WorldWideScience

Sample records for disrupt oncogenic protein

  1. TAD disruption as oncogenic driver.

    Science.gov (United States)

    Valton, Anne-Laure; Dekker, Job

    2016-02-01

    Topologically Associating Domains (TADs) are conserved during evolution and play roles in guiding and constraining long-range regulation of gene expression. Disruption of TAD boundaries results in aberrant gene expression by exposing genes to inappropriate regulatory elements. Recent studies have shown that TAD disruption is often found in cancer cells and contributes to oncogenesis through two mechanisms. One mechanism locally disrupts domains by deleting or mutating a TAD boundary leading to fusion of the two adjacent TADs. The other mechanism involves genomic rearrangements that break up TADs and creates new ones without directly affecting TAD boundaries. Understanding the mechanisms by which TADs form and control long-range chromatin interactions will therefore not only provide insights into the mechanism of gene regulation in general, but will also reveal how genomic rearrangements and mutations in cancer genomes can lead to misregulation of oncogenes and tumor suppressors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Oncogenic fusion proteins adopt the insulin-like growth factor signaling pathway.

    Science.gov (United States)

    Werner, Haim; Meisel-Sharon, Shilhav; Bruchim, Ilan

    2018-02-19

    The insulin-like growth factor-1 receptor (IGF1R) has been identified as a potent anti-apoptotic, pro-survival tyrosine kinase-containing receptor. Overexpression of the IGF1R gene constitutes a typical feature of most human cancers. Consistent with these biological roles, cells expressing high levels of IGF1R are expected not to die, a quintessential feature of cancer cells. Tumor specific chromosomal translocations that disrupt the architecture of transcription factors are a common theme in carcinogenesis. Increasing evidence gathered over the past fifteen years demonstrate that this type of genomic rearrangements is common not only among pediatric and hematological malignancies, as classically thought, but may also provide a molecular and cytogenetic foundation for an ever-increasing portion of adult epithelial tumors. In this review article we provide evidence that the mechanism of action of oncogenic fusion proteins associated with both pediatric and adult malignancies involves transactivation of the IGF1R gene, with ensuing increases in IGF1R levels and ligand-mediated receptor phosphorylation. Disrupted transcription factors adopt the IGF1R signaling pathway and elicit their oncogenic activities via activation of this critical regulatory network. Combined targeting of oncogenic fusion proteins along with the IGF1R may constitute a promising therapeutic approach.

  3. Viral Interactions with PDZ Domain-Containing Proteins-An Oncogenic Trait?

    Science.gov (United States)

    James, Claire D; Roberts, Sally

    2016-01-18

    Many of the human viruses with oncogenic capabilities, either in their natural host or in experimental systems (hepatitis B and C, human T cell leukaemia virus type 1, Kaposi sarcoma herpesvirus, human immunodeficiency virus, high-risk human papillomaviruses and adenovirus type 9), encode in their limited genome the ability to target cellular proteins containing PSD95/ DLG/ZO-1 (PDZ) interaction modules. In many cases (but not always), the viruses have evolved to bind the PDZ domains using the same short linear peptide motifs found in host protein-PDZ interactions, and in some cases regulate the interactions in a similar fashion by phosphorylation. What is striking is that the diverse viruses target a common subset of PDZ proteins that are intimately involved in controlling cell polarity and the structure and function of intercellular junctions, including tight junctions. Cell polarity is fundamental to the control of cell proliferation and cell survival and disruption of polarity and the signal transduction pathways involved is a key event in tumourigenesis. This review focuses on the oncogenic viruses and the role of targeting PDZ proteins in the virus life cycle and the contribution of virus-PDZ protein interactions to virus-mediated oncogenesis. We highlight how many of the viral associations with PDZ proteins lead to deregulation of PI3K/AKT signalling, benefitting virus replication but as a consequence also contributing to oncogenesis.

  4. Disruption of PH–kinase domain interactions leads to oncogenic activation of AKT in human cancers

    Science.gov (United States)

    Parikh, Chaitali; Janakiraman, Vasantharajan; Wu, Wen-I; Foo, Catherine K.; Kljavin, Noelyn M.; Chaudhuri, Subhra; Stawiski, Eric; Lee, Brian; Lin, Jie; Li, Hong; Lorenzo, Maria N.; Yuan, Wenlin; Guillory, Joseph; Jackson, Marlena; Rondon, Jesus; Franke, Yvonne; Bowman, Krista K.; Sagolla, Meredith; Stinson, Jeremy; Wu, Thomas D.; Wu, Jiansheng; Stokoe, David; Stern, Howard M.; Brandhuber, Barbara J.; Lin, Kui; Skelton, Nicholas J.; Seshagiri, Somasekar

    2012-01-01

    The protein kinase v-akt murine thymoma viral oncogene homolog (AKT), a key regulator of cell survival and proliferation, is frequently hyperactivated in human cancers. Intramolecular pleckstrin homology (PH) domain–kinase domain (KD) interactions are important in maintaining AKT in an inactive state. AKT activation proceeds after a conformational change that dislodges the PH from the KD. To understand these autoinhibitory interactions, we generated mutations at the PH–KD interface and found that most of them lead to constitutive activation of AKT. Such mutations are likely another mechanism by which activation may occur in human cancers and other diseases. In support of this likelihood, we found somatic mutations in AKT1 at the PH–KD interface that have not been previously described in human cancers. Furthermore, we show that the AKT1 somatic mutants are constitutively active, leading to oncogenic signaling. Additionally, our studies show that the AKT1 mutants are not effectively inhibited by allosteric AKT inhibitors, consistent with the requirement for an intact PH–KD interface for allosteric inhibition. These results have important implications for therapeutic intervention in patients with AKT mutations at the PH–KD interface. PMID:23134728

  5. Oncogenic Signaling by Leukemia-Associated Mutant Cbl Proteins

    Science.gov (United States)

    Nadeau, Scott; An, Wei; Palermo, Nick; Feng, Dan; Ahmad, Gulzar; Dong, Lin; Borgstahl, Gloria E. O.; Natarajan, Amarnath; Naramura, Mayumi; Band, Vimla; Band, Hamid

    2013-01-01

    Members of the Cbl protein family (Cbl, Cbl-b, and Cbl-c) are E3 ubiquitin ligases that have emerged as critical negative regulators of protein tyrosine kinase (PTK) signaling. This function reflects their ability to directly interact with activated PTKs and to target them as well as their associated signaling components for ubiquitination. Given the critical roles of PTK signaling in driving oncogenesis, recent studies in animal models and genetic analyses in human cancer have firmly established that Cbl proteins function as tumor suppressors. Missense mutations or small in-frame deletions within the regions of Cbl protein that are essential for its E3 activity have been identified in nearly 5% of leukemia patients with myelodysplastic/myeloproliferative disorders. Based on evidence from cell culture studies, in vivo models and clinical data, we discuss the potential signaling mechanisms of mutant Cbl-driven oncogenesis. Mechanistic insights into oncogenic Cbl mutants and associated animal models are likely to enhance our understanding of normal hematopoietic stem cell homeostasis and provide avenues for targeted therapy of mutant Cbl-driven cancers. PMID:23997989

