WorldWideScience

Sample records for disruption confers resistance

  1. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death.

    Science.gov (United States)

    Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J; Cheng, Qiang Shawn; D'Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M; Gonzalez Guzman, Michael J; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Ryan, Elizabeth P; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H; Lowe, Leroy; Park, Hyun Ho

    2015-06-01

    Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Early-life disruption of amphibian microbiota decreases later-life resistance to parasites.

    Science.gov (United States)

    Knutie, Sarah A; Wilkinson, Christina L; Kohl, Kevin D; Rohr, Jason R

    2017-07-20

    Changes in the early-life microbiota of hosts might affect infectious disease risk throughout life, if such disruptions during formative times alter immune system development. Here, we test whether an early-life disruption of host-associated microbiota affects later-life resistance to infections by manipulating the microbiota of tadpoles and challenging them with parasitic gut worms as adults. We find that tadpole bacterial diversity is negatively correlated with parasite establishment in adult frogs: adult frogs that had reduced bacterial diversity as tadpoles have three times more worms than adults without their microbiota manipulated as tadpoles. In contrast, adult bacterial diversity during parasite exposure is not correlated with parasite establishment in adult frogs. Thus, in this experimental setup, an early-life disruption of the microbiota has lasting reductions on host resistance to infections, which is possibly mediated by its effects on immune system development. Our results support the idea that preventing early-life disruption of host-associated microbiota might confer protection against diseases later in life.Early-life microbiota alterations can affect infection susceptibility later in life, in animal models. Here, Knutie et al. show that manipulating the microbiota of tadpoles leads to increased susceptibility to parasitic infection in adult frogs, in the absence of substantial changes in the adults' microbiota.

  3. Resistance to Disruption in a Classroom Setting

    Science.gov (United States)

    Parry-Cruwys, Diana E.; Neal, Carrie M.; Ahearn, William H.; Wheeler, Emily E.; Premchander, Raseeka; Loeb, Melissa B.; Dube, William V.

    2011-01-01

    Substantial experimental evidence indicates that behavior reinforced on a denser schedule is more resistant to disruption than is behavior reinforced on a thinner schedule. The present experiment studied resistance to disruption in a natural educational environment. Responding during familiar activities was reinforced on a multiple…

  4. Time-dependent analysis of the resistivity of post-disruption tokamak plasmas

    International Nuclear Information System (INIS)

    Bakhtiari, M.; Whyte, D. G.

    2006-01-01

    The effect of neutrals on plasma resistivity due to electron-neutral collisions is studied with respect to its effect on tokamak disruptions. The resistivity of the tokamak plasma after the thermal quench is critical in determining the current quench rate, the plasma temperature, and runaway electron generation in tokamaks through the electric field, all features which are important for mitigating the damaging effect of disruptions. It is shown that the plasma resistivity during tokamak disruptions is a time-dependent parameter which may vary with disruption time scales due to the increasing fraction of neutrals. However the effect of neutrals on resistivity is found to be small for the expected neutral fraction, mostly due to power balance considerations between radiation and Ohmic heating in the plasma

  5. Heat-resistant materials 2. Conference proceedings of the 2. international conference on heat-resistant materials

    International Nuclear Information System (INIS)

    Natesan, K.; Ganesan, P.; Lai, G.Y.

    1995-01-01

    The Second International Conference on Heat-Resistant Materials was held in Gatlinburg, Tennessee, September 11--14, 1995 and focused on materials performance in cross-cutting technologies where heat resistant materials play a large and sometimes life-and performance-limiting roles in process schemes. The scope of materials for heat-resistant applications included structural iron- and nickel-base alloys, intermetallics, and ceramics. The conference focused on materials development, performance of materials in simulated laboratory and actual service environments on mechanical and structural integrity of components, and state-of-the-art techniques for processing and evaluating materials performance. The three keynote talks described the history of heat-resistant materials, relationship between microstructure and mechanical behavior, and applications of these materials in process schemes. The technical sessions included alloy metallurgy and properties, environmental effects and properties, deformation behavior and properties, relation between corrosion and mechanical properties, coatings, intermetallics, ceramics, and materials for waste incineration. Seventy one papers have been processed separately for inclusion on the data base

  6. Alpha-tocopherol transfer protein disruption confers resistance to malarial infection in mice

    Directory of Open Access Journals (Sweden)

    Takeya Motohiro

    2010-04-01

    Full Text Available Abstract Background Various factors impact the severity of malaria, including the nutritional status of the host. Vitamin E, an intra and extracellular anti-oxidant, is one such nutrient whose absence was shown previously to negatively affect Plasmodium development. However, mechanisms of this Plasmodium inhibition, in addition to means by which to exploit this finding as a therapeutic strategy, remain unclear. Methods α-TTP knockout mice were infected with Plasmodium berghei NK65 or Plasmodium yoelii XL-17, parasitaemia, survival rate were monitored. In one part of the experiments mice were fed with a supplemented diet of vitamin E and then infected. In addition, parasite DNA damage was monitored by means of comet assay and 8-OHdG test. Moreover, infected mice were treated with chloroquine and parasitaemia and survival rate were monitored. Results Inhibition of α-tocopherol transfer protein (α-TTP, a determinant of vitamin E concentration in circulation, confers resistance to malarial infection as a result of oxidative damage to the parasites. Furthermore, in combination with the anti-malarial drug chloroquine results were even more dramatic. Conclusion Considering that these knockout mice lack observable negative impacts typical of vitamin E deficiency, these results suggest that inhibition of α-TTP activity in the liver may be a useful strategy in the prevention and treatment of malaria infection. Moreover, a combined strategy of α-TTP inhibition and chloroquine treatment might be effective against drug resistant parasites.

  7. Pavlovian conditioning enhances resistance to disruption of dogs performing an odor discrimination.

    Science.gov (United States)

    Hall, Nathaniel J; Smith, David W; Wynne, Clive D L

    2015-05-01

    Domestic dogs are used to aid in the detection of a variety of substances such as narcotics and explosives. Under real-world detection situations there are many variables that may disrupt the dog's performance. Prior research on behavioral momentum theory suggests that higher rates of reinforcement produce greater resistance to disruption, and that this is heavily influenced by the stimulus-reinforcer relationship. The present study tests the Pavlovian interpretation of resistance to change using dogs engaged in an odor discrimination task. Dogs were trained on two odor discriminations that alternated every six trials akin to a multiple schedule in which the reinforcement probability for a correct response was always 1. Dogs then received several sessions of either odor Pavlovian conditioning to the S+ of one odor discrimination (Pavlovian group) or explicitly unpaired exposure to the S+ of one odor discrimination (Unpaired group). The remaining odor discrimination pair for each dog always remained an unexposed control. Resistance to disruption was assessed under presession feeding, a food-odor disruptor condition, and extinction, with baseline sessions intervening between disruption conditions. Equivalent baseline detection rates were observed across experimental groups and odorant pairs. Under disruption conditions, Pavlovian conditioning led to enhanced resistance to disruption of detection performance compared to the unexposed control odor discrimination. Unpaired odor conditioning did not influence resistance to disruption. These results suggest that changes in Pavlovian contingencies are sufficient to influence resistance to change. © Society for the Experimental Analysis of Behavior.

  8. Circadian and Melatonin Disruption by Exposure to Light at Night Drives Intrinsic Resistance to Tamoxifen Therapy in Breast Cancer

    Science.gov (United States)

    Dauchy, Robert T.; Xiang, Shulin; Mao, Lulu; Brimer, Samantha; Wren, Melissa A.; Yuan, Lin; Anbalagan, Muralidharan; Hauch, Adam; Frasch, Tripp; Rowan, Brian G.; Blask, David E.; Hill, Steven M.

    2014-01-01

    Resistance to endocrine therapy is a major impediment to successful treatment of breast cancer. Preclinical and clinical evidence links resistance to anti-estrogen drugs in breast cancer cells with the overexpression and/or activation of various pro-oncogenic tyrosine kinases. Disruption of circadian rhythms by night shift work or disturbed sleep-wake cycles may lead to an increased risk of breast cancer and other diseases. Moreover, light exposure at night (LEN) suppresses the nocturnal production of melatonin that inhibits breast cancer growth. In this study, we used a rat model of ERα+ MCF-7 tumor xenografts to demonstrate how altering light/dark cycles with dim LEN (dLEN) speeds the development of breast tumors, increasing their metabolism and growth and conferring an intrinsic resistance to tamoxifen therapy. These characters were not produced in animals where circadian rhythms were not disrupted, or in animals subjected to dLEN if they received nocturnal melatonin replacement. Strikingly, our results also showed that melatonin acted both as a tumor metabolic inhibitor and a circadian-regulated kinase inhibitor to re-establish the sensitivity of breast tumors to tamoxifen and tumor regression. Together, our findings show how dLEN-mediated disturbances in nocturnal melatonin production can render tumors insensitive to tamoxifen. PMID:25062775

  9. Influences of the disease resistance conferred by the individual ...

    African Journals Online (AJOL)

    To research possible influences of the disease resistance conferred by different trans-resistance genes on the transgenic rice plants in their yields and grain quality, three transgenic rice lines, including two with the resistance genes Pi-d2 and Pi-d3, respectively, for rice blast, and one with the resistance gene Xa21 for rice ...

  10. Transgenic strategies to confer resistance against viruses in rice plants

    Directory of Open Access Journals (Sweden)

    Takahide eSasaya

    2014-01-01

    Full Text Available Rice (Oryza sativa L. is cultivated in more than 100 countries and supports nearly half of the world’s population. Developing efficient methods to control rice viruses is thus an urgent necessity because viruses cause serious losses in rice yield. Most rice viruses are transmitted by insect vectors, notably planthoppers and leafhoppers. Viruliferous insect vectors can disperse their viruses over relatively long distances, and eradication of the viruses is very difficult once they become widespread. Exploitation of natural genetic sources of resistance is one of the most effective approaches to protect crops from virus infection; however, only a few naturally occurring rice genes confer resistance against rice viruses. In an effort to improve control, many investigators are using genetic engineering of rice plants as a potential strategy to control viral diseases. Using viral genes to confer pathogen-derived resistance against crops is a well-established procedure, and the expression of various viral gene products has proved to be effective in preventing or reducing infection by various plant viruses since the 1990s. RNA-interference (RNAi, also known as RNA silencing, is one of the most efficient methods to confer resistance against plant viruses on their respective crops. In this article, we review the recent progress, mainly conducted by our research group, in transgenic strategies to confer resistance against tenuiviruses and reoviruses in rice plants. Our findings also illustrate that not all RNAi constructs against viral RNAs are equally effective in preventing virus infection and that it is important to identify the viral Achilles’ heel gene to target for RNAi attack when engineering plants.

  11. Quantitative genome re-sequencing defines multiple mutations conferring chloroquine resistance in rodent malaria

    Science.gov (United States)

    2012-01-01

    Background Drug resistance in the malaria parasite Plasmodium falciparum severely compromises the treatment and control of malaria. A knowledge of the critical mutations conferring resistance to particular drugs is important in understanding modes of drug action and mechanisms of resistances. They are required to design better therapies and limit drug resistance. A mutation in the gene (pfcrt) encoding a membrane transporter has been identified as a principal determinant of chloroquine resistance in P. falciparum, but we lack a full account of higher level chloroquine resistance. Furthermore, the determinants of resistance in the other major human malaria parasite, P. vivax, are not known. To address these questions, we investigated the genetic basis of chloroquine resistance in an isogenic lineage of rodent malaria parasite P. chabaudi in which high level resistance to chloroquine has been progressively selected under laboratory conditions. Results Loci containing the critical genes were mapped by Linkage Group Selection, using a genetic cross between the high-level chloroquine-resistant mutant and a genetically distinct sensitive strain. A novel high-resolution quantitative whole-genome re-sequencing approach was used to reveal three regions of selection on chr11, chr03 and chr02 that appear progressively at increasing drug doses on three chromosomes. Whole-genome sequencing of the chloroquine-resistant parent identified just four point mutations in different genes on these chromosomes. Three mutations are located at the foci of the selection valleys and are therefore predicted to confer different levels of chloroquine resistance. The critical mutation conferring the first level of chloroquine resistance is found in aat1, a putative aminoacid transporter. Conclusions Quantitative trait loci conferring selectable phenotypes, such as drug resistance, can be mapped directly using progressive genome-wide linkage group selection. Quantitative genome-wide short

  12. 3rd Annual Disruptive Technology Conference

    Science.gov (United States)

    2006-09-07

    Panel -- The Warfighter’s Perspective The Impact of Disruptive Technologies on Joint Warfighting MG Michael Vane, USA, Vice Director for Force...Structure, Resources & Assessment, Joint Staff, J-8 Panel -- Perspectives of Change: Identifying the Emerging Commercial Disruptive Technologies Decision...Mark Lucas, Board Member OSGeo, RadiantBlue Technologies Panel -- The Search for Disruptive Technologies - a “Blue Force” Multiplier Advanced

  13. Mutation of environmental mycobacteria to resist silver nanoparticles also confers resistance to a common antibiotic.

    Science.gov (United States)

    Larimer, Curtis; Islam, Mohammad Shyful; Ojha, Anil; Nettleship, Ian

    2014-08-01

    Non-tuberculous mycobacteria are a threat to human health, gaining entry to the body through contaminated water systems, where they form persistent biofilms despite extensive attempts at disinfection. Silver is a natural antibacterial agent and in nanoparticle form activity is increased by a high surface area. Silver nanoparticles (AgNPs) have been used as alternative disinfectants in circulating water systems, washing machines and even clothing. However, nanoparticles, like any other antibiotic that has a pervasive durable presence, carry the risk of creating a resistant population. In this study Mycobacterium smegmatis strain mc(2)155 was cultured in AgNP enriched agar such that only a small population survived. Surviving cultures were isolated and re-exposed to AgNPs and AgNO3 and resistance to silver was compared to a negative control. After only a single exposure, mutant M. smegmatis populations were resistant to AgNPs and AgNO3. Further, the silver resistant mutants were exposed to antibiotics to determine if general resistance had been conferred. The minimum inhibitory concentration of isoniazid was four times higher for silver resistant mutants than for strain mc(2)155. However, core resistance was not conferred to other toxic metal ions. The mutants had lower resistance to CuSO4 and ZnSO4 than the mc(2)155 strain.

  14. ERK mutations confer resistance to mitogen-activated protein kinase pathway inhibitors.

    Science.gov (United States)

    Goetz, Eva M; Ghandi, Mahmoud; Treacy, Daniel J; Wagle, Nikhil; Garraway, Levi A

    2014-12-01

    The use of targeted therapeutics directed against BRAF(V600)-mutant metastatic melanoma improves progression-free survival in many patients; however, acquired drug resistance remains a major medical challenge. By far, the most common clinical resistance mechanism involves reactivation of the MAPK (RAF/MEK/ERK) pathway by a variety of mechanisms. Thus, targeting ERK itself has emerged as an attractive therapeutic concept, and several ERK inhibitors have entered clinical trials. We sought to preemptively determine mutations in ERK1/2 that confer resistance to either ERK inhibitors or combined RAF/MEK inhibition in BRAF(V600)-mutant melanoma. Using a random mutagenesis screen, we identified multiple point mutations in ERK1 (MAPK3) and ERK2 (MAPK1) that could confer resistance to ERK or RAF/MEK inhibitors. ERK inhibitor-resistant alleles were sensitive to RAF/MEK inhibitors and vice versa, suggesting that the future development of alternating RAF/MEK and ERK inhibitor regimens might help circumvent resistance to these agents. ©2014 American Association for Cancer Research.

  15. Hepatocyte-specific deletion of the keap1 gene activates Nrf2 and confers potent resistance against acute drug toxicity

    International Nuclear Information System (INIS)

    Okawa, Hiromi; Motohashi, Hozumi; Kobayashi, Akira; Aburatani, Hiroyuki; Kensler, Thomas W.; Yamamoto, Masayuki

    2006-01-01

    Nrf2 is a key regulator of many detoxifying enzyme genes, and cytoplasmic protein Keap1 represses the Nrf2 activity under quiescent conditions. Germ line deletion of the keap1 gene results in constitutive activation of Nrf2, but the pups unexpectedly died before weaning. To investigate how constitutive activation of Nrf2 influences the detoxification system in adult mice, we generated mice bearing a hepatocyte-specific disruption of the keap1 gene. Homozygous mice were viable and their livers displayed no apparent abnormalities, but nuclear accumulation of Nrf2 is elevated. Microarray analysis revealed that, while many detoxifying enzyme genes are highly expressed, some of the typical Nrf2-dependent genes are only marginally increased in the Keap1-deficient liver. The mutant mice were significantly more resistant to toxic doses of acetaminophen than control animals. These results demonstrate that chronic activation of Nrf2 confers animals with resistance to xenobiotics without affecting the morphological and physiological integrity of hepatocytes

  16. HDAC Inhibitors Disrupt Programmed Resistance to Apoptosis During Drosophila Development

    Directory of Open Access Journals (Sweden)

    Yunsik Kang

    2017-06-01

    Full Text Available We have previously shown that the ability to respond to apoptotic triggers is regulated during Drosophila development, effectively dividing the fly life cycle into stages that are either sensitive or resistant to apoptosis. Here, we show that the developmentally programmed resistance to apoptosis involves transcriptional repression of critical proapoptotic genes by histone deacetylases (HDACs. Administration of HDAC inhibitors (HDACi, like trichostatin A or suberoylanilide hydroxamic acid, increases expression of proapoptotic genes and is sufficient to sensitize otherwise resistant stages. Conversely, reducing levels of proapoptotic genes confers resistance to otherwise sensitive stages. Given that resistance to apoptosis is a hallmark of cancer cells, and that HDACi have been recently added to the repertoire of FDA-approved agents for cancer therapy, our results provide new insights for how HDACi help kill malignant cells and also raise concerns for their potential unintended effects on healthy cells.

  17. Naturally selected hepatitis C virus polymorphisms confer broad neutralizing antibody resistance.

    Science.gov (United States)

    Bailey, Justin R; Wasilewski, Lisa N; Snider, Anna E; El-Diwany, Ramy; Osburn, William O; Keck, Zhenyong; Foung, Steven K H; Ray, Stuart C

    2015-01-01

    For hepatitis C virus (HCV) and other highly variable viruses, broadly neutralizing mAbs are an important guide for vaccine development. The development of resistance to anti-HCV mAbs is poorly understood, in part due to a lack of neutralization testing against diverse, representative panels of HCV variants. Here, we developed a neutralization panel expressing diverse, naturally occurring HCV envelopes (E1E2s) and used this panel to characterize neutralizing breadth and resistance mechanisms of 18 previously described broadly neutralizing anti-HCV human mAbs. The observed mAb resistance could not be attributed to polymorphisms in E1E2 at known mAb-binding residues. Additionally, hierarchical clustering analysis of neutralization resistance patterns revealed relationships between mAbs that were not predicted by prior epitope mapping, identifying 3 distinct neutralization clusters. Using this clustering analysis and envelope sequence data, we identified polymorphisms in E2 that confer resistance to multiple broadly neutralizing mAbs. These polymorphisms, which are not at mAb contact residues, also conferred resistance to neutralization by plasma from HCV-infected subjects. Together, our method of neutralization clustering with sequence analysis reveals that polymorphisms at noncontact residues may be a major immune evasion mechanism for HCV, facilitating viral persistence and presenting a challenge for HCV vaccine development.

  18. Major QTL Conferring Resistance to Rice Bacterial Leaf Streak

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Bacterial leaf streak (BLS) is one of the important limiting factors to rice production in southern China and other tropical and sub-tropical areas in Asia. Resistance to BLS was found to be a quantitative trait and no major resistant gene was located in rice until date. In the present study, a new major quantitative trait locus (QTL) conferring resistance to BLS was identified from a highly resistant variety Dular by the employment of Dular/Balilla (DB) and Dular/IR24 (DI) segregation populations and was designated qBLSR-11-1. This QTL was located between the simple sequence repeat (SSR) markers RM120 and RM441 on chromosome 11 and could account for 18.1-21.7% and 36.3% of the variance in DB and DI populations, respectively. The genetic pattern of rice resistance to BLS was discussed.

  19. Identification of multi-drug resistant Pseudomonas aeruginosa clinical isolates that are highly disruptive to the intestinal epithelial barrier

    Directory of Open Access Journals (Sweden)

    Shevchenko Olga

    2006-06-01

    Full Text Available Abstract Background Multi-drug resistant Pseudomonas aeruginosa nosocomial infections are increasingly recognized worldwide. In this study, we focused on the virulence of multi-drug resistant clinical strains P. aeruginosa against the intestinal epithelial barrier, since P. aeruginosa can cause lethal sepsis from within the intestinal tract of critically ill and immuno-compromised patients via mechanisms involving disruption of epithelial barrier function. Methods We screened consecutively isolated multi-drug resistant P. aeruginosa clinical strains for their ability to disrupt the integrity of human cultured intestinal epithelial cells (Caco-2 and correlated these finding to related virulence phenotypes such as adhesiveness, motility, biofilm formation, and cytotoxicity. Results Results demonstrated that the majority of the multi-drug resistant P. aeruginosa clinical strains were attenuated in their ability to disrupt the barrier function of cultured intestinal epithelial cells. Three distinct genotypes were found that displayed an extreme epithelial barrier-disrupting phenotype. These strains were characterized and found to harbor the exoU gene and to display high swimming motility and adhesiveness. Conclusion These data suggest that detailed phenotypic analysis of the behavior of multi-drug resistant P. aeruginosa against the intestinal epithelium has the potential to identify strains most likely to place patients at risk for lethal gut-derived sepsis. Surveillance of colonizing strains of P. aeruginosa in critically ill patients beyond antibiotic sensitivity is warranted.

  20. A novel gene of Kalanchoe daigremontiana confers plant drought resistance.

    Science.gov (United States)

    Wang, Li; Zhu, Chen; Jin, Lin; Xiao, Aihua; Duan, Jie; Ma, Luyi

    2018-02-07

    Kalanchoe (K.) daigremontiana is important for studying asexual reproduction under different environmental conditions. Here, we describe a novel KdNOVEL41 (KdN41) gene that may confer drought resistance and could thereby affect K. daigremontiana development. The detected subcellular localization of a KdN41/Yellow Fluorescent Protein (YFP) fusion protein was in the nucleus and cell membrane. Drought, salt, and heat stress treatment in tobacco plants containing the KdN41 gene promoter driving β-glucuronidase (GUS) gene transcription revealed that only drought stress triggered strong GUS staining in the vascular tissues. Overexpression (OE) of the KdN41 gene conferred improved drought resistance in tobacco plants compared to wild-type and transformed with empty vector plants by inducing higher antioxidant enzyme activities, decreasing cell membrane damage, increasing abscisic acid (ABA) content, causing reinforced drought resistance related gene expression profiles. The 3,3'-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining results also showed less relative oxygen species (ROS) content in KdN41-overexpressing tobacco leaf during drought stress. Surprisingly, by re-watering after drought stress, KdN41-overexpressing tobacco showed earlier flowering. Overall, the KdN41 gene plays roles in ROS scavenging and osmotic damage reduction to improve tobacco drought resistance, which may increase our understanding of the molecular network involved in developmental manipulation under drought stress in K. daigremontiana.

  1. A horizontally gene transferred copper resistance locus confers hyper‐resistance to antibacterial copper toxicity and enables survival of community acquired methicillin resistant Staphylococcus aureus USA300 in macrophages

    Science.gov (United States)

    Purves, Joanne; Thomas, Jamie; Riboldi, Gustavo P.; Zapotoczna, Marta; Tarrant, Emma; Andrew, Peter W.; Londoño, Alejandra; Planet, Paul J.; Geoghegan, Joan A.; Waldron, Kevin J.

    2018-01-01

    Summary Excess copper is highly toxic and forms part of the host innate immune system's antibacterial arsenal, accumulating at sites of infection and acting within macrophages to kill engulfed pathogens. We show for the first time that a novel, horizontally gene transferred copper resistance locus (copXL), uniquely associated with the SCCmec elements of the highly virulent, epidemic, community acquired methicillin resistant Staphylococcus aureus (CA‐MRSA) USA300, confers copper hyper‐resistance. These genes are additional to existing core genome copper resistance mechanisms, and are not found in typical S. aureus lineages, but are increasingly identified in emerging pathogenic isolates. Our data show that CopX, a putative P1B‐3‐ATPase efflux transporter, and CopL, a novel lipoprotein, confer copper hyper‐resistance compared to typical S. aureus strains. The copXL genes form an operon that is tightly repressed in low copper environments by the copper regulator CsoR. Significantly, CopX and CopL are important for S. aureus USA300 intracellular survival within macrophages. Therefore, the emergence of new S. aureus clones with the copXL locus has significant implications for public health because these genes confer increased resistance to antibacterial copper toxicity, enhancing bacterial fitness by altering S. aureus interaction with innate immunity. PMID:29521441

  2. Food supply confers calcifiers resistance to ocean acidification

    KAUST Repository

    Ramajo, Laura; Pé rez-Leó n, Elia; Hendriks, Iris E.; Marbà , Nú ria; Krause-Jensen, Dorte; Sejr, Mikael K.; Blicher, Martin E.; Lagos, Nelson A.; Olsen, Ylva S.; Duarte, Carlos M.

    2016-01-01

    Invasion of ocean surface waters by anthropogenic CO2 emitted to the atmosphere is expected to reduce surface seawater pH to 7.8 by the end of this century compromising marine calcifiers. A broad range of biological and mineralogical mechanisms allow marine calcifiers to cope with ocean acidification, however these mechanisms are energetically demanding which affect other biological processes (trade-offs) with important implications for the resilience of the organisms against stressful conditions. Hence, food availability may play a critical role in determining the resistance of calcifiers to OA. Here we show, based on a meta-analysis of existing experimental results assessing the role of food supply in the response of organisms to OA, that food supply consistently confers calcifiers resistance to ocean acidification.

  3. Food supply confers calcifiers resistance to ocean acidification

    KAUST Repository

    Ramajo, Laura

    2016-01-18

    Invasion of ocean surface waters by anthropogenic CO2 emitted to the atmosphere is expected to reduce surface seawater pH to 7.8 by the end of this century compromising marine calcifiers. A broad range of biological and mineralogical mechanisms allow marine calcifiers to cope with ocean acidification, however these mechanisms are energetically demanding which affect other biological processes (trade-offs) with important implications for the resilience of the organisms against stressful conditions. Hence, food availability may play a critical role in determining the resistance of calcifiers to OA. Here we show, based on a meta-analysis of existing experimental results assessing the role of food supply in the response of organisms to OA, that food supply consistently confers calcifiers resistance to ocean acidification.

  4. mTOR Signaling Confers Resistance to Targeted Cancer Drugs.

    Science.gov (United States)

    Guri, Yakir; Hall, Michael N

    2016-11-01

    Cancer is a complex disease and a leading cause of death worldwide. Extensive research over decades has led to the development of therapies that target cancer-specific signaling pathways. However, the clinical benefits of such drugs are at best transient due to tumors displaying intrinsic or adaptive resistance. The underlying compensatory pathways that allow cancer cells to circumvent a drug blockade are poorly understood. We review here recent studies suggesting that mammalian TOR (mTOR) signaling is a major compensatory pathway conferring resistance to many cancer drugs. mTOR-mediated resistance can be cell-autonomous or non-cell-autonomous. These findings suggest that mTOR signaling should be monitored routinely in tumors and that an mTOR inhibitor should be considered as a co-therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Disruptions in Tokamaks

    International Nuclear Information System (INIS)

    Bondeson, A.

    1987-01-01

    This paper discusses major and minor disruptions in Tokamaks. A number of models and numerical simulations of disruptions based on resistive MHD are reviewed. A discussion is given of how disruptive current profiles are correlated with the experimentally known operational limits in density and current. It is argued that the q a =2 limit is connected with stabilization of the m=2/n=1 tearing mode for a approx.< 2.7 by resistive walls and mode rotation. Experimental and theoretical observations indicate that major disruptions usually occur in at least two phases, first a 'predisruption', or loss of confinement in the region 1 < q < 2, leaving the q approx.= 1 region almost unaffected, followed by a final disruption of the central part, interpreted here as a toroidal n = 1 external kink mode. (author)

  6. Cellular robustness conferred by genetic crosstalk underlies resistance against chemotherapeutic drug doxorubicin in fission yeast.

    Directory of Open Access Journals (Sweden)

    Zoey Tay

    Full Text Available Doxorubicin is an anthracycline antibiotic that is among one of the most commonly used chemotherapeutic agents in the clinical setting. The usage of doxorubicin is faced with many problems including severe side effects and chemoresistance. To overcome these challenges, it is important to gain an understanding of the underlying molecular mechanisms with regards to the mode of action of doxorubicin. To facilitate this aim, we identified the genes that are required for doxorubicin resistance in the fission yeast Schizosaccharomyces pombe. We further demonstrated interplay between factors controlling various aspects of chromosome metabolism, mitochondrial respiration and membrane transport. In the nucleus we observed that the subunits of the Ino80, RSC, and SAGA complexes function in the similar epistatic group that shares significant overlap with the homologous recombination genes. However, these factors generally act in synergistic manner with the chromosome segregation regulator DASH complex proteins, possibly forming two major arms for regulating doxorubicin resistance in the nucleus. Simultaneous disruption of genes function in membrane efflux transport or the mitochondrial respiratory chain integrity in the mutants defective in either Ino80 or HR function resulted in cumulative upregulation of drug-specific growth defects, suggesting a rewiring of pathways that synergize only when the cells is exposed to the cytotoxic stress. Taken together, our work not only identified factors that are required for survival of the cells in the presence of doxorubicin but has further demonstrated that an extensive molecular crosstalk exists between these factors to robustly confer doxorubicin resistance.

  7. Mutations in the Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL Confer Multidrug Resistance

    Directory of Open Access Journals (Sweden)

    Gregory LaMonte

    2016-07-01

    Full Text Available Mutations in the Plasmodium falciparum cyclic amine resistance locus (PfCARL are associated with parasite resistance to the imidazolopiperazines, a potent class of novel antimalarial compounds that display both prophylactic and transmission-blocking activity, in addition to activity against blood-stage parasites. Here, we show that pfcarl encodes a protein, with a predicted molecular weight of 153 kDa, that localizes to the cis-Golgi apparatus of the parasite in both asexual and sexual blood stages. Utilizing clustered regularly interspaced short palindromic repeat (CRISPR-mediated gene introduction of 5 variants (L830V, S1076N/I, V1103L, and I1139K, we demonstrate that mutations in pfcarl are sufficient to generate resistance against the imidazolopiperazines in both asexual and sexual blood-stage parasites. We further determined that the mutant PfCARL protein confers resistance to several structurally unrelated compounds. These data suggest that PfCARL modulates the levels of small-molecule inhibitors that affect Golgi-related processes, such as protein sorting or membrane trafficking, and is therefore an important mechanism of resistance in malaria parasites.

  8. Rifampin Resistance rpoB Alleles or Multicopy Thioredoxin/Thioredoxin Reductase Suppresses the Lethality of Disruption of the Global Stress Regulator spx in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Villanueva, Maite; Jousselin, Ambre; Baek, Kristoffer T

    2016-01-01

    is a thiol/oxidative stress sensor that interacts with the C-terminal domain of the RNA polymerase RpoA subunit, leading to changes in gene expression that help sustain viability under various conditions. Using genetic and deep-sequencing methods, we show that spx is essential in S. aureus...... discovered that Spx, an RNA polymerase-interacting stress regulator implicated in many stress responses in S. aureus, including responses to oxidative and cell wall antibiotics, is essential. We describe two mechanisms that suppress the lethality of spx disruption. One mechanism highlights how only certain...... rifampin resistance-encoding alleles of RpoB confer new properties on RNA polymerase, with important mechanistic implications. We describe additional stress conditions where the loss of spx is deleterious, thereby highlighting Spx as a multifaceted regulator and attractive drug discovery target....

  9. Multiple origins of resistance-conferring mutations in Plasmodium vivax dihydrofolate reductase

    Directory of Open Access Journals (Sweden)

    O'Neil Michael T

    2008-04-01

    Full Text Available Abstract Background In order to maximize the useful therapeutic life of antimalarial drugs, it is crucial to understand the mechanisms by which parasites resistant to antimalarial drugs are selected and spread in natural populations. Recent work has demonstrated that pyrimethamine-resistance conferring mutations in Plasmodium falciparum dihydrofolate reductase (dhfr have arisen rarely de novo, but spread widely in Asia and Africa. The origin and spread of mutations in Plasmodium vivax dhfr were assessed by constructing haplotypes based on sequencing dhfr and its flanking regions. Methods The P. vivax dhfr coding region, 792 bp upstream and 683 bp downstream were amplified and sequenced from 137 contemporary patient isolates from Colombia, India, Indonesia, Papua New Guinea, Sri Lanka, Thailand, and Vanuatu. A repeat motif located 2.6 kb upstream of dhfr was also sequenced from 75 of 137 patient isolates, and mutational relationships among the haplotypes were visualized using the programme Network. Results Synonymous and non-synonymous single nucleotide polymorphisms (SNPs within the dhfr coding region were identified, as was the well-documented in-frame insertion/deletion (indel. SNPs were also identified upstream and downstream of dhfr, with an indel and a highly polymorphic repeat region identified upstream of dhfr. The regions flanking dhfr were highly variable. The double mutant (58R/117N dhfr allele has evolved from several origins, because the 58R is encoded by at least 3 different codons. The triple (58R/61M/117T and quadruple (57L/61M/117T/173F, 57I/58R/61M/117T and 57L/58R/61M/117T mutant alleles had at least three independent origins in Thailand, Indonesia, and Papua New Guinea/Vanuatu. Conclusion It was found that the P. vivax dhfr coding region and its flanking intergenic regions are highly polymorphic and that mutations in P. vivax dhfr that confer antifolate resistance have arisen several times in the Asian region. This contrasts

  10. A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens.

    Science.gov (United States)

    Yang, Qin; He, Yijian; Kabahuma, Mercy; Chaya, Timothy; Kelly, Amy; Borrego, Eli; Bian, Yang; El Kasmi, Farid; Yang, Li; Teixeira, Paulo; Kolkman, Judith; Nelson, Rebecca; Kolomiets, Michael; L Dangl, Jeffery; Wisser, Randall; Caplan, Jeffrey; Li, Xu; Lauter, Nick; Balint-Kurti, Peter

    2017-09-01

    Alleles that confer multiple disease resistance (MDR) are valuable in crop improvement, although the molecular mechanisms underlying their functions remain largely unknown. A quantitative trait locus, qMdr 9.02 , associated with resistance to three important foliar maize diseases-southern leaf blight, gray leaf spot and northern leaf blight-has been identified on maize chromosome 9. Through fine-mapping, association analysis, expression analysis, insertional mutagenesis and transgenic validation, we demonstrate that ZmCCoAOMT2, which encodes a caffeoyl-CoA O-methyltransferase associated with the phenylpropanoid pathway and lignin production, is the gene within qMdr 9.02 conferring quantitative resistance to both southern leaf blight and gray leaf spot. We suggest that resistance might be caused by allelic variation at the level of both gene expression and amino acid sequence, thus resulting in differences in levels of lignin and other metabolites of the phenylpropanoid pathway and regulation of programmed cell death.

  11. Resistance to Downy Mildew in Lettuce 'La Brillante' is Conferred by Dm50 Gene and Multiple QTL.

    Science.gov (United States)

    Simko, Ivan; Ochoa, Oswaldo E; Pel, Mathieu A; Tsuchida, Cayla; Font I Forcada, Carolina; Hayes, Ryan J; Truco, Maria-Jose; Antonise, Rudie; Galeano, Carlos H; Michelmore, Richard W

    2015-09-01

    Many cultivars of lettuce (Lactuca sativa L.) are susceptible to downy mildew, a nearly globally ubiquitous disease caused by Bremia lactucae. We previously determined that Batavia type cultivar 'La Brillante' has a high level of field resistance to the disease in California. Testing of a mapping population developed from a cross between 'Salinas 88' and La Brillante in multiple field and laboratory experiments revealed that at least five loci conferred resistance in La Brillante. The presence of a new dominant resistance gene (designated Dm50) that confers complete resistance to specific isolates was detected in laboratory tests of seedlings inoculated with multiple diverse isolates. Dm50 is located in the major resistance cluster on linkage group 2 that contains at least eight major, dominant Dm genes conferring resistance to downy mildew. However, this Dm gene is ineffective against the isolates of B. lactucae prevalent in the field in California and the Netherlands. A quantitative trait locus (QTL) located at the Dm50 chromosomal region (qDM2.2) was detected, though, when the amount of disease was evaluated a month before plants reached harvest maturity. Four additional QTL for resistance to B. lactucae were identified on linkage groups 4 (qDM4.1 and qDM4.2), 7 (qDM7.1), and 9 (qDM9.2). The largest effect was associated with qDM7.1 (up to 32.9% of the total phenotypic variance) that determined resistance in multiple field experiments. Markers identified in the present study will facilitate introduction of these resistance loci into commercial cultivars of lettuce.

  12. Defining the structural requirements for a helix in 23 S ribosomal RNA that confers erythromycin resistance

    DEFF Research Database (Denmark)

    Douthwaite, S; Powers, T; Lee, J Y

    1989-01-01

    The helix spanning nucleotides 1198 to 1247 (helix 1200-1250) in Escherichia coli 23 S ribosomal RNA (rRNA) is functionally important in protein synthesis, and deletions in this region confer erythromycin resistance. In order to define the structural requirements for resistance, we have dissected...... deletion mutants show a sensitive phenotype. Deletions that extend into the base-pairing between GCC1208 and GGU1240 result in non-functional 23 S RNAs, which consequently do not confer resistance. A number of phylogenetically conserved nucleotides have been shown to be non-essential for 23 S RNA function....... However, removal of either these or non-conserved nucleotides from helix 1200-1250 measurably reduces the efficiency of 23 S RNA in forming functional ribosomes. We have used chemical probing and a modified primer extension method to investigate erythromycin binding to wild-type and resistant ribosomes...

  13. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods.

    Science.gov (United States)

    Feyereisen, René; Dermauw, Wannes; Van Leeuwen, Thomas

    2015-06-01

    The recent accumulation of molecular studies on mutations in insects, ticks and mites conferring resistance to insecticides, acaricides and biopesticides is reviewed. Resistance is traditionally classified by physiological and biochemical criteria, such as target-site insensitivity and metabolic resistance. However, mutations are discrete molecular changes that differ in their intrinsic frequency, effects on gene dosage and fitness consequences. These attributes in turn impact the population genetics of resistance and resistance management strategies, thus calling for a molecular genetic classification. Mutations in structural genes remain the most abundantly described, mostly in genes coding for target proteins. These provide the most compelling examples of parallel mutations in response to selection. Mutations causing upregulation and downregulation of genes, both in cis (in the gene itself) and in trans (in regulatory processes) remain difficult to characterize precisely. Gene duplications and gene disruption are increasingly reported. Gene disruption appears prevalent in the case of multiple, hetero-oligomeric or redundant targets. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Disruption of the Gut Microbiome: Clostridium difficile Infection and the Threat of Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Priscilla A. Johanesen

    2015-12-01

    Full Text Available Clostridium difficile is well recognized as the leading cause of antibiotic-associated diarrhea, having a significant impact in both health-care and community settings. Central to predisposition to C. difficile infection is disruption of the gut microbiome by antibiotics. Being a Gram-positive anaerobe, C. difficile is intrinsically resistant to a number of antibiotics. Mobile elements encoding antibiotic resistance determinants have also been characterized in this pathogen. While resistance to antibiotics currently used to treat C. difficile infection has not yet been detected, it may be only a matter of time before this occurs, as has been seen with other bacterial pathogens. This review will discuss C. difficile disease pathogenesis, the impact of antibiotic use on inducing disease susceptibility, and the role of antibiotic resistance and mobile elements in C. difficile epidemiology.

  15. Non-recessive Bt toxin resistance conferred by an intracellular cadherin mutation in field-selected populations of cotton bollworm.

    Directory of Open Access Journals (Sweden)

    Haonan Zhang

    Full Text Available Transgenic crops producing Bacillus thuringiensis (Bt toxins have been planted widely to control insect pests, yet evolution of resistance by the pests can reduce the benefits of this approach. Recessive mutations in the extracellular domain of toxin-binding cadherin proteins that confer resistance to Bt toxin Cry1Ac by disrupting toxin binding have been reported previously in three major lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Here we report a novel allele from cotton bollworm with a deletion in the intracellular domain of cadherin that is genetically linked with non-recessive resistance to Cry1Ac. We discovered this allele in each of three field-selected populations we screened from northern China where Bt cotton producing Cry1Ac has been grown intensively. We expressed four types of cadherin alleles in heterologous cell cultures: susceptible, resistant with the intracellular domain mutation, and two complementary chimeric alleles with and without the mutation. Cells transfected with each of the four cadherin alleles bound Cry1Ac and were killed by Cry1Ac. However, relative to cells transfected with either the susceptible allele or the chimeric allele lacking the intracellular domain mutation, cells transfected with the resistant allele or the chimeric allele containing the intracellular domain mutation were less susceptible to Cry1Ac. These results suggest that the intracellular domain of cadherin is involved in post-binding events that affect toxicity of Cry1Ac. This evidence is consistent with the vital role of the intracellular region of cadherin proposed by the cell signaling model of the mode of action of Bt toxins. Considered together with previously reported data, the results suggest that both pore formation and cell signaling pathways contribute to the efficacy of Bt toxins.

  16. Disruption model

    International Nuclear Information System (INIS)

    Murray, J.G.; Bronner, G.

    1982-07-01

    Calculations of disruption time and energy dissipation have been obtained by simulating the plasma as an electrical conducting loop that varies in resistivity, current density, major radius. The calculations provide results which are in good agreement with experimental observations. It is believed that this approach allows engineering designs for disruptions to be completed in large tokamaks such as INTOR or FED

  17. Identification of dfrA14 in two distinct plasmids conferring trimethoprim resistance in Actinobacillus pleuropneumoniae.

    Science.gov (United States)

    Bossé, Janine T; Li, Yanwen; Walker, Stephanie; Atherton, Tom; Fernandez Crespo, Roberto; Williamson, Susanna M; Rogers, Jon; Chaudhuri, Roy R; Weinert, Lucy A; Oshota, Olusegun; Holden, Matt T G; Maskell, Duncan J; Tucker, Alexander W; Wren, Brendan W; Rycroft, Andrew N; Langford, Paul R

    2015-08-01

    The objective of this study was to determine the distribution and genetic basis of trimethoprim resistance in Actinobacillus pleuropneumoniae isolates from pigs in England. Clinical isolates collected between 1998 and 2011 were tested for resistance to trimethoprim and sulphonamide. The genetic basis of trimethoprim resistance was determined by shotgun WGS analysis and the subsequent isolation and sequencing of plasmids. A total of 16 (out of 106) A. pleuropneumoniae isolates were resistant to both trimethoprim (MIC >32 mg/L) and sulfisoxazole (MIC ≥256 mg/L), and a further 32 were resistant only to sulfisoxazole (MIC ≥256 mg/L). Genome sequence data for the trimethoprim-resistant isolates revealed the presence of the dfrA14 dihydrofolate reductase gene. The distribution of plasmid sequences in multiple contigs suggested the presence of two distinct dfrA14-containing plasmids in different isolates, which was confirmed by plasmid isolation and sequencing. Both plasmids encoded mobilization genes, the sulphonamide resistance gene sul2, as well as dfrA14 inserted into strA, a streptomycin-resistance-associated gene, although the gene order differed between the two plasmids. One of the plasmids further encoded the strB streptomycin-resistance-associated gene. This is the first description of mobilizable plasmids conferring trimethoprim resistance in A. pleuropneumoniae and, to our knowledge, the first report of dfrA14 in any member of the Pasteurellaceae. The identification of dfrA14 conferring trimethoprim resistance in A. pleuropneumoniae isolates will facilitate PCR screens for resistance to this important antimicrobial. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  18. Metabolic and Target-Site Mechanisms Combine to Confer Strong DDT Resistance in Anopheles gambiae

    Science.gov (United States)

    Mitchell, Sara N.; Rigden, Daniel J.; Dowd, Andrew J.; Lu, Fang; Wilding, Craig S.; Weetman, David; Dadzie, Samuel; Jenkins, Adam M.; Regna, Kimberly; Boko, Pelagie; Djogbenou, Luc; Muskavitch, Marc A. T.; Ranson, Hilary; Paine, Mark J. I.; Mayans, Olga; Donnelly, Martin J.

    2014-01-01

    The development of resistance to insecticides has become a classic exemplar of evolution occurring within human time scales. In this study we demonstrate how resistance to DDT in the major African malaria vector Anopheles gambiae is a result of both target-site resistance mechanisms that have introgressed between incipient species (the M- and S-molecular forms) and allelic variants in a DDT-detoxifying enzyme. Sequencing of the detoxification enzyme, Gste2, from DDT resistant and susceptible strains of An. gambiae, revealed a non-synonymous polymorphism (I114T), proximal to the DDT binding domain, which segregated with strain phenotype. Recombinant protein expression and DDT metabolism analysis revealed that the proteins from the susceptible strain lost activity at higher DDT concentrations, characteristic of substrate inhibition. The effect of I114T on GSTE2 protein structure was explored through X-ray crystallography. The amino acid exchange in the DDT-resistant strain introduced a hydroxyl group nearby the hydrophobic DDT-binding region. The exchange does not result in structural alterations but is predicted to facilitate local dynamics and enzyme activity. Expression of both wild-type and 114T alleles the allele in Drosophila conferred an increase in DDT tolerance. The 114T mutation was significantly associated with DDT resistance in wild caught M-form populations and acts in concert with target-site mutations in the voltage gated sodium channel (Vgsc-1575Y and Vgsc-1014F) to confer extreme levels of DDT resistance in wild caught An. gambiae. PMID:24675797

  19. Bactobolin resistance is conferred by mutations in the L2 ribosomal protein.

    Science.gov (United States)

    Chandler, Josephine R; Truong, Thao T; Silva, Patricia M; Seyedsayamdost, Mohammad R; Carr, Gavin; Radey, Matthew; Jacobs, Michael A; Sims, Elizabeth H; Clardy, Jon; Greenberg, E Peter

    2012-12-18

    Burkholderia thailandensis produces a family of polyketide-peptide molecules called bactobolins, some of which are potent antibiotics. We found that growth of B. thailandensis at 30°C versus that at 37°C resulted in increased production of bactobolins. We purified the three most abundant bactobolins and determined their activities against a battery of bacteria and mouse fibroblasts. Two of the three compounds showed strong activities against both bacteria and fibroblasts. The third analog was much less potent in both assays. These results suggested that the target of bactobolins might be conserved across bacteria and mammalian cells. To learn about the mechanism of bactobolin activity, we isolated four spontaneous bactobolin-resistant Bacillus subtilis mutants. We used genomic sequencing technology to show that each of the four resistant variants had mutations in rplB, which codes for the 50S ribosome-associated L2 protein. Ectopic expression of a mutant rplB gene in wild-type B. subtilis conferred bactobolin resistance. Finally, the L2 mutations did not confer resistance to other antibiotics known to interfere with ribosome function. Our data indicate that bactobolins target the L2 protein or a nearby site and that this is not the target of other antibiotics. We presume that the mammalian target of bactobolins involves the eukaryotic homolog of L2 (L8e). Currently available antibiotics target surprisingly few cellular functions, and there is a need to identify novel antibiotic targets. We have been interested in the Burkholderia thailandensis bactobolins, and we sought to learn about the target of bactobolin activity by mapping spontaneous resistance mutations in the bactobolin-sensitive Bacillus subtilis. Our results indicate that the bactobolin target is the 50S ribosome-associated L2 protein or a region of the ribosome affected by L2. Bactobolin-resistant mutants are not resistant to other known ribosome inhibitors. Our evidence indicates that bactobolins

  20. Disruption of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Integrity Contributes to Muscle Insulin Resistance in Mice and Humans.

    Science.gov (United States)

    Tubbs, Emily; Chanon, Stéphanie; Robert, Maud; Bendridi, Nadia; Bidaux, Gabriel; Chauvin, Marie-Agnès; Ji-Cao, Jingwei; Durand, Christine; Gauvrit-Ramette, Daphné; Vidal, Hubert; Lefai, Etienne; Rieusset, Jennifer

    2018-04-01

    Modifications of the interactions between endoplasmic reticulum (ER) and mitochondria, defined as mitochondria-associated membranes (MAMs), were recently shown to be involved in the control of hepatic insulin action and glucose homeostasis, but with conflicting results. Whereas skeletal muscle is the primary site of insulin-mediated glucose uptake and the main target for alterations in insulin-resistant states, the relevance of MAM integrity in muscle insulin resistance is unknown. Deciphering the importance of MAMs on muscle insulin signaling could help to clarify this controversy. Here, we show in skeletal muscle of different mice models of obesity and type 2 diabetes (T2D) a marked disruption of ER-mitochondria interactions as an early event preceding mitochondrial dysfunction and insulin resistance. Furthermore, in human myotubes, palmitate-induced insulin resistance is associated with a reduction of structural and functional ER-mitochondria interactions. Importantly, experimental increase of ER-mitochondria contacts in human myotubes prevents palmitate-induced alterations of insulin signaling and action, whereas disruption of MAM integrity alters the action of the hormone. Lastly, we found an association between altered insulin signaling and ER-mitochondria interactions in human myotubes from obese subjects with or without T2D compared with healthy lean subjects. Collectively, our data reveal a new role of MAM integrity in insulin action of skeletal muscle and highlight MAM disruption as an essential subcellular alteration associated with muscle insulin resistance in mice and humans. Therefore, reduced ER-mitochondria coupling could be a common alteration of several insulin-sensitive tissues playing a key role in altered glucose homeostasis in the context of obesity and T2D. © 2018 by the American Diabetes Association.

  1. Error-prone PCR mutation of Ls-EPSPS gene from Liriope spicata conferring to its enhanced glyphosate-resistance.

    Science.gov (United States)

    Mao, Chanjuan; Xie, Hongjie; Chen, Shiguo; Valverde, Bernal E; Qiang, Sheng

    2017-09-01

    Liriope spicata (Thunb.) Lour has a unique LsEPSPS structure contributing to the highest-ever-recognized natural glyphosate tolerance. The transformed LsEPSPS confers increased glyphosate resistance to E. coli and A. thaliana. However, the increased glyphosate-resistance level is not high enough to be of commercial value. Therefore, LsEPSPS was subjected to error-prone PCR to screen mutant EPSPS genes capable of endowing higher resistance levels. A mutant designated as ELs-EPSPS having five mutated amino acids (37Val, 67Asn, 277Ser, 351Gly and 422Gly) was selected for its ability to confer improved resistance to glyphosate. Expression of ELs-EPSPS in recombinant E. coli BL21 (DE3) strains enhanced resistance to glyphosate in comparison to both the LsEPSPS-transformed and -untransformed controls. Furthermore, transgenic ELs-EPSPS A. thaliana was about 5.4 fold and 2-fold resistance to glyphosate compared with the wild-type and the Ls-EPSPS-transgenic plants, respectively. Therefore, the mutated ELs-EPSPS gene has potential value for has potential for the development of glyphosate-resistant crops. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. MENA Confers Resistance to Paclitaxel in Triple-Negative Breast Cancer.

    Science.gov (United States)

    Oudin, Madeleine J; Barbier, Lucie; Schäfer, Claudia; Kosciuk, Tatsiana; Miller, Miles A; Han, Sangyoon; Jonas, Oliver; Lauffenburger, Douglas A; Gertler, Frank B

    2017-01-01

    Taxane therapy remains the standard of care for triple-negative breast cancer. However, high frequencies of recurrence and progression in treated patients indicate that metastatic breast cancer cells can acquire resistance to this drug. The actin regulatory protein MENA and particularly its invasive isoform, MENA INV , are established drivers of metastasis. MENA INV expression is significantly correlated with metastasis and poor outcome in human patients with breast cancer. We investigated whether MENA isoforms might play a role in driving resistance to chemotherapeutics. We find that both MENA and MENA INV confer resistance to the taxane paclitaxel, but not to the widely used DNA-damaging agents doxorubicin or cisplatin. Furthermore, paclitaxel treatment does not attenuate growth of MENA INV -driven metastatic lesions. Mechanistically, MENA isoform expression alters the ratio of dynamic and stable microtubule populations in paclitaxel-treated cells. MENA expression also increases MAPK signaling in response to paclitaxel treatment. Decreasing ERK phosphorylation by co-treatment with MEK inhibitor restored paclitaxel sensitivity by driving microtubule stabilization in MENA isoform-expressing cells. Our results reveal a novel mechanism of taxane resistance in highly metastatic breast cancer cells and identify a combination therapy to overcome such resistance. Mol Cancer Ther; 16(1); 143-55. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. The rice XA21 ectodomain fused to the Arabidopsis EFR cytoplasmic domain confers resistance to Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Thomas, Nicholas C; Oksenberg, Nir; Liu, Furong; Caddell, Daniel; Nalyvayko, Alina; Nguyen, Yen; Schwessinger, Benjamin; Ronald, Pamela C

    2018-01-01

    Rice ( Oryza sativa ) plants expressing the XA21 cell-surface receptor kinase are resistant to Xanthomonas oryzae pv. oryzae (Xoo) infection. We previously demonstrated that expressing a chimeric protein containing the ELONGATION FACTOR Tu RECEPTOR (EFR) ectodomain and the XA21 endodomain (EFR:XA21) in rice does not confer robust resistance to Xoo . To test if the XA21 ectodomain is required for Xoo resistance, we produced transgenic rice lines expressing a chimeric protein consisting of the XA21 ectodomain and EFR endodomain (XA21:EFR) and inoculated these lines with Xoo . We also tested if the XA21:EFR rice plants respond to a synthetic sulfated 21 amino acid derivative (RaxX21-sY) of the activator of XA21-mediated immunity, RaxX. We found that five independently transformed XA21:EFR rice lines displayed resistance to Xoo as measured by lesion length analysis, and showed that five lines share characteristic markers of the XA21 defense response (generation of reactive oxygen species and defense response gene expression) after treatment with RaxX21-sY. Our results indicate that expression of the XA21:EFR chimeric receptor in rice confers resistance to Xoo . These results suggest that the endodomain of the EFR and XA21 immune receptors are interchangeable and the XA21 ectodomain is the key determinant conferring robust resistance to Xoo .

  4. Disruption of tetR type regulator adeN by mobile genetic element confers elevated virulence in Acinetobacter baumannii.

    Science.gov (United States)

    Saranathan, Rajagopalan; Pagal, Sudhakar; Sawant, Ajit R; Tomar, Archana; Madhangi, M; Sah, Suresh; Satti, Annapurna; Arunkumar, K P; Prashanth, K

    2017-10-03

    Acinetobacter baumannii is an important human pathogen and considered as a major threat due to its extreme drug resistance. In this study, the genome of a hyper-virulent MDR strain PKAB07 of A. baumannii isolated from an Indian patient was sequenced and analyzed to understand its mechanisms of virulence, resistance and evolution. Comparative genome analysis of PKAB07 revealed virulence and resistance related genes scattered throughout the genome, instead of being organized as an island, indicating the highly mosaic nature of the genome. Many intermittent horizontal gene transfer events, insertion sequence (IS) element insertions identified were augmenting resistance machinery and elevating the SNP densities in A. baumannii eventually aiding in their swift evolution. ISAba1, the most widely distributed insertion sequence in A. baumannii was found in multiple sites in PKAB07. Out of many ISAba1 insertions, we identified novel insertions in 9 different genes wherein insertional inactivation of adeN (tetR type regulator) was significant. To assess the significance of this disruption in A. baumannii, adeN mutant and complement strains were constructed in A. baumannii ATCC 17978 strain and studied. Biofilm levels were abrogated in the adeN knockout when compared with the wild type and complemented strain of adeN knockout. Virulence of the adeN knockout mutant strain was observed to be high, which was validated by in vitro experiments and Galleria mellonella infection model. The overexpression of adeJ, a major component of AdeIJK efflux pump observed in adeN knockout strain could be the possible reason for the elevated virulence in adeN mutant and PKB07 strain. Knocking out of adeN in ATCC strain led to increased resistance and virulence at par with the PKAB07. Disruption of tetR type regulator adeN by ISAba1 consequently has led to elevated virulence in this pathogen.

  5. qnrA6 genetic environment and quinolone resistance conferred on Proteus mirabilis.

    Science.gov (United States)

    Jayol, Aurélie; Janvier, Frédéric; Guillard, Thomas; Chau, Françoise; Mérens, Audrey; Robert, Jérôme; Fantin, Bruno; Berçot, Béatrice; Cambau, Emmanuelle

    2016-04-01

    To determine the genetic location and environment of the qnrA6 gene in Proteus mirabilis PS16 where it was first described and to characterize the quinolone resistance qnrA6 confers. Transformation experiments and Southern blotting were performed for plasmid and genomic DNA of P. mirabilis PS16 to determine the qnrA6 location. Combinatorial PCRs with primers in qnrA6 and genes usually surrounding qnrA genes were used to determine the genetic environment. The qnrA6 coding region, including or not the promoter region, was cloned into vectors pTOPO and pBR322 and the MICs of six quinolones were measured for transformants of Escherichia coli TOP10 and P. mirabilis ATCC 29906 Rif(R). qnrA6 was shown to be chromosomally encoded in P. mirabilis PS16 and its genetic environment was 81%-87% similar to that of qnrA2 in the Shewanella algae chromosome. The 5138 bp region up- and downstream of qnrA6 contained an IS10 sequence surrounded by two ISCR1. This resulted in qnrA6 being displaced 1.9 kb from its native promoter but supplied a promoter present in ISCR1. qnrA6 cloned into pTOPO and pBR322 conferred a 4-32-fold increase in fluoroquinolone MICs when expressed in E. coli but only 2-3-fold in P. mirabilis. When including the promoter region, a further increase in resistance was observed in both species, reaching MIC values above clinical breakpoints for only P. mirabilis. qnrA6 is the first chromosomally located qnrA gene described in Enterobacteriaceae. The quinolone resistance conferred by qnrA6 depends on the proximity of an efficient promoter and the host strain where it is expressed. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa.

    Science.gov (United States)

    Ueno, Hiroki; Matsumoto, Etsuo; Aruga, Daisuke; Kitagawa, Satoshi; Matsumura, Hideo; Hayashida, Nobuaki

    2012-12-01

    Clubroot disease is one of the major diseases affecting Brassicaceae crops, and a number of these crops grown commercially, such as Chinese cabbage (Brassica rapa L. ssp. pekinensis), are known to be highly susceptible to clubroot disease. To provide protection from this disease, plant breeders have introduced genes for resistance to clubroot from the European turnip into susceptible lines. The CRa gene confers specific resistance to the clubroot pathogen Plasmodiophora brassicae isolate M85. Fine mapping of the CRa locus using synteny to the Arabidopsis thaliana genome and partial genome sequences of B. rapa revealed a candidate gene encoding a TIR-NBS-LRR protein. Several structural differences in this candidate gene were found between susceptible and resistant lines, and CRa expression was observed only in the resistant line. Four mutant lines lacking clubroot resistance were obtained by the UV irradiation of pollen from a resistant line, and all of these mutant lines carried independent mutations in the candidate TIR-NBS-LRR gene. This genetic and molecular evidence strongly suggests that the identified gene is CRa. This is the first report on the molecular characterization of a clubroot Resistance gene in Brassicaceae and of the disease resistance gene in B. rapa.

  7. Analytic modeling of axisymmetric disruption halo currents

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Kellman, A.G.

    1999-01-01

    Currents which can flow in plasma facing components during disruptions pose a challenge to the design of next generation tokamaks. Induced toroidal eddy currents and both induced and conducted poloidal ''halo'' currents can produce design-limiting electromagnetic loads. While induction of toroidal and poloidal currents in passive structures is a well-understood phenomenon, the driving terms and scalings for poloidal currents flowing on open field lines during disruptions are less well established. A model of halo current evolution is presented in which the current is induced in the halo by decay of the plasma current and change in enclosed toroidal flux while being convected into the halo from the core by plasma motion. Fundamental physical processes and scalings are described in a simplified analytic version of the model. The peak axisymmetric halo current is found to depend on halo and core plasma characteristics during the current quench, including machine and plasma dimensions, resistivities, safety factor, and vertical stability growth rate. Two extreme regimes in poloidal halo current amplitude are identified depending on the minimum halo safety factor reached during the disruption. A 'type I' disruption is characterized by a minimum safety factor that remains relatively high (typically 2 - 3, comparable to the predisruption safety factor), and a relatively low poloidal halo current. A 'type II' disruption is characterized by a minimum safety factor comparable to unity and a relatively high poloidal halo current. Model predictions for these two regimes are found to agree well with halo current measurements from vertical displacement event disruptions in DIII-D [T. S. Taylor, K. H. Burrell, D. R. Baker, G. L. Jackson, R. J. La Haye, M. A. Mahdavi, R. Prater, T. C. Simonen, and A. D. Turnbull, open-quotes Results from the DIII-D Scientific Research Program,close quotes in Proceedings of the 17th IAEA Fusion Energy Conference, Yokohama, 1998, to be published in

  8. Complex long-distance effects of mutations that confer linezolid resistance in the large ribosomal subunit

    Science.gov (United States)

    Fulle, Simone; Saini, Jagmohan S.; Homeyer, Nadine; Gohlke, Holger

    2015-01-01

    The emergence of multidrug-resistant pathogens will make current antibiotics ineffective. For linezolid, a member of the novel oxazolidinone class of antibiotics, 10 nucleotide mutations in the ribosome have been described conferring resistance. Hypotheses for how these mutations affect antibiotics binding have been derived based on comparative crystallographic studies. However, a detailed description at the atomistic level of how remote mutations exert long-distance effects has remained elusive. Here, we show that the G2032A-C2499A double mutation, located > 10 Å away from the antibiotic, confers linezolid resistance by a complex set of effects that percolate to the binding site. By molecular dynamics simulations and free energy calculations, we identify U2504 and C2452 as spearheads among binding site nucleotides that exert the most immediate effect on linezolid binding. Structural reorganizations within the ribosomal subunit due to the mutations are likely associated with mutually compensating changes in the effective energy. Furthermore, we suggest two main routes of information transfer from the mutation sites to U2504 and C2452. Between these, we observe cross-talk, which suggests that synergistic effects observed for the two mutations arise in an indirect manner. These results should be relevant for the development of oxazolidinone derivatives that are active against linezolid-resistant strains. PMID:26202966

  9. Technology and plasma-materials interaction processes of tokamak disruptions

    International Nuclear Information System (INIS)

    McGrath, R.T.; Kellman, A.G.

    1992-01-01

    A workshop on the technology and plasma-materials interaction processes of tokamak disruptions was held April 3, 1992 in Monterey, California, as a satellite meeting of the 10th International Conference on Plasma-Surface Interactions. The objective was to bring together researchers working on disruption measurements in operating tokamaks, those performing disruption simulation experiments using pulsed plasma gun, electron beam and laser systems, and computational physicists attempting to model the evolution and plasma-materials interaction processes of tokamak disruptions. This is a brief report on the workshop. 4 refs

  10. Novel Tn916-like elements confer aminoglycoside/macrolide co-resistance in clinical isolates of Streptococcus gallolyticus ssp. gallolyticus.

    Science.gov (United States)

    Kambarev, Stanimir; Pecorari, Frédéric; Corvec, Stéphane

    2018-02-09

    Streptococcus gallolyticus ssp. gallolyticus (Sgg) is a commensal bacterium and an opportunistic pathogen. In humans it has been clinically associated with the incidence of colorectal cancer (CRC) and epidemiologically recognized as an emerging cause of infective endocarditis (IE). The standard therapy of Sgg includes the administration of a penicillin in combination with an aminoglycoside. Even though penicillin-resistant isolates have still not been reported, epidemiological studies have shown that this microbe is a reservoir of multiple acquired genes, conferring resistance to tetracyclines, aminoglycosides, macrolides and glycopeptides. However, the underlying antibiotic resistance mobilome of Sgg remains poorly understood. To investigate the mobile genetic basis of antibiotic resistance in multiresistant clinical Sgg. Isolate NTS31106099 was recovered from a patient with IE and CRC at Nantes University Hospital, France and studied by Illumina WGS and comparative genomics. Molecular epidemiology of the identified mobile element(s) was performed using antibiotic susceptibility testing (AST), PCR, PFGE and WGS. Mobility was investigated by PCR and filter mating. Two novel conjugative transposons, Tn6263 and Tn6331, confer aminoglycoside/macrolide co-resistance in clinical Sgg. They display classical family Tn916/Tn1545 modular architecture and harbour an aph(3')-III→sat4→ant(6)-Ia→erm(B) multiresistance gene cluster, related to pRE25 of Enterococcus faecium. These and/or closely related elements are highly prevalent among genetically heterogeneous clinical isolates of Sgg. Previously unknown Tn916-like mobile genetic elements conferring aminoglycoside/macrolide co-resistance make Sgg, collectively with other gut Firmicutes such as enterococci and eubacteria, a potential laterally active reservoir of these antibiotic resistance determinants among the mammalian gastrointestinal microbiota. © The Author(s) 2018. Published by Oxford University Press on behalf

  11. A novel resistance gene, lnu(H), conferring resistance to lincosamides in Riemerella anatipestifer CH-2.

    Science.gov (United States)

    Luo, Hong-Yan; Liu, Ma-Feng; Wang, Ming-Shu; Zhao, Xin-Xin; Jia, Ren-Yong; Chen, Shun; Sun, Kun-Feng; Yang, Qiao; Wu, Ying; Chen, Xiao-Yue; Biville, Francis; Zou, Yuan-Feng; Jing, Bo; Cheng, An-Chun; Zhu, De-Kang

    2018-01-01

    The Gram-negative bacterium Riemerella anatipestifer CH-2 is resistant to lincosamides, having a lincomycin (LCM) minimum inhibitory concentration (MIC) of 128 µg/mL. The G148_1775 gene of R. anatipestifer CH-2, designated lnu(H), encodes a 260-amino acid protein with ≤41% identity to other reported lincosamide nucleotidylyltransferases. Escherichia coli Rosetta TM (DE3) containing the pBAD24-lnu(H) plasmid showed four- and two-fold increases in the MICs of LCM and clindamycin (CLI), respectively. A kinetic assay of the purified Lnu(H) enzyme for LCM and CLI showed that the protein could inactive lincosamides. Mass spectrometry analysis demonstrated that the Lnu(H) enzyme catalysed adenylylation of lincosamides. In addition, an lnu(H) gene deletion strain exhibited 512- and 32-fold decreases in LCM and CLI MICs, respectively. The wild-type level of lincosamide resistance could be restored by complementation with a shuttle plasmid carrying the lnu(H) gene. The transformant R. anatipestifer ATCC 11845 [lnu(H)] acquired by natural transformation also exhibited high-level lincosamide resistance. Moreover, among 175 R. anatipestifer field isolates, 56 (32.0%) were positive for the lnu(H) gene by PCR. In conclusion, Lnu(H) is a novel lincosamide nucleotidylyltransferase that inactivates LCM and CLI by nucleotidylylation, thus conferring high-level lincosamide resistance to R. anatipestifer CH-2. Copyright © 2017. Published by Elsevier B.V.

  12. Reaching consensus on drug resistance conferring mutations (Part 1

    Directory of Open Access Journals (Sweden)

    Daniela M Cirillo

    2016-01-01

    A user-friendly interface designed for nonexpert or expert operability.A standardized and validated analysis pipeline for variant analyses of M. tuberculosis next-generation sequencing (NGS data.Access to data beyond the published literature with dynamic and iterative updates of new data generated by global surveillance and clinical trials.A well-developed legal structure to ensure intellectual property rights and data ownership remain with contributors.A structured data-sharing architecture to restrict access to sensitive or unpublished data sets.Metadata standardization using CDISC: supports global, platform-independent data standards that enable information system interoperability.An emphasis on data quality and rigorous, expert curation with multiple quality control checks for whole-genome sequencing and other metadata.Validation of NGS analysis output by an expert committee with grading of resistance conferring mutations based on rigorous statistical standards.Regulatory-compliant analysis pipeline and database architecture. Successful execution of such an extensive database platform requires substantial collaboration from scientists investigating the genetic basis for drug resistance worldwide, and from developers with expertise in database design and implementation.

  13. Phosphine resistance does not confer cross-resistance to sulfuryl fluoride in four major stored grain insect pests.

    Science.gov (United States)

    Jagadeesan, Rajeswaran; Nayak, Manoj K

    2017-07-01

    Susceptibility to phosphine (PH 3 ) and sulfuryl fluoride (SF) and cross-resistance to SF were evaluated in two life stages (eggs and adults) of key grain insect pests, Rhyzopertha dominca (F.), Sitophilus oryzae (L.), Cryptolestes ferrugineus (Stephens), and Tribolium castaneum (Herbst). This study was performed with an aim to integrate SF into phosphine resistance management programmes in Australia. Characterisation of susceptibility and resistance to phosphine in eggs and adults showed that C. ferrugineus was the most tolerant as well as resistant species. Mortality responses of eggs and adults to SF at 25 °C revealed T. castaneum to be the most tolerant species followed by S. oryzae, C. ferrugineus and R. dominica. A high dose range of SF, 50.8-62.2 mg L -1 over 48 h, representing c (concentration) × t (time) products of 2438-2985 gh m -3 , was required for complete control of eggs of T. castaneum, whereas eggs of the least tolerant R. dominca required only 630 gh m -3 for 48 h (13.13 mg L -1 ). Mortality response of eggs and adults of phosphine-resistant strains to SF in all four species confirmed the lack of cross-resistance to SF. Our research concludes that phosphine resistance does not confer cross-resistance to SF in grain insect pests irrespective of the variation in levels of tolerance to SF itself or resistance to phosphine in their egg and adult stages. While our study confirms that SF has potential as a 'phosphine resistance breaker', the observed higher tolerance in eggs stresses the importance of developing SF fumigation protocols with longer exposure periods. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance.

    Science.gov (United States)

    Niu, Qi-Wen; Lin, Shih-Shun; Reyes, Jose Luis; Chen, Kuan-Chun; Wu, Hui-Wen; Yeh, Shyi-Dong; Chua, Nam-Hai

    2006-11-01

    Plant microRNAs (miRNAs) regulate the abundance of target mRNAs by guiding their cleavage at the sequence complementary region. We have modified an Arabidopsis thaliana miR159 precursor to express artificial miRNAs (amiRNAs) targeting viral mRNA sequences encoding two gene silencing suppressors, P69 of turnip yellow mosaic virus (TYMV) and HC-Pro of turnip mosaic virus (TuMV). Production of these amiRNAs requires A. thaliana DICER-like protein 1. Transgenic A. thaliana plants expressing amiR-P69(159) and amiR-HC-Pro(159) are specifically resistant to TYMV and TuMV, respectively. Expression of amiR-TuCP(159) targeting TuMV coat protein sequences also confers specific TuMV resistance. However, transgenic plants that express both amiR-P69(159) and amiR-HC-Pro(159) from a dimeric pre-amiR-P69(159)/amiR-HC-Pro(159) transgene are resistant to both viruses. The virus resistance trait is displayed at the cell level and is hereditable. More important, the resistance trait is maintained at 15 degrees C, a temperature that compromises small interfering RNA-mediated gene silencing. The amiRNA-mediated approach should have broad applicability for engineering multiple virus resistance in crop plants.

  15. The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum.

    Science.gov (United States)

    Schnippenkoetter, Wendelin; Lo, Clive; Liu, Guoquan; Dibley, Katherine; Chan, Wai Lung; White, Jodie; Milne, Ricky; Zwart, Alexander; Kwong, Eunjung; Keller, Beat; Godwin, Ian; Krattinger, Simon G; Lagudah, Evans

    2017-11-01

    The ability of the wheat Lr34 multipathogen resistance gene (Lr34res) to function across a wide taxonomic boundary was investigated in transgenic Sorghum bicolor. Increased resistance to sorghum rust and anthracnose disease symptoms following infection with the biotrophic pathogen Puccinia purpurea and the hemibiotroph Colletotrichum sublineolum, respectively, occurred in transgenic plants expressing the Lr34res ABC transporter. Transgenic sorghum lines that highly expressed the wheat Lr34res gene exhibited immunity to sorghum rust compared to the low-expressing single copy Lr34res genotype that conferred partial resistance. Pathogen-induced pigmentation mediated by flavonoid phytoalexins was evident on transgenic sorghum leaves following P. purpurea infection within 24-72 h, which paralleled Lr34res gene expression. Elevated expression of flavone synthase II, flavanone 4-reductase and dihydroflavonol reductase genes which control the biosynthesis of flavonoid phytoalexins characterized the highly expressing Lr34res transgenic lines 24-h post-inoculation with P. purpurea. Metabolite analysis of mesocotyls infected with C. sublineolum showed increased levels of 3-deoxyanthocyanidin metabolites were associated with Lr34res expression, concomitant with reduced symptoms of anthracnose. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Reversing resistance to vascular-disrupting agents by blocking late mobilization of circulating endothelial progenitor cells.

    Science.gov (United States)

    Taylor, Melissa; Billiot, Fanny; Marty, Virginie; Rouffiac, Valérie; Cohen, Patrick; Tournay, Elodie; Opolon, Paule; Louache, Fawzia; Vassal, Gilles; Laplace-Builhé, Corinne; Vielh, Philippe; Soria, Jean-Charles; Farace, Françoise

    2012-05-01

    The prevailing concept is that immediate mobilization of bone marrow-derived circulating endothelial progenitor cells (CEP) is a key mechanism mediating tumor resistance to vascular-disrupting agents (VDA). Here, we show that administration of VDA to tumor-bearing mice induces 2 distinct peaks in CEPs: an early, unspecific CEP efflux followed by a late yet more dramatic tumor-specific CEP burst that infiltrates tumors and is recruited to vessels. Combination with antiangiogenic drugs could not disrupt the early peak but completely abrogated the late VDA-induced CEP burst, blunted bone marrow-derived cell recruitment to tumors, and resulted in striking antitumor efficacy, indicating that the late CEP burst might be crucial to tumor recovery after VDA therapy. CEP and circulating endothelial cell kinetics in VDA-treated patients with cancer were remarkably consistent with our preclinical data. These findings expand the current understanding of vasculogenic "rebounds" that may be targeted to improve VDA-based strategies. Our findings suggest that resistance to VDA therapy may be strongly mediated by late, rather than early, tumor-specific recruitment of CEPs, the suppression of which resulted in increased VDA-mediated antitumor efficacy. VDA-based therapy might thus be significantly enhanced by combination strategies targeting late CEP mobilization. © 2012 AACR

  17. NRF2 Mutation Confers Malignant Potential and Resistance to Chemoradiation Therapy in Advanced Esophageal Squamous Cancer

    Directory of Open Access Journals (Sweden)

    Tatsuhiro Shibata

    2011-09-01

    Full Text Available Esophageal squamous cancer (ESC is one of the most aggressive tumors of the gastrointestinal tract. A combination of chemotherapy and radiation therapy (CRT has improved the clinical outcome, but the molecular background determining the effectiveness of therapy remains unknown. NRF2 is a master transcriptional regulator of stress adaptation, and gain of-function mutation of NRF2 in cancer confers resistance to stressors including anticancer therapy. Direct resequencing analysis revealed that Nrf2 gain-of-function mutation occurred recurrently (18/82, 22% in advanced ESC tumors and ESC cell lines (3/10. The presence of Nrf2 mutation was associated with tumor recurrence and poor prognosis. Short hairpin RNA-mediated down-regulation of NRF2 in ESC cells that harbor only mutated Nrf2 allele revealed that themutant NRF2 conferred increased cell proliferation, attachment-independent survival, and resistance to 5-fluorouracil and γ-irradiation. Based on the Nrf2 mutation status, gene expression signatures associated with NRF2 mutation were extracted from ESC cell lines, and their potential utility for monitoring and prognosis was examined in a cohort of 33 pre-CRT cases of ESC. The molecular signatures of NRF2 mutation were significantly predictive and prognostic for CRT response. In conclusion, recurrent NRF2 mutation confers malignant potential and resistance to therapy in advanced ESC, resulting in a poorer outcome. Molecular signatures of NRF2 mutation can be applied as predictive markers of response to CRT, and efficient inhibition of aberrant NRF2 activation could be a promising approach in combination with CRT.

  18. Loss of the RNA polymerase III repressor MAF1 confers obesity resistance.

    OpenAIRE

    Bonhoure, N.; Byrnes, A.; Moir, R.D.; Hodroj, W.; Preitner, F.; Praz, V.; Marcelin, G.; Chua, S.C.; Martinez-Lopez, N.; Singh, R.; Moullan, N.; Auwerx, J.; Willemin, G.; Shah, H.; Hartil, K.

    2015-01-01

    MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is inc...

  19. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat.

