Independent calculations using KENO-VI provided similar eigenvalues to those determined using the CSDNA method and MCNP5. A slight trend with increasing nickel-reflector thickness was seen when comparing MCNP5 and KENO-VI results. For the 1.27-cm-thick configuration the MCNP eigenvalue was approximately 300 pcm greater. The calculated KENO eigenvalue was about 300 pcm greater for the 7.62-cm-thick configuration. The calculated results were approximately the same for a 5-cm-thick shell. The eigenvalues determined using the Feynman method are up to approximately 2.5% lower than those determined using either the CSDNA method or the Monte Carlo codes. The uncertainty in the results from either method was not large enough to account for the bias between the two experimental methods. An ongoing investigation is being performed to assess what potential uncertainties and/or biases exist that have yet to be properly accounted for. The dominant uncertainty in the CSDNA analysis was the uncertainty in selecting a neutron cross-section library for performing the analysis of the data. The uncertainty in the
Large eddy simulation of the subcritical flow over a V grooved circular cylinder
International Nuclear Information System (INIS)
Alonzo-García, A.; Gutiérrez-Torres, C. del C.; Jiménez-Bernal, J.A.
2015-01-01
Highlights: • We compared numerically the turbulent flow over a smooth circular cylinder and a V grooved cylinder in the subcritical regime. • Turbulence intensities in both streamwise and normal direction suffered attenuations. • The swirls structures on grooves peaks seemed to have a cyclic behavior. • The evolution of the flow inside grooves showed that swirls structures located in peaks suffered elongations in the normal direction. • The secondary vortex structures formed in the grooved cylinder near wake were smaller in comparison of the smooth cylinder flow. - Abstract: In this paper, a comparative numerical study of the subcritical flow over a smooth cylinder and a cylinder with V grooves (Re = 140,000) is presented. The implemented technique was the Large Eddy Simulation (LES), which according to Kolmogorov's theory, resolves directly the most energetic largest eddies and models the smallest and considered universal high frequency ones. The Navier-Stokes (N-S) equations were solved using the commercial software ANSYS FLUENT V.12.1, which applied the finite volume method (FVM) to discretize these equations in their unsteady and incompressible forms. The grid densities were 2.6 million cells and 13.5 million cells for the smooth and V grooved cylinder, respectively. Both meshes were composed of structured hexahedral cells and close to the wall of the cylinders, additional refinements were employed in order to obtain y +<5 values. All cases were simulated during at least 15 vortex shedding cycles with the aim of obtaining significant statistical data. Results: showed that for both cases (smooth and V grooved cylinder flow), the numerical code was capable of reproducing the most important physical quantities of the subcritical regime. Velocity distribution and turbulence intensity in the flow direction suffered a slight attenuation along the wake, as a consequence of grooves perturbation, which also caused an increase in the pressure coefficient
International Nuclear Information System (INIS)
Talamo, A.; Gohar, Y.
2007-01-01
Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,γ), (n,2n), (n,p), and (γ,n). In the second part, the parent
Directory of Open Access Journals (Sweden)
I. P. G. SOPAN RAHTIKA
2017-10-01
Full Text Available This paper reports the results of the numerical and experimental investigation on the flutter of cantilevered thin flat plates with free leading edge in axial flow. Three methods of in-vacuo modal analyses of the plates are presented and compared in this paper, namely the finite element modal analysis using ANSYS STUDENT Modal, the analytical beam model, and the experimental modal analysis. In this study, the numerical Fluid Structure Interaction was performed using the ANSYS STUDENT Structural Transient Analysis and ANSYS STUDENT CFX to obtain the system response in the time domain. Furthermore, the experimental investigation was conducted in the smooth flow of a wind tunnel to observe the flutter speeds of the plates and their vibration characteristics. The plates’ vibration behaviors were mapped on the normalized air speed. The normalized air speed can be divided into four speed zones based on the experimental plates’ vibration characteristics. A new finding observed during the experiments is the presence of intermittent vibration behavior that is unique to the free leading edge configuration and has not been reported by other researchers in the earlier references of the clamped leading edge configuration. The potential application of this Fluid Structure Interaction configuration to wind harvesting is inquired.
Herrick, Gregory P.
2014-01-01
Concerns regarding noise, propulsive efficiency, and fuel burn are inspiring aircraft designs wherein the propulsive turbomachines are partially (or fully) embedded within the airframe; such designs present serious concerns with regard to aerodynamic and aeromechanic performance of the compression system in response to inlet distortion. Previously, a preliminary design of a forward-swept high-speed fan exhibited flutter concerns in clean-inlet flows, and the present author then studied this fan further in the presence of off-design distorted in-flows. Continuing this research, a three-dimensional, unsteady, Navier-Stokes computational fluid dynamics code is again applied to analyze and corroborate fan performance with clean inlet flow and now with a simplified, sinusoidal distortion of total pressure at the aerodynamic interface plane. This code, already validated in its application to assess aerodynamic damping of vibrating blades at various flow conditions using a one-way coupled energy-exchange approach, is modified to include a two-way coupled timemarching aeroelastic simulation capability. The two coupling methods are compared in their evaluation of flutter stability in the presence of distorted in-flows.
Herrick, Gregory P.
2014-01-01
Concerns regarding noise, propulsive efficiency, and fuel burn are inspiring aircraft designs wherein the propulsive turbomachines are partially (or fully)embedded within the airframe; such designs present serious concerns with regard to aerodynamic and aeromechanic performance of the compression system in response to inlet distortion. Previously, a preliminary design of a forward-swept high-speed fan exhibited flutter concerns in clean-inlet flows, and the present author then studied this fan further in the presence of off-design distorted in-flows. A three-dimensional, unsteady, Navier-Stokes computational fluid dynamics code is applied to analyze and corroborate fan performance with clean inlet flow. This code, already validated in its application to assess aerodynamic damping of vibrating blades at various flow conditions using a loosely-coupled approach, is modified to include a tightly-coupled aeroelastic simulation capability, and then loosely-coupled and tightly-coupled methods arecompared in their evaluation of flutter stability in distorted in-flows.
Regoli, François; Faletra, Francesco; Marcon, Serena; Leo, Laura Anna; Dequarti, Maria Cristina; Caputo, Maria Luce; Conte, Giulio; Moccetti, Tiziano; Auricchio, Angelo
2018-01-01
Radiofrequency ablation (RFA) is the treatment of choice of cavotricuspid isthmus (CTI)-dependent atrial flutter. Procedural time is highly variable due to anatomical structures. This study aimed to characterize CTI anatomy by transesophageal 3D echocardiography imaging (3D-TEE) to identify anatomic structures related to longer ablation time. Thirty-one consecutive patients (mean age 67.3 ± 11.5 years, 22 males) underwent CTI-ablation procedure. Before ablation, TEE was performed and 3D-TEE images were acquired to evaluate CTI anatomy qualitatively as well as perform measures of CTI morphological features. The electrophysiologist performing RFA was blinded to 3D-TEE data. Bidirectional block of CTI was achieved in all patients without procedural complications after a median ablation time of 11 (IQR 7-14) min. Patients with RFA time ≥11 min (Group 2) presented lower left ventricular ejection fraction (51.1 ± 17.0 vs. 59.5 ± 6.6%, P 3D-TEE imaging is extremely helpful in qualitative and quantitative evaluation of CTI anatomy in patients undergoing RFA for symptomatic typical atrial flutter. Detection of a deep right atrial pouch was found to be associated with significantly prolonged CTI ablation time to achieve bidirectional block. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Sadeghi-Goughari, Moslem; Jeon, Soo; Kwon, Hyock-Ju
2018-04-01
CNT (Carbon nanotube)-based fluidic systems hold a great potential for emerging medical applications such as drug delivery for cancer therapy. CNTs can be used to deliver anticancer drugs into a target site under a magnetic field guidance. One of the critical issues in designing such systems is how to avoid the vibration induced by the fluid flow, which is undesirable and may even promote the structural instability. The main objective of the present research is to develop a fluid structure interaction (FSI) model to investigate the flutter instability of a cantilevered CNT induced by a magnetic fluid flow under a longitudinal magnetic field. The CNT is assumed to be embedded in a viscoelastic matrix to consider the effect of biological medium around it. To obtain a dynamical model for the system, the Navier-Stokes theory of magnetic-fluid flow is coupled to the Euler-Bernoulli beam model for CNT. The small size effects of the magnetic fluid and CNT are considered through the small scale parameters including Knudsen number (Kn) and the nonlocal parameter. Then, the extended Galerkin's method is applied to solve the FSI governing equations, and to derive the stability diagrams of the system. Results show how the magnetic properties of the fluid flow have an effect on improving the stability of the cantilevered CNT by increasing the flutter velocity.