  6. SUMOylation Confers Posttranslational Stability on NPM-ALK Oncogenic Protein

    Directory of Open Access Journals (Sweden)

    Deeksha Vishwamitra

    2015-09-01

    Full Text Available Nucleophosmin-anaplastic lymphoma kinase–expressing (NPM-ALK+ T-cell lymphoma is an aggressive form of cancer that commonly affects children and adolescents. The expression of NPM-ALK chimeric oncogene results from the chromosomal translocation t(2;5(p23;q35 that causes the fusion of the ALK and NPM genes. This translocation generates the NPM-ALK protein tyrosine kinase that forms the constitutively activated NPM-ALK/NPM-ALK homodimers. In addition, NPM-ALK is structurally associated with wild-type NPM to form NPM/NPM-ALK heterodimers, which can translocate to the nucleus. The mechanisms that sustain the stability of NPM-ALK are not fully understood. SUMOylation is a posttranslational modification that is characterized by the reversible conjugation of small ubiquitin-like modifiers (SUMOs with target proteins. SUMO competes with ubiquitin for substrate binding and therefore, SUMOylation is believed to protect target proteins from proteasomal degradation. Moreover, SUMOylation contributes to the subcellular distribution of target proteins. Herein, we found that the SUMOylation pathway is deregulated in NPM-ALK+ T-cell lymphoma cell lines and primary lymphoma tumors from patients. We also identified Lys24 and Lys32 within the NPM domain as the sites where NPM-ALK conjugates with SUMO-1 and SUMO-3. Importantly, antagonizing SUMOylation by the SENP1 protease decreased the accumulation of NPM-ALK and suppressed lymphoma cell viability, proliferation, and anchorage-independent colony formation. One possible mechanism for the SENP1-mediated decrease in NPM-ALK levels was the increase in NPM-ALK association with ubiquitin, which facilitates its degradation. Our findings propose a model in which aberrancies in SUMOylation contribute to the pathogenesis of NPM-ALK+ T-cell lymphoma. Unraveling such pathogenic mechanisms may lead to devising novel strategies to eliminate this aggressive neoplasm.

  7. Identification of an intracellular protein that specifically interacts with photoaffinity-labeled oncogenic p21 protein

    International Nuclear Information System (INIS)

    Lee, G.; Ronai, Z.A.; Pincus, M.R.; Brandt-Rauf, P.W.; Weinstein, I.B.; Murphy, R.B.; Delohery, T.M.; Nishimura, S.; Yamaizumi, Z.

    1989-01-01

    An oncogenic 21-kDa (p21) protein (Harvey RAS protein with Val-12) has been covalently modified with a functional reagent that contains a photoactivatable aromatic azide group. This modified p21 protein has been introduced quantitatively into NIH 3T3 cells using an erythrocyte-mediated fusion technique. The introduced p21 protein was capable of inducing enhanced pinocytosis and DNA synthesis in the recipient cells. To identify the putative intracellular protein(s) that specifically interact with modified p21 protein, the cells were pulsed with [ 35 S]methionine at selected times after fusion and then UV-irradiated to activate the azide group. The resulting nitrene covalently binds to amino acid residues in adjacent proteins, thus linking the p21 protein to these proteins. The cells were then lysed, and the lysate was immunoprecipitated with the anti-p21 monoclonal antibody Y13-259. The immunoprecipitate was analyzed by SDS/PAGE to identify p21 - protein complexes. By using this technique, the authors found that three protein complexes of 51, 64, and 82 kDa were labeled specifically and reproducibly. The most prominent band is the 64-kDa protein complex that shows a time-dependent rise and fall, peaking within a 5-hr period after introduction of the p21 protein the cells. These studies provide evidence that in vitro the p21 protein becomes associated with a protein whose mass is about 43 kDa. They suggest that the formation of this complex may play a role in mediating early events involved with cell transformation induced by RAS oncogenes

  8. Identification of an intracellular protein that specifically interacts with photoaffinity-labeled oncogenic p21 protein.

    Science.gov (United States)

    Lee, G; Ronai, Z A; Pincus, M R; Brandt-Rauf, P W; Murphy, R B; Delohery, T M; Nishimura, S; Yamaizumi, Z; Weinstein, I B

    1989-11-01

    An oncogenic 21-kDa (p21) protein (Harvey RAS protein with Val-12) has been covalently modified with a functional reagent that contains a photoactivatable aromatic azide group. This modified p21 protein has been introduced quantitatively into NIH 3T3 cells using an erythrocyte-mediated fusion technique. The introduced p21 protein was capable of inducing enhanced pinocytosis and DNA synthesis in the recipient cells. To identify the putative intracellular protein(s) that specifically interact with the modified p21 protein, the cells were pulsed with [35S]methionine at selected times after fusion and then UV-irradiated to activate the azide group. The resulting nitrene covalently binds to amino acid residues in adjacent proteins, thus linking the p21 protein to these proteins. The cells were then lysed, and the lysate was immunoprecipitated with the anti-p21 monoclonal antibody Y13-259. The immunoprecipitate was analyzed by SDS/PAGE to identify p21-protein complexes. By using this technique, we found that three protein complexes of 51, 64, and 82 kDa were labeled specifically and reproducibly. The most prominent band is the 64-kDa protein complex that shows a time-dependent rise and fall, peaking within a 5-hr period after introduction of the p21 protein into the cells. These studies provide evidence that in vitro the p21 protein becomes associated with a protein whose mass is about 43 kDa. We suggest that the formation of this complex may play a role in mediating early events involved with cell transformation induced by RAS oncogenes.

  9. ERBB oncogene proteins as targets for monoclonal antibodies.

    Science.gov (United States)

    Polanovski, O L; Lebedenko, E N; Deyev, S M

    2012-03-01

    General properties of the family of tyrosine kinase ERBB receptors are considered in connection with their role in the generation of cascades of signal transduction in normal and tumor cells. Causes of acquisition of oncogene features by genes encoding these receptors and their role in tumorigenesis are analyzed. Anti-ERBB monoclonal antibodies approved for therapy are described in detail, and mechanisms of their antitumor activity and development of resistance to them are reviewed. The existing and the most promising strategies for creating and using monoclonal antibodies and their derivatives for therapy of cancer are discussed.

  10. Suppressor of cytokine signaling 1 interacts with oncogenic lymphocyte-specific protein tyrosine kinase.

    Science.gov (United States)

    Venkitachalam, Srividya; Chueh, Fu-Yu; Leong, King-Fu; Pabich, Samantha; Yu, Chao-Lan

    2011-03-01

    Lymphocyte-specific protein tyrosine kinase (Lck) plays a key role in T cell signal transduction and is tightly regulated by phosphorylation and dephosphorylation. Lck can function as an oncoprotein when overexpressed or constantly activated by mutations. Our previous studies showed that Lck-induced cellular transformation could be suppressed by enforced expression of suppressor of cytokine signaling 1 (SOCS1), a SOCS family member involved in the negative feedback control of cytokine signaling. We observed attenuated Lck kinase activity in SOCS1-expressing cells, suggesting an important role of SOCS in regulating Lck functions. It remains largely unknown whether and how SOCS proteins interact with the oncogenic Lck kinase. Here, we report that among four SOCS family proteins, SOCS1, SOCS2, SOCS3 and CIS (cytokine-inducible SH2 domain containing protein), SOCS1 has the highest affinity in binding to the oncogenic Lck kinase. We identified the positive regulatory phosphotyrosine 394 residue in the kinase domain as the key interacting determinant in Lck. Additionally, the Lck kinase domain alone is sufficient to bind SOCS1. While the SH2 domain in SOCS1 is important in its association with the oncogenic Lck kinase, other functional domains may also contribute to overall binding affinity. These findings provide important mechanistic insights into the role of SOCS proteins as tumor suppressors in cells transformed by oncogenic protein tyrosine kinases.