    Science.gov (United States)

    Zou, Shenghao; Wang, Huan; Li, Yiwen; Kong, Zhaosheng; Tang, Dingzhong

    2018-04-01

    Powdery mildew is one of the most devastating diseases of wheat. To date, few powdery mildew resistance genes have been cloned from wheat due to the size and complexity of the wheat genome. Triticum urartu is the progenitor of the A genome of wheat and is an important source for powdery mildew resistance genes. Using molecular markers designed from scaffolds of the sequenced T. urartu accession and standard map-based cloning, a powdery mildew resistance locus was mapped to a 356-kb region, which contains two nucleotide-binding and leucine-rich repeat domain (NB-LRR) protein-encoding genes. Virus-induced gene silencing, single-cell transient expression, and stable transformation assays demonstrated that one of these two genes, designated Pm60, confers resistance to powdery mildew. Overexpression of full-length Pm60 and two allelic variants in Nicotiana benthamiana leaves induced hypersensitive cell death response, but expression of the coiled-coil domain alone was insufficient to induce hypersensitive response. Yeast two-hybrid, bimolecular fluorescence complementation and luciferase complementation imaging assays showed that Pm60 protein interacts with its neighboring NB-containing protein, suggesting that they might be functionally related. The identification and cloning of this novel wheat powdery mildew resistance gene will facilitate breeding for disease resistance in wheat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. A New Ala-122-Asn Amino Acid Change Confers Decreased Fitness to ALS-Resistant Echinochloa crus-galli

    Directory of Open Access Journals (Sweden)

    Silvia Panozzo

    2017-11-01

    Full Text Available Gene mutations conferring herbicide resistance may cause pleiotropic effects on plant fitness. Knowledge of these effects is important for managing the evolution of herbicide-resistant weeds. An Echinochloa crus-galli population resistant to acetolactate synthase (ALS herbicides was collected in a maize field in north-eastern Italy and the cross-resistance pattern, resistance mechanism and fitness costs associated to mutant-resistant plants under field conditions in the presence or absence of intra-specific competition were determined. The study reports for the first time the Ala-122-Asn amino-acid change in the ALS gene that confers high levels of cross-resistance to all ALS inhibitors tested. Results of 3-year growth analysis showed that mutant resistant E. crus-galli plants had a delayed development in comparison with susceptible plants and this was registered in both competitive (3, 7, and 20 plants m-2 and non-competitive (spaced plants situations. The number of panicles produced by resistant plants was also lower (about 40% fewer panicles than susceptible plants under no-intraspecific competition. Instead, with the increasing competition level, the difference in panicle production at harvest time decreased until it became negligible at 20 plants m-2. Evaluation of total dry biomass as well as biomass allocation in vegetative parts did not highlight any difference between resistant and susceptible plants. Instead, panicle dry weight was higher in susceptible plants indicating that they allocated more biomass than resistant ones to the reproductive organs, especially in no-competition and in competition situations at lower plant densities. The different fitness between resistant and susceptible phenotypes suggests that keeping the infestation density as low as possible can increase the reproduction success of the susceptible phenotype and therefore contribute to lowering the ratio between resistant and susceptible alleles. If adequately

  1. A New Ala-122-Asn Amino Acid Change Confers Decreased Fitness to ALS-Resistant Echinochloa crus-galli.

    Science.gov (United States)

    Panozzo, Silvia; Scarabel, Laura; Rosan, Valentina; Sattin, Maurizio

    2017-01-01

    Gene mutations conferring herbicide resistance may cause pleiotropic effects on plant fitness. Knowledge of these effects is important for managing the evolution of herbicide-resistant weeds. An Echinochloa crus-galli population resistant to acetolactate synthase (ALS) herbicides was collected in a maize field in north-eastern Italy and the cross-resistance pattern, resistance mechanism and fitness costs associated to mutant-resistant plants under field conditions in the presence or absence of intra-specific competition were determined. The study reports for the first time the Ala-122-Asn amino-acid change in the ALS gene that confers high levels of cross-resistance to all ALS inhibitors tested. Results of 3-year growth analysis showed that mutant resistant E. crus-galli plants had a delayed development in comparison with susceptible plants and this was registered in both competitive (3, 7, and 20 plants m -2 ) and non-competitive (spaced plants) situations. The number of panicles produced by resistant plants was also lower (about 40% fewer panicles) than susceptible plants under no-intraspecific competition. Instead, with the increasing competition level, the difference in panicle production at harvest time decreased until it became negligible at 20 plants m -2 . Evaluation of total dry biomass as well as biomass allocation in vegetative parts did not highlight any difference between resistant and susceptible plants. Instead, panicle dry weight was higher in susceptible plants indicating that they allocated more biomass than resistant ones to the reproductive organs, especially in no-competition and in competition situations at lower plant densities. The different fitness between resistant and susceptible phenotypes suggests that keeping the infestation density as low as possible can increase the reproduction success of the susceptible phenotype and therefore contribute to lowering the ratio between resistant and susceptible alleles. If adequately embedded in a

  2. RAD18 mediates resistance to ionizing radiation in human glioma cells

    International Nuclear Information System (INIS)

    Xie, Chen; Wang, Hongwei; Cheng, Hongbin; Li, Jianhua; Wang, Zhi; Yue, Wu

    2014-01-01

    Highlights: • RAD18 is an important mediator of the IR-induced resistance in glioma cell lines. • RAD18 overexpression confers resistance to IR-mediated apoptosis. • The elevated expression of RAD18 is associated with recurrent GBM who underwent IR therapy. - Abstract: Radioresistance remains a major challenge in the treatment of glioblastoma multiforme (GBM). RAD18 a central regulator of translesion DNA synthesis (TLS), has been shown to play an important role in regulating genomic stability and DNA damage response. In the present study, we investigate the relationship between RAD18 and resistance to ionizing radiation (IR) and examined the expression levels of RAD18 in primary and recurrent GBM specimens. Our results showed that RAD18 is an important mediator of the IR-induced resistance in GBM. The expression level of RAD18 in glioma cells correlates with their resistance to IR. Ectopic expression of RAD18 in RAD18-low A172 glioma cells confers significant resistance to IR treatment. Conversely, depletion of endogenous RAD18 in RAD18-high glioma cells sensitized these cells to IR treatment. Moreover, RAD18 overexpression confers resistance to IR-mediated apoptosis in RAD18-low A172 glioma cells, whereas cells deficient in RAD18 exhibit increased apoptosis induced by IR. Furthermore, knockdown of RAD18 in RAD18-high glioma cells disrupts HR-mediated repair, resulting in increased accumulation of DSB. In addition, clinical data indicated that RAD18 was significantly higher in recurrent GBM samples that were exposed to IR compared with the corresponding primary GBM samples. Collectively, our findings reveal that RAD18 may serve as a key mediator of the IR response and may function as a potential target for circumventing IR resistance in human GBM

  3. The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics

    DEFF Research Database (Denmark)

    Long, K. S.; Poehlsgaard, Jacob; Kehrenberg, C.

    2006-01-01

    to overlapping sites at the peptidyl transferase center that abut nucleotide A2503, is perturbed upon Cfr-mediated methylation. Decreased drug binding to Cfr-methylated ribosomes has been confirmed by footprinting analysis. No other rRNA methyltransferase is known to confer resistance to five chemically distinct...

  4. Criteria for initiation of tokamak disruptions

    International Nuclear Information System (INIS)

    Hopcraft, K.I.; Turner, M.F.

    1986-01-01

    The process by which a tokamak plasma evolves from an equilibrium state containing a saturated magnetic island to one which is disruptively unstable is discussed and illustrated by numerical simulation of a resistive magnetoplasma. Those elements which are required to initiate a disruption are delineated

  5. Aggregate formation affects ultrasonic disruption of microalgal cells.

    Science.gov (United States)

    Wang, Wei; Lee, Duu-Jong; Lai, Juin-Yih

    2015-12-01

    Ultrasonication is a cell disruption process of low energy efficiency. This study dosed K(+), Ca(2+) and Al(3+) to Chlorella vulgaris cultured in Bold's Basal Medium at 25°C and measured the degree of cell disruption under ultrasonication. Adding these metal ions yielded less negatively charged surfaces of cells, while with the latter two ions large and compact cell aggregates were formed. The degree of cell disruption followed: control=K(+)>Ca(2+)>Al(3+) samples. Surface charges of cells and microbubbles have minimal effects on the microbubble number in the proximity of the microalgal cells. Conversely, cell aggregates with large size and compact interior resist cell disruption under ultrasonication. Staining tests revealed high diffusional resistance of stains over the aggregate interior. Microbubbles may not be effective generated and collapsed inside the compact aggregates, hence leading to low cell disruption efficiencies. Effective coagulation/flocculation in cell harvesting may lead to adverse effect on subsequent cell disruption efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1

    NARCIS (Netherlands)

    Humphry, M.; Reinstädler, A.; Ivanov, S.; Bisseling, T.; Panstruga, R.

    2011-01-01

    Loss-of-function alleles of plant-specific MLO (Mildew Resistance Locus O) genes confer broad-spectrum powdery mildew resistance in monocot (barley) and dicot (Arabidopsis thaliana, tomato) plants. Recessively inherited powdery mildew resistance in pea (Pisum sativum) er1 plants is, in many aspects,

  7. Analysis of acetohydroxyacid synthase1 gene in chickpea conferring resistance to imazamox herbicide.

    Science.gov (United States)

    Jain, Parul; Tar'an, Bunyamin

    2014-11-01

    Chickpea (Cicer arietinum L.) production in the Canadian prairies is challenging due to a lack of effective weed management mainly because of poor competition ability of the crop and limited registered herbicide options. Chickpea genotype with resistance to imidazolinone (IMI) herbicides has been identified. A point mutation in the acetohydroxyacid synthase1 (AHAS1) gene at C581 to T581, resulting in an amino acid substitution from Ala194 to Val194 (position 205, standardized to arabidopsis), confers the resistance to imazamox in chickpea. However, the molecular mechanism leading to the resistance is not fully understood. In many plant species, contrasting transcription levels of AHAS gene has been implicated in the resistant and susceptible genotypes in response to IMI. The objectives of this research were to compare the AHAS gene expression and AHAS enzyme activity in resistant and susceptible chickpea cultivars in response to imazamox herbicide treatment. Results from RT-qPCR indicated that there is no significant change in the transcript levels of AHAS1 between the susceptible and the resistant genotypes in response to imazamox treatment. Protein hydrophobic cluster analysis, protein-ligand docking analysis, and AHAS enzyme activity assay all indicated that the resistance to imazamox in chickpea is due to the alteration of interaction of the AHAS1 enzyme with the imazamox herbicide.

  8. NRAM: a disruptive carbon-nanotube resistance-change memory

    Science.gov (United States)

    Gilmer, D. C.; Rueckes, T.; Cleveland, L.

    2018-04-01

    Advanced memory technology based on carbon nanotubes (CNTs) (NRAM) possesses desired properties for implementation in a host of integrated systems due to demonstrated advantages of its operation including high speed (nanotubes can switch state in picoseconds), high endurance (over a trillion), and low power (with essential zero standby power). The applicable integrated systems for NRAM have markets that will see compound annual growth rates (CAGR) of over 62% between 2018 and 2023, with an embedded systems CAGR of 115% in 2018-2023 (http://bccresearch.com/pressroom/smc/bcc-research-predicts:-nram-(finally)-to-revolutionize-computer-memory). These opportunities are helping drive the realization of a shift from silicon-based to carbon-based (NRAM) memories. NRAM is a memory cell made up of an interlocking matrix of CNTs, either touching or slightly separated, leading to low or higher resistance states respectively. The small movement of atoms, as opposed to moving electrons for traditional silicon-based memories, renders NRAM with a more robust endurance and high temperature retention/operation which, along with high speed/low power, is expected to blossom in this memory technology to be a disruptive replacement for the current status quo of DRAM (dynamic RAM), SRAM (static RAM), and NAND flash memories.

  9. Identification of a rice gene (Bph 1) conferring resistance to brown planthopper (Nilaparvata lugens Stal) using STS markers.

    Science.gov (United States)

    Kim, Suk-Man; Sohn, Jae-Keun

    2005-08-31

    This study was carried out to identify a high-resolution marker for a gene conferring resistance to brown planthopper (BPH) biotype 1, using japonica type resistant lines. Bulked segregant analyses were conducted using 520 RAPD primers to identify RAPD fragments linked to the BPH resistance gene. Eleven RAPDs were shown to be polymorphic amplicons between resistant and susceptible progeny. One of these primers, OPE 18, which amplified a 923 bp band tightly linked to resistance, was converted into a sequence-tagged-site (STS) marker. The STS marker, BpE18-3, was easily detectable as a dominant band with tight linkage (3.9cM) to Bph1. It promises to be useful as a marker for assisted selection of resistant progeny in backcross breeding programs to introgress the resistance gene into elite japonica cultivars.

  10. Induction of cytoprotective pathways is central to the extension of lifespan conferred by multiple longevity pathways.

    Directory of Open Access Journals (Sweden)

    David E Shore

    Full Text Available Many genetic and physiological treatments that extend lifespan also confer resistance to a variety of stressors, suggesting that cytoprotective mechanisms underpin the regulation of longevity. It has not been established, however, whether the induction of cytoprotective pathways is essential for lifespan extension or merely correlated. Using a panel of GFP-fused stress response genes, we identified the suites of cytoprotective pathways upregulated by 160 gene inactivations known to increase Caenorhabditis elegans longevity, including the mitochondrial UPR (hsp-6, hsp-60, the ER UPR (hsp-4, ROS response (sod-3, gst-4, and xenobiotic detoxification (gst-4. We then screened for other gene inactivations that disrupt the induction of these responses by xenobiotic or genetic triggers, identifying 29 gene inactivations required for cytoprotective gene expression. If cytoprotective responses contribute directly to lifespan extension, inactivation of these genes would be expected to compromise the extension of lifespan conferred by decreased insulin/IGF-1 signaling, caloric restriction, or the inhibition of mitochondrial function. We find that inactivation of 25 of 29 cytoprotection-regulatory genes shortens the extension of longevity normally induced by decreased insulin/IGF-1 signaling, disruption of mitochondrial function, or caloric restriction, without disrupting normal longevity nearly as dramatically. These data demonstrate that induction of cytoprotective pathways is central to longevity extension and identify a large set of new genetic components of the pathways that detect cellular damage and couple that detection to downstream cytoprotective effectors.

  11. Resistance to nitrofurantoin and UV-irradiation in recA; uvrA; and uvrA, lexA, Escherichia coli mutants conferred by an R-plasmid from an Escherichia coli clinical isolate

    Energy Technology Data Exchange (ETDEWEB)

    Obaseiki-Ebor, E.E. (Univ. of Benin, Benin City (Nigeria). Faculty of Pharmacy, Dept. of Pharmaceutical Microbiology)

    1984-01-01

    There have been some reports of R-plasmids conferring nitrofuran resistance by decreasing the reduction of nitrofurantoin. The mechanism by which these R-plasmids mediate nitrofurantoin resistance is still not properly understood. Since DNA repair mutants are very sensitive to nitrofurantoin, it was therefore of interest to see whether R-plasmids conferring nitrofurantoin resistance affected the nitrofurantoin sensitivity of recA; uvrA and uvrA, lexA strains of E. coli K-12. Protection against UV-irradiation was also estimated. The experiments showed that the nitrofurantoin resistance conferred by R-plasmid pBN105 was not due to defective nitrofurantoin reduction or altered permeability of the cell. Because it is known that repair-deficient bacteria have increased susceptibility to nitrofurantoin, it may be suggested that the mechanisms of UV and nitrofurantoin protection conferred by pBN105 to the DNA repair mutant strains are related.

  12. Resistance to nitrofurantoin and UV-irradiation in recA; uvrA; and uvrA, lexA, Escherichia coli mutants conferred by an R-plasmid from an Escherichia coli clinical isolate

    International Nuclear Information System (INIS)

    Obaseiki-Ebor, E.E.

    1984-01-01

    There have been some reports of R-plasmids conferring nitrofuran resistance by decreasing the reduction of nitrofurantoin. The mechanism by which these R-plasmids mediate nitrofurantoin resistance is still not properly understood. Since DNA repair mutants are very sensitive to nitrofurantoin, it was therefore of interest to see whether R-plasmids conferring nitrofurantoin resistance affected the nitrofurantoin sensitivity of recA; uvrA and uvrA, lexA strains of E. coli K-12. Protection against UV-irradiation was also estimated. The experiments showed that the nitrofurantoin resistance conferred by R-plasmid pBN105 was not due to defective nitrofurantoin reduction or altered permeability of the cell. Because it is known that repair-deficient bacteria have increased susceptibility to nitrofurantoin, it may be suggested that the mechanisms of UV and nitrofurantoin protection conferred by pBN105 to the DNA repair mutant strains are related. (Auth.)

  13. MicroRNA-21 induces 5-fluorouracil resistance in human pancreatic cancer cells by regulating PTEN and PDCD4

    International Nuclear Information System (INIS)

    Wei, Xueju; Wang, Weibin; Wang, Lanlan; Zhang, Yuanyuan; Zhang, Xian; Chen, Mingtai; Wang, Fang; Yu, Jia; Ma, Yanni; Sun, Guotao

    2016-01-01

    Pancreatic cancer patients are often resistant to chemotherapy treatment, which results in poor prognosis. The objective of this study was to delineate the mechanism by which miR-21 induces drug resistance to 5-fluorouracil (5-FU) in human pancreatic cancer cells (PATU8988 and PANC-1). We report that PATU8988 cells resistant to 5-FU express high levels of miR-21 in comparison to sensitive primary PATU8988 cells. Suppression of miR-21 expression in 5-Fu-resistant PATU8988 cells can alleviate its 5-FU resistance. Meanwhile, lentiviral vector-mediated overexpression of miR-21 not only conferred resistance to 5-FU but also promoted proliferation, migration, and invasion of PATU8988 and PANC-1 cells. The proresistance effects of miR-21 were attributed to the attenuated expression of tumor suppressor genes, including PTEN and PDCD4. Overexpression of PTEN and PDCD4 antagonized miR-21-induced resistance to 5-FU and migration activity. Our work demonstrates that miR-21 can confer drug resistance to 5-FU in pancreatic cancer cells by regulating the expression of tumor suppressor genes, as the target genes of miR-21, PTEN and PDCD4 can rescue 5-FU sensitivity and the phenotypic characteristics disrupted by miR-21

  14. Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock: potential commercial applications.

    Science.gov (United States)

    Kim, J; Alizadeh, P; Harding, T; Hefner-Gravink, A; Klionsky, D J

    1996-01-01

    The accumulation of trehalose is a critical determinant of stress resistance in the yeast Saccharomyces cerevisiae. We have constructed a yeast strain in which the activity of the trehalose-hydrolyzing enzyme, acid trehalase (ATH), has been abolished. Loss of ATH activity was accomplished by disrupting the ATH1 gene, which is essential for ATH activity. The delta ath1 strain accumulated greater levels of cellular trehalose and grew to a higher cell density than the isogenic wild-type strain. In addition, the elevated levels of trehalose in the delta ath1 strain correlated with increased tolerance to dehydration, freezing, and toxic levels of ethanol. The improved resistance to stress conditions exhibited by the delta ath1 strain may make this strain useful in commercial applications, including baking and brewing. PMID:8633854

  15. Silencing of copine genes confers common wheat enhanced resistance to powdery mildew.

    Science.gov (United States)

    Zou, Baohong; Ding, Yuan; Liu, He; Hua, Jian

    2018-06-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a major threat to the production of wheat (Triticum aestivum). It is of great importance to identify new resistance genes for the generation of Bgt-resistant or Bgt-tolerant wheat varieties. Here, we show that the wheat copine genes TaBON1 and TaBON3 negatively regulate wheat disease resistance to Bgt. Two copies of TaBON1 and three copies of TaBON3, located on chromosomes 6AS, 6BL, 1AL, 1BL and 1DL, respectively, were identified from the current common wheat genome sequences. The expression of TaBON1 and TaBON3 is responsive to both pathogen infection and temperature changes. Knocking down of TaBON1 or TaBON3 by virus-induced gene silencing (VIGS) induces the up-regulation of defence responses in wheat. These TaBON1- or TaBON3-silenced plants exhibit enhanced wheat disease resistance to Bgt, accompanied by greater accumulation of hydrogen peroxide and heightened cell death. In addition, high temperature has little effect on the up-regulation of defence response genes conferred by the silencing of TaBON1 or TaBON3. Our study shows a conserved function of plant copine genes in plant immunity and provides new genetic resources for the improvement of resistance to powdery mildew in wheat. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  16. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group

    Science.gov (United States)

    The Puccinia graminis f. sp. tritici (Pgt) Ug99 race group is virulent to most stem rust resistance genes currently deployed in wheat and poses a serious threat to global wheat production. The durum wheat (Triticum turgidum ssp. durum) gene Sr13 confers resistance to Ug99 in addition to virulent rac...

  17. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato.

    Science.gov (United States)

    Tai, T H; Dahlbeck, D; Clark, E T; Gajiwala, P; Pasion, R; Whalen, M C; Stall, R E; Staskawicz, B J

    1999-11-23

    The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site-leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species.

  18. A new point mutation in the iron-sulfur subunit of succinate dehydrogenase confers resistance to boscalid in Sclerotinia sclerotiorum.

    Science.gov (United States)

    Wang, Yong; Duan, Yabing; Wang, Jianxin; Zhou, Mingguo

    2015-09-01

    Research has established that mutations in highly conserved amino acids of the succinate dehydrogenase (SDH) complex in various fungi confer SDH inhibitor (SDHI) resistance. For Sclerotinia sclerotiorum (Lib.) de Bary, a necrotrophic fungus with a broad host range and a worldwide distribution, boscalid resistance has been attributed to the mutation H132R in the highly conserved SdhD subunit protein of the SDH complex. In our previous study, however, only one point mutation, A11V in SdhB (GCA to GTA change in SdhB), was detected in S. sclerotiorum boscalid-resistant (BR) mutants. In the current study, replacement of the SdhB gene in a boscalid-sensitive (BS) S. sclerotiorum strain with the mutant SdhB gene conferred resistance. Compared with wild-type strains, BR and GSM (SdhB gene in the wild-type strain replaced by the mutant SdhB gene) mutants were more sensitive to osmotic stress, lacked the ability to produce sclerotia and exhibited lower expression of the pac1 gene. Importantly, the point mutation was not located in the highly conserved sequence of the iron-sulfur subunit of SDH. These results suggest that resistance based on non-conserved vs. conserved protein domains differs in mechanism. In addition to increasing our understanding of boscalid resistance in S. sclerotiorum, the new information will be useful for the development of alternative antifungal drugs. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  19. Fitness costs linked to dinitroaniline resistance mutation in Setaria.

    Science.gov (United States)

    Darmency, H; Picard, J C; Wang, T

    2011-07-01

    A mutant Thr-239-Ileu at the α2-tubulin gene was found to confer resistance to dinitroanilines, a family of mitosis-disrupting herbicides. However, mutations affecting microtubule polymerization and cell division are expected to impact growth and reproduction, that is, the fitness of a resistant weed or the yield of a tolerant crop, although it has not been demonstrated yet. This study was designed to test this hypothesis for the growth and reproduction of near-isogenic resistant and susceptible materials that were created in F(2) and F(3) generations after a Setaria viridis x S. italica cross. Differential growth was noticeable at the very onset of seedling growth. The homozygous resistant plants, grown both in a greenhouse cabinet and in the field, were smaller and had lower 1000-grain weight and therefore a lower yield. This fitness penalty is certainly due to modified cell division kinetics. Although the presence of the mutant allele accounted for 20% yield losses, there were also measurable benefits of dinitroaniline resistance, and these benefits are discussed.

  20. Recessive resistance to Bean common mosaic virus conferred by the bc-1 and bc-2 genes in common bean (Phaseolus vulgaris L.) affects long distance movement of the virus.

    Science.gov (United States)

    Feng, Xue; Orellana, Gardenia; Myers, James; Karasev, Alexander V

    2018-04-12

    Recessive resistance to Bean common mosaic virus (BCMV) in common bean (Phaseolus vulgaris L.) is governed by four genes that include one strain-nonspecific helper gene bc-u, and three strain-specific genes bc-1, bc-2, and bc-3. The bc-3 gene was identified as an eIF4E translation initiation factor gene mediating resistance through disruption of the interaction between this protein and the VPg protein of the virus. The mode of action of bc-1 and bc-2 in expression of BCMV resistance is unknown, although bc-1 gene was found to affect systemic spread of a related potyvirus, Bean common mosaic necrosis virus. To investigate the possible role of both bc-1 and bc-2 genes in replication, cell-to-cell, and long distance movement of BCMV in P. vulgaris, we tested virus spread of eight BCMV isolates representing pathogroups I, IV, VI, VII, and VIII, in a set of bean differentials expressing different combinations of six resistance alleles including bc-u, bc-1, bc-1 2 , bc-2, bc-2 2 , and bc-3. All studied BCMV isolates were able to replicate and spread in inoculated leaves of bean cultivars harboring bc-u, bc-1, bc-1 2 , bc-2, and bc-2 2 alleles and their combinations, while no BCMV replication was found in inoculated leaves of 'IVT7214' carrying the bc-u, bc-2 and bc-3 genes, except for isolate 1755a capable of overcoming the resistance conferred by bc-2 and bc-3. In contrast, the systemic spread of all BCMV isolates from pathogroups I, IV,VI, VII, and VIII was impaired in common bean cultivars carrying bc-1, bc-1 2 , bc-2, and bc-2 2 alleles. The data suggest that bc-1 and bc-2 recessive resistance genes have no effect on the replication and cell-to-cell movement of BCMV, but affect systemic spread of BCMV in common bean. The BCMV resistance conferred by bc-1 and bc-2 and affecting systemic spread was found only partially effective when these two genes were expressed singly. The efficiency of the restriction of the systemic spread of the virus was greatly enhanced when

  1. Introgression and pyramiding into common bean market class fabada of genes conferring resistance to anthracnose and potyvirus.

    Science.gov (United States)

    Ferreira, Juan José; Campa, Ana; Pérez-Vega, Elena; Rodríguez-Suárez, Cristina; Giraldez, Ramón

    2012-03-01

    Anthracnose and bean common mosaic (BCM) are considered major diseases in common bean crop causing severe yield losses worldwide. This work describes the introgression and pyramiding of genes conferring genetic resistance to BCM and anthracnose local races into line A25, a bean genotype classified as market class fabada. Resistant plants were selected using resistance tests or combining resistance tests and marker-assisted selection. Lines A252, A321, A493, Sanilac BC6-Are, and BRB130 were used as resistance sources. Resistance genes to anthracnose (Co-2 ( C ), Co-2 ( A252 ) and Co-3/9) and/or BCM (I and bc-3) were introgressed in line A25 through six parallel backcrossing programs, and six breeding lines showing a fabada seed phenotype were obtained after six backcross generations: line A1258 from A252; A1231 from A321; A1220 from A493; A1183 and A1878 from Sanilac BC6-Are; and line A2418 from BRB130. Pyramiding of different genes were developed using the pedigree method from a single cross between lines obtained in the introgression step: line A1699 (derived from cross A1258 × A1220), A2438 (A1220 × A1183), A2806 (A1878 × A2418), and A3308 (A1699 × A2806). A characterization based on eight morpho-agronomic traits revealed a limited differentiation among the obtained breeding lines and the recurrent line A25. However, using a set of seven molecular markers linked to the loci used in the breeding programs it was possible to differentiate the 11 fabada lines. Considering the genetic control of the resistance in resistant donor lines, the observed segregations in the last backcrossing generation, the reaction against the pathogens, and the expression of the molecular markers it was also possible to infer the genotype conferring resistance in the ten fabada breeding lines obtained. As a result of these breeding programs, genetic resistance to three anthracnose races controlled by genes included in clusters Co-2 and Co-3/9, and genetic resistance to BCM controlled

  2. CONFERENCE REPORT ANTIRETROVIRAL RESISTANCE

    African Journals Online (AJOL)

    2004-08-02

    Aug 2, 2004 ... development of new agents with potential clinical utility for treating resistant ... data on the emergence of resistance among Thai women given zidovudine ... had achieved full virological suppression (viral load. < 50 copies/ml).

  3. Reduction of MLH1 and PMS2 confers temozolomide resistance and is associated with recurrence of glioblastoma.

    Science.gov (United States)

    Shinsato, Yoshinari; Furukawa, Tatsuhiko; Yunoue, Shunji; Yonezawa, Hajime; Minami, Kentarou; Nishizawa, Yukihiko; Ikeda, Ryuji; Kawahara, Kohichi; Yamamoto, Masatatsu; Hirano, Hirofumi; Tokimura, Hiroshi; Arita, Kazunori

    2013-12-01

    Although there is a relationship between DNA repair deficiency and temozolomide (TMZ) resistance in glioblastoma (GBM), it remains unclear which molecule is associated with GBM recurrence. We isolated three TMZ-resistant human GBM cell lines and examined the expression of O6-methylguanine-DNA methyltransferase (MGMT) and mismatch repair (MMR) components. We used immunohistochemical analysis to compare MutL homolog 1 (MLH1), postmeiotic segregation increased 2 (PMS2) and MGMT expression in primary and recurrent GBM specimens obtained from GBM patients during TMZ treatment. We found a reduction in MLH1 expression and a subsequent reduction in PMS2 protein levels in TMZ-resistant cells. Furthermore, MLH1 or PMS2 knockdown confered TMZ resistance. In recurrent GBM tumours, the expression of MLH1 and PMS2 was reduced when compared to primary tumours.

  4. Molecular and biochemical characterization of an induced mutation conferring imidazolinone resistance in sunflower.

    Science.gov (United States)

    Sala, Carlos A; Bulos, Mariano; Echarte, Mariel; Whitt, Sherry R; Ascenzi, Robert

    2008-12-01

    A partially dominant nuclear gene conferring resistance to the imidazolinone herbicides was previously identified in the cultivated sunflower (Helianthus annuus L.) line CLHA-Plus developed by seed mutagenesis. The objective of this study was to characterize this resistant gene at the phenotypic, biochemical and molecular levels. CLHA-Plus showed a complete susceptibility to sulfonylureas (metsulfuron, tribenuron and chlorsulfuron) but, on the other hand, it showed a complete resistance to imidazolinones (imazamox, imazapyr and imazapic) at two rates of herbicide application. This pattern was in close association with the AHAS-inhibition kinetics of protein extracts of CLHA-Plus challenged with different doses of imazamox and chlorsulfuron. Nucleotide and deduced amino acid sequence comparisons between resistant and susceptible lines indicated that the imidazolinone-resistant AHAS of CLHA-Plus has a threonine codon (ACG) at position 122 (relative to the Arabidopsis thaliana AHAS sequence), whereas the herbicide-susceptible enzyme from BTK47 has an alanine residue (GCG) at this position. Since the resistance genes to AHAS-inhibiting herbicides so far characterized in sunflower code for the catalytic (large) subunit of AHAS, we propose to redesignate the wild type allele as ahasl1 and the incomplete dominant resistant alleles as Ahasl1-1 (previously Imr1 or Ar ( pur )), Ahasl1-2 (previously Ar ( kan )) and Ahasl1-3 (for the allele present in CLHA-Plus). The higher tolerance level to imidazolinones and the lack of cross-resistance to other AHAS-inhibiting herbicides of Ahasl1-3 indicate that this induced mutation can be used to develop commercial hybrids with superior levels of tolerance and, at the same time, to assist weed management where control of weedy common sunflower is necessary.

  5. High-resolution mapping reveals linkage between genes in common bean cultivar Ouro Negro conferring resistance to the rust, anthracnose, and angular leaf spot diseases.

    Science.gov (United States)

    Valentini, Giseli; Gonçalves-Vidigal, Maria Celeste; Hurtado-Gonzales, Oscar P; de Lima Castro, Sandra Aparecida; Cregan, Perry B; Song, Qijian; Pastor-Corrales, Marcial A

    2017-08-01

    Co-segregation analysis and high-throughput genotyping using SNP, SSR, and KASP markers demonstrated genetic linkage between Ur-14 and Co-3 4 /Phg-3 loci conferring resistance to the rust, anthracnose and angular leaf spot diseases of common bean. Rust, anthracnose, and angular leaf spot are major diseases of common bean in the Americas and Africa. The cultivar Ouro Negro has the Ur-14 gene that confers broad spectrum resistance to rust and the gene cluster Co-3 4 /Phg-3 containing two tightly linked genes conferring resistance to anthracnose and angular leaf spot, respectively. We used co-segregation analysis and high-throughput genotyping of 179 F 2:3 families from the Rudá (susceptible) × Ouro Negro (resistant) cross-phenotyped separately with races of the rust and anthracnose pathogens. The results confirmed that Ur-14 and Co-3 4 /Phg-3 cluster in Ouro Negro conferred resistance to rust and anthracnose, respectively, and that Ur-14 and the Co-3 4 /Phg-3 cluster were closely linked. Genotyping the F 2:3 families, first with 5398 SNPs on the Illumina BeadChip BARCBEAN6K_3 and with 15 SSR, and eight KASP markers, specifically designed for the candidate region containing Ur-14 and Co-3 4 /Phg-3, permitted the creation of a high-resolution genetic linkage map which revealed that Ur-14 was positioned at 2.2 cM from Co-3 4 /Phg-3 on the short arm of chromosome Pv04 of the common bean genome. Five flanking SSR markers were tightly linked at 0.1 and 0.2 cM from Ur-14, and two flanking KASP markers were tightly linked at 0.1 and 0.3 cM from Co-3 4 /Phg-3. Many other SSR, SNP, and KASP markers were also linked to these genes. These markers will be useful for the development of common bean cultivars combining the important Ur-14 and Co-3 4 /Phg-3 genes conferring resistance to three of the most destructive diseases of common bean.

  6. The Growth Hormone Receptor Gene-Disrupted (GHR-KO) Mouse Fails to Respond to an Intermittent Fasting (IF) Diet

    Science.gov (United States)

    Arum, Oge; Bonkowski, Michael S.; Rocha, Juliana S.; Bartke, Andrzej

    2009-01-01

    SUMMARY The interaction of longevity-conferring genes with longevity-conferring diets is poorly understood. The growth hormone receptor gene-disrupted (GHR-KO) mouse is long-lived; and this longevity is not responsive to 30% caloric restriction (CR), in contrast to wild-type animals from the same strain. To determine whether this may have been limited to a particular level of dietary restriction (DR), we subjected GHR-KO mice to a different dietary restriction regimen, an intermittent fasting (IF) diet. The IF diet increased the survivorship and improved insulin sensitivity of normal males, but failed to affect either parameter in GHR-KO mice. From the results of two paradigms of dietary restriction we postulate that GHR-KO mice would be resistant to any manner of DR; potentially due to their inability to further enhance insulin sensitivity. Insulin sensitivity may be a mechanism and/or a marker of the lifespan-extending potential of an intervention. PMID:19747233

  7. ClbS Is a Cyclopropane Hydrolase That Confers Colibactin Resistance.

    Science.gov (United States)

    Tripathi, Prabhanshu; Shine, Emilee E; Healy, Alan R; Kim, Chung Sub; Herzon, Seth B; Bruner, Steven D; Crawford, Jason M

    2017-12-13

    Certain commensal Escherichia coli contain the clb biosynthetic gene cluster that codes for small molecule prodrugs known as precolibactins. Precolibactins are converted to colibactins by N-deacylation; the latter are postulated to be genotoxic and to contribute to colorectal cancer formation. Though advances toward elucidating (pre)colibactin biosynthesis have been made, the functions and mechanisms of several clb gene products remain poorly understood. Here we report the 2.1 Å X-ray structure and molecular function of ClbS, a gene product that confers resistance to colibactin toxicity in host bacteria and which has been shown to be important for bacterial viability. The structure harbors a potential colibactin binding site and shares similarity to known hydrolases. In vitro studies using a synthetic colibactin analog and ClbS or an active site residue mutant reveal cyclopropane hydrolase activity that converts the electrophilic cyclopropane of the colibactins into an innocuous hydrolysis product. As the cyclopropane has been shown to be essential for genotoxic effects in vitro, this ClbS-catalyzed ring-opening provides a means for the bacteria to circumvent self-induced genotoxicity. Our study provides a molecular-level view of the first reported cyclopropane hydrolase and support for a specific mechanistic role of this enzyme in colibactin resistance.

  8. The cold-induced defensin TAD1 confers resistance against snow mold and Fusarium head blight in transgenic wheat.

    Science.gov (United States)

    Sasaki, Kentaro; Kuwabara, Chikako; Umeki, Natsuki; Fujioka, Mari; Saburi, Wataru; Matsui, Hirokazu; Abe, Fumitaka; Imai, Ryozo

    2016-06-20

    TAD1 (Triticum aestivum defensin 1) is induced during cold acclimation in winter wheat and encodes a plant defensin with antimicrobial activity. In this study, we demonstrated that recombinant TAD1 protein inhibits hyphal growth of the snow mold fungus, Typhula ishikariensis in vitro. Transgenic wheat plants overexpressing TAD1 were created and tested for resistance against T. ishikariensis. Leaf inoculation assays revealed that overexpression of TAD1 confers resistance against the snow mold. In addition, the TAD1-overexpressors showed resistance against Fusarium graminearum, which causes Fusarium head blight, a devastating disease in wheat and barley. These results indicate that TAD1 is a candidate gene to improve resistance against multiple fungal diseases in cereal crops. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A novel amino acid substitution Trp574Arg in acetolactate synthase (ALS) confers broad resistance to ALS-inhibiting herbicides in crabgrass (Digitaria sanguinalis).

    Science.gov (United States)

    Li, Jian; Li, Mei; Gao, Xingxiang; Fang, Feng

    2017-12-01

    Crabgrass (Digitaria sanguinalis) is an annual monocotyledonous weed. In recent years, field applications of nicosulfuron have been ineffective in controlling crabgrass populations in Shandong Province, China. To investigate the mechanisms of resistance to nicosulfuron in crabgrass populations, the acetolactate synthase (ALS) gene fragment covering known resistance-confering mutation sites was amplified and sequenced. Dose-response experiments suggested that the resistant population SD13 (R) was highly resistant to nicosulfuron (resistance index R/S = 43.7) compared with the sensitive population SD22 (S). ALS gene sequencing revealed a Trp574Arg substitution in the SD13 population, and no other known resistance-conferring mutations were found. In vitro ALS enzyme assays further confirmed that the SD13 population was resistant to all tested ALS-inhibiting herbicides. The resistance pattern experiments revealed that, compared with SD22, the SD13 population exhibited broad-spectrum resistance to nicosulfuron (43.7-fold), imazethapyr (11.4-fold) and flumetsulam (16.1-fold); however, it did not develop resistance to atrazine, mesotrione and topramezone. This study demonstrated that Trp574Arg substitution was the main reason for crabgrass resistance to ALS-inhibiting herbicides. To our knowledge, this is the first report of Trp574Arg substitution in a weed species, and is the first report of target-site mechanisms of herbicide resistance for crabgrass. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Nobility, Competence, and Disruption: Challenges to Teacher Education

    Science.gov (United States)

    Fenstermacher, Gary D.

    2015-01-01

    This article was comprises the keynote address presented by Gary D. Fenstermacher, at the Conference of the California Council on Teacher Education (CCTE), March 19, 2015, in San Jose, California. The subject covered Nobility, Competence, and Disruption and what they mean in teacher education. Fenstermacher presents his subject in four assertions:…

  11. Insertion sequence ISRP10 inactivation of the oprD gene in imipenem-resistant Pseudomonas aeruginosa clinical isolates.

    Science.gov (United States)

    Sun, Qinghui; Ba, Zhaofen; Wu, Guoying; Wang, Wei; Lin, Shuxiang; Yang, Hongjiang

    2016-05-01

    Carbapenem resistance mechanisms were investigated in 32 imipenem-resistant Pseudomonas aeruginosa clinical isolates recovered from hospitalised children. Sequence analysis revealed that 31 of the isolates had an insertion sequence element ISRP10 disrupting the porin gene oprD, demonstrating that ISRP10 inactivation of oprD conferred imipenem resistance in the majority of the isolates. Multilocus sequence typing (MLST) was used to discriminate the isolates. In total, 11 sequence types (STs) were identified including 3 novel STs, and 68.3% (28/41) of the tested strains were characterised as clone ST253. In combination with random amplified polymorphic DNA (RAPD) analysis, the imipenem-resistant isolates displayed a relatively high degree of genetic variability and were unlikely associated with nosocomial infections. Copyright © 2016 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  12. Relationship of autonomic imbalance and circadian disruption with obesity and type 2 diabetes in resistant hypertensive patients

    Directory of Open Access Journals (Sweden)

    Figueiredo Márcio J

    2011-03-01

    Full Text Available Abstract Background Hypertension, diabetes and obesity are not isolated findings, but a series of interacting interactive physiologic derangements. Taking into account genetic background and lifestyle behavior, AI (autonomic imbalance could be a common root for RHTN (resistant hypertension or RHTN plus type 2 diabetes (T2D comorbidity development. Moreover, circadian disruption can lead to metabolic and vasomotor impairments such as obesity, insulin resistance and resistant hypertension. In order to better understand the triggered emergence of obesity and T2D comorbidity in resistant hypertension, we investigated the pattern of autonomic activity in the circadian rhythm in RHTN with and without type 2 diabetes (T2D, and its relationship with serum adiponectin concentration. Methods Twenty five RHTN patients (15 non-T2D and 10 T2D, 15 males, 10 females; age range 34 to 70 years were evaluated using the following parameters: BMI (body mass index, biochemical analysis, serum adiponectinemia, echocardiogram and ambulatory electrocardiograph heart rate variability (HRV in time and frequency domains stratified into three periods: 24 hour, day time and night time. Results Both groups demonstrated similar characteristics despite of the laboratory analysis concerning T2D like fasting glucose, HbA1c levels and hypertriglyceridemia. Both groups also revealed disruption of the circadian rhythm: inverted sympathetic and parasympathetic tones during day (parasympathetic > sympathetic tone and night periods (sympathetic > parasympathetic tone. T2D group had increased BMI and serum triglyceride levels (mean 33.7 ± 4.0 vs 26.6 ± 3.7 kg/m2 - p = 0.00; 254.8 ± 226.4 vs 108.6 ± 48.7 mg/dL - p = 0.04, lower levels of adiponectin (6729.7 ± 3381.5 vs 10911.5 ± 5554.0 ng/mL - p = 0.04 and greater autonomic imbalance evaluated by HRV parameters in time domain compared to non-T2D RHTN patients. Total patients had HRV correlated positively with serum adiponectin (r

  13. CCR5 Gene Disruption via Lentiviral Vectors Expressing Cas9 and Single Guided RNA Renders Cells Resistant to HIV-1 Infection

    Science.gov (United States)

    Liu, Jingjing; Zhang, Di; Kimata, Jason T.; Zhou, Paul

    2014-01-01

    CCR5, a coreceptor for HIV-1 entry, is a major target for drug and genetic intervention against HIV-1. Genetic intervention strategies have knocked down CCR5 expression levels by shRNA or disrupted the CCR5 gene using zinc finger nucleases (ZFN) or Transcription activator-like effector nuclease (TALEN). In the present study, we silenced CCR5 via CRISPR associated protein 9 (Cas9) and single guided RNAs (sgRNAs). We constructed lentiviral vectors expressing Cas9 and CCR5 sgRNAs. We show that a single round transduction of lentiviral vectors expressing Cas9 and CCR5 sgRNAs into HIV-1 susceptible human CD4+ cells yields high frequencies of CCR5 gene disruption. CCR5 gene-disrupted cells are not only resistant to R5-tropic HIV-1, including transmitted/founder (T/F) HIV-1 isolates, but also have selective advantage over CCR5 gene-undisrupted cells during R5-tropic HIV-1 infection. Importantly, using T7 endonuclease I assay we did not detect genome mutations at potential off-target sites that are highly homologous to these CCR5 sgRNAs in stably transduced cells even at 84 days post transduction. Thus we conclude that silencing of CCR5 via Cas9 and CCR5-specific sgRNAs could be a viable alternative strategy for engineering resistance against HIV-1. PMID:25541967

  14. Alcohol dehydrogenase 1 (ADH1) confers both abiotic and biotic stress resistance in Arabidopsis.

    Science.gov (United States)

    Shi, Haitao; Liu, Wen; Yao, Yue; Wei, Yunxie; Chan, Zhulong

    2017-09-01

    Although the transcriptional regulation and upstream transcription factors of AtADH1 in response to abiotic stress are widely revealed, the in vivo roles of AtADH1 remain unknown. In this study, we found that the expression of AtADH1 was largely induced after salt, drought, cold and pathogen infection. Further studies found that AtADH1 overexpressing plants were more sensitive to abscisic acid (ABA) in comparison to wide type (WT), while AtADH1 knockout mutants showed no significant difference compared with WT in ABA sensitivity. Consistently, AtADH1 overexpressing plants showed improved stress resistance to salt, drought, cold and pathogen infection than WT, but the AtADH1 knockout mutants had no significant difference in abiotic and biotic stress resistance. Moreover, overexpression of AtADH1 expression increased the transcript levels of multiple stress-related genes, accumulation of soluble sugars and callose depositions. All these results indicate that AtADH1 confers enhanced resistance to both abiotic and biotic stresses. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. DSTAR: A comprehensive tokamak resistive disruption model for vacuum vessel components

    International Nuclear Information System (INIS)

    Merrill, B.J.; Jardin, S.C.

    1987-01-01

    A computer code, DSTAR, has recently been developed to quantify the surface erosion and induced forces than can occur during major tokamak plasma disruptions. A disruption analysis has been performed for the TFCX fusion device. The limiters and inboard first wall were assumed to be clad with beryllium. Disruption simulations were performed with and without these structures present, to determine their electromagnetic influence. The results with structure show that the ablated wall material is transported poloidally, as well as radially, in the plasma causing the outermost regions of the plasma to cool. The plasma moves downward and deforms while maintaining contact with the lower limiter. This motion maintains the peak impurity radiant source directly above the exposed surface. For the disruption simulation without the vacuum vessel included, the plasma moves radially along the lower limiter until it contacts the inboard wall, causing ablation of this surface as well. The conclusion is drawn that disruption simulations that do not include both the thermal and electromagnetic response of the vaccum vessel will not result in an accurate prediction. (orig.)

  16. A Gene Homologous to rRNA Methylase Genes Confers Erythromycin and Clindamycin Resistance in Bifidobacterium breve.

    Science.gov (United States)

    Martínez, Noelia; Luque, Roberto; Milani, Christian; Ventura, Marco; Bañuelos, Oscar; Margolles, Abelardo

    2018-05-15

    Bifidobacteria are mutualistic intestinal bacteria, and their presence in the human gut has been associated with health-promoting activities. The presence of antibiotic resistance genes in this genus is controversial, since, although bifidobacteria are nonpathogenic microorganisms, they could serve as reservoirs of resistance determinants for intestinal pathogens. However, until now, few antibiotic resistance determinants have been functionally characterized in this genus. In this work, we show that Bifidobacterium breve CECT7263 displays atypical resistance to erythromycin and clindamycin. In order to delimit the genomic region responsible for the observed resistance phenotype, a library of genomic DNA was constructed and a fragment of 5.8 kb containing a gene homologous to rRNA methylase genes was able to confer erythromycin resistance in Escherichia coli This genomic region seems to be very uncommon, and homologs of the gene have been detected in only one strain of Bifidobacterium longum and two other strains of B. breve In this context, analysis of shotgun metagenomics data sets revealed that the gene is also uncommon in the microbiomes of adults and infants. The structural gene and its upstream region were cloned into a B. breve -sensitive strain, which became resistant after acquiring the genetic material. In vitro conjugation experiments did not allow us to detect gene transfer to other recipients. Nevertheless, prediction of genes potentially acquired through horizontal gene transfer events revealed that the gene is located in a putative genomic island. IMPORTANCE Bifidobacterium breve is a very common human intestinal bacterium. Often described as a pioneer microorganism in the establishment of early-life intestinal microbiota, its presence has been associated with several beneficial effects for the host, including immune stimulation and protection against infections. Therefore, some strains of this species are considered probiotics. In relation to this

  17. Protein-protein association and cellular localization of four essential gene products encoded by tellurite resistance-conferring cluster "ter" from pathogenic Escherichia coli.

    Science.gov (United States)

    Valkovicova, Lenka; Vavrova, Silvia Minarikova; Mravec, Jozef; Grones, Jozef; Turna, Jan

    2013-12-01

    Gene cluster "ter" conferring high tellurite resistance has been identified in various pathogenic bacteria including Escherichia coli O157:H7. However, the precise mechanism as well as the molecular function of the respective gene products is unclear. Here we describe protein-protein association and localization analyses of four essential Ter proteins encoded by minimal resistance-conferring fragment (terBCDE) by means of recombinant expression. By using a two-plasmid complementation system we show that the overproduced single Ter proteins are not able to mediate tellurite resistance, but all Ter members play an irreplaceable role within the cluster. We identified several types of homotypic and heterotypic protein-protein associations among the Ter proteins by in vitro and in vivo pull-down assays and determined their cellular localization by cytosol/membrane fractionation. Our results strongly suggest that Ter proteins function involves their mutual association, which probably happens at the interface of the inner plasma membrane and the cytosol.

  18. Sideways Force Produced During Disruptions

    Science.gov (United States)

    Strauss, H. R.; Paccagnella, R.; Breslau, J.; Jardin, S.; Sugiyama, L.

    2012-10-01

    We extend previous studies [1] of vertical displacement events (VDE) which can produce disruptions. The emphasis is on the non axisymmetric ``sideways'' wall force Fx. Simulations are performed using the M3D [2] code. A VDE expels magnetic flux through the resistive wall until the last closed flux surface has q VDE is presented. The wall force depends strongly on γτw, where γ is the mode growth rate and τw is the wall resistive penetration time. The force Fx is largest when γτw is a constant of order unity, which depends on the initial conditions. For large values of γτw, the wall force asymptotes to a relatively smaller value, well below the critical value ITER is designed to withstand. The principle of disruption mitigation by massive gas injection is to cause a disruption with large γτw. [4pt] [1] H. R. Strauss, R. Paccagnella, and J. Breslau,Phys. Plasmas 17, 082505 (2010) [2] W. Park, E.V. Belova, G.Y. Fu, X. Tang, H.R. Strauss, L.E. Sugiyama, Phys. Plasmas 6, 1796 (1999).

  19. The internal disruption as hard Magnetohydrodynamic limit of 1/2 sawtooth like activity in large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Varela, J. [Department of Physics, Universidad Carlos III, 28911 Leganes, Madrid (Spain); Watanabe, K. Y.; Ohdachi, S. [National Institute for Fusion Science, Oroshi-cho 322-6, Toki 509-5292 (Japan)

    2012-08-15

    Large helical device (LHD) inward-shifted configurations are unstable to resistive MHD pressure-gradient-driven modes. Sawtooth like activity was observed during LHD operation. The main drivers are the unstable modes 1/2 and 1/3 in the middle and inner plasma region which limit the plasma confinement efficiency of LHD advanced operation scenarios. The aim of the present research is to study the hard MHD limit of 1/2 sawtooth like activity, not observed yet in LHD operation, and to predict its effects on the device performance. Previous investigations pointed out this system relaxation can be an internal disruption [J. Varela et al., 'Internal disruptions and sawtooth like activity in LHD,' 38th EPS Conference on Plasma Physics (2011), P5.077]. In the present work, we simulate an internal disruption; we study the equilibria properties before and after the disruptive process, its effects on the plasma confinement efficiency during each disruptive phase, the relation between the n/m = 1/2 hard MHD events and the soft MHD events, and how to avoid or reduce their adverse effects. The simulation conclusions point out that the large stochastic region in the middle plasma strongly deforms and tears the flux surfaces when the pressure gradient increases above the hard MHD limit. If the instability reaches the inner plasma, the iota profiles will be perturbed near the plasma core and three magnetic islands can appear near the magnetic axis. If the instability is strong enough to link the stochastic regions in the middle plasma (around the half minor radius {rho}) and the plasma core ({rho}<0.25), an internal disruption is driven.

  20. Haemophilus parasuis CpxRA two-component system confers bacterial tolerance to environmental stresses and macrolide resistance.

    Science.gov (United States)

    Cao, Qi; Feng, Fenfen; Wang, Huan; Xu, Xiaojuan; Chen, Huanchun; Cai, Xuwang; Wang, Xiangru

    2018-01-01

    Haemophilus parasuis is an opportunistic pathogen localized in the upper respiratory tracts of pigs, its infection begins from bacterial survival under complex conditions, like hyperosmosis, oxidative stress, phagocytosis, and sometimes antibiotics as well. The two-component signal transduction (TCST) system serves as a common stimulus-response mechanism that allows microbes to sense and respond to diverse environmental conditions via a series of phosphorylation reactions. In this study, we investigated the role of TCST system CpxRA in H. parasuis in response to different environmental stimuli by constructing the ΔcpxA and ΔcpxR single deletion mutants as well as the ΔcpxRA double deletion mutant from H. parasuis serotype 4 isolate JS0135. We demonstrated that H. parasuis TCST system CpxRA confers bacterial tolerance to stresses and bactericidal antibiotics. The CpxR was found to play essential roles in mediating oxidative stress, osmotic stresses and alkaline pH stress tolerance, as well as macrolide resistance (i.e. erythromycin), but the CpxA deletion did not decrease bacterial resistance to abovementioned stresses. Moreover, we found via RT-qPCR approach that HAPS_RS00160 and HAPS_RS09425, both encoding multidrug efflux pumps, were significantly decreased in erythromycin challenged ΔcpxR and ΔcpxRA mutants compared with wild-type strain JS0135. These findings characterize the role of the TCST system CpxRA in H. parasuis conferring stress response tolerance and bactericidal resistance, which will deepen our understanding of the pathogenic mechanism in H. parasuis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Physical Localization of a Locus from Agropyron cristatum Conferring Resistance to Stripe Rust in Common Wheat.

    Science.gov (United States)

    Zhang, Zhi; Song, Liqiang; Han, Haiming; Zhou, Shenghui; Zhang, Jinpeng; Yang, Xinming; Li, Xiuquan; Liu, Weihua; Li, Lihui

    2017-11-13

    Stripe rust, caused by Puccinia striiformis f. sp. tritici ( Pst ), is one of the most destructive diseases of wheat ( Triticum aestivum L.) worldwide. Agropyron cristatum (L.) Gaertn. (2 n = 28, PPPP), one of the wild relatives of wheat, exhibits resistance to stripe rust. In this study, wheat- A . cristatum 6P disomic addition line 4844-12 also exhibited resistance to stripe rust. To identify the stripe rust resistance locus from A . cristatum 6P, ten translocation lines, five deletion lines and the BC₂F₂ and BC₃F₂ populations of two wheat- A . cristatum 6P whole-arm translocation lines were tested with a mixture of two races of Pst in two sites during 2015-2016 and 2016-2017, being genotyped with genomic in situ hybridization (GISH) and molecular markers. The result indicated that the locus conferring stripe rust resistance was located on the terminal 20% of 6P short arm's length. Twenty-nine 6P-specific sequence-tagged-site (STS) markers mapped on the resistance locus have been acquired, which will be helpful for the fine mapping of the stripe rust resistance locus. The stripe rust-resistant translocation lines were found to carry some favorable agronomic traits, which could facilitate their use in wheat improvement. Collectively, the stripe rust resistance locus from A . cristatum 6P could be a novel resistance source and the screened stripe rust-resistant materials will be valuable for wheat disease breeding.

  2. Academic Conferences: Representative and Resistant Sites for Higher Education Research

    Science.gov (United States)

    Henderson, Emily F.

    2015-01-01

    The overarching argument made in this article is twofold. Firstly, academic conferences are posited as sites for higher education research. Secondly, the well-recognised emotional and social processes of conferences are used to make space at the boundaries of higher education research for psychosocial analysis. The article theorises conferences in…

  3. Halo current and resistive wall simulations of ITER

    International Nuclear Information System (INIS)

    Strauss, H.R.; Zheng Linjin; Kotschenreuther, M.; Park, W.; Jardin, S.; Breslau, J.; Pletzer, A.; Paccagnella, R.; Sugiyama, L.; Chu, M.; Chance, M.; Turnbull, A.

    2005-01-01

    A number of ITER relevant problems in resistive MHD concern the effects of a resistive wall: vertical displacement events (VDE), halo currents caused by disruptions, and resistive wall modes. Simulations of these events have been carried out using the M3D code. We have verified the growth rate scaling of VDEs, which is proportional to the wall resistivity. Simulations have been done of disruptions caused by large inversion radius internal kink modes, as well as by nonlinear growth of resistive wall modes. Halo current flowing during the disruption has asymmetries with toroidal peaking factor up to about 3. VDEs have larger growth rates during disruption simulations, which may account for the loss of vertical feedback control during disruptions in experiments. Further simulations have been made of disruptions caused by resistive wall modes in ITER equilibria. For these modes the toroidal peaking factor is close to 1. Resistive wall modes in ITER and reactors have also been investigated utilizing the newly developed AEGIS (Adaptive EiGenfunction Independent Solution) linear full MHD code, for realistically shaped, fully toroidal equilibria. The AEGIS code uses an adaptive mesh in the radial direction which allows thin inertial layers to be accurately resolved, such as those responsible for the stabilization of resistive wall modes (RWM) by plasma rotation. Stabilization of resistive wall modes by rotation and wall thickness effects are examined. (author)

  4. Target-site mutations conferring resistance to glyphosate in feathertop Rhodes grass (Chloris virgata) populations in Australia.

    Science.gov (United States)

    Ngo, The D; Krishnan, Mahima; Boutsalis, Peter; Gill, Gurjeet; Preston, Christopher

    2018-05-01

    Chloris virgata is a warm-season, C 4 , annual grass weed affecting field crops in northern Australia that has become an emerging weed in southern Australia. Four populations with suspected resistance to glyphosate were collected in South Australia, Queensland and New South Wales, Australia, and compared with one susceptible (S) population to confirm glyphosate resistance and elucidate possible mechanisms of resistance. Based on the rate of glyphosate required to kill 50% of treated plants (LD 50 ), glyphosate resistance (GR) was confirmed in four populations of C. virgata (V12, V14.2, V14.16 and V15). GR plants were 2-9.7-fold more resistant and accumulated less shikimate after glyphosate treatment than S plants. GR and S plants did not differ in glyphosate absorption and translocation. Target-site EPSPS mutations corresponding to Pro-106-Leu (V14.2) and Pro-106-Ser (V15, V14.16 and V12) substitutions were found in GR populations. The population with Pro-106-Leu substitution was 2.9-4.9-fold more resistant than the three other populations with Pro-106-Ser substitution. This report confirms glyphosate resistance in C. virgata and shows that target-site EPSPS mutations confer resistance to glyphosate in this species. The evolution of glyphosate resistance in C. virgata highlights the need to identify alternative control tactics. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae.

    Science.gov (United States)

    Das, Alok; Soubam, D; Singh, P K; Thakur, S; Singh, N K; Sharma, T R

    2012-06-01

    The dominant rice blast resistance gene, Pi54 confers resistance to Magnaporthe oryzae in different parts of India. In our effort to identify more effective forms of this gene, we isolated an orthologue of Pi54 named as Pi54rh from the blast-resistant wild species of rice, Oryza rhizomatis, using allele mining approach and validated by complementation. The Pi54rh belongs to CC-NBS-LRR family of disease resistance genes with a unique Zinc finger (C(3)H type) domain. The 1,447 bp Pi54rh transcript comprises of 101 bp 5'-UTR, 1,083 bp coding region and 263 bp 3'-UTR, driven by pathogen inducible promoter. We showed the extracellular localization of Pi54rh protein and the presence of glycosylation, myristoylation and phosphorylation sites which implicates its role in signal transduction process. This is in contrast to other blast resistance genes that are predicted to be intracellular NBS-LRR-type resistance proteins. The Pi54rh was found to express constitutively at basal level in the leaves, but upregulates 3.8-fold at 96 h post-inoculation with the pathogen. Functional validation of cloned Pi54rh gene using complementation test showed high degree of resistance to seven isolates of M. oryzae collected from different geographical locations of India. In this study, for the first time, we demonstrated that a rice blast resistance gene Pi54rh cloned from wild species of rice provides broad spectrum resistance to M. oryzae hence can be used in rice improvement breeding programme.

  6. Inheritance of resistance to watermelon mosaic virus in the cucumber line TMG-1: tissue-specific expression and relationship to zucchini yellow mosaic virus resistance.

    Science.gov (United States)

    Wai, T; Grumet, R

    1995-09-01

    The inbred cucumber (Cucumis sativus L.) line TMG-1 is resistant to three potyviruses:zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus (WMV), and the watermelon strain of papaya ringspot virus (PRSV-W). The genetics of resistance to WMV and the relationship of WMV resistance to ZYMV resistance were examined. TMG-1 was crossed with WI-2757, a susceptible inbred line. F1, F2 and backcross progeny populations were screened for resistance to WMV and/or ZYMV. Two independently assorting factors conferred resistance to WMV. One resistance was conferred by a single recessive gene from TMG-1 (wmv-2). The second resistance was conferred by an epistatic interaction between a second recessive gene from TMG-1 (wmv-3) and either a dominant gene from WI-2757 (Wmv-4) or a third recessive gene from TMG-1 (wmv-4) located 20-30 cM from wmv-3. The two resistances exhibited tissue-specific expression. Resistance conferred by wmv-2 was expressed in the cotyledons and throughout the plant. Resistance conferred by wmv-3 + Wmv-4 (or wmv-4) was expressed only in true leaves. The gene conferring resistance to ZYMV appeared to be the same as, or tightly linked to one of the WMV resistance genes, wmv-3.

  7. Inducible expression of Bs2 R gene from Capsicum chacoense in sweet orange (Citrus sinensis L. Osbeck) confers enhanced resistance to citrus canker disease.

    Science.gov (United States)

    Sendín, Lorena Noelia; Orce, Ingrid Georgina; Gómez, Rocío Liliana; Enrique, Ramón; Grellet Bournonville, Carlos Froilán; Noguera, Aldo Sergio; Vojnov, Adrián Alberto; Marano, María Rosa; Castagnaro, Atilio Pedro; Filippone, María Paula

    2017-04-01

    Transgenic expression of the pepper Bs2 gene confers resistance to Xanthomonas campestris pv. vesicatoria (Xcv) pathogenic strains which contain the avrBs2 avirulence gene in susceptible pepper and tomato varieties. The avrBs2 gene is highly conserved among members of the Xanthomonas genus, and the avrBs2 of Xcv shares 96% homology with the avrBs2 of Xanthomonas citri subsp. citri (Xcc), the causal agent of citrus canker disease. A previous study showed that the transient expression of pepper Bs2 in lemon leaves reduced canker formation and induced plant defence mechanisms. In this work, the effect of the stable expression of Bs2 gene on citrus canker resistance was evaluated in transgenic plants of Citrus sinensis cv. Pineapple. Interestingly, Agrobacterium-mediated transformation of epicotyls was unsuccessful when a constitutive promoter (2× CaMV 35S) was used in the plasmid construction, but seven transgenic lines were obtained with a genetic construction harbouring Bs2 under the control of a pathogen-inducible promoter, from glutathione S-transferase gene from potato. A reduction of disease symptoms of up to 70% was observed in transgenic lines expressing Bs2 with respect to non-transformed control plants. This reduction was directly dependent on the Xcc avrBs2 gene since no effect was observed when a mutant strain of Xcc with a disruption in avrBs2 gene was used for inoculations. Additionally, a canker symptom reduction was correlated with levels of the Bs2 expression in transgenic plants, as assessed by real-time qPCR, and accompanied by the production of reactive oxygen species. These results indicate that the pepper Bs2 resistance gene is also functional in a family other than the Solanaceae, and could be considered for canker control.

  8. Mapping a Quantitative Trait Locus (QTL conferring pyrethroid resistance in the African malaria vector Anopheles funestus

    Directory of Open Access Journals (Sweden)

    Hunt Richard H

    2007-01-01

    Full Text Available Abstract Background Pyrethroid resistance in Anopheles funestus populations has led to an increase in malaria transmission in southern Africa. Resistance has been attributed to elevated activities of cytochrome P450s but the molecular basis underlying this metabolic resistance is unknown. Microsatellite and SNP markers were used to construct a linkage map and to detect a quantitative trait locus (QTL associated with pyrethroid resistance in the FUMOZ-R strain of An. funestus from Mozambique. Results By genotyping 349 F2 individuals from 11 independent families, a single major QTL, rp1, at the telomeric end of chromosome 2R was identified. The rp1 QTL appears to present a major effect since it accounts for more than 60% of the variance in susceptibility to permethrin. This QTL has a strong additive genetic effect with respect to susceptibility. Candidate genes associated with pyrethroid resistance in other species were physically mapped to An. funestus polytene chromosomes. This showed that rp1 is genetically linked to a cluster of CYP6 cytochrome P450 genes located on division 9 of chromosome 2R and confirmed earlier reports that pyrethroid resistance in this strain is not associated with target site mutations (knockdown resistance. Conclusion We hypothesize that one or more of these CYP6 P450s clustered on chromosome 2R confers pyrethroid resistance in the FUMOZ-R strain of An. funestus.

  9. Transgenic expression of the rice Xa21 pattern-recognition receptor in banana (Musa sp.) confers resistance to Xanthomonas campestris pv. musacearum.

    Science.gov (United States)

    Tripathi, Jaindra N; Lorenzen, Jim; Bahar, Ofir; Ronald, Pamela; Tripathi, Leena

    2014-08-01

    Banana Xanthomonas wilt (BXW), caused by the bacterium Xanthomonas campestris pv. musacearum (Xcm), is the most devastating disease of banana in east and central Africa. The spread of BXW threatens the livelihood of millions of African farmers who depend on banana for food security and income. There are no commercial chemicals, biocontrol agents or resistant cultivars available to control BXW. Here, we take advantage of the robust resistance conferred by the rice pattern-recognition receptor (PRR), XA21, to the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo). We identified a set of genes required for activation of Xa21-mediated immunity (rax) that were conserved in both Xoo and Xcm. Based on the conservation, we hypothesized that intergeneric transfer of Xa21 would confer resistance to Xcm. We evaluated 25 transgenic lines of the banana cultivar 'Gonja manjaya' (AAB) using a rapid bioassay and 12 transgenic lines in the glasshouse for resistance against Xcm. About 50% of the transgenic lines showed complete resistance to Xcm in both assays. In contrast, all of the nontransgenic control plants showed severe symptoms that progressed to complete wilting. These results indicate that the constitutive expression of the rice Xa21 gene in banana results in enhanced resistance against Xcm. Furthermore, this work demonstrates the feasibility of PRR gene transfer between monocotyledonous species and provides a valuable new tool for controlling the BXW pandemic of banana, a staple food for 100 million people in east Africa. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  10. MHD stability, operational limits and disruptions

    International Nuclear Information System (INIS)

    1999-01-01

    The present physics understandings of magnetohydrodynamic (MHD) stability of tokamak plasmas, the threshold conditions for onset of MHD instability, and the resulting operational limits on attainable plasma pressure (beta limit) and density (density limit), and the consequences of plasma disruption and disruption related effects are reviewed and assessed in the context of their application to a future DT burning reactor prototype tokamak experiment such as ITER. The principal considerations covered within the MHD stability and beta limit assessments are (i) magnetostatic equilibrium, ideal MHD stability and the resulting ideal MHD beta limit; (ii) sawtooth oscillations and the coupling of sawtooth activity to other types of MHD instability; (iii) neoclassical island resistive tearing modes and the corresponding limits on beta and energy confinement; (iv) wall stabilization of ideal MHD instabilities and resistive wall instabilities; (v) mode locking effects of non-axisymmetric error fields; (vi) edge localized MHD instabilities (ELMs, etc.); and (vii) MHD instabilities and beta/pressure gradient limits in plasmas with actively modified current and magnetic shear profiles. The principal considerations covered within the density limit assessments are (i) empirical density limits; (ii) edge power balance/radiative density limits in ohmic and L-mode plasmas; and (iii) edge parameter related density limits in H-mode plasmas. The principal considerations covered in the disruption assessments are (i) disruption causes, frequency and MHD instability onset; (ii) disruption thermal and current quench characteristics; (iii) vertical instabilities (VDEs), both before and after disruption, and plasma and in-vessel halo currents; (iv) after disruption runaway electron formation, confinement and loss; (v) fast plasma shutdown (rapid externally initiated dissipation of plasma thermal and magnetic energies); (vi) means for disruption avoidance and disruption effect mitigation; and

  11. TaPP2C1, a Group F2 Protein Phosphatase 2C Gene, Confers Resistance to Salt Stress in Transgenic Tobacco.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available Group A protein phosphatases 2Cs (PP2Cs are essential components of abscisic acid (ABA signaling in Arabidopsis; however, the function of group F2 subfamily PP2Cs is currently less known. In this study, TaPP2C1 which belongs to group F2 was isolated and characterized from wheat. Expression of the TaPP2C1-GFP fusion protein suggested its ubiquitous localization within a cell. TaPP2C1 expression was downregulated by abscisic acid (ABA and NaCl treatments, but upregulated by H2O2 treatment. Overexpression of TaPP2C1 in tobacco resulted in reduced ABA sensitivity and increased salt resistance of transgenic seedlings. Additionally, physiological analyses showed that improved resistance to salt stress conferred by TaPP2C1 is due to the reduced reactive oxygen species (ROS accumulation, the improved antioxidant system, and the increased transcription of genes in the ABA-independent pathway. Finally, transgenic tobacco showed increased resistance to oxidative stress by maintaining a more effective antioxidant system. Taken together, these results demonstrated that TaPP2C1 negatively regulates ABA signaling, but positively regulates salt resistance. TaPP2C1 confers salt resistance through activating the antioxidant system and ABA-independent gene transcription process.

  12. An antibody that confers plant disease resistance targets a membrane-bound glyoxal oxidase in Fusarium.

    Science.gov (United States)

    Song, Xiu-Shi; Xing, Shu; Li, He-Ping; Zhang, Jing-Bo; Qu, Bo; Jiang, Jin-He; Fan, Chao; Yang, Peng; Liu, Jin-Long; Hu, Zu-Quan; Xue, Sheng; Liao, Yu-Cai

    2016-05-01

    Plant germplasm resources with natural resistance against globally important toxigenic Fusarium are inadequate. CWP2, a Fusarium genus-specific antibody, confers durable resistance to different Fusarium pathogens that infect cereals and other crops, producing mycotoxins. However, the nature of the CWP2 target is not known. Thus, investigation of the gene coding for the CWP2 antibody target will likely provide critical insights into the mechanism underlying the resistance mediated by this disease-resistance antibody. Immunoblots and mass spectrometry analysis of two-dimensional electrophoresis gels containing cell wall proteins from Fusarium graminearum (Fg) revealed that a glyoxal oxidase (GLX) is the CWP2 antigen. Cellular localization studies showed that GLX is localized to the plasma membrane. This GLX efficiently catalyzes hydrogen peroxide production; this enzymatic activity was specifically inhibited by the CWP2 antibody. GLX-deletion strains of Fg, F. verticillioides (Fv) and F. oxysporum had significantly reduced virulence on plants. The GLX-deletion Fg and Fv strains had markedly reduced mycotoxin accumulation, and the expression of key genes in mycotoxin metabolism was downregulated. This study reveals a single gene-encoded and highly conserved cellular surface antigen that is specifically recognized by the disease-resistance antibody CWP2 and regulates both virulence and mycotoxin biosynthesis in Fusarium species. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Crystal Structure of the Zorbamycin-Binding Protein ZbmA, the Primary Self-Resistance Element in Streptomyces flavoviridis ATCC21892

    Energy Technology Data Exchange (ETDEWEB)

    Rudolf, Jeffrey D. [Scripps Research Inst., Jupiter, FL (United States); Bigelow, Lance [Argonne National Lab. (ANL), Argonne, IL (United States); Chang, Changsoo [Argonne National Lab. (ANL), Argonne, IL (United States); Cuff, Marianne E. [Argonne National Lab. (ANL), Argonne, IL (United States); Lohman, Jeremy R. [Scripps Research Inst., Jupiter, FL (United States); Chang, Chin-Yuan [Scripps Research Inst., Jupiter, FL (United States); Ma, Ming [Scripps Research Inst., Jupiter, FL (United States); Yang, Dong [Scripps Research Inst., Jupiter, FL (United States); Clancy, Shonda [Argonne National Lab. (ANL), Argonne, IL (United States); Babnigg, Gyorgy [Argonne National Lab. (ANL), Argonne, IL (United States); Joachimiak, Andrzej [Argonne National Lab. (ANL), Argonne, IL (United States); Phillips, George N. [Rice Univ., Houston, TX (United States); Shen, Ben [Scripps Research Inst., Jupiter, FL (United States)

    2015-11-17

    The bleomycins (BLMs), tallysomycins (TLMs), phleomycin, and zorbamycin (ZBM) are members of the BLM family of glycopeptide-derived antitumor antibiotics. The BLM-producing Streptomyces verticillus ATCC15003 and the TLM-producing Streptoalloteichus hindustanus E465-94 ATCC31158 both possess at least two self-resistance elements, an N-acetyltransferase and a binding protein. The N-acetyltransferase provides resistance by disrupting the metal-binding domain of the antibiotic that is required for activity, while the binding protein confers resistance by sequestering the metal-bound antibiotic and preventing drug activation via molecular oxygen. We recently established that the ZBM producer, Streptomyces flavoviridis ATCC21892, lacks the N-acetyltransferase resistance gene and that the ZBM-binding protein, ZbmA, is sufficient to confer resistance in the producing strain. To investigate the resistance mechanism attributed to ZbmA, we determined the crystal structures of apo and Cu(II)-ZBM-bound ZbmA at high resolutions of 1.90 and 1.65 angstrom, respectively. A comparison and contrast with other structurally characterized members of the BLM-binding protein family revealed key differences in the protein ligand binding environment that fine-tunes the ability of ZbmA to sequester metal-bound ZBM and supports drug sequestration as the primary resistance mechanism in the producing organisms of the BLM family of antitumor antibiotics.

  14. Obesogenic memory can confer long-term increases in adipose tissue but not liver inflammation and insulin resistance after weight loss

    Directory of Open Access Journals (Sweden)

    J. Schmitz

    2016-05-01

    Conclusions: These results demonstrate that although sustained weight loss improves systemic glucose homeostasis, primarily through improved inflammation and insulin action in liver, a remarkable obesogenic memory can confer long-term increases in adipose tissue inflammation and insulin resistance in mice as well as in a significant subpopulation of obese patients.

  15. Voltage-sensitive sodium channel mutations S989P + V1016G in Aedes aegypti confer variable resistance to pyrethroids, DDT and oxadiazines.

    Science.gov (United States)

    Smith, Letícia B; Kasai, Shinji; Scott, Jeffrey G

    2018-03-01

    Aedes aegypti is a vector of several important human pathogens. Control efforts rely primarily on pyrethroid insecticides for adult mosquito control, especially during disease outbreaks. A. aegypti has developed resistance nearly everywhere it occurs and insecticides are used. An important mechanism of resistance is due to mutations in the voltage-sensitive sodium channel (Vssc) gene. Two mutations, in particular, S989P + V1016G, commonly occur together in parts of Asia. We have created a strain (KDR:ROCK) that contains the Vssc mutations S989P + V1016G as the only mechanism of pyrethroid resistance within the genetic background of Rockefeller (ROCK), a susceptible lab strain. We created KDR:ROCK by crossing the pyrethroid-resistant strain Singapore with ROCK followed by four backcrosses with ROCK and Vssc S989P + V1016G genotype selections. We determined the levels of resistance conferred to 17 structurally diverse pyrethroids, the organochloride DDT, and oxadiazines (VSSC blockers) indoxacarb (proinsecticide) and DCJW (the active metabolite of indoxacarb). Levels of resistance to the pyrethroids were variable, ranging from 21- to 107-fold, but no clear pattern between resistance and chemical structure was observed. Resistance is inherited as an incompletely recessive trait. KDR:ROCK had a > 2000-fold resistance to DDT, 37.5-fold cross-resistance to indoxacarb and 13.4-fold cross-resistance to DCJW. Etofenprox (and DDT) should be avoided in areas where Vssc mutations S989P + V1016G exist at high frequencies. We found that pyrethroid structure cannot be used to predict the level of resistance conferred by kdr. These results provide useful information for resistance management and for better understanding pyrethroid interactions with VSSC. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of

  16. Identification of 8-methyladenosine as the modification catalyzed by the radical SAM methyltransferase Cfr that confers antibiotic resistance in bacteria

    DEFF Research Database (Denmark)

    Giessing, Anders; Jensen, Søren Skov; Rasmussen, Anette

    2009-01-01

    The Cfr methyltransferase confers combined resistance to five different classes of antibiotics that bind to the peptidyl transferase center of bacterial ribosomes. The Cfr-mediated modification has previously been shown to occur on nucleotide A2503 of 23S rRNA and has a mass corresponding......,8-dimethyladenosine. The mutation of single conserved cysteine residues in the radical SAM motif CxxxCxxC of Cfr abolishes its activity, lending support to the notion that the Cfr modification reaction occurs via a radical-based mechanism. Antibiotic susceptibility data confirm that the antibiotic resistance...

  17. Disruption of a Guard Cell–Expressed Protein Phosphatase 2A Regulatory Subunit, RCN1, Confers Abscisic Acid Insensitivity in Arabidopsis

    Science.gov (United States)

    Kwak, June M.; Moon, Ji-Hye; Murata, Yoshiyuki; Kuchitsu, Kazuyuki; Leonhardt, Nathalie; DeLong, Alison; Schroeder, Julian I.