Hydrogen co-production from subcritical water-cooled nuclear power plants in Canada
Energy Technology Data Exchange (ETDEWEB)
Gnanapragasam, N.; Ryland, D.; Suppiah, S., E-mail: gnanapragasamn@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)
2013-06-15
Subcritical water-cooled nuclear reactors (Sub-WCR) operate in several countries including Canada providing electricity to the civilian population. The high-temperature-steam-electrolysis process (HTSEP) is a feasible and laboratory-demonstrated large-scale hydrogen-production process. The thermal and electrical integration of the HTSEP with Sub-WCR-based nuclear-power plants (NPPs) is compared for best integration point, HTSEP operating condition and hydrogen production rate based on thermal energy efficiency. Analysis on integrated thermal efficiency suggests that the Sub-WCR NPP is ideal for hydrogen co-production with a combined efficiency of 36%. HTSEP operation analysis suggests that higher product hydrogen pressure reduces hydrogen and integrated efficiencies. The best integration point for the HTSEP with Sub-WCR NPP is upstream of the high-pressure turbine. (author)
Ilia Anisa, Nor; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio
2014-04-01
6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10-11 m2/s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10-11 m2/s.
International Nuclear Information System (INIS)
Anisa, Nor Ilia; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio
2014-01-01
6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10 −11 m 2 /s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10 −11 m 2 /s.
International Nuclear Information System (INIS)
Blaser, Cédric; Paruch, Patrycja
2015-01-01
Ferroelectric domain switching in c-axis-oriented epitaxial Pb(Zr 0.2 Ti 0.8 )O 3 thin films was studied using biased scanning probe microscopy tips. While linear and logarithmic dependence of domain size on tip bias and writing time, respectively, are well known, we report an additional linear dependence on relative humidity in the 28–65% range. We map out the switched domain size as a function of both the tip bias and the applied pulse time and describe a growth-limited regime for very short pulses and a nucleation-limited regime for very low tip bias. Using ‘interrupted-switching’ measurements, we probe the nucleation regime with subcritical pulses and identify a surprisingly long relaxation time on the order of 100 ms, which we relate to ionic redistribution both on the surface and within the thin film itself. (paper)
Operation and reactivity measurements of an accelerator driven subcritical TRIGA reactor
O'Kelly, David Sean
Experiments were performed at the Nuclear Engineering Teaching Laboratory (NETL) in 2005 and 2006 in which a 20 MeV linear electron accelerator operating as a photoneutron source was coupled to the TRIGA (Training, Research, Isotope production, General Atomics) Mark II research reactor at the University of Texas at Austin (UT) to simulate the operation and characteristics of a full-scale accelerator driven subcritical system (ADSS). The experimental program provided a relatively low-cost substitute for the higher power and complexity of internationally proposed systems utilizing proton accelerators and spallation neutron sources for an advanced ADSS that may be used for the burning of high-level radioactive waste. Various instrumentation methods that permitted ADSS neutron flux monitoring in high gamma radiation fields were successfully explored and the data was used to evaluate the Stochastic Pulsed Feynman method for reactivity monitoring.
Abdelmoez, Weal; Ashour, Eman; Naguib, Shahenaz M
2015-01-01
It became a global agenda to develop clean alternative fuels which were domestically available, environmentally acceptable and technically feasible. Thus, biodiesel was destined to make a substantial contribution to the future energy demands of the domestic and industrial economies. Utilization of the non edible vegetable oils as raw materials for biodiesel production had been handled frequently for the past few years. The oil content of these seeds could be extracted by different oil extraction methods, such as mechanical extraction, solvent extraction and by subcritical water extraction technology SWT. Among them, SWT represents a new promising green extraction method. Therefore this review covered the current used non edible oil seeds for biodiesel production as well as giving a sharp focus on the efficiency of using the SWT as a promising extraction method. In addition the advantages and the disadvantages of the different biodiesel production techniques would be covered.
International Nuclear Information System (INIS)
Bellino, Pablo A.; Gomez, Angel
2009-01-01
A new data acquisition system was designed and programmed for nuclear kinetics parameter estimations in subcritical reactors. The system allows using any of the neutron noise techniques, since it could store the whole information available in the neutron detection system. The α Rossi, α Feynman and spectral analysis methods were performed in order to estimate the prompt neutron decay constant (and hence the reactivity). The measurements were done in the nuclear research reactor RA-1, where introducing the control rods, different reactivity levels where reached (until -7 dollars). With the three methods used, agreement was found between the estimations and the reference reactivities in each level, even when the detector efficiency was low. All the measurements were performed with a high gamma flux, although the results were found to be satisfactory. (author)
Journey from discovery of nuclear fission to accelerator-driven sub-critical reactor systems (ADS)
International Nuclear Information System (INIS)
Kapoor, S.S.
2005-01-01
The epoch making discovery of nuclear fission in 1939, which resulted purely from the curiosity driven basic research to understand the atomic and nuclear structure has changed the world forever with the onset of a new era in the history of human civilization. The basic nuclear physics research pursued after the discovery of fission has also been of much relevance in the harnessing of nuclear energy. In the recent years, there is considerable interest towards developing accelerator driven sub-critical reactor systems (ADS) for the incineration of the long-lived spent fuel radioactive waste and for the utilization of thorium fuel for nuclear power generation. In this talk, we discuss important milestones in the journey from discovery of nuclear fission to ADS. (author)
International Nuclear Information System (INIS)
Chigrinov, S.E.; Kiyavitskaya, H.I.; Serafimovich, I.G.; Rakhno, I.L.; Rutkovskaia, Ch.K.; Fokov, Y.; Khilmanovich, A.M.; Marstinkevich, B.A.; Bournos, V.V.; Korneev, S.V.; Mazanik, S.E.; Kulikovskaya, A.V.; Korbut, T.P.; Voropaj, N.K.; Zhouk, I.V.; Kievec, M.K.