  11. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia.

    Science.gov (United States)

    Grembecka, Jolanta; He, Shihan; Shi, Aibin; Purohit, Trupta; Muntean, Andrew G; Sorenson, Roderick J; Showalter, Hollis D; Murai, Marcelo J; Belcher, Amalia M; Hartley, Thomas; Hess, Jay L; Cierpicki, Tomasz

    2012-01-29

    Translocations involving the mixed lineage leukemia (MLL) gene result in human acute leukemias with very poor prognosis. The leukemogenic activity of MLL fusion proteins is critically dependent on their direct interaction with menin, a product of the multiple endocrine neoplasia (MEN1) gene. Here we present what are to our knowledge the first small-molecule inhibitors of the menin-MLL fusion protein interaction that specifically bind menin with nanomolar affinities. These compounds effectively reverse MLL fusion protein-mediated leukemic transformation by downregulating the expression of target genes required for MLL fusion protein oncogenic activity. They also selectively block proliferation and induce both apoptosis and differentiation of leukemia cells harboring MLL translocations. Identification of these compounds provides a new tool for better understanding MLL-mediated leukemogenesis and represents a new approach for studying the role of menin as an oncogenic cofactor of MLL fusion proteins. Our findings also highlight a new therapeutic strategy for aggressive leukemias with MLL rearrangements.

  12. Targeted disruption of the Mn1 oncogene results in severe defects in development of membranous bones of the cranial skeleton.

    NARCIS (Netherlands)

    M.A. Meester-Smoor (Magda); M. Vermeij (Marcel); M.J. van Helmond (Marjolein); A.C. Molijn (Anco); K.H.M. van Wely (Karel); A.C. Hekman (Arnold); C. Vermey-Keers (Christl); P.H.J. Riegman (Peter); E.C. Zwarthoff (Ellen)

    2005-01-01

    textabstractFusion of the MN1 gene to TEL (ETV6) results in myeloid leukemia. The fusion protein combines the transcription activating domain of MN1 and the DNA binding domain of TEL and is thought to act as a deranged transcription factor. In addition, disruption of the large first exon of the MN1

  13. The Oncogenic Palmitoyi-Protein Network in Prostate Cancer

    Science.gov (United States)

    2015-06-01

    was performed by comparing LFQ intensities computed by MaxQuant.16 After statistical analysis, we identified 29 significantly downregulated and 32... statistical analysis, 30 candidate palmitoyl-proteins with an H/L ratio cutoff of 0.667 were accepted as candidate DHHC3 substrates (Table 1). Among...proteomics, we identified a gigantic palmitoyl-protein network regulated by caveolin-1. Moreover, by integrating RNA interference (RNAi), triplex SILAC, and

  14. Proteome-wide analysis of protein abundance and turnover remodelling during oncogenic transformation of human breast epithelial cells [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Tony Ly

    2018-05-01

    Full Text Available Background: Viral oncogenes and mutated proto-oncogenes are potent drivers of cancer malignancy. Downstream of the oncogenic trigger are alterations in protein properties that give rise to cellular transformation and the acquisition of malignant cellular phenotypes. Developments in mass spectrometry enable large-scale, multidimensional characterisation of proteomes. Such techniques could provide an unprecedented, unbiased view of how oncogene activation remodels a human cell proteome. Methods: Using quantitative MS-based proteomics and cellular assays, we analysed how transformation induced by activating v-Src kinase remodels the proteome and cellular phenotypes of breast epithelial (MCF10A cells. SILAC MS was used to comprehensively characterise the MCF10A proteome and to measure v-Src-induced changes in protein abundance across seven time-points (1-72 hrs. We used pulse-SILAC MS (Boisvert et al., 2012, to compare protein synthesis and turnover in control and transformed cells. Follow-on experiments employed a combination of cellular and functional assays to characterise the roles of selected Src-responsive proteins. Results: Src-induced transformation changed the expression and/or turnover levels of ~3% of proteins, affecting ~1.5% of the total protein molecules in the cell. Transformation increased the average rate of proteome turnover and disrupted protein homeostasis. We identify distinct classes of protein kinetics in response to Src activation. We demonstrate that members of the polycomb repressive complex 1 (PRC1 are important regulators of invasion and migration in MCF10A cells. Many Src-regulated proteins are present in low abundance and some are regulated post-transcriptionally. The signature of Src-responsive proteins is highly predictive of poor patient survival across multiple cancer types. Open access to search and interactively explore all these proteomic data is provided via the EPD database (www.peptracker.com/epd. Conclusions

  15. Non-oncogenic Acute Viral Infections Disrupt Anti-cancer Responses and Lead to Accelerated Cancer-Specific Host Death

    Directory of Open Access Journals (Sweden)

    Frederick J. Kohlhapp

    2016-10-01

    Full Text Available In light of increased cancer prevalence and cancer-specific deaths in patients with infections, we investigated whether infections alter anti-tumor immune responses. We report that acute influenza infection of the lung promotes distal melanoma growth in the dermis and leads to accelerated cancer-specific host death. Furthermore, we show that during influenza infection, anti-melanoma CD8+ T cells are shunted from the tumor to the infection site, where they express high levels of the inhibitory receptor programmed cell death protein 1 (PD-1. Immunotherapy to block PD-1 reverses this loss of anti-tumor CD8+ T cells from the tumor and decreases infection-induced tumor growth. Our findings show that acute non-oncogenic infection can promote cancer growth, raising concerns regarding acute viral illness sequelae. They also suggest an unexpected role for PD-1 blockade in cancer immunotherapy and provide insight into the immune response when faced with concomitant challenges.

  16. An Interaction with Ewing's Sarcoma Breakpoint Protein EWS Defines a Specific Oncogenic Mechanism of ETS Factors Rearranged in Prostate Cancer.

    Science.gov (United States)

    Kedage, Vivekananda; Selvaraj, Nagarathinam; Nicholas, Taylor R; Budka, Justin A; Plotnik, Joshua P; Jerde, Travis J; Hollenhorst, Peter C

    2016-10-25

    More than 50% of prostate tumors have a chromosomal rearrangement resulting in aberrant expression of an oncogenic ETS family transcription factor. However, mechanisms that differentiate the function of oncogenic ETS factors expressed in prostate tumors from non-oncogenic ETS factors expressed in normal prostate are unknown. Here, we find that four oncogenic ETS (ERG, ETV1, ETV4, and ETV5), and no other ETS, interact with the Ewing's sarcoma breakpoint protein, EWS. This EWS interaction was necessary and sufficient for oncogenic ETS functions including gene activation, cell migration, clonogenic survival, and transformation. Significantly, the EWS interacting region of ERG has no homology with that of ETV1, ETV4, and ETV5. Therefore, this finding may explain how divergent ETS factors have a common oncogenic function. Strikingly, EWS is fused to various ETS factors by the chromosome translocations that cause Ewing's sarcoma. Therefore, these findings link oncogenic ETS function in both prostate cancer and Ewing's sarcoma. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Fusion peptides from oncogenic chimeric proteins as putative specific biomarkers of cancer.