    2002-01-01

    Pharmacological studies have led to a model in which the phytohormone abscisic acid (ABA) may be positively transduced via protein phosphatases of the type 1 (PP1) or type 2A (PP2A) families. However, pharmacological evidence also exists that PP1s or PP2As may function as negative regulators of ABA signaling. Furthermore, recessive disruption mutants in protein phosphatases that function in ABA signal transduction have not yet been identified. A guard cell–expressed PP2A gene, RCN1, which had been characterized previously as a molecular component affecting auxin transport and gravity response, was isolated. A T-DNA disruption mutation in RCN1 confers recessive ABA insensitivity to Arabidopsis. The rcn1 mutation impairs ABA-induced stomatal closing and ABA activation of slow anion channels. Calcium imaging analyses show a reduced sensitivity of ABA-induced cytosolic calcium increases in rcn1, whereas mechanisms downstream of cytosolic calcium increases show wild-type responses, suggesting that RCN1 functions in ABA signal transduction upstream of cytosolic Ca2+ increases. Furthermore, rcn1 shows ABA insensitivity in ABA inhibition of seed germination and ABA-induced gene expression. The PP1 and PP2A inhibitor okadaic acid phenocopies the rcn1 phenotype in wild-type plants both in ABA-induced cytosolic calcium increases and in seed germination, and the wild-type RCN1 genomic DNA complements rcn1 phenotypes. These data show that RCN1 functions as a general positive transducer of early ABA signaling. PMID:12417706

  18. Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites

    KAUST Repository

    Hunt, Paul

    2010-09-16

    Background: Classical and quantitative linkage analyses of genetic crosses have traditionally been used to map genes of interest, such as those conferring chloroquine or quinine resistance in malaria parasites. Next-generation sequencing technologies now present the possibility of determining genome-wide genetic variation at single base-pair resolution. Here, we combine in vivo experimental evolution, a rapid genetic strategy and whole genome re-sequencing to identify the precise genetic basis of artemisinin resistance in a lineage of the rodent malaria parasite, Plasmodium chabaudi. Such genetic markers will further the investigation of resistance and its control in natural infections of the human malaria, P. falciparum.Results: A lineage of isogenic in vivo drug-selected mutant P. chabaudi parasites was investigated. By measuring the artemisinin responses of these clones, the appearance of an in vivo artemisinin resistance phenotype within the lineage was defined. The underlying genetic locus was mapped to a region of chromosome 2 by Linkage Group Selection in two different genetic crosses. Whole-genome deep coverage short-read re-sequencing (IlluminaSolexa) defined the point mutations, insertions, deletions and copy-number variations arising in the lineage. Eight point mutations arise within the mutant lineage, only one of which appears on chromosome 2. This missense mutation arises contemporaneously with artemisinin resistance and maps to a gene encoding a de-ubiquitinating enzyme.Conclusions: This integrated approach facilitates the rapid identification of mutations conferring selectable phenotypes, without prior knowledge of biological and molecular mechanisms. For malaria, this model can identify candidate genes before resistant parasites are commonly observed in natural human malaria populations. 2010 Hunt et al; licensee BioMed Central Ltd.

  19. HAb18G/CD147 cell-cell contacts confer resistance of a HEK293 subpopulation to anoikis in an E-cadherin-dependent manner

    Directory of Open Access Journals (Sweden)

    Zhu Ping

    2010-04-01

    Full Text Available Abstract Background Acquisition of resistance to "anoikis" facilitates the survival of cells under independent matrix-deficient conditions, such as cells in tumor progression and the production of suspension culture cells for biomedical engineering. There is evidence suggesting that CD147, an adhesion molecule associated with survival of cells in tumor metastasis and cell-cell contacts, plays an important role in resistance to anoikis. However, information regarding the functions of CD147 in mediating cell-cell contacts and anoikis-resistance remains limited and even self-contradictory. Results An anoikis-resistant clone (HEK293ar, derived from anoikis-sensitive parental Human Embryonic Kidney 293 cells, survived anoikis by the formation of cell-cell contacts. The expression of HAb18G/CD147 (a member of the CD147 family was upregulated and the protein was located at cell-cell junctions. Upregulation of HAb18G/CD147 in suspended HEK293ar cells suppressed anoikis by mediating the formation of cell-cell adhesions. Anoikis resistance in HEK293ar cells also required E-cadherin-mediated cell-cell contacts. Knock-down of HAb18G/CD147 and E-cadherin inhibited cell-cell contacts formation and increased anoikis sensitivity respectively. When HAb18G/CD147 was downregulated, E-cadherin expression in HEK293ar cells was significantly suppressed; however, knockdown of E-cadherin by E-cadherin siRNA or blocking of E-cadherin binding activity with a specific antibody and EDTA had no significant effect on HAb18G/CD147 expression. Finally, pretreatment with LY294002, a phosphoinositide 3-kinase (PI3K/AKT inhibitor, disrupted cell-cell contacts and decreased cell number, but this was not the case in cells treated with the extracellular signal-regulated kinase (ERK inhibitor PD98059. Conclusions Our results provide new evidence that HAb18G/CD147-mediated cell-cell contact confers anoikis resistance in an E-cadherin-dependent manner; and cell-cell contact mediated

  20. Disruption, disbelief and resistance: A meta-synthesis of disability in the workplace.

    Science.gov (United States)

    Gewurtz, Rebecca; Kirsh, Bonnie

    2009-01-01

    This article presents the findings from a meta-synthesis of qualitative research on the experiences of persons with disabilities in the workplace. The purpose of this review was to explore how organizational culture influences the experiences of people with disabilities in the workplace, and the impact of disability on organizational culture. Findings from seven qualitative peer-reviewed studies on the experiences of people with disabilities at work and organizational culture published between 1995 and 2006 were synthesized using the meta-ethnography approach. The findings highlight how experiences of people with disabilities and organizational culture intersect in the workplace. Specifically, accessibility in the workplace involves more than removing physical barriers. People with disabilities are affected by the degree of acceptance and flexibility in the workplace, and relationships with co-workers and supervisors. However, the presence of disability may be perceived as disruptive to the organization, operation and structure of the workplace, resulting in disbelief and resistance. The findings suggest that attention and resources should be directed supporting the implementation of disability and human rights legislation and increasing tolerance for diversity in the workplace.

  1. Identification of regulated genes conferring resistance to high concentrations of glyphosate in a new strain of Enterobacter.

    Science.gov (United States)

    Fei, Yun-Yan; Gai, Jun-Yi; Zhao, Tuan-Jie

    2013-12-01

    Glyphosate is a widely used herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity. Most plants and microbes are sensitive to glyphosate. However, transgenic-resistant crops that contain a modified epsps obtained from the resistant microbes have been commercially successful and therefore, new resistance genes and their adaptive regulatory mechanisms are of great interest. In this study, a soil-borne, glyphosate-resistant bacterium was selected and identified as Enterobacter. The EPSPS in this strain was found to have been altered to a resistant one. A total of 42 differentially expressed genes (DEGs) in the glyphosate were screened using microarray techniques. Under treatment, argF, sdhA, ivbL, rrfA-H were downregulated, whereas the transcripts of speA, osmY, pflB, ahpC, fusA, deoA, uxaC, rpoD and a few ribosomal protein genes were upregulated. Data were verified by quantitative real-time PCR on selected genes. All transcriptional changes appeared to protect the bacteria from glyphosate and associated osmotic, acidic and oxidative stresses. Many DEGs may have the potential to confer resistance to glyphosate alone, and some may be closely related to the shikimate pathway, reflecting the complex gene interaction network for glyphosate resistance. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Runaway beam studies during disruptions at JET-ILW

    Czech Academy of Sciences Publication Activity Database

    Reux, C.; Plyusnin, V.; Alper, B.; Alves, D.; Bazylev, B.; Belonohy, E.; Brezinsek, S.; Decker, J.; Devaux, S.; de Vries, P.; Fil, A.; Gerasimov, S.; Lupelli, I.; Jachmich, S.; Khilkevitch, E.M.; Kiptily, V.; Koslowski, R.; Kruezi, U.; Lehnen, M.; Manzanares, A.; Mlynář, Jan; Nardon, E.; Nilsson, E.; Riccardo, V.; Saint-Laurent, F.; Shevelev, A.E.; Sozzi, C.

    2015-01-01

    Roč. 463, August (2015), s. 143-149 ISSN 0022-3115. [PLASMA-SURFACE INTERACTIONS 21: International Conference on Plasma-Surface Interactions in Controlled Fusion Devices. Kanazawa, 26.05.2014-30.05.2014] Institutional support: RVO:61389021 Keywords : tokamak * JET * runaway electrons * disruptions * ILW Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 2.199, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022311514006850

  3. The learning conference

    DEFF Research Database (Denmark)

    Ravn, Ib

    2007-01-01

    /methodology/approach: A typical full-day conference is analyzed. It has six hours of podium talk and twenty-five minutes for delegates to become involved. What model of learning can possibly lie behind this? The transfer model, which assumes learners to be empty vessels. An alternative view is that conference delegates...... are described: Individual reflection, the buzz dyad, ?You have won two consultants, free of charge?, facilitated group work, the knowledge exchange, and lunch with gaffer tape. Originality/value: This paper introduces modern learning theory and techniques into an educational context which has resisted...

  4. An independent occurrence of the chimeric P450 enzyme CYP337B3 of Helicoverpa armigera confers cypermethrin resistance in Pakistan.

    Science.gov (United States)

    Rasool, Akhtar; Joußen, Nicole; Lorenz, Sybille; Ellinger, Renate; Schneider, Bernd; Khan, Sher Afzal; Ashfaq, Muhammad; Heckel, David G

    2014-10-01

    The increasing resistance level of insect pest species is a major concern to agriculture worldwide. The cotton bollworm, Helicoverpa armigera, is one of the most important pest species due to being highly polyphagous, geographically widespread, and resistant towards many chemical classes of insecticides. We previously described the mechanism of fenvalerate resistance in Australian populations conferred by the chimeric cytochrome P450 monooxygenase CYP337B3, which arose by unequal crossing-over between CYP337B1 and CYP337B2. Here, we show that this mechanism is also present in the cypermethrin-resistant FSD strain from Pakistan. The Pakistani and the Australian CYP337B3 alleles differ by 18 synonymous and three nonsynonymous SNPs and additionally in the length and sequence of the intron. Nevertheless, the activity of both CYP337B3 proteins is comparable. We demonstrate that CYP337B3 is capable of metabolizing cypermethrin (trans- and especially cis-isomers) to the main metabolite 4'-hydroxycypermethrin, which exhibits no intrinsic toxicity towards susceptible larvae. In a bioassay, CYP337B3 confers a 7-fold resistance towards cypermethrin in FSD larvae compared to susceptible larvae from the Australian TWB strain lacking CYP337B3. Linkage analysis shows that presence of CYP337B3 accounts for most of the cypermethrin resistance in the FSD strain; up-regulation of other P450s in FSD plays no detectable role in resistance. The presence or absence of CYP337B3 can be easily detected by a simple PCR screen, providing a powerful tool to rapidly distinguish resistant from susceptible individuals in the field and to determine the geographical distribution of this resistance gene. Our results suggest that CYP337B3 evolved twice independently by unequal crossing-over between CYP337B2 and two different CYP337B1 alleles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. SU-C-303-01: Activation-Induced Cytidine Deaminase Confers Cancer Resistance to Radiation Therapy

    International Nuclear Information System (INIS)

    Yi, S; La Count, S; Liu, J; Bai, X; Lu, L

    2015-01-01

    Purpose: To study the role of activation-induced cytidine deaminase (AID) in malignant cell resistance to radiation therapy. Methods: We first developed several small devices that could be used to adopt radiation beams from clinical high dose rate brachy therapy (HDR) or linac-based megavoltage machines to perform pre-clinical cell and mouse experiments. Then we used these devices to deliver radiation to AID-positive and AID-silenced cancer cells or tumors formed by these cells in mice. Cells and mice bearing tumors received the same dose under the same experimental conditions. For cells, we observed the apoptosis and the cell survival rate over time. For mice bearing tumors, we measured and recorded the tumor sizes every other day for 4 weeks. Results: For cell experiments, we found that the AID-positive cells underwent much less apoptosis compared with AID-silenced cells upon radiation. And for mouse experiments, we found that AID-positive tumors grew significantly faster than the AID-silenced tumors despite of receiving the same doses of radiation. Conclusion: Our study suggests that AID may confer cancer resistance to radiation therapy, and AID may be a significant biomarker predicting cancer resistance to radiation therapy for certain cancer types

  6. Runaway electron generation in tokamak disruptions

    International Nuclear Information System (INIS)

    Helander, P.; Andersson, F.; Fueloep, T.; Smith, H.; Anderson, D.; Lisak, M.; Eriksson, L.-G.

    2005-01-01

    The time evolution of the plasma current during a tokamak disruption is calculated by solving the equations for runaway electron production simultaneously with the induction equation for the toroidal electric field. The resistive diffusion time in a post-disruption plasma is typically comparable to the runaway avalanche growth time. Accordingly, the toroidal electric field induced after the thermal quench of a disruption diffuses radially through the plasma at the same time as it accelerates runaway electrons, which in turn back-react on the electric field. When these processes are accounted for in a self-consistent way, it is found that (1) the efficiency and time scale of runaway generation agrees with JET experiments; (2) the runaway current profile typically becomes more peaked than the pre-disruption current profile; and (3) can easily become radially filamented. It is also shown that higher runaway electron generation is expected if the thermal quench is sufficiently fast. (author)

  7. Molecular characterization of Als1, an acetohydroxyacid synthase mutation conferring resistance to sulfonylurea herbicides in soybean.

    Science.gov (United States)

    Ghio, Cecilia; Ramos, María Laura; Altieri, Emiliano; Bulos, Mariano; Sala, Carlos A

    2013-12-01

    The AHAS gene family in soybean was characterized. The locus Als1 for sulfonylurea resistance was mapped and the resistant allele was characterized at the molecular level. Sulfonylurea (SU) resistance in soybean is controlled by Als1, a semi-dominant allele obtained by EMS mutagenesis over the cultivar Williams 82. The overall objective of this research was to map Als1 in the soybean genome and to determine the nucleotidic changes conferring resistance to SU. Four nucleotide sequences (GmAhas1-4) showing high homology with the Arabidopsis thaliana acetohydroxyacid synthase (AHAS, EC 4.1.3.18) gene sequence were identified by in silico analysis, PCR-amplified from the SU-resistant line BTK323STS and sequenced. Expression analysis showed that GmAhas1, located on chromosome 4 by in silico analysis, is the most expressed sequence in true leaves. F2:3 families derived from the cross between susceptible and resistant lines were evaluated for SU resistance. Mapping results indicate that the locus als1 is located on chromosome 4. Sequence comparison of GmAhas1 between BTK323STS and Williams 82 showed a single nucleotide change from cytosine to thymine at position 532. This transversion generates an amino acid change from proline to serine at position 197 (A. thaliana nomenclature) of the AHAS catalytic subunit. An allele-specific marker developed for the GmAhas1 mutant sequence cosegregated with SU resistance in the F2 population. Taking together, the mapping, expression and sequencing results indicate that the GmAhas1 sequence corresponds to the Als1 gene sequence controlling SU resistance in soybean. The molecular breeding tools described herein create the basis to speed up the identification of new mutations in soybean AHAS leading to enhanced levels of resistance to SU or to other families of AHAS inhibitor herbicides.

  8. Plasmid-free CRISPR/Cas9 genome editing in Plasmodium falciparum confirms mutations conferring resistance to the dihydroisoquinolone clinical candidate SJ733.

    Directory of Open Access Journals (Sweden)

    Emily D Crawford

    Full Text Available Genetic manipulation of the deadly malaria parasite Plasmodium falciparum remains challenging, but the rise of CRISPR/Cas9-based genome editing tools is increasing the feasibility of altering this parasite's genome in order to study its biology. Of particular interest is the investigation of drug targets and drug resistance mechanisms, which have major implications for fighting malaria. We present a new method for introducing drug resistance mutations in P. falciparum without the use of plasmids or the need for cloning homologous recombination templates. We demonstrate this method by introducing edits into the sodium efflux channel PfATP4 by transfection of a purified CRISPR/Cas9-guide RNA ribonucleoprotein complex and a 200-nucleotide single-stranded oligodeoxynucleotide (ssODN repair template. Analysis of whole genome sequencing data with the variant-finding program MinorityReport confirmed that only the intended edits were made, and growth inhibition assays confirmed that these mutations confer resistance to the antimalarial SJ733. The method described here is ideally suited for the introduction of mutations that confer a fitness advantage under selection conditions, and the novel finding that an ssODN can function as a repair template in P. falciparum could greatly simplify future editing attempts regardless of the nuclease used or the delivery method.

  9. Stable gene transfer of CCR5 and CXCR4 siRNAs by sleeping beauty transposon system to confer HIV-1 resistance

    Directory of Open Access Journals (Sweden)

    Akkina Ramesh

    2008-07-01

    Full Text Available Abstract Background Thus far gene therapy strategies for HIV/AIDS have used either conventional retroviral vectors or lentiviral vectors for gene transfer. Although highly efficient, their use poses a certain degree of risk in terms of viral mediated oncogenesis. Sleeping Beauty (SB transposon system offers a non-viral method of gene transfer to avoid this possible risk. With respect to conferring HIV resistance, stable knock down of HIV-1 coreceptors CCR5 and CXCR4 by the use of lentiviral vector delivered siRNAs has proved to be a promising strategy to protect cells from HIV-1 infection. In the current studies our aim is to evaluate the utility of SB system for stable gene transfer of CCR5 and CXCR4 siRNA genes to derive HIV resistant cells as a first step towards using this system for gene therapy. Results Two well characterized siRNAs against the HIV-1 coreceptors CCR5 and CXCR4 were chosen based on their previous efficacy for the SB transposon gene delivery. The siRNA transgenes were incorporated individually into a modified SB transfer plasmid containing a FACS sortable red fluorescence protein (RFP reporter and a drug selectable neomycin resistance gene. Gene transfer was achieved by co-delivery with a construct expressing a hyperactive transposase (HSB5 into the GHOST-R3/X4/R5 cell line, which expresses the major HIV receptor CD4 and and the co-receptors CCR5 and CXCR4. SB constructs expressing CCR5 or CXCR4 siRNAs were also transfected into MAGI-CCR5 or MAGI-CXCR4 cell lines, respectively. Near complete downregulation of CCR5 and CXCR4 surface expression was observed in transfected cells. During viral challenge with X4-tropic (NL4.3 or R5-tropic (BaL HIV-1 strains, the respective transposed cells showed marked viral resistance. Conclusion SB transposon system can be used to deliver siRNA genes for stable gene transfer. The siRNA genes against HIV-1 coreceptors CCR5 and CXCR4 are able to downregulate the respective cell surface proteins

  10. Autocrine production of TGF-β confers resistance to apoptosis after an epithelial-mesenchymal transition process in hepatocytes: Role of EGF receptor ligands

    International Nuclear Information System (INIS)

    Castillo, Gaelle del; Murillo, Miguel M.; Alvarez-Barrientos, Alberto; Bertran, Esther; Fernandez, Margarita; Sanchez, Aranzazu; Fabregat, Isabel

    2006-01-01

    Transforming growth factor-beta (TGF-β) induces apoptosis in fetal rat hepatocytes. However, a subpopulation of these cells survives, concomitant with changes in phenotype, reminiscent of an epithelial-mesenchymal transition (EMT). We have previously suggested that EMT might confer cell resistance to apoptosis (Valdes et al., Mol. Cancer Res., 1: 68-78, 2002). However, the molecular mechanisms responsible for this resistance are not explored yet. In this work, we have isolated and subcultured the population of hepatocytes that suffered the EMT process and are resistant to apoptosis (TGF-β-treated fetal hepatocytes: TβT-FH). We prove that they secrete mitogenic and survival factors, as analyzed by the proliferative and survival capacity of conditioned medium. Inhibition of the epidermal growth factor receptor (EGFR) sensitizes TβT-FH to die after serum withdrawal. TβT-FH expresses high levels of transforming growth factor-alpha (TGF-α) and heparin-binding EGF-like growth factor (HB-EGF) and shows constitutive activation of the EGFR pathway. A blocking anti-TGF-α antibody restores the capacity of cells to die. TGF-β, which is expressed by TβT-FH, mediates up-regulation of TGF-α and HB-EGF expression in those cells. In summary, results suggest that an autocrine loop of TGF-β confers resistance to apoptosis after an EMT process in hepatocytes, through the increase in the expression of EGFR ligands

  11. Geographical gradient of the eIF4E alleles conferring resistance to potyviruses in pea (Pisum) germplasm.

    Science.gov (United States)

    Konečná, Eva; Šafářová, Dana; Navrátil, Milan; Hanáček, Pavel; Coyne, Clarice; Flavell, Andrew; Vishnyakova, Margarita; Ambrose, Mike; Redden, Robert; Smýkal, Petr

    2014-01-01

    The eukaryotic translation initiation factor 4E was shown to be involved in resistance against several potyviruses in plants, including pea. We combined our knowledge of pea germplasm diversity with that of the eIF4E gene to identify novel genetic diversity. Germplasm of 2803 pea accessions was screened for eIF4E intron 3 length polymorphism, resulting in the detection of four eIF4E(A-B-C-S) variants, whose distribution was geographically structured. The eIF4E(A) variant conferring resistance to the P1 PSbMV pathotype was found in 53 accessions (1.9%), of which 15 were landraces from India, Afghanistan, Nepal, and 7 were from Ethiopia. A newly discovered variant, eIF4E(B), was present in 328 accessions (11.7%) from Ethiopia (29%), Afghanistan (23%), India (20%), Israel (25%) and China (39%). The eIF4E(C) variant was detected in 91 accessions (3.2% of total) from India (20%), Afghanistan (33%), the Iberian Peninsula (22%) and the Balkans (9.3%). The eIF4E(S) variant for susceptibility predominated as the wild type. Sequencing of 73 samples, identified 34 alleles at the whole gene, 26 at cDNA and 19 protein variants, respectively. Fifteen alleles were virologically tested and 9 alleles (eIF4E(A-1-2-3-4-5-6-7), eIF4E(B-1), eIF4E(C-2)) conferred resistance to the P1 PSbMV pathotype. This work identified novel eIF4E alleles within geographically structured pea germplasm and indicated their independent evolution from the susceptible eIF4E(S1) allele. Despite high variation present in wild Pisum accessions, none of them possessed resistance alleles, supporting a hypothesis of distinct mode of evolution of resistance in wild as opposed to crop species. The Highlands of Central Asia, the northern regions of the Indian subcontinent, Eastern Africa and China were identified as important centers of pea diversity that correspond with the diversity of the pathogen. The series of alleles identified in this study provides the basis to study the co-evolution of potyviruses and the

  12. Altering the selection capabilities of common cloning vectors via restriction enzyme mediated gene disruption

    Science.gov (United States)

    2013-01-01

    Background The cloning of gene sequences forms the basis for many molecular biological studies. One important step in the cloning process is the isolation of bacterial transformants carrying vector DNA. This involves a vector-encoded selectable marker gene, which in most cases, confers resistance to an antibiotic. However, there are a number of circumstances in which a different selectable marker is required or may be preferable. Such situations can include restrictions to host strain choice, two phase cloning experiments and mutagenesis experiments, issues that result in additional unnecessary cloning steps, in which the DNA needs to be subcloned into a vector with a suitable selectable marker. Results We have used restriction enzyme mediated gene disruption to modify the selectable marker gene of a given vector by cloning a different selectable marker gene into the original marker present in that vector. Cloning a new selectable marker into a pre-existing marker was found to change the selection phenotype conferred by that vector, which we were able to demonstrate using multiple commonly used vectors and multiple resistance markers. This methodology was also successfully applied not only to cloning vectors, but also to expression vectors while keeping the expression characteristics of the vector unaltered. Conclusions Changing the selectable marker of a given vector has a number of advantages and applications. This rapid and efficient method could be used for co-expression of recombinant proteins, optimisation of two phase cloning procedures, as well as multiple genetic manipulations within the same host strain without the need to remove a pre-existing selectable marker in a previously genetically modified strain. PMID:23497512

  13. The identification of candidate rice genes that confer resistance to the brown planthopper (Nilaparvata lugens) through representational difference analysis.

    Science.gov (United States)

    Park, Dong-Soo; Lee, Sang-Kyu; Lee, Jong-Hee; Song, Min-Young; Song, Song-Yi; Kwak, Do-Yeon; Yeo, Un-Sang; Jeon, Nam-Soo; Park, Soo-Kwon; Yi, Gihwan; Song, You-Chun; Nam, Min-Hee; Ku, Yeon-Chung; Jeon, Jong-Seong

    2007-08-01

    The development of rice varieties (Oryza sativa L.) that are resistant to the brown planthopper (BPH; Nilaparvata lugens Stål) is an important objective in current breeding programs. In this study, we generated 132 BC(5)F(5) near-isogenic rice lines (NILs) by five backcrosses of Samgangbyeo, a BPH resistant indica variety carrying the Bph1 locus, with Nagdongbyeo, a BPH susceptible japonica variety. To identify genes that confer BPH resistance, we employed representational difference analysis (RDA) to detect transcripts that were exclusively expressed in one of our BPH resistant NIL, SNBC61, during insect feeding. The chromosomal mapping of the RDA clones that we subsequently isolated revealed that they are located in close proximity either to known quantitative trait loci or to an introgressed SSR marker from the BPH resistant donor parent Samgangbyeo. Genomic DNA gel-blot analysis further revealed that loci of all RDA clones in SNBC61 correspond to the alleles of Samgangbyeo. Most of the RDA clones were found to be exclusively expressed in SNBC61 and could be assigned to functional groups involved in plant defense. These RDA clones therefore represent candidate defense genes for BPH resistance.

  14. In Vivo-Selected Compensatory Mutations Restore the Fitness Cost of Mosaic penA Alleles That Confer Ceftriaxone Resistance in Neisseria gonorrhoeae.

    Science.gov (United States)

    Vincent, Leah R; Kerr, Samuel R; Tan, Yang; Tomberg, Joshua; Raterman, Erica L; Dunning Hotopp, Julie C; Unemo, Magnus; Nicholas, Robert A; Jerse, Ann E

    2018-04-03

    Resistance to ceftriaxone in Neisseria gonorrhoeae is mainly conferred by mosaic penA alleles that encode penicillin-binding protein 2 (PBP2) variants with markedly lower rates of acylation by ceftriaxone. To assess the impact of these mosaic penA alleles on gonococcal fitness, we introduced the mosaic penA alleles from two ceftriaxone-resistant (Cro r ) clinical isolates (H041 and F89) into a Cro s strain (FA19) by allelic exchange and showed that the resultant Cro r mutants were significantly outcompeted by the Cro s parent strain in vitro and in a murine infection model. Four Cro r compensatory mutants of FA19 penA41 were isolated independently from mice that outcompeted the parent strain both in vitro and in vivo One of these compensatory mutants (LV41C) displayed a unique growth profile, with rapid log growth followed by a sharp plateau/gradual decline at stationary phase. Genome sequencing of LV41C revealed a mutation (G348D) in the acnB gene encoding the bifunctional aconitate hydratase 2/2 methylisocitrate dehydratase. Introduction of the acnB G348D allele into FA19 penA41 conferred both a growth profile that phenocopied that of LV41C and a fitness advantage, although not as strongly as that exhibited by the original compensatory mutant, suggesting the existence of additional compensatory mutations. The mutant aconitase appears to be a functional knockout with lower activity and expression than wild-type aconitase. Transcriptome sequencing (RNA-seq) analysis of FA19 penA41 acnB G348D revealed a large set of upregulated genes involved in carbon and energy metabolism. We conclude that compensatory mutations can be selected in Cro r gonococcal strains that increase metabolism to ameliorate their fitness deficit. IMPORTANCE The emergence of ceftriaxone-resistant (Cro r ) Neisseria gonorrhoeae has led to the looming threat of untreatable gonorrhea. Whether Cro resistance is likely to spread can be predicted from studies that compare the relative fitnesses of

  15. Loss of the RNA polymerase III repressor MAF1 confers obesity resistance.

    Science.gov (United States)

    Bonhoure, Nicolas; Byrnes, Ashlee; Moir, Robyn D; Hodroj, Wassim; Preitner, Frédéric; Praz, Viviane; Marcelin, Genevieve; Chua, Streamson C; Martinez-Lopez, Nuria; Singh, Rajat; Moullan, Norman; Auwerx, Johan; Willemin, Gilles; Shah, Hardik; Hartil, Kirsten; Vaitheesvaran, Bhavapriya; Kurland, Irwin; Hernandez, Nouria; Willis, Ian M

    2015-05-01

    MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences. © 2015 Bonhoure et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    Energy Technology Data Exchange (ETDEWEB)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok [BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-736 (Korea, Republic of); Kang, Ho Young [Department of Microbiology, Pusan National University, Busan 609-736 (Korea, Republic of); Kim, Manbok [Department of Medical Science, Dankook University College of Medicine, Cheonan 330-714 (Korea, Republic of); Koh, Sang Seok [Department of Biological Sciences, Dong-A University, Busan 604-714 (Korea, Republic of); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-736 (Korea, Republic of)

    2015-04-03

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells.

  17. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    International Nuclear Information System (INIS)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok; Kang, Ho Young; Kim, Manbok; Koh, Sang Seok; Chung, Young-Hwa

    2015-01-01

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells

  18. Insights into the structure, function and evolution of the radical-SAM 23S rRNA methyltransferase Cfr that confers antibiotic resistance in bacteria

    DEFF Research Database (Denmark)

    Karminska, K. H.; Purta, E.; Hansen, L .H.

    2010-01-01

    The Cfr methyltransferase confers combined resistance to five classes of antibiotics that bind to the peptidyl tranferase center of bacterial ribosomes by catalyzing methylation of the C-8 position of 23S rRNA nucleotide A2503. The same nucleotide is targeted by the housekeeping methyltransferase...

  19. Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1.

    Science.gov (United States)

    Wang, Ming-Yang; Chen, Pai-Sheng; Prakash, Ekambaranellore; Hsu, Hsing-Chih; Huang, Hsin-Yi; Lin, Ming-Tsan; Chang, King-Jen; Kuo, Min-Liang

    2009-04-15

    Connective tissue growth factor (CTGF) expression is elevated in advanced breast cancer and promotes metastasis. Chemotherapy response is only transient in most metastatic diseases. In the present study, we examined whether CTGF expression could confer drug resistance in human breast cancer. In breast cancer patients who received neoadjuvant chemotherapy, CTGF expression was inversely associated with chemotherapy response. Overexpression of CTGF in MCF7 cells (MCF7/CTGF) enhanced clonogenic ability, cell viability, and resistance to apoptosis on exposure to doxorubicin and paclitaxel. Reducing the CTGF level in MDA-MB-231 (MDA231) cells by antisense CTGF cDNA (MDA231/AS cells) mitigated this drug resistance capacity. CTGF overexpression resulted in resistance to doxorubicin- and paclitaxel-induced apoptosis by up-regulation of Bcl-xL and cellular inhibitor of apoptosis protein 1 (cIAP1). Knockdown of Bcl-xL or cIAP1 with specific small interfering RNAs abolished the CTGF-mediated resistance to apoptosis induced by the chemotherapeutic agents in MCF7/CTGF cells. Inhibition of extracellular signal-regulated kinase (ERK)-1/2 effectively reversed the resistance to apoptosis as well as the up-regulation of Bcl-xL and cIAP1 in MCF7/CTGF cells. A neutralizing antibody against integrin alpha(v)beta(3) significantly attenuated CTGF-mediated ERK1/2 activation and up-regulation of Bcl-xL and cIAP1, indicating that the integrin alpha(v)beta(3)/ERK1/2 signaling pathway is essential for CTGF functions. The Bcl-xL level also correlated with the CTGF level in breast cancer patients. We also found that a COOH-terminal domain peptide from CTGF could exert activities similar to full-length CTGF, in activation of ERK1/2, up-regulation of Bcl-xL/cIAP1, and resistance to apoptosis. We conclude that CTGF expression could confer resistance to chemotherapeutic agents through augmenting a survival pathway through ERK1/2-dependent Bcl-xL/cIAP1 up-regulation.

  20. GSK-3β inhibition by lithium confers resistance to chemotherapy-induced apoptosis through the repression of CD95 (Fas/APO-1) expression

    International Nuclear Information System (INIS)

    Beurel, Eleonore; Kornprobst, Michel; Blivet-Van Eggelpoel, Marie-Jose; Ruiz-Ruiz, Carmen; Cadoret, Axelle; Capeau, Jacqueline; Desbois-Mouthon, Christele

    2004-01-01

    Lithium exerts neuroprotective actions that involve the inhibition of glycogen synthase kinase-3β (GSK-3β). Otherwise, recent studies suggest that sustained GSK-3β inhibition is a hallmark of tumorigenesis. In this context, the present study was undertaken to examine whether lithium modulated cancer cell sensitivity to apoptosis induced by chemotherapy agents. We observed that, in different human cancer cell lines, lithium significantly reduced etoposide- and camptothecin-induced apoptosis. In HepG2 cells, lithium repressed drug induction of CD95 expression and clustering at the cell surface as well as caspase-8 activation. Lithium acted through deregulation of GSK-3β signaling since (1) it provoked a rapid and sustained phosphorylation of GSK-3β on the inhibitory serine 9 residue; (2) the GSK-3β inhibitor SB-415286 mimicked lithium effects by repressing drug-induced apoptosis and CD95 membrane expression; and (3) lithium promoted the disruption of nuclear GSK-3β/p53 complexes. Moreover, the overexpression of an inactivated GSK-3β mutant counteracted the stimulatory effects of etoposide and camptothecin on a luciferase reporter plasmid driven by a p53-responsive sequence from the CD95 gene. In conclusion, we provide the first evidence that lithium confers resistance to apoptosis in cancer cells through GSK-3β inhibition and subsequent repression of CD95 gene expression. Our study also highlights the concerted action of GSK-3β and p53 on CD95 gene expression

  1. Effects of disrupting the polyketide synthase gene WdPKS1 in Wangiella [Exophiala] dermatitidis on melanin production and resistance to killing by antifungal compounds, enzymatic degradation, and extremes in temperature

    Directory of Open Access Journals (Sweden)

    Mandal Piyali

    2006-06-01

    Full Text Available Abstract Background Wangiella dermatitidis is a human pathogenic fungus that is an etiologic agent of phaeohyphomycosis. W. dermatitidis produces a black pigment that has been identified as a dihydroxynaphthalene melanin and the production of this pigment is associated with its virulence. Cell wall pigmentation in W. dermatitidis depends on the WdPKS1 gene, which encodes a polyketide synthase required for generating the key precursor for dihydroxynaphthalene melanin biosynthesis. Results We analyzed the effects of disrupting WdPKS1 on dihydroxynaphthalene melanin production and resistance to antifungal compounds. Transmission electron microscopy revealed that wdpks1Δ-1 yeast had thinner cell walls that lacked an electron-opaque layer compared to wild-type cells. However, digestion of the wdpks1Δ-1 yeast revealed small black particles that were consistent with a melanin-like compound, because they were acid-resistant, reacted with melanin-binding antibody, and demonstrated a free radical signature by electron spin resonance analysis. Despite lacking the WdPKS1 gene, the mutant yeast were capable of catalyzing the formation of melanin from L-3,4-dihyroxyphenylalanine. The wdpks1Δ-1 cells were significantly more susceptible to killing by voriconazole, amphotericin B, NP-1 [a microbicidal peptide], heat and cold, and lysing enzymes than the heavily melanized parental or complemented strains. Conclusion In summary, W. dermatitidis makes WdPKS-dependent and -independent melanins, and the WdPKS1-dependent deposition of melanin in the cell wall confers protection against antifungal agents and environmental stresses. The biological role of the WdPKS-independent melanin remains unclear.

  2. Engineering aspects of disruption current decay

    International Nuclear Information System (INIS)

    Murray, J.G.

    1983-11-01

    Engineering features associated with the configuration of a tokamak can affect the amount of energy that produces melting and damage to the limiters or internal wall surfaces as the result of a major disruption. During the current decay period of a major thermal disruption, the energy that can damage a wall or limiter comes from the external magnetic field. By providing a good conducting torus near the plasma and increasing the plasma circuit resistance, this magnetic energy (transferred by way of the plasma circuit) can be minimized. This report addresses engineering design features to reduce the energy deposited on the inner torus surface that produces melting of the structures

  3. Mutation at codon 442 in the rpoB gene of Mycobacterium leprae does not confer resistance to rifampicin.

    Science.gov (United States)

    Lavania, Mallika; Hena, Abu; Reja, Hasanoor; Nigam, Astha; Biswas, Nibir Kumar; Singh, Itu; Turankar, Ravindra P; Gupta, Ud; Kumar, Senthil; Rewaria, Latika; Patra, Pradip K R; Sengupta, Utpal; Bhattacharya, Basudeb

    2016-03-01

    Rifampicin is the major drug in the treatment of leprosy. The rifampicin resistance of Mycobacterium leprae results from a mutation in the rpoB gene, encoding the β subunit of RNA polymerase. As M. leprae is a non-cultivable organism observation of its growth using mouse food-pad (MFP) is the only Gold Standard assay used for confirmation of "in-vivo" drug resistance. Any mutation at molecular level has to be verified by MFP assay for final confirmation of drug resistance in leprosy. In the present study, M. leprae strains showing a mutation only at codon 442 Gln-His and along with mutation either at codon 424 Val-Gly or at 438 Gln-Val within the Rifampicin Resistance Determining Region (RRDR) confirmed by DNA sequencing and by high resolution melting (HRM) analysis were subjected for its growth in MFP. The M. leprae strain having the new mutation at codon 442 Gln-His was found to be sensitive to all the three drugs and strains having additional mutations at 424 Val-Gly and 438 Gln-Val were conferring resistance with Multi drug therapy (MDT) in MFP. These results indicate that MFP is the gold standard method for confirming the mutations detected by molecular techniques.

  4. Accumulation of multiple mutations in linezolid-resistant Staphylococcus epidermidis causing bloodstream infections; in silico analysis of L3 amino acid substitutions that might confer high-level linezolid resistance.

    Science.gov (United States)

    Ikonomidis, Alexandros; Grapsa, Anastasia; Pavlioglou, Charikleia; Demiri, Antonia; Batarli, Alexandra; Panopoulou, Maria

    2016-12-01

    Fifty-six Staphylococcus epidermidis clinical isolates, showing high-level linezolid resistance and causing bacteremia in critically ill patients, were studied. All isolates belonged to ST22 clone and carried the T2504A and C2534T mutations in gene coding for 23SrRNA as well as the C189A, G208A, C209T and G384C missense mutations in L3 protein which resulted in Asp159Tyr, Gly152Asp and Leu94Val substitutions. Other silent mutations were also detected in genes coding for ribosomal proteins L3 and L22. In silico analysis of missense mutations showed that although L3 protein retained the sequence of secondary motifs, the tertiary structure was influenced. The observed alteration in L3 protein folding provides an indication on the putative role of L3-coding gene mutations in high-level linezolid resistance. Furthermore, linezolid pressure in health care settings where linezolid consumption is of high rates might lead to the selection of resistant mutants possessing L3 mutations that might confer high-level linezolid resistance.

  5. Cereal cyst nematode resistance conferred by the Cre7 gene from Aegilops triuncialis and its relationship with Cre genes from Australian wheat cultivars

    OpenAIRE

    Montes, Maria Jesus; Andrés, María Fe; Sin, E.; Lopez Braña, Isidoro; Martín-Sánchez, J.A.; Romero, M.D.; Delibes Castro, Angeles

    2008-01-01

    Cereal cyst nematode (CCN; Heterodera avenae Woll.) is a root pathogen of cereal crops that can cause severe yield losses in wheat (Triticum aestivum). Differential host–nematode interactions occur in wheat cultivars carrying different CCN resistance (Cre) genes. The objective of this study was to determine the CCN resistance conferred by the Cre7 gene from Aegilops triuncialis in a 42-chromosome introgression line and to assess the effects of the Cre1, Cre3, Cre4, and Cre8 genes present in A...

  6. Association Mapping of Quantitative Trait Loci in Spring Wheat Landraces Conferring Resistance to Bacterial Leaf Streak and Spot Blotch

    Directory of Open Access Journals (Sweden)

    Tika B. Adhikari

    2012-03-01

    Full Text Available Bacterial leaf streak (BLS, caused by pv. (Smith et al. Bragard et al., and spot blotch (SB, caused by (S. Ito & Kurib. Drechs. ex Dastur, are two emerging diseases of wheat ( L.. To achieve sustainable disease management strategies and reduce yield losses, identifying new genes that confer quantitative resistance would benefit resistance breeding efforts. The main objective of this study was to use association mapping (AM with 832 polymorphic Diversity Arrays Technology (DArT markers to identify genomic regions associated with resistance to BLS and SB in 566 spring wheat landraces. From data analysis of this diverse panel of wheat accessions, we discovered five novel genomic regions significantly associated with resistance to BLS on chromosomes 1A, 4A, 4B, 6B, and 7D. Similarly, four genomic regions were found to be associated with resistance to SB on chromosomes 1A, 3B, 7B, and 7D. A high degree of linkage disequilibrium (LD decayed over short genetic distance in the set of wheat accessions studied, and some of these genomic regions appear to be involved in multiple disease resistance (MDR. These results suggest that the AM approach provides a platform for discovery of resistance conditioned by multiple genes with quantitative effects, which could be validated and deployed in wheat breeding programs.

  7. Resistance to change

    NARCIS (Netherlands)

    Dow, J.; Perotti, E.

    2009-01-01

    Established firms often fail to maintain leadership following disruptive market shifts. We argue that such firms are more prone to internal resistance. A radical adjustment of assets affects the distribution of employee rents, creating winners and losers. Losers resist large changes when strong

  8. Resistance against Schistosoma mansoni induced by highly irradiated infections: studies on species specificity of immunization and attempts to transfer resistance

    International Nuclear Information System (INIS)

    Bickle, Q.D.; Andrews, B.J.; Doenhoff, M.J.; Ford, M.J.; Taylor, M.G.

    1985-01-01

    Significant levels of resistance against Schistosoma mansoni challenge were developed by mice exposed to highly irradiated (20 krad.) cercariae of the homologous species (53-67%), whereas vaccination with S. bovis, S. haematobium or S. japonicum failed to confer significant levels of resistance (-5-12%), thus confirming the specificity of the immunizing procedure. Attempts to transfer resistance to naive recipients by injection of serum and of spleen or lymph node cells from donor mice vaccinated with highly irradiated cercariae were largely unsuccessful. However, significant levels of resistance could be transferred to mice by injection of serum from rabbits exposed to irradiated cercariae. Comparable levels of resistance were conferred by injection of serum at the time of challenge (34-69%) or 5-6 days later (31-56%). In contrast, sera from rabbits injected with soluble egg antigen or homogenized cercariae failed to confer protection upon recipient mice. Sera from vaccinated mice, vaccinated rabbits and antigen-injected rabbits all caused cell adherence to skin-transformed schistosomula but neither the level of adherence nor the serum titre correlated with the ability to confer protection to mice. (author)

  9. Engineering analysis of TFTR disruption

    Energy Technology Data Exchange (ETDEWEB)

    Murray, J.G.; Rothe, K.E.; Bronner, G.

    1984-09-01

    This report covers an engineering approach quantifying the currents, forces, and times, as well as plasma position, for the worst-case disruption based on engineerign circuit assumptions for the plasma. As the plasma moves toward the wall during the current-decay phase of disruption, the wall currents affect the rate of movement and, hence, the decay time. The calculated structure-induced currents differ considerably from those calculated using a presently available criterion, which specifies that the plasma remains stationary in the center of the torus while decaying in 10 ms. This report outlines the method and basis for the engineering calculation used to determine the current and forces as a function of the circuit characteristics. It provides specific calculations for the Tokamak Fusion Test Reactor (TFTR) with variations in parameters such as the thermal decay time, the torus resistance, and plasma temperature during the current decay. The study reviews possible ways to reduce the disruption damage of TFTR by reducing the magnitude of the plasma external field energy that is absorbed by the plasma during the current decay.

  10. Engineering analysis of TFTR disruption

    International Nuclear Information System (INIS)

    Murray, J.G.; Rothe, K.E.; Bronner, G.

    1984-09-01

    This report covers an engineering approach quantifying the currents, forces, and times, as well as plasma position, for the worst-case disruption based on engineerign circuit assumptions for the plasma. As the plasma moves toward the wall during the current-decay phase of disruption, the wall currents affect the rate of movement and, hence, the decay time. The calculated structure-induced currents differ considerably from those calculated using a presently available criterion, which specifies that the plasma remains stationary in the center of the torus while decaying in 10 ms. This report outlines the method and basis for the engineering calculation used to determine the current and forces as a function of the circuit characteristics. It provides specific calculations for the Tokamak Fusion Test Reactor (TFTR) with variations in parameters such as the thermal decay time, the torus resistance, and plasma temperature during the current decay. The study reviews possible ways to reduce the disruption damage of TFTR by reducing the magnitude of the plasma external field energy that is absorbed by the plasma during the current decay

  11. Disruption of egg production by triclabendazole-resistant Fasciola hepatica following treatment with a commercial preparation of myrrh (Mirazid).

    Science.gov (United States)

    Abdelaal, Mohamed M O; Brennan, Gerard P; Hanna, Robert E B; Abdel-Aziz, Ahmed; Fairweather, Ian

    2017-06-01

    An in vitro study has been carried out to monitor changes to the female reproductive system in adult triclabendazole (TCBZ)-resistant Fasciola hepatica following treatment with a commercial preparation of myrrh ("Mirazid"). Flukes were immersed for 6 h and 24 h in myrrh extract at a concentration of 200 µg/ml, then processed for histological and transmission electron microscope (TEM) examination of the uterus, Mehlis' gland, ovary and vitellaria. Egg production had become abnormal at 6 h post-treatment (pt), with the uterine lumen being filled with free vitelline cells and masses of shell protein material; few eggs were present. At 24 h pt, no eggs were present. Distinct changes to the ovary and Mehlis' gland were only observed after 24 h incubation in Mirazid. The ovary contained numbers of apoptotic oogonia and oocytes. In the Mehlis' gland, the S1 cells were disorganised and the processes from them were vacuolated, although the disruption was not significant. More severe changes were observed in the vitelline cells and follicles. After 6 h incubation in Mirazid, although the gross organisation of the vitelline follicles appeared to be normal, nuclear changes indicative of the early stages of apoptosis were observed in the stem cells and shell protein production by the mature cells had decreased. At 24 h pt, a distinct shift in cell population was evident, with the follicles containing mainly mature cells and spaces were present between the cells. The shell globule clusters in the mature cells were disorganised. In more severely-affected follicles, cells were seen to be breaking down, with karyolytic nuclei and disintegrating cytoplasm. Overall, the results have shown that exposure to Mirazid treatment had a severe impact on egg production by TCBZ-resistant flukes, an effect that was mediated by disruption of the vitelline cells and of the mechanism co-ordinating egg formation in the ootype.

  12. Novel resistance functions uncovered using functional metagenomic investigations of resistance reservoirs

    Directory of Open Access Journals (Sweden)

    Erica C. Pehrsson

    2013-06-01

    Full Text Available Rates of infection with antibiotic-resistant bacteria have increased precipitously over the past several decades, with far-reaching healthcare and societal costs. Recent evidence has established a link between antibiotic resistance genes in human pathogens and those found in non-pathogenic, commensal, and environmental organisms, prompting deeper investigation of natural and human-associated reservoirs of antibiotic resistance. Functional metagenomic selections, in which shotgun-cloned DNA fragments are selected for their ability to confer survival to an indicator host, have been increasingly applied to the characterization of many antibiotic resistance reservoirs. These experiments have demonstrated that antibiotic resistance genes are highly diverse and widely distributed, many times bearing little to no similarity to known sequences. Through unbiased selections for survival to antibiotic exposure, functional metagenomics can improve annotations by reducing the discovery of false-positive resistance and by allowing for the identification of previously unrecognizable resistance genes. In this review, we summarize the novel resistance functions uncovered using functional metagenomic investigations of natural and human-impacted resistance reservoirs. Examples of novel antibiotic resistance genes include those highly divergent from known sequences, those for which sequence is entirely unable to predict resistance function, bifunctional resistance genes, and those with unconventional, atypical resistance mechanisms. Overcoming antibiotic resistance in the clinic will require a better understanding of existing resistance reservoirs and the dissemination networks that govern horizontal gene exchange, informing best practices to limit the spread of resistance-conferring genes to human pathogens.

  13. The targeted inhibition of mitochondrial Hsp90 overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chunlan [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of); Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 (China); Oh, Joon Seok; Yoo, Seung Hee; Lee, Jee Suk [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of); Yoon, Young Geol [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of); Department of Biomedical Science, Institute for Biomedical and Health Sciences, Jungwon University, Chungbuk, 367-805 (Korea, Republic of); Oh, Yoo Jin; Jang, Min Seok [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of); Lee, Sang Yeob [Department of Rheumatology, Dong-A University College of Medicine, Busan, 602-714 (Korea, Republic of); Yang, Jun [Department of Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, Zhejiang, 310036 China (China); Lee, Sang Hwa [Department of Microbiology and, Dong-A University College of Medicine, Busan, 602-714 (Korea, Republic of); Kim, Hye Young [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of); Yoo, Young Hyun, E-mail: yhyoo@dau.ac.kr [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of)

    2013-01-01

    Previous studies have reported that a Gamitrinib variant containing triphenylphosphonium (G-TPP) binds to mitochondrial Hsp90 and rapidly inhibits its activity, thus inducing the apoptotic pathway in the cells. Accordingly, G-TPP shows a potential as a promising drug for the treatment of cancer. A cell can die from different types of cell death such as apoptosis, necrosis, necroptosis, and autophagic cell death. In this study, we further investigated the mechanisms and modes of cell death in the G-TPP-treated Hep3B and U937 cell lines. We discovered that G-TPP kills the U937 cells through the apoptotic pathway and the overexpression of Bcl-2 significantly inhibits U937 cell death to G-TPP. We further discovered that G-TPP kills the Hep3B cells by activating necroptosis in combination with the partial activation of caspase-dependent apoptosis. Importantly, G-TPP overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis. We also observed that G-TPP induces compensatory autophagy in the Hep3B cell line. We further found that whereas there is a Bcl-2-Beclin 1 interaction in response to G-TPP, silencing the beclin 1 gene failed to block LC3-II accumulation in the Hep3B cells, indicating that G-TPP triggers Beclin 1-independent protective autophagy in Hep3B cells. Taken together, these data reveal that G-TPP induces cell death through a combination of death pathways, including necroptosis and apoptosis, and overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis. These findings are important for the therapeutic exploitation of necroptosis as an alternative cell death program to bypass the resistance to apoptosis. Highlights: ► G-TPP binds to mitochondrial Hsp90. ► G-TPP induces apoptosis in U937 human leukemia cancer cells. ► G-TPP induces combination of death pathways in Hep3B cell. ► G-TPP overcomes the resistance conferred by Bcl-2 in Hep3B cells via necroptosis. ► G-TPP triggers Beclin 1-independent

  14. Multiyear evaluation of the durability of the resistance conferred by Ma and RMia genes to Meloidogyne incognita in Prunus under controlled conditions.

    Science.gov (United States)

    Khallouk, Samira; Voisin, Roger; Portier, Ulysse; Polidori, Joël; Van Ghelder, Cyril; Esmenjaud, Daniel

    2013-08-01

    Root-knot nematodes (RKNs) (Meloidogyne spp.) are highly polyphagous pests that parasitize Prunus crops in Mediterranean climates. Breeding for RKN-resistant Prunus cultivars, as an alternative to the now-banned use of nematicides, is a real challenge, because the perennial nature of these trees increases the risk of resistance breakdown. The Ma plum resistance (R) gene, with a complete spectrum, and the RMia peach R gene, with a more restricted spectrum, both provide total control of Meloidogyne incognita, the model parthenogenetic species of the genus and the most important RKN in terms of economic losses. We investigated the durability of the resistance to this nematode conferred by these genes, comparing the results obtained with those for the tomato Mi-1 reference gene. In multiyear experiments, we applied a high and continuous nematode inoculum pressure by cultivating nematode-infested susceptible tomato plants with either Prunus accessions carrying Ma or RMia R genes, or with resistant tomato plants carrying the Mi-1 gene. Suitable conditions for Prunus development were achieved by carrying out the studies in a glasshouse, in controlled conditions allowing a short winter leaf fall and dormancy. We first assessed the plum accession 'P.2175', which is heterozygous for the Ma gene, in two successive 2-year evaluations, for resistance to two M. incognita isolates. Whatever the isolate used, no nematodes reproducing on P.2175 were detected, whereas galls and nematodes reproducing on tomato plants carrying Mi-1 were observed. In a second experiment with the most aggressive isolate, interspecific full-sib material (P.2175 × ['Garfi' almond × 'Nemared' peach]), carrying either Ma or RMia (from Nemared) or both (in the heterozygous state) or neither of these genes, was evaluated for 4 years. No virulent nematodes developed on Prunus spp. carrying R genes, whereas galling and virulent individuals were observed on Mi-1-resistant tomato plants. Thus, the resistance to

  15. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Jeon, En Hee; Pak, Jung Hun; Kim, Mi Jin; Kim, Hye Jeong; Shin, Sang Hyun; Lee, Jai Heon; Kim, Doh Hoon; Oh, Ju Sung; Oh, Boung-Jun; Jung, Ho Won; Chung, Young Soo

    2012-01-01

    Highlights: ► We isolated a novel E2 ubiquitin-conjugating enzyme from leaves of wild rice plants. ► The OgUBC1 was highly expressed in leaves treated with SA and UV-B radiation. ► The recombinant OgUBC1 has an enzymatic activity of E2 in vitro. ► The OgUBC1 could protect disruption of plant cells by UV-B radiation. ► OgUBC1 confers disease resistance and UV-B tolerance in transgenic Arabidopsis plants. -- Abstract: A previously unidentified gene encoding ubiquitin-conjugating enzyme was isolated from leaves of wild rice plant treated with wounding and microbe-associated molecular patterns. The OgUBC1 gene was composed of 148 amino acids and contained a typical active site and 21 ubiquitin thioester intermediate interaction residues and 4 E3 interaction residues. Both exogenous application of salicylic acid and UV-B irradiation triggered expression of OgUBC1 in leaves of wild rice. Recombinant OgUBC1 proteins bound to ubiquitins in vitro, proposing that the protein might act as E2 enzyme in planta. Heterologous expression of the OgUBC1 in Arabidopsis thaliana protected plants from cellular damage caused by an excess of UV-B radiation. A stable expression of chalcone synthase gene was detected in leaves of OgUBC1-expressing Arabidopsis, resulting in producing higher amounts of anthocyanin than those in wild-type Col-0 plants. Additionally, both pathogenesis-related gene1 and 5 were transcribed in the transgenic Arabidopsis in the absence of pathogen infection. The OgUBC1-expressing plants were resistant to the infection of Botrytis cinerea. Taken together, we suggested that the OgUBC1 is involved in ubiquitination process important for cellular response against biotic and abiotic stresses in plants.

  16. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, En Hee; Pak, Jung Hun; Kim, Mi Jin; Kim, Hye Jeong [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Shin, Sang Hyun [National Crop Experiment Station, Rural Development Administration, Suwon 441-100 (Korea, Republic of); Lee, Jai Heon; Kim, Doh Hoon; Oh, Ju Sung [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Oh, Boung-Jun [BioControl Center, Jeonnam 516-942 (Korea, Republic of); Jung, Ho Won, E-mail: hwjung@dau.ac.kr [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Chung, Young Soo, E-mail: chungys@dau.ac.kr [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer We isolated a novel E2 ubiquitin-conjugating enzyme from leaves of wild rice plants. Black-Right-Pointing-Pointer The OgUBC1 was highly expressed in leaves treated with SA and UV-B radiation. Black-Right-Pointing-Pointer The recombinant OgUBC1 has an enzymatic activity of E2 in vitro. Black-Right-Pointing-Pointer The OgUBC1 could protect disruption of plant cells by UV-B radiation. Black-Right-Pointing-Pointer OgUBC1 confers disease resistance and UV-B tolerance in transgenic Arabidopsis plants. -- Abstract: A previously unidentified gene encoding ubiquitin-conjugating enzyme was isolated from leaves of wild rice plant treated with wounding and microbe-associated molecular patterns. The OgUBC1 gene was composed of 148 amino acids and contained a typical active site and 21 ubiquitin thioester intermediate interaction residues and 4 E3 interaction residues. Both exogenous application of salicylic acid and UV-B irradiation triggered expression of OgUBC1 in leaves of wild rice. Recombinant OgUBC1 proteins bound to ubiquitins in vitro, proposing that the protein might act as E2 enzyme in planta. Heterologous expression of the OgUBC1 in Arabidopsis thaliana protected plants from cellular damage caused by an excess of UV-B radiation. A stable expression of chalcone synthase gene was detected in leaves of OgUBC1-expressing Arabidopsis, resulting in producing higher amounts of anthocyanin than those in wild-type Col-0 plants. Additionally, both pathogenesis-related gene1 and 5 were transcribed in the transgenic Arabidopsis in the absence of pathogen infection. The OgUBC1-expressing plants were resistant to the infection of Botrytis cinerea. Taken together, we suggested that the OgUBC1 is involved in ubiquitination process important for cellular response against biotic and abiotic stresses in plants.

  17. Lethal inflammasome activation by a multi-drug resistant pathobiont upon antibiotic disruption of the microbiota

    Science.gov (United States)

    Ayres, Janelle S.; Trinidad, Norver J.; Vance, Russell E.

    2012-01-01

    The mammalian intestine harbors a complex microbial community that provides numerous benefits to its host. However, the microbiota can also include potentially virulent species, termed pathobionts, which can cause disease when intestinal homeostasis is disrupted. The molecular mechanisms by which pathobionts cause disease remain poorly understood. Here we describe a sepsis-like disease that occurs upon gut injury in antibiotic-treated mice. Sepsis was associated with the systemic spread of a specific multidrug-resistant E. coli pathobiont that expanded dramatically in the microbiota of antibiotic-treated mice. Rapid sepsis-like death required a component of the innate immune system, the Naip5-Nlrc4 inflammasome. In accordance with Koch's postulates, we found the E. coli pathobiont was sufficient to activate Naip5-Nlrc4 and cause disease when injected intravenously into unmanipulated mice. These findings reveal how sepsis-like disease can result from recognition of pathobionts by the innate immune system. PMID:22522562

  18. Disruptive Innovation in Air Measurement Technology: Reality ...

    Science.gov (United States)

    This presentation is a big picture overview on the changing state of air measurement technology in the world, with a focus on the introduction of low-cost sensors into the market place. The presentation discusses how these new technologies may be a case study in disruptive innovation for the air pollution measurement field. The intended audience is primarily those with experience in air pollution measurement methods, but much of the talk is accessible to the general public. This is a keynote presentation on emerging air monitoring technology, to be provided at the AWMA measurements conference in March, 2016.

  19. Mutation of Rv2887, a marR-like gene, confers Mycobacterium tuberculosis resistance to an imidazopyridine-based agent.

    Science.gov (United States)

    Winglee, Kathryn; Lun, Shichun; Pieroni, Marco; Kozikowski, Alan; Bishai, William

    2015-11-01

    Drug resistance is a major problem in Mycobacterium tuberculosis control, and it is critical to identify novel drug targets and new antimycobacterial compounds. We have previously identified an imidazo[1,2-a]pyridine-4-carbonitrile-based agent, MP-III-71, with strong activity against M. tuberculosis. In this study, we evaluated mechanisms of resistance to MP-III-71. We derived three independent M. tuberculosis mutants resistant to MP-III-71 and conducted whole-genome sequencing of these mutants. Loss-of-function mutations in Rv2887 were common to all three MP-III-71-resistant mutants, and we confirmed the role of Rv2887 as a gene required for MP-III-71 susceptibility using complementation. The Rv2887 protein was previously unannotated, but domain and homology analyses suggested it to be a transcriptional regulator in the MarR (multiple antibiotic resistance repressor) family, a group of proteins first identified in Escherichia coli to negatively regulate efflux pumps and other mechanisms of multidrug resistance. We found that two efflux pump inhibitors, verapamil and chlorpromazine, potentiate the action of MP-III-71 and that mutation of Rv2887 abrogates their activity. We also used transcriptome sequencing (RNA-seq) to identify genes which are differentially expressed in the presence and absence of a functional Rv2887 protein. We found that genes involved in benzoquinone and menaquinone biosynthesis were repressed by functional Rv2887. Thus, inactivating mutations of Rv2887, encoding a putative MarR-like transcriptional regulator, confer resistance to MP-III-71, an effective antimycobacterial compound that shows no cross-resistance to existing antituberculosis drugs. The mechanism of resistance of M. tuberculosis Rv2887 mutants may involve efflux pump upregulation and also drug methylation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Bulgecin A as a β-lactam enhancer for carbapenem-resistant Pseudomonas aeruginosa and carbapenem-resistant Acinetobacter baumannii clinical isolates containing various resistance mechanisms.

    Science.gov (United States)

    Skalweit, Marion J; Li, Mei

    2016-01-01

    Genetic screening of Pseudomonas aeruginosa (PSDA) and Acinetobacter baumannii (ACB) reveals genes that confer increased susceptibility to β-lactams when disrupted, suggesting novel drug targets. One such target is lytic transglycosylase. Bulgecin A (BlgA) is a natural product of Pseudomonas mesoacidophila and a lytic transglycosolase inhibitor that works synergistically with β-lactams targeting PBP3 for Enterobacteriaceae. BlgA also weakly inhibits di-Zn 2+ metallo-β-lactamases like L1 of Stenotrophomonas maltophilia . We hypothesized that because of its unique mechanism of action, BlgA could restore susceptibility to carbapenems in carbapenem-resistant PSDA (CR-PSDA) and carbapenem-resistant ACB, as well as ACB resistant to sulbactam. A BlgA-containing extract was prepared using a previously published protocol. CR-PSDA clinical isolates demonstrating a variety of carbapenem resistance mechanisms (VIM-2 carbapenemases, efflux mechanisms, and AmpC producer expression) were characterized with agar dilution minimum inhibitory concentration (MIC) testing and polymerase chain reaction. Growth curves using these strains were prepared using meropenem, BlgA extract, and meropenem plus BlgA extract. A concentrated Blg A extract combined with low concentrations of meropenem, was able to inhibit the growth of clinical strains of CR-PSDA for strains that had meropenem MICs ≥8 mg/L by agar dilution, and a clinical strain of an OXA-24 producing ACB that had a meropenem MIC >32 mg/L and intermediate ampicillin/sulbactam susceptibility. Similar experiments were conducted on a TEM-1 producing ACB strain resistant to sulbactam. BlgA with ampicillin/sulbactam inhibited the growth of this organism. As in Enterobacteriaceae, BlgA appears to restore the efficacy of meropenem in suppressing the growth of CR-PSDA and carbapenem-resistant ACB strains with a variety of common carbapenem resistance mechanisms. BlgA extract also inhibits VIM-2 β-lactamase in vitro. BlgA may prove to be

  1. Cellular expression of gH confers resistance to herpes simplex virus type-1 entry

    International Nuclear Information System (INIS)

    Scanlan, Perry M.; Tiwari, Vaibhav; Bommireddy, Susmita; Shukla, Deepak

    2003-01-01

    Entry of herpes simplex virus-1 (HSV-1) into cells requires a concerted action of four viral glycoproteins gB, gD, and gH-gL. Previously, cell surface expression of gD had been shown to confer resistance to HSV-1 entry. To investigate any similar effects caused by other entry glycoproteins, gB and gH-gL were coexpressed with Nectin-1 in Chinese hamster ovary (CHO) cells. Interestingly, cellular expression of gB had no effect on HSV-1(KOS) entry. In contrast, entry was significantly reduced in cells expressing gH-gL. This effect was further analyzed by expressing gH and gL separately. Cells expressing gL were normally susceptible, whereas gH-expressing cells were significantly resistant. Further experiments suggested that the gH-mediated interference phenomenon was not specific to any particular gD receptor and was also observed in gH-expressing HeLa cells. Moreover, contrary to a previous report, gL-independent cell surface expression of gH was detected in stably transfected CHO cells, possibly implicating cell surface gH in the interference phenomenon. Thus, taken together these findings indicate that cellular expression of gH interferes with HSV-1 entry

  2. [Enzymes for disrupting bacterial communication, an alternative to antibiotics?

    Science.gov (United States)

    Rémy, B; Plener, L; Elias, M; Daudé, D; Chabrière, E

    2016-11-01

    Quorum sensing (QS) is used by bacteria to communicate and synchronize their actions according to the cell density. In this way, they produce and secrete in the surrounding environment small molecules dubbed autoinducers (AIs) that regulate the expression of certain genes. The phenotypic traits regulated by QS are diverse and include pathogenicity, biofilm formation or resistance to anti-microbial treatments. The strategy, aiming at disrupting QS, known as quorum quenching (QQ), has emerged to counteract bacterial virulence and involves QS-inhibitors (QSI) or QQ-enzymes degrading AIs. Differently from antibiotics, QQ aims at blocking cell signaling and does not alter bacterial survival. This considerably decreases the selection pressure as compared to bactericide treatments and may reduce the occurrence of resistance mechanisms. QQ-enzymes are particularly appealing as they may disrupt molecular QS-signal without entering the cell and in a catalytic way. This review covers several aspects of QQ-based medical applications and the potential subsequent emergence of resistance is discussed. Copyright © 2016 Académie Nationale de Pharmacie. All rights reserved.

  3. Identification of distinct specificity determinants in resistance protein Cf-4 allows construction of a Cf-9 mutant that confers recognition of avirulence protein AVR4

    NARCIS (Netherlands)

    Hoorn, Van der R.A.L.; Roth, R.; Wit, De P.J.G.M.

    2001-01-01

    The tomato resistance genes Cf-4 and Cf-9 confer specific, hypersensitive response-associated recognition of Cladosporium carrying the avirulence genes Avr4 and Avr9, respectively. Cf-4 and Cf-9 encode type I transmembrane proteins with extracellular leucine-rich repeats (LRRs). Compared with Cf-9,

  4. Disruption of the mitochondria-associated ER membrane (MAM) plays a central role in palmitic acid-induced insulin resistance.

    Science.gov (United States)

    Shinjo, Satoko; Jiang, Shuying; Nameta, Masaaki; Suzuki, Tomohiro; Kanai, Mai; Nomura, Yuta; Goda, Nobuhito

    2017-10-01

    The mitochondria-associated ER membrane (MAM) is a specialized subdomain of ER that physically connects with mitochondria. Although disruption of inter-organellar crosstalk via the MAM impairs cellular homeostasis, its pathological significance in insulin resistance in type 2 diabetes mellitus remains unclear. Here, we reveal the importance of reduced MAM formation in the induction of fatty acid-evoked insulin resistance in hepatocytes. Palmitic acid (PA) repressed insulin-stimulated Akt phosphorylation in HepG2 cells within 12h. Treatment with an inhibitor of the ER stress response failed to restore PA-mediated suppression of Akt activation. Mitochondrial reactive oxygen species (ROS) production did not increase in PA-treated cells. Even short-term exposure (3h) to PA reduced the calcium flux from ER to mitochondria, followed by a significant decrease in MAM contact area, suggesting that PA suppressed the functional interaction between ER and mitochondria. Forced expression of mitofusin-2, a critical component of the MAM, partially restored MAM contact area and ameliorated the PA-elicited suppression of insulin sensitivity with Ser473 phosphorylation of Akt selectively improved. These results suggest that loss of proximity between ER and mitochondria, but not perturbation of homeostasis in the two organelles individually, plays crucial roles in PA-evoked Akt inactivation in hepatic insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Dissection of two soybean QTL conferring partial resistance to Phytophthora sojae through sequence and gene expression analysis

    Directory of Open Access Journals (Sweden)

    Wang Hehe

    2012-08-01

    Full Text Available Abstract Background Phytophthora sojae is the primary pathogen of soybeans that are grown on poorly drained soils. Race-specific resistance to P. sojae in soybean is gene-for-gene, although in many areas of the US and worldwide there are populations that have adapted to the most commonly deployed resistance to P. sojae ( Rps genes. Hence, this system has received increased attention towards identifying mechanisms and molecular markers associated with partial resistance to this pathogen. Several quantitative trait loci (QTL have been identified in the soybean cultivar ‘Conrad’ that contributes to the expression of partial resistance to multiple P. sojae isolates. Results In this study, two of the Conrad QTL on chromosome 19 were dissected through sequence and expression analysis of genes in both resistant (Conrad and susceptible (‘Sloan’ genotypes. There were 1025 single nucleotide polymorphisms (SNPs in 87 of 153 genes sequenced from Conrad and Sloan. There were 304 SNPs in 54 genes sequenced from Conrad compared to those from both Sloan and Williams 82, of which 11 genes had SNPs unique to Conrad. Eleven of 19 genes in these regions analyzed with qRT-PCR had significant differences in fold change of transcript abundance in response to infection with P. sojae in lines with QTL haplotype from the resistant parent compared to those with the susceptible parent haplotype. From these, 8 of the 11 genes had SNPs in the upstream, untranslated region, exon, intron, and/or downstream region. These 11 candidate genes encode proteins potentially involved in signal transduction, hormone-mediated pathways, plant cell structural modification, ubiquitination, and basal resistance. Conclusions These findings may indicate a complex defense network with multiple mechanisms underlying these two soybean QTL conferring resistance to P. sojae. SNP markers derived from these candidate genes can contribute to fine mapping of QTL and marker assisted breeding for

  6. Are preference and resistance to change convergent expressions of stimulus value?

    Science.gov (United States)

    Podlesnik, Christopher A; Jimenez-Gomez, Corina; Shahan, Timothy A

    2013-07-01

    Behavioral momentum theory asserts that preference and relative resistance to disruption depend on reinforcement rates and provide converging expressions of the conditioned value of discriminative stimuli. However, preference and resistance to disruption diverge when assessing preference during brief extinction probes. We expanded upon this opposing relation by arranging target stimuli signaling equal variable-interval schedules across components of a multiple schedule. We paired one target stimulus with a richer reinforced alternative and the other with a leaner alternative. Furthermore, we varied reinforcement rates for the paired alternatives to assess the effects of manipulating relative conditioned value on preference and resistance to disruption by presession feeding, intercomponent food, and extinction. We replicated the opposing relation between preference and resistance to disruption but varying reinforcement rates for the paired alternatives did not systematically affect preference or resistance to disruption beyond levels observed in our initial condition. Importantly, we found that only preference between the target stimuli was related to relative baseline response rates in the presence of those stimuli. These findings suggest that preference during extinction probes might reveal more about baseline response rates between concurrently available alternatives than relative conditioned value. Resistance to disruption, conversely, appears to better reflect conditioned value because it is less confounded with baseline response rates and is a function of all sources of reinforcement obtained in the presence of a stimulus context. © Society for the Experimental Analysis of Behavior.

  7. Phloem-specific expression of the lectin gene from Allium sativum confers resistance to the sap-sucker Nilaparvata lugens.

    Science.gov (United States)

    Chandrasekhar, Kottakota; Vijayalakshmi, Muvva; Vani, Kalasamudramu; Kaul, Tanushri; Reddy, Malireddy K

    2014-05-01

    Rice production is severely hampered by insect pests. Garlic lectin gene (ASAL) holds great promise in conferring protection against chewing (lepidopteran) and sap-sucking (homopteran) insect pests. We have developed transgenic rice lines resistant to sap-sucking brown hopper (Nilaparvata lugens) by ectopic expression of ASAL in their phloem tissues. Molecular analyses of T0 lines confirmed stable integration of transgene. T1 lines (NP 1-2, 4-3, 11-6 & 17-7) showed active transcription and translation of ASAL transgene. ELISA revealed ASAL expression was as high as 0.95% of total soluble protein. Insect bioassays on T2 homozygous lines (NP 18 & 32) revealed significant reduction (~74-83%) in survival rate, development and fecundity of brown hoppers in comparison to wild type. Transgenics exhibited enhanced resistance (1-2 score) against brown hoppers, minimal plant damage and no growth penalty or phenotypic abnormalities.

  8. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice.

    Science.gov (United States)

    Wang, Chunlian; Zhang, Xiaoping; Fan, Yinglun; Gao, Ying; Zhu, Qinlong; Zheng, Chongke; Qin, Tengfei; Li, Yanqiang; Che, Jinying; Zhang, Mingwei; Yang, Bing; Liu, Yaoguang; Zhao, Kaijun

    2014-11-09

    The majority of plant disease resistance (R) genes encode proteins that share common structural features. However, the transcription activator-like effector (TALE) associated executor type R genes show no considerable sequence homology to any known R genes. We adopted a map-based cloning approach and TALE-based technology to isolate and characterize Xa23, a new executor R gene derived from the wild rice (Oryza rufipogon) that confers an extremely broad spectrum of resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo). Xa23 encodes a 113-amino acid protein that shares 50% identity to the known executor R protein XA10. The predicted transmembrane helices in XA23 also overlap with those of XA10. Unlike Xa10, however, Xa23 transcription is specifically activated by AvrXa23, a TALE present in all examined Xoo field isolates. Moreover, the susceptible xa23 allele has an identical open reading frame of Xa23, but differs in promoter region by lacking the TALE binding-element (EBE) for AvrXa23. XA23 can trigger strong hypersensitive response in rice, tobacco and tomato. Our results provide the first evidence that plant genomes have an executor R gene family in which members execute their function and spectrum of disease resistance by recognizing the cognate TALEs in pathogen. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  9. Synchronous oscillation prior to disruption caused by kink modes in HL-2A tokamak plasmas

    Science.gov (United States)

    Jiang, M.; Hu, D.; Wang, X. G.; Shi, Z. B.; Xu, Y.; Chen, W.; Ding, X. T.; Zhong, W. L.; Dong, Y. B.; Ji, X. Q.; Zhang, Y. P.; Gao, J. M.; Li, J. X.; Yang, Z. C.; Li, Y. G.; Liu, Y.

    2015-08-01

    A class of evident MHD activities prior to major disruption has been observed during recent radiation induced disruptions of the HL-2A tokamak discharges. It can be named SOD, synchronous oscillations prior to disruption, characterized by synchronous oscillation of electron cyclotron emission (ECE), core soft x-ray, Mirnov coil, and {{D}α} radiation signals at the divertor plate. The SOD activity is mostly observed in a parametric regime where the poloidal beta is low enough before disruption, typically corresponding to those radiation-induced disruptions. It has been found that the m/n = 2/1 mode is dominant during the SODs, and consequently it is the drop of the mode frequency and the final mode locking that lead to thermal quench. The mode frequency before the mode locking corresponds to the toroidal rotation frequency of the edge plasma. It is also found that during SODs, the location of the q = 2 surface is moving outward, and most of the plasma current is enclosed within the surface. This demonstrates that the current channel lies inside the rational surface during SOD, and thus the resistive kink mode is unstable. Further analysis of the electron temperature perturbation structure shows that the plasma is indeed dominated by the resistive kink mode, with kink-like perturbation in the core plasma region. It suggests that it is the nonlinear growth of the m/n = 2/1 resistive kink mode and its higher order harmonics, rather than the spontaneous overlapping of multiple neighboring islands, that ultimately triggered the disruption.

  10. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit.

    Science.gov (United States)

    Banks, William A; Gray, Alicia M; Erickson, Michelle A; Salameh, Therese S; Damodarasamy, Mamatha; Sheibani, Nader; Meabon, James S; Wing, Emily E; Morofuji, Yoichi; Cook, David G; Reed, May J

    2015-11-25

    Disruption of the blood-brain barrier (BBB) occurs in many diseases and is often mediated by inflammatory and neuroimmune mechanisms. Inflammation is well established as a cause of BBB disruption, but many mechanistic questions remain. We used lipopolysaccharide (LPS) to induce inflammation and BBB disruption in mice. BBB disruption was measured using (14)C-sucrose and radioactively labeled albumin. Brain cytokine responses were measured using multiplex technology and dependence on cyclooxygenase (COX) and oxidative stress determined by treatments with indomethacin and N-acetylcysteine. Astrocyte and microglia/macrophage responses were measured using brain immunohistochemistry. In vitro studies used Transwell cultures of primary brain endothelial cells co- or tri-cultured with astrocytes and pericytes to measure effects of LPS on transendothelial electrical resistance (TEER), cellular distribution of tight junction proteins, and permeability to (14)C-sucrose and radioactive albumin. In comparison to LPS-induced weight loss, the BBB was relatively resistant to LPS-induced disruption. Disruption occurred only with the highest dose of LPS and was most evident in the frontal cortex, thalamus, pons-medulla, and cerebellum with no disruption in the hypothalamus. The in vitro and in vivo patterns of LPS-induced disruption as measured with (14)C-sucrose, radioactive albumin, and TEER suggested involvement of both paracellular and transcytotic pathways. Disruption as measured with albumin and (14)C-sucrose, but not TEER, was blocked by indomethacin. N-acetylcysteine did not affect disruption. In vivo, the measures of neuroinflammation induced by LPS were mainly not reversed by indomethacin. In vitro, the effects on LPS and indomethacin were not altered when brain endothelial cells (BECs) were cultured with astrocytes or pericytes. The BBB is relatively resistant to LPS-induced disruption with some brain regions more vulnerable than others. LPS-induced disruption appears is

  11. Loss of Oca2 disrupts the unfolded protein response and increases resistance to endoplasmic reticulum stress in melanocytes.

    Science.gov (United States)

    Cheng, Tsing; Orlow, Seth J; Manga, Prashiela

    2013-11-01

    Accumulation of proteins in the endoplasmic reticulum (ER) typically induces stress and initiates the unfolded protein response (UPR) to facilitate recovery. If homeostasis is not restored, apoptosis is induced. However, adaptation to chronic UPR activation can increase resistance to subsequent acute ER stress. We therefore investigated adaptive mechanisms in Oculocutaneous albinism type 2 (Oca2)-null melanocytes where UPR signaling is arrested despite continued tyrosinase accumulation leading to resistance to the chemical ER stressor thapsigargin. Although thapsigargin triggers UPR activation, instead of Perk-mediated phosphorylation of eIF2α, in Oca2-null melanocytes, eIF2α was rapidly dephosphorylated upon treatment. Dephosphorylation was mediated by the Gadd34-PP1α phosphatase complex. Gadd34-complex inhibition blocked eIF2α dephosphorylation and significantly increased Oca2-null melanocyte sensitivity to thapsigargin. Thus, Oca2-null melanocytes adapt to acute ER stress by disruption of pro-apoptotic Perk signaling, which promotes cell survival. This is the first study to demonstrate rapid eIF2α dephosphorylation as an adaptive mechanism to ER stress. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. MHC class I Dk locus and Ly49G2+ NK cells confer H-2k resistance to murine cytomegalovirus.