2002-01-01
The investigations on accelerator-driven transmutation technologies (ADTT) focus on the reduction of the amount of long-lived wastes and the physics of a subcritical system driven with an external neutron source. This paper presents the experimental facility 'Yalina' which was designed and created at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus in the framework of the ISTC project no. B-070 to study the peculiarities of ADTT in thermal spectrum. A detailed description of the assembly, neutron generator and a preliminary analysis of some calculated and experimental data (multiplication factor, neutron flux density distribution in the assembly, transmutation rates of some long-lived fission products and minor actinides) are presented. (authors)
International Nuclear Information System (INIS)
Ren-Tai, Chiang
2003-01-01
An ω-mode first-order perturbation theory is developed for analyzing the time- and space-dependent neutron behavior in Accelerator-Driven Subcritical Systems (ADSS). The generalized point-kinetics equations are systematically derived using the ω-mode first-order perturbation theory and Fredholm Alternative Theorem. Seven sets of the ω-mode eigenvalues exist with using six groups of delayed neutrons and all ω eigenvalues are negative in ADSS. Seven ω-mode adjoint and forward eigenfunctions are employed to form the point-kinetic parameters. The neutron flux is expressed as a linear combination of the products of seven ω-eigenvalue-mode shape functions and their corresponding time functions up to the first order terms, and the lowest negative ω-eigenvalue mode is the dominant mode. (author)
Energy Technology Data Exchange (ETDEWEB)
Costa da Silva, Adilson; Carvalho da Silva, Fernando [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, 21941-914, Rio de Janeiro (Brazil); Senra Martinez, Aquilino, E-mail: aquilino@lmp.ufrj.br [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, 21941-914, Rio de Janeiro (Brazil)
2011-07-15
Highlights: > We proposed a new neutron diffusion hybrid equation with external neutron source. > A coarse mesh finite difference method for the adjoint flux and reactivity calculation was developed. > 1/M curve to predict the criticality condition is used. - Abstract: We used the neutron diffusion hybrid equation, in cartesian geometry with external neutron sources to predict the subcritical multiplication of neutrons in a pressurized water reactor, using a 1/M curve to predict the criticality condition. A Coarse Mesh Finite Difference Method was developed for the adjoint flux calculation and to obtain the reactivity values of the reactor. The results obtained were compared with benchmark values in order to validate the methodology presented in this paper.
International Nuclear Information System (INIS)
Costa da Silva, Adilson; Carvalho da Silva, Fernando; Senra Martinez, Aquilino
2011-01-01
Highlights: → We proposed a new neutron diffusion hybrid equation with external neutron source. → A coarse mesh finite difference method for the adjoint flux and reactivity calculation was developed. → 1/M curve to predict the criticality condition is used. - Abstract: We used the neutron diffusion hybrid equation, in cartesian geometry with external neutron sources to predict the subcritical multiplication of neutrons in a pressurized water reactor, using a 1/M curve to predict the criticality condition. A Coarse Mesh Finite Difference Method was developed for the adjoint flux calculation and to obtain the reactivity values of the reactor. The results obtained were compared with benchmark values in order to validate the methodology presented in this paper.
Conceptual design based on scale laws and algorithms for sub-critical transmutation reactors
Energy Technology Data Exchange (ETDEWEB)
Lee, Kwang Gu; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1997-12-31
In order to conduct the effective integration of computer-aided conceptual design for integrated nuclear power reactor, not only is a smooth information flow required, but also decision making for both conceptual design and construction process design must be synthesized. In addition to the aboves, the relations between the one step and another step and the methodologies to optimize the decision variables are verified, in this paper especially, that is, scaling laws and scaling criteria. In the respect with the running of the system, the integrated optimization process is proposed in which decisions concerning both conceptual design are simultaneously made. According to the proposed reactor types and power levels, an integrated optimization problems are formulated. This optimization is expressed as a multi-objective optimization problem. The algorithm for solving the problem is also presented. The proposed method is applied to designing a integrated sub-critical reactors. 6 refs., 5 figs., 1 tab. (Author)
Ahmed, Rafay; Wing Lun Law, Alan; Cheung, Tsz Wing; Lau, Condon
2017-07-01
Subcritical calvarial defects are important to study bone regeneration during healing. In this study 1mm calvarial defects were created using trephine in the parietal bones of Sprague-Dawley rats (n=7) that served as in vivo defects. Subjects were sacrificed after 7 days and the additional defects were created on the harvested skull with the same method to serve as control defects. Raman spectroscopy is established to investigate mineral/matrix ratio, carbonate/phosphate ratio and crystallinity of three different surfaces; in vivo defects, control defects and normal surface. Results show 21% and 23% decrease in mineral/matrix after 7 days of healing from surface to in vivo and control to in vivo defects, respectively. Carbonate to phosphate ratio was found to be increased by 39% while crystallinity decreased by 26% in both surface to in vivo and control to in vivo defects. This model allows to study the regenerated bone without mechanically perturbing healing surface.
Accelerator-driven sub-critical target concept for transmutation of nuclear wastes
International Nuclear Information System (INIS)
Van Tuyle, G.J.; Todosow, M.; Aronson, A.L.; Takahashi, H.; Geiger, M.J.
1991-01-01
A means of transmuting key long-lived nuclear wastes, primarily the minor actinides (Np, Am, Cm) and iodine, using a hybrid proton accelerator and sub-critical lattice, is proposed. By partitioning the components of the light water reactor (LWR) spent fuel and by transmuting key elements, such as the plutonium, the minor actinides, and a few of the long-lived fission products, some of the most significant challenges in building a waste repository can be substantially reduced. The proposed machine, based on the described PHOENIX Concept, would transmute the minor actinides and the iodine produced by 75 LWRs, and would generate usable electricity (beyond that required to run the large accelerator) of 850 MW e . 19 refs., 20 figs
Comparing DNS and Experiments of Subcritical Flow Past an Isolated Surface Roughness Element
Doolittle, Charles; Goldstein, David
2009-11-01
Results are presented from computational and experimental studies of subcritical roughness within a Blasius boundary layer. This work stems from discrepancies presented by Stephani and Goldstein (AIAA Paper 2009-585) where DNS results did not agree with hot-wire measurements. The near wake regions of cylindrical surface roughness elements corresponding to roughness-based Reynolds numbers Rek of about 202 are of specific concern. Laser-Doppler anemometry and flow visualization in water, as well as the same spectral DNS code used by Stephani and Goldstein are used to obtain both quantitative and qualitative comparisons with previous results. Conclusions regarding previous studies will be presented alongside discussion of current work including grid resolution studies and an examination of vorticity dynamics.
Preliminary analysis of typical transients in fusion driven subcritical system (FDS-I)
International Nuclear Information System (INIS)
Bai Yunqing; Ke Yan; Wu Yican
2007-01-01
The potential safety characteristic is expected as one of the advantages of fusion-driven subcritical system (FDS-I) for the transmutation and incineration of nuclear waste compared with the critical reactor. Transients of the FDS-I may occur due to the perturbation of external neutron source, the failure of functional device, and the occurrence of the uncontrolled event. As typical transient scenarios, the following cases were analyzed: unprotected plasma overpower (UPOP), unprotected loss of flow (ULOF), unprotected transient overpower (UTOP). The transient analyses for the FDS-I were performed with a coupled two-dimensional thermal-hydraulics and neutronics transient analysis code NTC2D. The negative feedback of reactivity is the interesting safety feature of FDS-I as temperature increase, due to the fuel form of the circulating particle. The present simulation results showed that the current FDS-I design has a resistance against severe transient scenarios. (author)
Present status of Monte Carlo seminar for sub-criticality safety analysis in Japan
International Nuclear Information System (INIS)
Sakurai, Kiyoshi
2003-01-01
This paper provides overview of the methods and results of a series of sub-criticality safety analysis seminars for nuclear fuel cycle facility with the Monte Carlo method held in Japan from July 2000 to July 2003. In these seminars, MCNP-4C2 system (MS-DOS version) was installed in note-type personal computers for participants. Fundamental theory of reactor physics and Monte Carlo simulation as well as the contents of the MCNP manual were lectured. Effective neutron multiplication factors and neutron spectra were calculated for some examples such as JCO deposit tank, JNC uranium solution storage tank, JNC plutonium solution storage tank and JAERI TCA core. Management for safety of nuclear fuel cycle facilities was discussed in order to prevent criticality accidents in some of the seminars. (author)
Subcritical measurements with a cylindrical tank of Pu-U nitrate
International Nuclear Information System (INIS)
Mihalczo, J.T.; Valentine, T.E.; King, W.T.