    Science.gov (United States)

    Conlon, Kevin P; Basrur, Venkatesha; Rolland, Delphine; Wolfe, Thomas; Nesvizhskii, Alexey I; MacCoss, Michael J; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2013-10-01

    Chromosomal translocations encoding chimeric fusion proteins constitute one of the most common mechanisms underlying oncogenic transformation in human cancer. Fusion peptides resulting from such oncogenic chimeric fusions, though unique to specific cancer subtypes, are unexplored as cancer biomarkers. Here we show, using an approach termed fusion peptide multiple reaction monitoring mass spectrometry, the direct identification of different cancer-specific fusion peptides arising from protein chimeras that are generated from the juxtaposition of heterologous genes fused by recurrent chromosomal translocations. Using fusion peptide multiple reaction monitoring mass spectrometry in a clinically relevant scenario, we demonstrate the specific, sensitive, and unambiguous detection of a specific diagnostic fusion peptide in clinical samples of anaplastic large cell lymphoma, but not in a diverse array of benign lymph nodes or other forms of primary malignant lymphomas and cancer-derived cell lines. Our studies highlight the utility of fusion peptides as cancer biomarkers and carry broad implications for the use of protein biomarkers in cancer detection and monitoring.

  18. Potential disruption of protein-protein interactions by graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Mei [Department of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou 310027 (China); Kang, Hongsuk; Luan, Binquan [Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Yang, Zaixing [Institute of Quantitative Biology and Medicine, SRMP and RAD-X, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 (China); Zhou, Ruhong, E-mail: ruhong@us.ibm.com [Department of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou 310027 (China); Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Department of Chemistry, Columbia University, New York, New York 10027 (United States)

    2016-06-14

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  19. Potential disruption of protein-protein interactions by graphene oxide

    International Nuclear Information System (INIS)

    Feng, Mei; Kang, Hongsuk; Luan, Binquan; Yang, Zaixing; Zhou, Ruhong

    2016-01-01

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  20. B-cell lymphoma 6 protein stimulates oncogenicity of human breast cancer cells

    International Nuclear Information System (INIS)

    Wu, Qiang; Kong, Xiang-jun; Xu, Xiao-chun; Lobie, Peter E; Zhu, Tao; Wu, Zheng-sheng; Liu, Xue; Yan, Hong; He, Yin-huan; Ye, Shan; Cheng, Xing-wang; Zhu, Gui-lu; Wu, Wen-yong; Wang, Xiao-nan

    2014-01-01

    B-cell lymphoma 6 (BCL6) protein, an evolutionarily conserved zinc finger transcription factor, showed to be highly expressed in various human cancers in addition to malignancies in the lymphoid system. This study investigated the role of BCL6 expression in breast cancer and its clinical significance in breast cancer patients. Expression of BCL6 protein was assessed using in situ hybridization and immunohistochemistry in 127 breast cancer patients and 50 patients with breast benign disease as well as in breast cell lines. Expression of BCL6 was restored or knocked down in two breast cancer cell lines (MCF-7 and T47D) using BCL6 cDNA and siRNA, respectively. The phenotypic change of these breast cancer cell lines was assessed using cell viability MTT, Transwell invasion, colony formation, and flow cytometry assays and in a xenograft mice model. Luciferase reporter gene, immunoblot, and qRT-PCR were used to investigate the molecular events after manipulated BCL6 expression in breast cancer cells. BCL6 protein was highly expressed in breast cancer cell lines and tissue specimens and expression of BCL6 protein was associated with disease progression and poor survival of breast cancer patients. In vitro, the forced expression of BCL6 results in increased proliferation, anchorage-independent growth, migration, invasion and survival of breast cancer cell lines, whereas knockdown of BCL6 expression reduced these oncogenic properties of breast cancer cells. Moreover, forced expression of BCL6 increased tumor growth and invasiveness in a nude mouse xenograft model. At the gene level, BCL6 was a target gene of miR-339-5p. Expression of BCL6 induced expression of CXCR4 and cyclinD1 proteins. The current study demonstrated the oncogenic property of BCL6 in breast cancer and further study could target BCL6 as a novel potential therapeutic strategy for breast cancer

  1. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    International Nuclear Information System (INIS)

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun; Nishina, Hiroshi

    2014-01-01

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription

  2. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun, E-mail: hirayama.dbio@mri.tmd.ac.jp; Nishina, Hiroshi, E-mail: nishina.dbio@mri.tmd.ac.jp

    2014-01-17

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription.

  3. GSK3 is required for rapalogs to induce degradation of some oncogenic proteins and to suppress cancer cell growth.

    Science.gov (United States)

    Koo, Junghui; Wang, Xuerong; Owonikoko, Taofeek K; Ramalingam, Suresh S; Khuri, Fadlo R; Sun, Shi-Yong

    2015-04-20

    The single-agent activity of rapalogs (rapamycin and its analogues) in most tumor types has been modest at best. The underlying mechanisms are largely unclear. In this report, we have uncovered a critical role of GSK3 in regulating degradation of some oncogenic proteins induced by rapalogs and cell sensitivity to rapalogs. The basal level of GSK3 activity was positively correlated with cell sensitivity of lung cancer cell lines to rapalogs. GSK3 inhibition antagonized rapamycin's growth inhibitory effects both in vitro and in vivo, while enforced activation of GSK3β sensitized cells to rapamycin. GSK3 inhibition rescued rapamcyin-induced reduction of several oncogenic proteins such as cyclin D1, Mcl-1 and c-Myc, without interfering with the ability of rapamycin to suppress mTORC1 signaling and cap binding. Interestingly, rapamycin induces proteasomal degradation of these oncogenic proteins, as evidenced by their decreased stabilities induced by rapamcyin and rescue of their reduction by proteasomal inhibition. Moreover, acute or short-time rapamycin treatment dissociated not only raptor, but also rictor from mTOR in several tested cell lines, suggesting inhibition of both mTORC1 and mTORC2. Thus, induction of GSK3-dependent degradation of these oncogenic proteins is likely secondary to mTORC2 inhibition; this effect should be critical for rapamycin to exert its anticancer activity.