    Science.gov (United States)

    Xie, Xuefang; Stadnisky, Michael D; Brown, Michael G

    2009-06-01

    Essential NK cell-mediated murine CMV (MCMV) resistance is under histocompatibility-2(k) (H-2(k)) control in MA/My mice. We generated a panel of intra-H2(k) recombinant strains from congenic C57L.M-H2(k/b) (MCMV resistant) mice for precise genetic mapping of the critical interval. Recombination breakpoint sites were precisely mapped and MCMV resistance/susceptibility traits were determined for each of the new lines to identify the MHC locus. Strains C57L.M-H2(k)(R7) (MCMV resistant) and C57L.M-H2(k)(R2) (MCMV susceptible) are especially informative; we found that allelic variation in a 0.3-megabase interval in the class I D locus confers substantial difference in MCMV control phenotypes. When NK cell subsets responding to MCMV were examined, we found that Ly49G2(+) NK cells rapidly expand and selectively acquire an enhanced capacity for cytolytic functions only in C57L.M-H2(k)(R7). We further show that depletion of Ly49G2(+) NK cells before infection abrogated MCMV resistance in C57L.M-H2(k)(R7). We conclude that the MHC class I D locus prompts expansion and activation of Ly49G2(+) NK cells that are needed in H-2(k) MCMV resistance.

  13. Potential of a lytic bacteriophage to disrupt Acinetobacter baumannii biofilms in vitro.

    Science.gov (United States)

    Liu, Yannan; Mi, Zhiqiang; Niu, Wenkai; An, Xiaoping; Yuan, Xin; Liu, Huiying; Wang, Yong; Feng, Yuzhong; Huang, Yong; Zhang, Xianglilan; Zhang, Zhiyi; Fan, Hang; Peng, Fan; Li, Puyuan; Tong, Yigang; Bai, Changqing

    2016-10-01

    The ability of Acinetobacter baumannii to form biofilms and develop antibiotic resistance makes it difficult to control infections caused by this bacterium. In this study, we explored the potential of a lytic bacteriophage to disrupt A. baumannii biofilms. The potential of the lytic bacteriophage to disrupt A. baumannii biofilms was assessed by performing electron microscopy, live/dead bacterial staining, crystal violet staining and by determining adenosine triphosphate release. The bacteriophage inhibited the formation of and disrupted preformed A. baumannii biofilms. Results of disinfection assay showed that the lytic bacteriophage lysed A. baumannii cells suspended in blood or grown on metal surfaces. These results suggest the potential of the lytic bacteriophage to disrupt A. baumannii biofilms.

  14. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis.

    Science.gov (United States)

    Li, Zhao; Zhou, Miaoping; Zhang, Zengyan; Ren, Lijuan; Du, Lipu; Zhang, Boqiao; Xu, Huijun; Xin, Zhiyong

    2011-03-01

    Fusarium head blight (scab), primarily caused by Fusarium graminearum, is a devastating disease of wheat (Triticum aestivum L.) worldwide. Wheat sharp eyespot, mainly caused by Rhizoctonia cerealis, is one of the major diseases of wheat in China. The defensin RsAFP2, a small cyteine-rich antifungal protein from radish (Raphanus sativus), was shown to inhibit growth in vitro of agronomically important fungal pathogens, such as F. graminearum and R. cerealis. The RsAFP2 gene was transformed into Chinese wheat variety Yangmai 12 via biolistic bombardment to assess the effectiveness of the defensin in protecting wheat from the fungal pathogens in multiple locations and years. The genomic PCR and Southern blot analyses indicated that RsAFP2 was integrated into the genomes of the transgenic wheat lines and heritable. RT-PCR and Western blot proved that the RsAFP2 was expressed in these transgenic wheat lines. Disease tests showed that four RsAFP2 transgenic lines (RA1-RA4) displayed enhanced resistance to F. graminearum compared to the untransformed Yangmai 12 and the null-segregated plants. Assays on Q-RT-PCR and disease severity showed that the express level of RsAFP2 was associated with the enhanced resistance degree. Two of these transgenic lines (RA1 and RA2) also exhibited enhanced resistance to R. cerealis. These results indicated that the expression of RsAFP2 conferred increased resistance to F. graminearum and R. cerealis in transgenic wheat.

  15. Second International Conference on Accelerating Biopharmaceutical Development

    Science.gov (United States)

    2009-01-01

    The Second International Conference on Accelerating Biopharmaceutical Development was held in Coronado, California. The meeting was organized by the Society for Biological Engineering (SBE) and the American Institute of Chemical Engineers (AIChE); SBE is a technological community of the AIChE. Bob Adamson (Wyeth) and Chuck Goochee (Centocor) were co-chairs of the event, which had the theme “Delivering cost-effective, robust processes and methods quickly and efficiently.” The first day focused on emerging disruptive technologies and cutting-edge analytical techniques. Day two featured presentations on accelerated cell culture process development, critical quality attributes, specifications and comparability, and high throughput protein formulation development. The final day was dedicated to discussion of technology options and new analysis methods provided by emerging disruptive technologies; functional interaction, integration and synergy in platform development; and rapid and economic purification process development. PMID:20065637

  16. CDK2 phosphorylation of Smad2 disrupts TGF-beta transcriptional regulation in resistant primary bone marrow myeloma cells.

    Science.gov (United States)

    Baughn, Linda B; Di Liberto, Maurizio; Niesvizky, Ruben; Cho, Hearn J; Jayabalan, David; Lane, Joseph; Liu, Fang; Chen-Kiang, Selina

    2009-02-15

    Resistance to growth suppression by TGF-beta1 is common in cancer; however, mutations in this pathway are rare in hematopoietic malignancies. In multiple myeloma, a fatal cancer of plasma cells, malignant cells accumulate in the TGF-beta-rich bone marrow due to loss of both cell cycle and apoptotic controls. Herein we show that TGF-beta activates Smad2 but fails to induce cell cycle arrest or apoptosis in primary bone marrow myeloma and human myeloma cell lines due to its inability to activate G(1) cyclin-dependent kinase (CDK) inhibitors (p15(INK4b), p21(CIP1/WAF1), p27(KIP1), p57(KIP2)) or to repress c-myc and Bcl-2 transcription. Correlating with aberrant activation of CDKs, CDK-dependent phosphorylation of Smad2 on Thr(8) (pT8), a modification linked to impaired Smad activity, is elevated in primary bone marrow myeloma cells, even in asymptomatic monoclonal gammopathy of undetermined significance. Moreover, CDK2 is the predominant CDK that phosphorylates Smad2 on T8 in myeloma cells, leading to inhibition of Smad2-Smad4 association that precludes transcriptional regulation by Smad2. Our findings provide the first direct evidence that pT8 Smad2 couples dysregulation of CDK2 to TGF-beta resistance in primary cancer cells, and they suggest that disruption of Smad2 function by CDK2 phosphorylation acts as a mechanism for TGF-beta resistance in multiple myeloma.

  17. Artemisinin-resistant malaria: research challenges, opportunities, and public health implications.

    Science.gov (United States)

    Fairhurst, Rick M; Nayyar, Gaurvika M L; Breman, Joel G; Hallett, Rachel; Vennerstrom, Jonathan L; Duong, Socheat; Ringwald, Pascal; Wellems, Thomas E; Plowe, Christopher V; Dondorp, Arjen M

    2012-08-01

    Artemisinin-based combination therapies are the most effective drugs to treat Plasmodium falciparum malaria. Reduced sensitivity to artemisinin monotherapy, coupled with the emergence of parasite resistance to all partner drugs, threaten to place millions of patients at risk of inadequate treatment of malaria. Recognizing the significance and immediacy of this possibility, the Fogarty International Center and the National Institute of Allergy and Infectious Diseases of the U.S. National Institutes of Health convened a conference in November 2010 to bring together the diverse array of stakeholders responding to the growing threat of artemisinin resistance, including scientists from malarious countries in peril. This conference encouraged and enabled experts to share their recent unpublished data from studies that may improve our understanding of artemisinin resistance. Conference sessions addressed research priorities to forestall artemisinin resistance and fostered collaborations between field- and laboratory-based researchers and international programs, with the aim of translating new scientific evidence into public health solutions. Inspired by this conference, this review summarizes novel findings and perspectives on artemisinin resistance, approaches for translating research data into relevant public health information, and opportunities for interdisciplinary collaboration to combat artemisinin resistance.

  18. High-resolution disruption halo current measurements using Langmuir probes in Alcator C-Mod

    Science.gov (United States)

    Tinguely, R. A.; Granetz, R. S.; Berg, A.; Kuang, A. Q.; Brunner, D.; LaBombard, B.

    2018-01-01

    Halo currents generated during disruptions on Alcator C-Mod have been measured with Langmuir ‘rail’ probes. These rail probes are embedded in a lower outboard divertor module in a closely-spaced vertical (poloidal) array. The dense array provides detailed resolution of the spatial dependence (~1 cm spacing) of the halo current distribution in the plasma scrape-off region with high time resolution (400 kHz digitization rate). As the plasma limits on the outboard divertor plate, the contact point is clearly discernible in the halo current data (as an inversion of current) and moves vertically down the divertor plate on many disruptions. These data are consistent with filament reconstructions of the plasma boundary, from which the edge safety factor of the disrupting plasma can be calculated. Additionally, the halo current ‘footprint’ on the divertor plate is obtained and related to the halo flux width. The voltage driving halo current and the effective resistance of the plasma region through which the halo current flows to reach the probes are also investigated. Estimations of the sheath resistance and halo region resistivity and temperature are given. This information could prove useful for modeling halo current dynamics.

  19. Disruption of the ammonium transporter AMT1.1 alters basal defences generating resistance against Pseudomonas syringae and Plectosphaerella cucumerina

    Directory of Open Access Journals (Sweden)

    Victoria ePastor

    2014-05-01

    Full Text Available Disruption of the high-affinity nitrate transporter NRT2.1 activates the priming defence against Pseudomonas syringae, resulting in enhanced resistance. In this study, it is demonstrated that the high-affinity ammonium transporter AMT1.1 is a negative regulator of Arabidopsis defence responses. The T-DNA knockout mutant amt1.1 displays enhanced resistance against Plectosphaerella cucumerina and reduced susceptibility to P. syringae. The impairment of AMT1.1 induces significant metabolic changes in the absence of challenge, suggesting that amt1.1 retains constitutive defence responses. Interestingly, amt1.1 combats pathogens differently depending on the lifestyle of the pathogen. In addition, N starvation enhances the susceptibility of wild type plants and the mutant amt1.1 to P. syringae whereas it has no effect on P. cucumerina resistance. The metabolic changes of amt1.1 against P. syringae are subtler and are restricted to the phenylpropanoid pathway, which correlates with its reduced susceptibility. By contrast, the amt1.1 mutant responds by activating higher levels of camalexin and callose against P. cucumerina. In addition, amt1.1 shows altered levels of aliphatic and indolic glucosinolates and other Trp-related compounds following infection by the necrotroph. These observations indicate that AMT1.1 may play additional roles that affect N uptake and plant immune responses.

  20. Microbiology: Barriers to the spread of resistance

    DEFF Research Database (Denmark)

    Sommer, Morten

    2014-01-01

    Despite identifying abundant genes capable of conferring antibiotic resistance in soil microorganisms, a study finds that few are shared by human pathogens and that there is little transfer of the genes within the soil communities.......Despite identifying abundant genes capable of conferring antibiotic resistance in soil microorganisms, a study finds that few are shared by human pathogens and that there is little transfer of the genes within the soil communities....

  1. RNA disruption is associated with response to multiple classes of chemotherapy drugs in tumor cell lines.

    Science.gov (United States)

    Narendrula, Rashmi; Mispel-Beyer, Kyle; Guo, Baoqing; Parissenti, Amadeo M; Pritzker, Laura B; Pritzker, Ken; Masilamani, Twinkle; Wang, Xiaohui; Lannér, Carita

    2016-02-24

    Cellular stressors and apoptosis-inducing agents have been shown to induce ribosomal RNA (rRNA) degradation in eukaryotic cells. Recently, RNA degradation in vivo was observed in patients with locally advanced breast cancer, where mid-treatment tumor RNA degradation was associated with complete tumor destruction and enhanced patient survival. However, it is not clear how widespread chemotherapy induced "RNA disruption" is, the extent to which it is associated with drug response or what the underlying mechanisms are. Ovarian (A2780, CaOV3) and breast (MDA-MB-231, MCF-7, BT474, SKBR3) cancer cell lines were treated with several cytotoxic chemotherapy drugs and total RNA was isolated. RNA was also prepared from docetaxel resistant A2780DXL and carboplatin resistant A2780CBN cells following drug exposure. Disruption of RNA was analyzed by capillary electrophoresis. Northern blotting was performed using probes complementary to the 28S and 18S rRNA to determine the origins of degradation bands. Apoptosis activation was assessed by flow cytometric monitoring of annexin-V and propidium iodide (PI) binding to cells and by measuring caspase-3 activation. The link between apoptosis and RNA degradation (disruption) was investigated using a caspase-3 inhibitor. All chemotherapy drugs tested were capable of inducing similar RNA disruption patterns. Docetaxel treatment of the resistant A2780DXL cells and carboplatin treatment of the A2780CBN cells did not result in RNA disruption. Northern blotting indicated that two RNA disruption bands were derived from the 3'-end of the 28S rRNA. Annexin-V and PI staining of docetaxel treated cells, along with assessment of caspase-3 activation, showed concurrent initiation of apoptosis and RNA disruption, while inhibition of caspase-3 activity significantly reduced RNA disruption. Supporting the in vivo evidence, our results demonstrate that RNA disruption is induced by multiple chemotherapy agents in cell lines from different tissues and is

  2. Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection.

    Science.gov (United States)

    Pandolfini, Tiziana; Molesini, Barbara; Avesani, Linda; Spena, Angelo; Polverari, Annalisa

    2003-06-25

    Homology-dependent selective degradation of RNA, or post-transcriptional gene silencing (PTGS), is involved in several biological phenomena, including adaptative defense mechanisms against plant viruses. Small interfering RNAs mediate the selective degradation of target RNA by guiding a multicomponent RNAse. Expression of self-complementary hairpin RNAs within two complementary regions separated by an intron elicits PTGS with high efficiency. Plum pox virus (PPV) is the etiological agent of sharka disease in Drupaceae, although it can also be transmitted to herbaceous species (e.g. Nicotiana benthamiana). Once inside the plant, PPV is transmitted via plasmodesmata from cell to cell, and at longer distances, via phloem. The rolC promoter drives expression in phloem cells. RolC expression is absent in both epidermal and mesophyll cells. The aim of the present study was to confer systemic disease resistance without preventing local viral infection. In the ihprolC-PP197 gene (intron hair pin rolC PPV 197), a 197 bp sequence homologous to the PPV RNA genome (from base 134 to 330) was placed as two inverted repeats separated by the DNA sequence of the rolA intron. This hairpin construct is under the control of the rolC promoter.N. benthamiana plants transgenic for the ihprolC-PP197 gene contain siRNAs homologous to the 197 bp sequence. The transgenic progeny of ihprolC-PP197 plants are resistant to PPV systemic infection. Local infection is unaffected. Most (80%) transgenic plants are virus free and symptomless. Some plants (20%) contain virus in uninoculated apical leaves; however they show only mild symptoms of leaf mottling. PPV systemic resistance cosegregates with the ihprolC-PP197 transgene and was observed in progeny plants of all independent transgenic lines analyzed. SiRNAs of 23-25 nt homologous to the PPV sequence used in the ihprolC-PP197 construct were detected in transgenic plants before and after inoculation. Transitivity of siRNAs was observed in

  3. Stable integration and expression of a cry1Ia gene conferring resistance to fall armyworm and boll weevil in cotton plants.

    Science.gov (United States)

    Silva, Carliane Rc; Monnerat, Rose; Lima, Liziane M; Martins, Érica S; Melo Filho, Péricles A; Pinheiro, Morganna Pn; Santos, Roseane C

    2016-08-01

    Boll weevil is a serious pest of cotton crop. Effective control involves applications of chemical insecticides, increasing the cost of production and environmental pollution. The current genetically modified Bt crops have allowed great benefits to farmers but show activity limited to lepidopteran pests. This work reports on procedures adopted for integration and expression of a cry transgene conferring resistance to boll weevil and fall armyworm by using molecular tools. Four Brazilian cotton cultivars were microinjected with a minimal linear cassette generating 1248 putative lines. Complete gene integration was found in only one line (T0-34) containing one copy of cry1Ia detected by Southern blot. Protein was expressed in high concentration at 45 days after emergence (dae), decreasing by approximately 50% at 90 dae. Toxicity of the cry protein was demonstrated in feeding bioassays revealing 56.7% mortality to boll weevil fed buds and 88.1% mortality to fall armyworm fed leaves. A binding of cry1Ia antibody was found in the midgut of boll weevils fed on T0-34 buds in an immunodetection assay. The gene introduced into plants confers resistance to boll weevil and fall armyworm. Transmission of the transgene occurred normally to T1 progeny. All plants showed phenotypically normal growth, with fertile flowers and abundant seeds. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  4. The diversity of antimicrobial resistance genes among staphylococci of animal origin.

    Science.gov (United States)

    Wendlandt, Sarah; Feßler, Andrea T; Monecke, Stefan; Ehricht, Ralf; Schwarz, Stefan; Kadlec, Kristina

    2013-08-01

    Staphylococci of animal origin harbor a wide variety of resistance genes. So far, more than 40 different resistance genes have been identified in staphylococci from animals. This includes genes that confer resistance to virtually all classes of antimicrobial agents approved for use in animals, such as penicillins, cephalosporins, tetracyclines, macrolides, lincosamides, phenicols, aminoglycosides, aminocyclitols, pleuromutilins, and diaminopyrimidines. The gene products of some of these resistance genes confer resistance to only specific members of a class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into three major categories: (i) enzymatic inactivation, (ii) active efflux, or (iii) protection/modification/replacement of the cellular target sites of the antimicrobial agents. Mobile genetic elements, in particular plasmids and transposons, play a major role as carriers of antimicrobial resistance genes in animal staphylococci. They facilitate the exchange of resistance genes with staphylococci of human origin but also with other Gram-positive bacteria. Copyright © 2013 Elsevier GmbH. All rights reserved.

  5. Herbicide resistance-endowing ACCase gene mutations in hexaploid wild oat (Avena fatua): insights into resistance evolution in a hexaploid species

    Science.gov (United States)

    Yu, Q; Ahmad-Hamdani, M S; Han, H; Christoffers, M J; Powles, S B

    2013-01-01

    Many herbicide-resistant weed species are polyploids, but far too little about the evolution of resistance mutations in polyploids is understood. Hexaploid wild oat (Avena fatua) is a global crop weed and many populations have evolved herbicide resistance. We studied plastidic acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicide resistance in hexaploid wild oat and revealed that resistant individuals can express one, two or three different plastidic ACCase gene resistance mutations (Ile-1781-Leu, Asp-2078-Gly and Cys-2088-Arg). Using ACCase resistance mutations as molecular markers, combined with genetic, molecular and biochemical approaches, we found in individual resistant wild-oat plants that (1) up to three unlinked ACCase gene loci assort independently following Mendelian laws for disomic inheritance, (2) all three of these homoeologous ACCase genes were transcribed, with each able to carry its own mutation and (3) in a hexaploid background, each individual ACCase resistance mutation confers relatively low-level herbicide resistance, in contrast to high-level resistance conferred by the same mutations in unrelated diploid weed species of the Poaceae (grass) family. Low resistance conferred by individual ACCase resistance mutations is likely due to a dilution effect by susceptible ACCase expressed by homoeologs in hexaploid wild oat and/or differential expression of homoeologous ACCase gene copies. Thus, polyploidy in hexaploid wild oat may slow resistance evolution. Evidence of coexisting non-target-site resistance mechanisms among wild-oat populations was also revealed. In all, these results demonstrate that herbicide resistance and its evolution can be more complex in hexaploid wild oat than in unrelated diploid grass weeds. Our data provide a starting point for the daunting task of understanding resistance evolution in polyploids. PMID:23047200

  6. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER).

    Science.gov (United States)

    Ma, Shao; Yin, Ning; Qi, Xiaomei; Pfister, Sandra L; Zhang, Mei-Jie; Ma, Rong; Chen, Guan

    2015-05-30

    Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics.

  7. Candidate gene analysis and identification of TRAP and SSR markers linked to the Or5 gene, which confers sunflower resistance to race E of broomrape (Orobanche cumana Wallr.)

    Science.gov (United States)

    Sunflower broomrape (Orobanche cumana Wallr.) is a root holoparasitic angiosperm considered as being one of the major constraints for sunflower production in Mediterranean areas. Breeding for resistance has been crucial for protecting sunflowers from broomrape damage. The Or5 gene, which confers re...

  8. Crystallization and preliminary diffraction studies of SFC-1, a carbapenemase conferring antibiotic resistance

    International Nuclear Information System (INIS)

    Hong, Myoung-Ki; Lee, Jae Jin; Wu, Xing; Kim, Jin-Kwang; Jeong, Byeong Chul; Pham, Tan-Viet; Kim, Seung-Hwan; Lee, Sang Hee; Kang, Lin-Woo

    2012-01-01

    The SFC-1 gene from S. fonticola was cloned and SFC-1 was expressed, purified and crystallized. X-ray diffraction data were collected from an SFC-1 crystal to 1.6 Å resolution. SFC-1, a class A carbapenemase that confers antibiotic resistance, hydrolyzes the β-lactam rings of β-lactam antibiotics (carbapenems, cephalosporins, penicillins and aztreonam). SFC-1 presents an enormous challenge to infection control, particularly in the eradication of Gram-negative pathogens. As SFC-1 exhibits a remarkably broad substrate range, including β-lactams of all classes, the enzyme is a potential target for the development of antimicrobial agents against pathogens producing carbapenemases. In this study, SFC-1 was cloned, overexpressed, purified and crystallized. The SFC-1 crystal diffracted to 1.6 Å resolution and belonged to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 65.8, b = 68.3, c = 88.8 Å. Two molecules are present in the asymmetric unit, with a corresponding V M of 1.99 Å 3 Da −1 and a solvent content of 38.1%

  9. Crizotinib-Resistant Mutants of EML4-ALK Identified Through an Accelerated Mutagenesis Screen

    Science.gov (United States)

    Zhang, Sen; Wang, Frank; Keats, Jeffrey; Zhu, Xiaotian; Ning, Yaoyu; Wardwell, Scott D; Moran, Lauren; Mohemmad, Qurish K; Anjum, Rana; Wang, Yihan; Narasimhan, Narayana I; Dalgarno, David; Shakespeare, William C; Miret, Juan J; Clackson, Tim; Rivera, Victor M

    2011-01-01

    Activating gene rearrangements of anaplastic lymphoma kinase (ALK) have been identified as driver mutations in non-small-cell lung cancer, inflammatory myofibroblastic tumors, and other cancers. Crizotinib, a dual MET/ALK inhibitor, has demonstrated promising clinical activity in patients with non-small-cell lung cancer and inflammatory myofibroblastic tumors harboring ALK translocations. Inhibitors of driver kinases often elicit kinase domain mutations that confer resistance, and such mutations have been successfully predicted using in vitro mutagenesis screens. Here, this approach was used to discover an extensive set of ALK mutations that can confer resistance to crizotinib. Mutations at 16 residues were identified, structurally clustered into five regions around the kinase active site, which conferred varying degrees of resistance. The screen successfully predicted the L1196M, C1156Y, and F1174L mutations, recently identified in crizotinib-resistant patients. In separate studies, we demonstrated that crizotinib has relatively modest potency in ALK-positive non-small-cell lung cancer cell lines. A more potent ALK inhibitor, TAE684, maintained substantial activity against mutations that conferred resistance to crizotinib. Our study identifies multiple novel mutations in ALK that may confer clinical resistance to crizotinib, suggests that crizotinib's narrow selectivity window may underlie its susceptibility to such resistance and demonstrates that a more potent ALK inhibitor may be effective at overcoming resistance. PMID:22034911

  10. The pepper Bs4C proteins are localized to the endoplasmic reticulum (ER) membrane and confer disease resistance to bacterial blight in transgenic rice.

    Science.gov (United States)

    Wang, Jun; Zeng, Xuan; Tian, Dongsheng; Yang, Xiaobei; Wang, Lanlan; Yin, Zhongchao

    2018-03-30

    Transcription activator-like effector (TALE)-dependent dominant disease resistance (R) genes in plants, also referred to as executor R genes, are induced on infection by phytopathogenic bacteria of the genus Xanthomonas harbouring the corresponding TALE genes. Unlike the traditional R proteins, the executor R proteins do not determine the resistance specificity and may function broadly in different plant species. The executor R gene Bs4C-R in the resistant genotype PI 235047 of the pepper species Capsicum pubescens (CpBs4C-R) confers disease resistance to Xanthomonas campestris pv. vesicatoria (Xcv) harbouring the TALE genes avrBsP/avrBs4. In this study, the synthetic genes of CpBs4C-R and two other Bs4C-like genes, the susceptible allele in the genotype PI585270 of C. pubescens (CpBs4C-S) and the CaBs4C-R homologue gene in the cultivar 'CM334' of Capsicum annum (CaBs4C), were characterized in tobacco (Nicotiana benthamiana) and rice (Oryza sativa). The Bs4C genes induced cell death in N. benthamiana. The functional Bs4C-eCFP fusion proteins were localized to the endoplasmic reticulum (ER) membrane in the leaf epidermal cells of N. benthamiana. The Xa10 promoter-Bs4C fusion genes in transgenic rice conferred strain-specific disease resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight in rice, and were specifically induced by the Xa10-incompatible Xoo strain PXO99 A (pHM1avrXa10). The results indicate that the Bs4C proteins from pepper species function broadly in rice and the Bs4C protein-mediated cell death from the ER is conserved between dicotyledonous and monocotyledonous plants, which can be utilized to engineer novel and enhanced disease resistance in heterologous plants. © 2018 TEMASEK LIFE SCIENCES LABORATORY. MOLECULAR PLANT PATHOLOGY © 2018 JOHN WILEY & SONS LTD.

  11. Disruptive instabilities in the discharges of the TBR-1 small Tokamak

    International Nuclear Information System (INIS)

    Vannucci, A.; Nascimento, I.C.; Caldas, I.L.

    1989-01-01

    Minor and major disruptions as well as sawteeth oscillations (internal disruptions) were identified in the small Tokamak TBR-1, and their main characteristics were investigated. The coupling of a growing m=2 resistive mode with an m=1 perturbation seems to be the basic process for the development of a major disruption, while the minor disruption could be associated with the growth of a stochastic region of the plasma between the q=2 and q=3 islands. Measured sawteeth periods were compared with those predicted by scaling laws and good agreement was found. The time necessary for the sawteeth crashes also agrees with the values expected from KADOMTSEV's model. However, there are some sawteeth oscillations, corresponding to conditions of higher plasma Z eff , which showed longer crashes and could not be explained by this model. (author)

  12. The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus.

    Science.gov (United States)

    Ishak, Intan H; Riveron, Jacob M; Ibrahim, Sulaiman S; Stott, Rob; Longbottom, Joshua; Irving, Helen; Wondji, Charles S

    2016-04-20

    Control of Aedes albopictus, major dengue and chikungunya vector, is threatened by growing cases of insecticide resistance. The mechanisms driving this resistance remain poorly characterised. This study investigated the molecular basis of insecticide resistance in Malaysian populations of Ae. albopictus. Microarray-based transcription profiling revealed that metabolic resistance (cytochrome P450 up-regulation) and possibly a reduced penetration mechanism (consistent over-expression of cuticular protein genes) were associated with pyrethroid resistance. CYP6P12 over-expression was strongly associated with pyrethroid resistance whereas CYP6N3 was rather consistently over-expressed across carbamate and DDT resistant populations. Other detoxification genes also up-regulated in permethrin resistant mosquitoes included a glucuronosyltransferase (AAEL014279-RA) and the glutathione-S transferases GSTS1 and GSTT3. Functional analyses further supported that CYP6P12 contributes to pyrethroid resistance in Ae. albopictus as transgenic expression of CYP6P12 in Drosophila was sufficient to confer pyrethroid resistance in these flies. Furthermore, molecular docking simulations predicted CYP6P12 possessing enzymatic activity towards pyrethroids. Patterns of polymorphism suggested early sign of selection acting on CYP6P12 but not on CYP6N3. The major role played by P450 in the absence of kdr mutations suggests that addition of the synergist PBO to pyrethroids could improve the efficacy of this insecticide class and overcome resistance in field populations of Ae. albopictus.

  13. Insect Resistance to Bacillus thuringiensis Toxin Cry2Ab Is Conferred by Mutations in an ABC Transporter Subfamily A Protein.

    Directory of Open Access Journals (Sweden)

    Wee Tek Tay

    2015-11-01

    Full Text Available The use of conventional chemical insecticides and bacterial toxins to control lepidopteran pests of global agriculture has imposed significant selection pressure leading to the rapid evolution of insecticide resistance. Transgenic crops (e.g., cotton expressing the Bt Cry toxins are now used world wide to control these pests, including the highly polyphagous and invasive cotton bollworm Helicoverpa armigera. Since 2004, the Cry2Ab toxin has become widely used for controlling H. armigera, often used in combination with Cry1Ac to delay resistance evolution. Isolation of H. armigera and H. punctigera individuals heterozygous for Cry2Ab resistance in 2002 and 2004, respectively, allowed aspects of Cry2Ab resistance (level, fitness costs, genetic dominance, complementation tests to be characterised in both species. However, the gene identity and genetic changes conferring this resistance were unknown, as was the detailed Cry2Ab mode of action. No cross-resistance to Cry1Ac was observed in mutant lines. Biphasic linkage analysis of a Cry2Ab-resistant H. armigera family followed by exon-primed intron-crossing (EPIC marker mapping and candidate gene sequencing identified three independent resistance-associated INDEL mutations in an ATP-Binding Cassette (ABC transporter gene we named HaABCA2. A deletion mutation was also identified in the H. punctigera homolog from the resistant line. All mutations truncate the ABCA2 protein. Isolation of further Cry2Ab resistance alleles in the same gene from field H. armigera populations indicates unequal resistance allele frequencies and the potential for Bt resistance evolution. Identification of the gene involved in resistance as an ABC transporter of the A subfamily adds to the body of evidence on the crucial role this gene family plays in the mode of action of the Bt Cry toxins. The structural differences between the ABCA2, and that of the C subfamily required for Cry1Ac toxicity, indicate differences in the

  14. GP88 (PC-Cell Derived Growth Factor, progranulin stimulates proliferation and confers letrozole resistance to aromatase overexpressing breast cancer cells

    Directory of Open Access Journals (Sweden)

    Sabnis Gauri

    2011-06-01

    Full Text Available Abstract Background Aromatase inhibitors (AI that inhibit breast cancer cell growth by blocking estrogen synthesis have become the treatment of choice for post-menopausal women with estrogen receptor positive (ER+ breast cancer. However, some patients display de novo or acquired resistance to AI. Interactions between estrogen and growth factor signaling pathways have been identified in estrogen-responsive cells as one possible reason for acquisition of resistance. Our laboratory has characterized an autocrine growth factor overexpressed in invasive ductal carcinoma named PC-Cell Derived Growth Factor (GP88, also known as progranulin. In the present study, we investigated the role GP88 on the acquisition of resistance to letrozole in ER+ breast cancer cells Methods We used two aromatase overexpressing human breast cancer cell lines MCF-7-CA cells and AC1 cells and their letrozole resistant counterparts as study models. Effect of stimulating or inhibiting GP88 expression on proliferation, anchorage-independent growth, survival and letrozole responsiveness was examined. Results GP88 induced cell proliferation and conferred letrozole resistance in a time- and dose-dependent fashion. Conversely, naturally letrozole resistant breast cancer cells displayed a 10-fold increase in GP88 expression when compared to letrozole sensitive cells. GP88 overexpression, or exogenous addition blocked the inhibitory effect of letrozole on proliferation, and stimulated survival and soft agar colony formation. In letrozole resistant cells, silencing GP88 by siRNA inhibited cell proliferation and restored their sensitivity to letrozole. Conclusion Our findings provide information on the role of an alternate growth and survival factor on the acquisition of aromatase inhibitor resistance in ER+ breast cancer.

  15. Adriamycin resistance, heat resistance and radiation response in Chinese hamster fibroblasts

    International Nuclear Information System (INIS)

    Wallner, K.; Li, G.

    1985-01-01

    Previous investigators have demonstrated synergistic interaction between hyperthermia and radiation or Adriamycin (ADR), using cell lines that are sensitive to heat or ADR alone. The authors investigated the effect of heat, radiation or ADR on Chinese hamster fibroblasts (HA-1), their heat resistant variants and their ADR resistant variants. Heat for ADR resistance did not confer cross resistance to radiation. Cells resistant to heat did show cross resistance to ADR. While cells selected for ADR resistance were not cross resistant to heat, they did not exhibit drug potentiation by hyperthermia, characteristic of ADR sensitive cells. Cytofluorometric measurement showed decreased ADR uptake in both heat and ADR resistant cells. The possibility of cross resistance between heat and ADR should be considered when designing combined modality trials

  16. Disruptive Innovation Can Prevent the Next Pandemic.

    Science.gov (United States)

    Shaikh, Affan T; Ferland, Lisa; Hood-Cree, Robert; Shaffer, Loren; McNabb, Scott J N

    2015-01-01

    Public health surveillance (PHS) is at a tipping point, where the application of novel processes, technologies, and tools promise to vastly improve efficiency and effectiveness. Yet twentieth century, entrenched ideology and lack of training results in slow uptake and resistance to change. The term disruptive innovation - used to describe advances in technology and processes that change existing markets - is useful to describe the transformation of PHS. Past disruptive innovations used in PHS, such as distance learning, the smart phone, and field-based laboratory testing have outpaced older services, practices, and technologies used in the traditional classroom, governmental offices, and personal communication, respectively. Arguably, the greatest of these is the Internet - an infrastructural innovation that continues to enable exponential benefits in seemingly limitless ways. Considering the Global Health Security Agenda and facing emerging and reemerging infectious disease threats, evolving environmental and behavioral risks, and ever changing epidemiologic trends, PHS must transform. Embracing disruptive innovation in the structures and processes of PHS can be unpredictable. However, it is necessary to strengthen and unlock the potential to prevent, detect, and respond.

  17. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito.

    Directory of Open Access Journals (Sweden)

    Andrew M Hammond

    2017-10-01

    Full Text Available Gene drives have enormous potential for the control of insect populations of medical and agricultural relevance. By preferentially biasing their own inheritance, gene drives can rapidly introduce genetic traits even if these confer a negative fitness effect on the population. We have recently developed gene drives based on CRISPR nuclease constructs that are designed to disrupt key genes essential for female fertility in the malaria mosquito. The construct copies itself and the associated genetic disruption from one homologous chromosome to another during gamete formation, a process called homing that ensures the majority of offspring inherit the drive. Such drives have the potential to cause long-lasting, sustainable population suppression, though they are also expected to impose a large selection pressure for resistance in the mosquito. One of these population suppression gene drives showed rapid invasion of a caged population over 4 generations, establishing proof of principle for this technology. In order to assess the potential for the emergence of resistance to the gene drive in this population we allowed it to run for 25 generations and monitored the frequency of the gene drive over time. Following the initial increase of the gene drive we observed a gradual decrease in its frequency that was accompanied by the spread of small, nuclease-induced mutations at the target gene that are resistant to further cleavage and restore its functionality. Such mutations showed rates of increase consistent with positive selection in the face of the gene drive. Our findings represent the first documented example of selection for resistance to a synthetic gene drive and lead to important design recommendations and considerations in order to mitigate for resistance in future gene drive applications.

  18. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast

    OpenAIRE

    Helliwell, S. B.; Wagner, P.; Kunz, J.; Deuter-Reinhard, M.; Henriquez, R.; Hall, M. N.

    1994-01-01

    The Saccharomyces cerevisiae genes TOR1 and TOR2 were originally identified by mutations that confer resistance to the immunosuppressant rapamycin. TOR2 was previously shown to encode an essential 282-kDa phosphatidylinositol kinase (PI kinase) homologue. The TOR1 gene product is also a large (281 kDa) PI kinase homologue, with 67% identity to TOR2. TOR1 is not essential, but a TOR1 TOR2 double disruption uniquely confers a cell cycle (G1) arrest as does exposure to rapamycin; disruption of T...

  19. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2

    NARCIS (Netherlands)

    Hooijberg, J. H.; Broxterman, H. J.; Kool, M.; Assaraf, Y. G.; Peters, G. J.; Noordhuis, P.; Scheper, R. J.; Borst, P.; Pinedo, H. M.; Jansen, G.

    1999-01-01

    Transfection of multidrug resistance proteins (MRPs) MRP1 and MRP2 in human ovarian carcinoma 2008 cells conferred a marked level of resistance to short-term (1-4 h) exposure to the polyglutamatable antifolates methotrexate (MTX; 21-74-fold), ZD1694 (4-138-fold), and GW1843 (101-156-fold). Evidence

  20. Gene Disruption in Scedosporium aurantiacum: Proof of Concept with the Disruption of SODC Gene Encoding a Cytosolic Cu,Zn-Superoxide Dismutase.

    Science.gov (United States)

    Pateau, Victoire; Razafimandimby, Bienvenue; Vandeputte, Patrick; Thornton, Christopher R; Guillemette, Thomas; Bouchara, Jean-Philippe; Giraud, Sandrine

    2018-02-01

    Scedosporium species are opportunistic pathogens responsible for a large variety of infections in humans. An increasing occurrence was observed in patients with underlying conditions such as immunosuppression or cystic fibrosis. Indeed, the genus Scedosporium ranks the second among the filamentous fungi colonizing the respiratory tracts of the CF patients. To date, there is very scarce information on the pathogenic mechanisms, at least in part because of the limited genetic tools available. In the present study, we successfully developed an efficient transformation and targeted gene disruption approach on the species Scedosporium aurantiacum. The disruption cassette was constructed using double-joint PCR procedure, and resistance to hygromycin B as the selection marker. This proof of concept was performed on the functional gene SODC encoding the Cu,Zn-superoxide dismutase. Disruption of the SODC gene improved susceptibility of the fungus to oxidative stress. This technical advance should open new research areas and help to better understand the biology of Scedosporium species.

  1. Identification of yeast genes that confer resistance to chitosan oligosaccharide (COS using chemogenomics

    Directory of Open Access Journals (Sweden)

    Jaime Maria DLA

    2012-06-01

    Full Text Available Abstract Background Chitosan oligosaccharide (COS, a deacetylated derivative of chitin, is an abundant, and renewable natural polymer. COS has higher antimicrobial properties than chitosan and is presumed to act by disrupting/permeabilizing the cell membranes of bacteria, yeast and fungi. COS is relatively non-toxic to mammals. By identifying the molecular and genetic targets of COS, we hope to gain a better understanding of the antifungal mode of action of COS. Results Three different chemogenomic fitness assays, haploinsufficiency (HIP, homozygous deletion (HOP, and multicopy suppression (MSP profiling were combined with a transcriptomic analysis to gain insight in to the mode of action and mechanisms of resistance to chitosan oligosaccharides. The fitness assays identified 39 yeast deletion strains sensitive to COS and 21 suppressors of COS sensitivity. The genes identified are involved in processes such as RNA biology (transcription, translation and regulatory mechanisms, membrane functions (e.g. signalling, transport and targeting, membrane structural components, cell division, and proteasome processes. The transcriptomes of control wild type and 5 suppressor strains overexpressing ARL1, BCK2, ERG24, MSG5, or RBA50, were analyzed in the presence and absence of COS. Some of the up-regulated transcripts in the suppressor overexpressing strains exposed to COS included genes involved in transcription, cell cycle, stress response and the Ras signal transduction pathway. Down-regulated transcripts included those encoding protein folding components and respiratory chain proteins. The COS-induced transcriptional response is distinct from previously described environmental stress responses (i.e. thermal, salt, osmotic and oxidative stress and pre-treatment with these well characterized environmental stressors provided little or any resistance to COS. Conclusions Overexpression of the ARL1 gene, a member of the Ras superfamily that regulates membrane

  2. Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat.

    Science.gov (United States)

    Herrera-Foessel, Sybil A; Singh, Ravi P; Lillemo, Morten; Huerta-Espino, Julio; Bhavani, Sridhar; Singh, Sukhwinder; Lan, Caixia; Calvo-Salazar, Violeta; Lagudah, Evans S

    2014-04-01

    We demonstrate that Lr67/Yr46 has pleiotropic effect on stem rust and powdery mildew resistance and is associated with leaf tip necrosis. Genes are designated as Sr55, Pm46 and Ltn3 , respectively. Wheat (Triticum aestivum) accession RL6077, known to carry the pleiotropic slow rusting leaf and yellow rust resistance genes Lr67/Yr46 in Thatcher background, displayed significantly lower stem rust (P. graminis tritici; Pgt) and powdery mildew (Blumeria graminis tritici; Bgt) severities in Kenya and in Norway, respectively, compared to its recurrent parent Thatcher. We investigated the resistance of RL6077 to stem rust and powdery mildew using Avocet × RL6077 F6 recombinant inbred lines (RILs) derived from two photoperiod-insensitive F3 families segregating for Lr67/Yr46. Greenhouse seedling tests were conducted with Mexican Pgt race RTR. Field evaluations were conducted under artificially initiated stem rust epidemics with Pgt races RTR and TTKST (Ug99 + Sr24) at Ciudad Obregon (Mexico) and Njoro (Kenya) during 2010-2011; and under natural powdery mildew epiphytotic in Norway at Ås and Hamar during 2011 and 2012. In Mexico, a mean reduction of 41 % on stem rust severity was obtained for RILs carrying Lr67/Yr46, compared to RILs that lacked the gene, whereas in Kenya the difference was smaller (16 %) but significant. In Norway, leaf tip necrosis was associated with Lr67/Yr46 and RILs carrying Lr67/Yr46 showed a 20 % reduction in mean powdery mildew severity at both sites across the 2 years of evaluation. Our study demonstrates that Lr67/Yr46 confers partial resistance to stem rust and powdery mildew and is associated with leaf tip necrosis. The corresponding pleiotropic, or tightly linked, genes, designated as Sr55, Pm46, and Ltn3, can be utilized to provide broad-spectrum durable disease resistance in wheat.

  3. Targeted sequencing identifies genetic alterations that confer primary resistance to EGFR tyrosine kinase inhibitor (Korean Lung Cancer Consortium).

    Science.gov (United States)

    Lim, Sun Min; Kim, Hye Ryun; Cho, Eun Kyung; Min, Young Joo; Ahn, Jin Seok; Ahn, Myung-Ju; Park, Keunchil; Cho, Byoung Chul; Lee, Ji-Hyun; Jeong, Hye Cheol; Kim, Eun Kyung; Kim, Joo-Hang

    2016-06-14

    Non-small-cell lung cancer (NSCLC) patients with activating epidermal growth factor receptor (EGFR) mutations may exhibit primary resistance to EGFR tyrosine kinase inhibitor (TKI). We aimed to examine genomic alterations associated with de novo resistance to gefitinib in a prospective study of NSCLC patients. One-hundred and fifty two patients with activating EGFR mutations were included in this study and 136 patients' tumor sample were available for targeted sequencing of genomic alterations in 22 genes using the Colon and Lung Cancer panel (Ampliseq, Life Technologies). All 132 patients with EGFR mutation were treated with gefitinib for their treatment of advanced NSCLC. Twenty patients showed primary resistance to EGFR TKI, and were classified as non-responders. A total of 543 somatic single-nucleotide variants (498 missense, 13 nonsense) and 32 frameshift insertions/deletions, with a median of 3 mutations per sample. TP53 was most commonly mutated (47%) and mutations in SMAD4 was also common (19%), as well as DDR2 (16%), PIK3CA (15%), STK11 (14%), and BRAF (7%). Genomic mutations in the PI3K/Akt/mTOR pathway were commonly found in non-responders (45%) compared to responders (27%), and they had significantly shorter progression-free survival and overall survival compared to patients without mutations (2.1 vs. 12.8 months, P=0.04, 15.7 vs. not reached, PAkt/mTOR pathway were commonly identified in non-responders and may confer resistance to EGFR TKI. Screening lung adenocarcinoma patients with clinical cancer gene test may aid in selecting out those who show primary resistance to EGFR TKI (NCT01697163).

  4. Antibiotic resistance patterns and beta-lactamase identification in ...

    African Journals Online (AJOL)

    Background. Antibiotic resistance is a growing problem worldwide. Mechanisms of resistance vary, and some can confer resistance to multiple classes of antibiotics. Objective. To characterise the antibiotic resistance profiles of Escherichia coli isolates obtained from stool samples of young rural children exposed or ...

  5. Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes.

    Directory of Open Access Journals (Sweden)

    Aimée M Moore

    Full Text Available Emerging antibiotic resistance threatens human health. Gut microbes are an epidemiologically important reservoir of resistance genes (resistome, yet prior studies indicate that the true diversity of gut-associated resistomes has been underestimated. To deeply characterize the pediatric gut-associated resistome, we created metagenomic recombinant libraries in an Escherichia coli host using fecal DNA from 22 healthy infants and children (most without recent antibiotic exposure, and performed functional selections for resistance to 18 antibiotics from eight drug classes. Resistance-conferring DNA fragments were sequenced (Illumina HiSeq 2000, and reads assembled and annotated with the PARFuMS computational pipeline. Resistance to 14 of the 18 antibiotics was found in stools of infants and children. Recovered genes included chloramphenicol acetyltransferases, drug-resistant dihydrofolate reductases, rRNA methyltransferases, transcriptional regulators, multidrug efflux pumps, and every major class of beta-lactamase, aminoglycoside-modifying enzyme, and tetracycline resistance protein. Many resistance-conferring sequences were mobilizable; some had low identity to any known organism, emphasizing cryptic organisms as potentially important resistance reservoirs. We functionally confirmed three novel resistance genes, including a 16S rRNA methylase conferring aminoglycoside resistance, and two tetracycline-resistance proteins nearly identical to a bifidobacterial MFS transporter (B. longum s. longum JDM301. We provide the first report to our knowledge of resistance to folate-synthesis inhibitors conferred by a predicted Nudix hydrolase (part of the folate synthesis pathway. This functional metagenomic survey of gut-associated resistomes, the largest of its kind to date, demonstrates that fecal resistomes of healthy children are far more diverse than previously suspected, that clinically relevant resistance genes are present even without recent selective

  6. The School Bus Symposium: A Poetic Journey of Co-created Conference Space

    Directory of Open Access Journals (Sweden)

    Mitchell A McLarnon

    2016-07-01

    Full Text Available With the intention of disrupting and re-imagining traditional conference spaces, this article is a poetic compilation developed from a Curriculum Studies conference symposium that took place on a school bus. During the School Bus Symposium, in situ poetry writing and reading, song and storytelling occurred in response to open ended prompts and facilitation of creative activities. After the symposium, a call was issued to invite participants to submit any poetry or stories produced during, or inspired by the session. Consisting of 18 submissions including poetry, story, photography and creative essays, infused by curriculum theory and poetic inquiry, this collection offers an inclusive, reflective, participatory, and experiential rendering where participants are living and journeying poetically. Emphasizing creative engagement with personal memories, the authors collectively aimed to promote art education through imaginative approaches to curriculum studies, poetic inquiry and academic conferences.

  7. Differential gene expression by RamA in ciprofloxacin-resistant Salmonella Typhimurium.

    Directory of Open Access Journals (Sweden)

    Jie Zheng

    Full Text Available Overexpression of ramA has been implicated in resistance to multiple drugs in several enterobacterial pathogens. In the present study, Salmonella Typhimurium strain LTL with constitutive expression of ramA was compared to its ramA-deletion mutant by employing both DNA microarrays and phenotype microarrays (PM. The mutant strain with the disruption of ramA showed differential expression of at least 33 genes involved in 11 functional groups. The study confirmed at the transcriptional level that the constitutive expression of ramA was directly associated with increased expression of multidrug efflux pump AcrAB-TolC and decreased expression of porin protein OmpF, thereby conferring multiple drug resistance phenotype. Compared to the parent strain constitutively expressing ramA, the ramA mutant had increased susceptibility to over 70 antimicrobials and toxic compounds. The PM analysis also uncovered that the ramA mutant was better in utilization of 10 carbon sources and 5 phosphorus sources. This study suggested that the constitutive expression of ramA locus regulate not only multidrug efflux pump and accessory genes but also genes involved in carbon metabolic pathways.

  8. An improved method for transformation of lettuce by Agrobacterium tumefaciens with a gene that confers freezing resistance

    Directory of Open Access Journals (Sweden)

    Pileggi Marcos

    2001-01-01

    Full Text Available An efficient method for constructing transgenic lettuce cultivars by Agrobacterium tumefaciens was described by Torres et al., 1993. In the present work, an improvement of the above procedure is described and applied to transform the cultivar Grand Rapids with a mutated P5CS gene. The major modifications were concerned with turning more practical the transformation and regeneration protocols. Also we tried to improve transformation steps by increasing injured area in explants and prolonging co-cultivation with Agrobacteria (in larger concentration. A more significant selective pressure was used against non-transformed plants and bacteria. In these work we were concerned to obtain T1 and T2 seeds. The P5CS gene codes for a delta¹-pyrroline-5-carboxylate synthetase, a bifunctional enzyme that catalyzes two steps of proline biosynthesis in plants (Zhang et al., 1995; Peng et al., 1996, while the mutated gene is insensitive to feedback inhibition by proline. The potential benefit of this gene is to confer water stress resistance (drought, salt, cold due to increased intracellular levels of proline that works like an osmoprotectant. In this work could obtain and characterize transgenic lettuce lineages which are resistant to freezing temperature.

  9. Overexpression of Rice Auxilin-Like Protein, XB21, Induces Necrotic Lesions, up-Regulates Endocytosis-Related Genes, and Confers Enhanced Resistance to Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Park, Chang-Jin; Wei, Tong; Sharma, Rita; Ronald, Pamela C

    2017-12-01

    The rice immune receptor XA21 confers resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo). To elucidate the mechanism of XA21-mediated immunity, we previously performed a yeast two-hybrid screening for XA21 interactors and identified XA21 binding protein 21 (XB21). Here, we report that XB21 is an auxilin-like protein predicted to function in clathrin-mediated endocytosis. We demonstrate an XA21/XB21 in vivo interaction using co-immunoprecipitation in rice. Overexpression of XB21 in rice variety Kitaake and a Kitaake transgenic line expressing XA21 confers a necrotic lesion phenotype and enhances resistance to Xoo. RNA sequencing reveals that XB21 overexpression results in the differential expression of 8735 genes (4939 genes up- and 3846 genes down-regulated) (≥2-folds, FDR ≤0.01). The up-regulated genes include those predicted to be involved in 'cell death' and 'vesicle-mediated transport'. These results indicate that XB21 plays a role in the plant immune response and in regulation of cell death. The up-regulation of genes controlling 'vesicle-mediated transport' in XB21 overexpression lines is consistent with a functional role for XB21 as an auxilin.

  10. An AFLP marker linked to the Pm-1 gene that confers resistance to Podosphaera xanthii race 1 in Cucumis melo

    Directory of Open Access Journals (Sweden)

    Ana Paula Matoso Teixeira

    2008-01-01

    Full Text Available Brazil produced 330,000 metric tons of melons in 2005, principally in the Northeast region where one of the most important melon pathogens is the powdery mildew fungus Podosphaera xanthii. The disease is controlled mainly by incorporating single dominant resistance genes into commercial hybrids. We report on linkage analysis of the Pm-1 resistance gene, introgressed from the AF125Pm-1 Cantalupensis Charentais-type breeding line into the yellow-fleshed melon (Group Inodorus breeding line AF426-S by backcrossing to produce the resistant line AF426-R, and the amplified fragment length polymorphism (AFLP marker M75/H35_155 reported to be polymorphic between AF426-S and AF426-R. Segregation analysis of M75/H35_155 using a backcross population of 143 plants derived from [AF426-R x AF426-S] x AF426-S and screened for resistance to P. xanthii race 1 produced a recombination frequency of 4.9%, indicating close linkage between M75/H35_155 and Pm-1. Using the same segregating population, the M75/H35_155 marker had previously been reported to be distantly linked to Prv¹, a gene conferring resistance to papaya ringspot virus-type W. Since M75/H35_155 is linked to Prv¹ at a distance of 40.9 cM it is possible that Pm-1 and Prv¹ are also linked.

  11. Ectopic Expression of JcWRKY Confers Enhanced Resistance in Transgenic Tobacco Against Macrophomina phaseolina.

    Science.gov (United States)

    Agarwal, Parinita; Patel, Khantika; Agarwal, Pradeep K

    2018-04-01

    Plants possess an innate immune system comprising of a complex network of closely regulated defense responses involving differential gene expression mediated by transcription factors (TFs). The WRKYs comprise of an important plant-specific TF family, which is involved in regulation of biotic and abiotic defenses. The overexpression of JcWRKY resulted in improved resistance in transgenic tobacco against Macrophomina phaseolina. The production of reactive oxygen species (ROS) and its detoxification through antioxidative system in the transgenics facilitates defense against Macrophomina. The enhanced catalase activity on Macrophomina infection limits the spread of infection. The transcript expression of antioxidative enzymes gene (CAT and SOD) and salicylic acid (SA) biosynthetic gene ICS1 showed upregulation during Macrophomina infection and combinatorial stress. The enhanced transcript of pathogenesis-related genes PR-1 indicates the accumulation of SA during different stresses. The PR-2 and PR-5 highlight the activation of defense responses comprising of activation of hydrolytic cleavage of glucanases and thaumatin-like proteins causing disruption of fungal cells. The ROS homeostasis in coordination with signaling molecules regulate the defense responses and inhibit fungal growth.

  12. Enhancement of L-cysteine production by disruption of yciW in Escherichia coli.

    Science.gov (United States)

    Kawano, Yusuke; Ohtsu, Iwao; Takumi, Kazuhiro; Tamakoshi, Ai; Nonaka, Gen; Funahashi, Eri; Ihara, Masaki; Takagi, Hiroshi

    2015-02-01

    Using in silico analysis, the yciW gene of Escherichia coli was identified as a novel L-cysteine regulon that may be regulated by the transcriptional activator CysB for sulfur metabolic genes. We found that overexpression of yciW conferred tolerance to L-cysteine, but disruption of yciW increased L-cysteine production in E. coli. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Isolation of industrial strains of Aspergillus oryzae lacking ferrichrysin by disruption of the dffA gene.

    Science.gov (United States)

    Watanabe, Hisayuki; Hatakeyama, Makoto; Sakurai, Hiroshi; Uchimiya, Hirofumi; Sato, Toshitsugu

    2008-11-01

    Based on studies using laboratory strains, the efficiency of gene disruption in Aspergillus oryzae, commonly known as koji mold, is low; thus, gene disruption has rarely been applied to the breeding of koji mold. To evaluate the efficiency of gene disruption in industrial strains of A. oryzae, we produced ferrichrysin biosynthesis gene (dffA) disruptants using three different industrial strains as hosts. PCR analysis of 438 pyrithiamine-resistant transformants showed dffA gene disruption efficiency of 42.9%-64.1%, which is much higher than previously reported. Analysis of the physiological characteristics of the disruptants indicated that dffA gene disruption results in hypersensitivity to hydrogen peroxide. To investigate the industrial characteristics of dffA gene disruptants, two strains were used to make rice koji and their properties were compared to those of the host strains. No differences were found between the dffA gene disruptants and the host strains, except that the disruptants did not produce ferrichrysin. Thus, this gene disruption technique is much more effective than conventional mutagenesis for A. oryzae breeding.

  14. Drug resistance is conferred on the model yeast Saccharomyces cerevisiae by expression of full-length melanoma-associated human ATP-binding cassette transporter ABCB5.

    Science.gov (United States)

    Keniya, Mikhail V; Holmes, Ann R; Niimi, Masakazu; Lamping, Erwin; Gillet, Jean-Pierre; Gottesman, Michael M; Cannon, Richard D

    2014-10-06

    ABCB5, an ATP-binding cassette (ABC) transporter, is highly expressed in melanoma cells, and may contribute to the extreme resistance of melanomas to chemotherapy by efflux of anti-cancer drugs. Our goal was to determine whether we could functionally express human ABCB5 in the model yeast Saccharomyces cerevisiae, in order to demonstrate an efflux function for ABCB5 in the absence of background pump activity from other human transporters. Heterologous expression would also facilitate drug discovery for this important target. DNAs encoding ABCB5 sequences were cloned into the chromosomal PDR5 locus of a S. cerevisiae strain in which seven endogenous ABC transporters have been deleted. Protein expression in the yeast cells was monitored by immunodetection using both a specific anti-ABCB5 antibody and a cross-reactive anti-ABCB1 antibody. ABCB5 function in recombinant yeast cells was measured by determining whether the cells possessed increased resistance to known pump substrates, compared to the host yeast strain, in assays of yeast growth. Three ABCB5 constructs were made in yeast. One was derived from the ABCB5-β mRNA, which is highly expressed in human tissues but is a truncation of a canonical full-size ABC transporter. Two constructs contained full-length ABCB5 sequences: either a native sequence from cDNA or a synthetic sequence codon-harmonized for S. cerevisiae. Expression of all three constructs in yeast was confirmed by immunodetection. Expression of the codon-harmonized full-length ABCB5 DNA conferred increased resistance, relative to the host yeast strain, to the putative substrates rhodamine 123, daunorubicin, tetramethylrhodamine, FK506, or clorgyline. We conclude that full-length ABCB5 can be functionally expressed in S. cerevisiae and confers drug resistance.

  15. Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection

    Directory of Open Access Journals (Sweden)

    Spena Angelo

    2003-06-01

    Full Text Available Abstract Background Homology-dependent selective degradation of RNA, or post-transcriptional gene silencing (PTGS, is involved in several biological phenomena, including adaptative defense mechanisms against plant viruses. Small interfering RNAs mediate the selective degradation of target RNA by guiding a multicomponent RNAse. Expression of self-complementary hairpin RNAs within two complementary regions separated by an intron elicits PTGS with high efficiency. Plum pox virus (PPV is the etiological agent of sharka disease in Drupaceae, although it can also be transmitted to herbaceous species (e.g. Nicotiana benthamiana. Once inside the plant, PPV is transmitted via plasmodesmata from cell to cell, and at longer distances, via phloem. The rolC promoter drives expression in phloem cells. RolC expression is absent in both epidermal and mesophyll cells. The aim of the present study was to confer systemic disease resistance without preventing local viral infection. Results In the ihprolC-PP197 gene (intron hair pin rolC PPV 197, a 197 bp sequence homologous to the PPV RNA genome (from base 134 to 330 was placed as two inverted repeats separated by the DNA sequence of the rolA intron. This hairpin construct is under the control of the rolC promoter.N. benthamiana plants transgenic for the ihprolC-PP197 gene contain siRNAs homologous to the 197 bp sequence. The transgenic progeny of ihprolC-PP197 plants are resistant to PPV systemic infection. Local infection is unaffected. Most (80% transgenic plants are virus free and symptomless. Some plants (20% contain virus in uninoculated apical leaves; however they show only mild symptoms of leaf mottling. PPV systemic resistance cosegregates with the ihprolC-PP197 transgene and was observed in progeny plants of all independent transgenic lines analyzed. SiRNAs of 23–25 nt homologous to the PPV sequence used in the ihprolC-PP197 construct were detected in transgenic plants before and after inoculation

  16. The S230R Integrase Substitution Associated with Viral Rebound during DTG Monotherapy Confers Low Levels INSTI Drug Resistance.

    Science.gov (United States)

    Pham, Hanh T; Labrie, Lydia; Wijting, Ingeborg E A; Hassounah, Said; Lok, Ka Yee; Portna, Inna; Goring, Mark; Han, Yingshan; Lungu, Cynthia; van der Ende, Marchina E; Brenner, Bluma G; Boucher, Charles A; Rijnders, Bart J A; van Kampen, Jeroen J A; Mesplède, Thibault; Wainberg, Mark A

    2018-03-29

    Dolutegravir (DTG) is an integrase strand-transfer inhibitor (INSTI) used for treatment of HIV-infected individuals. Due to its high genetic barrier to resistance, DTG has been clinically investigated as maintenance monotherapy to maintain viral suppression and to reduce complication and healthcare costs. Our study aims to explain the underlying mechanism related to the emergence of a S230R substitution in patients who experienced virological failure while using DTG monotherapy. We evaluated the effect of S230R substitution in regard to IN enzyme activity, viral infectivity, replicative capacity and susceptibility to different INSTIs by biochemical and cell-based assays. S230R substitution conferred 63% reduction in enzyme efficiency. The S230R virus was 1.29-fold less infectious than wildtype (WT), but could replicate in PM1 cells without significant delay. Resistance levels against DTG, CAB, RAL and EVG in tissue culture were 3.85-, 3.72-, 1.52-, and 1.21-fold, respectively. Our data indicate that the S230R substitution is comparable to the previously reported R263K in some respects. Virological failure under DTG monotherapy can occur through the development of such S230R or R263K mutations without the need for high levels DTG resistance.

  17. RNA disruption is associated with response to multiple classes of chemotherapy drugs in tumor cell lines

    International Nuclear Information System (INIS)

    Narendrula, Rashmi; Mispel-Beyer, Kyle; Guo, Baoqing; Parissenti, Amadeo M.; Pritzker, Laura B.; Pritzker, Ken; Masilamani, Twinkle; Wang, Xiaohui; Lannér, Carita

    2016-01-01

    Cellular stressors and apoptosis-inducing agents have been shown to induce ribosomal RNA (rRNA) degradation in eukaryotic cells. Recently, RNA degradation in vivo was observed in patients with locally advanced breast cancer, where mid-treatment tumor RNA degradation was associated with complete tumor destruction and enhanced patient survival. However, it is not clear how widespread chemotherapy induced “RNA disruption” is, the extent to which it is associated with drug response or what the underlying mechanisms are. Ovarian (A2780, CaOV3) and breast (MDA-MB-231, MCF-7, BT474, SKBR3) cancer cell lines were treated with several cytotoxic chemotherapy drugs and total RNA was isolated. RNA was also prepared from docetaxel resistant A2780DXL and carboplatin resistant A2780CBN cells following drug exposure. Disruption of RNA was analyzed by capillary electrophoresis. Northern blotting was performed using probes complementary to the 28S and 18S rRNA to determine the origins of degradation bands. Apoptosis activation was assessed by flow cytometric monitoring of annexin-V and propidium iodide (PI) binding to cells and by measuring caspase-3 activation. The link between apoptosis and RNA degradation (disruption) was investigated using a caspase-3 inhibitor. All chemotherapy drugs tested were capable of inducing similar RNA disruption patterns. Docetaxel treatment of the resistant A2780DXL cells and carboplatin treatment of the A2780CBN cells did not result in RNA disruption. Northern blotting indicated that two RNA disruption bands were derived from the 3’-end of the 28S rRNA. Annexin-V and PI staining of docetaxel treated cells, along with assessment of caspase-3 activation, showed concurrent initiation of apoptosis and RNA disruption, while inhibition of caspase-3 activity significantly reduced RNA disruption. Supporting the in vivo evidence, our results demonstrate that RNA disruption is induced by multiple chemotherapy agents in cell lines from different tissues

  18. Mitophagy confers resistance to siderophore-mediated killing by Pseudomonas aeruginosa.

    Science.gov (United States)

    Kirienko, Natalia V; Ausubel, Frederick M; Ruvkun, Gary

    2015-02-10

    In the arms race of bacterial pathogenesis, bacteria produce an array of toxins and virulence factors that disrupt core host processes. Hosts mitigate the ensuing damage by responding with immune countermeasures. The iron-binding siderophore pyoverdin is a key virulence mediator of the human pathogen Pseudomonas aeruginosa, but its pathogenic mechanism has not been established. Here we demonstrate that pyoverdin enters Caenorhabditis elegans and that it is sufficient to mediate host killing. Moreover, we show that iron chelation disrupts mitochondrial homeostasis and triggers mitophagy both in C. elegans and mammalian cells. Finally, we show that mitophagy provides protection both against the extracellular pathogen P. aeruginosa and to treatment with a xenobiotic chelator, phenanthroline, in C. elegans. Although autophagic machinery has been shown to target intracellular bacteria for degradation (a process known as xenophagy), our report establishes a role for authentic mitochondrial autophagy in the innate immune defense against P. aeruginosa.

  19. Functional Characterization of Bacteria Isolated from Ancient Arctic Soil Exposes Diverse Resistance Mechanisms to Modern Antibiotics

    Science.gov (United States)

    Perron, Gabriel G.; Whyte, Lyle; Turnbaugh, Peter J.; Goordial, Jacqueline; Hanage, William P.; Dantas, Gautam; Desai, Michael M.

    2015-01-01

    Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes. PMID:25807523

  20. Ortholog Alleles at Xa3/Xa26 Locus Confer Conserved Race-Specific Resistance against Xanthomonas oryzae in Rice

    Institute of Scientific and Technical Information of China (English)

    Hong-Jing Li; Xiang-Hua Li; Jing-Hua Xiao; Rod A. Wing; Shi-Ping Wang

    2012-01-01

    The rice disease resistance (R) gene Xa3/Xa26 (having also been named Xa3 and Xa26) against Xanthomonas oryzae pv.oryzae (Xoo),which causes bacterial blight disease,belongs to a multiple gene family clustered in chromosome 11 and is from an AA genome rice cultivar (Oryza sativa L.).This family encodes leucine-rich repeat (LRR) receptor kinasetype proteins.Here,we show that the orthologs (alleles) of Xa3/Xa26,Xa3/Xa26-2,and Xa3/Xa26-3,from wild Oryza species O.officinalis (CC genome) and O.minuta (BBCC genome),respectively,were also R genes against Xoo.Xa3/Xa26-2 and Xa3/Xa26-3 conferred resistance to 16 of the 18 Xoo strains examined.Comparative sequence analysis of the Xa3/Xa26 families in the two wild Oryza species showed that Xa3/Xa26-3 appeared to have originated from the CC genome of O.minuta.The predicted proteins encoded by Xa3/Xa26,Xa3/Xa26-2,and Xa3/Xa26-3 share 91-99% sequence identity and 94-99% sequence similarity.Transgenic plants carrying a single copy of Xa3/Xa26,Xa3/Xa26-2,or Xa3/Xa26-3,in the same genetic background,showed a similar resistance spectrum to a set of Xoo strains,although plants carrying Xa3/Xa26-2 or Xa3/Xa26-3 showed lower resistance levels than the plants carrying Xa3/Xa26.These results suggest that the Xa3/Xa26 locus predates the speciation of A and C genome,which is approximately 7.5 million years ago.Thus,the resistance specificity of this locus has been conserved for a long time.

  1. Genome Sequences of Two Copper-Resistant Escherichia coli Strains Isolated from Copper-Fed Pigs

    DEFF Research Database (Denmark)

    Lüthje, Freja L.; Hasman, Henrik; Aarestrup, Frank Møller

    2014-01-01

    The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances.......The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances....

  2. Genomic Analysis of Hospital Plumbing Reveals Diverse Reservoir of Bacterial Plasmids Conferring Carbapenem Resistance

    Directory of Open Access Journals (Sweden)

    Rebecca A. Weingarten

    2018-02-01

    Full Text Available The hospital environment is a potential reservoir of bacteria with plasmids conferring carbapenem resistance. Our Hospital Epidemiology Service routinely performs extensive sampling of high-touch surfaces, sinks, and other locations in the hospital. Over a 2-year period, additional sampling was conducted at a broader range of locations, including housekeeping closets, wastewater from hospital internal pipes, and external manholes. We compared these data with previously collected information from 5 years of patient clinical and surveillance isolates. Whole-genome sequencing and analysis of 108 isolates provided comprehensive characterization of blaKPC/blaNDM-positive isolates, enabling an in-depth genetic comparison. Strikingly, despite a very low prevalence of patient infections with blaKPC-positive organisms, all samples from the intensive care unit pipe wastewater and external manholes contained carbapenemase-producing organisms (CPOs, suggesting a vast, resilient reservoir. We observed a diverse set of species and plasmids, and we noted species and susceptibility profile differences between environmental and patient populations of CPOs. However, there were plasmid backbones common to both populations, highlighting a potential environmental reservoir of mobile elements that may contribute to the spread of resistance genes. Clear associations between patient and environmental isolates were uncommon based on sequence analysis and epidemiology, suggesting reasonable infection control compliance at our institution. Nonetheless, a probable nosocomial transmission of Leclercia sp. from the housekeeping environment to a patient was detected by this extensive surveillance. These data and analyses further our understanding of CPOs in the hospital environment and are broadly relevant to the design of infection control strategies in many infrastructure settings.

  3. Investigating Disruption

    DEFF Research Database (Denmark)

    Lundgaard, Stine Schmieg; Rosenstand, Claus Andreas Foss

    This book shares knowledge collected from 2015 and onward within the Consortium for Digital Disruption anchored at Aalborg University (www.dd.aau.dk). Evidenced by this publication, the field of disruptive innovation research has gone through several stages of operationalizing the theory. In recent...... years, researchers are increasingly looking back towards the origins of the theory in attempts to cure it from its most obvious flaws. This is especially true for the use of the theory in making predictions about future disruptions. In order to continue to develop a valuable theory of disruption, we...... find it useful to first review what the theory of disruptive innovation initially was, how it has developed, and where we are now. A cross section of disruptive innovation literature has been reviewed in order to form a general foundation from which we might better understand the changing world...

  4. Disruptive Innovation Can Prevent the Next Pandemic

    Directory of Open Access Journals (Sweden)

    Affan eShaikh

    2015-09-01

    Full Text Available Public health surveillance (PHS is at a tipping point, where the application of novel processes, technologies, and tools promise to vastly improve efficiency and effectiveness. Yet 20th-century, entrenched ideology and lack of training results in slow uptake and resistance to change. The term disruptive innovation – used to describe advances in technology and processes that change existing markets, is useful to describe the transformation of PHS. Past disruptive innovations used in PHS, such as distance learning, the smart phone, and field-based laboratory testing have outpaced older services, practices, and technologies used in the traditional classroom, governmental offices, and personal communication, respectively. Arguably, the greatest of these is the Internet – an infrastructural innovation that continues to enable exponential benefits in seemingly limitless ways. Considering the Global Health Security Agenda and facing emerging and reemerging infectious disease threats, evolving environmental and behavioral risks, and ever changing epidemiologic trends, PHS must transform. Embracing disruptive innovation in the structures and processes of PHS can be unpredictable. However it is necessary to strengthen and unlock the potential to prevent, detect, and respond.

  5. Extra-epitopic hepatitis C virus polymorphisms confer resistance to broadly neutralizing antibodies by modulating binding to scavenger receptor B1.

    Science.gov (United States)

    El-Diwany, Ramy; Cohen, Valerie J; Mankowski, Madeleine C; Wasilewski, Lisa N; Brady, Jillian K; Snider, Anna E; Osburn, William O; Murrell, Ben; Ray, Stuart C; Bailey, Justin R

    2017-02-01

    Broadly-neutralizing monoclonal antibodies (bNAbs) may guide vaccine development for highly variable viruses including hepatitis C virus (HCV), since they target conserved viral epitopes that could serve as vaccine antigens. However, HCV resistance to bNAbs could reduce the efficacy of a vaccine. HC33.4 and AR4A are two of the most potent anti-HCV human bNAbs characterized to date, binding to highly conserved epitopes near the amino- and carboxy-terminus of HCV envelope (E2) protein, respectively. Given their distinct epitopes, it was surprising that these bNAbs showed similar neutralization profiles across a panel of natural HCV isolates, suggesting that some viral polymorphisms may confer resistance to both bNAbs. To investigate this resistance, we developed a large, diverse panel of natural HCV envelope variants and a novel computational method to identify bNAb resistance polymorphisms in envelope proteins (E1 and E2). By measuring neutralization of a panel of HCV pseudoparticles by 10 μg/mL of each bNAb, we identified E1E2 variants with resistance to one or both bNAbs, despite 100% conservation of the AR4A binding epitope across the panel. We discovered polymorphisms outside of either binding epitope that modulate resistance to both bNAbs by altering E2 binding to the HCV co-receptor, scavenger receptor B1 (SR-B1). This study is focused on a mode of neutralization escape not addressed by conventional analysis of epitope conservation, highlighting the contribution of extra-epitopic polymorphisms to bNAb resistance and presenting a novel mechanism by which HCV might persist even in the face of an antibody response targeting multiple conserved epitopes.

  6. Bmi1 confers resistance to oxidative stress on hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Shunsuke Nakamura

    Full Text Available The polycomb-group (PcG proteins function as general regulators of stem cells. We previously reported that retrovirus-mediated overexpression of Bmi1, a gene encoding a core component of polycomb repressive complex (PRC 1, maintained self-renewing hematopoietic stem cells (HSCs during long-term culture. However, the effects of overexpression of Bmi1 on HSCs in vivo remained to be precisely addressed.In this study, we generated a mouse line where Bmi1 can be conditionally overexpressed under the control of the endogenous Rosa26 promoter in a hematopoietic cell-specific fashion (Tie2-Cre;R26Stop(FLBmi1. Although overexpression of Bmi1 did not significantly affect steady state hematopoiesis, it promoted expansion of functional HSCs during ex vivo culture and efficiently protected HSCs against loss of self-renewal capacity during serial transplantation. Overexpression of Bmi1 had no effect on DNA damage response triggered by ionizing radiation. In contrast, Tie2-Cre;R26Stop(FLBmi1 HSCs under oxidative stress maintained a multipotent state and generally tolerated oxidative stress better than the control. Unexpectedly, overexpression of Bmi1 had no impact on the level of intracellular reactive oxygen species (ROS.Our findings demonstrate that overexpression of Bmi1 confers resistance to stresses, particularly oxidative stress, onto HSCs. This thereby enhances their regenerative capacity and suggests that Bmi1 is located downstream of ROS signaling and negatively regulated by it.

  7. Activation of Antibiotic Production in Bacillus spp. by Cumulative Drug Resistance Mutations.

    Science.gov (United States)

    Tojo, Shigeo; Tanaka, Yukinori; Ochi, Kozo

    2015-12-01

    Bacillus subtilis strains produce a wide range of antibiotics, including ribosomal and nonribosomal peptide antibiotics, as well as bacilysocin and neotrehalosadiamine. Mutations in B. subtilis strain 168 that conferred resistance to drugs such as streptomycin and rifampin resulted in overproduction of the dipeptide antibiotic bacilysin. Cumulative drug resistance mutations, such as mutations in the mthA and rpsL genes, which confer low- and high-level resistance, respectively, to streptomycin, and mutations in rpoB, which confer resistance to rifampin, resulted in cells that overproduced bacilysin. Transcriptional analysis demonstrated that the enhanced transcription of biosynthesis genes was responsible for the overproduction of bacilysin. This approach was effective also in activating the cryptic genes of Bacillus amyloliquefaciens, leading to actual production of antibiotic(s). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Detection of antibiotic resistance in probiotics of dietary supplements

    KAUST Repository

    Wong, Aloysius Tze

    2015-09-14

    Background Probiotics are live microorganisms that confer nutrition- and health-promoting benefits if consumed in adequate amounts. Concomitant with the demand for natural approaches to maintaining health is an increase in inclusion of probiotics in food and health products. Since probiotic bacteria act as reservoir for antibiotic resistant determinants, the transfer of these genes to pathogens sharing the same intestinal habitat is thus conceivable considering the fact that dietary supplements contain high amounts of often heterogeneous populations of probiotics. Such events can confer pathogens protection against commonly-used drugs. Despite numerous reports of antibiotic resistant probiotics in food and biological sources, the antibiogram of probiotics from dietary supplements remained elusive. Findings Here, we screened five commercially available dietary supplements for resistance towards antibiotics of different classes. Probiotics of all batches of products were resistant towards vancomycin while batch-dependent resistance towards streptomycin, aztreonam, gentamycin and/or ciprofloxacin antibiotics was detected for probiotics of brands Bi and Bn, Bg, and L. Isolates of brand Cn was also resistant towards gentamycin, streptomycin and ciprofloxacin antibiotics. Additionally, we also report a discrepancy between the enumerated viable bacteria amounts and the claims of the manufacturers. Conclusions This short report has highlighted the present of antibiotic resistance in probiotic bacteria from dietary supplements and therefore serves as a platform for further screenings and for in-depth characterization of the resistant determinants and the molecular machinery that confers the resistance.

  9. Induction of Xa10-like Genes in Rice Cultivar Nipponbare Confers Disease Resistance to Rice Bacterial Blight.

    Science.gov (United States)

    Wang, Jun; Tian, Dongsheng; Gu, Keyu; Yang, Xiaobei; Wang, Lanlan; Zeng, Xuan; Yin, Zhongchao

    2017-06-01

    Bacterial blight of rice, caused by Xanthomonas oryzae pv. oryzae, is one of the most destructive bacterial diseases throughout the major rice-growing regions in the world. The rice disease resistance (R) gene Xa10 confers race-specific disease resistance to X. oryzae pv. oryzae strains that deliver the corresponding transcription activator-like (TAL) effector AvrXa10. Upon bacterial infection, AvrXa10 binds specifically to the effector binding element in the promoter of the R gene and activates its expression. Xa10 encodes an executor R protein that triggers hypersensitive response and activates disease resistance. 'Nipponbare' rice carries two Xa10-like genes in its genome, of which one is the susceptible allele of the Xa23 gene, a Xa10-like TAL effector-dependent executor R gene isolated recently from 'CBB23' rice. However, the function of the two Xa10-like genes in disease resistance to X. oryzae pv. oryzae strains has not been investigated. Here, we designated the two Xa10-like genes as Xa10-Ni and Xa23-Ni and characterized their function for disease resistance to rice bacterial blight. Both Xa10-Ni and Xa23-Ni provided disease resistance to X. oryzae pv. oryzae strains that deliver the matching artificially designed TAL effectors (dTALE). Transgenic rice plants containing Xa10-Ni and Xa23-Ni under the Xa10 promoter provided specific disease resistance to X. oryzae pv. oryzae strains that deliver AvrXa10. Xa10-Ni and Xa23-Ni knock-out mutants abolished dTALE-dependent disease resistance to X. oryzae pv. oryzae. Heterologous expression of Xa10-Ni and Xa23-Ni in Nicotiana benthamiana triggered cell death. The 19-amino-acid residues at the N-terminal regions of XA10 or XA10-Ni are dispensable for their function in inducing cell death in N. benthamiana and the C-terminal regions of XA10, XA10-Ni, and XA23-Ni are interchangeable among each other without affecting their function. Like XA10, both XA10-Ni and XA23-Ni locate to the endoplasmic reticulum (ER) membrane

  10. Natural Polymorphisms Conferring Resistance to HCV Protease and Polymerase Inhibitors in Treatment-Naïve HIV/HCV Co-Infected Patients in China.