1997-01-01
This series of measurements with a mixed Pu-U nitrate solution (280 g Pu/liter, 180 g U/liter) in a 35.54-cm-diam cylindrical tank provides a wide variety of experimental data for subcritical configurations that can be used to verify calculational methods and nuclear data. The Pu contained 7.85 wt% 240 Pu and the uranium was natural uranium. The measurements performed were: inverse count rate, prompt neutron decay constants, inverse kinetics, and frequency analysis by the 252 Cf source driven method. These data are presented in sufficient detail that the results of the experiments can be calculated directly. For purposes of extrapolating to the delayed critical height the ratio of spectral densities was linear with height and thus provided the best estimate of critical height
Conceptual study of high power proton linac for accelerator driven subcritical nuclear power system
International Nuclear Information System (INIS)
Yu Qingchang; Ouyang Huafu; Xu Taoguang
2002-01-01
As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. The ADS accelerator presented by the authors consists of a 5 MeV radio-frequency quadrupole, a 100 MeV independently phased superconducting cavity linac and a 1 GeV elliptical superconducting cavity linac. The accelerating structures and main parameters are determined and the research and development plan is considered
Source term determination from subcritical multiplication measurements at Koral-1 reactor
International Nuclear Information System (INIS)
Blazquez, J.B.; Barrado, J.M.
1978-01-01
By using an AmBe neutron source two independent procedures have been settled for the zero-power experimental fast-reactor Coral-1 in order to measure the source term which appears in the point kinetical equations. In the first one, the source term is measured when the reactor is just critical with source by taking advantage of the wide range of the linear approach to critical for Coral-1. In the second one, the measurement is made in subcritical state by making use of the previous calibrated control rods. Several applications are also included such as the measurement of the detector dead time, the determinations of the reactivity of small samples and the shape of the neutron importance of the source. (author)
Directory of Open Access Journals (Sweden)
Yu-Xuan Fu
2018-02-01
Full Text Available The FitzHugh–Nagumo model is improved to consider the effect of the electromagnetic induction on single neuron. On the basis of investigating the Hopf bifurcation behavior of the improved model, stochastic resonance in the stochastic version is captured near the bifurcation point. It is revealed that a weak harmonic oscillation in the electromagnetic disturbance can be amplified through stochastic resonance, and it is the cooperative effect of random transition between the resting state and the large amplitude oscillating state that results in the resonant phenomenon. Using the noise dependence of the mean of interburst intervals, we essentially suggest a biologically feasible clue for detecting weak signal by means of neuron model with subcritical Hopf bifurcation. These observations should be helpful in understanding the influence of the magnetic field to neural electrical activity.
Conceptual design based on scale laws and algorithms for sub-critical transmutation reactors
Energy Technology Data Exchange (ETDEWEB)
Lee, Kwang Gu; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1998-12-31
In order to conduct the effective integration of computer-aided conceptual design for integrated nuclear power reactor, not only is a smooth information flow required, but also decision making for both conceptual design and construction process design must be synthesized. In addition to the aboves, the relations between the one step and another step and the methodologies to optimize the decision variables are verified, in this paper especially, that is, scaling laws and scaling criteria. In the respect with the running of the system, the integrated optimization process is proposed in which decisions concerning both conceptual design are simultaneously made. According to the proposed reactor types and power levels, an integrated optimization problems are formulated. This optimization is expressed as a multi-objective optimization problem. The algorithm for solving the problem is also presented. The proposed method is applied to designing a integrated sub-critical reactors. 6 refs., 5 figs., 1 tab. (Author)
Muharja, Maktum; Junianti, Fitri; Ranggina, Dian; Nurtono, Tantular; Widjaja, Arief
2018-02-01
The objective of this work is to develop an integrated green process of subcritical water (SCW), enzymatic hydrolysis and fermentation of coconut husk (CCH) to biohydrogen. The maximum sugar yield was obtained at mild severity factor. This was confirmed by the degradation of hemicellulose, cellulose and lignin. The tendency of the changing of sugar yield as a result of increasing severity factor was opposite to the tendency of pH change. It was found that CO 2 gave a different tendency of severity factor compared to N 2 as the pressurizing gas. The result of SEM analysis confirmed the structural changes during SCW pretreatment. This study integrated three steps all of which are green processes which ensured an environmentally friendly process to produce a clean biohydrogen. Copyright © 2017 Elsevier Ltd. All rights reserved.
FINAL DESIGN REVIEW REPORT Subcritical Experiments Gen 2, 3-ft Confinement Vessel Weldment
Energy Technology Data Exchange (ETDEWEB)
Romero, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-09-28
A Final Design Review (FDR) of the Subcritical Experiments (SCE) Gen 2, 3-ft. Confinement Vessel Weldment was held at Los Alamos National Laboratory (LANL) on September 14, 2017. The review was a focused review on changes only to the confinement vessel weldment (versus a system design review). The changes resulted from lessons-learned in fabricating and inspecting the current set of confinement vessels used for the SCE Program. The baseline 3-ft. confinement vessel weldment design has successfully been used (to date) for three (3) high explosive (HE) over-tests, two (2) fragment tests, and five (5) integral HE experiments. The design team applied lessons learned from fabrication and inspection of these vessel weldments to enhance fit-up, weldability, inspection, and fitness for service evaluations. The review team consisted of five (5) independent subject matter experts with engineering design, analysis, testing, fabrication, and inspection experience. The
Conceptual study of high power proton linac for accelerator driven subcritical nuclear power system
Yu Qi; Ouyang Hua Fu; Xu Tao Guang
2001-01-01
As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. The ADS accelerator presented by the consists of a 5 MeV radio-frequency quadrupole, a 100 MeV independently phased superconducting cavity linac and a 1 GeV elliptical superconducting cavity linac. The accelerating structures and main parameters are determined and the research and development plan is considered
Parametrization in models of subcritical glass fracture: Activation offset and concerted activation
Rodrigues, Bruno Poletto; Hühn, Carolin; Erlebach, Andreas; Mey, Dorothea; Sierka, Marek; Wondraczek, Lothar
2017-08-01
There are two established but fundamentally different empirical approaches to parametrize the rate of subcritical fracture in brittle materials. While both are relying on a thermally activated reaction of bond rupture, the difference lies in the way as to how the externally applied stresses affect the local energy landscape. In the consideration of inorganic glasses, the strain energy is typically taken as an off-set on the activation barrier. As an alternative interpretation, the system’s volumetric strain-energy is added to its thermal energy. Such an interpretation is consistent with the democratic fiber bundle model. Here, we test this approach of concerted activation against macroscopic data of bond cleavage activation energy, and also against ab initio quantum chemical simulation of the energy barrier for cracking in silica. The fact that both models are able to reproduce experimental observation to a remarkable degree highlights the importance of a holistic consideration towards non-empirical understanding.