  4. Characterization of the oncogenic function of centromere protein F in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yongdong; Liu, Lulu; Zeng, Tingting; Zhu, Ying-Hui [State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou (China); Li, Jiangchao [Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou (China); Chen, Leilei [Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong (China); Li, Yan; Yuan, Yun-Fei [State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou (China); Ma, Stephanie, E-mail: stefma@hku.hk [Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong (China); State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong (China); Guan, Xin-Yuan, E-mail: xyguan@hkucc.hku.hk [State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou (China); Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong (China); State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong (China)

    2013-07-12

    Highlights: •Overexpression of CENPF is frequently detected in HCC. •Upregulation of CENPF serves as an independent prognosis factor in HCC patients. •CENPF functions as an oncogene in HCC by promoting cell G2/M transition. -- Abstract: Centromere protein F (CENPF) is an essential nuclear protein associated with the centromere-kinetochore complex and plays a critical role in chromosome segregation during mitosis. Up-regulation of CENPF expression has previously been detected in several solid tumors. In this study, we aim to study the expression and functional role of CENPF in hepatocellular carcinoma (HCC). We found CENPF was frequently overexpressed in HCC as compared with non-tumor tissue. Up-regulated CENPF expression in HCC was positively correlated with serum AFP, venous invasion, advanced differentiation stage and a shorter overall survival. Cox regression analysis found that overexpression of CENPF was an independent prognosis factor in HCC. Functional studies found that silencing CENPF could decrease the ability of the cells to proliferate, form colonies and induce tumor formation in nude mice. Silencing CENPF also resulted in the cell cycle arrest at G2/M checkpoint by down-regulating cell cycle proteins cdc2 and cyclin B1. Our data suggest that CENPF is frequently overexpressed in HCC and plays a critical role in driving HCC tumorigenesis.

  5. Minor Capsid Protein L2 Polytope Induces Broad Protection against Oncogenic and Mucosal Human Papillomaviruses.

    Science.gov (United States)

    Pouyanfard, Somayeh; Spagnoli, Gloria; Bulli, Lorenzo; Balz, Kathrin; Yang, Fan; Odenwald, Caroline; Seitz, Hanna; Mariz, Filipe C; Bolchi, Angelo; Ottonello, Simone; Müller, Martin

    2018-02-15

    The amino terminus of the human papillomavirus (HPV) minor capsid protein L2 contains a major cross-neutralization epitope which provides the basis for the development of a broadly protecting HPV vaccine. A wide range of protection against different HPV types would eliminate one of the major drawbacks of the commercial, L1-based prophylactic vaccines. Previously, we have reported that insertion of the L2 epitope into a scaffold composed of bacterial thioredoxin protein generates a potent antigen inducing comprehensive protection against different animal and human papillomaviruses. We also reported, however, that although protection is broad, some oncogenic HPV types escape the neutralizing antibody response, if L2 epitopes from single HPV types are used as immunogen. We were able to compensate for this by applying a mix of thioredoxin proteins carrying L2 epitopes from HPV16, -31, and -51. As the development of a cost-efficient HPV prophylactic vaccines is one of our objectives, this approach is not feasible as it requires the development of multiple good manufacturing production processes in combination with a complex vaccine formulation. Here, we report the development of a thermostable thioredoxin-based single-peptide vaccine carrying an L2 polytope of up to 11 different HPV types. The L2 polytope antigens have excellent abilities in respect to broadness of protection and robustness of induced immune responses. To further increase immunogenicity, we fused the thioredoxin L2 polytope antigen with a heptamerization domain. In the final vaccine design, we achieve protective responses against all 14 oncogenic HPV types that we have analyzed plus the low-risk HPVs 6 and 11 and a number of cutaneous HPVs. IMPORTANCE Infections by a large number of human papillomaviruses lead to malignant and nonmalignant disease. Current commercial vaccines based on virus-like particles (VLPs) effectively protect against some HPV types but fail to do so for most others. Further, only

  6. Understanding the Role of Intrinsic Disorder of Viral Proteins in the Oncogenicity of Different Types of HPV.

    Science.gov (United States)

    Tamarozzi, Elvira Regina; Giuliatti, Silvana

    2018-01-09

    Intrinsic disorder is very important in the biological function of several proteins, and is directly linked to their foldability during interaction with their targets. There is a close relationship between the intrinsically disordered proteins and the process of carcinogenesis involving viral pathogens. Among these pathogens, we have highlighted the human papillomavirus (HPV) in this study. HPV is currently among the most common sexually transmitted infections, besides being the cause of several types of cancer. HPVs are divided into two groups, called high- and low-risk, based on their oncogenic potential. The high-risk HPV E6 protein has been the target of much research, in seeking treatments against HPV, due to its direct involvement in the process of cell cycle control. To understand the role of intrinsic disorder of the viral proteins in the oncogenic potential of different HPV types, the structural characteristics of intrinsically disordered regions of high and low-risk HPV E6 proteins were analyzed. In silico analyses of primary sequences, prediction of tertiary structures, and analyses of molecular dynamics allowed the observation of the behavior of such disordered regions in these proteins, thereby proving a direct relationship of structural variation with the degree of oncogenicity of HPVs. The results obtained may contribute to the development of new therapies, targeting the E6 oncoprotein, for the treatment of HPV-associated diseases.

  7. Identification of domains of the v-crk oncogene product sufficient for association with phosphotyrosine-containing proteins.

    OpenAIRE

    Matsuda, M; Mayer, B J; Hanafusa, H

    1991-01-01

    The oncogene product of the avian sarcoma virus CT10, P47gag-crk, contains the SH2, SH2', and SH3 domains and binds proteins in a phosphotyrosine (ptyr)-dependent manner. In this study, we have determined the region of P47gag-crk essential for binding to ptyr-containing proteins. Mutant P47gag-crk proteins expressed in Escherichia coli that have the intact SH2 and SH2' regions retained the capacity to bind ptyr-containing proteins obtained from cells transformed by crk and src. The deletion o...

  8. Infection with the oncogenic human papillomavirus type 59 alters protein components of the cornified cell envelope

    International Nuclear Information System (INIS)

    Lehr, Elizabeth; Brown, Darron R.

    2003-01-01

    Infection of the genital tract with human papillomaviruses (HPVs) leads to proliferative and dysplastic epithelial lesions. The mechanisms used by the virus to escape the infected keratinocyte are not well understood. Infection of keratinocytes with HPV does not cause lysis, the mechanism used by many viruses to release newly formed virions. For HPV 11, a type associated with a low risk of neoplastic disease, the cornified cell envelope (CCE) of infected keratinocytes is thin and fragile, and transcription of loricrin, the major CCE protein, is reduced. The effects of high-risk HPV infection on components of the CCE have not been previously reported. HPV 59, an oncogenic genital type related to HPV types 18 and 45 was identified in a condylomata acuminata lesion. An extract of this lesion was used to infect human foreskin fragments, which were grown in athymic mice as xenografts. Continued propagation using extracts of xenografts permitted growth of additional HPV 59-infected xenografts. CCEs purified from HPV 59-infected xenografts displayed subtle morphologic abnormalities compared to those derived from uninfected xenografts. HPV 59-infected xenografts revealed dysplastic-appearing cells with mitotic figures. Detection of loricrin, involucrin, and cytokeratin 10 was reduced in HPV 59-infected epithelium, while small proline-rich protein 3 (SPR3) was increased. Reduction in loricrin was most apparent in regions of epithelium containing abundant HPV 59 DNA. Compared to uninfected epithelium, loricrin transcription was decreased in HPV 59-infected epithelium. We conclude that HPV 59 shares with HPV 11 the ability to alter CCE components and to specifically reduce transcription of the loricrin gene. Because loricrin is the major CCE protein, a reduction in this component could alter the physical properties of the CCE, thus facilitating virion release