    Directory of Open Access Journals (Sweden)

    Kali Zhou

    Full Text Available The advent of direct-acting agents (DAAs has improved treatment of HCV in HIV co-infection, but may be limited by primary drug resistance. This study reports the prevalence of natural polymorphisms conferring resistance to NS3/4A protease inhibitors and NS5B polymerase inhibitors in treatment-naïve HIV/HCV co-infected individuals in China.Population based NS3/4A sequencing was completed for 778 treatment-naïve HIV/HCV co-infected patients from twelve provinces. NS3 sequences were amplified by nested PCR using in-house primers for genotypes 1-6. NS5B sequencing was completed for genotyping in 350 sequences. Resistance-associated variants (RAVs were identified in positions associated with HCV resistance.Overall, 72.8% (566/778 of all HCV sequences had at least one RAV associated with HCV NS3/4A protease inhibitor resistance. Variants were found in 3.6% (7/193 of genotype 1, 100% (23/23 of genotype 2, 100% (237/237 of genotype 3 and 92% (299/325 of genotype 6 sequences. The Q80K variant was present in 98.4% of genotype 6a sequences. High-level RAVs were rare, occurring in only 0.8% of patients. 93% (64/69 patients with genotype 1b also carried the C316N variant associated with NS5B low-level resistance.The low frequency of high-level RAVs associated with primary HCV DAA resistance among all genotypes in HIV/HCV co-infected patients is encouraging. Further phenotypic studies and clinical research are needed.

  11. Digital Disruption

    DEFF Research Database (Denmark)

    Rosenstand, Claus Andreas Foss

    det digitale domæne ud over det niveau, der kendetegner den nuværende debat, så præsenteres der ny viden om digital disruption. Som noget nyt udlægges Clayton Christens teori om disruptiv innovation med et særligt fokus på små organisationers mulighed for eksponentiel vækst. Specielt udfoldes...... forholdet mellem disruption og den stadig accelererende digitale udvikling i konturerne til ny teoridannelse om digital disruption. Bogens undertitel ”faretruende og fascinerende forandringer” peger på, at der er behov for en nuanceret debat om digital disruption i modsætning til den tone, der er slået an i...... videre kalder et ”disruption-råd”. Faktisk er rådet skrevet ind i 2016 regeringsgrundlaget for VLK-regeringen. Disruption af organisationer er ikke et nyt fænomen; men hastigheden, hvormed det sker, er stadig accelererende. Årsagen er den globale mega-trend: Digitalisering. Og derfor er specielt digital...

  12. High-Dose Chloroquine for Treatment of Chloroquine-Resistant Plasmodium falciparum Malaria

    DEFF Research Database (Denmark)

    Ursing, Johan; Rombo, Lars; Bergqvist, Yngve

    2016-01-01

    BACKGROUND:  Due to development of multidrug-resistant Plasmodium falciparum new antimalarial therapies are needed. In Guinea-Bissau, routinely used triple standard-dose chloroquine remained effective for decades despite the existence of "chloroquine-resistant" P. falciparum. This study aimed...... to determine the in vivo efficacy of higher chloroquine concentrations against P. falciparum with resistance-conferring genotypes. METHODS:  Standard or double-dose chloroquine was given to 892 children aged ...-up. The P. falciparum resistance-conferring genotype (pfcrt 76T) and day 7 chloroquine concentrations were determined. Data were divided into age groups (chloroquine is prescribed according to body weight. RESULTS:  Adequate clinical...

  13. Recombinant Endolysins as Potential Therapeutics against Antibiotic-Resistant Staphylococcus aureus: Current Status of Research and Novel Delivery Strategies.

    Science.gov (United States)

    Haddad Kashani, Hamed; Schmelcher, Mathias; Sabzalipoor, Hamed; Seyed Hosseini, Elahe; Moniri, Rezvan

    2018-01-01

    Staphylococcus aureus is one of the most common pathogens of humans and animals, where it frequently colonizes skin and mucosal membranes. It is of major clinical importance as a nosocomial pathogen and causative agent of a wide array of diseases. Multidrug-resistant strains have become increasingly prevalent and represent a leading cause of morbidity and mortality. For this reason, novel strategies to combat multidrug-resistant pathogens are urgently needed. Bacteriophage-derived enzymes, so-called endolysins, and other peptidoglycan hydrolases with the ability to disrupt cell walls represent possible alternatives to conventional antibiotics. These lytic enzymes confer a high degree of host specificity and could potentially replace or be utilized in combination with antibiotics, with the aim to specifically treat infections caused by Gram-positive drug-resistant bacterial pathogens such as methicillin-resistant S. aureus . LysK is one of the best-characterized endolysins with activity against multiple staphylococcal species. Various approaches to further enhance the antibacterial efficacy and applicability of endolysins have been demonstrated. These approaches include the construction of recombinant endolysin derivatives and the development of novel delivery strategies for various applications, such as the production of endolysins in lactic acid bacteria and their conjugation to nanoparticles. These novel strategies are a major focus of this review. Copyright © 2017 American Society for Microbiology.

  14. Occurrence of integrons and resistance genes among sulphonamide-resistant Shigella spp. from Brazil

    DEFF Research Database (Denmark)

    Peirano, G.; Agersø, Yvonne; Aarestrup, Frank Møller

    2005-01-01

    Objectives: To determine the occurrence of class 1 and 2 integrons and antimicrobial resistance genes among sulphonamide-resistant Shigella strains isolated in Brazil during 1999-2003. Methods: Sixty-two Shigella (Shigella flexneri, n = 47 and Shigella sonnei, n = 15) were tested against 21...... antimicrobial agents. The presence of integrons classes 1 and 2 and antimicrobial resistance genes was investigated by PCR using specific primers. Results: A total of eight antimicrobial resistance profiles were identified, with the profile of resistance to sulfamethoxazole, trimethoprim, spectinomycin...... of 2214 bp harbouring a gene cassette array conferring resistance to trimethoprim, streptothricin and spectinomycin/streptomycin. The genes coding for resistance to chloramphenicol (catA1), tetracycline [tet(A) and tet(B)] and ampicillin (bla(OXA) and bla(TEM)), were detected in resistant strains...

  15. Shigella Antimicrobial Drug Resistance Mechanisms, 2004-2014.

    Science.gov (United States)

    Nüesch-Inderbinen, Magdalena; Heini, Nicole; Zurfluh, Katrin; Althaus, Denise; Hächler, Herbert; Stephan, Roger

    2016-06-01

    To determine antimicrobial drug resistance mechanisms of Shigella spp., we analyzed 344 isolates collected in Switzerland during 2004-2014. Overall, 78.5% of isolates were multidrug resistant; 10.5% were ciprofloxacin resistant; and 2% harbored mph(A), a plasmid-mediated gene that confers reduced susceptibility to azithromycin, a last-resort antimicrobial agent for shigellosis.

  16. Disruption?

    DEFF Research Database (Denmark)

    2016-01-01

    This is a short video on the theme disruption and entrepreneurship. It takes the form of an interview with John Murray......This is a short video on the theme disruption and entrepreneurship. It takes the form of an interview with John Murray...

  17. User's manual for DSTAR MOD1: A comprehensive tokamak disruption code

    International Nuclear Information System (INIS)

    Merrill, B.J.; Jardin, S.J.

    1986-01-01

    A computer code, DSTAR, has recently been developed to quantify the surface erosion and induced forces that can occur during major tokamak plasma disruptions. The DSTAR code development effort has been accomplished by coupling a recently developed free boundary tokamak plasma transport computational model with other models developed to predict impurity transport and radiation, and the electromagnetic and thermal dynamic response of vacuum vessel components. The combined model, DSTAR, is a unique tool for predicting the consequences of tokamak disruptions. This informal report discusses the sequence of events of a resistive disruption, models developed to predict plasma transport and electromagnetic field evolution, the growth of the stochastic region of the plasma, the transport and nonequilibrium ionization/emitted radiation of the ablated vacuum vessel material, the vacuum vessel thermal and magnetic response, and user input and code output

  18. Effect of resistivity profile on current decay time of initial phase of current quench in neon-gas-puff inducing disruptions of JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, S.; Ohno, N. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Shibata, Y.; Isayama, A.; Kawano, Y. [Japan Atomic Energy Agency, Naka 311-0193 (Japan); Watanabe, K. Y. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); National Institute for Fusion Science, Toki 509-5292 (Japan); Takizuka, T. [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Okamoto, M. [Ishikawa National College of Technology, Ishikawa 929-0392 (Japan)

    2013-11-15

    According to an early work [Y. Shibata et al., Nucl. Fusion 50, 025015 (2010)] on the behavior of the plasma current decay in the JT-60U disruptive discharges caused by the radiative collapse with a massive neon-gas-puff, the increase of the internal inductance mainly determined the current decay time of plasma current during the initial phase of current quench. To investigate what determines the increase of the internal inductance, we focus attention on the relationship between the electron temperature (or the resistivity) profile and the time evolution of the current density profile and carry out numerical calculations. As a result, we find the reason of the increase of the internal inductance: The current density profile at the start of the current quench is broader than an expected current density profile in the steady state, which is determined by the temperature (or resistivity) profile. The current density profile evolves into peaked one and the internal inductance is increasing.

  19. Identification of Reversible Disruption of the Human Blood-Brain Barrier Following Acute Ischemia.

    Science.gov (United States)

    Simpkins, Alexis N; Dias, Christian; Leigh, Richard

    2016-09-01

    Animal models of acute cerebral ischemia have demonstrated that diffuse blood-brain barrier (BBB) disruption can be reversible after early reperfusion. However, irreversible, focal BBB disruption in humans is associated with hemorrhagic transformation in patients receiving intravenous thrombolytic therapy. The goal of this study was to use a magnetic resonance imaging biomarker of BBB permeability to differentiate these 2 forms of BBB disruption. Acute stroke patients imaged with magnetic resonance imaging before, 2 hours after, and 24 hours after treatment with intravenous tissue-type plasminogen activator were included. The average BBB permeability of the acute ischemic region before and 2 hours after treatment was calculated using a T2* perfusion-weighted source images. Change in average permeability was compared with percent reperfusion using linear regression. Focal regions of maximal BBB permeability from the pretreatment magnetic resonance imaging were compared with the occurrence of parenchymal hematoma (PH) formation on the 24-hour magnetic resonance imaging scan using logistic regression. Signals indicating reversible BBB permeability were detected in 18/36 patients. Change in average BBB permeability correlated inversely with percent reperfusion (P=0.006), indicating that early reperfusion is associated with decreased BBB permeability, whereas sustained ischemia is associated with increased BBB disruption. Focal regions of maximal BBB permeability were significantly associated with subsequent formation of PH (P=0.013). This study demonstrates that diffuse, mild BBB disruption in the acutely ischemic human brain is reversible with reperfusion. This study also confirms prior findings that focal severe BBB disruption confers an increased risk of hemorrhagic transformation in patients treated with intravenous tissue-type plasminogen activator. © 2016 American Heart Association, Inc.

  20. Estimation of post disruption plasma temperature for fast current quench Aditya plasma shots

    International Nuclear Information System (INIS)

    Purohit, S.; Chowdhuri, M.B.; Joisa, Y.S.; Raval, J.V.; Ghosh, J.; Jha, R.

    2013-01-01

    Characteristics of tokamak current quenches are an important issue for the determination of electromagnetic forces that act on the in-vessel components and vacuum vessel during major disruptions. It is observed that thermal quench is followed by a sharp current decay. Fast current quench disruptive plasma shots were investigated for ADITYA tokamak. The current decay time was determined for the selected shots, which were in the range of 0.8 msec to 2.5 msec. This current decay information was then applied to L/R model, frequently employed for the estimation of the current decay time in tokamak plasmas, considering plasma inductance and plasma resistivity. This methodology was adopted for the estimation of the post disruption plasma temperature using the experimentally observed current decay time for the fast current quench disruptive ADITYA plasma shots. The study reveals that for the identified shots there is a constant increase in the current decay time with the post disruption plasma temperature. The investigations also explore the behavior post disruption plasma temperature and the current decay time as a function of the edge safety factor, Q. Post disruption plasma temperature and the current decay time exhibits a decrease with the increase in the value Q. (author)

  1. Genetic dissection of the resistance to nine anthracnose races in the common bean differential cultivars MDRK and TU.

    Science.gov (United States)

    Campa, Ana; Giraldez, Ramón; Ferreira, Juan José

    2009-06-01

    Resistance to nine races of the pathogenic fungus Colletotrichum lindemuthianum, causal agent of anthracnose, was evaluated in F(3) families derived from the cross between the anthracnose differential bean cultivars TU (resistant to races, 3, 6, 7, 31, 38, 39, 102, and 449) and MDRK (resistant to races, 449, and 1545). Molecular marker analyses were carried out in the F(2) individuals in order to map and characterize the anthracnose resistance genes or gene clusters present in these two differential cultivars. The results of the combined segregation indicate that at least three independent loci conferring resistance to anthracnose are present in TU. One of them, corresponding to the previously described anthracnose resistance locus Co-5, is located in linkage group B7, and is formed by a cluster of different genes conferring specific resistance to races, 3, 6, 7, 31, 38, 39, 102, and 449. Evidence of intra-cluster recombination between these specific resistance genes was found. The second locus present in TU confers specific resistance to races 31 and 102, and the third locus confers specific resistance to race 102, the location of these two loci remains unknown. The resistance to race 1545 present in MDRK is due to two independent dominant genes. The results of the combined segregation of two F(4) families showing monogenic segregation for resistance to race 1545 indicates that one of these two genes is linked to marker OF10(530), located in linkage group B1, and corresponds to the previously described anthracnose resistance locus Co-1. The second gene conferring resistance to race 1545 in MDRK is linked to marker Pv-ctt001, located in linkage group B4, and corresponds to the Co-3/Co-9 cluster. The resistance to race 449 present in MDRK is conferred by a single gene, located in linkage group B4, probably included in the same Co-3/Co-9 cluster.

  2. Multiscale simulation of thermal disruption in resistance switching process in amorphous carbon

    International Nuclear Information System (INIS)

    Popov, A M; Nikishin, N G; Shumkin, G N

    2015-01-01

    The switching of material atomic structure and electric conductivity is used in novel technologies of making memory on the base of phase change. The possibility of making memory on the base of amorphous carbon is shown in experiment [1]. Present work is directed to simulation of experimentally observed effects. Ab initio quantum calculations were used for simulation of atomic structure changes in amorphous carbon [2]. These simulations showed that the resistance change is connected with thermally induced effects. The temperature was supposed to be the function of time. In present paper we propose a new multiscale, self-consistent model which combines three levels of simulation scales and takes into account the space and time dependencies of the temperature. On the first level of quantum molecular dynamic we provide the calculations of phase change in atomic structure with space and time dependence of the temperature. Nose-Hover thermostats are used for MD simulations to reproduce space dependency of the temperature. It is shown that atomic structure is localized near graphitic layers in conducting dot. Structure parameter is used then on the next levels of the modeling. Modified Ehrenfest Molecular Dynamics is used on the second level. Switching evolution of electronic subsystem is obtained. In macroscopic scale level the heat conductivity equation for continuous media is used for calculation space-time dependence of the temperature. Joule heat source depends on structure parameter and electric conductivity profiles obtained on previous levels of modeling. Iterative procedure is self-consistently repeated combining three levels of simulation. Space localization of Joule heat source leads to the thermal disruption. Obtained results allow us to explain S-form of the Volt-Ampere characteristic observed in experiment. Simulations were performed on IBM Blue Gene/P supercomputer at Moscow State University. (paper)

  3. Rme1 is necessary for Mi-1-mediated resistance and acts early in the resistance pathway.

    Science.gov (United States)

    Martinez de Ilarduya, Oscar; Nombela, Gloria; Hwang, Chin-Feng; Williamson, Valerie M; Muñiz, Mariano; Kaloshian, Isgouhi

    2004-01-01

    The tomato gene Mi-1 confers resistance to root-knot nematodes (Meloidogyne spp.), potato aphid, and whitefly. Using genetic screens, we have isolated a mutant, rme1 (resistance to Meloidogyne spp.), compromised in resistance to M. javanica and potato aphid. Here, we show that the rme1 mutant is also compromised in resistance to M. incognita, M. arenaria, and whitefly. In addition, using an Agrobacterium-mediated transient assay in leaves to express constitutive gain-of-function mutant Pto(L205D), we demonstrated that the rme1 mutation is not compromised in Pto-mediated hypersensitive response. Moreover, the mutation in rme1 does not result in increased virulence of pathogenic Pseudomonas syringae or Mi-1-virulent M. incognita. Using a chimeric Mi-1 construct, Mi-DS4, which confers constitutive cell death phenotype and A. rhizogenes root transformation, we showed that the Mi-1-mediated cell death pathway is intact in this mutant. Our results indicate that Rme1 is required for Mi-1-mediated resistance and acts either at the same step in the signal transduction pathway as Mi-1 or upstream of Mi-1.

  4. Metabolic disruption in context: Clinical avenues for synergistic perturbations in energy homeostasis by endocrine disrupting chemicals.

    Science.gov (United States)

    Sargis, Robert M

    2015-01-01

    The global epidemic of metabolic disease is a clear and present danger to both individual and societal health. Understanding the myriad factors contributing to obesity and diabetes is essential for curbing their decades-long expansion. Emerging data implicate environmental endocrine disrupting chemicals (EDCs) in the pathogenesis of metabolic diseases such as obesity and diabetes. The phenylsulfamide fungicide and anti-fouling agent tolylfluanid (TF) was recently added to the list of EDCs promoting metabolic dysfunction. Dietary exposure to this novel metabolic disruptor promoted weight gain, increased adiposity, and glucose intolerance as well as systemic and cellular insulin resistance. Interestingly, the increase in body weight and adipose mass was not a consequence of increased food consumption; rather, it may have resulted from disruptions in diurnal patterns of energy intake, raising the possibility that EDCs may promote metabolic dysfunction through alterations in circadian rhythms. While these studies provide further evidence that EDCs may promote the development of obesity and diabetes, many questions remain regarding the clinical factors that modulate patient-specific consequences of EDC exposure, including the impact of genetics, diet, lifestyle, underlying disease, pharmacological treatments, and clinical states of fat redistribution. Currently, little is known regarding the impact of these factors on an individual's susceptibility to environmentally-mediated metabolic disruption. Advances in these areas will be critical for translating EDC science into the clinic to enable physicians to stratify an individual's risk of developing EDC-induced metabolic disease and to provide direction for treating exposed patients.

  5. Observation of disruptions in tokamak plasma under the influence of resonant helical magnetic fields

    International Nuclear Information System (INIS)

    Araujo, M.; Vannucci, A.; Caldas, I.

    1996-01-01

    Disruptive instabilities were investigated in the small tokamak TBR-1 during the application of resonant helical magnetic fields created by external helical windings. Indications were found that the main triggering mechanism of the disruptions was the rapid increase of the m=2/n=1 mode which, apparently after reaching a certain amplitude, interacts with other resistive modes: the internal 1/1 mode in the case of minor disruptions. After the coupling, the growth of the associated islands would create a chaotic field line distribution in the region between the corresponding rational magnetic surfaces which caused the gross particle transport and, finally, destroyed the confinement. In addition, investigations on higher Z eff discharges in which a mixture of helium and hydrogen was used resulted in much more unstable plasmas but apparently did not alter basic characteristics of the disruptions

  6. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter.

    OpenAIRE

    Neyfakh, A A; Borsch, C M; Kaatz, G W

    1993-01-01

    The gene of the Staphylococcus aureus fluoroquinolone efflux transporter protein NorA confers resistance to a number of structurally dissimilar drugs, not just to fluoroquinolones, when it is expressed in Bacillus subtilis. NorA provides B. subtilis with resistance to the same drugs and to a similar extent as the B. subtilis multidrug transporter protein Bmr does. NorA and Bmr share 44% sequence similarity. Both the NorA- and Bmr-conferred resistances can be completely reversed by reserpine.

  7. Inhibiting fungal multidrug resistance by disrupting an activator-Mediator interaction.

    Science.gov (United States)

    Nishikawa, Joy L; Boeszoermenyi, Andras; Vale-Silva, Luis A; Torelli, Riccardo; Posteraro, Brunella; Sohn, Yoo-Jin; Ji, Fei; Gelev, Vladimir; Sanglard, Dominique; Sanguinetti, Maurizio; Sadreyev, Ruslan I; Mukherjee, Goutam; Bhyravabhotla, Jayaram; Buhrlage, Sara J; Gray, Nathanael S; Wagner, Gerhard; Näär, Anders M; Arthanari, Haribabu

    2016-02-25

    Eukaryotic transcription activators stimulate the expression of specific sets of target genes through recruitment of co-activators such as the RNA polymerase II-interacting Mediator complex. Aberrant function of transcription activators has been implicated in several diseases. However, therapeutic targeting efforts have been hampered by a lack of detailed molecular knowledge of the mechanisms of gene activation by disease-associated transcription activators. We previously identified an activator-targeted three-helix bundle KIX domain in the human MED15 Mediator subunit that is structurally conserved in Gal11/Med15 Mediator subunits in fungi. The Gal11/Med15 KIX domain engages pleiotropic drug resistance transcription factor (Pdr1) orthologues, which are key regulators of the multidrug resistance pathway in Saccharomyces cerevisiae and in the clinically important human pathogen Candida glabrata. The prevalence of C. glabrata is rising, partly owing to its low intrinsic susceptibility to azoles, the most widely used antifungal agent. Drug-resistant clinical isolates of C. glabrata most commonly contain point mutations in Pdr1 that render it constitutively active, suggesting that this transcriptional activation pathway represents a linchpin in C. glabrata multidrug resistance. Here we perform sequential biochemical and in vivo high-throughput screens to identify small-molecule inhibitors of the interaction of the C. glabrata Pdr1 activation domain with the C. glabrata Gal11A KIX domain. The lead compound (iKIX1) inhibits Pdr1-dependent gene activation and re-sensitizes drug-resistant C. glabrata to azole antifungals in vitro and in animal models for disseminated and urinary tract C. glabrata infection. Determining the NMR structure of the C. glabrata Gal11A KIX domain provides a detailed understanding of the molecular mechanism of Pdr1 gene activation and multidrug resistance inhibition by iKIX1. We have demonstrated the feasibility of small-molecule targeting of a

  8. Intracellular, genetic or congenital immunisation--transgenic approaches to increase disease resistance of farm animals.

    Science.gov (United States)

    Müller, M; Brem, G

    1996-01-26

    Novel approaches to modify disease resistance or susceptibility in livestock are justified not only by economical reasons and with respect to animal welfare but also by recent advancements in molecular genetics. The control or elimination of infectious pathogens in farm animals is historically achieved by the use of vaccines and drugs and by quarantine safeguards and eradication. Currently, research on the improvement of disease resistance based on nucleic acid technology focuses on two main issues: additive gene transfer and the development of nucleic acid vaccines. The strategies aim at the stable or transient expression of components known to influence non-specific or specific host defence mechanisms against infectious pathogens. Thus, candidates for gene transfer experiments include all genes inducing or conferring innate and acquired immunity as well as specific disease resistance genes. Referring to the site and mode of action and the source of the effective agent the strategies are termed 'intracellular', 'genetic' and 'congenital' immunisation. The targeted disruption (deletive gene transfer) of disease susceptibility genes awaits the establishment of totipotential embryonic cell lineages in farm animals. The cytokine network regulates cellular viability, growth and differentiation in physiological and pathophysiological states. The identification of the JAK-STAT pathway used by many cytokines for their intracellular signal propagation has provided not only new target molecules for modulating the immune response but will also permit the further elucidation of host-pathogen interactions and resistance mechanisms.

  9. EHD1 confers resistance to cisplatin in non-small cell lung cancer by regulating intracellular cisplatin concentrations

    International Nuclear Information System (INIS)

    Gao, Jing; Meng, Qingwei; Zhao, Yanbin; Chen, Xuesong; Cai, Li

    2016-01-01

    Non-small cell lung cancer (NSCLC) is one of the most aggressive types of cancer. However, resistance to cisplatin (CDDP) remains a major challenge in NSCLC treatment. The purpose of this study was to investigate the ability of EHD1 [Eps15 homology (EH) domain - containing protein 1] to confer CDDP resistance in NSCLC cells and to investigate mechanisms of this resistance. The associations between EHD1 expression in NSCLC specimens and clinicopathological features, including prognosis, were assessed by immunohistochemistry (IHC). Using DNA microarrays, we performed a genome-wide analysis of cisplatin-resistant NSCLC cells to identify the involvement of the EHD1 gene in this resistance. We overexpressed and knocked down EHD1 in cell lines to investigate the effect of this gene on proliferation and apoptosis. A quantitative analytical method for assessing CDDP in cells was developed. High-performance liquid chromatography was used to measure the concentration of cisplatin in cells. The immunohistochemistry assay showed that adjuvant chemotherapy-treated NSCLC patients expressing EHD1 exhibited reduced OS compared with patients who did not express EHD1 (P = 0.01). Moreover, DNA microarrays indicated that the EHD1 gene was upregulated in CDDP- resistant NSCLC cells. The IC50 value of CDDP in cells that overexpressed EHD1 was 3.3-fold greater than that in the A549-control line, and the IC50 value of EHD1 knockdown cells was at least 5.2-fold lower than that of the control cells, as evidenced by a CCK-8 assay. We found that the percentage of early apoptotic cells was significantly decreased in A549-EHD1 cells, but the rates of early apoptosis were higher in the EHD1 knockdown cell line than in the A549/DDP control line, as indicated by a flow cytometry analysis. High-performance liquid chromatography (HPLC) showed that the total platinum level was lower in A549-EHD1 cells than in control cells, and the concentration of CDDP was higher in the EHD1 knockdown cells than in

  10. Anilinopyrimidine Resistance in Botrytis cinerea Is Linked to Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Andreas Mosbach

    2017-11-01

    Full Text Available Crop protection anilinopyrimidine (AP fungicides were introduced more than 20 years ago for the control of a range of diseases caused by ascomycete plant pathogens, and in particular for the control of gray mold caused by Botrytis cinerea. Although early mode of action studies suggested an inhibition of methionine biosynthesis, the molecular target of this class of fungicides was never fully clarified. Despite AP-specific resistance having been described in B. cinerea field isolates and in multiple other targeted species, the underlying resistance mechanisms were unknown. It was therefore expected that the genetic characterization of resistance mechanisms would permit the identification of the molecular target of these fungicides. In order to explore the widest range of possible resistance mechanisms, AP-resistant B. cinerea UV laboratory mutants were generated and the mutations conferring resistance were determined by combining whole-genome sequencing and reverse genetics. Genetic mapping from a cross between a resistant field isolate and a sensitive reference isolate was used in parallel and led to the identification of an additional molecular determinant not found from the characterized UV mutant collection. Together, these two approaches enabled the characterization of an unrivaled diversity of resistance mechanisms. In total, we report the elucidation of resistance-conferring mutations within nine individual genes, two of which are responsible for almost all instances of AP resistance in the field. All identified resistance-conferring genes encode proteins that are involved in mitochondrial processes, suggesting that APs primarily target the mitochondria. The functions of these genes and their possible interactions are discussed in the context of the potential mode of action for this important class of fungicides.

  11. Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H+ -pumping pyrophosphatase in pepper plants.

    Science.gov (United States)

    Vigani, Gianpiero; Rolli, Eleonora; Marasco, Ramona; Dell'Orto, Marta; Michoud, Grégoire; Soussi, Asma; Raddadi, Noura; Borin, Sara; Sorlini, Claudia; Zocchi, Graziano; Daffonchio, Daniele

    2018-05-22

    It has been previously shown that the transgenic overexpression of the plant root vacuolar proton pumps H + -ATPase (V-ATPase) and H + -PPase (V-PPase) confer tolerance to drought. Since plant-root endophytic bacteria can also promote drought tolerance, we hypothesize that such promotion can be associated to the enhancement of the host vacuolar proton pumps expression and activity. To test this hypothesis, we selected two endophytic bacteria endowed with an array of in vitro plant growth promoting traits. Their genome sequences confirmed the presence of traits previously shown to confer drought resistance to plants, such as the synthesis of nitric oxide and of organic volatile organic compounds. We used the two strains on pepper (Capsicuum annuum L.) because of its high sensitivity to drought. Under drought conditions, both strains stimulated a larger root system and enhanced the leaves' photosynthetic activity. By testing the expression and activity of the vacuolar proton pumps, H + -ATPase (V-ATPase) and H + -PPase (V-PPase), we found that bacterial colonization enhanced V-PPase only. We conclude that the enhanced expression and activity of V-PPase can be favoured by the colonization of drought-tolerance-inducing bacterial endophytes. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Disruptions in JET

    International Nuclear Information System (INIS)

    Wesson, J.A.; Gill, R.D.; Hugon, M.

    1989-01-01

    In JET, both high density and low-q operation are limited by disruptions. The density limit disruptions are caused initially by impurity radiation. This causes a contraction of the plasma temperature profile and leads to an MHD unstable configuration. There is evidence of magnetic island formation resulting in minor disruptions. After several minor disruptions, a major disruption with a rapid energy quench occurs. This event takes place in two stages. In the first stage there is a loss of energy from the central region. In the second stage there is a more rapid drop to a very low temperature, apparently due to a dramatic increase in impurity radiation. The final current decay takes place in the resulting cold plasma. During the growth of the MHD instability the initially rotating mode is brought to rest. This mode locking is believed to be due to an electromagnetic interaction with the vacuum vessel and external magnetic field asymmetries. The low-q disruptions are remarkable for the precision with which they occur at q ψ = 2. These disruptions do not have extended precursors or minor disruptions. The instability grows and locks rapidly. The energy quench and current decay are generally similar to those of the density limit. (author). 43 refs, 35 figs, 3 tabs

  13. Genetic basis for nitrate resistance in Desulfovibrio strains

    Directory of Open Access Journals (Sweden)

    Hannah eKorte

    2014-04-01

    Full Text Available Nitrate is an inhibitor of sulfate-reducing bacteria (SRB. In petroleum production sites, amendments of nitrate and nitrite are used to prevent SRB production of sulfide that causes souring of oil wells. A better understanding of nitrate stress responses in the model SRB, Desulfovibrio vulgaris Hildenborough and Desulfovibrio alaskensis G20, will strengthen predictions of environmental outcomes. Nitrate inhibition of SRB has historically been considered to result from the generation of small amounts of nitrite, to which SRB are quite sensitive. Here we explored the possibility that nitrate might inhibit SRB by a mechanism other than through nitrite inhibition. We found that nitrate-stressed D. vulgaris cultures grown in lactate-sulfate conditions eventually grew in the presence of high concentrations of nitrate, and their resistance continued through several subcultures. Nitrate consumption was not detected over the course of the experiment, suggesting adaptation to nitrate. With high-throughput genetic approaches employing TnLE-seq for D. vulgaris and a pooled mutant library of D. alaskensis, we determined the fitness of many transposon mutants of both organisms in nitrate stress conditions. We found that several mutants, including homologs present in both strains, had a greatly increased ability to grow in the presence of nitrate but not nitrite. The mutated genes conferring nitrate resistance included the gene encoding the putative Rex transcriptional regulator (DVU0916/Dde_2702, as well as a cluster of genes (DVU0251-DVU0245/Dde_0597-Dde_0605 that is poorly annotated. Follow-up studies with individual D. vulgaris transposon and deletion mutants confirmed high-throughput results. We conclude that, in D. vulgaris and D. alaskensis, nitrate resistance in wild-type cultures is likely conferred by spontaneous mutations. Furthermore, the mechanisms that confer nitrate resistance may be different from those that confer nitrite resistance.

  14. Protein resistance of surfaces modified with oligo(ethylene glycol) aryl diazonium derivatives.

    Science.gov (United States)

    Fairman, Callie; Ginges, Joshua Z; Lowe, Stuart B; Gooding, J Justin

    2013-07-22

    Anti-fouling surfaces are of great importance for reducing background interference in biosensor signals. Oligo(ethylene glycol) (OEG) moieties are commonly used to confer protein resistance on gold, silicon and carbon surfaces. Herein, we report the modification of surfaces using electrochemical deposition of OEG aryl diazonium salts. Using electrochemical and contact angle measurements, the ligand packing density is found to be loose, which supports the findings of the fluorescent protein labelling that aryl diazonium OEGs confer resistance to nonspecific adsorption of proteins albeit lower than alkane thiol-terminated OEGs. In addition to protein resistance, aryl diazonium attachment chemistry results in stable modification. In common with OEG species on gold electrodes, OEGs with distal hydroxyl moieties do confer superior protein resistance to those with a distal methoxy group. This is especially the case for longer derivatives where superior coiling of the OEG chains is possible. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Molecular characterisation of the broad-spectrum resistance to powdery mildew conferred by the Stpk-V gene from the wild species Haynaldia villosa.

    Science.gov (United States)

    Qian, C; Cui, C; Wang, X; Zhou, C; Hu, P; Li, M; Li, R; Xiao, J; Wang, X; Chen, P; Xing, L; Cao, A

    2017-11-01

    A key member of the Pm21 resistance gene locus, Stpk-V, derived from Haynaldia villosa, was shown to confer broad-spectrum resistance to wheat powdery mildew. The present study was planned to investigate the resistance mechanism mediated by Stpk-V. Transcriptome analysis was performed in Stpk-V transgenic plants and recipient Yangmai158 upon Bgt infection, and detailed histochemical observations were conducted. Chromosome location of Stpk-V orthologous genes in Triticeae species was conducted for evolutionary study and over-expression of Stpk-V both in barley and Arabidopsis was performed for functional study. The transcriptome results indicate, at the early infection stage, the ROS pathway, JA pathway and some PR proteins associated with the SA pathway were activated in both the resistant Stpk-V transgenic plants and susceptible Yangmai158. However, at the later infection stage, the genes up-regulated at the early stage were continuously held only in the transgenic plants, and a large number of new genes were also activated in the transgenic plants but not in Yangmai158. Results indicate that sustained activation of the early response genes combined with later-activated genes mediated by Stpk-V is critical for resistance in Stpk-V transgenic plants. Stpk-V orthologous genes in the representative grass species are all located on homologous group six chromosomes, indicating that Stpk-V is an ancient gene in the grasses. Over-expression of Stpk-V enhanced host resistance to powdery mildew in barley but not in Arabidopsis. Our results enable a better understanding of the resistance mechanism mediated by Stpk-V, and establish a solid foundation for its use in cereal breeding as a gene resource. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  16. Transport and stability analyses supporting disruption prediction in high beta KSTAR plasmas

    Science.gov (United States)

    Ahn, J.-H.; Sabbagh, S. A.; Park, Y. S.; Berkery, J. W.; Jiang, Y.; Riquezes, J.; Lee, H. H.; Terzolo, L.; Scott, S. D.; Wang, Z.; Glasser, A. H.

    2017-10-01

    KSTAR plasmas have reached high stability parameters in dedicated experiments, with normalized beta βN exceeding 4.3 at relatively low plasma internal inductance li (βN/li>6). Transport and stability analyses have begun on these plasmas to best understand a disruption-free path toward the design target of βN = 5 while aiming to maximize the non-inductive fraction of these plasmas. Initial analysis using the TRANSP code indicates that the non-inductive current fraction in these plasmas has exceeded 50 percent. The advent of KSTAR kinetic equilibrium reconstructions now allows more accurate computation of the MHD stability of these plasmas. Attention is placed on code validation of mode stability using the PEST-3 and resistive DCON codes. Initial evaluation of these analyses for disruption prediction is made using the disruption event characterization and forecasting (DECAF) code. The present global mode kinetic stability model in DECAF developed for low aspect ratio plasmas is evaluated to determine modifications required for successful disruption prediction of KSTAR plasmas. Work supported by U.S. DoE under contract DE-SC0016614.

  17. Digital disruption ?syndromes.

    Science.gov (United States)

    Sullivan, Clair; Staib, Andrew

    2017-05-18

    The digital transformation of hospitals in Australia is occurring rapidly in order to facilitate innovation and improve efficiency. Rapid transformation can cause temporary disruption of hospital workflows and staff as processes are adapted to the new digital workflows. The aim of this paper is to outline various types of digital disruption and some strategies for effective management. A large tertiary university hospital recently underwent a rapid, successful roll-out of an integrated electronic medical record (EMR). We observed this transformation and propose several digital disruption "syndromes" to assist with understanding and management during digital transformation: digital deceleration, digital transparency, digital hypervigilance, data discordance, digital churn and post-digital 'depression'. These 'syndromes' are defined and discussed in detail. Successful management of this temporary digital disruption is important to ensure a successful transition to a digital platform. What is known about this topic? Digital disruption is defined as the changes facilitated by digital technologies that occur at a pace and magnitude that disrupt established ways of value creation, social interactions, doing business and more generally our thinking. Increasing numbers of Australian hospitals are implementing digital solutions to replace traditional paper-based systems for patient care in order to create opportunities for improved care and efficiencies. Such large scale change has the potential to create transient disruption to workflows and staff. Managing this temporary disruption effectively is an important factor in the successful implementation of an EMR. What does this paper add? A large tertiary university hospital recently underwent a successful rapid roll-out of an integrated electronic medical record (EMR) to become Australia's largest digital hospital over a 3-week period. We observed and assisted with the management of several cultural, behavioural and

  18. Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM).

    Science.gov (United States)

    Vatter, Thomas; Maurer, Andreas; Perovic, Dragan; Kopahnke, Doris; Pillen, Klaus; Ordon, Frank

    2018-01-01

    The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley pathogens with the potential to cause high yield losses through an epidemic spread. The identification of QTL conferring resistance to these pathogens is the basis for targeted breeding approaches aiming to improve stripe rust and leaf rust resistance of modern cultivars. Exploiting the allelic richness of wild barley accessions proved to be a valuable tool to broaden the genetic base of resistance of barley cultivars. In this study, SNP-based nested association mapping (NAM) was performed to map stripe rust and leaf rust resistance QTL in the barley NAM population HEB-25, comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area, followed by calculation of the area under the disease progress curve and the average ordinate during a two-year field trial, a large variability of resistance across and within HEB-25 families was observed. NAM based on 5,715 informative SNPs resulted in the identification of twelve and eleven robust QTL for resistance against stripe rust and leaf rust, respectively. Out of these, eight QTL for stripe rust and two QTL for leaf rust are considered novel showing no overlap with previously reported resistance QTL. Overall, resistance to both pathogens in HEB-25 is most likely due to the accumulation of numerous small effect loci. In addition, the NAM results indicate that the 25 wild donor QTL alleles present in HEB-25 strongly differ in regard to their individual effect on rust resistance. In future, the NAM concept will allow to select and combine individual wild barley alleles from different HEB parents to increase rust resistance in barley. The HEB-25 results will support to unravel the genetic basis of rust resistance in barley, and to improve resistance against stripe rust and leaf rust of modern barley cultivars.

  19. Disrupting Mosquito Reproduction and Parasite Development for Malaria Control.

    Directory of Open Access Journals (Sweden)

    Lauren M Childs

    2016-12-01

    Full Text Available The control of mosquito populations with insecticide treated bed nets and indoor residual sprays remains the cornerstone of malaria reduction and elimination programs. In light of widespread insecticide resistance in mosquitoes, however, alternative strategies for reducing transmission by the mosquito vector are urgently needed, including the identification of safe compounds that affect vectorial capacity via mechanisms that differ from fast-acting insecticides. Here, we show that compounds targeting steroid hormone signaling disrupt multiple biological processes that are key to the ability of mosquitoes to transmit malaria. When an agonist of the steroid hormone 20-hydroxyecdysone (20E is applied to Anopheles gambiae females, which are the dominant malaria mosquito vector in Sub Saharan Africa, it substantially shortens lifespan, prevents insemination and egg production, and significantly blocks Plasmodium falciparum development, three components that are crucial to malaria transmission. Modeling the impact of these effects on Anopheles population dynamics and Plasmodium transmission predicts that disrupting steroid hormone signaling using 20E agonists would affect malaria transmission to a similar extent as insecticides. Manipulating 20E pathways therefore provides a powerful new approach to tackle malaria transmission by the mosquito vector, particularly in areas affected by the spread of insecticide resistance.

  20. Identification of a novel vga(E) gene variant that confers resistance to pleuromutilins, lincosamides and streptogramin A antibiotics in staphylococci of porcine origin.

    Science.gov (United States)

    Li, Jun; Li, Beibei; Wendlandt, Sarah; Schwarz, Stefan; Wang, Yang; Wu, Congming; Ma, Zhiyong; Shen, Jianzhong

    2014-04-01

    To investigate the genetic basis of pleuromutilin resistance in coagulase-negative staphylococci of porcine origin that do not carry known pleuromutilin resistance genes and to determine the localization and genetic environment of the identified resistance gene. Plasmid DNA of two pleuromutilin-resistant Staphylococcus cohnii and Staphylococcus simulans isolates was transformed into Staphylococcus aureus RN4220. The identified resistance plasmids were sequenced completely. The candidate gene for pleuromutilin resistance was cloned into shuttle vector pAM401. S. aureus RN4220 transformants carrying this recombinant shuttle vector were tested for their MICs. S. cohnii isolate SA-7 and S. simulans isolate SSI1 carried the same plasmid of 5584 bp, designated pSA-7. A variant of the vga(E) gene was detected, which encodes a 524 amino acid ATP-binding cassette protein. The variant gene shared 85.7% nucleotide sequence identity and the variant protein 85.3% amino acid sequence identity with the original vga(E) gene and Vga(E) protein, respectively. The Vga(E) variant conferred cross-resistance to pleuromutilins, lincosamides and streptogramin A antibiotics. Plasmid pSA-7 showed an organization similar to that of the apmA-carrying plasmid pKKS49 from methicillin-resistant S. aureus and the dfrK-carrying plasmid pKKS966 from Staphylococcus hyicus. Sequence comparisons suggested that recombination events may have played a role in the acquisition of this vga(E) variant. A novel vga(E) gene variant was identified, which was located on a small plasmid and was not associated with the transposon Tn6133 [in contrast to the original vga(E) gene]. The plasmid location may enable its further dissemination to other staphylococci and possibly also to other bacteria.

  1. Axisymmetric MHD simulation of ITB crash and following disruption dynamics of Tokamak plasmas with high bootstrap current

    International Nuclear Information System (INIS)

    Takei, Nahoko; Tsutsui, Hiroaki; Tsuji-Iio, Shunji; Shimada, Ryuichi; Nakamura, Yukiharu; Kawano, Yasunori; Ozeki, Takahisa; Tobita, Kenji; Sugihara, Masayoshi

    2004-01-01

    Axisymmetric MHD simulation using the Tokamak Simulation Code demonstrated detailed disruption dynamics triggered by a crash of internal transport barrier in high bootstrap current, high β, reversed shear plasmas. Self-consistent time-evolutions of ohmic current bootstrap current and induced loop voltage profiles inside the disrupting plasma were shown from a view point of disruption characterization and mitigation. In contrast with positive shear plasmas, a particular feature of high bootstrap current reversed shear plasma disruption was computed to be a significant change of plasma current profile, which is normally caused due to resistive diffusion of the electric field induced by the crash of internal transport barrier in a region wider than the internal transport barrier. Discussion based on the simulation results was made on the fastest record of the plasma current quench observed in JT-60U reversed shear plasma disruptions. (author)

  2. Drug resistance-related mutations in multidrug-resistant Mycobacterium tuberculosis isolates from diverse geographical regions

    Directory of Open Access Journals (Sweden)

    Senia Rosales-Klintz

    2012-01-01

    Conclusion: This study confirms that there are significant geographical differences in the distribution of resistance-related mutations and suggests that an increased understanding of such differences in the specific distribution of resistance conferring mutations is crucial for development of new, generally applicable, molecular tools for rapid diagnosis of drug-resistant TB. The fact that a narrower distribution of mutations in high MDR-TB prevalence settings was seen suggests that much of the problems in these settings can be a result of an ongoing transmission of certain MDR-TB strains.

  3. In Vivo-Selected Compensatory Mutations Restore the Fitness Cost of Mosaic penA Alleles That Confer Ceftriaxone Resistance in Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    Leah R. Vincent

    2018-04-01

    Full Text Available Resistance to ceftriaxone in Neisseria gonorrhoeae is mainly conferred by mosaic penA alleles that encode penicillin-binding protein 2 (PBP2 variants with markedly lower rates of acylation by ceftriaxone. To assess the impact of these mosaic penA alleles on gonococcal fitness, we introduced the mosaic penA alleles from two ceftriaxone-resistant (Cror clinical isolates (H041 and F89 into a Cros strain (FA19 by allelic exchange and showed that the resultant Cror mutants were significantly outcompeted by the Cros parent strain in vitro and in a murine infection model. Four Cror compensatory mutants of FA19 penA41 were isolated independently from mice that outcompeted the parent strain both in vitro and in vivo. One of these compensatory mutants (LV41C displayed a unique growth profile, with rapid log growth followed by a sharp plateau/gradual decline at stationary phase. Genome sequencing of LV41C revealed a mutation (G348D in the acnB gene encoding the bifunctional aconitate hydratase 2/2 methylisocitrate dehydratase. Introduction of the acnBG348D allele into FA19 penA41 conferred both a growth profile that phenocopied that of LV41C and a fitness advantage, although not as strongly as that exhibited by the original compensatory mutant, suggesting the existence of additional compensatory mutations. The mutant aconitase appears to be a functional knockout with lower activity and expression than wild-type aconitase. Transcriptome sequencing (RNA-seq analysis of FA19 penA41 acnBG348D revealed a large set of upregulated genes involved in carbon and energy metabolism. We conclude that compensatory mutations can be selected in Cror gonococcal strains that increase metabolism to ameliorate their fitness deficit.

  4. N348I in the connection domain of HIV-1 reverse transcriptase confers zidovudine and nevirapine resistance.

    Directory of Open Access Journals (Sweden)

    Soo-Huey Yap

    2007-12-01

    was as large as the viral load increases observed for any of the TAMs. However, this analysis did not account for the simultaneous selection of other RT or protease inhibitor resistance mutations on viral load. To delineate the role of this mutation in RT inhibitor resistance, N348I was introduced into HIV-1 molecular clones containing different genetic backbones. N348I decreased zidovudine susceptibility 2- to 4-fold in the context of wild-type HIV-1 or when combined with TAMs. N348I also decreased susceptibility to nevirapine (7.4-fold and efavirenz (2.5-fold and significantly potentiated resistance to these drugs when combined with K103N. Biochemical analyses of recombinant RT containing N348I provide supporting evidence for the role of this mutation in zidovudine and NNRTI resistance and give some insight into the molecular mechanism of resistance.This study provides the first in vivo evidence that treatment with RT inhibitors can select a mutation (i.e., N348I outside the polymerase domain of the HIV-1 RT that confers dual-class resistance. Its emergence, which can happen early during therapy, may significantly impact on a patient's response to antiretroviral therapies containing zidovudine and nevirapine. This study also provides compelling evidence for investigating the role of other mutations in the connection and RNase H domains in virological failure.

  5. Structure-based methods to predict mutational resistance to diarylpyrimidine non-nucleoside reverse transcriptase inhibitors.

    Science.gov (United States)

    Azeem, Syeda Maryam; Muwonge, Alecia N; Thakkar, Nehaben; Lam, Kristina W; Frey, Kathleen M

    2018-01-01

    Resistance to non-nucleoside reverse transcriptase inhibitors (NNRTIs) is a leading cause of HIV treatment failure. Often included in antiviral therapy, NNRTIs are chemically diverse compounds that bind an allosteric pocket of enzyme target reverse transcriptase (RT). Several new NNRTIs incorporate flexibility in order to compensate for lost interactions with amino acid conferring mutations in RT. Unfortunately, even successful inhibitors such as diarylpyrimidine (DAPY) inhibitor rilpivirine are affected by mutations in RT that confer resistance. In order to aid drug design efforts, it would be efficient and cost effective to pre-evaluate NNRTI compounds in development using a structure-based computational approach. As proof of concept, we applied a residue scan and molecular dynamics strategy using RT crystal structures to predict mutations that confer resistance to DAPYs rilpivirine, etravirine, and investigational microbicide dapivirine. Our predictive values, changes in affinity and stability, are correlative with fold-resistance data for several RT mutants. Consistent with previous studies, mutation K101P is predicted to confer high-level resistance to DAPYs. These findings were further validated using structural analysis, molecular dynamics, and an enzymatic reverse transcription assay. Our results confirm that changes in affinity and stability for mutant complexes are predictive parameters of resistance as validated by experimental and clinical data. In future work, we believe that this computational approach may be useful to predict resistance mutations for inhibitors in development. Published by Elsevier Inc.

  6. F2 screen, inheritance and cross-resistance of field-derived Vip3A resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) collected from Louisiana, USA.

    Science.gov (United States)

    Yang, Fei; Morsello, Shannon; Head, Graham P; Sansone, Chris; Huang, Fangneng; Gilreath, Ryan T; Kerns, David L

    2017-11-28

    Fall armyworm, Spodoptera frugiperda, is a target pest of the Vip3A protein used in pyramided Bt corn and cotton in the USA. In this study, we provide the first documentation of a resistance allele conferring Vip3A resistance in a field-derived population of S. frugiperda from the USA, and characterize its inheritance and cross-resistance. An F 2 screen with 104 two-parent families generated from a field collection of S. frugiperda in Louisiana, USA, resulted in one family carrying a Vip3A resistance allele. The Vip3A-resistant strain (RR) derived from the two-parent family showed a high level of resistance to Vip3A in both diet and whole-plant bioassays, with a resistance ratio of >632.0-fold relative to a susceptible population (SS) based on diet-overlay bioassays. The inheritance of Vip3A resistance was monogenic, autosomal and recessive. Furthermore, the Vip3A resistance conferred no cross-resistance to Cry1F, Cry2Ab2 or Cry2Ae purified proteins, with resistance ratios of 3.5, 5.0 and 1.1, respectively. These findings provide valuable information for characterizing Vip3A resistance, resistance monitoring, and developing effective resistance management strategies for the sustainable use of the Vip3A technology. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM

    DEFF Research Database (Denmark)

    Galimand, Marc; Schmitt, Emmanuelle; Panvert, Michel

    2011-01-01

    methyltransferase, as well as by the previously characterized aac(6')-Ii that encodes a 6'-N-aminoglycoside acetyltransferase. Inactivation of efmM in E. faecium increases susceptibility to the aminoglycosides kanamycin and tobramycin, and, conversely, expression of a recombinant version of efmM in Escherichia coli...... confers resistance to these drugs. The EfmM protein shows significant sequence similarity to E. coli RsmF (previously called YebU), which is a 5-methylcytidine (m(5)C) methyltransferase modifying 16S rRNA nucleotide C1407. The target for EfmM is shown by mass spectrometry to be a neighboring 16S r...

  8. Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli

    NARCIS (Netherlands)

    Achard-Joris, M; van Saparoea, HBV; Driessen, AJM; Bourdineaud, JP; Bourdineaud, Jean-Paul

    2005-01-01

    The human MDR1 gene is induced by cadmium exposure although no resistance to this metal is observed in human cells overexpressing hMDR1. To access the role of MDR proteins in cadmium resistance, human MDR1, Lactococcus lactis lmrA, and Oenococcus oeni omrA were expressed in an Escherichia coli tolC

  9. FISA 2009 - 7th European Commission conference on EURATOM research and training in reactor systems. Conference proceedings

    International Nuclear Information System (INIS)

    Goethem, G. van; Manolatos, P.; Hugon, M.; Bhatnagar, V.; Deffrennes, M.; Webster, S.

    2010-01-01

    The main achievements of the first series of projects under EURATOM FP-7 for nuclear research and training activities (2007 to 2011) were discussed. Approximately 500 participants were registered at FISA 2009 and at the 7 post-conference workshops, representing a wide audience of nuclear scientists and decision makers coming from 32 countries worldwide. The focus of the conference was on scientific and technological research in the following areas: nuclear plant life management for existing reactors (Generation II), severe accident management (Generation III), assessment of future nuclear fission systems (Generation IV), partitioning and transmutation systems (innovative fuels), access to large research infrastructures, and nuclear education and training. Special attention was devoted to the societal and industrial goals of GIF: sustainability, industrial competitiveness, safety and reliability, proliferation resistance. (orig.)

  10. Insight into Two ABC Transporter Families Involved in Lantibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Rebecca Clemens

    2018-01-01

    Full Text Available Antimicrobial peptides, which contain (methyl-lanthionine-rings are called lantibiotics. They are produced by several Gram-positive bacteria and are mainly active against these bacteria. Although these are highly potent antimicrobials, some human pathogenic bacteria express specific ABC transporters that confer resistance and counteract their antimicrobial activity. Two distinct ABC transporter families are known to be involved in this process. These are the Cpr- and Bce-type ABC transporter families, named after their involvement in cationic peptide resistance in Clostridium difficile, and bacitracin efflux in Bacillus subtilis, respectively. Both resistance systems differentiate to each other in terms of the proteins involved. Here, we summarize the current knowledge and describe the divergence as well as the common features present in both the systems to confer lantibiotic resistance.

  11. Selenocysteine modulates resistance to environmental stress and confers anti-aging effects in C. elegans.

    Science.gov (United States)

    Kim, Jun-Sung; Kim, So-Hyeon; Park, Sang-Kyu

    2017-08-01

    The free radical theory of aging suggests that cellular oxidative damage caused by free radicals is a leading cause of aging. In the present study, we examined the effects of a well-known anti-oxidant amino acid derivative, selenocysteine, in response to environmental stress and aging using Caenorhabditis elegans as a model system. The response to oxidative stress induced by H2O2 or ultraviolet irradiation was compared between the untreated control and selenocysteine-treated groups. The effect of selenocysteine on lifespan and fertility was then determined. To examine the effect of selenocysteine on muscle aging, we monitored the change in motility with aging in both the untreated control and selenocysteine-treated groups. Dietary supplementation with selenocysteine significantly increased resistance to oxidative stress. Survival after ultraviolet irradiation was also increased by supplementation with selenocysteine. Treatment with selenocysteine confers a longevity phenotype without an accompanying reduction in fertility, which is frequently observed in lifespan-extending interventions as a trade-off in C. elegans. In addition, the age-related decline in motility was significantly delayed by supplementation of selenocysteine. These findings suggest that dietary supplementation of selenocysteine can modulate response to stressors and lead to lifespan extension, thus supporting the free radical theory of aging.

  12. Substitutions in PBP3 confer resistance to both ampicillin and extended-spectrum cephalosporins in Haemophilus parainfluenzae as revealed by site-directed mutagenesis and gene recombinants

    DEFF Research Database (Denmark)

    Wienholtz, Nanna H; Ciechanowski, Aynur Barut; Nørskov-Lauritsen, Niels

    2017-01-01

    using site-directed mutagenesis. Recombinants were also generated using PCR-amplified ftsI from clinical strains encoding multiple amino acid substitutions. MICs of ampicillin, cefuroxime, cefotaxime and ceftriaxone were determined using Etest ® . Results: Transformation of a susceptible strain with fts...... for recombinants were lower than those for the donor strains. Using site-directed mutagenesis, no single substitution conferred resistance to the tested β-lactams, although V511A increased the MIC of cefuroxime to the intermediate category for intravenous administration. Recombinants encoding N526K...

  13. Activated STAT5 Confers Resistance to Intestinal Injury by Increasing Intestinal Stem Cell Proliferation and Regeneration

    Directory of Open Access Journals (Sweden)

    Shila Gilbert

    2015-02-01

    Full Text Available Intestinal epithelial stem cells (IESCs control the intestinal homeostatic response to inflammation and regeneration. The underlying mechanisms are unclear. Cytokine-STAT5 signaling regulates intestinal epithelial homeostasis and responses to injury. We link STAT5 signaling to IESC replenishment upon injury by depletion or activation of Stat5 transcription factor. We found that depletion of Stat5 led to deregulation of IESC marker expression and decreased LGR5+ IESC proliferation. STAT5-deficient mice exhibited worse intestinal histology and impaired crypt regeneration after γ-irradiation. We generated a transgenic mouse model with inducible expression of constitutively active Stat5. In contrast to Stat5 depletion, activation of STAT5 increased IESC proliferation, accelerated crypt regeneration, and conferred resistance to intestinal injury. Furthermore, ectopic activation of STAT5 in mouse or human stem cells promoted LGR5+ IESC self-renewal. Accordingly, STAT5 promotes IESC proliferation and regeneration to mitigate intestinal inflammation. STAT5 is a functional therapeutic target to improve the IESC regenerative response to gut injury.

  14. On the magnitude and distribution of halo currents during disruptions on MAST

    International Nuclear Information System (INIS)

    Counsell, G F; Martin, R; Pinfold, T; Taylor, D

    2007-01-01

    Recent results from MAST in which all halo current paths are monitored suggest that, during disruptions, the plasma responsible for the generation of halo current acts more as a voltage source than a current source. As a result the resistance of the current path along which the halo current must flow has a profound impact on the magnitude of the current. This may provide opportunities for directing the current away from sensitive components in future devices such as ITER. Analysis of data from over 3800 disruptions shows that the halo currents on MAST are relatively benign, having a peak value less than 25% of the pre-disruption plasma current with a rather symmetric distribution near the centre column (average toroidal peaking factor ∼1.1). The low peaking factor favourably reduces the tilting/bending forces in the region of the centre column, which has limited space for bulky supports

  15. Papers presented at the “International Conference on Fatigue and ...

    Indian Academy of Sciences (India)

    Unknown

    Papers presented at the “International Conference on Fatigue and Fracture of Glasses, Ceramics and Composites”, Materials. Research Society of India, Kolkata, September 1999. FOREWORD. The unique properties of glasses, ceramics and composites such as corrosion resistance, high specific strength, transport ...

  16. Supplementary Material for: Detection of antibiotic resistance in probiotics of dietary supplements

    KAUST Repository

    Wong, Aloysius Tze

    2015-01-01

    Abstract Background Probiotics are live microorganisms that confer nutrition- and health-promoting benefits if consumed in adequate amounts. Concomitant with the demand for natural approaches to maintaining health is an increase in inclusion of probiotics in food and health products. Since probiotic bacteria act as reservoir for antibiotic resistant determinants, the transfer of these genes to pathogens sharing the same intestinal habitat is thus conceivable considering the fact that dietary supplements contain high amounts of often heterogeneous populations of probiotics. Such events can confer pathogens protection against commonly-used drugs. Despite numerous reports of antibiotic resistant probiotics in food and biological sources, the antibiogram of probiotics from dietary supplements remained elusive. Findings Here, we screened five commercially available dietary supplements for resistance towards antibiotics of different classes. Probiotics of all batches of products were resistant towards vancomycin while batch-dependent resistance towards streptomycin, aztreonam, gentamycin and/or ciprofloxacin antibiotics was detected for probiotics of brands Bi and Bn, Bg, and L. Isolates of brand Cn was also resistant towards gentamycin, streptomycin and ciprofloxacin antibiotics. Additionally, we also report a discrepancy between the enumerated viable bacteria amounts and the claims of the manufacturers. Conclusions This short report has highlighted the present of antibiotic resistance in probiotic bacteria from dietary supplements and therefore serves as a platform for further screenings and for in-depth characterization of the resistant determinants and the molecular machinery that confers the resistance.

  17. 17th Workshop on MHD Stability Control: addressing the disruption challenge for ITER

    Science.gov (United States)

    Buttery, Richard

    2013-08-01

    This annual workshop on magnetohydrodynamic stability control was held on 5-7 November 2012 at Columbia University in the city of New York, in the aftermath of a violent hydrodynamic instability event termed 'Hurricane Sandy'. Despite these challenging circumstances, Columbia University managed an excellent meeting, enabling the full participation of the community. This Workshop has been held since 1996 to help in the development of understanding and control of magnetohydrodynamic (MHD) instabilities for future fusion reactors. It covers a wide range of stability topics—from disruptions, to tearing modes, error fields, edge-localized modes (ELMs), resistive wall modes (RWMs) and ideal MHD—spanning many device types (tokamaks, stellarators and reversed field pinches) to identify commonalities in the physics and a means of control. The theme for 2012 was 'addressing the disruption challenge for ITER', and thus the first day had a heavy focus on both the avoidance and mitigation of disruptions in ITER. Key elements included understanding how to apply 3D fields to maintain stability, as well as managing the disruption process itself through mitigating loads in the thermal quench and handling so called 'runaway electrons'. This culminated in a panel discussion on the disruption mitigation strategy for ITER, which noted that heat load asymmetries during the thermal quench appear to be an artifact of MHD processes, and that runaway electron generation may be inevitable, suggesting research should focus on control and dissipation of the runaway beam. The workshop was combined this year with the annual US-Japan MHD Workshop, with a special section looking more deeply at 'Fundamentals of 3D Perturbed Equilibrium Control', with interesting sessions on 3D equilibrium reconstruction, RWM physics, novel control concepts such as non-magnetic sensing, adaptive control, q operation, and the effects of flow. The final day turned to tearing mode interactions, exploring the state

  18. In Silico Assigned Resistance Genes Confer Bifidobacterium with Partial Resistance to Aminoglycosides but Not to Β-Lactams

    Science.gov (United States)

    Fouhy, Fiona; O’Connell Motherway, Mary; Fitzgerald, Gerald F.; Ross, R. Paul; Stanton, Catherine; van Sinderen, Douwe; Cotter, Paul D.

    2013-01-01

    Bifidobacteria have received significant attention due to their contribution to human gut health and the use of specific strains as probiotics. It is thus not surprising that there has also been significant interest with respect to their antibiotic resistance profile. Numerous culture-based studies have demonstrated that bifidobacteria are resistant to the majority of aminoglycosides, but are sensitive to β-lactams. However, limited research exists with respect to the genetic basis for the resistance of bifidobacteria to aminoglycosides. Here we performed an in-depth in silico analysis of putative Bifidobacterium-encoded aminoglycoside resistance proteins and β-lactamases and assess the contribution of these proteins to antibiotic resistance. The in silico-based screen detected putative aminoglycoside and β-lactam resistance proteins across the Bifidobacterium genus. Laboratory-based investigations of a number of representative bifidobacteria strains confirmed that despite containing putative β-lactamases, these strains were sensitive to β-lactams. In contrast, all strains were resistant to the aminoglycosides tested. To assess the contribution of genes encoding putative aminoglycoside resistance proteins in Bifidobacterium sp. two genes, namely Bbr_0651 and Bbr_1586, were targeted for insertional inactivation in B. breve UCC2003. As compared to the wild-type, the UCC2003 insertion mutant strains exhibited decreased resistance to gentamycin, kanamycin and streptomycin. This study highlights the associated risks of relying on the in silico assignment of gene function. Although several putative β-lactam resistance proteins are located in bifidobacteria, their presence does not coincide with resistance to these antibiotics. In contrast however, this approach has resulted in the identification of two loci that contribute to the aminoglycoside resistance of B. breve UCC2003 and, potentially, many other bifidobacteria. PMID:24324818

  19. In silico assigned resistance genes confer Bifidobacterium with partial resistance to aminoglycosides but not to β-lactams.

    Directory of Open Access Journals (Sweden)

    Fiona Fouhy

    Full Text Available Bifidobacteria have received significant attention due to their contribution to human gut health and the use of specific strains as probiotics. It is thus not surprising that there has also been significant interest with respect to their antibiotic resistance profile. Numerous culture-based studies have demonstrated that bifidobacteria are resistant to the majority of aminoglycosides, but are sensitive to β-lactams. However, limited research exists with respect to the genetic basis for the resistance of bifidobacteria to aminoglycosides. Here we performed an in-depth in silico analysis of putative Bifidobacterium-encoded aminoglycoside resistance proteins and β-lactamases and assess the contribution of these proteins to antibiotic resistance. The in silico-based screen detected putative aminoglycoside and β-lactam resistance proteins across the Bifidobacterium genus. Laboratory-based investigations of a number of representative bifidobacteria strains confirmed that despite containing putative β-lactamases, these strains were sensitive to β-lactams. In contrast, all strains were resistant to the aminoglycosides tested. To assess the contribution of genes encoding putative aminoglycoside resistance proteins in Bifidobacterium sp. two genes, namely Bbr_0651 and Bbr_1586, were targeted for insertional inactivation in B. breve UCC2003. As compared to the wild-type, the UCC2003 insertion mutant strains exhibited decreased resistance to gentamycin, kanamycin and streptomycin. This study highlights the associated risks of relying on the in silico assignment of gene function. Although several putative β-lactam resistance proteins are located in bifidobacteria, their presence does not coincide with resistance to these antibiotics. In contrast however, this approach has resulted in the identification of two loci that contribute to the aminoglycoside resistance of B. breve UCC2003 and, potentially, many other bifidobacteria.

  20. Signaling added response-independent reinforcement to assess Pavlovian processes in resistance to change and relapse.

    Science.gov (United States)

    Podlesnik, Christopher A; Fleet, James D

    2014-09-01

    Behavioral momentum theory asserts Pavlovian stimulus-reinforcer relations govern the persistence of operant behavior. Specifically, resistance to conditions of disruption (e.g., extinction, satiation) reflects the relation between discriminative stimuli and the prevailing reinforcement conditions. The present study assessed whether Pavlovian stimulus-reinforcer relations govern resistance to disruption in pigeons by arranging both response-dependent and -independent food reinforcers in two components of a multiple schedule. In one component, discrete-stimulus changes preceded response-independent reinforcers, paralleling methods that reduce Pavlovian conditioned responding to contextual stimuli. Compared to the control component with no added stimuli preceding response-independent reinforcement, response rates increased as discrete-stimulus duration increased (0, 5, 10, and 15 s) across conditions. Although resistance to extinction decreased as stimulus duration increased in the component with the added discrete stimulus, further tests revealed no effect of discrete stimuli, including other disrupters (presession food, intercomponent food, modified extinction) and reinstatement designed to control for generalization decrement. These findings call into question a straightforward conception that the stimulus-reinforcer relations governing resistance to disruption reflect the same processes as Pavlovian conditioning, as asserted by behavioral momentum theory. © Society for the Experimental Analysis of Behavior.

  1. The role of half-transporters in multidrug resistance

    DEFF Research Database (Denmark)

    Bates, S E; Robey, R; Miyake, K

    2001-01-01

    in the role of drug transporters in clinical drug resistance. These newly identified transporters include additional members of the MRP family, ABC2, and a new half-transporter, MXR/BCRP/ABCP1. This half-transporter confers high levels of resistance to mitoxantrone, anthracyclines, and the camptothecins SN-38...

  2. Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture.

    Science.gov (United States)

    Johnson, Timothy A; Stedtfeld, Robert D; Wang, Qiong; Cole, James R; Hashsham, Syed A; Looft, Torey; Zhu, Yong-Guan; Tiedje, James M

    2016-04-12

    Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk. Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance genes if

  3. Random insertion and gene disruption via transposon mutagenesis of Ureaplasma parvum using a mini-transposon plasmid.

    Science.gov (United States)

    Aboklaish, Ali F; Dordet-Frisoni, Emilie; Citti, Christine; Toleman, Mark A; Glass, John I; Spiller, O Brad

    2014-11-01

    While transposon mutagenesis has been successfully used for Mycoplasma spp. to disrupt and determine non-essential genes, previous attempts with Ureaplasma spp. have been unsuccessful. Using a polyethylene glycol-transformation enhancing protocol, we were able to transform three separate serovars of Ureaplasma parvum with a Tn4001-based mini-transposon plasmid containing a gentamicin resistance selection marker. Despite the large degree of homology between Ureaplasma parvum and Ureaplasma urealyticum, all attempts to transform the latter in parallel failed, with the exception of a single clinical U. urealyticum isolate. PCR probing and sequencing were used to confirm transposon insertion into the bacterial genome and identify disrupted genes. Transformation of prototype serovar 3 consistently resulted in transfer only of sequence between the mini-transposon inverted repeats, but some strains showed additional sequence transfer. Transposon insertion occurred randomly in the genome resulting in unique disruption of genes UU047, UU390, UU440, UU450, UU520, UU526, UU582 for single clones from a panel of screened clones. An intergenic insertion between genes UU187 and UU188 was also characterised. Two phenotypic alterations were observed in the mutated strains: Disruption of a DEAD-box RNA helicase (UU582) altered growth kinetics, while the U. urealyticum strain lost resistance to serum attack coincident with disruption of gene UUR10_137 and loss of expression of a 41 kDa protein. Transposon mutagenesis was used successfully to insert single copies of a mini-transposon into the genome and disrupt genes leading to phenotypic changes in Ureaplasma parvum strains. This method can now be used to deliver exogenous genes for expression and determine essential genes for Ureaplasma parvum replication in culture and experimental models. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. International Conference on Biotechnology for Salinity and Drought Tolerance in Plants

    International Nuclear Information System (INIS)

    Malik, K.A.; Mahmood, K.

    2005-01-01

    International Conference on Biotechnology for Salinity and Drought Tolerance in Plants was held from 28-29 March, 2005 at Islamabad, Pakistan. Abstracts of this conference have been presented in this proceeding. There were six technical sessions like 1) Stress Physiology/Ion Transport, 2) Stress Sensing and Signaling, 3) Genomis, Metabolomics and Proteomics, 4) Genetic Engineering, 5) Gene Expression, 6) Field Studies and Management. This seminar was quite useful specially drought resistance and salinity in the soil. Researches exchange their views in the seminar. (A.B.)

  5. Antibiotic combination therapy can select for broad-spectrum multidrug resistance in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Vestergaard, Martin; Paulander, Wilhelm; Marvig, Rasmus L.

    2016-01-01

    with the resistance evolved after single-drug exposure. Combination therapy selected for mutants that displayed broad-spectrum resistance, and a major resistance mechanism was mutational inactivation of the repressor gene mexR that regulates the multidrug efflux operon mexAB–oprM. Deregulation of this operon led...... to a broad-spectrum resistance phenotype that decreased susceptibility to the combination of drugs applied during selection as well as to unrelated antibiotic classes. Mutants isolated after single-drug exposure displayed narrow-spectrum resistance and carried mutations in the MexCD–OprJ efflux pump...... regulator gene nfxB conferring ciprofloxacin resistance, or in the gene encoding the non-essential penicillin-binding protein DacB conferring ceftazidime resistance. Reconstruction of resistance mutations by allelic replacement and in vitro fitness assays revealed that in contrast to single antibiotic use...

  6. IFN-gamma-inducible Irga6 mediates host resistance against Chlamydia trachomatis via autophagy.

    Directory of Open Access Journals (Sweden)

    Munir A Al-Zeer

    Full Text Available Chlamydial infection of the host cell induces Gamma interferon (IFNgamma, a central immunoprotector for humans and mice. The primary defense against Chlamydia infection in the mouse involves the IFNgamma-inducible family of IRG proteins; however, the precise mechanisms mediating the pathogen's elimination are unknown. In this study, we identify Irga6 as an important resistance factor against C. trachomatis, but not C. muridarum, infection in IFNgamma-stimulated mouse embryonic fibroblasts (MEFs. We show that Irga6, Irgd, Irgm2 and Irgm3 accumulate at bacterial inclusions in MEFs upon stimulation with IFNgamma, whereas Irgb6 colocalized in the presence or absence of the cytokine. This accumulation triggers a rerouting of bacterial inclusions to autophagosomes that subsequently fuse to lysosomes for elimination. Autophagy-deficient Atg5-/- MEFs and lysosomal acidification impaired cells surrender to infection. Irgm2, Irgm3 and Irgd still localize to inclusions in IFNgamma-induced Atg5-/- cells, but Irga6 localization is disrupted indicating its pivotal role in pathogen resistance. Irga6-deficient (Irga6-/- MEFs, in which chlamydial growth is enhanced, do not respond to IFNgamma even though Irgb6, Irgd, Irgm2 and Irgm3 still localize to inclusions. Taken together, we identify Irga6 as a necessary factor in conferring host resistance by remodelling a classically nonfusogenic intracellular pathogen to stimulate fusion with autophagosomes, thereby rerouting the intruder to the lysosomal compartment for destruction.

  7. Trimaran Resistance Artificial Neural Network

    Science.gov (United States)

    2011-01-01

    11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Trimaran Resistance Artificial Neural Network Richard...Trimaran Resistance Artificial Neural Network 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e... Artificial Neural Network and is restricted to the center and side-hull configurations tested. The value in the parametric model is that it is able to

  8. Efflux Pump-mediated Drug Resistance in Burkholderia

    Directory of Open Access Journals (Sweden)

    Nicole L Podnecky

    2015-04-01

    Full Text Available Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in B. cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.

  9. Development and characterization of mutant winter wheat (Triticum aestivum L.) accessions resistant to the herbicide quizalofop.

    Science.gov (United States)

    Ostlie, Michael; Haley, Scott D; Anderson, Victoria; Shaner, Dale; Manmathan, Harish; Beil, Craig; Westra, Phillip

    2015-02-01

    New herbicide resistance traits in wheat were produced through the use of induced mutagenesis. While herbicide-resistant crops have become common in many agricultural systems, wheat has seen few introductions of herbicide resistance traits. A population of Hatcher winter wheat treated with ethyl methanesulfonate was screened with quizalofop to identify herbicide-resistant plants. Initial testing identified plants that survived multiple quizalofop applications. A series of experiments were designed to characterize this trait. In greenhouse studies the mutants exhibited high levels of quizalofop resistance compared to non-mutant wheat. Sequencing ACC1 revealed a novel missense mutation causing an alanine to valine change at position 2004 (Alopecurus myosuroides reference sequence). Plants carrying single mutations in wheat's three genomes (A, B, D) were identified. Acetyl co-enzyme A carboxylase in resistant plants was 4- to 10-fold more tolerant to quizalofop. Populations of segregating backcross progenies were developed by crossing each of the three individual mutants with wild-type wheat. Experiments conducted with these populations confirmed largely normal segregation, with each mutant allele conferring an additive level of resistance. Further tests showed that the A genome mutation conferred the greatest resistance and the B genome mutation conferred the least resistance to quizalofop. The non-transgenic herbicide resistance trait identified will enhance weed control strategies in wheat.

  10. Acceleration mechanism of vertical displacement event and its amelioration in tokamak disruptions

    International Nuclear Information System (INIS)

    Nakamura, Yukiharu; Yoshino, Ryuji; Pomphrey, N.; Jardin, S.C.

    1996-01-01

    Vertical displacement events (VDEs), which are frequently observed in disruptive discharges of elongated tokamaks, are investigated using the Tokamak Simulation Code. We show that disruption events such as a sudden plasma pressure drop (β p collapse) and the subsequent plasma current quench (I p quench) can accelerate VDEs due to the adverse destabilizing effect of the resistive shell, which has previously been thought to stabilize VDEs. In a tokamak with a surrounding shell which is asymmetric with respect to the geometric midplane, the I p quench also causes an additional VDE acceleration due to the vertical imbalance of the attractive force. While the shell-geometry characterizes the VDE dynamics, the growth rate of VDEs depends strongly on the magnitude of the β p collapse, the speed of the I p quench and the n-index of the plasma equilibrium just before the disruption. An amelioration of I p quench-induced VDEs was experimentally established in the JT-60U tokamak by optimizing the vertical location of the plasma just prior to the disruption. The JT-60U vacuum vessel is shown to be suitable for preventing the β p collapse-induced VDE. (author)

  11. Chlorpheniramine Analogues Reverse Chloroquine Resistance in Plasmodium falciparum by Inhibiting PfCRT.

    Science.gov (United States)

    Deane, Karen J; Summers, Robert L; Lehane, Adele M; Martin, Rowena E; Barrow, Russell A

    2014-05-08

    The emergence and spread of malaria parasites that are resistant to chloroquine (CQ) has been a disaster for world health. The antihistamine chlorpheniramine (CP) partially resensitizes CQ-resistant (CQR) parasites to CQ but possesses little intrinsic antiplasmodial activity. Mutations in the parasite's CQ resistance transporter (PfCRT) confer resistance to CQ by enabling the protein to transport the drug away from its site of action, and it is thought that resistance-reversers such as CP exert their effect by blocking this CQ transport activity. Here, a series of new structural analogues and homologues of CP have been synthesized. We show that these compounds (along with other in vitro CQ resistance-reversers) inhibit the transport of CQ via a resistance-conferring form of PfCRT expressed in Xenopus laevis oocytes. Furthermore, the level of PfCRT-inhibition was found to correlate well with both the restoration of CQ accumulation and the level of CQ resensitization in CQR parasites.