Subcritical crack growth and other time- and environment-dependent behavior in crustal rocks
Swanson, P. L.
1984-01-01
Stable crack growth strongly influences both the fracture strength of brittle rocks and some of the phenomena precursory to catastrophic failure. Quantification of the time and environment dependence of fracture propagation is attempted with the use of a fracture mechanics technique. Some of the difficulties encountered when applying techniques originally developed for simple synthetic materials to complex materials like rocks are examined. A picture of subcritical fracture propagation is developed that embraces the essential ingredients of the microstructure, a microcrack process zone, and the different roles that the environment plays. To do this, the results of (1) fracture mechanics experiments on five rock types, (2) optical and scanning electron microscopy, (3) studies of microstructural aspects of fracture in ceramics, and (4) exploratory tests examining the time-dependent response of rock to the application of water are examined.
Device for investigating subcritical crack growth of RPV steel specimens under BWR conditions
International Nuclear Information System (INIS)
Anders, D.; Ahlf, J.
1983-01-01
An experiment is being prepared to investigate the subcritical crack growth of RPV steel specimens under cyclic load and under the environmental conditions of a BWR with regard to primary water and irradiation. The experiment will be carried out in the VAK reactor Kahl which is a boiling water reactor operating at 71 bar, 286 0 C and generating 16 MW/sub e/. The experimental setup is composed of an open frame to which a string consisting of five compact tension speciments (40 mm thickness) and connecting links is fixed. The specimen chain is set under cyclic load by a pneumatically actuated bellows unit which is attached to the frame top. Specimen strain and crack opening are measured by linear differential transformers; for temperature distribution measurements in the specimens thermocouples are applied
International Nuclear Information System (INIS)
Bieselt, R.; Wolf, M.
1995-01-01
Nuclear power plant piping systems - those still in their original as-built condition as well as upgraded designs - are subject to safety analysis. In order to limit the consequences of postulated piping failures, the basic safety concept incorporating rupture preclusion criteria is applied to specific high-energy piping systems. Leak-before-break analyses are also conducted within the framework of this concept. These analyses serve to determine the potential consequences of jet and reaction forces due to maximum subcritical leakage cracks while also establishing the minimum crack sizes that would be reliably detectable by the leakage rates resulting from these cracks. The boundary conditions for these analyses are not clearly defined. Using various examples as a basis, this paper presents and discusses how the leak-before-break concept can be applied. (orig.)
Equilibria of ternary system Acetic Acid—Water—CO2 under subcritical conditions
DEFF Research Database (Denmark)
JIMENEZ GUTIERREZ, Jose M. (Chema); Mussatto, Solange I.; TSOU, Joana
Carbon dioxide has been subject of research in the past decades, with special attention targeting different uses of this “greenhouse” gas as raw material, technological fluid, building block or as a carbon supply for fuels, turning it from a pollutant to a green resource. Albeit likely...... it will be returned to the atmosphere (as part of the carbon cycle), CO2 is an inexpensive and clean source with numerous industrial applications in diverse fields: from chemical processes to biotechnological purposes [1]. Many of these studies have been focused on supercritical CO2, due to its broad potential uses...... in a very wide range of applications. However, those conditions, especially the levels of high pressure required at larger scale, involve certain equipment limitations. An alternative to overcome those restrictions is to use subcritical carbon dioxide. In order to understand the different systems...
Klotz, L.; Lemoult, G.; Frontczak, I.; Tuckerman, L. S.; Wesfreid, J. E.
2017-04-01
We present an experimental setup that creates a shear flow with zero mean advection velocity achieved by counterbalancing the nonzero streamwise pressure gradient by moving boundaries, which generates plane Couette-Poiseuille flow. We obtain experimental results in the transitional regime for this flow. Using flow visualization, we characterize the subcritical transition to turbulence in Couette-Poiseuille flow and show the existence of turbulent spots generated by a permanent perturbation. Due to the zero mean advection velocity of the base profile, these turbulent structures are nearly stationary. We distinguish two regions of the turbulent spot: the active turbulent core, which is characterized by waviness of the streaks similar to traveling waves, and the surrounding region, which includes in addition the weak undisturbed streaks and oblique waves at the laminar-turbulent interface. We also study the dependence of the size of these two regions on Reynolds number. Finally, we show that the traveling waves move in the downstream (Poiseuille) direction.
Houltz, B; Darpo, B; Edvardsson, N; Blomstrom, P; Brachmann, J; Crijns, Harry J. G. M.; Jensen, Steen M.; Svernhage, E; Vallin, H; Swedberg, K
The aim of this study was to identify predictors of torsades de pointes (TdP) in patients with atrial fibrillation (AF) or flutter exposed to the Class III antiarrhythmic drug almokalant. TdP can be caused by drugs that prolong myocardial repolarization. One hundred patients received almokalant
Powers, Lydia
The National Museum of Play at The Strong's Dancing Wings Butterfly Garden is a tropical rainforest that allows visitors to step into the world of butterflies, but lacks a more comprehensive educational element to teach visitors additional information about butterflies. Flutter-by Interactive Butterfly is a thesis project designed to enhance younger visitors' experience of the Dancing Wings Butterfly Garden with an interactive educational application that aligns with The Strong's mission of encouraging learning, creativity, and discovery. This was accomplished through a series of fun and educational games and animations, designed for use as a kiosk outside the garden and as a part of The Strong's website. Content, planning, and organization of this project has been completed through research and observation of the garden in the following areas: its visitors, butterflies, best usability practices for children, and game elements that educate and engage children. Flutter-by Interactive Butterfly teaches users about the butterfly's life cycle, anatomy, and characteristics as well as their life in the Dancing Wings Butterfly Garden. Through the use of the design programs Adobe Illustrator, Flash, and After Effects; the programming language ActionScript3.0; a child-friendly user interface and design; audio elements and user takeaways, Flutter-by Interactive Butterfly appeals to children of all ages, interests, and learning styles. The project can be viewed at lydiapowers.com/Thesis/FlutterByButterfly.html
SUTTORP, MJ; KINGMA, JH; JESSURUN, ER; LIEAHUEN, L; VANHEMEL, NM; LIE, KI
1990-01-01
In a single-blind randomized study, the efficacy and safety of intravenous propafenone (2 mg/kg body weight per 10 min) versus flecainide (2 mg/kg per 10 min) were assessed in 50 patients with atrial fibrillation or flutter. Treatment was considered successful if sinus rhythm occurred within 1 h.
Czech Academy of Sciences Publication Activity Database
Vlček, Václav; Štěpán, M.; Zolotarev, Igor; Kozánek, Jan
2016-01-01
Roč. 821, č. 2016 (2016), s. 144-151 ISSN 1660-9336 R&D Projects: GA ČR GA13-10527S Institutional support: RVO:61388998 Keywords : aeroelasticity * flutter * interferometry * subsonic flow Subject RIV: BI - Acoustics
Characterizing subcritical assemblies with time of flight fixed by energy estimation distributions
Monterial, Mateusz; Marleau, Peter; Pozzi, Sara
2018-04-01
We present the Time of Flight Fixed by Energy Estimation (TOFFEE) as a measure of the fission chain dynamics in subcritical assemblies. TOFFEE is the time between correlated gamma rays and neutrons, subtracted by the estimated travel time of the incident neutron from its proton recoil. The measured subcritical assembly was the BeRP ball, a 4.482 kg sphere of α-phase weapons grade plutonium metal, which came in five configurations: bare, 0.5, 1, and 1.5 in iron, and 1 in nickel closed fitting shell reflectors. We extend the measurement with MCNPX-PoliMi simulations of shells ranging up to 6 inches in thickness, and two new reflector materials: aluminum and tungsten. We also simulated the BeRP ball with different masses ranging from 1 to 8 kg. A two-region and single-region point kinetics models were used to model the behavior of the positive side of the TOFFEE distribution from 0 to 100 ns. The single region model of the bare cases gave positive linear correlations between estimated and expected neutron decay constants and leakage multiplications. The two-region model provided a way to estimate neutron multiplication for the reflected cases, which correlated positively with expected multiplication, but the nature of the correlation (sub or superlinear) changed between material types. Finally, we found that the areal density of the reflector shells had a linear correlation with the integral of the two-region model fit. Therefore, we expect that with knowledge of reflector composition, one could determine the shell thickness, or vice versa. Furthermore, up to a certain amount and thickness of the reflector, the two-region model provides a way of distinguishing bare and reflected plutonium assemblies.