  9. Double demonstration of oncogenic high risk human papilloma virus DNA and HPV-E7 protein in oral cancers.

    Science.gov (United States)

    Pannone, G; Santoro, A; Carinci, F; Bufo, P; Papagerakis, S M; Rubini, C; Campisi, G; Giovannelli, L; Contaldo, M; Serpico, R; Mazzotta, M; Lo Muzio, L

    2011-01-01

    Oncogenic HPVs are necessarily involved in cervical cancer but their role in oral carcinogenesis is debated. To detect HPV in oral cancer, 38 cases of formalin fixed-paraffin embedded OSCC were studied by both DNA genotyping (MY09/11 L1 consensus primers in combination with GP5-GP6 primer pair followed by sequencing) and immunohistochemistry (monoclonal Abs against capsid protein and HPV-E7 protein, K1H8 DAKO and clone 8C9 INVITROGEN, respectively). HPV-16 tonsil cancer was used as positive control. The overall prevalence of HPV infection in OSCCs was 10.5%. Amplification of DNA samples showed single HPV DNA infection in 3 cases (HPV16; HPV53; HPV70) and double infection in one case of cheek cancer (HPV31/HPV44). The overall HR-HPV prevalence was 7.5%. E-7 antigen was immunohistochemically detected in all HPV-positive cases. HPV+ OSCC cases showed an overall better outcome than HPV negative oral cancers, as evaluated by Kaplan-Meier curves. HPVs exert their oncogenic role after DNA integration, gene expression of E5, E6 and E7 loci and p53/pRb host proteins suppression. This study showed that HPV-E7 protein inactivating pRb is expressed in oral cancer cells infected by oncogenic HPV other than classical HR-HPV-16/18. Interestingly HPV-70, considered a low risk virus with no definite collocation in oncogenic type category, gives rise to the expression of HPV-E7 protein and inactivate pRb in oral cancer. HPV-70, as proved in current literature, is able to inactivates also p53 protein, promoting cell immortalization. HPV-53, classified as a possible high risk virus, expresses E7 protein in OSCC, contributing to oral carcinogenesis. We have identified among OSCCs, a subgroup characterized by HPV infection (10.5%). Finally, we have proved the oncogenic potential of some HPV virus types, not well known in literature.

  10. Oncogenic exon 2 mutations in Mediator subunit MED12 disrupt allosteric activation of cyclin C-CDK8/19.

    Science.gov (United States)

    Park, Min Ju; Shen, Hailian; Spaeth, Jason M; Tolvanen, Jaana H; Failor, Courtney; Knudtson, Jennifer F; McLaughlin, Jessica; Halder, Sunil K; Yang, Qiwei; Bulun, Serdar E; Al-Hendy, Ayman; Schenken, Robert S; Aaltonen, Lauri A; Boyer, Thomas G

    2018-03-30

    Somatic mutations in exon 2 of the RNA polymerase II transcriptional Mediator subunit MED12 occur at high frequency in uterine fibroids (UFs) and breast fibroepithelial tumors as well as recurrently, albeit less frequently, in malignant uterine leimyosarcomas, chronic lymphocytic leukemias, and colorectal cancers. Previously, we reported that UF-linked mutations in MED12 disrupt its ability to activate cyclin C (CycC)-dependent kinase 8 (CDK8) in Mediator, implicating impaired Mediator-associated CDK8 activity in the molecular pathogenesis of these clinically significant lesions. Notably, the CDK8 paralog CDK19 is also expressed in myometrium, and both CDK8 and CDK19 assemble into Mediator in a mutually exclusive manner, suggesting that CDK19 activity may also be germane to the pathogenesis of MED12 mutation-induced UFs. However, whether and how UF-linked mutations in MED12 affect CDK19 activation is unknown. Herein, we show that MED12 allosterically activates CDK19 and that UF-linked exon 2 mutations in MED12 disrupt its CDK19 stimulatory activity. Furthermore, we find that within the Mediator kinase module, MED13 directly binds to the MED12 C terminus, thereby suppressing an apparent UF mutation-induced conformational change in MED12 that otherwise disrupts its association with CycC-CDK8/19. Thus, in the presence of MED13, mutant MED12 can bind, but cannot activate, CycC-CDK8/19. These findings indicate that MED12 binding is necessary but not sufficient for CycC-CDK8/19 activation and reveal an additional step in the MED12-dependent activation process, one critically dependent on MED12 residues altered by UF-linked exon 2 mutations. These findings confirm that UF-linked mutations in MED12 disrupt composite Mediator-associated kinase activity and identify CDK8/19 as prospective therapeutic targets in UFs. © 2018 Park et al.

  11. A credit-card library approach for disrupting protein-protein interactions.

    Science.gov (United States)

    Xu, Yang; Shi, Jin; Yamamoto, Noboru; Moss, Jason A; Vogt, Peter K; Janda, Kim D

    2006-04-15

    Protein-protein interfaces are prominent in many therapeutically important targets. Using small organic molecules to disrupt protein-protein interactions is a current challenge in chemical biology. An important example of protein-protein interactions is provided by the Myc protein, which is frequently deregulated in human cancers. Myc belongs to the family of basic helix-loop-helix leucine zipper (bHLH-ZIP) transcription factors. It is biologically active only as heterodimer with the bHLH-ZIP protein Max. Herein, we report a new strategy for the disruption of protein-protein interactions that has been corroborated through the design and synthesis of a small parallel library composed of 'credit-card' compounds. These compounds are derived from a planar, aromatic scaffold and functionalized with four points of diversity. From a 285 membered library, several hits were obtained that disrupted the c-Myc-Max interaction and cellular functions of c-Myc. The IC50 values determined for this small focused library for the disruption of Myc-Max dimerization are quite potent, especially since small molecule antagonists of protein-protein interactions are notoriously difficult to find. Furthermore, several of the compounds were active at the cellular level as shown by their biological effects on Myc action in chicken embryo fibroblast assays. In light of our findings, this approach is considered a valuable addition to the armamentarium of new molecules being developed to interact with protein-protein interfaces. Finally, this strategy for disrupting protein-protein interactions should prove applicable to other families of proteins.

  12. Visualization and targeted disruption of protein interactions in living cells

    Science.gov (United States)

    Herce, Henry D.; Deng, Wen; Helma, Jonas; Leonhardt, Heinrich; Cardoso, M. Cristina

    2013-01-01

    Protein–protein interactions are the basis of all processes in living cells, but most studies of these interactions rely on biochemical in vitro assays. Here we present a simple and versatile fluorescent-three-hybrid (F3H) strategy to visualize and target protein–protein interactions. A high-affinity nanobody anchors a GFP-fusion protein of interest at a defined cellular structure and the enrichment of red-labelled interacting proteins is measured at these sites. With this approach, we visualize the p53–HDM2 interaction in living cells and directly monitor the disruption of this interaction by Nutlin 3, a drug developed to boost p53 activity in cancer therapy. We further use this approach to develop a cell-permeable vector that releases a highly specific peptide disrupting the p53 and HDM2 interaction. The availability of multiple anchor sites and the simple optical readout of this nanobody-based capture assay enable systematic and versatile analyses of protein–protein interactions in practically any cell type and species. PMID:24154492

  13. FOXO1 is a direct target of EWS-Fli1 oncogenic fusion protein in Ewing's sarcoma cells

    International Nuclear Information System (INIS)

    Yang, Liu; Hu, Hsien-Ming; Zielinska-Kwiatkowska, Anna; Chansky, Howard A.