  12. Insulin Resistance and the Polycystic Ovary Syndrome Revisited: An Update on Mechanisms and Implications

    Science.gov (United States)

    Diamanti-Kandarakis, Evanthia

    2012-01-01

    Polycystic ovary syndrome (PCOS) is now recognized as an important metabolic as well as reproductive disorder conferring substantially increased risk for type 2 diabetes. Affected women have marked insulin resistance, independent of obesity. This article summarizes the state of the science since we last reviewed the field in the Endocrine Reviews in 1997. There is general agreement that obese women with PCOS are insulin resistant, but some groups of lean affected women may have normal insulin sensitivity. There is a post-binding defect in receptor signaling likely due to increased receptor and insulin receptor substrate-1 serine phosphorylation that selectively affects metabolic but not mitogenic pathways in classic insulin target tissues and in the ovary. Constitutive activation of serine kinases in the MAPK-ERK pathway may contribute to resistance to insulin's metabolic actions in skeletal muscle. Insulin functions as a co-gonadotropin through its cognate receptor to modulate ovarian steroidogenesis. Genetic disruption of insulin signaling in the brain has indicated that this pathway is important for ovulation and body weight regulation. These insights have been directly translated into a novel therapy for PCOS with insulin-sensitizing drugs. Furthermore, androgens contribute to insulin resistance in PCOS. PCOS may also have developmental origins due to androgen exposure at critical periods or to intrauterine growth restriction. PCOS is a complex genetic disease, and first-degree relatives have reproductive and metabolic phenotypes. Several PCOS genetic susceptibility loci have been mapped and replicated. Some of the same susceptibility genes contribute to disease risk in Chinese and European PCOS populations, suggesting that PCOS is an ancient trait. PMID:23065822

  13. Burning the Candle at Both Ends: Extramarital Sex as a Precursor of Marital Disruption.

    Science.gov (United States)

    Demaris, Alfred

    2013-11-01

    This study examines several aspects of the association between engaging in extramarital sex and the disruption of one's marriage. In particular: is there a differential effect on disruption depending on the gender of the perpetrator? Is the effect of infidelity primarily due to its negative impact on marital quality and one's resistance to divorce? Are there characteristics of marriages that condition the effect of infidelity? Panel data on 1621 respondents followed from 1980 - 2000 in the Marital Instability Over the Life Course survey were utilized to answer these questions. Interval-censored Cox regression analysis revealed several noteworthy findings. Reports of problems due to extramarital involvement were strongly related to marital disruption, even holding constant the quality of the marriage. Although men were about three times more likely to be the cheating spouse, there was no difference in the effect of an affair on the marriage according to gender of the cheater. Approximately 40% of the effect of extramarital sex on disruption is accounted for by the mediating factors. Two moderators of infidelity's positive effect on disruption were found: the effect was substantially stronger for very religious couples, but weaker when the wife was in the labor force.

  14. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae).

    Science.gov (United States)

    Dang, Kai; Doggett, Stephen L; Veera Singham, G; Lee, Chow-Yang

    2017-06-29

    The worldwide resurgence of bed bugs [both Cimex lectularius L. and Cimex hemipterus (F.)] over the past two decades is believed in large part to be due to the development of insecticide resistance. The transcriptomic and genomic studies since 2010, as well as morphological, biochemical and behavioral studies, have helped insecticide resistance research on bed bugs. Multiple resistance mechanisms, including penetration resistance through thickening or remodelling of the cuticle, metabolic resistance by increased activities of detoxification enzymes (e.g. cytochrome P450 monooxygenases and esterases), and knockdown resistance by kdr mutations, have been experimentally identified as conferring insecticide resistance in bed bugs. Other candidate resistance mechanisms, including behavioral resistance, some types of physiological resistance (e.g. increasing activities of esterases by point mutations, glutathione S-transferase, target site insensitivity including altered AChEs, GABA receptor insensitivity and altered nAChRs), symbiont-mediated resistance and other potential, yet undiscovered mechanisms may exist. This article reviews recent studies of resistance mechanisms and the genes governing insecticide resistance, potential candidate resistance mechanisms, and methods of monitoring insecticide resistance in bed bugs. This article provides an insight into the knowledge essential for the development of both insecticide resistance management (IRM) and integrated pest management (IPM) strategies for successful bed bug management.

  15. Simulations of tokamak disruptions including self-consistent temperature evolution

    International Nuclear Information System (INIS)

    Bondeson, A.

    1986-01-01

    Three-dimensional simulations of tokamaks have been carried out, including self-consistent temperature evolution with a highly anisotropic thermal conductivity. The simulations extend over the transport time-scale and address the question of how disruptive current profiles arise at low-q or high-density operation. Sharply defined disruptive events are triggered by the m/n=2/1 resistive tearing mode, which is mainly affected by local current gradients near the q=2 surface. If the global current gradient between q=2 and q=1 is sufficiently steep, the m=2 mode starts a shock which accelerates towards the q=1 surface, leaving stochastic fields, a flattened temperature profile and turbulent plasma behind it. For slightly weaker global current gradients, a shock may form, but it will dissipate before reaching q=1 and may lead to repetitive minidisruptions which flatten the temperature profile in a region inside the q=2 surface. (author)

  16. Wound Disruption Following Colorectal Operations.

    Science.gov (United States)

    Moghadamyeghaneh, Zhobin; Hanna, Mark H; Carmichael, Joseph C; Mills, Steven; Pigazzi, Alessio; Nguyen, Ninh T; Stamos, Michael J

    2015-12-01

    Postoperative wound disruption is associated with high morbidity and mortality. We sought to identify the risk factors and outcomes of wound disruption following colorectal resection. The American College of Surgeons National Surgical Quality Improvement Program (NSQIP) database was used to examine the clinical data of patients who underwent colorectal resection from 2005 to 2013. Multivariate regression analysis was performed to identify risk factors of wound disruption. We sampled a total of 164,297 patients who underwent colorectal resection. Of these, 2073 (1.3 %) had wound disruption. Patients with wound disruption had significantly higher mortality (5.1 vs. 1.9 %, AOR: 1.46, P = 0.01). The highest risk of wound disruption was seen in patients with wound infection (4.8 vs. 0.9 %, AOR: 4.11, P disruption such as chronic steroid use (AOR: 1.71, P disruption compared to open surgery (AOR: 0.61, P disruption occurs in 1.3 % of colorectal resections, and it correlates with mortality of patients. Wound infection is the strongest predictor of wound disruption. Chronic steroid use, obesity, severe COPD, prolonged operation, non-elective admission, and serum albumin level are strongly associated with wound disruption. Utilization of the laparoscopic approach may decrease the risk of wound disruption when possible.

  17. Disruption Studies in JT-60U

    International Nuclear Information System (INIS)

    Kawano, Y.; Yoshino, R.; Neyatani, Y.; Nakamura, Y.; Tokuda, S.; Tamai, H.

    2002-01-01

    Intensive studies on the physics of disruptions and developments of avoidance/mitigation methods of disruption-related phenomena have being carried out in JT-60U. The characteristics of the disruption sequence were well understood from the observation of the relationship between the heat pulse onto divertor plates during thermal quench and the impurity influx into the plasma, which determined the speed of the following current quench. A fast shutdown was first demonstrated by injecting impurity ice pellets to the plasma and intensively reducing the heat flux on first wall. The halo current and its toroidal asymmetry were precisely measured, and the halo current database was made for ITER in a wide parameter range. It was found that TPF x I h /I p0 was 0.52 at the maximum in a large tokamak like the JT-60U, whereas the higher factor of 0.75 had been observed in medium-sized tokamaks such as Alcator C-Mod and ASDEX-Upgrade. The vertical displacement event (VDE) at the start of the current quench was carefully investigated, and the neutral point where the VDE hardly occurs was discovered. MHD simulations clarified the onset mechanisms of the VDE, in which the eddy current effect of the up-down asymmetric resistive shell was essential. The real-time Z j measurement was improved for avoiding VDEs during slow current quench, and plasma-wall interaction was avoided by a well-optimized plasma equilibrium control. Magnetic fluctuations that were spontaneously generated at the disruption and/or enhanced by the externally applied helical field have been shown to avoid the generation of runaway electrons. Numerical analysis clarified an adequate rate of collisionless loss of runaway electrons in turbulent magnetic fields, which was consistent with the avoidance of runaway electron generation by magnetic fluctuations observed in JT-60U. Once generated, runaway electrons were suppressed when the safety factor at the plasma surface was reduced to 3 or 2

  18. Antibacterial efficacy of Nisin, Pediocin 34 and Enterocin FH99 against Listeria monocytogenes and cross resistance of its bacteriocin resistant variants to common food preservatives.

    Science.gov (United States)

    Kaur, G; Singh, T P; Malik, R K

    2013-01-01

    Antilisterial efficiency of three bacteriocins, viz, Nisin, Pediocin 34 and Enterocin FH99 was tested individually and in combination against Listeria mononcytogenes ATCC 53135. A greater antibacterial effect was observed when the bacteriocins were combined in pairs, indicating that the use of more than one LAB bacteriocin in combination have a higher antibacterial action than when used individually. Variants of Listeria monocytogenes ATCC 53135 resistant to Nisin, Pediocin 34 and Enterocin FH99 were developed. Bacteriocin cross-resistance of wild type and their corresponding resistant variants were assessed and results showed that resistance to a bacteriocin may extend to other bacteriocins within the same class. Resistance to Pediocin 34 conferred cross resistance to Enterocin FH 99 but not to Nisin. Similarly resistance to Enterocin FH99 conferred cross resistance to Pediocin 34 but not to Nisin. Also, the sensitivity of Nisin, Pediocin 34 and Enterocin FH99 resistant variants of Listeria monocytogenes to low pH, salt, sodium nitrite, and potassium sorbate was assayed in broth and compared to the parental wild-type strain. The Nisin, Pediocin 34 and Enterocin FH99 resistant variants did not have intrinsic resistance to low pH, sodium chloride, potassium sorbate, or sodium nitrite. In no case were the bacteriocin resistant Listeria monocytogenes variants examined were more resistant to inhibitors than the parental strains.

  19. Antibacterial efficacy of Nisin, Pediocin 34 and Enterocin FH99 against Listeria monocytogenes and cross resistance of its bacteriocin resistant variants to common food preservatives

    Directory of Open Access Journals (Sweden)

    G. Kaur

    2013-01-01

    Full Text Available Antilisterial efficiency of three bacteriocins, viz, Nisin, Pediocin 34 and Enterocin FH99 was tested individually and in combination against Listeria mononcytogenes ATCC 53135. A greater antibacterial effect was observed when the bacteriocins were combined in pairs, indicating that the use of more than one LAB bacteriocin in combination have a higher antibacterial action than when used individually. Variants of Listeria monocytogenes ATCC 53135 resistant to Nisin, Pediocin 34 and Enterocin FH99 were developed. Bacteriocin cross-resistance of wild type and their corresponding resistant variants were assessed and results showed that resistance to a bacteriocin may extend to other bacteriocins within the same class. Resistance to Pediocin 34 conferred cross resistance to Enterocin FH 99 but not to Nisin. Similarly resistance to Enterocin FH99 conferred cross resistance to Pediocin 34 but not to Nisin. Also, the sensitivity of Nisin, Pediocin 34 and Enterocin FH99 resistant variants of Listeria monocytogenes to low pH, salt, sodium nitrite, and potassium sorbate was assayed in broth and compared to the parental wild-type strain. The Nisin, Pediocin 34 and Enterocin FH99 resistant variants did not have intrinsic resistance to low pH, sodium chloride, potassium sorbate, or sodium nitrite. In no case were the bacteriocin resistant Listeria monocytogenes variants examined were more resistant to inhibitors than the parental strains.

  20. Factors That Cause Trimethoprim Resistance in Streptococcus pyogenes

    Science.gov (United States)

    Bergmann, René; van der Linden, Mark; Chhatwal, Gursharan S.

    2014-01-01

    The use of trimethoprim in treatment of Streptococcus pyogenes infections has long been discouraged because it has been widely believed that this pathogen is resistant to this antibiotic. To gain more insight into the extent and molecular basis of trimethoprim resistance in S. pyogenes, we tested isolates from India and Germany and sought the factors that conferred the resistance. Resistant isolates were identified in tests for trimethoprim or trimethoprim-sulfamethoxazole (SXT) susceptibility. Resistant isolates were screened for the known horizontally transferable trimethoprim-insensitive dihydrofolate reductase (dfr) genes dfrG, dfrF, dfrA, dfrD, and dfrK. The nucleotide sequence of the intrinsic dfr gene was determined for resistant isolates lacking the horizontally transferable genes. Based on tentative criteria, 69 out of 268 isolates (25.7%) from India were resistant to trimethoprim. Occurring in 42 of the 69 resistant isolates (60.9%), dfrF appeared more frequently than dfrG (23 isolates; 33.3%) in India. The dfrF gene was also present in a collection of SXT-resistant isolates from Germany, in which it was the only detected trimethoprim resistance factor. The dfrF gene caused resistance in 4 out of 5 trimethoprim-resistant isolates from the German collection. An amino acid substitution in the intrinsic dihydrofolate reductase known from trimethoprim-resistant Streptococcus pneumoniae conferred resistance to S. pyogenes isolates of emm type 102.2, which lacked other aforementioned dfr genes. Trimethoprim may be more useful in treatment of S. pyogenes infections than previously thought. However, the factors described herein may lead to the rapid development and spread of resistance of S. pyogenes to this antibiotic agent. PMID:24492367

  1. Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM)

    Science.gov (United States)

    Vatter, Thomas; Maurer, Andreas; Perovic, Dragan; Kopahnke, Doris; Pillen, Klaus

    2018-01-01

    The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley pathogens with the potential to cause high yield losses through an epidemic spread. The identification of QTL conferring resistance to these pathogens is the basis for targeted breeding approaches aiming to improve stripe rust and leaf rust resistance of modern cultivars. Exploiting the allelic richness of wild barley accessions proved to be a valuable tool to broaden the genetic base of resistance of barley cultivars. In this study, SNP-based nested association mapping (NAM) was performed to map stripe rust and leaf rust resistance QTL in the barley NAM population HEB-25, comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area, followed by calculation of the area under the disease progress curve and the average ordinate during a two-year field trial, a large variability of resistance across and within HEB-25 families was observed. NAM based on 5,715 informative SNPs resulted in the identification of twelve and eleven robust QTL for resistance against stripe rust and leaf rust, respectively. Out of these, eight QTL for stripe rust and two QTL for leaf rust are considered novel showing no overlap with previously reported resistance QTL. Overall, resistance to both pathogens in HEB-25 is most likely due to the accumulation of numerous small effect loci. In addition, the NAM results indicate that the 25 wild donor QTL alleles present in HEB-25 strongly differ in regard to their individual effect on rust resistance. In future, the NAM concept will allow to select and combine individual wild barley alleles from different HEB parents to increase rust resistance in barley. The HEB-25 results will support to unravel the genetic basis of rust resistance in barley, and to improve resistance against stripe rust and leaf rust of modern barley cultivars. PMID:29370232

  2. Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei and leaf rust (Puccinia hordei in barley using nested association mapping (NAM.

    Directory of Open Access Journals (Sweden)

    Thomas Vatter

    Full Text Available The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley pathogens with the potential to cause high yield losses through an epidemic spread. The identification of QTL conferring resistance to these pathogens is the basis for targeted breeding approaches aiming to improve stripe rust and leaf rust resistance of modern cultivars. Exploiting the allelic richness of wild barley accessions proved to be a valuable tool to broaden the genetic base of resistance of barley cultivars. In this study, SNP-based nested association mapping (NAM was performed to map stripe rust and leaf rust resistance QTL in the barley NAM population HEB-25, comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area, followed by calculation of the area under the disease progress curve and the average ordinate during a two-year field trial, a large variability of resistance across and within HEB-25 families was observed. NAM based on 5,715 informative SNPs resulted in the identification of twelve and eleven robust QTL for resistance against stripe rust and leaf rust, respectively. Out of these, eight QTL for stripe rust and two QTL for leaf rust are considered novel showing no overlap with previously reported resistance QTL. Overall, resistance to both pathogens in HEB-25 is most likely due to the accumulation of numerous small effect loci. In addition, the NAM results indicate that the 25 wild donor QTL alleles present in HEB-25 strongly differ in regard to their individual effect on rust resistance. In future, the NAM concept will allow to select and combine individual wild barley alleles from different HEB parents to increase rust resistance in barley. The HEB-25 results will support to unravel the genetic basis of rust resistance in barley, and to improve resistance against stripe rust and leaf rust of modern barley cultivars.

  3. Gene inactivation in the plant pathogen Glomerella cingulata: three strategies for the disruption of the pectin lyase gene pnlA.

    Science.gov (United States)

    Bowen, J K; Templeton, M D; Sharrock, K R; Crowhurst, R N; Rikkerink, E H

    1995-01-20

    The feasibility of performing routine transformation-mediated mutagenesis in Glomerella cingulata was analysed by adopting three one-step gene disruption strategies targeted at the pectin lyase gene pnlA. The efficiencies of disruption following transformation with gene replacement- or gene truncation-disruption vectors were compared. To effect replacement-disruption, G. cingulata was transformed with a vector carrying DNA from the pnlA locus in which the majority of the coding sequence had been replaced by the gene for hygromycin B resistance. Two of the five transformants investigated contained an inactivated pnlA gene (pnlA-); both also contained ectopically integrated vector sequences. The efficacy of gene disruption by transformation with two gene truncation-disruption vectors was also assessed. Both vectors carried at 5' and 3' truncated copy of the pnlA coding sequence, adjacent to the gene for hygromycin B resistance. The promoter sequences controlling the selectable marker differed in the two vectors. In one vector the homologous G. cingulata gpdA promoter controlled hygromycin B phosphotransferase expression (homologous truncation vector), whereas in the second vector promoter elements were from the Aspergillus nidulans gpdA gene (heterologous truncation vector). Following transformation with the homologous truncation vector, nine transformants were analysed by Southern hybridisation; no transformants contained a disrupted pnlA gene. Of nineteen heterologous truncation vector transformants, three contained a disrupted pnlA gene; Southern analysis revealed single integrations of vector sequence at pnlA in two of these transformants. pnlA mRNA was not detected by Northern hybridisation in pnlA- transformants. pnlA- transformants failed to produce a PNLA protein with a pI identical to one normally detected in wild-type isolates by silver and activity staining of isoelectric focussing gels. Pathogenesis on Capsicum and apple was unaffected by disruption of

  4. Successor oscillations of internal disruptive instabilities in the PLT tokamak

    International Nuclear Information System (INIS)

    Sauthoff, N.R.; von Goeler, S.; Eames, D.R.; Stodiek, W.

    1979-06-01

    The experimentally observed persistence of the m = 1 mode following an internal disruption is described. The hot central region appears to spiral outward, being pared by interception with the radius of q = 1 (as deduced from the radial extend of the m = 1 mode). The outward motion of the axis can be arrested and the surviving helical filament can subsequently spiral inward, rather than being annihilated as expected from nonlinear resistive internal kink mode simulations

  5. IncA/C plasmids conferring high azithromycin resistance in vibrio cholerae.

    Science.gov (United States)

    Wang, Ruibai; Liu, Haican; Zhao, Xiuqin; Li, Jie; Wan, Kanglin

    2018-01-01

    Azithromycin (AZM) is a clinically important antibiotic against Vibrio cholerae, especially for inhibiting V. cholerae colonisation of the intestine and for the treatment of severe cholera in children and pregnant women. An IncA/C plasmid was isolated from two high minimum inhibitory concentration (MIC) AZM-resistant V. cholerae strains of the two mainly pathogenic serogroups (O1 and O139) isolated in China. In the 172 predicted open reading frames (ORFs), 16 genes were related to antibiotic resistance, of which 5 were well-defined genes associated with macrolide resistance. The five macrolide resistance genes distributed in two clusters, mphR-mrx-mph(K) and mel-mph2, flanked by insertion sequence elements and involving two kinds of resistance mechanism. Deletion of the complete region of the two clusters deceased the AZM MIC from ≥64 µg/mL to ≤0.5 µg/mL. This IncA/C plasmid shows great ability to accumulate antibiotic resistance genes. In addition to 11 resistance genes to other antibiotics, 5 macrolide resistance genes with different function were gathered repeatedly through transposition on one plasmid. This genotype could not be simply explained by antibiotic stress applied on the host from the environment or treatment. These phosphorylases and transmembrane transporters might be involved in the transport and metabolism of other non-antibiotic substances, enabling this kind of plasmid to propagate better in the host. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  6. Development of an ITER prototype disruption mitigation valve

    Energy Technology Data Exchange (ETDEWEB)

    Czymek, G., E-mail: g.czymek@fz-juelich.de [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, D52425 Jülich (Germany); Giesen, B., E-mail: ingenieurbuero.giesen@gmx.de [IBG, Sibertstr. 22, D-52525 Heinsberg (Germany); Charl, A.; Panin, A.; Hiller, A.; Nicolai, D.; Neubauer, O.; Koslowski, H.R.; Sandri, N. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, D52425 Jülich (Germany)

    2015-10-15

    Highlights: • An ITER-DMV prototype for 100 bar, D = 80 mm, opening time 3.5 ms, is ready for fabrication. • The vacuum part is sealed against the working gas by stainless steel bellows for 110 bar. • The conical Laval gas outlet allows maximal mass flow rate. • The eddy current drive turn ratio was optimized for low tilting moment. • Polyimide is used for the head sealing, the decelerator and for the bearing of the guide tube. - Abstract: Disruptions in tokamaks seem to be unavoidable. Consequences of disruptions are (i) high heat loads on plasma-facing components, (ii) large forces on the vacuum vessel, and (iii) the generation of runaway electron beams. In ITER, the thermal energy of the plasma needs to be evenly distributed on the first wall in order to prevent melting, forces from vertical displacement events have to be minimized, and the generation of runaway electrons suppressed. Massive gas injection using fast valves is a concept for disruption mitigation which is presently being explored in many tokamaks. Fast disruption mitigation valves based on an electromagnetic eddy current drive have been developed in Jülich since the 1990s and models of various sizes have been built and are in operation in the TEXTOR, MAST, and JET tokamaks. A disruption mitigation valve for ITER is of necessity larger with an estimated injected gas volume of ∼20 kPa m{sup 3}[7] for runaway electron suppression and all materials used have to be resistant to much higher levels of neutron and gamma radiation than in existing tokamaks. During the last 5 years, the concept for an ITER prototype disruption mitigation valve has been developed up to the stage that a fully functional valve could be built and tested. Special emphasis was given to the development and functional testing of some critical items: (i) the injection chamber seal, (ii) the piston seal, (iii) the eddy current drive, and (iv) a braking mechanism to avoid too fast closure of the valve, which could damage

  7. Endocrine Disrupting Chemicals (EDCs)

    Science.gov (United States)

    ... Center Pacientes y Cuidadores Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone ... Hormones and Health › Endocrine Disrupting Chemicals (EDCs) The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) EDCs Myth vs. ...

  8. Rapamycin exerts antifungal activity in vitro and in vivo against Mucor circinelloides via FKBP12-dependent inhibition of Tor.

    Science.gov (United States)

    Bastidas, Robert J; Shertz, Cecelia A; Lee, Soo Chan; Heitman, Joseph; Cardenas, Maria E

    2012-03-01

    The zygomycete Mucor circinelloides is an opportunistic fungal pathogen that commonly infects patients with malignancies, diabetes mellitus, and solid organ transplants. Despite the widespread use of antifungal therapy in the management of zygomycosis, the incidence of infections continues to rise among immunocompromised individuals. In this study, we established that the target and mechanism of antifungal action of the immunosuppressant rapamycin in M. circinelloides are mediated via conserved complexes with FKBP12 and a Tor homolog. We found that spontaneous mutations that disrupted conserved residues in FKBP12 conferred rapamycin and FK506 resistance. Disruption of the FKBP12-encoding gene, fkbA, also conferred rapamycin and FK506 resistance. Expression of M. circinelloides FKBP12 (McFKBP12) complemented a Saccharomyces cerevisiae mutant strain lacking FKBP12 to restore rapamycin sensitivity. Expression of the McTor FKBP12-rapamycin binding (FRB) domain conferred rapamycin resistance in S. cerevisiae, and McFKBP12 interacted in a rapamycin-dependent fashion with the McTor FRB domain in a yeast two-hybrid assay, validating McFKBP12 and McTor as conserved targets of rapamycin. We showed that in vitro, rapamycin exhibited potent growth inhibitory activity against M. circinelloides. In a Galleria mellonella model of systemic mucormycosis, rapamycin improved survival by 50%, suggesting that rapamycin and nonimmunosuppressive analogs have the potential to be developed as novel antifungal therapies for treatment of patients with mucormycosis.

  9. A stilbene synthase allele from a Chinese wild grapevine confers resistance to powdery mildew by recruiting salicylic acid signalling for efficient defence.

    Science.gov (United States)

    Jiao, Yuntong; Xu, Weirong; Duan, Dong; Wang, Yuejin; Nick, Peter

    2016-10-01

    Stilbenes are central phytoalexins in Vitis, and induction of the key enzyme stilbene synthase (STS) is pivotal for disease resistance. Here, we address the potential for breeding resistance using an STS allele isolated from Chinese wild grapevine Vitis pseudoreticulata (VpSTS) by comparison with its homologue from Vitis vinifera cv. 'Carigane' (VvSTS). Although the coding regions of both alleles are very similar (>99% identity on the amino acid level), the promoter regions are significantly different. By expression in Arabidopsis as a heterologous system, we show that the allele from the wild Chinese grapevine can confer accumulation of stilbenes and resistance against the powdery mildew Golovinomyces cichoracearum, whereas the allele from the vinifera cultivar cannot. To dissect the upstream signalling driving the activation of this promoter, we used a dual-luciferase reporter system in a grapevine cell culture. We show elevated responsiveness of the promoter from the wild grape to salicylic acid (SA) and to the pathogen-associated molecular pattern (PAMP) flg22, equal induction of both alleles by jasmonic acid (JA), and a lack of response to the cell death-inducing elicitor Harpin. This elevated SA response of the VpSTS promoter depends on calcium influx, oxidative burst by RboH, mitogen-activated protein kinase (MAPK) signalling, and JA synthesis. We integrate the data in the context of a model where the resistance of V. pseudoreticulata is linked to a more efficient recruitment of SA signalling for phytoalexin synthesis. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Precise gene editing of chicken Na+/H+ exchange type 1 (chNHE1) confers resistance to avian leukosis virus subgroup J (ALV-J).

    Science.gov (United States)

    Lee, Hong Jo; Lee, Kyung Youn; Jung, Kyung Min; Park, Kyung Je; Lee, Ko On; Suh, Jeong-Yong; Yao, Yongxiu; Nair, Venugopal; Han, Jae Yong

    2017-12-01

    Avian leukosis virus subgroup J (ALV-J), first isolated in the late 1980s, has caused economic losses to the poultry industry in many countries. As all chicken lines studied to date are susceptible to ALV infection, there is enormous interest in developing resistant chicken lines. The ALV-J receptor, chicken Na + /H + exchange 1 (chNHE1) and the critical amino acid sequences involved in viral attachment and entry have already been characterized. However, there are no reported attempts to induce resistance to the virus by targeted genome modification of the receptor sequences. In an attempt to induce resistance to ALV-J infection, we used clustered regularly interspaced short palindromic repeats (CRISPR)-associated (CRISPR/Cas9)-based genome editing approaches to modify critical residues of the chNHE1 receptor in chicken cells. The susceptibility of the modified cell lines to ALV-J infection was examined using enhanced green fluorescent protein (EGFP)-expressing marker viruses. We showed that modifying the chNHE1 receptor by artificially generating a premature stop codon induced absolute resistance to viral infection, with mutations of the tryptophan residue at position 38 (Trp38) being very critical. Single-stranded oligodeoxynucleotide (ssODN)-mediated targeted recombination of the Trp38 region revealed that deletions involving the Trp38 residue were most effective in conferring resistance to ALV-J. Moreover, protein structure analysis of the chNHE1 receptor sequence suggested that its intrinsically disordered region undergoes local conformational changes through genetic alteration. Collectively, these results demonstrate that targeted mutations on chNHE1 alter the susceptibility to ALV-J and the technique is expected to contribute to develop disease-resistant chicken lines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Systematic Functional Characterization of Resistance to PI3K Inhibition in Breast Cancer.

    Science.gov (United States)

    Le, Xiuning; Antony, Rajee; Razavi, Pedram; Treacy, Daniel J; Luo, Flora; Ghandi, Mahmoud; Castel, Pau; Scaltriti, Maurizio; Baselga, Jose; Garraway, Levi A

    2016-10-01

    PIK3CA (which encodes the PI3K alpha isoform) is the most frequently mutated oncogene in breast cancer. Small-molecule PI3K inhibitors have shown promise in clinical trials; however, intrinsic and acquired resistance limits their utility. We used a systematic gain-of-function approach to identify genes whose upregulation confers resistance to the PI3K inhibitor BYL719 in breast cancer cells. Among the validated resistance genes, Proviral Insertion site in Murine leukemia virus (PIM) kinases conferred resistance by maintaining downstream PI3K effector activation in an AKT-independent manner. Concurrent pharmacologic inhibition of PIM and PI3K overcame this resistance mechanism. We also observed increased PIM expression and activity in a subset of breast cancer biopsies with clinical resistance to PI3K inhibitors. PIM1 overexpression was mutually exclusive with PIK3CA mutation in treatment-naïve breast cancers, suggesting downstream functional redundancy. Together, these results offer new insights into resistance to PI3K inhibitors and support clinical studies of combined PIM/PI3K inhibition in a subset of PIK3CA-mutant cancers. PIM kinase overexpression confers resistance to small-molecule PI3K inhibitors. Combined inhibition of PIM and PI3K may therefore be warranted in a subset of breast cancers. Cancer Discov; 6(10); 1134-47. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 1069. ©2016 American Association for Cancer Research.

  12. Underpinning sustainable vector control through informed insecticide resistance management.

    Directory of Open Access Journals (Sweden)

    Edward K Thomsen

    Full Text Available There has been rapid scale-up of malaria vector control in the last ten years. Both of the primary control strategies, long-lasting pyrethroid treated nets and indoor residual spraying, rely on the use of a limited number of insecticides. Insecticide resistance, as measured by bioassay, has rapidly increased in prevalence and has come to the forefront as an issue that needs to be addressed to maintain the sustainability of malaria control and the drive to elimination. Zambia's programme reported high levels of resistance to the insecticides it used in 2010, and, as a result, increased its investment in resistance monitoring to support informed resistance management decisions.A country-wide survey on insecticide resistance in Zambian malaria vectors was performed using WHO bioassays to detect resistant phenotypes. Molecular techniques were used to detect target-site mutations and microarray to detect metabolic resistance mechanisms. Anopheles gambiae s.s. was resistant to pyrethroids, DDT and carbamates, with potential organophosphate resistance in one population. The resistant phenotypes were conferred by both target-site and metabolic mechanisms. Anopheles funestus s.s. was largely resistant to pyrethroids and carbamates, with potential resistance to DDT in two locations. The resistant phenotypes were conferred by elevated levels of cytochrome p450s.Currently, the Zambia National Malaria Control Centre is using these results to inform their vector control strategy. The methods employed here can serve as a template to all malaria-endemic countries striving to create a sustainable insecticide resistance management plan.

  13. Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other Firmicutes.

    Science.gov (United States)

    Schwarz, Stefan; Shen, Jianzhong; Wendlandt, Sarah; Fessler, Andrea T; Wang, Yang; Kadlec, Kristina; Wu, Cong-Ming

    2014-12-01

    In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes.

  14. Disruptions in the TFTR tokamak

    International Nuclear Information System (INIS)

    Janos, A.; Fredrickson, E.D.; McGuire, K.; Batha, S.H.; Bell, M.G.; Bitter, M.; Budny, R.; Bush, C.E.; Efthimion, P.C.; Hawryluk, R.J.; Hill, K.W.; Hosea, J.; Jobes, F.C.; Johnson, D.W.; Levinton, F.; Mansfield, D.; Meade, D.; Medley, S.S.; Monticello, D.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Park, H.; Park, W.; Post, D.E.; Schivell, J.; Strachan, J.D.; Taylor, G.; Ulrickson, M.; Goeler, S. von; Wilfrid, E.; Wong, K.L.; Yamada, M.; Young, K.M.; Zarnstorff, M.C.; Zweben, S.J.; Drake, J.F.; Kleva, R.G.; Fleischmann, H.H.

    1993-03-01

    For a successful reactor, it will be useful to predict the occurrence of disruptions and to understand disruption effects including how a plasma disrupts onto the wall and how reproducibly it does so. Studies of disruptions on TFTR at both high-β pol and high-density have shown that, in both types, a fast growing m/n=1/1 mode plays an important role. In highdensity disruptions, a newly observed fast m/n = 1/1 mode occurs early in the thermal decay phase. For the first time in TFTR q-profile measurements just prior to disruptions have been made. Experimental studies of heat deposition patterns on the first wall of TFTR due to disruptions have provided information on MHD phenomena prior to or during the disruption, how the energy is released to the wall, and the reproducibility of the heat loads from disruptions. This information is important in the design of future devices such as ITER. Several new processes of runaway electron generation are theoretically suggested and their application to TFTR and ITER is considered, together with a preliminary assessment of x-ray data from runaways generated during disruptions

  15. Agrobacterium mediated transformation of brassica juncea (l.) czern with chitinase gene conferring resistance against fungal infections

    International Nuclear Information System (INIS)

    Ahmad, B.; Ambreen, S.; Khan, I.

    2015-01-01

    Brassica juncea (Czern and Coss., L.) is an important oilseed crop. Since it is attacked by several bacterial and fungal diseases, therefore, we developed an easy and simple protocol for the regeneration and transformation of B. juncea variety RAYA ANMOL to give rise to transgenic plants conferring resistance against various fungal diseases. The transformation was carried out using Agrobacterium with Chitinase gene. This gene was isolated from Streptomyces griseus HUT6037. We used two types of explants for transformation i.e. hypocotyls and cotyledons. Only hypocotyls explants showed good results regarding callus initiation. Different hormonal concentrations were applied i.e. BAP 2, 4 and 6 mgL-1 and NAA 0.1, 0.2 and 0.3 mgL-1. However, high transformation efficiency was observed by supplementing the medium with combination of 2 mgL-1 BAP and 0.2 mgL-1 for initiation of callus. Similarly 10 mgL-1 kanamycin and 200 mgL-1 cefotaxime also proved successful for the selection of transformed callus. In order to confirm the presence of transgenic callus Polymerase chain reaction was performed using specific primers for Chitinase gene. (author)

  16. Circumvention of camptothecin-induced resistance during the adaptive cellular stress response.

    Science.gov (United States)

    Tiligada, Ekaterini; Papamichael, Konstantinos; Vovou, Ioanna; Delitheos, Andreas

    2006-01-01

    Camptothecin-11 (CPT-11) induces the adaptive stress response in yeast, conferring resistance via not fully characterized mechanisms. This study aimed at exploring, pharmacologically, the mechanisms underlying the CPT-11-induced resistance in yeast. Post-logarithmic yeast cultures were submitted to heat shock following preconditioning with suramin and with CPT-11, either alone or in combination with suramin, cycloheximide, sodium molybdate, okadaic acid, or verapamil. The stress response was evaluated by determining cell viability after heat shock. Preconditioning with CPT-11 or suramin conferred thermotolerance to yeast cells. Co-administration of CPT-11 with suramin, cycloheximide or okadaic acid reversed the CPT-11-induced thermotolerant phenotype, while sodium molybdate and verapamil had no effect on CPT-11-induced resistance. The antagonistic effect of the thermotolerance-inducers and the possible contribution of topoisomerase II activity and post-translational modifications mediated by the phosphatases PP1/2A in CPT-11-induced resistance may have important implications on the acquisition of resistance to stress in eukaryotic cells.

  17. Nuclear and allied approaches in improvement of wheat for disease and pest resistance

    Energy Technology Data Exchange (ETDEWEB)

    Sawhney, R N

    1987-09-01

    The paper attempts to review information on the role of physical and chemical mutagens used directly and indirectly in the improvement of wheat for disease and pest resistance. The illustrations relate to transfer of many useful genes for resistance to rusts and pest from alien sources to Triticum aestivum. Popular wheats have been rectified for resistance to rusts mostly without any negative effects on yield potential. The mutation approach has also been successful in the development of multilines. Multiline constituting mutant components conferring simultaneous resistance to more than one rust pathogen has an additional value. The use of induced mutagenesis in breaking linkage between the genes conferring resistance and other genes for undesirable characters has been described. New disease resistant mutant variations with additional changes of positive effect have been obtained for practical utilization with widening the genetic base of future breeding programmes. (author). 56 refs.

  18. Structural Implications of Mutations Conferring Rifampin Resistance in Mycobacterium leprae.

    Science.gov (United States)

    Vedithi, Sundeep Chaitanya; Malhotra, Sony; Das, Madhusmita; Daniel, Sheela; Kishore, Nanda; George, Anuja; Arumugam, Shantha; Rajan, Lakshmi; Ebenezer, Mannam; Ascher, David B; Arnold, Eddy; Blundell, Tom L

    2018-03-22

    The rpoB gene encodes the β subunit of RNA polymerase holoenzyme in Mycobacterium leprae (M. leprae). Missense mutations in the rpoB gene were identified as etiological factors for rifampin resistance in leprosy. In the present study, we identified mutations corresponding to rifampin resistance in relapsed leprosy cases from three hospitals in southern India which treat leprosy patients. DNA was extracted from skin biopsies of 35 relapse/multidrug therapy non-respondent leprosy cases, and PCR was performed to amplify the 276 bp rifampin resistance-determining region of the rpoB gene. PCR products were sequenced, and mutations were identified in four out of the 35 cases at codon positions D441Y, D441V, S437L and H476R. The structural and functional effects of these mutations were assessed in the context of three-dimensional comparative models of wild-type and mutant M. leprae RNA polymerase holoenzyme (RNAP), based on the recently solved crystal structures of RNAP of Mycobacterium tuberculosis, containing a synthetic nucleic acid scaffold and rifampin. The resistance mutations were observed to alter the hydrogen-bonding and hydrophobic interactions of rifampin and the 5' ribonucleotide of the growing RNA transcript. This study demonstrates that rifampin-resistant strains of M. leprae among leprosy patients in southern India are likely to arise from mutations that affect the drug-binding site and stability of RNAP.

  19. Adaptive Laboratory Evolution of Antibiotic Resistance Using Different Selection Regimes Lead to Similar Phenotypes and Genotypes

    DEFF Research Database (Denmark)

    Jahn, Leonie Johanna; Munck, Christian; Ellabaan, Mostafa M Hashim

    2017-01-01

    independently of the selection regime. Yet, lineages that underwent evolution under mild selection displayed a growth advantage independently of the acquired level of antibiotic resistance compared to lineages adapted under maximal selection in a drug gradient. Our data suggests that even though different......Antibiotic resistance is a global threat to human health, wherefore it is crucial to study the mechanisms of antibiotic resistance as well as its emergence and dissemination. One way to analyze the acquisition of de novo mutations conferring antibiotic resistance is adaptive laboratory evolution....... However, various evolution methods exist that utilize different population sizes, selection strengths, and bottlenecks. While evolution in increasing drug gradients guarantees high-level antibiotic resistance promising to identify the most potent resistance conferring mutations, other selection regimes...

  20. BINARY DISRUPTION BY MASSIVE BLACK HOLES: HYPERVELOCITY STARS, S STARS, AND TIDAL DISRUPTION EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J.; Geller, Margaret J.; Brown, Warren R., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-04-20

    We examine whether disrupted binary stars can fuel black hole growth. In this mechanism, tidal disruption produces a single hypervelocity star (HVS) ejected at high velocity and a former companion star bound to the black hole. After a cluster of bound stars forms, orbital diffusion allows the black hole to accrete stars by tidal disruption at a rate comparable to the capture rate. In the Milky Way, HVSs and the S star cluster imply similar rates of 10{sup -5} to 10{sup -3} yr{sup -1} for binary disruption. These rates are consistent with estimates for the tidal disruption rate in nearby galaxies and imply significant black hole growth from disrupted binaries on 10 Gyr timescales.

  1. Transgenic resistance of eggplants to the Colorado potato beetle

    NARCIS (Netherlands)

    Arpaia, S.

    1999-01-01

    The subject of this thesis is the use of transgenic plant resistance as a method to control the Colorado potato beetle, Leptinotarsa decemlineata Say in eggplant. The gene conferring resistance is coding for a Cry3B toxin and it is a synthetic version of a wild-type

  2. A rare sugar, d-allose, confers resistance to rice bacterial blight with upregulation of defense-related genes in Oryza sativa.

    Science.gov (United States)

    Kano, Akihito; Gomi, Kenji; Yamasaki-Kokudo, Yumiko; Satoh, Masaru; Fukumoto, Takeshi; Ohtani, Kouhei; Tajima, Shigeyuki; Izumori, Ken; Tanaka, Keiji; Ishida, Yutaka; Tada, Yasuomi; Nishizawa, Yoko; Akimitsu, Kazuya

    2010-01-01

    We investigated responses of rice plant to three rare sugars, d-altrose, d-sorbose, and d-allose, due to establishment of mass production methods for these rare sugars. Root growth and shoot growth were significantly inhibited by d-allose but not by the other rare sugars. A large-scale gene expression analysis using a rice microarray revealed that d-allose treatment causes a high upregulation of many defense-related, pathogenesis-related (PR) protein genes in rice. The PR protein genes were not upregulated by other rare sugars. Furthermore, d-allose treatment of rice plants conferred limited resistance of the rice against the pathogen Xanthomonas oryzae pv. oryzae but the other tested sugars did not. These results indicate that d-allose has a growth inhibitory effect but might prove to be a candidate elicitor for reducing disease development in rice.

  3. Statistical analysis of JET disruptions

    International Nuclear Information System (INIS)

    Tanga, A.; Johnson, M.F.

    1991-07-01

    In the operation of JET and of any tokamak many discharges are terminated by a major disruption. The disruptive termination of a discharge is usually an unwanted event which may cause damage to the structure of the vessel. In a reactor disruptions are potentially a very serious problem, hence the importance of studying them and devising methods to avoid disruptions. Statistical information has been collected about the disruptions which have occurred at JET over a long span of operations. The analysis is focused on the operational aspects of the disruptions rather than on the underlining physics. (Author)

  4. Disruptions in DIII-D

    International Nuclear Information System (INIS)

    Reiman, A.; Taylor, P.; Kellman, A.; LaHaye, R.

    1996-01-01

    We report on the results of a statistical analysis of the DIII-D disruption data base, and on an examination of a selected subset of the shots to determine the likely causes of disruptions. The statistical analysis focuses on the dependence of the disruption rate on key dimensionless parameters. We find that the disruption frequency is high at modest values of the parameters, and that it can be relatively low at operational limits. For example, the disruption frequency in an ITER relevant regime (β N /l i ∼ 2, 3 G > 0.6, where n G is the Greenwald limit) is approximately 23%. For this range of q, the disruption frequency rises only modestly to about 35% at the β limit, consistent with previous observations of a soft β limit for this q regime. For the range 6 95 G G < .9) in all q regimes we have studied. The location of the minimum moves to higher density with increasing q

  5. Expression, purification, crystallization, and preliminary X-ray crystallographic analysis of OXA-17, an extended-spectrum {beta}-lactamase conferring severe antibiotic resistance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H., E-mail: msgjhlee@mju.ac.kr; Sohn, S. G., E-mail: sgsohn@mju.ac.kr; Jung, H. I., E-mail: jhinumber1@hanmail.net; An, Y. J., E-mail: anyj0120@hanmail.net; Lee, S. H., E-mail: sangheelee@mju.ac.kr [Myongji University, Drug Resistance Proteomics Laboratory, Department of Biological Sciences (Korea, Republic of)

    2013-07-15

    OXA-17, an extended-spectrum {beta}-lactamase (ESBL) conferring severe antibiotic resistance, hydrolytically inactivates {beta}-lactam antibiotics, inducing a lack of eradication of pathogenic bacteria by oxyimino {beta}-lactams and not helping hospital infection control. Thus, the enzyme is a potential target for developing antimicrobial agents against pathogens producing ESBLs. OXA-17 was purified and crystallized at 298 K. X-ray diffraction data from OXA-17 crystal have been collected to 1.85 A resolution using synchrotron radiation. The crystal of OXA-17 belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 48.37, b = 101.12, and c = 126.07 A. Analysis of the packing density shows that the asymmetric unit probably contains two molecules with a solvent content of 54.6%.

  6. Expression, purification, crystallization, and preliminary X-ray crystallographic analysis of OXA-17, an extended-spectrum β-lactamase conferring severe antibiotic resistance

    International Nuclear Information System (INIS)

    Lee, J. H.; Sohn, S. G.; Jung, H. I.; An, Y. J.; Lee, S. H.

    2013-01-01

    OXA-17, an extended-spectrum β-lactamase (ESBL) conferring severe antibiotic resistance, hydrolytically inactivates β-lactam antibiotics, inducing a lack of eradication of pathogenic bacteria by oxyimino β-lactams and not helping hospital infection control. Thus, the enzyme is a potential target for developing antimicrobial agents against pathogens producing ESBLs. OXA-17 was purified and crystallized at 298 K. X-ray diffraction data from OXA-17 crystal have been collected to 1.85 Å resolution using synchrotron radiation. The crystal of OXA-17 belongs to space group P2 1 2 1 2 1 , with unit-cell parameters a = 48.37, b = 101.12, and c = 126.07 Å. Analysis of the packing density shows that the asymmetric unit probably contains two molecules with a solvent content of 54.6%

  7. Internal disruption in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1990-01-01

    A review of results of experimental and theoretical investigations of internal disruption in tokamaks is given. Specific features of various types of saw-tooth oscillations are described and their classification is performed. Theoretical models of the process of development of internal disruption instability are discussed. Effect of internal disruption on parameters of plasma, confined in tokamak, is considered. Scalings of period and amplitude of saw-tooth oscillations, as well as version radius are presented. Different methods for stabilizing instability of internal disruption are described

  8. Internal disruptions in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1990-01-01

    Experimental and theoretical studies of the phenomenon of internal disruptions in tokamaks are reviewed. A classification scheme is introduced and the features of different types of sawtooth oscillations are described. A theoretical model for the development of the internal disruption instability is discussed. The effect of internal disruptions on the parameters of plasma confined in tokamaks is discussed. Scaling laws for the period and amplitude of sawtooth oscillations, as well as for the inversion radius, are presented. Different methods of stabilizing the internal disruption instability are described

  9. 76 FR 64083 - Reliability Technical Conference; Notice of Technical Conference

    Science.gov (United States)

    2011-10-17

    ... Technical Conference; Notice of Technical Conference Take notice that the Federal Energy Regulatory Commission will hold a Technical Conference on Tuesday, November 29, 2011, from 1 p.m. to 5 p.m. and... reliability that were identified in earlier Commission technical conferences. The conference also will discuss...

  10. Disruption and functional analysis of seven ORFs on chromosome IV: YDL057w, YDL012c, YDL010w, YDL009c, YDL008w (APC11), YDL005c (MED2) and YDL003w (MCD1).

    Science.gov (United States)

    Smith, K N; Iwanejko, L; Loeillet, S; Fabre, F; Nicolas, A

    1999-09-15

    In the context of the EUROFAN project, we have carried out the systematic disruption of seven ORFs on chromosome IV of Saccharomyces cerevisiae using the long flanking homology technique to replace each ORF with the KanMX cassette. Targeted disruption of YDL057w, YDL012c, or YDL010w with YDL009c (the two ORFs overlap) confers no overt defects in haploid growth on a variety of media at different temperatures, in mating, or in the sporulation of diploids homozygous for the disruption. By contrast, YDL008w and YDL003w disruptants are non-viable. The product of YDL008w (elsewhere identified as APC11) is a component of the anaphase promoting complex. YDL003w (also termed MCD1) is a homologue of Schizosaccharomyces pombe rad21, an essential gene implicated in DNA double-strand break repair and nuclear organization in fission yeast. In budding yeast, this ORF has been shown by several laboratories to encode a protein involved in sister chromatid cohesion and chromosome condensation. The remaining ORF, YDL005c (also termed MED2), encodes a component of the transcriptional activator complex known as Mediator. Disruption of YDL005c confers a modest slow growth phenotype on rich medium and a more severe phenotype on minimal medium, aberrant cellular morphology, and mating defects; diploids homozygous for the disruption cannot sporulate. Copyright 1999 John Wiley & Sons, Ltd.

  11. Hyper-resistivity produced by tearing mode turbulence

    International Nuclear Information System (INIS)

    Strauss, H.R.

    1986-01-01

    Tearing mode turbulence produces a hyper-resistivity or effective anomalous electron viscosity. The hyper-resistivity is calculated for the mean magnetic field quasilinearly, and for long-wavelength modes using the direct interaction approximation. The hyper-resistivity accounts for current relaxation in reversed-field pinch experiments, and gives a magnetic fluctuation sealing of S -1 /sup // 3 . It causes enhanced tearing mode growth rates in the turbulent phase of tokamak disruptions. In astrophysics, it limits magnetic energy growth due to the dynamo effect, and may explain rapid reconnection phenomena such as solar flares

  12. A response regulator from a soil metagenome enhances resistance to the β-lactam antibiotic carbenicillin in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Heather K Allen

    Full Text Available Functional metagenomic analysis of soil metagenomes is a method for uncovering as-yet unidentified mechanisms for antibiotic resistance. Here we report an unconventional mode by which a response regulator derived from a soil metagenome confers resistance to the β-lactam antibiotic carbenicillin in Escherichia coli. A recombinant clone (βlr16 harboring a 5,169 bp DNA insert was selected from a metagenomic library previously constructed from a remote Alaskan soil. The βlr16 clone conferred specific resistance to carbenicillin, with limited increases in resistance to other tested antibiotics, including other β-lactams (penicillins and cephalosporins, rifampin, ciprofloxacin, erythromycin, chloramphenicol, nalidixic acid, fusidic acid, and gentamicin. Resistance was more pronounced at 24°C than at 37°C. Zone-of-inhibition assays suggested that the mechanism of carbenicillin resistance was not due to antibiotic inactivation. The DNA insert did not encode any genes known to confer antibiotic resistance, but did have two putative open reading frames (ORFs that were annotated as a metallopeptidase and a two-component response regulator. Transposon mutagenesis and subcloning of the two ORFs followed by phenotypic assays showed that the response regulator gene was necessary and sufficient to confer the resistance phenotype. Quantitative reverse transcriptase PCR showed that the response regulator suppressed expression of the ompF porin gene, independently of the small RNA regulator micF, and enhanced expression of the acrD, mdtA, and mdtB efflux pump genes. This work demonstrates that antibiotic resistance can be achieved by the modulation of gene regulation by heterologous DNA. Functional analyses such as these can be important for making discoveries in antibiotic resistance gene biology and ecology.

  13. Noninvasive Detection of AR-FL/AR-V7 as a Predictive Biomarker for Therapeutic Resistance in Men with Metastatic Castration-Resistant Prostate Cancer

    Science.gov (United States)

    2017-10-01

    acknowledged federal support) 5. Antonarakis ES, Armstrong AJ, Dehm SM, Luo J. Androgen receptor variant-driven prostate cancer : clinical implications...Resistant Prostate Cancer abstract Purpose A splice variant of the androgen receptor , AR-V7, confers resistance to AR-targeted therapies (ATTs) but not...androgen receptor ; AR-V7, androgen receptor splice variant 7; mCRPC, metastatic castration-resistant prostate cancer ; n/N, number of patients in that

  14. Evaluation of a rapid screening test for rifampicin resistance in re ...

    African Journals Online (AJOL)

    Sensitivity, specificity and overall accuracy of the phage test were determined compared with gold standard culture and DST. Discrepant results were resolved by molecular detection of mutations conferring rifampicin resistance. The proportion of rifampicin-resistant strains that were MDR was also determined. Results.

  15. A model of directional selection applied to the evolution of drug resistance in HIV-1.

    Science.gov (United States)

    Seoighe, Cathal; Ketwaroo, Farahnaz; Pillay, Visva; Scheffler, Konrad; Wood, Natasha; Duffet, Rodger; Zvelebil, Marketa; Martinson, Neil; McIntyre, James; Morris, Lynn; Hide, Winston

    2007-04-01

    Understanding how pathogens acquire resistance to drugs is important for the design of treatment strategies, particularly for rapidly evolving viruses such as HIV-1. Drug treatment can exert strong selective pressures and sites within targeted genes that confer resistance frequently evolve far more rapidly than the neutral rate. Rapid evolution at sites that confer resistance to drugs can be used to help elucidate the mechanisms of evolution of drug resistance and to discover or corroborate novel resistance mutations. We have implemented standard maximum likelihood methods that are used to detect diversifying selection and adapted them for use with serially sampled reverse transcriptase (RT) coding sequences isolated from a group of 300 HIV-1 subtype C-infected women before and after single-dose nevirapine (sdNVP) to prevent mother-to-child transmission. We have also extended the standard models of codon evolution for application to the detection of directional selection. Through simulation, we show that the directional selection model can provide a substantial improvement in sensitivity over models of diversifying selection. Five of the sites within the RT gene that are known to harbor mutations that confer resistance to nevirapine (NVP) strongly supported the directional selection model. There was no evidence that other mutations that are known to confer NVP resistance were selected in this cohort. The directional selection model, applied to serially sampled sequences, also had more power than the diversifying selection model to detect selection resulting from factors other than drug resistance. Because inference of selection from serial samples is unlikely to be adversely affected by recombination, the methods we describe may have general applicability to the analysis of positive selection affecting recombining coding sequences when serially sampled data are available.

  16. Biofilm disruption with rotating microrods enhances antimicrobial efficacy

    Science.gov (United States)

    Mair, Lamar O.; Nacev, Aleksandar; Hilaman, Ryan; Stepanov, Pavel Y.; Chowdhury, Sagar; Jafari, Sahar; Hausfeld, Jeffrey; Karlsson, Amy J.; Shirtliff, Mark E.; Shapiro, Benjamin; Weinberg, Irving N.

    2017-04-01

    Biofilms are a common and persistent cause of numerous illnesses. Compared to planktonic microbes, biofilm residing cells often demonstrate significant resistance to antimicrobial agents. Thus, methods for dislodging cells from the biofilm may increase the antimicrobial susceptibility of such cells, and serve as a mechanical means of increasing antimicrobial efficacy. Using Aspergillus fumigatus as a model microbe, we magnetically rotate microrods in and around biofilm. We show that such rods can improve the efficacy of antimicrobial Amphotericin B treatments in vitro. This work represents a first step in using kinetic magnetic particle therapy for disrupting fungal biofilms.

  17. Screening Phytophthora rubi for fungicide resistance

    Science.gov (United States)

    Preliminary results from the survey for fungicide resistance in Phytophthora were reported at the 2016 Washington Small Fruit Conference. Phytophthora was isolated from diseased plants in 28 red raspberry fields and tested against mefenoxam, the active ingredient of Ridomil. Most isolates were ident...

  18. Conference Analysis Report of Assessments on Defect and Damage for a High Temperature Structure

    International Nuclear Information System (INIS)

    Lee, Hyeong Yeon

    2008-11-01

    This report presents the analysis on the state-of-the-art research trends on creep-fatigue damage, defect assessment of high temperature structure, development of heat resistant materials and their behavior at high temperature based on the papers presented in the two international conferences of ASME PVP 2008 which was held in Chicago in July 2008 and CF-5(5th International Conference on Creep, Fatigue and Creep-Fatigue) which was held in Kalpakkam, India in September 2008

  19. Conference Analysis Report of Assessments on Defect and Damage for a High Temperature Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Yeon

    2008-11-15

    This report presents the analysis on the state-of-the-art research trends on creep-fatigue damage, defect assessment of high temperature structure, development of heat resistant materials and their behavior at high temperature based on the papers presented in the two international conferences of ASME PVP 2008 which was held in Chicago in July 2008 and CF-5(5th International Conference on Creep, Fatigue and Creep-Fatigue) which was held in Kalpakkam, India in September 2008.

  20. Second International Conference on Accelerating Biopharmaceutical Development: March 9-12, 2009, Coronado, CA, USA.

    Science.gov (United States)

    Reichert, Janice M; Jacob, Nitya M; Amanullah, Ashraf

    2009-01-01

    The Second International Conference on Accelerating Biopharmaceutical Development was held in Coronado, California. The meeting was organized by the Society for Biological Engineering (SBE) and the American Institute of Chemical Engineers (AIChE); SBE is a technological community of the AIChE. Bob Adamson (Wyeth) and Chuck Goochee (Centocor) were co-chairs of the event, which had the theme "Delivering cost-effective, robust processes and methods quickly and efficiently." The first day focused on emerging disruptive technologies and cutting-edge analytical techniques. Day two featured presentations on accelerated cell culture process development, critical quality attributes, specifications and comparability, and high throughput protein formulation development. The final day was dedicated to discussion of technology options and new analysis methods provided by emerging disruptive technologies; functional interaction, integration and synergy in platform development; and rapid and economic purification process development.

  1. Elisa development for detection of glyphosat resistant gm soybean

    Directory of Open Access Journals (Sweden)

    Владислав Геннадійович Спиридонов

    2015-11-01

    Full Text Available During research we have utilized recombinant enzyme 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS, conferring resistance to glyphosate for GM soybean, for the hen immunization and obtaining specific yolk antibodies IgY. Stages of ELISA development that can detect at least 0,1 % of GM-soybean resistant to glyphosate were present

  2. Symposium on disruptive instabilities at Garching

    International Nuclear Information System (INIS)

    Lackner, K.

    1979-01-01

    The phenomenon of disruptive instabilities was investigated with a special care at the IPP at Garching. After lectures and panel sessions it appears suitable, to subdivide the disruptive phenomena into four classes: 1. The internal disruption (the socalled saw-tooth oscillators). 2. the socalled reconnection disruptions. 3. The large disruptions. 4. The small disruptions. The four appearance forms of the phenomena are briefly explained. (GG) [de

  3. Multiplex PCR To Identify Macrolide Resistance Determinants in Mannheimia haemolytica and Pasteurella multocida

    DEFF Research Database (Denmark)

    Rose, Simon; Desmolaize, Benoit; Jaju, Puneet

    2012-01-01

    The bacterial pathogens Mannheimia haemolytica and Pasteurella multocida are major etiological agents in respiratory tract infections of cattle. Although these infections can generally be successfully treated with veterinary macrolide antibiotics, a few recent isolates have shown resistance...... to these drugs. Macrolide resistance in members of the family Pasteurellaceae is conferred by combinations of at least three genes: erm(42), which encodes a monomethyltransferase and confers a type I MLS(B) (macrolide, lincosamide, and streptogramin B) phenotype; msr(E), which encodes a macrolide efflux pump...

  4. A third component of the human cytomegalovirus terminase complex is involved in letermovir resistance.

    Science.gov (United States)

    Chou, Sunwen

    2017-12-01

    Letermovir is a human cytomegalovirus (CMV) terminase inhibitor that was clinically effective in a Phase III prevention trial. In vitro studies have shown that viral mutations conferring letermovir resistance map primarily to the UL56 component of the terminase complex and uncommonly to UL89. After serial culture of a baseline CMV laboratory strain under letermovir, mutation was observed in a third terminase component in 2 experiments, both resulting in amino acid substitution P91S in gene UL51 and adding to a pre-existing UL56 mutation. Recombinant phenotyping indicated that P91S alone conferred 2.1-fold increased letermovir resistance (EC50) over baseline, and when combined with UL56 mutation S229F or R369M, multiplied the level of resistance conferred by those mutations by 3.5-7.7-fold. Similarly a combination of UL56 mutations S229F, L254F and L257I selected in the same experiment conferred 54-fold increased letermovir EC50 over baseline, but 290-fold when combined with UL51 P91S. The P91S mutant was not perceptibly growth impaired. Although pUL51 is essential for normal function of the terminase complex, its biological significance is not well understood. Letermovir resistance mutations mapping to 3 separate genes, and their multiplier effect on the level of resistance, suggest that the terminase components interactively contribute to the structure of a letermovir antiviral target. The diagnostic importance of the UL51 P91S mutation arises from its potential to augment the letermovir resistance of some UL56 mutations at low fitness cost. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Identification and mapping of Sr46 from Aegilops tauschii accession CIae 25 conferring resistance to race TTKSK (Ug99) of wheat stem rust pathogen.

    Science.gov (United States)

    Yu, Guotai; Zhang, Qijun; Friesen, Timothy L; Rouse, Matthew N; Jin, Yue; Zhong, Shaobin; Rasmussen, Jack B; Lagudah, Evans S; Xu, Steven S

    2015-03-01

    Mapping studies confirm that resistance to Ug99 race of stem rust pathogen in Aegilops tauschii accession Clae 25 is conditioned by Sr46 and markers linked to the gene were developed for marker-assisted selection. The race TTKSK (Ug99) of Puccinia graminis f. sp. tritici, the causal pathogen for wheat stem rust, is considered as a major threat to global wheat production. To address this threat, researchers across the world have been devoted to identifying TTKSK-resistant genes. Here, we report the identification and mapping of a stem rust resistance gene in Aegilops tauschii accession CIae 25 that confers resistance to TTKSK and the development of molecular markers for the gene. An F2 population of 710 plants from an Ae. tauschii cross CIae 25 × AL8/78 were first evaluated against race TPMKC. A set of 14 resistant and 116 susceptible F2:3 families from the F2 plants were then evaluated for their reactions to TTKSK. Based on the tests, 179 homozygous susceptible F2 plants were selected as the mapping population to identify the simple sequence repeat (SSR) and sequence tagged site (STS) markers linked to the gene by bulk segregant analysis. A dominant stem rust resistance gene was identified and mapped with 16 SSR and five new STS markers to the deletion bin 2DS5-0.47-1.00 of chromosome arm 2DS in which Sr46 was located. Molecular marker and stem rust tests on CIae 25 and two Ae. tauschii accessions carrying Sr46 confirmed that the gene in CIae 25 is Sr46. This study also demonstrated that Sr46 is temperature-sensitive being less effective at low temperatures. The marker validation indicated that two closely linked markers Xgwm210 and Xwmc111 can be used for marker-assisted selection of Sr46 in wheat breeding programs.

  6. Survey of disruption causes at JET

    International Nuclear Information System (INIS)

    De Vries, P.C.; Johnson, M.F.; Alper, B.; Hender, T.C.; Riccardo, V.; Buratti, P.; Koslowski, H.R.

    2011-01-01

    A survey has been carried out into the causes of all 2309 disruptions over the last decade of JET operations. The aim of this survey was to obtain a complete picture of all possible disruption causes, in order to devise better strategies to prevent or mitigate their impact. The analysis allows the effort to avoid or prevent JET disruptions to be more efficient and effective. As expected, a highly complex pattern of chain of events that led to disruptions emerged. It was found that the majority of disruptions had a technical root cause, for example due to control errors, or operator mistakes. These bring a random, non-physics, factor into the occurrence of disruptions and the disruption rate or disruptivity of a scenario may depend more on technical performance than on physics stability issues. The main root cause of JET disruptions was nevertheless due to neo-classical tearing modes that locked, closely followed in second place by disruptions due to human error. The development of more robust operational scenarios has reduced the JET disruption rate over the last decade from about 15% to below 4%. A fraction of all disruptions was caused by very fast, precursorless unpredictable events. The occurrence of these disruptions may set a lower limit of 0.4% to the disruption rate of JET. If one considers on top of that human error and all unforeseen failures of heating or control systems this lower limit may rise to 1.0% or 1.6%, respectively.

  7. Directed mutagenesis in Candida albicans: one-step gene disruption to isolate ura3 mutants

    International Nuclear Information System (INIS)

    Kelly, R.; Miller, S.M.; Kurtz, M.B.; Kirsch, D.R.

    1987-01-01

    A method for introducing specific mutations into the diploid Candida albicans by one-step gene disruption and subsequent UV-induced recombination was developed. The cloned C. albicans URA3 gene was disrupted with the C. albicans ADE2 gene, and the linearized DNA was used for transformation of two ade2 mutants, SGY-129 and A81-Pu. Both an insertional inactivation of the URA3 gene and a disruption which results in a 4.0-kilobase deletion were made. Southern hybridization analyses demonstrated that the URA3 gene was disrupted on one of the chromosomal homologs in 15 of the 18 transformants analyzed. These analyses also revealed restriction site dimorphism of EcoRI at the URA3 locus which provides a unique marker to distinguish between chromosomal homologs. This enabled us to show that either homolog could be disrupted and that disrupted transformants of SGY-129 contained more than two copies of the URA3 locus. The A81-Pu transformants heterozygous for the ura3 mutations were rendered homozygous and Ura- by UV-induced recombination. The homozygosity of a deletion mutant and an insertion mutant was confirmed by Southern hybridization. Both mutants were transformed to Ura+ with plasmids containing the URA3 gene and in addition, were resistant to 5-fluoro-orotic acid, a characteristic of Saccharomyces cerevisiae ura3 mutants as well as of orotidine-5'-phosphate decarboxylase mutants of other organisms

  8. Genetic analysis of the resistance to eight anthracnose races in the common bean differential cultivar Kaboon.

    Science.gov (United States)

    Campa, Ana; Giraldez, Ramón; Ferreira, Juan José

    2011-06-01

    Resistance to the eight races (3, 7, 19, 31, 81, 449, 453, and 1545) of the pathogenic fungus Colletotrichum lindemuthianum (anthracnose) was evaluated in F(3) families derived from the cross between the anthracnose differential bean cultivars Kaboon and Michelite. Molecular marker analyses were carried out in the F(2) individuals in order to map and characterize the anthracnose resistance genes or gene clusters present in Kaboon. The analysis of the combined segregations indicates that the resistance present in Kaboon against these eight anthracnose races is determined by 13 different race-specific genes grouped in three clusters. One of these clusters, corresponding to locus Co-1 in linkage group (LG) 1, carries two dominant genes conferring specific resistance to races 81 and 1545, respectively, and a gene necessary (dominant complementary gene) for the specific resistance to race 31. A second cluster, corresponding to locus Co-3/9 in LG 4, carries six dominant genes conferring specific resistance to races 3, 7, 19, 449, 453, and 1545, respectively, and the second dominant complementary gene for the specific resistance to race 31. A third cluster of unknown location carries three dominant genes conferring specific resistance to races 449, 453, and 1545, respectively. This is the first time that two anthracnose resistance genes with a complementary mode of action have been mapped in common bean and their relationship with previously known Co- resistance genes established.

  9. International cooperation in the field of studying seismic resistance of NPP components

    International Nuclear Information System (INIS)

    Kaznovskij, S.P.; Chechenov, Kh.D.

    1989-01-01

    Main results of the conference of representations from the USSR, Bulgarie, Hungary and Chechoslovakia related to the problems of seismology and seismic resistance of NPPs are briefly formulated. One of the important results of the conference consists in the agrement concerning cooperation and mutual application of seismoexplosive testing ground near Nalchik

  10. Efflux mediated adaptive and cross resistance to ciprofloxacin and benzalkonium chloride in Pseudomonas aeruginosa of dairy origin.

    Science.gov (United States)

    Pagedar, Ankita; Singh, Jitender; Batish, Virender K

    2011-06-01

    The present study was undertaken to investigate the role of efflux pump activity (EPA) in conferring adaptive and cross resistances against ciprofloxacin (CF) and benzalkonium chloride (BC) in dairy isolates of Pseudomonas aeruginosa. Biofilm formation potential was correlated with development of adaptive resistance in originally resistant strains. Irrespective of parent strains's susceptibility, isolates developed substantial adaptive resistance against CF and BC. Significant difference was observed in ability of non resistant isolates to develop adaptive resistance against CF and BC (P Reduction in adaptive resistances due to EPI was more evident in originally non resistant strains, which reaffirms EPA as probable mechanism of adaptive resistance. The present study perhaps first of its kind, suggests an active role of EPA in conferring adaptive and cross resistances in food related P. aeruginosa isolates and supports reverse hypothesis that antibiotic-resistant organisms eventually become tolerant to other antibacterial agents as well. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Plasmid-mediated AmpC-type beta-lactamase isolated from Klebsiella pneumoniae confers resistance to broad-spectrum beta-lactams, including moxalactam.

    Science.gov (United States)

    Horii, T; Arakawa, Y; Ohta, M; Ichiyama, S; Wacharotayankun, R; Kato, N

    1993-01-01

    Klebsiella pneumoniae NU2936 was isolated from a patient and was found to produce a plasmid-encoded beta-lactamase (MOX-1) which conferred resistance to broad spectrum beta-lactams, including moxalactam, flomoxef, ceftizoxime, cefotaxime, and ceftazidime. Resistance could be transferred from K. pneumoniae NU2936 to Escherichia coli CSH2 by conjugation with a transfer frequency of 5 x 10(-7). The structural gene of MOX-1 (blaMOX-1) was cloned and expressed in E. coli HB101. The MIC of moxalactam for E. coli HB101 producing MOX-1 was > 512 micrograms/ml. The apparent molecular mass and pI of this enzyme were calculated to be 38 kDa and 8.9, respectively. Hg2+ and Cu2+ failed to block enzyme activity, and the presence of EDTA in the reaction buffer did not reduce the enzyme activity. However, clavulanate and cloxacillin, serine beta-lactamase inhibitors, inhibited the enzyme activity competitively (Kis = 5.60 and 0.35 microM, respectively). The kinetic study of MOX-1 suggested that it effectively hydrolyzed broad-spectrum beta-lactams. A hybridization study confirmed that blaMOX-1 is encoded on a large resident plasmid (pRMOX1; 180 kb) of strain NU2936. By deletion analysis, the functional region was localized within a 1.2-kb region of the plasmid. By amino acid sequencing, 18 of 33 amino acid residues at the N terminus of MOX-1 were found to be identical to those of Pseudomonas aeruginosa AmpC. These findings suggest that MOX-1 is a plasmid-mediated AmpC-type beta-lactamase that provides enteric bacteria resistance to broad-spectrum beta-lactams, including moxalactam. Images PMID:8517725

  12. Statistical analysis of disruptions in JET

    International Nuclear Information System (INIS)

    De Vries, P.C.; Johnson, M.F.; Segui, I.

    2009-01-01

    The disruption rate (the percentage of discharges that disrupt) in JET was found to drop steadily over the years. Recent campaigns (2005-2007) show a yearly averaged disruption rate of only 6% while from 1991 to 1995 this was often higher than 20%. Besides the disruption rate, the so-called disruptivity, or the likelihood of a disruption depending on the plasma parameters, has been determined. The disruptivity of plasmas was found to be significantly higher close to the three main operational boundaries for tokamaks; the low-q, high density and β-limit. The frequency at which JET operated close to the density-limit increased six fold over the last decade; however, only a small reduction in disruptivity was found. Similarly the disruptivity close to the low-q and β-limit was found to be unchanged. The most significant reduction in disruptivity was found far from the operational boundaries, leading to the conclusion that the improved disruption rate is due to a better technical capability of operating JET, instead of safer operations close to the physics limits. The statistics showed that a simple protection system was able to mitigate the forces of a large fraction of disruptions, although it has proved to be at present more difficult to ameliorate the heat flux.

  13. Improvements in disruption prediction at ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Aledda, R., E-mail: raffaele.aledda@diee.unica.it; Cannas, B., E-mail: cannas@diee.unica.it; Fanni, A., E-mail: fanni@diee.unica.it; Pau, A., E-mail: alessandro.pau@diee.unica.it; Sias, G., E-mail: giuliana.sias@diee.unica.it

    2015-10-15

    Highlights: • A disruption prediction system for AUG, based on a logistic model, is designed. • The length of the disruptive phase is set for each disruption in the training set. • The model is tested on dataset different from that used during the training phase. • The generalization capability and the aging of the model have been tested. • The predictor performance is compared with the locked mode detector. - Abstract: In large-scale tokamaks disruptions have the potential to create serious damage to the facility. Hence disruptions must be avoided, but, when a disruption is unavoidable, minimizing its severity is mandatory. A reliable detection of a disruptive event is required to trigger proper mitigation actions. To this purpose machine learning methods have been widely studied to design disruption prediction systems at ASDEX Upgrade. The training phase of the proposed approaches is based on the availability of disrupted and non-disrupted discharges. In literature disruptive configurations were assumed appearing into the last 45 ms of each disruption. Even if the achieved results in terms of correct predictions were good, it has to be highlighted that the choice of such a fixed temporal window might have limited the prediction performance. In fact, it generates confusing information in cases of disruptions with disruptive phase different from 45 ms. The assessment of a specific disruptive phase for each disruptive discharge represents a relevant issue in understanding the disruptive events. In this paper, the Mahalanobis distance is applied to define a specific disruptive phase for each disruption, and a logistic regressor has been trained as disruption predictor. The results show that enhancements on the achieved performance on disruption prediction are possible by defining a specific disruptive phase for each disruption.

  14. Improvements in disruption prediction at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Aledda, R.; Cannas, B.; Fanni, A.; Pau, A.; Sias, G.

    2015-01-01

    Highlights: • A disruption prediction system for AUG, based on a logistic model, is designed. • The length of the disruptive phase is set for each disruption in the training set. • The model is tested on dataset different from that used during the training phase. • The generalization capability and the aging of the model have been tested. • The predictor performance is compared with the locked mode detector. - Abstract: In large-scale tokamaks disruptions have the potential to create serious damage to the facility. Hence disruptions must be avoided, but, when a disruption is unavoidable, minimizing its severity is mandatory. A reliable detection of a disruptive event is required to trigger proper mitigation actions. To this purpose machine learning methods have been widely studied to design disruption prediction systems at ASDEX Upgrade. The training phase of the proposed approaches is based on the availability of disrupted and non-disrupted discharges. In literature disruptive configurations were assumed appearing into the last 45 ms of each disruption. Even if the achieved results in terms of correct predictions were good, it has to be highlighted that the choice of such a fixed temporal window might have limited the prediction performance. In fact, it generates confusing information in cases of disruptions with disruptive phase different from 45 ms. The assessment of a specific disruptive phase for each disruptive discharge represents a relevant issue in understanding the disruptive events. In this paper, the Mahalanobis distance is applied to define a specific disruptive phase for each disruption, and a logistic regressor has been trained as disruption predictor. The results show that enhancements on the achieved performance on disruption prediction are possible by defining a specific disruptive phase for each disruption.

  15. The (Street) Art of Resistance

    DEFF Research Database (Denmark)

    Awad, Sarah H.; Wagoner, Brady; Glaveanu, Vlad Petre

    2017-01-01

    This chapter focuses on the interrelation between resistance, novelty and social change We will consider resistance as both a social and individual phenomenon, a constructive process that articulates continuity and change and as an act oriented towards an imagined future of different communities....... In this account, resistance is thus a creative act having its own dynamic and, most of all, aesthetic dimension. In fact, it is one such visibly artistic form of resistance that will be considered here, the case of street art as a tool of social protest and revolution in Egypt. Street art is commonly defined...... in sharp contrast with high or fine art because of its collective nature and anonymity, its different kind of aesthetics, and most of all its disruptive, ‘anti-social’ outcomes. With the use of illustrations, we will argue here that street art is prototypical of a creative form of resistance, situated...

  16. Disruption prediction at JET

    International Nuclear Information System (INIS)

    Milani, F.

    1998-12-01

    The sudden loss of the plasma magnetic confinement, known as disruption, is one of the major issue in a nuclear fusion machine as JET (Joint European Torus). Disruptions pose very serious problems to the safety of the machine. The energy stored in the plasma is released to the machine structure in few milliseconds resulting in forces that at JET reach several Mega Newtons. The problem is even more severe in the nuclear fusion power station where the forces are in the order of one hundred Mega Newtons. The events that occur during a disruption are still not well understood even if some mechanisms that can lead to a disruption have been identified and can be used to predict them. Unfortunately it is always a combination of these events that generates a disruption and therefore it is not possible to use simple algorithms to predict it. This thesis analyses the possibility of using neural network algorithms to predict plasma disruptions in real time. This involves the determination of plasma parameters every few milliseconds. A plasma boundary reconstruction algorithm, XLOC, has been developed in collaboration with Dr. D. O'Brien and Dr. J. Ellis capable of determining the plasma wall/distance every 2 milliseconds. The XLOC output has been used to develop a multilayer perceptron network to determine plasma parameters as l i and q ψ with which a machine operational space has been experimentally defined. If the limits of this operational space are breached the disruption probability increases considerably. Another approach for prediction disruptions is to use neural network classification methods to define the JET operational space. Two methods have been studied. The first method uses a multilayer perceptron network with softmax activation function for the output layer. This method can be used for classifying the input patterns in various classes. In this case the plasma input patterns have been divided between disrupting and safe patterns, giving the possibility of

  17. A Dinitroaniline-Resistant Mutant of Eleusine indica Exhibits Cross-Resistance and Supersensitivity to Antimicrotubule Herbicides and Drugs.

    Science.gov (United States)

    Vaughn, K C; Marks, M D; Weeks, D P

    1987-04-01

    A dinitroaniline-resistant (R) biotype of Eleusine indica (L.) Gaertner. (goosegrass) is demonstrated to be cross-resistant to a structurally non-related herbicide, amiprophosmethyl, and supersensitive to two other classes of compounds which disrupt mitosis. These characteristics of the R biotype were discovered in a comparative test of the effects of 24 different antimitotic compounds on the R biotype and susceptible (S) wild-type Eleusine. The compounds tested could be classified into three groups based upon their effects on mitosis in root tips of the susceptible (S) biotype. Class I compounds induced effects like the well known mitotic disrupter colchicine: absence of cortical and spindle microtubules, mitosis arrested at prometaphase, and the formation of polymorphic nuclei after arrested mitosis. The R biotype was resistant to treatment with some class I inhibitors (all dinitroaniline herbicides and amiprophosmethyl) but not all (e.g. colchicine, podophyllotoxin, vinblastine, and pronamide). Roots of the R biotype, when treated with either dinitroaniline herbicides or amiprophosmethyl, exhibited no or only small increases in the mitotic index nor were the spindle and cortical microtubules affected. Compounds of class II (carbamate herbicides and griseofulvin) cause misorientation of microtubules which results in multinucleated cells. Compounds of class III (caffeine and structually related alkaloids) cause imcomplete cell walls to form at telophase. Each of these last two classes of compounds affected the R biotype more than the S biotype (supersensitivity). The cross-resistance and high levels of resistance of the R biotype of Eleusine to the dinitroaniline herbicides and the structurally distinct herbicide, amiprophosmethyl, indicate that a mechanism of resistance based upon metabolic modification, translocation, or compartmentation of the herbicides is probably not operative.