Neutron spectra calculation and doses in a subcritical nuclear reactor based on thorium
International Nuclear Information System (INIS)
Medina C, D.; Hernandez A, P. L.; Hernandez D, V. M.; Vega C, H. R.; Sajo B, L.
2015-10-01
This paper describes a heterogeneous subcritical nuclear reactor with molten salts based on thorium, with graphite moderator and a source of 252 Cf, whose dose levels in the periphery allows its use in teaching and research activities. The design was done by the Monte Carlo method with the code MCNP5 where the geometry, dimensions and fuel was varied in order to obtain the best design. The result is a cubic reactor of 110 cm side with graphite moderator and reflector. In the central part they have 9 ducts that were placed in the direction of axis Y. The central duct contains the source of 252 Cf, of 8 other ducts, are two irradiation ducts and the other six contain a molten salt ( 7 LiF - BeF 2 - ThF 4 - UF 4 ) as fuel. For design the k eff , neutron spectra and ambient dose equivalent was calculated. In the first instance the above calculation for a virgin fuel was called case 1, then a percentage of 233 U was used and the percentage of Th was decreased and was called case 2. This with the purpose to compare two different fuels working inside the reactor. In the case 1 a value was obtained for the k eff of 0.13 and case 2 of 0.28, maintaining the subcriticality in both cases. In the dose levels the higher value is in case 2 in the axis Y with a value of 3.31 e-3 ±1.6% p Sv/Q this value is reported in for one. With this we can calculate the exposure time of personnel working in the reactor. (Author)
International Nuclear Information System (INIS)
Talamo, A.; Gohar, M.Y.A.; Rabiti, C.
2008-01-01
One of the most reliable experimental methods for measuring the kinetic parameters of a subcritical assembly is the Sjoestrand method applied to the reaction rate generated from a pulsed neutron source. This study developed a new analytical methodology for characterizing the kinetic parameters of a subcritical assembly using the Sjoestrand method, which allows comparing the analytical and experimental time dependent reaction rates and the reactivity measurements. In this methodology, the reaction rate, detector response, is calculated due to a single neutron pulse using MCNP/MCNPX computer code or any other neutron transport code that explicitly simulates the fission delayed neutrons. The calculation simulates a single neutron pulse over a long time period until the delayed neutron contribution to the reaction is vanished. The obtained reaction rate is superimposed to itself, with respect to the time, to simulate the repeated pulse operation until the asymptotic level of the reaction rate, set by the delayed neutrons, is achieved. The superimposition of the pulse to itself was calculated by a simple C computer program. A parallel version of the C program is used due to the large amount of data being processed, e.g. by the Message Passing Interface (MPI). The new calculation methodology has shown an excellent agreement with the experimental results available from the YALINA-Booster facility of Belarus. The facility has been driven by a Deuterium-Deuterium or Deuterium-Tritium pulsed neutron source and the (n,p) reaction rate has been experimentally measured by a 3 He detector. The MCNP calculation has utilized the weight window and delayed neutron biasing variance reduction techniques since the detector volume is small compared to the assembly volume. Finally, this methodology was used to calculate the IAEA benchmark of the YALINA-Booster experiment
Burnup studies of the subcritical fusion-driven in-zinerator
International Nuclear Information System (INIS)
Persson, C. M.; Gudowski, W.; Venneri, F.
2007-01-01
A fusion-driven subcritical core, 'In-Zinerator', has been proposed for nuclear waste transmutation [1]. In this concept, a powerful Z-pinch neutron source will produce pulses of 14 MeV neutrons that multiply in a surrounding subcritical core consisting of spent fuel from the LWR fuel cycle or from deep burn high temperature reactors. The proposed design has pulse frequency 0.1 Hz and a thermal power of 3 GWth. The Z-pinch fusion experiment is located at Sandia Laboratories, USA, and can today fire once a day. However, investigations have been made how to increase the frequency to several fires per minute. Each fire yields 300 MJ corresponding to 1020 neutrons per pulse. The source chamber will in the In-Zinerator concept be surrounded by spent fuel to reach an effective multiplication factor, k e ff, of 0.97. The core will be cooled by liquid lead. In this paper, the burnup of different fuel compositions in the In-Zinerator will be studied as function of initial k e ff. The Monte Carlo based continuous energy burnup code MCB [2][3]will be used. References: [1] B.B. Cipiti, Fusion Transmutation of Waste and the Role of the In-Zinerator in the Nuclear Fuel Cycle, Sandia Report SAND2006-3522, Sandia National Laboratories, USA, 2006. [2] J. Cetnar, J Wallenius and W Gudowski, MCB: A continuous energy Monte-Carlo burnup simulation code, Actinide and fission product partitioning and transmutation, Proc. of the Fifth Int. Information Exchange Meeting, Mol, Belgium, 25-27 November 1998, 523, OECD/NEA, 1998. [3] http://www.nea.fr/abs/html/nea-1643.html
Neutronic Design of an Accelerator Driven Sub-Critical Research Reactor
International Nuclear Information System (INIS)
Pesic, M.
2002-01-01
Conceptual design of an accelerator driven sub-critical research reactor (ADSRR), as a new project in the Vinca Institute of Nuclear Sciences, is suggested for support to the Ministry of science, technologies and development of Republic Serbia, Yugoslavia. This paper show initial results of neutronic analyses of the proposed ADSRR carried out by Monte Carlo based MCNP and SHIELD codes. According to the proposal, the ADSRR would be constructed, in a later phase, at high-energy channel H5B of the VINCY cyclotron of the TESLA Accelerator Installation, that is under completion in the Vinca Institute. The fuel elements of 80%-enriched uranium dioxide dispersed in aluminium matrix, available in the Vinca Institute, are proposed for the ADSRR core design. The HEU fuel elements are placed in aluminium tubes filled by the 'primary moderator' - light water. These 'fuel tubes' are placed in a square lattice within lead matrix in a stainless steel tank. The lead is used as a 'secondary moderator' in the core and as the axial and radial reflector. Such design of the ADSRR shows that this small low neutron flux system can be used as an experimental 'demonstration' ADS with some neutron characteristics similar to proposed well-known lead moderated and cooled power sub-critical ADS with intermediate or fast neutron spectrum. The proposed experimental ADSRR, beside usage as a valuable research machine in reactor and neutron physics, will contribute to following and developing new nuclear technologies in the country, useful for eventual nuclear power option and nuclear waste incineration in future. (author)
Directory of Open Access Journals (Sweden)
Skorupan Dara
2002-01-01
Full Text Available Subcritical and supercritical extractions are novel, non destructive techniques which can be applied for the removal of hazardous compounds from contaminated soil without any changes of the soil composition and structure. The aim of the presented review paper is to give information on up-to day results of this method commonly applied by several institutions worldwide. Interest in the application of SC CO2 has been more expressed in the last two decades, which may be related to its favorable characteristics (non-toxic, non-flammable, increase diffusion into small pores, low viscosity under SC conditions, low price and others. However, interest in wet oxidation (WO and especially in SCWO (the application of water under supercritical conditions with air has also increased in the last few years. Interest in H2O as a SC fluid, as well as in extraction with water under subcritical conditions may also be related to specific characteristics and the enhanced rate of extraction. Moreover, the solubility of some specific compounds present in soil can be easily changed by adjusting the pressure and temperature of extraction. The high price of the units designed to operate safely at a pressure and temperature much higher than the a critical one of the applied fluids is the main reason why, at present, there is no more broader application of such techniques for the removal hazardous materials from contaminated soil. In the present paper, among many literature citations and their overall review, some specific details related to the development of specific analytical methods under SC conditions are also considered.