    2010-01-01

    Research highlights: → Inducible and reversible siRNA knockdown of an oncogenic fusion protein such as EWS-Fli1 is feasible and more advantageous than other siRNA methods. → The tumor suppressor gene FOXO1 is a new EWS-Fli1 target. → While trans-activators are known for the FOXO1 gene, there has been no report on negative regulators of FOXO1 transcription. → This study provides first evidence that the EWS-Fli1 oncogenic fusion protein can function as a transcriptional repressor of the FOXO1 gene. -- Abstract: Ewing's family tumors are characterized by a specific t(11;22) chromosomal translocation that results in the formation of EWS-Fli1 oncogenic fusion protein. To investigate the effects of EWS-Fli1 on gene expression, we carried out DNA microarray analysis after specific knockdown of EWS-Fli1 through transfection of synthetic siRNAs. EWS-Fli1 knockdown increased expression of genes such as DKK1 and p57 that are known to be repressed by EWS-Fli1 fusion protein. Among other potential EWS-Fli1 targets identified by our microarray analysis, we have focused on the FOXO1 gene since it encodes a potential tumor suppressor and has not been previously reported in Ewing's cells. To better understand how EWS-Fli1 affects FOXO1 expression, we have established a doxycycline-inducible siRNA system to achieve stable and reversible knockdown of EWS-Fli1 in Ewing's sarcoma cells. Here we show that FOXO1 expression in Ewing's cells has an inverse relationship with EWS-Fli1 protein level, and FOXO1 promoter activity is increased after doxycycline-induced EWS-Fli1 knockdown. In addition, we have found that direct binding of EWS-Fli1 to FOXO1 promoter is attenuated after doxycycline-induced siRNA knockdown of the fusion protein. Together, these results suggest that suppression of FOXO1 function by EWS-Fli1 fusion protein may contribute to cellular transformation in Ewing's family tumors.

  14. Disruption?

    DEFF Research Database (Denmark)

    2016-01-01

    This is a short video on the theme disruption and entrepreneurship. It takes the form of an interview with John Murray......This is a short video on the theme disruption and entrepreneurship. It takes the form of an interview with John Murray...

  15. The Tax oncogene enhances ELL incorporation into p300 and P-TEFb containing protein complexes to activate transcription.

    Science.gov (United States)

    Fufa, Temesgen D; Byun, Jung S; Wakano, Clay; Fernandez, Alfonso G; Pise-Masison, Cynthia A; Gardner, Kevin

    2015-09-11

    The eleven-nineteen lysine-rich leukemia protein (ELL) is a key regulator of RNA polymerase II mediated transcription. ELL facilitates RNA polymerase II transcription pause site entry and release by dynamically interacting with p300 and the positive transcription elongation factor b (P-TEFb). In this study, we investigated the role of ELL during the HTLV-1 Tax oncogene induced transactivation. We show that ectopic expression of Tax enhances ELL incorporation into p300 and P-TEFb containing transcriptional complexes and the subsequent recruitment of these complexes to target genes in vivo. Depletion of ELL abrogates Tax induced transactivation of the immediate early genes Fos, Egr2 and NF-kB, suggesting that ELL is an essential cellular cofactor of the Tax oncogene. Thus, our study identifies a novel mechanism of ELL-dependent transactivation of immediate early genes by Tax and provides the rational for further defining the genome-wide targets of Tax and ELL. Published by Elsevier Inc.

  16. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors.

    Science.gov (United States)

    Yamamoto, Kenta; Wang, Jiguang; Sprinzen, Lisa; Xu, Jun; Haddock, Christopher J; Li, Chen; Lee, Brian J; Loredan, Denis G; Jiang, Wenxia; Vindigni, Alessandro; Wang, Dong; Rabadan, Raul; Zha, Shan

    2016-06-15

    Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (Atm(KD/-)) is more oncogenic than loss of ATM (Atm(-/-)) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate Atm(KD/-), but not Atm-proficientor Atm(-/-) leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy.

  17. Protein tyrosine phosphatase receptor delta acts as a neuroblastoma tumor suppressor by destabilizing the aurora kinase a oncogene

    LENUS (Irish Health Repository)

    Meehan, Maria

    2012-02-05

    Abstract Background Protein tyrosine phosphatase receptor delta (PTPRD) is a member of a large family of protein tyrosine phosphatases which negatively regulate tyrosine phosphorylation. Neuroblastoma is a major childhood cancer arising from precursor cells of the sympathetic nervous system which is known to acquire deletions and alterations in the expression patterns of PTPRD, indicating a potential tumor suppressor function for this gene. The molecular mechanism, however, by which PTPRD renders a tumor suppressor effect in neuroblastoma is unknown. Results As a molecular mechanism, we demonstrate that PTPRD interacts with aurora kinase A (AURKA), an oncogenic protein that is over-expressed in multiple forms of cancer, including neuroblastoma. Ectopic up-regulation of PTPRD in neuroblastoma dephosphorylates tyrosine residues in AURKA resulting in a destabilization of this protein culminating in interfering with one of AURKA\\'s primary functions in neuroblastoma, the stabilization of MYCN protein, the gene of which is amplified in approximately 25 to 30% of high risk neuroblastoma. Conclusions PTPRD has a tumor suppressor function in neuroblastoma through AURKA dephosphorylation and destabilization and a downstream destabilization of MYCN protein, representing a novel mechanism for the function of PTPRD in neuroblastoma.

  18. Genetic modelling of PIM proteins in cancer: proviral tagging, cooperation with oncogenes, tumor suppressor genes and carcinogens.

    Directory of Open Access Journals (Sweden)

    Enara eAguirre

    2014-05-01

    Full Text Available The PIM proteins, which were initially discovered as proviral insertion sites in Moloney murine leukemia virus infection, are a family of highly homologous serine/threonine kinases that have been reported to be overexpressed in hematological malignancies and solid tumors. The PIM proteins have also been associated with metastasis and overall treatment responses and implicated in the regulation of apoptosis, metabolism, the cell cycle, and homing and migration, which makes these proteins interesting targets for anticancer drug discovery. The use of retroviral insertional mutagenesis and refined approaches such as complementation tagging has allowed the identification of myc, pim and a third group of genes (including bmi1 and gfi1 as complementing genes in lymphomagenesis. Moreover, mouse modeling of human cancer has provided an understanding of the molecular pathways that are involved in tumor initiation and progression at the physiological level. In particular, genetically modified mice have allowed researchers to further elucidate the role of each of the Pim isoforms in various tumor types. PIM kinases have been identified as weak oncogenes because experimental overexpression in lymphoid tissue, prostate and liver induces tumors at a relatively low incidence and with a long latency. However, very strong synergistic tumorigenicity between Pim1/2 and c-Myc and other oncogenes has been observed in lymphoid tissues. Mouse models have also been used to study whether the inhibition of specific PIM isoforms is required to prevent carcinogen-induced sarcomas, indicating that the absence of Pim2 and Pim3 greatly reduces sarcoma growth and bone invasion; the extent of this effect is similar to that observed in the absence of all 3 isoforms. This review will summarize some of the animal models that have been used to understand the isoform-specific contribution of PIM kinases to tumorigenesis.