  18. The role of polyhalogenated aromatic hydrocarbons on thyroid hormone disruption and cognitive function: a review.

    Science.gov (United States)

    Builee, T L; Hatherill, J R

    2004-11-01

    Thyroid hormones (TH) are essential to normal brain development, influencing behavior and cognitive function in both adult and children. It is suggested that conditions found in TH abnormalities such as hypothyroidism, hyperthyroidism and generalized resistance to thyroid hormone (GRTH) share symptomatic behavioral impulses found in cases of attention deficit hyperactivity disorder (ADHD) and other cognitive disorders. Disrupters of TH are various and prevalent in the environment. This paper reviews the mechanisms of TH disruption caused by the general class of polyhalogenated aromatic hydrocarbons (PHAH)'s acting as thyroid disrupters (TD). PHAHs influence the hypothalamus-pituitary-thyroid (HPT) axis, as mimicry agents affecting synthesis and secretion of TH. Exposure to PHAH induces liver microsomal enzymes UDP-glucuronosyltransferase (UGT) resulting in accelerated clearance of TH. PHAHs can compromise function of transport and receptor binding proteins such as transthyretin and aryl hydrocarbon receptors (Ahr). Glucose metabolism and catecholamine synthesis are disrupted in the brain by the presence of PHAH. Further, PHAH can alter brain growth and development by perturbing cytoskeletal formation, thereby affecting neuronal migration, elongation and branching. The complex relationships between PHAH and cognitive function are examined in regard to the disruption of T4 regulation in the hypothalamus-pituitary-thyroid axis, blood, brain, neurons, liver and pre and postnatal development.

  19. Cellular mechanisms of IL-17-induced blood-brain barrier disruption.

    Science.gov (United States)

    Huppert, Jula; Closhen, Dorothea; Croxford, Andrew; White, Robin; Kulig, Paulina; Pietrowski, Eweline; Bechmann, Ingo; Becher, Burkhard; Luhmann, Heiko J; Waisman, Ari; Kuhlmann, Christoph R W

    2010-04-01

    Recently T-helper 17 (Th17) cells were demonstrated to disrupt the blood-brain barrier (BBB) by the action of IL-17A. The aim of the present study was to examine the mechanisms that underlie IL-17A-induced BBB breakdown. Barrier integrity was analyzed in the murine brain endothelial cell line bEnd.3 by measuring the electrical resistance values using electrical call impedance sensing technology. Furthermore, in-cell Western blots, fluorescence imaging, and monocyte adhesion and transendothelial migration assays were performed. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice. IL-17A induced NADPH oxidase- or xanthine oxidase-dependent reactive oxygen species (ROS) production. The resulting oxidative stress activated the endothelial contractile machinery, which was accompanied by a down-regulation of the tight junction molecule occludin. Blocking either ROS formation or myosin light chain phosphorylation or applying IL-17A-neutralizing antibodies prevented IL-17A-induced BBB disruption. Treatment of mice with EAE using ML-7, an inhibitor of the myosin light chain kinase, resulted in less BBB disruption at the spinal cord and less infiltration of lymphocytes via the BBB and subsequently reduced the clinical characteristics of EAE. These observations indicate that IL-17A accounts for a crucial step in the development of EAE by impairing the integrity of the BBB, involving augmented production of ROS.-Huppert, J., Closhen, D., Croxford, A., White, R., Kulig, P., Pietrowski, E., Bechmann, I., Becher, B., Luhmann, H. J., Waisman, A., Kuhlmann, C. R. W. Cellular mechanisms of IL-17-induced blood-brain barrier disruption.

  20. The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens

    International Nuclear Information System (INIS)

    Pruss, Gail J.; Lawrence, Christopher B.; Bass, Troy; Li Qingshun Q.; Bowman, Lewis H.; Vance, Vicki

    2004-01-01

    Helper component-protease (HC-Pro) is a plant viral suppressor of RNA silencing, and transgenic tobacco expressing HC-Pro has increased susceptibility to a broad range of viral pathogens. Here we report that these plants also exhibit enhanced resistance to unrelated heterologous pathogens. Tobacco mosaic virus (TMV) infection of HC-Pro-expressing plants carrying the N resistance gene results in fewer and smaller lesions compared to controls without HC-Pro. The resistance to TMV is compromised but not eliminated by expression of nahG, which prevents accumulation of salicylic acid (SA), an important defense signaling molecule. HC-Pro-expressing plants are also more resistant to tomato black ring nepovirus (TBRV) and to the oomycete Peronospora tabacina. Enhanced TBRV resistance is SA-independent, whereas the response to P. tabacina is associated with early induction of markers characteristic of SA-dependent defense. Thus, a plant viral suppressor of RNA silencing enhances resistance to multiple pathogens via both SA-dependent and SA-independent mechanisms

  1. The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens.

    Science.gov (United States)

    Pruss, Gail J; Lawrence, Christopher B; Bass, Troy; Li, Qingshun Q; Bowman, Lewis H; Vance, Vicki

    2004-03-01

    Helper component-protease (HC-Pro) is a plant viral suppressor of RNA silencing, and transgenic tobacco expressing HC-Pro has increased susceptibility to a broad range of viral pathogens. Here we report that these plants also exhibit enhanced resistance to unrelated heterologous pathogens. Tobacco mosaic virus (TMV) infection of HC-Pro-expressing plants carrying the N resistance gene results in fewer and smaller lesions compared to controls without HC-Pro. The resistance to TMV is compromised but not eliminated by expression of nahG, which prevents accumulation of salicylic acid (SA), an important defense signaling molecule. HC-Pro-expressing plants are also more resistant to tomato black ring nepovirus (TBRV) and to the oomycete Peronospora tabacina. Enhanced TBRV resistance is SA-independent, whereas the response to P. tabacina is associated with early induction of markers characteristic of SA-dependent defense. Thus, a plant viral suppressor of RNA silencing enhances resistance to multiple pathogens via both SA-dependent and SA-independent mechanisms.

  2. Convergent Substitutions in a Sodium Channel Suggest Multiple Origins of Toxin Resistance in Poison Frogs.

    Science.gov (United States)

    Tarvin, Rebecca D; Santos, Juan C; O'Connell, Lauren A; Zakon, Harold H; Cannatella, David C

    2016-04-01

    Complex phenotypes typically have a correspondingly multifaceted genetic component. However, the genotype-phenotype association between chemical defense and resistance is often simple: genetic changes in the binding site of a toxin alter how it affects its target. Some toxic organisms, such as poison frogs (Anura: Dendrobatidae), have defensive alkaloids that disrupt the function of ion channels, proteins that are crucial for nerve and muscle activity. Using protein-docking models, we predict that three major classes of poison frog alkaloids (histrionicotoxins, pumiliotoxins, and batrachotoxins) bind to similar sites in the highly conserved inner pore of the muscle voltage-gated sodium channel, Nav1.4. We predict that poison frogs are somewhat resistant to these compounds because they have six types of amino acid replacements in the Nav1.4 inner pore that are absent in all other frogs except for a distantly related alkaloid-defended frog from Madagascar, Mantella aurantiaca. Protein-docking models and comparative phylogenetics support the role of these replacements in alkaloid resistance. Taking into account the four independent origins of chemical defense in Dendrobatidae, phylogenetic patterns of the amino acid replacements suggest that 1) alkaloid resistance in Nav1.4 evolved independently at least seven times in these frogs, 2) variation in resistance-conferring replacements is likely a result of differences in alkaloid exposure across species, and 3) functional constraint shapes the evolution of the Nav1.4 inner pore. Our study is the first to demonstrate the genetic basis of autoresistance in frogs with alkaloid defenses. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Metabolomics analysis identifies intestinal microbiota-derived biomarkers of colonization resistance in clindamycin-treated mice.

    Directory of Open Access Journals (Sweden)

    Robin L P Jump

    Full Text Available The intestinal microbiota protect the host against enteric pathogens through a defense mechanism termed colonization resistance. Antibiotics excreted into the intestinal tract may disrupt colonization resistance and alter normal metabolic functions of the microbiota. We used a mouse model to test the hypothesis that alterations in levels of bacterial metabolites in fecal specimens could provide useful biomarkers indicating disrupted or intact colonization resistance after antibiotic treatment.To assess in vivo colonization resistance, mice were challenged with oral vancomycin-resistant Enterococcus or Clostridium difficile spores at varying time points after treatment with the lincosamide antibiotic clindamycin. For concurrent groups of antibiotic-treated mice, stool samples were analyzed using quantitative real-time polymerase chain reaction to assess changes in the microbiota and using non-targeted metabolic profiling. To assess whether the findings were applicable to another antibiotic class that suppresses intestinal anaerobes, similar experiments were conducted with piperacillin/tazobactam.Colonization resistance began to recover within 5 days and was intact by 12 days after clindamycin treatment, coinciding with the recovery bacteria from the families Lachnospiraceae and Ruminococcaceae, both part of the phylum Firmicutes. Clindamycin treatment caused marked changes in metabolites present in fecal specimens. Of 484 compounds analyzed, 146 (30% exhibited a significant increase or decrease in concentration during clindamycin treatment followed by recovery to baseline that coincided with restoration of in vivo colonization resistance. Identified as potential biomarkers of colonization resistance, these compounds included intermediates in carbohydrate or protein metabolism that increased (pentitols, gamma-glutamyl amino acids and inositol metabolites or decreased (pentoses, dipeptides with clindamycin treatment. Piperacillin

  4. Selection of drug resistant mutants from random library of Plasmodium falciparum dihydrofolate reductase in Plasmodium berghei model

    Directory of Open Access Journals (Sweden)

    Yuthavong Yongyuth

    2011-05-01

    Full Text Available Abstract Background The prevalence of drug resistance amongst the human malaria Plasmodium species has most commonly been associated with genomic mutation within the parasites. This phenomenon necessitates evolutionary predictive studies of possible resistance mutations, which may occur when a new drug is introduced. Therefore, identification of possible new Plasmodium falciparum dihydrofolate reductase (PfDHFR mutants that confer resistance to antifolate drugs is essential in the process of antifolate anti-malarial drug development. Methods A system to identify mutations in Pfdhfr gene that confer antifolate drug resistance using an animal Plasmodium parasite model was developed. By using error-prone PCR and Plasmodium transfection technologies, libraries of Pfdhfr mutant were generated and then episomally transfected to Plasmodium berghei parasites, from which pyrimethamine-resistant PfDHFR mutants were selected. Results The principal mutation found from this experiment was S108N, coincident with the first pyrimethamine-resistance mutation isolated from the field. A transgenic P. berghei, in which endogenous Pbdhfr allele was replaced with the mutant PfdhfrS108N, was generated and confirmed to have normal growth rate comparing to parental non-transgenic parasite and also confer resistance to pyrimethamine. Conclusion This study demonstrated the power of the transgenic P. berghei system to predict drug-resistant Pfdhfr mutations in an in vivo parasite/host setting. The system could be utilized for identification of possible novel drug-resistant mutants that could arise against new antifolate compounds and for prediction the evolution of resistance mutations.

  5. Monitoring-induced disruption in skilled typewriting.

    Science.gov (United States)

    Snyder, Kristy M; Logan, Gordon D

    2013-10-01

    It is often disruptive to attend to the details of one's expert performance. The current work presents four experiments that utilized a monitor to report protocol to evaluate the sufficiency of three accounts of monitoring-induced disruption. The inhibition hypothesis states that disruption results from costs associated with preparing to withhold inappropriate responses. The dual-task hypothesis states that disruption results from maintaining monitored information in working memory. The implicit-explicit hypothesis states that disruption results from explicitly monitoring details of performance that are normally implicit. The findings suggest that all three hypotheses are sufficient to produce disruption, but inhibition and dual-task costs are not necessary. Experiment 1 showed that monitoring to report was disruptive even when there was no requirement to inhibit. Experiment 2 showed that maintaining information in working memory caused some disruption but much less than monitoring to report. Experiment 4 showed that monitoring to inhibit was more disruptive than monitoring to report, suggesting that monitoring is more disruptive when it is combined with other task requirements, such as inhibition. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  6. Rapamycin Exerts Antifungal Activity In Vitro and In Vivo against Mucor circinelloides via FKBP12-Dependent Inhibition of Tor

    Science.gov (United States)

    Bastidas, Robert J.; Shertz, Cecelia A.; Lee, Soo Chan; Heitman, Joseph

    2012-01-01

    The zygomycete Mucor circinelloides is an opportunistic fungal pathogen that commonly infects patients with malignancies, diabetes mellitus, and solid organ transplants. Despite the widespread use of antifungal therapy in the management of zygomycosis, the incidence of infections continues to rise among immunocompromised individuals. In this study, we established that the target and mechanism of antifungal action of the immunosuppressant rapamycin in M. circinelloides are mediated via conserved complexes with FKBP12 and a Tor homolog. We found that spontaneous mutations that disrupted conserved residues in FKBP12 conferred rapamycin and FK506 resistance. Disruption of the FKBP12-encoding gene, fkbA, also conferred rapamycin and FK506 resistance. Expression of M. circinelloides FKBP12 (McFKBP12) complemented a Saccharomyces cerevisiae mutant strain lacking FKBP12 to restore rapamycin sensitivity. Expression of the McTor FKBP12-rapamycin binding (FRB) domain conferred rapamycin resistance in S. cerevisiae, and McFKBP12 interacted in a rapamycin-dependent fashion with the McTor FRB domain in a yeast two-hybrid assay, validating McFKBP12 and McTor as conserved targets of rapamycin. We showed that in vitro, rapamycin exhibited potent growth inhibitory activity against M. circinelloides. In a Galleria mellonella model of systemic mucormycosis, rapamycin improved survival by 50%, suggesting that rapamycin and nonimmunosuppressive analogs have the potential to be developed as novel antifungal therapies for treatment of patients with mucormycosis. PMID:22210828

  7. Disruptive Intelligence - How to gather Information to deal with disruptive innovations

    NARCIS (Netherlands)

    Vriens, D.J.; Solberg Søilen, K.

    2014-01-01

    Disruptive innovations are innovations that have the capacity to transform a whole business into one with products that are more accessible and affordable (cf. Christensen et al. 2009). As Christensen et al. argue no business is immune to such disruptive innovations. If these authors are right, it

  8. Terbinafine Resistance Mediated by Salicylate 1-Monooxygenase in Aspergillus nidulans

    Science.gov (United States)

    Graminha, Marcia A. S.; Rocha, Eleusa M. F.; Prade, Rolf A.; Martinez-Rossi, Nilce M.

    2004-01-01

    Resistance to antifungal agents is a recurring and growing problem among patients with systemic fungal infections. UV-induced Aspergillus nidulans mutants resistant to terbinafine have been identified, and we report here the characterization of one such gene. A sib-selected, 6.6-kb genomic DNA fragment encodes a salicylate 1-monooxygenase (salA), and a fatty acid synthase subunit (fasC) confers terbinafine resistance upon transformation of a sensitive strain. Subfragments carrying salA but not fasC confer terbinafine resistance. salA is present as a single-copy gene on chromosome VI and encodes a protein of 473 amino acids that is homologous to salicylate 1-monooxygenase, a well-characterized naphthalene-degrading enzyme in bacteria. salA transcript accumulation analysis showed terbinafine-dependent induction in the wild type and the UV-induced mutant Terb7, as well as overexpression in a strain containing the salA subgenomic DNA fragment, probably due to the multicopy effect caused by the transformation event. Additional naphthalene degradation enzyme-coding genes are present in fungal genomes, suggesting that resistance could follow degradation of the naphthalene ring contained in terbinafine. PMID:15328121

  9. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump

    NARCIS (Netherlands)

    Zaman, G. J.; Flens, M. J.; van Leusden, M. R.; de Haas, M.; Mülder, H. S.; Lankelma, J.; Pinedo, H. M.; Scheper, R. J.; Baas, F.; Broxterman, H. J.

    1994-01-01

    The multidrug-resistance associated protein MRP is a 180- to 195-kDa membrane protein associated with resistance of human tumor cells to cytotoxic drugs. We have investigated how MRP confers drug resistance in SW-1573 human lung carcinoma cells by generating a subline stably transfected with an

  10. Impact of Tigecycline Versus Other Antibiotics on the Fecal Metabolome and on Colonization Resistance to Clostridium difficile in Mice

    Directory of Open Access Journals (Sweden)

    Robin L.P. Jump

    2017-01-01

    Full Text Available Background: The glycylcycline antibiotic tigecycline may have a relatively low propensity to promote Clostridium difficile infection in part because it causes less disruption of the indigenous intestinal microbiota than other broad-spectrum antibiotics.  We used a mouse model to compare the compare the effects of tigecycline versus other commonly used antibiotics on colonization resistance to C. difficile and on metabolic functions of the intestinal microbiota.   Methods: To assess in vivo colonization resistance to C. difficile, mice were challenged with oral C. difficile spores 1, 7, or 12 days after completion of 3 days of treatment with subcutaneous saline, tigecycline, ceftriaxone, piperacillin-tazobactam, or linezolid.  Levels of bacterial metabolites in fecal specimens of mice treated with the same antibiotics were analyzed using non-targeted metabolic profiling by gas chromatograph (GC/mass spectrometry (MS and ultra-high performance liquid chromatography-tandem MS (UPLC-MS/MS.  Results:  All of the antibiotics disrupted colonization resistance to C. difficile when challenge occurred 2 days after treatment.  Only piperacillin/tazobactam and ceftriaxone-treated mice had disturbed colonization resistance at 7 days after treatment.  All of the antibiotics altered fecal metabolites in comparison to controls, but tigecycline caused significantly less alteration than the other antibiotics, including less suppression of multiple amino acids, bile acids, and lipid metabolites.    Conclusions:  Tigecycline and linezolid caused transient disruption of colonization resistance to C. difficile, whereas ceftriaxone and piperacillin/tazobactam caused disruption that persisted for 7 days post-treatment.  Tigecycline caused less profound alteration of fecal bacterial metabolites than the other antibiotics, suggesting that the relatively short period of disruption of colonization resistance might be related in part to reduced alteration of the

  11. Inheritance of Cry1F resistance, cross-resistance and frequency of resistant alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Vélez, A M; Spencer, T A; Alves, A P; Moellenbeck, D; Meagher, R L; Chirakkal, H; Siegfried, B D

    2013-12-01

    Transgenic maize, Zea maize L., expressing the Cry1F protein from Bacillus thuringiensis has been registered for Spodoptera frugiperda (J. E. Smith) control since 2003. Unexpected damage to Cry1F maize was reported in 2006 in Puerto Rico and Cry1F resistance in S. frugiperda was documented. The inheritance of Cry1F resistance was characterized in a S. frugiperda resistant strain originating from Puerto Rico, which displayed >289-fold resistance to purified Cry1F. Concentration-response bioassays of reciprocal crosses of resistant and susceptible parental populations indicated that resistance is recessive and autosomal. Bioassays of the backcross of the F1 generation crossed with the resistant parental strain suggest that a single locus is responsible for resistance. In addition, cross-resistance to Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry2Aa and Vip3Aa was assessed in the Cry1F-resistant strain. There was no significant cross-resistance to Cry1Aa, Cry1Ba and Cry2Aa, although only limited effects were observed in the susceptible strain. Vip3Aa was highly effective against susceptible and resistant insects indicating no cross-resistance with Cry1F. In contrast, low levels of cross-resistance were observed for both Cry1Ab and Cry1Ac. Because the resistance is recessive and conferred by a single locus, an F1 screening assay was used to measure the frequency of Cry1F-resistant alleles from populations of Florida and Texas in 2010 and 2011. A total frequency of resistant alleles of 0.13 and 0.02 was found for Florida and Texas populations, respectively, indicating resistant alleles could be found in US populations, although there have been no reports of reduced efficacy of Cry1F-expressing plants.

  12. Politisk disruption

    DEFF Research Database (Denmark)

    Tække, Jesper

    2018-01-01

    Dette blogindlæg giver en kort analyse af hvordan de sociale medier ved at give en ny tid har åbnet for den disruption af de politiske processer som især Trump stå som et eksempel på.......Dette blogindlæg giver en kort analyse af hvordan de sociale medier ved at give en ny tid har åbnet for den disruption af de politiske processer som især Trump stå som et eksempel på....

  13. The emergence and outbreak of multidrug-resistant typhoid fever in China.

    Science.gov (United States)

    Yan, Meiying; Li, Xinlan; Liao, Qiaohong; Li, Fang; Zhang, Jing; Kan, Biao

    2016-06-22

    Typhoid fever remains a severe public health problem in developing countries. The emergence of resistant typhoid, particularly multidrug-resistant typhoid infections, highlights the necessity of monitoring the resistance characteristics of this invasive pathogen. In this study, we report a typhoid fever outbreak caused by multidrug-resistant Salmonella enterica serovar Typhi strains with an ACSSxtT pattern. Resistance genes conferring these phenotypes were harbored by a large conjugative plasmid, which increases the threat of Salmonella Typhi and thus requires close surveillance for dissemination of strains containing such genes.

  14. Towards a Disruptive Digital Platform Model

    DEFF Research Database (Denmark)

    Kazan, Erol

    that digital platforms leverage on three strategic design elements (i.e., business, architecture, and technology design) to create supportive conditions for facilitating disruption. To shed light on disruptive digital platforms, I opted for payment platforms as my empirical context and unit of analysis......Digital platforms are layered modular information technology architectures that support disruption. Digital platforms are particularly disruptive, as they facilitate the quick release of digital innovations that may replace established innovations. Yet, despite their support for disruption, we have...... not fully understood how such digital platforms can be strategically designed and configured to facilitate disruption. To that end, this thesis endeavors to unravel disruptive digital platforms from the supply perspective that are grounded on strategic digital platform design elements. I suggest...

  15. Computational Biology Support: RECOMB Conference Series (Conference Support)

    Energy Technology Data Exchange (ETDEWEB)

    Michael Waterman

    2006-06-15

    This funding was support for student and postdoctoral attendance at the Annual Recomb Conference from 2001 to 2005. The RECOMB Conference series was founded in 1997 to provide a scientific forum for theoretical advances in computational biology and their applications in molecular biology and medicine. The conference series aims at attracting research contributions in all areas of computational molecular biology. Typical, but not exclusive, the topics of interest are: Genomics, Molecular sequence analysis, Recognition of genes and regulatory elements, Molecular evolution, Protein structure, Structural genomics, Gene Expression, Gene Networks, Drug Design, Combinatorial libraries, Computational proteomics, and Structural and functional genomics. The origins of the conference came from the mathematical and computational side of the field, and there remains to be a certain focus on computational advances. However, the effective use of computational techniques to biological innovation is also an important aspect of the conference. The conference had a growing number of attendees, topping 300 in recent years and often exceeding 500. The conference program includes between 30 and 40 contributed papers, that are selected by a international program committee with around 30 experts during a rigorous review process rivaling the editorial procedure for top-rate scientific journals. In previous years papers selection has been made from up to 130--200 submissions from well over a dozen countries. 10-page extended abstracts of the contributed papers are collected in a volume published by ACM Press and Springer, and are available at the conference. Full versions of a selection of the papers are published annually in a special issue of the Journal of Computational Biology devoted to the RECOMB Conference. A further point in the program is a lively poster session. From 120-300 posters have been presented each year at RECOMB 2000. One of the highlights of each RECOMB conference is a

  16. Mindfulness-Based Parent Training: Strategies to Lessen the Grip of Automaticity in Families with Disruptive Children

    Science.gov (United States)

    Dumas, Jean E.

    2005-01-01

    Disagreements and conflicts in families with disruptive children often reflect rigid patterns of behavior that have become overlearned and automatized with repeated practice. These patterns are mindless: They are performed with little or no awareness and are highly resistant to change. This article introduces a new, mindfulness-based model of…

  17. Zinc Finger Nuclease: A New Approach to Overcome Beta-Lactam Antibiotic Resistance

    Science.gov (United States)

    Shahbazi Dastjerdeh, Mansoureh; Kouhpayeh, Shirin; Sabzehei, Faezeh; Khanahmad, Hossein; Salehi, Mansour; Mohammadi, Zahra; Shariati, Laleh; Hejazi, Zahra; Rabiei, Parisa; Manian, Mostafa

    2016-01-01

    Background: The evolution of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) has been accelerated recently by the indiscriminate application of antibiotics. Antibiotic resistance has challenged the success of medical interventions and therefore is considered a hazardous threat to human health. Objectives: The present study aimed to describe the use of zinc finger nuclease (ZFN) technology to target and disrupt a plasmid-encoded β-lactamase, which prevents horizontal gene transfer-mediated evolution of ARBs. Materials and Methods: An engineered ZFN was designed to target a specific sequence in the ampicillin resistance gene (ampR) of the pTZ57R plasmid. The Escherichia coli bacteria already contained the pZFN kanamycin-resistant (kanaR) plasmid as the case or the pP15A, kanaR empty vector as the control, were transformed with the pTZ57R; the ability of the designed ZFN to disrupt the β-lactamase gene was evaluated with the subsequent disturbed ability of the bacteria to grow on ampicillin (amp) and ampicillin-kanamycin (amp-kana)-containing media. The effect of mild hypothermia on the ZFN gene targeting efficiency was also evaluated. Results: The growth of bacteria in the case group on the amp and amp-kana-containing media was significantly lower compared with the control group at 37°C (P < 0.001). Despite being more efficient in hypothermic conditions at 30°C (P < 0.001), there were no significant associations between the incubation temperature and the ZFN gene targeting efficiency. Conclusions: Our findings revealed that the ZFN technology could be employed to overcome ampicillin resistance by the targeted disruption of the ampicillin resistance gene, which leads to inactivation of β-lactam synthesis. Therefore, ZFN technology could be engaged to decrease the antibiotic resistance issue with the construction of a ZFN archive against different ARGs. To tackle the resistance issue at the environmental level, recombinant phages

  18. FARME DB: a functional antibiotic resistance element database

    OpenAIRE

    Wallace, James C.; Port, Jesse A.; Smith, Marissa N.; Faustman, Elaine M.

    2017-01-01

    Antibiotic resistance (AR) is a major global public health threat but few resources exist that catalog AR genes outside of a clinical context. Current AR sequence databases are assembled almost exclusively from genomic sequences derived from clinical bacterial isolates and thus do not include many microbial sequences derived from environmental samples that confer resistance in functional metagenomic studies. These environmental metagenomic sequences often show little or no similarity to AR se...

  19. Thigmotaxis Mediates Trail Odour Disruption.

    Science.gov (United States)

    Stringer, Lloyd D; Corn, Joshua E; Sik Roh, Hyun; Jiménez-Pérez, Alfredo; Manning, Lee-Anne M; Harper, Aimee R; Suckling, David M

    2017-05-10

    Disruption of foraging using oversupply of ant trail pheromones is a novel pest management application under investigation. It presents an opportunity to investigate the interaction of sensory modalities by removal of one of the modes. Superficially similar to sex pheromone-based mating disruption in moths, ant trail pheromone disruption lacks an equivalent mechanistic understanding of how the ants respond to an oversupply of their trail pheromone. Since significant compromise of one sensory modality essential for trail following (chemotaxis) has been demonstrated, we hypothesised that other sensory modalities such as thigmotaxis could act to reduce the impact on olfactory disruption of foraging behaviour. To test this, we provided a physical stimulus of thread to aid trailing by Argentine ants otherwise under disruptive pheromone concentrations. Trail following success was higher using a physical cue. While trail integrity reduced under continuous over-supply of trail pheromone delivered directly on the thread, provision of a physical cue in the form of thread slightly improved trail following and mediated trail disruption from high concentrations upwind. Our results indicate that ants are able to use physical structures to reduce but not eliminate the effects of trail pheromone disruption.

  20. Novel bacterial metabolite merochlorin A demonstrates in vitro activity against multi-drug resistant methicillin-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    George Sakoulas

    Full Text Available We evaluated the in vitro activity of a merochlorin A, a novel compound with a unique carbon skeleton, against a spectrum of clinically relevant bacterial pathogens and against previously characterized clinical and laboratory Staphylococcus aureus isolates with resistance to numerous antibiotics.Merochlorin A was isolated and purified from a marine-derived actinomycete strain CNH189. Susceptibility testing for merochlorin A was performed against previously characterized human pathogens using broth microdilution and agar dilution methods. Cytotoxicity was assayed in tissue culture assays at 24 and 72 hours against human HeLa and mouse sarcoma L929 cell lines.The structure of as new antibiotic, merochlorin A, was assigned by comprehensive spectroscopic analysis. Merochlorin A demonstrated in vitro activity against Gram-positive bacteria, including Clostridium dificile, but not against Gram negative bacteria. In S. aureus, susceptibility was not affected by ribosomal mutations conferring linezolid resistance, mutations in dlt or mprF conferring resistance to daptomycin, accessory gene regulator knockout mutations, or the development of the vancomycin-intermediate resistant phenotype. Merochlorin A demonstrated rapid bactericidal activity against MRSA. Activity was lost in the presence of 20% serum.The unique meroterpenoid, merochlorin A demonstrated excellent in vitro activity against S. aureus and C. dificile and did not show cross-resistance to contemporary antibiotics against Gram positive organisms. The activity was, however, markedly reduced in 20% human serum. Future directions for this compound may include evaluation for topical use, coating biomedical devices, or the pursuit of chemically modified derivatives of this compound that retain activity in the presence of serum.

  1. Prevalence and molecular characterization of pyrazinamide resistance among multidrug-resistant Mycobacterium tuberculosis isolates from Southern China.

    Science.gov (United States)

    Pang, Yu; Zhu, Damian; Zheng, Huiwen; Shen, Jing; Hu, Yan; Liu, Jie; Zhao, Yanlin

    2017-11-06

    Pyrazinamide (PZA) plays a unique role in the treatment for multidrug-resistant tuberculosis (MDR-TB) in both first- and second-line regimens. The aim of this study was to investigate the prevalence and molecular characterization of PZA resistance among MDR-TB isolates collected in Chongqing municipality. A total of 133 MDR-TB isolates were collected from the smear-positive tuberculosis patients who were registered at local TB dispensaries of Chongqing. PZA susceptibility testing was determined with a Bactec MGIT 960 system. In addition, the genes conferring for PZA resistance were screened by DNA sequencing. Of these 133 MDR-TB isolates, 83 (62.4%) were determined as PZA-resistant by MGIT 960. In addition, streptomycin- (83.1% vs. 56.0%, P < 0.01), ofloxacin- (51.8% vs. 18.0%, P < 0.01), kanamycin- (22.9% vs. 2.0%, P < 0.01), amikacin- (18.1% vs. 2.0%, P = 0.01), capromycin-resistance (12.0% vs. 2.0%, P = 0.05), were more frequently observed among PZA-resistant isolates compared with PZA-susceptible isolates. Sequence analysis revealed that 73 out of 83 (88.0%) MDR strains harbored a mutation located in the pncA gene, including 55 (75.3%, 55/73) of single nucleotide substitutions and 18 (24.7%, 18/73) of frameshift mutation, while no genetic mutation associated with PZA resistance was found in the rpsA gene. The pncA expression of strains harboring substitution from A to G at position -11 in the promoter region of pncA was significantly lower than that of H37Rv (P < 0.01). In conclusion, our data have demonstrated that the analysis of the pncA gene rather than rpsA gene provides rapid and accurate information regarding PZA susceptibility for MDR-TB isolates in Chongqing. In addition, loss of pncA expression caused by promoter mutation confers PZA resistance in MDR-TB isolates.

  2. HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector

    Directory of Open Access Journals (Sweden)

    Akkina Ramesh

    2005-01-01

    Full Text Available Abstract Background RNA interference (RNAi mediated by small interfering RNAs (siRNAs has proved to be a highly effective gene silencing mechanism with great potential for HIV/AIDS gene therapy. Previous work with siRNAs against cellular coreceptors CXCR4 and CCR5 had shown that down regulation of these surface molecules could prevent HIV-1 entry and confer viral resistance. Since monospecific siRNAs targeting individual coreceptors are inadequate in protecting against both T cell tropic (X4 and monocyte tropic (R5 viral strains simultaneously, bispecific constructs with dual specificity are required. For effective long range therapy, the bispecific constructs need to be stably transduced into HIV-1 target cells via integrating viral vectors. Results To achieve this goal, lentiviral vectors incorporating both CXCR4 and CCR5 siRNAs of short hairpin design were constructed. The CXCR4 siRNA was driven by a U6 promoter whereas the CCR5 siRNA was driven by an H1 promoter. A CMV promoter driven EGFP reporter gene is also incorporated in the bispecific construct. High efficiency transduction into coreceptor expressing Magi and Ghost cell lines with a concomitant down regulation of respective coreceptors was achieved with lentiviral vectors. When the siRNA expressing transduced cells were challenged with X4 and R5 tropic HIV-1, they demonstrated marked viral resistance. HIV-1 resistance was also observed in bispecific lentiviral vector transduced primary PBMCs. Conclusions Both CXCR4 and CCR5 coreceptors could be simultaneously targeted for down regulation by a single combinatorial lentiviral vector incorporating respective anti-coreceptor siRNAs. Stable down regulation of both the coreceptors protects cells against infection by both X4 and R5 tropic HIV-1. Stable down regulation of cellular molecules that aid in HIV-1 infection will be an effective strategy for long range HIV gene therapy.

  3. Supply disruption cost for power network planning

    International Nuclear Information System (INIS)

    Kjoelle, G.H.

    1992-09-01

    A description is given of the method of approach to calculate the total annual socio-economic cost of power supply disruption and non-supplied energy, included the utilities' cost for planning. The total socio-economic supply disruption cost is the sum of the customers' disruption cost and the utilities' cost for failure and disruption. The mean weighted disruption cost for Norway for one hour disruption is NOK 19 per kWh. The customers' annual disruption cost is calculated with basis in the specific disruption cost referred to heavy load (January) and dimensioning maximum loads. The loads are reduced by factors taking into account the time variations of the failure frequency, duration, the loads and the disruption cost. 6 refs

  4. Disrupting the Industry with Play

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop

    2016-01-01

    or two ago. This is significantly disrupting the industry in several market sectors. This paper describes the components of the playware and embodied artificial intelligence research that has led to disruption in the industrial robotics sector, and which points to the next disruption of the health care...

  5. Cell disruption for microalgae biorefineries.

    Science.gov (United States)

    Günerken, E; D'Hondt, E; Eppink, M H M; Garcia-Gonzalez, L; Elst, K; Wijffels, R H

    2015-01-01

    Microalgae are a potential source for various valuable chemicals for commercial applications ranging from nutraceuticals to fuels. Objective in a biorefinery is to utilize biomass ingredients efficiently similarly to petroleum refineries in which oil is fractionated in fuels and a variety of products with higher value. Downstream processes in microalgae biorefineries consist of different steps whereof cell disruption is the most crucial part. To maintain the functionality of algae biochemicals during cell disruption while obtaining high disruption yields is an important challenge. Despite this need, studies on mild disruption of microalgae cells are limited. This review article focuses on the evaluation of conventional and emerging cell disruption technologies, and a comparison thereof with respect to their potential for the future microalgae biorefineries. The discussed techniques are bead milling, high pressure homogenization, high speed homogenization, ultrasonication, microwave treatment, pulsed electric field treatment, non-mechanical cell disruption and some emerging technologies. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Expression of the grape VqSTS21 gene in Arabidopsis confers resistance to osmotic stress and biotrophic pathogens but not Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Li Huang

    2016-09-01

    Full Text Available Stilbene synthase (STS is a key gene in the biosynthesis of various stilbenoids, including resveratrol and its derivative glucosides (such as piceid, that has been shown to contribute to disease resistance in plants. However, the mechanism behind such a role has yet to be elucidated. Furthermore, the function of STS genes in osmotic stress tolerance remains unclear. As such, we sought to elucidate the role of STS genes in the defense against biotic and abiotic stress in the model plant Arabidopsis thaliana. Expression profiling of 31 VqSTS genes from Vitis quinquangularis revealed that VqSTS21 was up-regulated in response to powdery mildew (PM infection. To provide a deeper understanding of the function of this gene, we cloned the full-length coding sequence of VqSTS21 and overexpressed it in Arabidopsis thaliana via Agrobacterium-mediated transformation. The resulting VqSTS21 Arabidopsis lines produced trans-piceid rather than resveratrol as their main stilbenoid product and exhibited improved disease resistance to PM and Pseudomonas syringae pv. tomato DC3000, but displayed increased susceptibility to Botrytis cinerea. In addition, transgenic Arabidopsis lines were found to confer tolerance to salt and drought stress from seed germination through plant maturity. Intriguingly, qPCR assays of defense-related genes involved in salicylic acid, jasmonic acid, and abscisic acid-induced signaling pathways in these transgenic lines suggested that VqSTS21 plays a role in various phytohormone-related pathways, providing insight into the mechanism behind VqSTS21-mediated resistance to biotic and abiotic stress.

  7. The structure of FIV reverse transcriptase and its implications for non-nucleoside inhibitor resistance.

    Directory of Open Access Journals (Sweden)

    Meytal Galilee

    2018-01-01

    Full Text Available Reverse transcriptase (RT is the target for the majority of anti-HIV-1 drugs. As with all anti-AIDS treatments, continued success of RT inhibitors is persistently disrupted by the occurrence of resistance mutations. To explore latent resistance mechanisms potentially accessible to therapeutically challenged HIV-1 viruses, we examined RT from the related feline immunodeficiency virus (FIV. FIV closely parallels HIV-1 in its replication and pathogenicity, however, is resistant to all non-nucleoside inhibitors (NNRTI. The intrinsic resistance of FIV RT is particularly interesting since FIV harbors the Y181 and Y188 sensitivity residues absent in both HIV-2 and SIV. Unlike RT from HIV-2 or SIV, previous efforts have failed to make FIV RT susceptible to NNRTIs concluding that the structure or flexibility of the feline enzyme must be profoundly different. We report the first crystal structure of FIV RT and, being the first structure of an RT from a non-primate lentivirus, enrich the structural and species repertoires available for RT. The structure demonstrates that while the NNRTI binding pocket is conserved, minor subtleties at the entryway can render the FIV RT pocket more restricted and unfavorable for effective NNRTI binding. Measuring NNRTI binding affinity to FIV RT shows that the "closed" pocket configuration inhibits NNRTI binding. Mutating the loop residues rimming the entryway of FIV RT pocket allows for NNRTI binding, however, it does not confer sensitivity to these inhibitors. This reveals a further layer of resistance caused by inherent FIV RT variances that could have enhanced the dissociation of bound inhibitors, or, perhaps, modulated protein plasticity to overcome inhibitory effects of bound NNRTIs. The more "closed" conformation of FIV RT pocket can provide a template for the development of innovative drugs that could unlock the constrained pocket, and the resilient mutant version of the enzyme can offer a fresh model for the study

  8. Differential contributions of five ABC transporters to mutidrug resistance, antioxidion and virulence of Beauveria bassiana, an entomopathogenic fungus.

    Directory of Open Access Journals (Sweden)

    Ting-Ting Song

    Full Text Available Multidrug resistance (MDR confers agrochemical compatibility to fungal cells-based mycoinsecticdes but mechanisms involved in MDR remain poorly understood for entomopathogenic fungi, which have been widely applied as biocontrol agents against arthropod pests. Here we characterized the functions of five ATP-binding cassette (ABC transporters, which were classified to the subfamilies ABC-B (Mdr1, ABC-C (Mrp1 and ABC-G (Pdr1, Pdr2 and Pdr5 and selected from 54 full-size ABC proteins of Beauveria bassiana based on their main domain architecture, membrane topology and transcriptional responses to three antifungal inducers. Disruption of each transporter gene resulted in significant reduction in resistance to four to six of eight fungicides or antifungal drugs tested due to their differences in structure and function. Compared with wild-type and complemented (control strains, disruption mutants of all the five transporter genes became significantly less tolerant to the oxidants menadione and H₂O₂ based on 22-41% and 10-31% reductions of their effective concentrations required for the suppression of 50% colony growth at 25°C. Under a standardized spray, the killing actions of ΔPdr5 and ΔMrp1 mutants against Spodoptera litura second-instar larvae were delayed by 59% and 33% respectively. However, no significant virulence change was observed in three other delta mutants. Taken together, the examined five ABC transporters contribute differentially to not only the fungal MDR but antioxidant capability, a phenotype rarely associated with ABC efflux pumps in previous reports; at least some of them are required for the full virulence of B. bassiana, thereby affecting the fungal biocontrol potential. Our results indicate that ABC pump-dependent MDR mechanisms exist in entomopathogenic fungi as do in yeasts and human and plant pathogenic fungi.

  9. Deep sequence analysis reveals the ovine rumen as a reservoir of antibiotic resistance genes.

    Science.gov (United States)

    Hitch, Thomas C A; Thomas, Ben J; Friedersdorff, Jessica C A; Ougham, Helen; Creevey, Christopher J

    2018-04-01

    Antibiotic resistance is an increasingly important environmental pollutant with direct consequences for human health. Identification of environmental sources of antibiotic resistance genes (ARGs) makes it possible to follow their evolution and prevent their entry into the clinical setting. ARGs have been found in environmental sources exogenous to the original source and previous studies have shown that these genes are capable of being transferred from livestock to humans. Due to the nature of farming and the slaughter of ruminants for food, humans interact with these animals in close proximity, and for this reason it is important to consider the risks to human health. In this study, we characterised the ARG populations in the ovine rumen, termed the resistome. This was done using the Comprehensive Antibiotic Resistance Database (CARD) to identify the presence of genes conferring resistance to antibiotics within the rumen. Genes were successfully mapped to those that confer resistance to a total of 30 different antibiotics. Daptomycin was identified as the most common antibiotic for which resistance is present, suggesting that ruminants may be a source of daptomycin ARGs. Colistin resistance, conferred by the gene pmrE, was also found to be present within all samples, with an average abundance of 800 counts. Due to the high abundance of some ARGs (against daptomycin) and the presence of rare ARGs (against colistin), we suggest further study and monitoring of the rumen resistome as a possible source of clinically relevant ARGs. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Drug efflux proteins in multidrug resistant bacteria

    NARCIS (Netherlands)

    vanVeen, HW; Konings, WN

    Bacteria contain an array of transport proteins in their cytoplasmic membrane. Many of these proteins play an important role in conferring resistance to toxic compounds. The multidrug efflux systems encountered in prokaryotic cells are very similar to those observed in eukaryotic cells. Therefore, a

  11. Major disruption process in tokamak

    International Nuclear Information System (INIS)

    Kurita, Gen-ichi; Azumi, Masafumi; Tuda, Takashi; Takizuka, Tomonori; Tsunematsu, Toshihide; Tokuda, Shinji; Itoh, Kimitaka; Takeda, Tatsuoki

    1981-11-01

    The major disruption in a cylindrical tokamak is investigated by using the multi-helicity code, and the destabilization of the 3/2 mode by the mode coupling with the 2/1 mode is confirmed. The evolution of the magnetic field topology caused by the major disruption is studied in detail. The effect of the internal disruption on the 2/1 magnetic island width is also studied. The 2/1 magnetic island is not enhanced by the flattening of the q-profile due to the internal disruption. (author)

  12. Plasma disruption modeling and simulation

    International Nuclear Information System (INIS)

    Hassanein, A.

    1994-01-01

    Disruptions in tokamak reactors are considered a limiting factor to successful operation and reliable design. The behavior of plasma-facing components during a disruption is critical to the overall integrity of the reactor. Erosion of plasma facing-material (PFM) surfaces due to thermal energy dump during the disruption can severely limit the lifetime of these components and thus diminish the economic feasibility of the reactor. A comprehensive understanding of the interplay of various physical processes during a disruption is essential for determining component lifetime and potentially improving the performance of such components. There are three principal stages in modeling the behavior of PFM during a disruption. Initially, the incident plasma particles will deposit their energy directly on the PFM surface, heating it to a very high temperature where ablation occurs. Models for plasma-material interactions have been developed and used to predict material thermal evolution during the disruption. Within a few microseconds after the start of the disruption, enough material is vaporized to intercept most of the incoming plasma particles. Models for plasma-vapor interactions are necessary to predict vapor cloud expansion and hydrodynamics. Continuous heating of the vapor cloud above the material surface by the incident plasma particles will excite, ionize, and cause vapor atoms to emit thermal radiation. Accurate models for radiation transport in the vapor are essential for calculating the net radiated flux to the material surface which determines the final erosion thickness and consequently component lifetime. A comprehensive model that takes into account various stages of plasma-material interaction has been developed and used to predict erosion rates during reactor disruption, as well during induced disruption in laboratory experiments

  13. Chimeric cellulase matrix for investigating intramolecular synergism between non-hydrolytic disruptive functions of carbohydrate-binding modules and catalytic hydrolysis.

    Science.gov (United States)

    Wang, Yuguo; Tang, Rentao; Tao, Jin; Wang, Xiaonan; Zheng, Baisong; Feng, Yan

    2012-08-24

    The conversion of renewable cellulosic biomass is of considerable interest for the production of biofuels and materials. The bottleneck in the efficient conversion is the compactness and resistance of crystalline cellulose. Carbohydrate-binding modules (CBMs), which disrupt crystalline cellulose via non-hydrolytic mechanisms, are expected to overcome this bottleneck. However, the lack of convenient methods for quantitative analysis of the disruptive functions of CBMs have hindered systematic studies and molecular modifications. Here we established a practical and systematic platform for quantifying and comparing the non-hydrolytic disruptive activities of CBMs via the synergism of CBMs and a catalytic module within designed chimeric cellulase molecules. Bioinformatics and computational biology were also used to provide a deeper understanding. A convenient vector was constructed to serve as a cellulase matrix into which heterologous CBM sequences can be easily inserted. The resulting chimeric cellulases were suitable for studying disruptive functions, and their activities quantitatively reflected the disruptive functions of CBMs on crystalline cellulose. In addition, this cellulase matrix can be used to construct novel chimeric cellulases with high hydrolytic activities toward crystalline cellulose.

  14. Chimeric Cellulase Matrix for Investigating Intramolecular Synergism between Non-hydrolytic Disruptive Functions of Carbohydrate-binding Modules and Catalytic Hydrolysis*

    Science.gov (United States)

    Wang, Yuguo; Tang, Rentao; Tao, Jin; Wang, Xiaonan; Zheng, Baisong; Feng, Yan

    2012-01-01

    The conversion of renewable cellulosic biomass is of considerable interest for the production of biofuels and materials. The bottleneck in the efficient conversion is the compactness and resistance of crystalline cellulose. Carbohydrate-binding modules (CBMs), which disrupt crystalline cellulose via non-hydrolytic mechanisms, are expected to overcome this bottleneck. However, the lack of convenient methods for quantitative analysis of the disruptive functions of CBMs have hindered systematic studies and molecular modifications. Here we established a practical and systematic platform for quantifying and comparing the non-hydrolytic disruptive activities of CBMs via the synergism of CBMs and a catalytic module within designed chimeric cellulase molecules. Bioinformatics and computational biology were also used to provide a deeper understanding. A convenient vector was constructed to serve as a cellulase matrix into which heterologous CBM sequences can be easily inserted. The resulting chimeric cellulases were suitable for studying disruptive functions, and their activities quantitatively reflected the disruptive functions of CBMs on crystalline cellulose. In addition, this cellulase matrix can be used to construct novel chimeric cellulases with high hydrolytic activities toward crystalline cellulose. PMID:22778256

  15. Angiotensin II Removes Kidney Resistance Conferred by Ischemic Preconditioning

    Directory of Open Access Journals (Sweden)

    Hee-Seong Jang

    2014-01-01

    Full Text Available Ischemic preconditioning (IPC by ischemia/reperfusion (I/R renders resistance to the kidney. Strong IPC triggers kidney fibrosis, which is involved in angiotensin II (AngII and its type 1 receptor (AT1R signaling. Here, we investigated the role of AngII/AT1R signal pathway in the resistance of IPC kidneys to subsequent I/R injury. IPC of kidneys was generated by 30 minutes of bilateral renal ischemia and 8 days of reperfusion. Sham-operation was performed to generate control (non-IPC mice. To examine the roles of AngII and AT1R in IPC kidneys to subsequent I/R, IPC kidneys were subjected to either 30 minutes of bilateral kidney ischemia or sham-operation following treatment with AngII, losartan (AT1R blocker, or AngII plus losartan. IPC kidneys showed fibrotic changes, decreased AngII, and increased AT1R expression. I/R dramatically increased plasma creatinine concentrations in non-IPC mice, but not in IPC mice. AngII treatment in IPC mice resulted in enhanced morphological damage, oxidative stress, and inflammatory responses, with functional impairment, whereas losartan treatment reversed these effects. However, AngII treatment in non-IPC mice did not change I/R-induced injury. AngII abolished the resistance of IPC kidneys to subsequent I/R via the enhancement of oxidative stress and inflammatory responses, suggesting that the AngII/AT1R signaling pathway is associated with outcome in injury-experienced kidney.

  16. Disruption of motor behavior and injury to the CNS induced by 3-thienylboronic acid in mice

    Energy Technology Data Exchange (ETDEWEB)

    Farfán-García, E.D.; Pérez-Rodríguez, M. [Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México (Mexico); Espinosa-García, C. [Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana (UAM), 09310 Ciudad de México (Mexico); Castillo-Mendieta, N.T.; Maldonado-Castro, M.; Querejeta, E.; Trujillo-Ferrara, J.G. [Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México (Mexico); and others

    2016-09-15

    The scarcity of studies on boron containing compounds (BCC) in the medicinal field is gradually being remedied. Efforts have been made to explore the effects of BCCs due to the properties that boron confers to molecules. Research has shown that the safety of some BCCs is similar to that found for boron-free compounds (judging from the acute toxicological evaluation). However, it has been observed that the administration of 3-thienylboronic acid (3TB) induced motor disruption in CD1 mice. In the current contribution we studied in deeper form the disruption of motor performance produced by the intraperitoneal administration of 3TB in mice from two strains (CD1 and C57BL6). Disruption of motor activity was dependent not only on the dose of 3TB administered, but also on the DMSO concentration in the vehicle. The ability of 3TB to enter the Central Nervous System (CNS) was evidenced by Raman spectroscopy as well as morphological effects on the CNS, such as loss of neurons yielding biased injury to the substantia nigra and striatum at doses ≥ 200 mg/kg, and involving granular cell damage at doses of 400 mg/kg but less injury in the motor cortex. Our work acquaints about the use of this compound in drug design, but the interesting profile as neurotoxic agent invite us to study it regarding the damage on the motor system. - Highlights: • Intraperitoneal 3-thienylboronic acid (3TB) induces tremor in CD1 or C57BL6 mice. • Injury on CNS as well as motor disruption is dose-dependent. • Damage is greater in basal ganglia than in cerebellum or motor cortex. • The DMSO as vehicle plays a key role in the induced effect. • Motor disruption seems to involve basal ganglia and cerebellum damage.

  17. Disruption of motor behavior and injury to the CNS induced by 3-thienylboronic acid in mice

    International Nuclear Information System (INIS)

    Farfán-García, E.D.; Pérez-Rodríguez, M.; Espinosa-García, C.; Castillo-Mendieta, N.T.; Maldonado-Castro, M.; Querejeta, E.; Trujillo-Ferrara, J.G.

    2016-01-01

    The scarcity of studies on boron containing compounds (BCC) in the medicinal field is gradually being remedied. Efforts have been made to explore the effects of BCCs due to the properties that boron confers to molecules. Research has shown that the safety of some BCCs is similar to that found for boron-free compounds (judging from the acute toxicological evaluation). However, it has been observed that the administration of 3-thienylboronic acid (3TB) induced motor disruption in CD1 mice. In the current contribution we studied in deeper form the disruption of motor performance produced by the intraperitoneal administration of 3TB in mice from two strains (CD1 and C57BL6). Disruption of motor activity was dependent not only on the dose of 3TB administered, but also on the DMSO concentration in the vehicle. The ability of 3TB to enter the Central Nervous System (CNS) was evidenced by Raman spectroscopy as well as morphological effects on the CNS, such as loss of neurons yielding biased injury to the substantia nigra and striatum at doses ≥ 200 mg/kg, and involving granular cell damage at doses of 400 mg/kg but less injury in the motor cortex. Our work acquaints about the use of this compound in drug design, but the interesting profile as neurotoxic agent invite us to study it regarding the damage on the motor system. - Highlights: • Intraperitoneal 3-thienylboronic acid (3TB) induces tremor in CD1 or C57BL6 mice. • Injury on CNS as well as motor disruption is dose-dependent. • Damage is greater in basal ganglia than in cerebellum or motor cortex. • The DMSO as vehicle plays a key role in the induced effect. • Motor disruption seems to involve basal ganglia and cerebellum damage.

  18. Options for treating carbapenem-resistant Enterobacteriaceae.

    Science.gov (United States)

    Rafailidis, Petros I; Falagas, Matthew E

    2014-12-01

    To address the therapeutic management of carbapenem-resistant Enterobacteriaceae on the basis of literature of the last 12 months. Retrospective and prospective (nonrandomized noncontrolled) studies provide data regarding the management of infections due to carbapenem-resistant Enterobacteriaceae. The combination of a carbapenem with colistin or high-dose tigecycline or aminoglycoside or even triple carbapenem-containing combinations if the minimum inhibitory concentration (MIC) range of carbapenem (meropenem and imipenem) resistance is 8 mg/l or less seems to have an advantage over monotherapy with either colistin or tigecycline or fosfomycin. For Enterobacteriaceae with MIC for carbapenems over 8 mg/l, combination regimens involve colistin, tigecycline usually administered in a double dose than that suggested by its manufacturer, fosfomycin and aminoglycosides in various combinations. Suggestions based on the limited literature cannot be made safely. Combination regimens involving carbapenems for Enterobacteriaceae with MICs 8 mg/l or less for carbapenems (in dual combination with colistin or high-dose tigecycline or aminoglycoside or even triple combinations) seem to confer some therapeutic advantage over monotherapy. For Enterobacteriaceae with higher than the above-mentioned MICs, a combination of two or even three antibiotics among colistin, high-dose tigecycline, aminoglycoside and fosfomycin seems to confer decreased mortality.

  19. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    Science.gov (United States)

    Somerville, Chris R [Portola Valley, CA; Scheible, Wolf [Golm, DE

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  20. Disrupt mig vel: Fire gode råd om disruption

    DEFF Research Database (Denmark)

    Rydén, Pernille; Ringberg, Torsten; Østergaard Jacobsen, Per

    2017-01-01

    Forandring. Ønsket om at være teknologisk foran, kommer ofte til at ske på bekostning af fokus på kundernes oplevelser. Lighedstegnet mellem disruption og ny teknologi er kun den halve sandhed.......Forandring. Ønsket om at være teknologisk foran, kommer ofte til at ske på bekostning af fokus på kundernes oplevelser. Lighedstegnet mellem disruption og ny teknologi er kun den halve sandhed....

  1. Genetics and mapping of a new anthracnose resistance locus in Andean common bean Paloma.

    Science.gov (United States)

    de Lima Castro, Sandra Aparecida; Gonçalves-Vidigal, Maria Celeste; Gilio, Thiago Alexandre Santana; Lacanallo, Giselly Figueiredo; Valentini, Giseli; da Silva Ramos Martins, Vanusa; Song, Qijian; Galván, Marta Zulema; Hurtado-Gonzales, Oscar P; Pastor-Corrales, Marcial Antonio

    2017-04-18

    The Andean cultivar Paloma is resistant to Mesoamerican and Andean races of Colletotrichum lindemuthianum, the fungal pathogen that causes the destructive anthracnose disease in common bean. Remarkably, Paloma is resistant to Mesoamerican races 2047 and 3481, which are among the most virulent races of the anthracnose pathogen. Most genes conferring anthracnose resistance in common bean are overcome by these races. The genetic mapping and the relationship between the resistant Co-Pa gene of Paloma and previously characterized anthracnose resistance genes can be a great contribution for breeding programs. The inheritance of resistance studies for Paloma was performed in F 2 population from the cross Paloma (resistant) × Cornell 49-242 (susceptible) inoculated with race 2047, and in F 2 and F 2:3 generations from the cross Paloma (resistant) × PI 207262 (susceptible) inoculated with race 3481. The results of these studies demonstrated that a single dominant gene confers the resistance in Paloma. Allelism tests performed with multiple races of C. lindemuthianum showed that the resistance gene in Paloma, provisionally named Co-Pa, is independent from the anthracnose resistance genes Co-1, Co-2, Co-3, Co-4, Co-5, Co-6, Co-12, Co-13, Co-14, Co-15 and Co-16. Bulk segregant analysis using the SNP chip BARCBean6K_3 positioned the approximate location of Co-Pa in the lower arm of chromosome Pv01. Further mapping analysis located the Co-Pa gene at a 390 kb region of Pv01 flanked by SNP markers SS82 and SS83 at a distance of 1.3 and 2.1 cM, respectively. The results presented here showed that Paloma cultivar has a new dominant gene conferring resistance to anthracnose, which is independent from those genes previously described. The linkage between the Co-Pa gene and the SS82 and SS83 SNP markers will be extremely important for marker-assisted introgression of the gene into elite cultivars in order to enhance resistance.

  2. A rapid seedling resistance assay identifies wild tomato lines that are resistant to Psuedomonas syringe pv. tomato race 1

    Science.gov (United States)

    Bacterial speck caused by Pseudomonas syringae has historically been controlled by the Pto/Prf gene cluster. Emerging strains like P. syringae pv. tomato race 1 overcome resistance conferred by Pto/Prf, and can cause serious crop loss under appropriate environmental conditions. We developed a rapid ...

  3. Insecticide resistance to organophosphates in Culex pipiens complex from Lebanon

    Directory of Open Access Journals (Sweden)

    Osta Mike A

    2012-07-01

    Full Text Available Abstract Background Analysis of Culex pipiens mosquitoes collected from a single site in Lebanon in 2005, revealed an alarming frequency of ace-1 alleles conferring resistance to organophosphate insecticides. Following this, in 2006 the majority of municipalities switched to pyrethroids after a long history of organophosphate usage in the country; however, since then no studies have assessed the impact of changing insecticide class on the frequency of resistant ace-1 alleles in C. pipiens. Methods C. pipiens mosquitoes were captured indoors from 25 villages across the country and subjected to established methods for the analysis of gene amplification at the Ester locus and target site mutations in ace-1 gene that confer resistance to organophosphates. Results We conducted the first large-scale screen for resistance to organosphosphates in C. pipiens mosquitoes collected from Lebanon. The frequency of carboxylesterase (Ester and ace-1 alleles conferring resistance to organophosphates were assessed among C. pipiens mosquitoes collected from 25 different villages across the country between December 2008 and December 2009. Established enzymatic assay and PCR-based molecular tests, both diagnostic of the major target site mutations in ace-1 revealed the absence of the F290V mutation among sampled mosquitoes and significant reduction in the frequency of G119S mutation compared to that previously reported for mosquitoes collected from Beirut in 2005. We also identified a new duplicated ace-1 allele, named ace-1D13, exhibiting a resistant phenotype by associating a susceptible and a resistant copy of ace-1 in a mosquito line sampled from Beirut in 2005. Fisher’s exact test on ace-1 frequencies in the new sample sites, showed that some populations exhibited a significant excess of heterozygotes, suggesting that the duplicated allele is still present. Starch gel electrophoresis indicated that resistance at the Ester locus was mainly attributed to the

  4. Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat.

    Science.gov (United States)

    Mao, Donghai; Yu, Li; Chen, Dazhou; Li, Lanying; Zhu, Yuxing; Xiao, Yeqing; Zhang, Dechun; Chen, Caiyan

    2015-07-01

    Dongxiang wild rice is phylogenetically close to temperate japonica and contains multiple cold resistance loci conferring its adaptation to high-latitude habitat. Understanding the nature of adaptation in wild populations will benefit crop breeding in the development of climate-resilient crop varieties. Dongxiang wild rice (DXWR), the northernmost common wild rice known, possesses a high degree of cold tolerance and can survive overwintering in its native habitat. However, to date, it is still unclear how DXWR evolved to cope with low-temperature environment, resulting in limited application of DXWR in rice breeding programs. In this study, we carried out both QTL mapping and phylogenetic analysis to discern the genetic mechanism underlying the strong cold resistance. Through a combination of interval mapping and single locus analysis in two genetic populations, at least 13 QTLs for seedling cold tolerance were identified in DXWR. A phylogenetic study using both genome-wide InDel markers and markers associated with cold tolerance loci reveals that DXWR belongs to the Or-III group, which is most closely related to cold-tolerant Japonica rice rather than to the Indica cultivars that are predominant in the habitat where DXWR grows. Our study paves the way toward an understanding of the nature of adaptation to a northern habitat in O. rufipogon. The QTLs identified in DXWR in this study will be useful for molecular breeding of cold-tolerant rice.

  5. Disrupting Business

    DEFF Research Database (Denmark)

    Cox, Geoff; Bazzichelli, Tatiana

    Disruptive Business explores some of the interconnections between art, activism and the business concept of disruptive innovation. With a backdrop of the crisis of financial capitalism, austerity cuts in the cultural sphere, the idea is to focus on potential art strategies in relation to a broken...... economy. In a perverse way, we ask whether this presents new opportunities for cultural producers to achieve more autonomy over their production process. If it is indeed possible, or desirable, what alternative business models emerge? The book is concerned broadly with business as material for reinvention...

  6. Optimization of bead milling parameters for the cell disruption of microalgae: process modeling and application to Porphyridium cruentum and Nannochloropsis oculata.

    Science.gov (United States)

    Montalescot, V; Rinaldi, T; Touchard, R; Jubeau, S; Frappart, M; Jaouen, P; Bourseau, P; Marchal, L

    2015-11-01

    A study of cell disruption by bead milling for two microalgae, Nannochloropsis oculata and Porphyridium cruentum, was performed. Strains robustness was quantified by high-pressure disruption assays. The hydrodynamics in the bead mill grinding chamber was studied by Residence Time Distribution modeling. Operating parameters effects were analyzed and modeled in terms of stress intensities and stress number. RTD corresponded to a 2 CSTR in series model. First order kinetics cell disruption was modeled in consequence. Continuous bead milling was efficient for both strains disruption. SI-SN modeling was successfully adapted to microalgae. As predicted by high pressure assays, N. oculata was more resistant than P. cruentum. The critical stress intensity was twice more important for N. oculata than for P. cruentum. SI-SN modeling allows the determination of operating parameters minimizing energy consumption and gives a scalable approach to develop and optimize microalgal disruption by bead milling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Sleep disruption in chronic rhinosinusitis.

    Science.gov (United States)

    Mahdavinia, Mahboobeh; Schleimer, Robert P; Keshavarzian, Ali

    2017-05-01

    Chronic rhinosinusitis (CRS) is a common disease of the upper airways and paranasal sinuses with a marked decline in quality of life (QOL). CRS patients suffer from sleep disruption at a significantly higher proportion (60 to 75%) than in the general population (8-18 %). Sleep disruption in CRS causes decreased QOL and is linked to poor functional outcomes such as impaired cognitive function and depression. Areas covered: A systematic PubMed/Medline search was done to assess the results of studies that have investigated sleep and sleep disturbances in CRS. Expert commentary: These studies reported sleep disruption in most CRS patients. The main risk factors for sleep disruption in CRS include allergic rhinitis, smoking, and high SNOT-22 total scores. The literature is inconsistent with regard to the prevalence of sleep-related disordered breathing (e.g. obstructive sleep apnea) in CRS patients. Although nasal obstruction is linked to sleep disruption, the extent of sleep disruption in CRS seems to expand beyond that expected from physical blockage of the upper airways alone. Despite the high prevalence of sleep disruption in CRS, and its detrimental effects on QOL, the literature contains a paucity of studies that have investigated the mechanisms underlying this major problem in CRS.

  8. Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach.

    Science.gov (United States)

    Paal, Jürgen; Henselewski, Heike; Muth, Jost; Meksem, Khalid; Menéndez, Cristina M; Salamini, Francesco; Ballvora, Agim; Gebhardt, Christiane

    2004-04-01

    The endoparasitic root cyst nematode Globodera rostochiensis causes considerable damage in potato cultivation. In the past, major genes for nematode resistance have been introgressed from related potato species into cultivars. Elucidating the molecular basis of resistance will contribute to the understanding of nematode-plant interactions and assist in breeding nematode-resistant cultivars. The Gro1 resistance locus to G. rostochiensis on potato chromosome VII co-localized with a resistance-gene-like (RGL) DNA marker. This marker was used to isolate from genomic libraries 15 members of a closely related candidate gene family. Analysis of inheritance, linkage mapping, and sequencing reduced the number of candidate genes to three. Complementation analysis by stable potato transformation showed that the gene Gro1-4 conferred resistance to G. rostochiensis pathotype Ro1. Gro1-4 encodes a protein of 1136 amino acids that contains Toll-interleukin 1 receptor (TIR), nucleotide-binding (NB), leucine-rich repeat (LRR) homology domains and a C-terminal domain with unknown function. The deduced Gro1-4 protein differed by 29 amino acid changes from susceptible members of the Gro1 gene family. Sequence characterization of 13 members of the Gro1 gene family revealed putative regulatory elements and a variable microsatellite in the promoter region, insertion of a retrotransposon-like element in the first intron, and a stop codon in the NB coding region of some genes. Sequence analysis of RT-PCR products showed that Gro1-4 is expressed, among other members of the family including putative pseudogenes, in non-infected roots of nematode-resistant plants. RT-PCR also demonstrated that members of the Gro1 gene family are expressed in most potato tissues.

  9. Characterization of Phenacoccus solenopsis (Tinsley) (Homoptera: Pseudococcidae) Resistance to Emamectin Benzoate: Cross-Resistance Patterns and Fitness Cost Analysis.

    Science.gov (United States)

    Afzal, M B S; Shad, S A

    2016-06-01

    Cotton mealybug Phenacoccus solenopsis (Tinsley) (Homoptera: Pseudococcidae) is a sucking pest of worldwide importance causing huge losses by feeding upon cotton in various parts of the world. Because of the importance of this pest, this research was carried out to select emamectin resistance in P. solenopsis in the laboratory to study cross-resistance, stability, realized heritability, and fitness cost of emamectin resistance. After selection from third generation (G3) to G6, P. solenopsis developed very high emamectin resistance (159.24-fold) when compared to a susceptible unselected population (Unsel pop). Population selected to emamectin benzoate conferred moderate (45.81-fold), low (14.06-fold), and no cross-resistance with abamectin, cypermethrin, and profenofos, respectively compared to the Unsel pop. A significant decline in emamectin resistance was observed in the resistant population when not exposed to emamectin from G7 to G13. The estimated realized heritability (h (2)) for emamectin resistance was 0.84. A high fitness cost was associated with emamectin resistance in P. solenopsis. Results of this study may be helpful in devising insecticide resistance management strategies for P. solenopsis.

  10. Conference Report: The First ATLAS.ti User Conference

    Directory of Open Access Journals (Sweden)

    Jeanine C. Evers

    2014-01-01

    Full Text Available This report on the First ATLAS.ti User Conference shares our impressions and experiences as longstanding ATLAS.ti users and trainers about the First ATLAS.ti User Conference in Berlin 2013. The origins, conceptual principles and development of the program are outlined, the conference themes discussed and experiences shared. Finally, the future of the program is discussed. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1401197

  11. FabH Mutations Confer Resistance to FabF-Directed Antibiotics in Staphylococcus aureus

    OpenAIRE

    Parsons, Joshua B.; Yao, Jiangwei; Frank, Matthew W.; Rock, Charles O.

    2014-01-01

    Delineating the mechanisms for genetically acquired antibiotic resistance is a robust approach to target validation and anticipates the evolution of clinical drug resistance. This study defines a spectrum of mutations in fabH that render Staphylococcus aureus resistant to multiple natural products known to inhibit the elongation condensing enzyme (FabF) of bacterial type II fatty acid synthesis. Twenty independently isolated clones resistant to platensimycin, platencin, or thiolactomycin were...

  12. Cisplatin-resistant lung cancer cell-derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100-5p-dependent manner.

    Science.gov (United States)

    Qin, Xiaobing; Yu, Shaorong; Zhou, Leilei; Shi, Meiqi; Hu, Yong; Xu, Xiaoyue; Shen, Bo; Liu, Siwen; Yan, Dali; Feng, Jifeng

    2017-01-01

    Exosomes derived from lung cancer cells confer cisplatin (DDP) resistance to other cancer cells. However, the underlying mechanism is still unknown. A549 resistance to DDP (A549/DDP) was established. Microarray was used to analyze microRNA (miRNA) expression profiles of A549 cells, A549/DDP cells, A549 exosomes, and A549/DDP exosomes. There was a strong correlation of miRNA profiles between exosomes and their maternal cells. A total of 11 miRNAs were significantly upregulated both in A549/DDP cells compared with A549 cells and in exosomes derived from A549/DDP cells in contrast to exosomes from A549 cells. A total of 31 downregulated miRNAs were also observed. miR-100-5p was the most prominent decreased miRNA in DDP-resistant exosomes compared with the corresponding sensitive ones. Downregulated miR-100-5p was proved to be involved in DDP resistance in A549 cells, and mammalian target of rapamycin (mTOR) expression was reverse regulated by miR-100-5p. Exosomes confer recipient cells' resistance to DDP in an exosomal miR-100-5p-dependent manner with mTOR as its potential target both in vitro and in vivo. Exosomes from DDP-resistant lung cancer cells A549 can alter other lung cancer cells' sensitivity to DDP in exosomal miR-100-5p-dependent manner. Our study provides new insights into the molecular mechanism of DDP resistance in lung cancer.

  13. A Dinitroaniline-Resistant Mutant of Eleusine indica Exhibits Cross-Resistance and Supersensitivity to Antimicrotubule Herbicides and Drugs 1

    Science.gov (United States)

    Vaughn, Kevin C.; Marks, M. David; Weeks, Donald P.

    1987-01-01

    A dinitroaniline-resistant (R) biotype of Eleusine indica (L.) Gaertner. (goosegrass) is demonstrated to be cross-resistant to a structurally non-related herbicide, amiprophosmethyl, and supersensitive to two other classes of compounds which disrupt mitosis. These characteristics of the R biotype were discovered in a comparative test of the effects of 24 different antimitotic compounds on the R biotype and susceptible (S) wild-type Eleusine. The compounds tested could be classified into three groups based upon their effects on mitosis in root tips of the susceptible (S) biotype. Class I compounds induced effects like the well known mitotic disrupter colchicine: absence of cortical and spindle microtubules, mitosis arrested at prometaphase, and the formation of polymorphic nuclei after arrested mitosis. The R biotype was resistant to treatment with some class I inhibitors (all dinitroaniline herbicides and amiprophosmethyl) but not all (e.g. colchicine, podophyllotoxin, vinblastine, and pronamide). Roots of the R biotype, when treated with either dinitroaniline herbicides or amiprophosmethyl, exhibited no or only small increases in the mitotic index nor were the spindle and cortical microtubules affected. Compounds of class II (carbamate herbicides and griseofulvin) cause misorientation of microtubules which results in multinucleated cells. Compounds of class III (caffeine and structually related alkaloids) cause imcomplete cell walls to form at telophase. Each of these last two classes of compounds affected the R biotype more than the S biotype (supersensitivity). The cross-resistance and high levels of resistance of the R biotype of Eleusine to the dinitroaniline herbicides and the structurally distinct herbicide, amiprophosmethyl, indicate that a mechanism of resistance based upon metabolic modification, translocation, or compartmentation of the herbicides is probably not operative. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 6 PMID:16665371

  14. Understanding disruptions in tokamaksa)

    Science.gov (United States)

    Zakharov, Leonid E.; Galkin, Sergei A.; Gerasimov, Sergei N.; contributors, JET-EFDA

    2012-05-01

    This paper describes progress achieved since 2007 in understanding disruptions in tokamaks, when the effect of plasma current sharing with the wall was introduced into theory. As a result, the toroidal asymmetry of the plasma current measurements during vertical disruption event (VDE) on the Joint European Torus was explained. A new kind of plasma equilibria and mode coupling was introduced into theory, which can explain the duration of the external kink 1/1 mode during VDE. The paper presents first results of numerical simulations using a free boundary plasma model, relevant to disruptions.

  15. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    Directory of Open Access Journals (Sweden)

    Masayoshi Hashimoto

    2016-10-01

    Full Text Available The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.

  16. Vancouver AIDS conference: special report. A verdict on the conference: sadly, not one world or one hope.

    Science.gov (United States)

    Whiteside, A

    1996-01-01

    Although the theme of the 11th International Conference on AIDS held in Vancouver during July 7-12, 1996, was "One World, One Hope," developed and developing countries have HIV/AIDS epidemics of different magnitudes, different levels of resources with which to combat the problems, and dissimilar objectives. The latest data released at the conference report an estimated 21.8 million people to be currently living with HIV/AIDS, the vast majority of whom live in developing countries. 84% of the estimated 7.7 million AIDS cases which have occurred since the beginning of the pandemic were in Africa or Asia; only 9% were in Europe and the US. The greatest burden of disease is and will be therefore experienced in the developing world which, relative to the developed world, has extremely limited resources. The epidemic continues to spread throughout much of the developing world, while levels of HIV infection in the developed world are largely remaining constant, with the center seemingly moving more into marginalized groups such as the homeless, drug users, and other groups. A whole range of new drugs will soon be available to treat HIV/AIDS among those who can afford them. It is possible that AIDS may simply become manageable as a chronic illness in the west. Such drugs, however, will be prohibitively expensive for almost all people infected with HIV. Moreover, the side effects of these new drugs remain to be seen, and it is possible that individuals will develop resistance to the treatment. The author laments the lack of papers at the conference analyzing the impact of the epidemic and hopes to see more representation and consideration of the developing world at the next conference, to be held in Geneva in 1998.

  17. NH125 kills methicillin-resistant Staphylococcus aureus persisters by lipid bilayer disruption.

    Science.gov (United States)

    Kim, Wooseong; Fricke, Nico; Conery, Annie L; Fuchs, Beth Burgwyn; Rajamuthiah, Rajmohan; Jayamani, Elamparithi; Vlahovska, Petia M; Ausubel, Frederick M; Mylonakis, Eleftherios

    2016-01-01

    NH125, a known WalK inhibitor kills MRSA persisters. However, its precise mode of action is still unknown. The mode of action of NH125 was investigated by comparing its spectrum of antimicrobial activity and its effects on membrane permeability and giant unilamellar vesicles (GUVs) with walrycin B, a WalR inhibitor and benzyldimethylhexadecylammonium chloride (16-BAC), a cationic surfactant. NH125 killed persister cells of a variety of Staphylococcus aureus strains. Similar to 16-BAC, NH125 killed MRSA persisters by inducing rapid membrane permeabilization and caused the rupture of GUVs, whereas walrycin B did not kill MRSA persisters or induce membrane permeabilization and did not affect GUVs. NH125 kills MRSA persisters by interacting with and disrupting membranes in a detergent-like manner.

  18. Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple.

    Science.gov (United States)

    Zhang, Ying; Shi, Xiangpeng; Li, Baohua; Zhang, Qingming; Liang, Wenxing; Wang, Caixia

    2016-09-01

    Glomerella leaf spot (GLS) caused by Glomerella cingulata is a newly emergent disease that results in severe defoliation and fruit spots in apple. Currently, there are no effective means to control this disease except for the traditional fungicide sprays. Induced resistance by elicitors against pathogens infection is a widely accepted eco-friendly strategy. In the present study, we investigated whether exogenous application of salicylic acid (SA) could improve resistance to GLS in a highly susceptible apple cultivar (Malus domestica Borkh. cv. 'Gala') and the underlying mechanisms. The results showed that pretreatment with SA, at 0.1-1.0 mM, induced strong resistance against GLS in 'Gala' apple leaves, with SA treated leaves showing significant reduction in lesion numbers and disease index. Concurrent with the enhanced disease resistance, SA treatment markedly increased the total antioxidant capacity (T-AOC) and defence-related enzyme activities, including catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO). As expected, SA treatment also induced the expression levels of five pathogenesis-related (PR) genes including PR1, PR5, PR8, Chitinase and β-1,3-glucanase. Furthermore, the most pronounced and/or rapid increase was observed in leaves treated with SA and subsequently inoculated with G. cingulata compared to the treatment with SA or inoculation with the pathogen. Together, these results suggest that exogenous SA triggered increase in reactive oxygen species levels and the antioxidant system might be responsible for enhanced resistance against G. cingulata in 'Gala' apple leaves. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Using SNP genetic markers to elucidate the linkage of the Co-34/Phg-3 anthracnose and angular leaf spot resistance gene cluster with the Ur-14 resistance gene

    Science.gov (United States)

    The Ouro Negro common bean cultivar contains the Co-34/Phg-3 gene cluster that confers resistance to the anthracnose (ANT) and angular leaf spot (ALS) pathogens. These genes are tightly linked on chromosome 4. Ouro Negro also has the Ur-14 rust resistance gene, reportedly in the vicinity of Co- 34; ...

  20. Structure and dynamics of the gp120 V3 loop that confers noncompetitive resistance in R5 HIV-1(JR-FL to maraviroc.

    Directory of Open Access Journals (Sweden)

    Yuzhe Yuan

    Full Text Available Maraviroc, an (HIV-1 entry inhibitor, binds to CCR5 and efficiently prevents R5 human immunodeficiency virus type 1 (HIV-1 from using CCR5 as a coreceptor for entry into CD4(+ cells. However, HIV-1 can elude maraviroc by using the drug-bound form of CCR5 as a coreceptor. This property is known as noncompetitive resistance. HIV-1(V3-M5 derived from HIV-1(JR-FLan is a noncompetitive-resistant virus that contains five mutations (I304V/F312W/T314A/E317D/I318V in the gp120 V3 loop alone. To obtain genetic and structural insights into maraviroc resistance in HIV-1, we performed here mutagenesis and computer-assisted structural study. A series of site-directed mutagenesis experiments demonstrated that combinations of V3 mutations are required for HIV-1(JR-FLan to replicate in the presence of 1 µM maraviroc, and that a T199K mutation in the C2 region increases viral fitness in combination with V3 mutations. Molecular dynamic (MD simulations of the gp120 outer domain V3 loop with or without the five mutations showed that the V3 mutations induced (i changes in V3 configuration on the gp120 outer domain, (ii reduction of an anti-parallel β-sheet in the V3 stem region, (iii reduction in fluctuations of the V3 tip and stem regions, and (iv a shift of the fluctuation site at the V3 base region. These results suggest that the HIV-1 gp120 V3 mutations that confer maraviroc resistance alter structure and dynamics of the V3 loop on the gp120 outer domain, and enable interactions between gp120 and the drug-bound form of CCR5.