Zhu Qing Fu; Li Yi; Xia Pu; Zheng Wu Qing; Zhu Guo Sheng
2003-01-01
The paper is concerned in the source-jerk method used to measure the sub-criticality, and the sub-critical experiment facility, which is used for the study on the neutronics of ADS, driven by external neutron source sup 2 sup 5 sup 2 Cf. The effects of the location of neutron source and material buffer where is at the location of the pipe of proton beam and target of fission-product dispersion on the sub-criticality of reactor are studied by source-jerk method
International Nuclear Information System (INIS)
2005-01-01
The Workshop on Sub-critical Neutron Production held at the University of Maryland and the Eisenhower Institute on 11-13 October 2004 brought together members of fusion, fission and accelerator technical communities to discuss issues of spent fuel, nonproliferation, reactor safety and the use of neutrons for sub-critical operation of nuclear reactors. The Workshop strongly recommended that the fusion community work closely with other technical communities to ensure that a wider range of technical solutions is available to solve the spent fuel problem and to utilize the current actinide inventories. Participants of the Workshop recommended that a follow-on Workshop, possibly under the aegis of the IAEA, should be held in the first half of the year 2005. The Consultancy Meeting is the response to this recommendation. The objectives of the Consultancy meeting were to hold discussions on the role of fusion/fission systems in sub-critical operations of nuclear reactors. The participants agreed that development of innovative (fourth generation) fission reactors, advanced fuel cycle options, and disposition of existing spent nuclear fuel inventories in various Member Sates can significantly benefit from including sub-critical systems, which are driven by external neutron sources. Spallation neutrons produced by accelerators have been accepted in the past as the means of driving sub-critical reactors. The accelerator community deserves credit in pioneering this novel approach to reactor design. Progress in the design and operation of fusion devices now offers additional innovative means, broadening the range of sub-critical operations of fission reactors. Participants felt that fusion should participate with accelerators in providing a range of technical options in reactor design. Participants discussed concrete steps to set up a small fusion/fission system to demonstrate actinide burning in the laboratory and what advice should be given to the Agency on its role in
Eppes, M. C.; Hallet, B.; Hancock, G. S.; Mackenzie-Helnwein, P.; Keanini, R.
2016-12-01
The formation and diminution of rock debris, sediment and soil at and near Earth's surface is driven in large part by in situ, non-transport related, rock cracking. Given the relatively low magnitude stresses that arise in surface and near-surface settings, this production and diminution of granular material is likely strongly influenced and/or driven by subcritical crack growth (Eppes et al., 2016), cracking that occurs under stress loading conditions much lower than a rock's strength as typically measured in the laboratory under rapid loading. Despite a relatively sound understanding of subcritical crack growth through engineering and geophysical studies, its geomorphic and sedimentologic implications have only been minimally explored. Here, based on existing studies, we formulate several hypotheses to predict how weathering-induced stresses combined with the subcritical crack growth properties of rock may influence sediment size distribution. For example, subcritical crack growth velocity (v) can be described by v = CKIn where KI is the mode I (simple opening mode) stress intensity factor, a function of tensile stress at the crack tip and crack length; C is a rock- and environment-dependent constant; and n is material constant, the subcritical crack growth index. Fracture length and spacing in rock is strongly dependent on n, where higher n values result in fewer, more distally spaced cracks (e.g. Olsen, 1993). Thus, coarser sediment might be expected from rocks with higher n values. Weathering-related stresses such as thermal stresses and mineral hydration, however, can disproportionally stress boundaries between minerals with contrasting thermal or chemical properties and orientation, resulting in granular disintegration. Thus, rocks with properties favorable to inducing these stresses might produce sediment whose size is reflective of its constituent grains. We begin to test these hypotheses through a detailed examination of crack and rock characteristics in
International Nuclear Information System (INIS)
Schikorr, W.M.
2001-01-01
The neutron kinetic and the reactor dynamic behavior of Accelerator Driven Systems (ADS) is significantly different from those of conventional power reactor systems currently in use for the production of power. It is the objective of this study to examine and to demonstrate the intrinsic differences of the kinetic and dynamic behavior of accelerator driven systems to typical plant transient initiators in comparison to the known, kinetic and dynamic behavior of critical thermal and fast reactor systems. It will be shown that in sub-critical assemblies, changes in reactivity or in the external neutron source strength lead to an asymptotic power level essentially described by the instantaneous power change (i.e. prompt jump). Shutdown of ADS operating at high levels of sub-criticality, (i.e. k eff ∼0.99), without the support of reactivity control systems (such as control or safety rods), may be problematic in case the ability of cooling of the core should be impaired (i.e. loss of coolant flow). In addition, the dynamic behavior of sub-critical systems to typical plant transients such as protected or unprotected loss of flow (LOF) or heat sink (LOH) transients are not necessarily substantially different from the plant dynamic behavior of critical systems if the reactivity feedback coefficients of the ADS design are unfavorable. As expected, the state of sub-criticality and the temperature feedback coefficients, such as Doppler and coolant temperature coefficient, play dominant roles in determining the course and direction of plant transients. Should the combination of these safety coefficients be very unfavorable, not much additional margin in safety may be gained by making a critical system only sub-critical (i.e. k eff ∼0.95). A careful optimization procedure between the selected operating level of sub-criticality, the safety reactivity coefficients and the possible need for additional reactivity control systems seems, therefore, advisable during the early
International Nuclear Information System (INIS)
SCHWINKENDORF, K.N.
2006-01-01
With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k eff = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can supply useful
A rapid method for estimating polychlorinated biphenyl (PCB) concentrations in contaminated soils and sediments has been developed by coupling static subcritical water extraction with solid-phase microextraction (SPME). Soil, water, and internal standards are placed in a seale...