  1. Glycans Flanking the Hypervariable Connecting Peptide between the A and B Strands of the V1/V2 Domain of HIV-1 gp120 Confer Resistance to Antibodies That Neutralize CRF01_AE Viruses

    Science.gov (United States)

    O’Rourke, Sara M.; Sutthent, Ruengpung; Phung, Pham; Mesa, Kathryn A.; Frigon, Normand L.; To, Briana; Horthongkham, Navin; Limoli, Kay; Wrin, Terri; Berman, Phillip W.

    2015-01-01

    Understanding the molecular determinants of sensitivity and resistance to neutralizing antibodies is critical for the development of vaccines designed to prevent HIV infection. In this study, we used a genetic approach to characterize naturally occurring polymorphisms in the HIV envelope protein that conferred neutralization sensitivity or resistance. Libraries of closely related envelope genes, derived from virus quasi-species, were constructed from individuals infected with CRF01_AE viruses. The libraries were screened with plasma containing broadly neutralizing antibodies, and neutralization sensitive and resistant variants were selected for sequence analysis. In vitro mutagenesis allowed us to identify single amino acid changes in three individuals that conferred resistance to neutralization by these antibodies. All three mutations created N-linked glycosylation sites (two at N136 and one at N149) proximal to the hypervariable connecting peptide between the C-terminus of the A strand and the N-terminus of the B strand in the four-stranded V1/V2 domain β-sheet structure. Although N136 has previously been implicated in the binding of broadly neutralizing monoclonal antibodies, this glycosylation site appears to inhibit the binding of neutralizing antibodies in plasma from HIV-1 infected subjects. Previous studies have reported that the length of the V1/V2 domain in transmitted founder viruses is shorter and possesses fewer glycosylation sites compared to viruses isolated from chronic infections. Our results suggest that vaccine immunogens based on recombinant envelope proteins from clade CRF01_AE viruses might be improved by inclusion of envelope proteins that lack these glycosylation sites. This strategy might improve the efficacy of the vaccines used in the partially successful RV144 HIV vaccine trial, where the two CRF01_AE immunogens (derived from the A244 and TH023 isolates) both possessed glycosylation sites at N136 and N149. PMID:25793890

  2. Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells

    International Nuclear Information System (INIS)

    Sides, Mark D.; Block, Gregory J.; Shan, Bin; Esteves, Kyle C.; Lin, Zhen; Flemington, Erik K.; Lasky, Joseph A.

    2011-01-01

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies.

  3. Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors.

    Science.gov (United States)

    Taniguchi, Toshiyasu; Tischkowitz, Marc; Ameziane, Najim; Hodgson, Shirley V; Mathew, Christopher G; Joenje, Hans; Mok, Samuel C; D'Andrea, Alan D

    2003-05-01

    Ovarian tumor cells are often genomically unstable and hypersensitive to cisplatin. To understand the molecular basis for this phenotype, we examined the integrity of the Fanconi anemia-BRCA (FANC-BRCA) pathway in those cells. This pathway regulates cisplatin sensitivity and is governed by the coordinate activity of six genes associated with Fanconi anemia (FANCA, FANCC, FANCD2, FANCE, FANCF and FANCG) as well as BRCA1 and BRCA2 (FANCD1). Here we show that the FANC-BRCA pathway is disrupted in a subset of ovarian tumor lines. Mono-ubiquitination of FANCD2, a measure of the function of this pathway, and cisplatin resistance were restored by functional complementation with FANCF, a gene that is upstream in this pathway. FANCF inactivation in ovarian tumors resulted from methylation of its CpG island, and acquired cisplatin resistance correlated with demethylation of FANCF. We propose a model for ovarian tumor progression in which the initial methylation of FANCF is followed by FANCF demethylation and ultimately results in cisplatin resistance.

  4. Molecular Mechanism of Terbinafine Resistance in Saccharomyces cerevisiae

    Science.gov (United States)

    Leber, Regina; Fuchsbichler, Sandra; Klobučníková, Vlasta; Schweighofer, Natascha; Pitters, Eva; Wohlfarter, Kathrin; Lederer, Mojca; Landl, Karina; Ruckenstuhl, Christoph; Hapala, Ivan; Turnowsky, Friederike

    2003-01-01

    Ten mutants of the yeast Saccharomyces cerevisiae resistant to the antimycotic terbinafine were isolated after chemical or UV mutagenesis. Molecular analysis of these mutants revealed single base pair exchanges in the ERG1 gene coding for squalene epoxidase, the target of terbinafine. The mutants did not show cross-resistance to any of the substrates of various pleiotropic drug resistance efflux pumps tested. The ERG1 mRNA levels in the mutants did not differ from those in the wild-type parent strains. Terbinafine resistance was transmitted with the mutated alleles in gene replacement experiments, proving that single amino acid substitutions in the Erg1 protein were sufficient to confer the resistance phenotype. The amino acid changes caused by the point mutations were clustered in two regions of the Erg1 protein. Seven mutants carried the amino acid substitutions F402L (one mutant), F420L (one mutant), and P430S (five mutants) in the C-terminal part of the protein; and three mutants carried an L251F exchange in the central part of the protein. Interestingly, all exchanges identified involved amino acids which are conserved in the squalene epoxidases of yeasts and mammals. Two mutations that were generated by PCR mutagenesis of the ERG1 gene and that conferred terbinafine resistance mapped in the same regions of the Erg1 protein, with one resulting in an L251F exchange and the other resulting in an F433S exchange. The results strongly indicate that these regions are responsible for the interaction of yeast squalene epoxidase with terbinafine. PMID:14638499

  5. A Variant PfCRT Isoform Can Contribute to Plasmodium falciparum Resistance to the First-Line Partner Drug Piperaquine

    Directory of Open Access Journals (Sweden)

    Satish K. Dhingra

    2017-05-01

    Full Text Available Current efforts to reduce the global burden of malaria are threatened by the rapid spread throughout Asia of Plasmodium falciparum resistance to artemisinin-based combination therapies, which includes increasing rates of clinical failure with dihydroartemisinin plus piperaquine (PPQ in Cambodia. Using zinc finger nuclease-based gene editing, we report that addition of the C101F mutation to the chloroquine (CQ resistance-conferring PfCRT Dd2 isoform common to Asia can confer PPQ resistance to cultured parasites. Resistance was demonstrated as significantly higher PPQ concentrations causing 90% inhibition of parasite growth (IC90 or 50% parasite killing (50% lethal dose [LD50]. This mutation also reversed Dd2-mediated CQ resistance, sensitized parasites to amodiaquine, quinine, and artemisinin, and conferred amantadine and blasticidin resistance. Using heme fractionation assays, we demonstrate that PPQ causes a buildup of reactive free heme and inhibits the formation of chemically inert hemozoin crystals. Our data evoke inhibition of heme detoxification in the parasite’s acidic digestive vacuole as the primary mode of both the bis-aminoquinoline PPQ and the related 4-aminoquinoline CQ. Both drugs also inhibit hemoglobin proteolysis at elevated concentrations, suggesting an additional mode of action. Isogenic lines differing in their pfmdr1 copy number showed equivalent PPQ susceptibilities. We propose that mutations in PfCRT could contribute to a multifactorial basis of PPQ resistance in field isolates.

  6. Pyramids of QTLs enhance host-plant resistance and Bt-mediated resistance to leaf-chewing insects in soybean.

    Science.gov (United States)

    Ortega, María A; All, John N; Boerma, H Roger; Parrott, Wayne A

    2016-04-01

    QTL-M and QTL-E enhance soybean resistance to insects. Pyramiding these QTLs with cry1Ac increases protection against Bt-tolerant pests, presenting an opportunity to effectively deploy Bt with host-plant resistance genes. Plant resistance to leaf-chewing insects minimizes the need for insecticide applications, reducing crop production costs and pesticide concerns. In soybean [Glycine max (L.) Merr.], resistance to a broad range of leaf-chewing insects is found in PI 229358 and PI 227687. PI 229358's resistance is conferred by three quantitative trait loci (QTLs): M, G, and H. PI 227687's resistance is conferred by QTL-E. The letters indicate the soybean Linkage groups (LGs) on which the QTLs are located. This study aimed to determine if pyramiding PI 229358 and PI 227687 QTLs would enhance soybean resistance to leaf-chewing insects, and if pyramiding these QTLs with Bt (cry1Ac) enhances resistance against Bt-tolerant pests. The near-isogenic lines (NILs): Benning(ME), Benning(MGHE), and Benning(ME+cry1Ac) were developed. Benning(ME) and Benning(MGHE) were evaluated in detached-leaf and greenhouse assays with soybean looper [SBL, Chrysodeixis includens (Walker)], corn earworm [CEW, Helicoverpa zea (Boddie)], fall armyworm [FAW, Spodoptera frugiperda (J.E. Smith)], and velvetbean caterpillar [VBC, Anticarsia gemmatalis (Hübner)]; and in field-cage assays with SBL. Benning(ME+cry1Ac) was tested in detached-leaf assays against SBL, VBC, and Southern armyworm [SAW, Spodoptera eridania (Cramer)]. In the detached-leaf assay, Benning(ME) showed the strongest antibiosis against CEW, FAW, and VBC. In field-cage conditions, Benning(ME) and Benning(MGHE) suffered 61 % less defoliation than Benning. Benning(ME+cry1Ac) was more resistant than Benning(ME) and Benning (cry1Ac) against SBL and SAW. Agriculturally relevant levels of resistance in soybean can be achieved with just two loci, QTL-M and QTL-E. ME+cry1Ac could present an opportunity to protect the durability of Bt

  7. Thyroid effects of endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Boas, Malene; Feldt-Rasmussen, Ulla; Main, Katharina M

    2012-01-01

    In recent years, many studies of thyroid-disrupting effects of environmental chemicals have been published. Of special concern is the exposure of pregnant women and infants, as thyroid disruption of the developing organism may have deleterious effects on neurological outcome. Chemicals may exert ...... thyroid-disrupting effects, and there is emerging evidence that also phthalates, bisphenol A, brominated flame retardants and perfluorinated chemicals may have thyroid disrupting properties....

  8. Veterans in Society Conference 2014: Humanizing the Discourse (Conference Program)

    OpenAIRE

    Virginia Tech. Department of English. Center for the Study of Rhetoric in Society; Virginia Tech. Veterans Studies Group

    2014-01-01

    This program lists the daily sessions, presentations, and events that took place during the 2014 Veterans in Society Conference, which was held from April 27-28, 2014 at the Hotel Roanoke in Roanoke, VA. This program also includes speaker and presenter bios, descriptions of unrecorded conference events, and a letter from conference co-chair Jim Dubinsky, the director of Virginia Tech's Center for the Study of Rhetoric in Society. The 2014 Veterans in Society Conference: Humanizing the Discour...

  9. INTERCARTO CONFERENCES

    Directory of Open Access Journals (Sweden)

    Vladimir Tikunov

    2010-01-01

    Full Text Available The InterCarto conferences are thematically organized to target one of the most pressing problems of modern geography—creation and use of geographical information systems (GISs as effective tools for achieving sustainable development of territories. Over the years, from 1994 to 2009, 1872 participants from 51 countries and 156 cities, who made 1494 reports, attended the conferences. There were 1508 participants from 49 regions of Russia making 1340 presentations. The conferences hosted 31 different sections, most popular of which were Environmental GIS-Projects: Development and Experience, Sustainable Development and Innovative Projects, GIS: the Theory and Methodology, Projects for Russia and Regions, and GIS-Technologies and Digital Mapping. The next annual InterCarto-InterGIS conference will take place in December 2011. The Russian component of the conference will be held in the Altay Kray followed by another meeting on Bali, Indonesia

  10. Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants.

    Science.gov (United States)

    Kim, Ji-Seong; Lee, Jeongeun; Lee, Chan-Hui; Woo, Su Young; Kang, Hoduck; Seo, Sang-Gyu; Kim, Sun-Hyung

    2015-06-01

    Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding β-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.

  11. Disruption Physics and Mitigation on DIII-D

    International Nuclear Information System (INIS)

    Whyte, D.G.; Humphreys, D.A.; Kellman, A.G.

    2005-01-01

    The contributions of the DIII-D tokamak toward the understanding and control of disruptions are reviewed. Disruptions are found to be deterministic, and the underlying causes of disruption can therefore be predicted and avoided. With sufficiently rapid detection, possible damage from disruptions can be mitigated using an understanding of disruption phenomenology and plasma physics. Regimes of high β are readily available in DIII-D and provide access to relatively high energy density disruptions, despite DIII-D's moderate magnetic field and size. DIII-D, with all-graphite wall armor and wall conditioning between discharges, has proven highly resilient to the deleterious effects that disruptions can have on plasma operations. Simultaneously, exploitation and adaptation of DIII-D's extensive core and edge plasma diagnostic set have allowed for unique plasma measurements during disruptions. These measurements have tied into the development of several physical models used to understand aspects of disruptions, such as magnetohydrodynamic growth at the disruption onset, radiation energy balance through the thermal quench, and halo currents during the current quench. Based on this fundamental understanding, DIII-D has developed techniques to mitigate the harmful effects of disruptions by radiative dissipation of the plasma energy and extrapolated these techniques for possible use on larger devices like ITER

  12. Structural Insights into HIV Reverse Transcriptase Mutations Q151M and Q151M Complex That Confer Multinucleoside Drug Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kalyan; Martinez, Sergio E.; Arnold, Eddy

    2017-04-10

    HIV-1 reverse transcriptase (RT) is targeted by multiple drugs. RT mutations that confer resistance to nucleoside RT inhibitors (NRTIs) emerge during clinical use. Q151M and four associated mutations, A62V, V75I, F77L, and F116Y, were detected in patients failing therapies with dideoxynucleosides (didanosine [ddI], zalcitabine [ddC]) and/or zidovudine (AZT). The cluster of the five mutations is referred to as the Q151M complex (Q151Mc), and an RT or virus containing Q151Mc exhibits resistance to multiple NRTIs. To understand the structural basis for Q151M and Q151Mc resistance, we systematically determined the crystal structures of the wild-type RT/double-stranded DNA (dsDNA)/dATP (complex I), wild-type RT/dsDNA/ddATP (complex II), Q151M RT/dsDNA/dATP (complex III), Q151Mc RT/dsDNA/dATP (complex IV), and Q151Mc RT/dsDNA/ddATP (complex V) ternary complexes. The structures revealed that the deoxyribose rings of dATP and ddATP have 3'-endo and 3'-exo conformations, respectively. The single mutation Q151M introduces conformational perturbation at the deoxynucleoside triphosphate (dNTP)-binding pocket, and the mutated pocket may exist in multiple conformations. The compensatory set of mutations in Q151Mc, particularly F116Y, restricts the side chain flexibility of M151 and helps restore the DNA polymerization efficiency of the enzyme. The altered dNTP-binding pocket in Q151Mc RT has the Q151-R72 hydrogen bond removed and has a switched conformation for the key conserved residue R72 compared to that in wild-type RT. On the basis of a modeled structure of hepatitis B virus (HBV) polymerase, the residues R72, Y116, M151, and M184 in Q151Mc HIV-1 RT are conserved in wild-type HBV polymerase as residues R41, Y89, M171, and M204, respectively; functionally, both Q151Mc HIV-1 and wild-type HBV are resistant to dideoxynucleoside analogs.

  13. Mechanisms of Resistance to Chemotherapies Targeting BRCA-Mutant Breast Cancer

    Science.gov (United States)

    2015-12-01

    limiting for mutagenic NHEJ but not for physiological CSR. An implication of our results is that deregulation of the RNF168/53BP1 pathway could alter the...resistance in BRCA-deficient tumors. We have also observed that deregulation of the RNF168/53BP1 pathway can alter the chemosensitivity of BRCA1 deficient...FASEB Summer Research Conference. Big Sky, Montana, 2015 g. Invited Speaker, Conference "Chromatin and Cell Fate", Essen, Germany , 2015 h. Invited

  14. Conference summaries. Canadian Nuclear Association 29. annual conference; Canadian Nuclear Society 10. annual conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-12-31

    Separate abstracts were prepared for 15 papers from the twenty-ninth Annual Conference of the Canadian Nuclear Association. Abstracts were also prepared for the 102 papers from the tenth Annual Conference of the Canadian Nuclear Society.

  15. Conference summaries. Canadian Nuclear Association 29. annual conference; Canadian Nuclear Society 10. annual conference

    International Nuclear Information System (INIS)

    1989-01-01

    Separate abstracts were prepared for 15 papers from the twenty-ninth Annual Conference of the Canadian Nuclear Association. Abstracts were also prepared for the 102 papers from the tenth Annual Conference of the Canadian Nuclear Society

  16. The mthA mutation conferring low-level resistance to streptomycin enhances antibiotic production in Bacillus subtilis by increasing the S-adenosylmethionine pool size.

    Science.gov (United States)

    Tojo, Shigeo; Kim, Ji-Yun; Tanaka, Yukinori; Inaoka, Takashi; Hiraga, Yoshikazu; Ochi, Kozo

    2014-04-01

    Certain Str(r) mutations that confer low-level streptomycin resistance result in the overproduction of antibiotics by Bacillus subtilis. Using comparative genome-sequencing analysis, we successfully identified this novel mutation in B. subtilis as being located in the mthA gene, which encodes S-adenosylhomocysteine/methylthioadenosine nucleosidase, an enzyme involved in the S-adenosylmethionine (SAM)-recycling pathways. Transformation experiments showed that this mthA mutation was responsible for the acquisition of low-level streptomycin resistance and overproduction of bacilysin. The mthA mutant had an elevated level of intracellular SAM, apparently acquired by arresting SAM-recycling pathways. This increase in the SAM level was directly responsible for bacilysin overproduction, as confirmed by forced expression of the metK gene encoding SAM synthetase. The mthA mutation fully exerted its effect on antibiotic overproduction in the genetic background of rel(+) but not the rel mutant, as demonstrated using an mthA relA double mutant. Strikingly, the mthA mutation activated, at the transcription level, even the dormant ability to produce another antibiotic, neotrehalosadiamine, at concentrations of 150 to 200 μg/ml, an antibiotic not produced (antibiotic production, by introducing either the rsmG mutation to Streptomyces or the mthA mutation to eubacteria, since many eubacteria have mthA homologues.

  17. Rapid detection of drug resistance and mutational patterns of extensively drug-resistant strains by a novel GenoType® MTBDRsl assay

    Directory of Open Access Journals (Sweden)

    A K Singh

    2013-01-01

    Full Text Available Background: The emergence of extensively drug-resistant tuberculosis (XDR-TB is a major concern in the India. The burden of XDR-TB is increasing due to inadequate monitoring, lack of proper diagnosis, and treatment. The GenoType ® Mycobacterium tuberculosis drug resistance second line (MTBDRsl assay is a novel line probe assay used for the rapid detection of mutational patterns conferring resistance to XDR-TB. Aim: The aim of this study was to study the rapid detection of drug resistance and mutational patterns of the XDR-TB by a novel GenoType ® MTBDRsl assay. Materials and Methods: We evaluated 98 multidrug-resistant (MDR M. tuberculosis isolates for second line drugs susceptibility testing by 1% proportion method (BacT/ALERT 3D system and GenoType ® MTBDRsl assay for rapid detection of conferring drug resistance to XDR-TB. Results: A total of seven (17.4% were identified as XDR-TB by using standard phenotypic method. The concordance between phenotypic and GenoType ® MTBDRsl assay was 91.7-100% for different antibiotics. The sensitivity and specificity of the MTBDRsl assay were 100% and 100% for aminoglycosides; 100% and 100% for fluoroquinolones; 91.7% and 100% for ethambutol. The most frequent mutations and patterns were gyrA MUT1 (A90V in seven (41.2% and gyrA + WT1-3 + MUT1 in four (23.5%; rrs MUT1 (A1401G in 11 (64.7%, and rrs WT1-2 + MUT1 in eight (47.1%; and embB MUT1B (M306V in 11 (64.7% strains. Conclusions: These data suggest that the GenoType ® MTBDRsl assay is rapid, novel test for detection of resistance to second line anti-tubercular drugs. This assay provides additional information about the frequency and mutational patterns responsible for XDR-TB resistance.

  18. Second international conference on isotopes. Conference proceedings

    International Nuclear Information System (INIS)

    Hardy, C.J.

    1997-10-01

    The Second International Conference on Isotopes (2ICI) was hosted by the Australian Nuclear Association in Sydney, NSW, Australia. The Theme of the Second Conference: Isotopes for Industry, Health and a Better Environment recognizes that isotopes have been used in these fields successfully for many years and offer prospects for increasing use in the future. The worldwide interest in the use of research reactors and accelerators and in applications of stable and radioactive isotopes, isotopic techniques and radiation in industry, agriculture, medicine, environmental studies and research in general, was considered. Other radiation issues including radiation protection and safety were also addressed. International and national overviews and subject reviews invited from leading experts were included to introduce the program of technical sessions. The invited papers were supported by contributions accepted from participants for oral and poster presentation. A Technical Exhibition was held in association with the Conference. This volume contains the foreword, technical program, the author index and of the papers (1-60) presented at the conference

  19. Second international conference on isotopes. Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, C J [ed.

    1997-10-01

    The Second International Conference on Isotopes (2ICI) was hosted by the Australian Nuclear Association in Sydney, NSW, Australia. The Theme of the Second Conference: Isotopes for Industry, Health and a Better Environment recognizes that isotopes have been used in these fields successfully for many years and offer prospects for increasing use in the future. The worldwide interest in the use of research reactors and accelerators and in applications of stable and radioactive isotopes, isotopic techniques and radiation in industry, agriculture, medicine, environmental studies and research in general, was considered. Other radiation issues including radiation protection and safety were also addressed. International and national overviews and subject reviews invited from leading experts were included to introduce the program of technical sessions. The invited papers were supported by contributions accepted from participants for oral and poster presentation. A Technical Exhibition was held in association with the Conference. This volume contains the foreword, technical program, the author index and of the papers (1-60) presented at the conference.

  20. 20th IAEA fusion energy conference 2004. Conference proceedings

    International Nuclear Information System (INIS)

    2005-01-01

    The 20th International Atomic Energy Agency (IAEA) Fusion Energy Conference (FEC) was held in Vilamoura, Portugal, from 1 to 6 November 2004. The Instituto Superior Tecnico through the Centro de Fusao Nuclear on behalf of the Portuguese Government and the Association EURATOM/IST hosted the conference. The IAEA wishes to express its gratitude to the host. More than 600 delegates representing 33 countries and three international organizations attended the Fusion Energy Conference 2004. The Programme Committee accepted a total of some 437 papers for presentation at the conference. The scientific experimental and theoretical papers have been grouped with respect to the following themes: Overview on magnetic and inertial fusion; Advanced Scenarios and Steady State; Edge Localized Modes; Fusion Technology; Transport Theory; Beta Limits; Hybrid Scenarios; H-mode and Transport; ITER; Alfven Modes and Wave Heating; Operational Limits and Momentum Transport; Energetic Particles and Stability; Neoclassical Tearing Modes; Transport and Turbulence; Inertial Fusion; Configuration Effects and Transport; and Plasma-wall Interaction. The conference adjourned with the announcement of the next IAEA Fusion Energy Conference, which will be held for the first time in the People's Republic of China, in the city of Chengdu, October 16-22, 2006

  1. 2008 Gordon Research Conference on Catalysis [Conference summary report

    Energy Technology Data Exchange (ETDEWEB)

    Soled, Stuart L.; Gray, Nancy Ryan

    2009-01-01

    The GRC on Catalysis is one of the most prestigious catalysis conferences as it brings together leading researchers from around the world to discuss their latest, most exciting work in catalysis. The 2008 conference will continue this tradition. The conference will cover a variety of themes including new catalytic materials, theoretical and experimental approaches to improve understanding of kinetics and transport phenomena, and state of the art nanoscale characterization probes to monitor active sites. The conference promotes interactions among established researchers and young scientists. It provides a venue for students to meet, talk to and learn from some of the world leading researchers in the area. It also gives them a platform for displaying their own work during the poster sessions. The informal nature of the meeting, excellent quality of the presentations and posters, and ability to meet many outstanding colleagues makes this an excellent conference.

  2. Integrated Industry: Disruptive Development for Business Models and Management Systems: Vortrag gehalten auf der Business Economics Conference. Konferenz der Bosch AG, 9. Juli 2015, Gerlingen

    OpenAIRE

    Bauernhansl, Thomas

    2015-01-01

    Der Vortrag "Integrated Industry: Disruptive Development for Business Models and Management Systems" behandelt folgende Themenkomplexe: - Die digitale Welt von heute und morgen - Aufbau von Eco-Systems - Design disruptiver Geschäftsmodelle - XaaS-Concept - Everything as a Service - Digitalisierung von Geschäftsmodellen - Kernthesen für Wertschöpfungsmodelle der Zukunft - Big Data - Neue Architekturen - Industrie 4.0 - Disruptive Geschäftsmodelle

  3. Mutations in 23S rRNA Confer Resistance against Azithromycin in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Marvig, Rasmus Lykke; Søndergaard, Mette S. R.; Pedersen, Søren Damkiær

    2012-01-01

    The emergence of antibiotic-resistant Pseudomonas aeruginosa is an important concern in the treatment of long-term airway infections in cystic fibrosis patients. In this study, we report the occurrence of azithromycin resistance among clinical P. aeruginosa DK2 isolates. We demonstrate that resis...... that resistance is associated with specific mutations (A2058G, A2059G, and C2611T in Escherichia coli numbering) in domain V of 23S rRNA and that introduction of A2058G and C2611T into strain PAO1 results in azithromycin resistance....

  4. Neratinib resistance and cross-resistance to other HER2-targeted drugs due to increased activity of metabolism enzyme cytochrome P4503A4.

    Science.gov (United States)

    Breslin, Susan; Lowry, Michelle C; O'Driscoll, Lorraine

    2017-02-28

    Neratinib is in Phase 3 clinical trials but, unfortunately, the development of resistance is inevitable. Here, we investigated the effects of acquired neratinib resistance on cellular phenotype and the potential mechanism of this resistance. Neratinib-resistant variants of HER2-positive breast cancer cells were developed and their cross-resistance investigated using cytotoxicity assays. Similarly, sensitivity of trastuzumab-resistant and lapatinib-resistant cells to neratinib was assessed. Cellular phenotype changes were evaluated using migration, invasion and anoikis assays. Immunoblotting for HER family members and drug efflux pumps, as well as enzyme activity assays were performed. Neratinib resistance conferred cross-resistance to trastuzumab, lapatinib and afatinib. Furthermore, the efficacy of neratinib was reduced in trastuzumab- and lapatinib-resistant cells. Neratinib-resistant cells were more aggressive than their drug-sensitive counterparts, with increased CYP3A4 activity identified as a novel mechanism of neratinib resistance. The potential of increased CYP3A4 activity as a biomarker and/or target to add value to neratinib warrants investigation.

  5. Disruptive innovation as an entrepreneurial process

    NARCIS (Netherlands)

    Chandra, Y.; Yang, S.-J.S.; Singh, P.; Prajogo, D.; O'Neill, P.; Rahman, S.

    2008-01-01

    Research on conditions and causal mechanisms that influence disruptive innovation has been relatively unexplored in the extant research in disruptive innovation. By re-conceptualizing disruptive innovation as an entrepreneurial process at product, firm and industry levels, this paper draws on

  6. Automatic location of disruption times in JET

    Science.gov (United States)

    Moreno, R.; Vega, J.; Murari, A.

    2014-11-01

    The loss of stability and confinement in tokamak plasmas can induce critical events known as disruptions. Disruptions produce strong electromagnetic forces and thermal loads which can damage fundamental components of the devices. Determining the disruption time is extremely important for various disruption studies: theoretical models, physics-driven models, or disruption predictors. In JET, during the experimental campaigns with the JET-C (Carbon Fiber Composite) wall, a common criterion to determine the disruption time consisted of locating the time of the thermal quench. However, with the metallic ITER-like wall (JET-ILW), this criterion is usually not valid. Several thermal quenches may occur previous to the current quench but the temperature recovers. Therefore, a new criterion has to be defined. A possibility is to use the start of the current quench as disruption time. This work describes the implementation of an automatic data processing method to estimate the disruption time according to this new definition. This automatic determination allows both reducing human efforts to locate the disruption times and standardizing the estimates (with the benefit of being less vulnerable to human errors).

  7. Automatic location of disruption times in JET.

    Science.gov (United States)

    Moreno, R; Vega, J; Murari, A

    2014-11-01

    The loss of stability and confinement in tokamak plasmas can induce critical events known as disruptions. Disruptions produce strong electromagnetic forces and thermal loads which can damage fundamental components of the devices. Determining the disruption time is extremely important for various disruption studies: theoretical models, physics-driven models, or disruption predictors. In JET, during the experimental campaigns with the JET-C (Carbon Fiber Composite) wall, a common criterion to determine the disruption time consisted of locating the time of the thermal quench. However, with the metallic ITER-like wall (JET-ILW), this criterion is usually not valid. Several thermal quenches may occur previous to the current quench but the temperature recovers. Therefore, a new criterion has to be defined. A possibility is to use the start of the current quench as disruption time. This work describes the implementation of an automatic data processing method to estimate the disruption time according to this new definition. This automatic determination allows both reducing human efforts to locate the disruption times and standardizing the estimates (with the benefit of being less vulnerable to human errors).

  8. Search and Disrupt

    DEFF Research Database (Denmark)

    Ørding Olsen, Anders

    . However, incumbent sources engaged in capability reconfiguration to accommodate disruption improve search efforts in disruptive technologies. The paper concludes that the value of external sources is contingent on more than their knowledge. Specifically, interdependence of sources in search gives rise...... to influence from individual strategic interests on the outcomes. More generally, this points to the need for understanding the two-way influence of sources, rather than viewing external search as one-way knowledge accessing....

  9. International Conference on Applied Sciences (ICAS2013)

    Science.gov (United States)

    Lemle, Ludovic Dan; Jiang, Yiwen

    2014-03-01

    The International Conference on Applied Sciences (ICAS2013) took place in Wuhan, P R China from 26-27 October 2013 at the Military Economics Academy. The conference is regularly organized, alternately in Romania and in P R China, by ''Politehnica'' University of Timişoara, Romania, and Military Economics Academy of Wuhan, P R China, with the aim to serve as a platform for the exchange of information between various areas of applied sciences, and to promote the communication between the scientists of different nations, countries and continents. The conference has been organized for the first time in 15-16 June 2012 at the Engineering Faculty of Hunedoara, Romania. The topics of the conference covered a comprehensive spectrum of issues: Economical sciences Engineering sciences Fundamental sciences Medical sciences The conference gathered qualified researchers whose expertise can be used to develop new engineering knowledge that has applicability potential in economics, defense, medicine, etc. The number of registered participants was nearly 90 from 5 countries. During the two days of the conference 4 invited and 36 oral talks were delivered. A few of the speakers deserve a special mention: Mircea Octavian Popoviciu, Academy of Romanian Scientist — Timişoara Branch, Correlations between mechanical properties and cavitation erosion resistance for stainless steels with 12% chromium and variable contents of nickel; Carmen Eleonora Hărău, ''Politehnica'' University of Timişoara, SWOT analysis of Romania's integration in EU; Ding Hui, Military Economics Academy of Wuhan, Design and engineering analysis of material procurement mobile operation platform; Serban Rosu, University of Medicine and Pharmacy ''Victor Babeş'' Timişoara, Cervical and facial infections — a real life threat, among others. Based on the work presented at the conference, 14 selected papers are included in this volume of IOP Conference Series: Materials Science and Engineering. These papers

  10. International Conference on Applied Sciences (ICAS2013)

    International Nuclear Information System (INIS)

    Lemle, Ludovic Dan; Jiang, Yiwen

    2014-01-01

    The International Conference on Applied Sciences (ICAS2013) took place in Wuhan, P R China from 26–27 October 2013 at the Military Economics Academy. The conference is regularly organized, alternately in Romania and in P R China, by ''Politehnica'' University of Timişoara, Romania, and Military Economics Academy of Wuhan, P R China, with the aim to serve as a platform for the exchange of information between various areas of applied sciences, and to promote the communication between the scientists of different nations, countries and continents. The conference has been organized for the first time in 15–16 June 2012 at the Engineering Faculty of Hunedoara, Romania. The topics of the conference covered a comprehensive spectrum of issues: 1. Economical sciences; 2. Engineering sciences; 3. Fundamental sciences; 4. Medical sciences; The conference gathered qualified researchers whose expertise can be used to develop new engineering knowledge that has applicability potential in economics, defense, medicine, etc. The number of registered participants was nearly 90 from 5 countries. During the two days of the conference 4 invited and 36 oral talks were delivered. A few of the speakers deserve a special mention: Mircea Octavian Popoviciu, Academy of Romanian Scientist — Timişoara Branch, Correlations between mechanical properties and cavitation erosion resistance for stainless steels with 12% chromium and variable contents of nickel; Carmen Eleonora Hărău, ''Politehnica'' University of Timişoara, SWOT analysis of Romania's integration in EU; Ding Hui, Military Economics Academy of Wuhan, Design and engineering analysis of material procurement mobile operation platform; Serban Rosu, University of Medicine and Pharmacy ''Victor Babeş'' Timişoara, Cervical and facial infections — a real life threat, among others. Based on the work presented at the conference, 14 selected papers are included in this

  11. Molecular and functional characterization of CYP6BQ23, a cytochrome P450 conferring resistance to pyrethroids in European populations of pollen beetle, Meligethes aeneus.

    Science.gov (United States)

    Zimmer, Christoph T; Bass, Chris; Williamson, Martin S; Kaussmann, Martin; Wölfel, Katharina; Gutbrod, Oliver; Nauen, Ralf

    2014-02-01

    mechanism conferring pyrethroid resistance in pollen beetle populations throughout much of Europe. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. European Research Reactor Conference (RRFM) 2015: Conference Proceedings

    International Nuclear Information System (INIS)

    2015-01-01

    In 2015 the European Research Reactor Conference, RRFM, took place in Bucharest, Romania. The conference programme resolved around a series of plenary sessions dedicated to the latest global developments with regards to research reactor technology and management. Parallel sessions focused on all areas of the fuel cycle of research reactors, their utilisation, operation and management as well as new research reactor projects and Innovative methods in reactor physics and thermo-hydraulics. The European Research Reactor Conference also gave special attention to safety and security of research reactors

  13. European Research Reactor Conference (RRFM) 2016: Conference Proceedings

    International Nuclear Information System (INIS)

    2016-01-01

    The 2016 European Research Reactor Conference, RRFM, took place in Berlin, Germany. The conference programme resolved around a series of plenary sessions dedicated to the latest global developments with regards to research reactor technology and management. Parallel sessions focused on all areas of the fuel cycle of research reactors, their utilisation, operation and management as well as new research reactor projects and Innovative methods in reactor physics and thermo-hydraulics. The European Research Reactor Conference also gave special attention to safety and security of research reactors.

  14. Pursuing minimally disruptive medicine: disruption from illness and health care-related demands is correlated with patient capacity.

    Science.gov (United States)

    Boehmer, Kasey R; Shippee, Nathan D; Beebe, Timothy J; Montori, Victor M

    2016-06-01

    Chronic conditions burden patients with illness and treatments. We know little about the disruption of life by the work of dialysis in relation to the resources patients can mobilize, that is, their capacity, to deal with such demands. We sought to determine the disruption of life by dialysis and its relation to patient capacity to cope. We administered a survey to 137 patients on dialysis at an academic medical center. We captured disruption from illness and treatment, and physical, mental, personal, social, financial, and environmental aspects of patient capacity using validated scales. Covariates included number of prescriptions, hours spent on health care, existence of dependents, age, sex, and income level. On average, patients reported levels of capacity and disruption comparable to published levels. In multivariate regression models, limited physical, financial, and mental capacity were significantly associated with greater disruption. Patients in the top quartile of disruption had lower-than-expected physical, financial, and mental capacity. Our sample generally had capacity comparable to other populations and may be able to meet the demands imposed by treatment. Those with reduced physical, financial, and mental capacity reported higher disruption and represent a vulnerable group that may benefit from innovations in minimally disruptive medicine. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Conference summaries

    International Nuclear Information System (INIS)

    1991-01-01

    This volume contains conference summaries for the 31. annual conference of the Canadian Nuclear Association and the 12. annual conference of the Canadian Nuclear Society. Topics of discussion include: reactor physics; thermalhydraulics; industrial irradiation; computer applications; fuel channel analysis; small reactors; severe accidents; fuel behaviour under accident conditions; reactor components, safety related computer software; nuclear fuel management; fuel behaviour and performance; reactor safety; reactor engineering; nuclear waste management; and, uranium mining and processing

  16. INTERCARTO CONFERENCES

    OpenAIRE

    Vladimir Tikunov

    2010-01-01

    The InterCarto conferences are thematically organized to target one of the most pressing problems of modern geography—creation and use of geographical information systems (GISs) as effective tools for achieving sustainable development of territories. Over the years, from 1994 to 2009, 1872 participants from 51 countries and 156 cities, who made 1494 reports, attended the conferences. There were 1508 participants from 49 regions of Russia making 1340 presentations. The conferences hosted 31 di...

  17. Proceedings of the CERI 2005 electricity conference : markets, integration, resistance

    International Nuclear Information System (INIS)

    2005-01-01

    This conference was attended by power industry decision makers who face continuing challenges regarding changes in electricity market mechanisms, pricing options, and power generation and transmission alternatives. It provided an opportunity to review energy markets in North American with particular reference to supply and demand and opportunities for traditional or new generation technologies based on renewable energy sources including wind powered generation. The presentations focused on transmission issues, market design and capacity issues as well as market power and pricing. The integration of wind energy into the power grid as a measure to diversity the power generation portfolio in North America was also discussed along with hydrothermal synergies and interconnections. The role of wind, coal and nuclear power in future North American energy markets was also discussed along with their environmental consequences. tabs., figs

  18. EPSPS gene amplification conferring resistance to glyphosate in windmill grass (Chloris truncata) in Australia.

    Science.gov (United States)

    Ngo, The D; Malone, Jenna M; Boutsalis, Peter; Gill, Gurjeet; Preston, Christopher

    2018-05-01

    Five glyphosate-resistant populations of Chloris truncata originally collected from New South Wales were compared with one susceptible (S) population from South Australia to confirm glyphosate resistance and elucidate possible mechanisms of resistance. Based on the amounts of glyphosate required to kill 50% of treated plants (LD 50 ), glyphosate resistance (GR) was confirmed in five populations of C. truncata (A536, A528, T27, A534 and A535.1). GR plants were 2.4-8.7-fold more resistant and accumulated less shikimate after glyphosate treatment than S plants. There was no difference in glyphosate absorption and translocation between GR and S plants. The EPSPS gene did not contain any point mutation that had previously been associated with resistance to glyphosate. The resistant plants (A528 and A536) contained up to 32-48 more copies of the EPSPS gene than the susceptible plants. This study has identified EPSPS gene amplification contributing to glyphosate resistance in C. truncata. In addition, a Glu-91-Ala mutation within EPSPS was identified that may contribute to glyphosate resistance in this species. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  20. The Batten disease gene CLN3 confers resistance to endoplasmic reticulum stress induced by tunicamycin

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan, E-mail: danw@bjmu.edu.cn [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Liu, Jing; Wu, Baiyan [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Tu, Bo; Zhu, Weiguo [Department of Biochemistry and Molecular Biology, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Luo, Jianyuan, E-mail: jluo@som.umaryland.edu [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Department of Medical and Research Technology, School of Medicine, University of Maryland, Baltimore 21201 (United States)

    2014-04-25

    Highlights: • The work reveals a protective properties of CLN3 towards TM-induced apoptosis. • CLN3 regulates expression of the GRP78 and the CHOP in response to the ER stress. • CLN3 plays a specific role in the ERS response. - Abstract: Mutations in CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early-onset neurodegenerative disorder that is characterized by the accumulation of ceroid lipofuscin within lysosomes. The function of the CLN3 protein remains unclear and is presumed to be related to Endoplasmic reticulum (ER) stress. To investigate the function of CLN3 in the ER stress signaling pathway, we measured proliferation and apoptosis in cells transfected with normal and mutant CLN3 after treatment with the ER stress inducer tunicamycin (TM). We found that overexpression of CLN3 was sufficient in conferring increased resistance to ER stress. Wild-type CLN3 protected cells from TM-induced apoptosis and increased cell proliferation. Overexpression of wild-type CLN3 enhanced expression of the ER chaperone protein, glucose-regulated protein 78 (GRP78), and reduced expression of the proapoptotic protein CCAAT/-enhancer-binding protein homologous protein (CHOP). In contrast, overexpression of mutant CLN3 or siRNA knockdown of CLN3 produced the opposite effect. Together, our data suggest that the lack of CLN3 function in cells leads to a failure of management in the response to ER stress and this may be the key deficit in JNCL that causes neuronal degeneration.

  1. The Batten disease gene CLN3 confers resistance to endoplasmic reticulum stress induced by tunicamycin

    International Nuclear Information System (INIS)

    Wu, Dan; Liu, Jing; Wu, Baiyan; Tu, Bo; Zhu, Weiguo; Luo, Jianyuan

    2014-01-01

    Highlights: • The work reveals a protective properties of CLN3 towards TM-induced apoptosis. • CLN3 regulates expression of the GRP78 and the CHOP in response to the ER stress. • CLN3 plays a specific role in the ERS response. - Abstract: Mutations in CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early-onset neurodegenerative disorder that is characterized by the accumulation of ceroid lipofuscin within lysosomes. The function of the CLN3 protein remains unclear and is presumed to be related to Endoplasmic reticulum (ER) stress. To investigate the function of CLN3 in the ER stress signaling pathway, we measured proliferation and apoptosis in cells transfected with normal and mutant CLN3 after treatment with the ER stress inducer tunicamycin (TM). We found that overexpression of CLN3 was sufficient in conferring increased resistance to ER stress. Wild-type CLN3 protected cells from TM-induced apoptosis and increased cell proliferation. Overexpression of wild-type CLN3 enhanced expression of the ER chaperone protein, glucose-regulated protein 78 (GRP78), and reduced expression of the proapoptotic protein CCAAT/-enhancer-binding protein homologous protein (CHOP). In contrast, overexpression of mutant CLN3 or siRNA knockdown of CLN3 produced the opposite effect. Together, our data suggest that the lack of CLN3 function in cells leads to a failure of management in the response to ER stress and this may be the key deficit in JNCL that causes neuronal degeneration

  2. Bacterial cheating limits antibiotic resistance

    Science.gov (United States)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  3. Conference Support, 23rd Western Photosynthesis Conference 2014, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, Rebekka [Arizona State Univ., Tempe, AZ (United States)

    2015-01-12

    The Western Photosynthesis Conference is a regional conference that is held on an annual basis to bring together researchers primarily from the Western United States to share their newest research advances on photosynthetic processes. The 23rd conference was focused on both fundamental and more applied research on the biological conversion of solar energy to various energy storage forms. Several particular areas of solar energy conversion were emphasized in this conference (see below). Some of these topics, such as carbon limitations on photosynthesis, biomimicry and phenotyping, have traditionally not been incorporated extensively in the Western Photosynthesis Conference. We found that these topics have substantially broadened of the scope of this meeting.

  4. Mouse ATP-Binding Cassette (ABC) Transporters Conferring Multi-Drug Resistance

    Science.gov (United States)

    Shuaizhang, L I; Zhang, Wen; Yin, Xuejiao; Xing, Shilai; Xie, Qunhui; Cao, Zhengyu; Zhao, Bin

    2015-04-28

    The ABC (ATP-binding cassette) transporter is one of the largest and most ancient protein families with members functioning from protozoa to human. The resistance of cancer and tumor cells to anticancer drugs is due to the over-expression of some ABC transporters, which may finally lead to chemotherapy failure. The mouse ABC transporters are classified into seven subfamilies by phylogenetic analysis. The mouse ABC transporter gene, alias, chromosomal location and function have been determined. Within the ABC super-family, the MDR transporters (Abcb1, Abcc1, Abcg2) in mouse models have been proved to be valuable to investigate the biochemistry and physiological functions. This review concentrates on the multidrug resistance of mouse ABC transporters in cancer and tumor cells.

  5. 78 FR 27963 - Reliability Technical Conference; Notice of Technical Conference

    Science.gov (United States)

    2013-05-13

    ... Technical Conference; Notice of Technical Conference Take notice that the Federal Energy Regulatory Commission will hold a Technical Conference on Tuesday, July 9, 2013 from 9:00 a.m. to 5:00 p.m. This... technical support for webcasts and offers the option of listening to the meeting via phone-bridge for a fee...

  6. Structured Literature Review of digital disruption literature

    DEFF Research Database (Denmark)

    Vesti, Helle; Rosenstand, Claus Andreas Foss; Gertsen, Frank

    2018-01-01

    Digital disruption is a term/phenomenon frequently appearing in innovation management literature. However, no academic consensus exists as to what it entails; conceptual nor theoretical. We use the SLR-method (Structured Literature Review) to investigate digital disruption literature. A SLR......-study conducted in 2017 revealed some useful information on how disruption and digital disruption literature has developed over a specific period. However, this study was less representative of papers addressing digital disruption; which is the in-depth subject of this paper. To accommodate this, we intend...... to conduct a similar SLR-study assembling a body literature having digital disruption as the only common denominator...

  7. Mechanistic evaluation of endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Taxvig, Camilla

    BACKGROUND: This PhD project is part of the research area concerning effects of endocrine disrupters at the National Food Institute at DTU in Denmark. Endocrine disrupting chemicals (EDCs) have proved to be important for improper development of the male reproductive organs and subsequent for the ...... metabolising system using liver S9 mixtures or hepatic rat microsomes could be a convenient method for the incorporation of metabolic aspects into in vitro testing for endocrine disrupting effects.......BACKGROUND: This PhD project is part of the research area concerning effects of endocrine disrupters at the National Food Institute at DTU in Denmark. Endocrine disrupting chemicals (EDCs) have proved to be important for improper development of the male reproductive organs and subsequent......, to be able to detect effects and predict mixture effects. In addition, a new hypothesis have emerge concerning a potential role of exposure to endocrine disrupting chemicals, and the development of obesity and obesity related diseases. AIM: This PhD project aimed to gain more information regarding...

  8. Resistances to an insect herbivore and a phytopathogen in Barbarea vulgaris

    DEFF Research Database (Denmark)

    Christensen, Stina

    pubescence; one has glabrous leaves and is therefore called G-type while the other has pubescent leaves and is called the P-type. The G-type is resistant to most genotypes of the flea beetle Phyllotreta nemorum as well as some other Brassicales specialists, and this resistance is conferred by saponins. The P...

  9. COAL Conference Poster

    OpenAIRE

    Brown, Taylor Alexander; McGibbney, Lewis John

    2017-01-01

    COAL Conference Poster This archive contains the COAL conference poster for the AGU Fall Meeting 2017 by Taylor Alexander Brown. The Inkscape SVG source is available at https://github.com/capstone-coal/coal-conference-poster/ under the Creative Commons Attribution-ShareAlike 4.0 International license.

  10. Overview of core disruptive accidents

    International Nuclear Information System (INIS)

    Marchaterre, J.F.

    1977-01-01

    An overview of the analysis of core-disruptive accidents is given. These analyses are for the purpose of understanding and predicting fast reactor behavior in severe low probability accident conditions, to establish the consequences of such conditions and to provide a basis for evaluating consequence limiting design features. The methods are used to analyze core-disruptive accidents from initiating event to complete core disruption, the effects of the accident on reactor structures and the resulting radiological consequences are described

  11. Abstracts of the Canadian Society for Civil Engineering annual conference including the general conference, the 1. international structural specialty conference, the 1. international construction specialty conference, and the 1. specialty conference on disaster mitigation : towards a sustainable future

    International Nuclear Information System (INIS)

    El-Badry, M.; Loov, R.E.; Ruwanpura, J.; El-Hacha, R.; Kroman, J.; Rankin, J.

    2006-01-01

    This conference provided a forum for national and international practicing engineers, researchers and technical experts to discuss sustainable solutions to infrastructure development. Discussions focused on recent developments in new technologies for building more economic and sustainable infrastructure, while improving the safety of buildings, bridges, roads, water supply and sewage treatment systems. The conference was held in conjunction with associated specialty conferences, including a first international structures specialty conference, a first international construction specialty conference, and a first specialty conference on disaster mitigation. This book of abstracts highlights all the specialty conferences and accompanies a CD-ROM that has the full text of all the papers. Manuscripts of the full papers submitted to the specialty conferences were peer-reviewed by international scientific committees. The general conference provided a forum to learn about new technologies and future directions in various areas of civil engineering. It included a special theme session on sustainable development and a special session on innovation and information technology. Other technical sessions focused on topics such as civil engineering history and education; infrastructure management and renewal; asset management; risk assessment and management; engineering materials and mechanics; environmental engineering and science; hydrotechnical engineering; cold region engineering; and, transportation engineering. The general conference featured 88 presentations, of which 15 have been catalogued separately for inclusion in this database

  12. Survey of rice blast race identity for blast resistance gene identification in the USA and Puerto Rico

    Science.gov (United States)

    Rice blast disease is a significant threat to stable rice production in the USA and worldwide. The major resistance gene (Pi-ta) located within a cluster of resistance genes on rice chromosome 12 has been demonstrated to confer resistance to the rice blast disease. Katy, a rice cultivar released in ...

  13. Disruption studies in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Pautasso, G.

    2002-01-01

    Disruption generate large thermal and mechanical stresses on the tokamak components. For a future reactor disruptions have a significant impact on the design since all loading conditions must be analyzed in accordance with stricter design criteria (due to safety or difficult maintenance). Therefore the uncertainties affecting the predicted stresses must be reduced as much as possible with a more comprehensive set of measurements and analyses in this generation of experimental machines, and avoidance/ predictive methods must be developed further. The study of disruptions on ASDEX Upgrade is focused on these subjects, namely on: (1) understanding the physical mechanisms leading to this phenomenon and learning to avoid it or to predict its occurrence (with neural networks, for example) and to mitigate its effects; (2) analyzing the effects of disruptions on the machine to determine the functional dependence of the thermal and mechanical loads upon the discharge parameters. This allows to dimension or reinforce the machine components to withstand these loads and to extrapolate them to tokamaks still in the design phase; (3) learning to mitigate the consequence of disruptions. (author)

  14. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1979-01-01

    Three basic topics are addressed for the disruptive event analysis: first, the range of disruptive consequences of a radioactive waste repository by volcanic activity; second, the possible reduction of the risk of disruption by volcanic activity through selective siting of a repository; and third, the quantification of the probability of repository disruption by volcanic activity

  15. Cross-resistance and Inheritance of Resistance to Emamectin Benzoate in Spodoptera exigua (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Che, Wunan; Huang, Jianlei; Guan, Fang; Wu, Yidong; Yang, Yihua

    2015-08-01

    Beet armyworm, Spodoptera exigua (Hübner), is a worldwide pest of many crops. Chemical insecticides are heavily used for its control in China, and serious resistance has been evolved in the field to a variety of insecticides including emamectin benzoate. Through repeated backcrossing to a susceptible strain (WH-S) and selection with emamectin benzoate, the trait conferring resistance to emamectin benzoate in a field-collected population of S. exigua (moderately resistant to emamectin benzoate and strongly resistant to pyrethroids and indoxacarb) was introgressed into WH-S to generate a near-isogenic resistant strain (WH-EB). Compared with WH-S, the WH-EB strain developed a 1,110-fold resistance to emamectin benzoate and a high level of cross-resistance to abamectin (202-fold), with low levels of cross-resistance to cypermethrin (10-fold) and chlorfluazuron (7-fold), but no cross-resistance to representatives of another six different classes of insecticides (chlorantraniliprole, chlorfenapyr, indoxacarb, spinosad, tebufenozide, and chlorpyrifos). Resistance to emamectin benzoate in WH-EB was autosomal, incompletely dominant, and polygenic. Limited cross-resistance in WH-EB indicates that emamectin benzoate can be rotated with other classes of insecticides to which it does not show cross-resistance to delay the evolution of resistance in S. exigua. The incompletely dominant nature of resistance in S. exigua may explain the rapid evolution of resistance to emamectin benzoate in the field, and careful deployment of this chemical within a resistance management program should be considered. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Routine Responses to Disruption of Routines

    Science.gov (United States)

    Guha, Mahua

    2015-01-01

    "Organisational routines" is a widely studied research area. However, there is a dearth of research on disruption of routines. The few studies on disruption of routines discussed problem-solving activities that are carried out in response to disruption. In contrast, this study develops a theory of "solution routines" that are a…

  17. Pyrethroid resistance in an Anopheles funestus population from Uganda.

    Directory of Open Access Journals (Sweden)

    John C Morgan

    2010-07-01

    Full Text Available The susceptibility status of Anopheles funestus to insecticides remains largely unknown in most parts of Africa because of the difficulty in rearing field-caught mosquitoes of this malaria vector. Here we report the susceptibility status of the An. funestus population from Tororo district in Uganda and a preliminary characterisation of the putative resistance mechanisms involved.A new forced egg laying technique used in this study significantly increased the numbers of field-caught females laying eggs and generated more than 4000 F1 adults. WHO bioassays indicated that An. funestus in Tororo is resistant to pyrethroids (62% mortality after 1 h exposure to 0.75% permethrin and 28% mortality to 0.05% deltamethrin. Suspected DDT resistance was also observed with 82% mortality. However this population is fully susceptible to bendiocarb (carbamate, malathion (organophosphate and dieldrin with 100% mortality observed after exposure to each of these insecticides. Sequencing of a fragment of the sodium channel gene containing the 1014 codon conferring pyrethroid/DDT resistance in An. gambiae did not detect the L1014F kdr mutation but a correlation between haplotypes and resistance phenotype was observed indicating that mutations in other exons may be conferring the knockdown resistance in this species. Biochemical assays suggest that resistance in this population is mediated by metabolic resistance with elevated level of GSTs, P450s and pNPA compared to a susceptible strain of Anopheles gambiae. RT-PCR further confirmed the involvement of P450s with a 12-fold over-expression of CYP6P9b in the Tororo population compared to the fully susceptible laboratory colony FANG.This study represents the first report of pyrethroid/DDT resistance in An. funestus from East Africa. With resistance already reported in southern and West Africa, this indicates that resistance in An. funestus may be more widespread than previously assumed and therefore this should be taken

  18. Making a Success of the 2015 Paris Climate Conference. Opinion of the Economic, Social and Environmental Council

    International Nuclear Information System (INIS)

    Mesquida, Celine; Guirkinger, Bernard

    2015-04-01

    In November 2011, the ESEC voted on an opinion entitled 'International Climate Negotiations and the Durban Conference'. The holding in France, at the end of this year, of the 21. Conference of Parties to the United Nations Framework Convention (COP 21) provides an opportunity for the ESEC to issue a follow-up opinion. All of the scientific data points to the same alarming finding: global warming is being exacerbated due to the effects of an unprecedented increase in Greenhouse Gas (GHG) emissions. Worldwide, the signs of climate disruption are already more than apparent and will continue to intensify if nothing is done about them, as was highlighted by the IPCC. The outlook for the future is therefore disturbing to say the least, as the lives of current and future generations are at stake if we fail to challenge current modes of production and consumption that are incompatible with limited resources and the fair distribution of wealth. At the same time, the successive major international climate change conferences have struggled to progress towards an international climate regulatory framework. These conferences are not about the climate alone, but take place at the confluence of contradictory geostrategic, political and economic interests. Within this context, the goal of concluding a global, fair and ambitious agreement in Paris is a challenge that must be risen to. (authors)

  19. Stability and Control of Burning Tokamak Plasmas with Resistive Walls: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, George [Univ. of Tulsa, OK (United States); Brennan, Dylan [Princeton Univ., NJ (United States); Cole, Andrew [Columbia Univ., New York, NY (United States); Finn, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-02

    This project is focused on theoretical and computational development for quantitative prediction of the stability and control of the equilibrium state evolution in toroidal burning plasmas, including its interaction with the surrounding resistive wall. The stability of long pulse burning plasmas is highly sensitive to the physics of resonant layers in the plasma, sources of momentum and flow, kinetic effects of energetic particles, and boundary conditions at the wall, including feedback control and error fields. In ITER in particular, the low toroidal flow equilibrium state, sustained primarily by energetic alpha particles from fusion reactions, will require the consideration of all of these key elements to predict quantitatively the stability and evolution. The principal investigators on this project have performed theoretical and computational analyses, guided by analytic modeling, to address this physics in realistic configurations. The overall goal has been to understand the key physics mechanisms that describe stable toroidal burning plasmas under active feedback control. Several relevant achievements have occurred during this project, leading to publications and invited conference presentations. In theoretical efforts, with the physics of the resonant layers, resistive wall, and toroidal momentum transport included, this study has extended from cylindrical resistive plasma - resistive wall models with feedback control to toroidal geometry with strong shaping to study mode coupling effects on the stability. These results have given insight into combined tearing and resistive wall mode behavior in simulations and experiment, while enabling a rapid exploration of plasma parameter space, to identify possible domains of interest for large plasma codes to investigate in more detail. Resonant field amplification and quasilinear torques in the presence of error fields and velocity shear have also been investigated. Here it was found, surprisingly, that the Maxwell

  20. Arabidopsis thaliana resistance to fusarium oxysporum 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection.

    Directory of Open Access Journals (Sweden)

    Yunping Shen

    2013-05-01

    Full Text Available In the plant Arabidopsis thaliana, multiple quantitative trait loci (QTLs, including RFO2, account for the strong resistance of accession Columbia-0 (Col-0 and relative susceptibility of Taynuilt-0 (Ty-0 to the vascular wilt fungus Fusarium oxysporum forma specialis matthioli. We find that RFO2 corresponds to diversity in receptor-like protein (RLP genes. In Col-0, there is a tandem pair of RLP genes: RFO2/At1g17250 confers resistance while RLP2 does not. In Ty-0, the highly diverged RFO2 locus has one RLP gene conferring weaker resistance. While the endogenous RFO2 makes a modest contribution to resistance, transgenic RFO2 provides strong pathogen-specific resistance. The extracellular leucine-rich repeats (eLRRs in RFO2 and RLP2 are interchangeable for resistance and remarkably similar to eLRRs in the receptor-like kinase PSY1R, which perceives tyrosine-sulfated peptide PSY1. Reduced infection in psy1r and mutants of related phytosulfokine (PSK receptor genes PSKR1 and PSKR2 shows that tyrosine-sulfated peptide signaling promotes susceptibility. The related eLRRs in RFO2 and PSY1R are not interchangeable; and expression of the RLP nPcR, in which eLRRs in RFO2 are replaced with eLRRs in PSY1R, results in constitutive resistance. Counterintuitively, PSY1 signaling suppresses nPcR because psy1r nPcR is lethal. The fact that PSK signaling does not similarly affect nPcR argues that PSY1 signaling directly downregulates the expression of nPcR. Our results support a speculative but intriguing model to explain RFO2's role in resistance. We propose that F. oxysporum produces an effector that inhibits the normal negative feedback regulation of PSY1R, which stabilizes PSY1 signaling and induces susceptibility. However, RFO2, acting as a decoy receptor for PSY1R, is also stabilized by the effector and instead induces host immunity. Overall, the quantitative resistance of RFO2 is reminiscent of the better-studied monogenic resistance traits.

  1. The disruption management model.

    Science.gov (United States)

    McAlister, James

    2011-10-01

    Within all organisations, business continuity disruptions present a set of dilemmas that managers may not have dealt with before in their normal daily duties. The disruption management model provides a simple but effective management tool to enable crisis management teams to stay focused on recovery in the midst of a business continuity incident. The model has four chronological primary headlines, which steer the team through a quick-time crisis decision-making process. The procedure facilitates timely, systematic, rationalised and justified decisions, which can withstand post-event scrutiny. The disruption management model has been thoroughly tested within an emergency services environment and is proven to significantly support clear and concise decision making in a business continuity context.

  2. Sustainable Disruption Management

    DEFF Research Database (Denmark)

    Vaaben, Bo Valdemar

    The world we live in is globalized. Goods are seldom made in the place where they are used or consumed, and we do increasingly travel to other countries for either business or pleasure. In our everyday lives we rely on well-functioning global transportations systems to continue the standard...... in the same way, when operation is disrupted. Never the less, we may recall that the Suez Canal was closed due to riots in Egypt, that the fuel price was impacted by threats of closing of the Strait of Hormuz, and we do from time to time hear about acts of piracy outside the coast of Somalia. All...... papers combining disruption management and flight planning through an integrated optimization approach. An additional contribution of the thesis is to show how flexible flight speeds can be used to improve recovery from disruptions, while at the same time allowing an airline to trade off fuel costs...

  3. Disruption and Distinctiveness in Higher Education

    Science.gov (United States)

    Purcell, Wendy

    2014-01-01

    "Disruption"--while an evocative word triggering feelings of anxiety and perhaps even fear--also signals renewal and growth. The Higher Education (HE) sector in England has experienced some profound disruption over the years, and yet has emerged stronger and renewed in many ways. The impact of recent disruptive forces, from fees to the…

  4. 2005 Plant Metabolic Engineering Gordon Conference - July 10-15, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Eleanore T. Wurtzel

    2006-06-30

    The post-genomic era presents new opportunities for manipulating plant chemistry for improvement of plant traits such as disease and stress resistance and nutritional qualities. This conference will provide a setting for developing multidisciplinary collaborations needed to unravel the dynamic complexity of plant metabolic networks and advance basic and applied research in plant metabolic engineering. The conference will integrate recent advances in genomics, with metabolite and gene expression analyses. Research discussions will explore how biosynthetic pathways interact with regard to substrate competition and channeling, plasticity of biosynthetic enzymes, and investigate the localization, structure, and assembly of biosynthetic metabolons in native and nonnative environments. The meeting will develop new perspectives for plant transgenic research with regard to how transgene expression may influence cellular metabolism. Incorporation of spectroscopic approaches for metabolic profiling and flux analysis combined with mathematical modeling will contribute to the development of rational metabolic engineering strategies and lead to the development of new tools to assess temporal and subcellular changes in metabolite pools. The conference will also highlight new technologies for pathway engineering, including use of heterologous systems, directed enzyme evolution, engineering of transcription factors and application of molecular/genetic techniques for controlling biosynthetic pathways.

  5. 9th International Conference on 3D Radiation Dosimetry

    International Nuclear Information System (INIS)

    2017-01-01

    IC3DDose 2016 - 9th International Conference on 3D Radiation Dosimetry Preface It was a great pleasure to welcome participants to IC3DDose 2016, the 9th International Conference on 3D Radiation Dosimetry, held from 7–10 November 2016 in Galveston, Texas. The series of conferences has evolved considerably during its history. At the first conference, DOSGEL’99, the discussion centered around gel dosimetry. Held in Lexington, Kentucky in 1999, it was timed to coincide with the American Association of Physicists in Medicine (AAPM) Annual Meeting in Nashville, Tennessee. It was my honour to organize that first conference, and it was once again my honour to organize the 9th conference in the series now known as IC3DDose which was held in Galveston, Texas. As was the case with recent IC3DDose conferences, the topic has broadened considerably beyond gel dosimetry. Not only have newer 3D volumetric dosimeters appeared on the scene, but novel electronic dosimetry systems and software that generate quasi-3D dose information have also. These changes have tracked advances in radiation oncology as techniques such as IMRT, VMAT, and IGRT have become almost ubiquitous. At the same time, dynamic treatments including gating and tracking now enjoy widespread use. Novel treatment technologies have appeared with perhaps the most disruptive being combined MR imaging-treatment units such as the ViewRay MR-cobalt unit and the Elekta/Philips MR-Linac. The potential benefits offered by 3D dosimetry were explored, compared and evaluated during IC3DDose 2016. Novel and improved readout techniques, some of which take advantage of the contemporary treatment environment and new QA systems and procedures, as well as other aspects of clinical dosimetry were well represented in the program. Over the past several years, the importance of safety in radiation therapy has been highlighted. The benefits of 3D dosimetry in contributing to safe and accurate treatments cannot be overstated. The

  6. vanI: a novel d-Ala-d-Lac vancomycin resistance gene cluster found in Desulfitobacterium hafniense

    NARCIS (Netherlands)

    Kruse, T.; Levisson, M.; Vos, de W.M.; Smidt, H.

    2014-01-01

    The glycopeptide vancomycin was until recently considered a drug of last resort against Gram-positive bacteria. Increasing numbers of bacteria, however, are found to carry genes that confer resistance to this antibiotic. So far, 10 different vancomycin resistance clusters have been described. A

  7. Neural-net disruption predictor in JT-60U

    International Nuclear Information System (INIS)

    Yoshino, R.

    2003-01-01

    The prediction of major disruptions caused by the density limit, the plasma current ramp-down with high internal inductance l i , the low density locked mode and the β-limit has been investigated in JT-60U. The concept of 'stability level', newly proposed in this paper to predict the occurrence of a major disruption, is calculated from nine input parameters every 2 ms by the neural network and the start of a major disruption is predicted when the stability level decreases to a certain level, the 'alarm level'. The neural network is trained in two steps. It is first trained with 12 disruptive and six non-disruptive shots (total of 8011 data points). Second, the target output data for 12 disruptive shots are modified and the network is trained again with additional data points generated by the operator. The 'neural-net disruption predictor' obtained has been tested for 300 disruptive shots (128 945 data points) and 1008 non-disruptive shots (982 800 data points) selected from nine years of operation (1991-1999) of JT-60U. Major disruptions except for those caused by the -limit have been predicted with a prediction success rate of 97-98% at 10 ms prior to the disruption and higher than 90% at 30 ms prior to the disruption while the false alarm rate is 2.1% for non-disruptive shots. This prediction performance has been confirmed for 120 disruptive shots (56 163 data points), caused by the density limit, as well as 1032 non-disruptive shots (1004 611 data points) in the last four years of operation (1999-2002) of JT-60U. A careful selection of the input parameters supplied to the network and the newly developed two-step training of the network have reduced the false alarm rate resulting in a considerable improvement of the prediction success rate. (author)

  8. International Conference on Physics

    CERN Document Server

    2016-01-01

    OMICS International, (conference series) the World Class Open Access Publisher and Scientific Event Organizer is hosting “International Conference on physics” which is going to be the biggest conference dedicated to Physics. The theme “Highlighting innovations and challenges in the field of Physics” and it features a three day conference addressing the major breakthroughs, challenges and the solutions adopted. The conference will be held during June 27-29, 2016 at New Orleans, USA. Will be published in: http://physics.conferenceseries.com/

  9. Facilitating Learning at Conferences

    DEFF Research Database (Denmark)

    Ravn, Ib; Elsborg, Steen

    2011-01-01

    The typical conference consists of a series of PowerPoint presentations that tend to render participants passive. Students of learning have long abandoned the transfer model that underlies such one-way communication. We propose an al-ternative theory of conferences that sees them as a forum...... for learning, mutual inspiration and human flourishing. We offer five design principles that specify how conferences may engage participants more and hence increase their learning. In the research-and-development effort reported here, our team collaborated with conference organizers in Denmark to introduce...... and facilitate a variety of simple learning techniques at thirty one- and two-day conferences of up to 300 participants each. We present ten of these techniques and data evaluating them. We conclude that if conference organizers allocate a fraction of the total conference time to facilitated processes...

  10. The multifaceted roles of antibiotics and antibiotic resistance in nature

    Directory of Open Access Journals (Sweden)

    Saswati eSengupta

    2013-03-01

    Full Text Available Antibiotics are chemotherapeutic agents, which have been a very powerful tool in the clinical management of bacterial diseases since the 1940s. However, benefits offered by these magic bullets have been substantially lost in subsequent days following the widespread emergence and dissemination of antibiotic resistant strains. While it is obvious that excessive and imprudent use of antibiotics significantly contributes to the emergence of resistant strains, antibiotic-resistance is also observed in natural bacteria of remote places unlikely to be impacted by human intervention. Both antibiotic biosynthetic genes and resistance-conferring genes have been known to evolve billions of years ago, long before clinical use of antibiotics. Hence it appears that antibiotics and antibiotics resistance determinants have some other roles in nature, which often elude our attention because of overemphasis on the therapeutic importance of antibiotics and the crisis imposed by the antibiotic-resistance in pathogens. In the natural milieu, antibiotics are often found to be present in subinhibitory concentrations acting as signalling molecules supporting quorum sensing and biofilm formation. They also play an important role in the production of virulence factors and influence host-parasite interactions (e.g., phagocytosis, adherence to the target cell and so on. The evolutionary and ecological aspects of antibiotics and antibiotic-resistance in the naturally occurring microbial community are little understood. Therefore, the actual role of antibiotics in nature warrants in-depth investigations. Studies on such an intriguing behaviour of the microorganisms promise insight into the intricacies of the microbial physiology and are likely to provide some lead in controlling the emergence and subsequent dissemination of antibiotic resistance. This article highlights some of the recent findings on the role of antibiotics and genes that confer resistance to antibiotics in

  11. Probabilistic analysis of tokamak plasma disruptions

    International Nuclear Information System (INIS)

    Sanzo, D.L.; Apostolakis, G.E.

    1985-01-01

    An approximate analytical solution to the heat conduction equations used in modeling component melting and vaporization resulting from plasma disruptions is presented. This solution is then used to propagate uncertainties in the input data characterizing disruptions, namely, energy density and disruption time, to obtain a probabilistic description of the output variables of interest, material melted and vaporized. (orig.)

  12. World Energy Conference

    International Nuclear Information System (INIS)

    Ott, G.; Schilling, H.D.

    1979-01-01

    After making some general remarks about goals, tasks, and works of the World Energy Conference the topics and the frame of the 11th World Energy Conference which will take place in Munich from 8th to 12th September 1980 are outlined. This conference is held under the general topic 'energy for our world' and deals with the reciprocal relation between energy supply, environment, and society. The main part of the publication presented here is the German version of the most important sections of the investigation 'World Energy-Looking Ahead to 2020' by the Conservation Commission (CC) of the World Energy Conference. Added to this is the German original brief version of a report by the Mining-Research Company (Bergbau-Forschung GmbH) to the CC which deals with the estimation of the world's coal resources and their future availability. This report was presented on the 10th World Energy Conference in Istanbul together with the corresponding reports concerning the other energy sources. Finally, an introduction to the technical programme for the 11th World Energy Conference 1980 is given. (UA) [de

  13. Title - EFARS - Conference (Uninvited)

    OpenAIRE

    Lohrey, MC; Lawrence, AS

    2016-01-01

    Abstract - EFARS - Conference (Uninvited) "Notes" - EFARS - Conference (Uninvited) In preparation (Publication status) Yes, full paperYes, abstract onlyNo (Peer reviewed?) "Add a comment" - EFARS - Conference - Uninvited

  14. Control, pressure perturbations, displacements, and disruptions in highly elongated tokamak plasmas

    International Nuclear Information System (INIS)

    Marcus, F.B.; Hofmann, F.; Tonetti, G.; Jardin, S.C.; Noll, P.

    1989-06-01

    The control and evolution of highly elongated tokamak plasmas with large growth rates are simulated with the axisymmetric, resistive MHD code TSC in the geometry of the TCV tokamak. Pressure perturbations such as sawteeth and externally programmed displacements create initial velocity perturbations which may be stabilized by low power, rapid response coils inside the passively stabilizing vacuum vessel, together with slower shaping coils outside the vessel. Vertical disruption induced voltages and forces on the rapid coils and vessel are investigated, and a model is proposed for an additional vertical force due to poloidal currents. (author) 6 figs., 1 tab., 26 refs

  15. Use of peptide antibodies to probe for the mitoxantrone resistance-associated protein MXR/BCRP/ABCP/ABCG2

    DEFF Research Database (Denmark)

    Litman, Thomas; Jensen, Ulla; Hansen, Alastair

    2002-01-01

    Recent studies have characterized the ABC half-transporter associated with mitoxantrone resistance in human cancer cell lines. Encoded by the ABCG2 gene, overexpression confers resistance to camptothecins, as well as to mitoxantrone. We developed four polyclonal antibodies against peptides corres...

  16. Plasma membrane disruption: repair, prevention, adaptation

    Science.gov (United States)

    McNeil, Paul L.; Steinhardt, Richard A.

    2003-01-01

    Many metazoan cells inhabit mechanically stressful environments and, consequently, their plasma membranes are frequently disrupted. Survival requires that the cell rapidly repair or reseal the disruption. Rapid resealing is an active and complex structural modification that employs endomembrane as its primary building block, and cytoskeletal and membrane fusion proteins as its catalysts. Endomembrane is delivered to the damaged plasma membrane through exocytosis, a ubiquitous Ca2+-triggered response to disruption. Tissue and cell level architecture prevent disruptions from occurring, either by shielding cells from damaging levels of force, or, when this is not possible, by promoting safe force transmission through the plasma membrane via protein-based cables and linkages. Prevention of disruption also can be a dynamic cell or tissue level adaptation triggered when a damaging level of mechanical stress is imposed. Disease results from failure of either the preventive or resealing mechanisms.

  17. AINSE's 40th anniversary conference. Conference handbook

    International Nuclear Information System (INIS)

    1998-01-01

    Highlights of 40 years of activity of the Australian Institute of Nuclear Science and Engineering (AINSE) were the main focus of this conference. Topics covered include nuclear physics, plasma physics, radiation chemistry, radiation biology, neutron diffraction, nuclear techniques of analysis and other relevant aspects of nuclear science and technology. The conference handbook contains the summaries of the 78 papers and posters presented and the list of participants

  18. From Digital Disruption to Business Model Scalability

    DEFF Research Database (Denmark)

    Nielsen, Christian; Lund, Morten; Thomsen, Peter Poulsen

    2017-01-01

    This article discusses the terms disruption, digital disruption, business models and business model scalability. It illustrates how managers should be using these terms for the benefit of their business by developing business models capable of achieving exponentially increasing returns to scale...... will seldom lead to business model scalability capable of competing with digital disruption(s)....... as a response to digital disruption. A series of case studies illustrate that besides frequent existing messages in the business literature relating to the importance of creating agile businesses, both in growing and declining economies, as well as hard to copy value propositions or value propositions that take...

  19. NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells

    NARCIS (Netherlands)

    S.W. Paugh (Steven); E.J. Bonten (Erik J.); D. Savic (Daniel); L.B. Ramsey (Laura B.); W.E. Thierfelder (William E.); P. Gurung (Prajwal); R.K.S. Malireddi (R. K. Subbarao); M. Actis (Marcelo); A. Mayasundari (Anand); J. Min (Jaeki); D.R. Coss (David R.); L.T. Laudermilk (Lucas T.); J.C. Panetta (John); J.R. McCorkle (J. Robert); Y. Fan (Yiping); K.R. Crews (Kristine R.); G. Stocco (Gabriele); M.R. Wilkinson (Mark R.); A.M. Ferreira (Antonio M.); C. Cheng (Cheng); W. Yang (Wenjian); S.E. Karol (Seth E.); C.A. Fernandez (Christian A.); B. Diouf (Barthelemy); C. Smith (Colton); J.K. Hicks (J Kevin); A. Zanut (Alessandra); A. Giordanengo (Audrey); D.J. Crona; J.J. Bianchi (Joy J.); L. Holmfeldt (Linda); C.G. Mullighan (Charles); M.L. den Boer (Monique); R. Pieters (Rob); S. Jeha (Sima); T.L. Dunwell (Thomas L.); F. Latif (Farida); D. Bhojwani (Deepa); W.L. Carroll (William L.); C.-H. Pui (Ching-Hon); R.M. Myers (Richard M.); R.K. Guy (R Kiplin); T.-D. Kanneganti (Thirumala-Devi); M.V. Relling (Mary); W.E. Evans (William)

    2015-01-01

    textabstractGlucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia

  20. Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations

    Directory of Open Access Journals (Sweden)

    Légaré Danielle

    2011-10-01

    Full Text Available Abstract Background Several mutations were present in the genome of Streptococcus pneumoniae linezolid-resistant strains but the role of several of these mutations had not been experimentally tested. To analyze the role of these mutations, we reconstituted resistance by serial whole genome transformation of a novel resistant isolate into two strains with sensitive background. We sequenced the parent mutant and two independent transformants exhibiting similar minimum inhibitory concentration to linezolid. Results Comparative genomic analyses revealed that transformants acquired G2576T transversions in every gene copy of 23S rRNA and that the number of altered copies correlated with the level of linezolid resistance and cross-resistance to florfenicol and chloramphenicol. One of the transformants also acquired a mutation present in the parent mutant leading to the overexpression of an ABC transporter (spr1021. The acquisition of these mutations conferred a fitness cost however, which was further enhanced by the acquisition of a mutation in a RNA methyltransferase implicated in resistance. Interestingly, the fitness of the transformants could be restored in part by the acquisition of altered copies of the L3 and L16 ribosomal proteins and by mutations leading to the overexpression of the spr1887 ABC transporter that were present in the original linezolid-resistant mutant. Conclusions Our results demonstrate the usefulness of whole genome approaches at detecting major determinants of resistance as well as compensatory mutations that alleviate the fitness cost associated with resistance.