International Nuclear Information System (INIS)
Endo, Tomohiro; Kitamura, Yasunori; Yamane, Yoshihiro
2003-01-01
We have studied a measurement of subcriticality by using the neutron correlation method. Furuhashi proposed an absolute measurement of subcriticality by using the third order neutron correlation factor X in addition to the second order neutron correlation factor Y. In actual experiments, the number of neutron counts data is not infinity so that we take the effect of the finite nature of the neutron counts data into account. We derived new formulas in consideration of the number of data and verified them. (author)
International Nuclear Information System (INIS)
Lee, Seung Min
2009-01-01
This work presents a theoretical study of reactor kinetics focusing on the methodology of calculation and the experimental measurements of the so-called kinetic parameters. A comparison between the methodology based on the Dulla's formalism and the classical method is made. The objective is to exhibit the dependence of the parameters on subcriticality level and perturbation. Two different slab type systems were considered: thermal one and fast one, both with homogeneous media. One group diffusion model was used for the fast reactor, and for the thermal system, two groups diffusion model, considering, in both case, only one precursor's family. The solutions were obtained using the expansion method. Also, descriptions of the main experimental methods of measurements of the kinetic parameters are presented in order to put a question about the compatibility of these methods in subcritical region. (author)
DEFF Research Database (Denmark)
Beier, Søren Prip; Jonsson, Gunnar Eigil
2007-01-01
A vibrating membrane bioreactor, in which the fouling problems are reduced by vibrating a hollow fiber membrane module, has been tested in constant flux microfiltration above (supra-critical) and below (sub-critical) an experimentally determined critical flux. Suspensions of bakers yeast cells were...... chosen as filtration medium (dry weight 4 g/l). The influence of extracellular polymeric substances (EPS) from the yeast cells is evaluated by UV absorbance measurements of the bulk supernatant during filtration. The critical flux seems to be an interval or a relative value rather than an absolute value....... Filtration just below the critical flux (sub-critical) seems to be a good compromise between acceptable flux level and acceptable increase of fouling resistance and trans-membrane pressure (TMP) in a given time period. EPS from the yeast cells causes the membrane module to foul and part of the fouling...
Long-Time Behavior and Critical Limit of Subcritical SQG Equations in Scale-Invariant Sobolev Spaces
Coti Zelati, Michele
2018-02-01
We consider the subcritical SQG equation in its natural scale-invariant Sobolev space and prove the existence of a global attractor of optimal regularity. The proof is based on a new energy estimate in Sobolev spaces to bootstrap the regularity to the optimal level, derived by means of nonlinear lower bounds on the fractional Laplacian. This estimate appears to be new in the literature and allows a sharp use of the subcritical nature of the L^∞ bounds for this problem. As a by-product, we obtain attractors for weak solutions as well. Moreover, we study the critical limit of the attractors and prove their stability and upper semicontinuity with respect to the strength of the diffusion.
Directory of Open Access Journals (Sweden)
S. R. M. Moreschi
2006-06-01
Full Text Available In this work, the hydrolysis of fresh and dried turmeric (Curcuma longa L. and ginger (Zingiber officinale R. in the presence of subcritical water + CO2 was studied. The hydrolysis of ginger and turmeric bagasses from supercritical fluid extraction was also studied. The reactions were done using subcritical water and CO2 at 150 bar, 200 °C and reaction time of 11 minutes; the degree of reaction was monitored through the amount of starch hydrolyzed. Process yields were calculated using the amount of reducing and total sugars formed. The effects of supercritical fluid extraction in the starchy structures were observed by scanning electron microscopy. Higher degree of hydrolysis (97- 98 % were obtained for fresh materials and the highest total sugar yield (74% was established for ginger bagasse. The supercritical fluid extraction did not significantly modify the degree of hydrolysis in the tested conditions.
International Nuclear Information System (INIS)
Blaise, P.; Fougeras, Ph.; Mellier, F.
2011-01-01
The Amplified Source Multiplication (ASM) method and its improved Modified Source Multiplication (MSM) method have been widely used in the CEA's EOLE and MASURCA critical facilities over the past decades for the determination of reactivity worths by using fission chambers in subcritical configurations. The ASM methodology uses relatively simple relationships between count rates of efficient miniature fission chambers located in slightly subcritical reference and perturbed configurations. While this method works quite well for small reactivity variations, the raw results need to be corrected to take into account the flux perturbation at the fission chamber location. This is performed by applying to the measurement a correction factor called MSM. This paper describes in detail both methodologies, with their associated uncertainties. Applications on absorber cluster worth in the MISTRAL-4 full MOX mock-up core and the last core loaded in MASURCA show the importance of the MSM correction on raw ASM data. (authors)
International Nuclear Information System (INIS)
Gonzalez M, J.L.; Balderas, E.G.; Rivero G, T.
1997-01-01
The National Institute of Nuclear Research (ININ) has in its installations with a nuclear subcritical reactor which was designed and constructed with the main purpose to be used in the nuclear sciences education in the Physics areas and Reactors engineering. Within the nuclear experiments that can be realized in this reactor are very interesting those about determinations of neutron and gamma fluxes spectra, since starting from these some interesting nuclear parameters can be obtained. In order to carry out this type of experiments different radioactive sources are used which exceed the permissible doses by far to human beings. Therefore it is necessary the remote handling as of the source as of detectors used in different experiments. In this work it is presented the design of an electronic system which allows the different positions inside of the tank of subcritical reactor at ININ over the radial and axial axes in manual or automatic ways. (Author)
Energy Technology Data Exchange (ETDEWEB)
Yavuz, U. [Turkish Atomic Energy Authority, Ankara (Turkey). Nuclear Safety Dept.; Zabunoolu, O.H. [Hacettepe Univ., Ankara (Turkey). Dept. of Nuclear Engineering
2006-08-15
Spent nuclear fuel resulting from reactor operation must be safely stored and managed prior to reprocessing and/or final disposal of high-level waste. Any spent fuel storage system must provide for safe receipt, handling, retrieval, and storage of spent fuel. In order to achieve the safe storage, the design should primarily provide for radiation protection, subcriticality of spent fuel, and removal of spent fuel residual heat. This article is focused on the design of a metal-shielded dry-cask storage system, which will host spent LWR fuels burned to 33 000, 45 000, and 55 000 MWd/t U and cooled for 5 or 10 years after discharge from reactor. The storage system is analyzed by taking into account radiation protection, subcriticality, and heat-removal aspects; and appropriate designs, in accordance with the international standards. (orig.)
International Nuclear Information System (INIS)
Hasheminejad, Seyyed M; Nezami, M; Aryaee Panah, M E
2012-01-01
Brief reviews on suppressing panel flutter vibrations by various active control strategies as well as utilization tunable electrorheological fluids (ERFs) for vibration control of structural systems are presented. Active suppression of the supersonic flutter motion of a simply supported sandwich panel with a tunable ERF interlayer, and coupled to an elastic foundation, is subsequently investigated. The structural formulation is based on the classical beam theory along with the Winkler–Pasternak foundation model, the ER fluid core is modeled as a first-order Kelvin–Voigt material, and the quasi-steady first-order supersonic piston theory is employed to describe the aerodynamic loading. Hamilton’s principle is used to derive a set of fully coupled dynamic equations of motion. The generalized Fourier expansions in conjunction with the Galerkin method are then employed to formulate the governing equations in the state space domain. The critical dynamic pressures at which unstable panel oscillations (coalescence of eigenvalues) occur are obtained via the p-method for selected applied electric field strengths (E = 0,2,4 kV mm −1 ). The classical Runge–Kutta time integration algorithm is subsequently used to calculate the open-loop aeroelastic response of the system in various basic loading configurations (i.e. uniformly distributed blast, gust, sonic boom, and step loads), with or without an interacting soft/stiff elastic foundation. Finally, a sliding mode control synthesis (SMC) involving the first six natural modes of the structural system is set up to actively suppress the closed-loop system response in supersonic flight conditions and under the imposed excitations. Simulation results demonstrate performance, effectiveness, and insensitivity with respect to the spillover of the proposed SMC-based control system. Limiting cases are considered and good agreements with the data available in the literature as well as with the computations made by using the