  19. Mammalian-enabled (MENA) protein enhances oncogenic potential and cancer stem cell-like phenotype in hepatocellular carcinoma cells.

    Science.gov (United States)

    Hu, Kunpeng; Huang, Pinzhu; Luo, Hui; Yao, Zhicheng; Wang, Qingliang; Xiong, Zhiyong; Lin, Jizong; Huang, He; Xu, Shilei; Zhang, Peng; Liu, Bo

    2017-08-01

    Mammalian-enabled (MENA) protein is an actin-regulatory protein that influences cell motility and adhesion. It is known to play a role in tumorigenicity of hepatocellular carcinoma (HCC) but the underlying molecular mechanism remains unknown. This study aimed to investigate the oncogenic potential of MENA and its capacity to regulate cancer stem cell (CSC)-like phenotypes in HCC cells. Real-time-PCR and western blot were used to assess mRNA and protein levels of target genes in human HCC tissue specimens and HCC cell lines, respectively. Stable MENA-overexpressing HCC cells were generated from HCC cell lines. Transwell cell migration and colony formation assays were employed to evaluate tumorigenicity. Ectopic expression of MENA significantly enhanced cell migration and colony-forming ability in HCC cells. Overexpression of MENA upregulated several hepatic progenitor/stem cell markers in HCC cells. A high MENA protein level was associated with high mRNA levels of MENA, CD133, cytokeratin 19 (CK19), and epithelial cell adhesion molecule (EpCAM) in human HCC tissues. Overexpression of MENA enhanced epithelial-to-mesenchymal transition (EMT) markers, extracellular signal-regulated kinases (ERK) phosphorylation, and the level of β-catenin in HCC cells. This study demonstrated that overexpression of MENA in HCC cells promoted stem cell markers, EMT markers, and tumorigenicity. These effects may involve, at least partially, the ERK and β-catenin signaling pathways.

  20. A prototypical non-malignant epithelial model to study genome dynamics and concurrently monitor micro-RNAs and proteins in situ during oncogene-induced senescence

    DEFF Research Database (Denmark)

    Komseli, Eirini Stavroula; Pateras, Ioannis S.; Krejsgaard, Thorbjørn

    2018-01-01

    limitations achieving for the first time simultaneous detection of both a micro-RNA and a protein in the biological context of cellular senescence, utilizing the new commercially available SenTraGorTM compound. The method was applied in a prototypical human non-malignant epithelial model of oncogene...

  1. The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner

    DEFF Research Database (Denmark)

    Alexiadis, V; Waldmann, T; Andersen, Jens S.

    2000-01-01

    The structure of chromatin regulates the genetic activity of the underlying DNA sequence. We report here that the protein encoded by the proto-oncogene DEK, which is involved in acute myelogenous leukemia, induces alterations of the superhelical density of DNA in chromatin. The change in topology...

  2. Regulation of hematopoietic cell function by protein tyrosine kinase-encoding oncogenes, a review

    NARCIS (Netherlands)

    Punt, C. J.

    1992-01-01

    Tyrosine phosphorylation of proteins by protein tyrosine kinases (PTKs) is an important mechanism in the regulation of various cellular processes such as proliferation, differentiation, and transformation. Accumulating data implicate PTKs as essential intermediates in the transduction of

  3. Targeting oncogenic Myc as a strategy for cancer treatment.

    Science.gov (United States)

    Chen, Hui; Liu, Hudan; Qing, Guoliang

    2018-01-01

    The MYC family oncogene is deregulated in >50% of human cancers, and this deregulation is frequently associated with poor prognosis and unfavorable patient survival. Myc has a central role in almost every aspect of the oncogenic process, orchestrating proliferation, apoptosis, differentiation, and metabolism. Although Myc inhibition would be a powerful approach for the treatment of many types of cancers, direct targeting of Myc has been a challenge for decades owing to its "undruggable" protein structure. Hence, alternatives to Myc blockade have been widely explored to achieve desirable anti-tumor effects, including Myc/Max complex disruption, MYC transcription and/or translation inhibition, and Myc destabilization as well as the synthetic lethality associated with Myc overexpression. In this review, we summarize the latest advances in targeting oncogenic Myc, particularly for cancer therapeutic purposes.

  4. Link of the unique oncogenic properties of adenovirus type 9 E4-ORF1 to a select interaction with the candidate tumor suppressor protein ZO-2

    OpenAIRE

    Glaunsinger, Britt A.; Weiss, Robert S.; Lee, Siu Sylvia; Javier, Ronald

    2001-01-01

    Adenovirus type 9 (Ad9) is distinct among human adenoviruses because it elicits solely mammary tumors in animals and its primary oncogenic determinant is the E4 region-encoded ORF1 (E4-ORF1) protein. We report here that the PDZ domain-containing protein ZO-2, which is a candidate tumor suppressor protein, is a cellular target for tumorigenic Ad9 E4-ORF1 but not for non-tumorigenic wild-type E4-ORF1 proteins encoded by adenovirus types 5 and 12. Complex formation was mediated by the C-terminal...

  5. Targeting Self-Binding Peptides as a Novel Strategy To Regulate Protein Activity and Function: A Case Study on the Proto-oncogene Tyrosine Protein Kinase c-Src.

    Science.gov (United States)

    Bai, Zhengya; Hou, Shasha; Zhang, Shilei; Li, Zhongyan; Zhou, Peng

    2017-04-24

    Previously, we have reported a new biomolecular phenomenon spanning between protein folding and binding, termed as self-binding peptides (SBPs), where a short peptide segment in monomeric protein functions as a molecular switch by dynamically binding to/unbinding from its cognate domain in the monomer (Yang et al. J. Chem. Inf. 2015, 55, 329-342). Here, we attempt to raise the SBP as a new class of druggable targets to regulate the biological activity and function of proteins. A case study was performed on the proto-oncogene nonreceptor tyrosine kinase, c-Src, which contains two SBPs that bind separately to SH3 and SH2 domains of the kinase. State-of-the-art molecular dynamics (MD) simulations and post binding energetics analysis revealed that disrupting the kinase-intramolecular interactions of SH3 and SH2 domains with their cognate SBP ligands can result in totally different effects on the structural dynamics of c-Src kinase architecture; targeting the SH2 domain unlocks the autoinhibitory form of the kinase-this is very similar to the pTyr527 dephosphorylation that functionally activates the kinase, whereas targeting the SH3 domain can only release the domain from the tightly packed kinase but has a moderate effect on the kinase activity. Subsequently, based on the cognate SBP sequence we computationally designed a number of SH2-binding phosphopeptides using a motif grafting strategy. Fluorescence polarization (FP) assay observed that most of the designed phosphopeptides have higher binding affinity to SH2 domain as compared to the native SBP segment (K d = 53 nM). Kinase assay identified a typical dose-response relationship of phosphopeptides against kinase activation, substantiating that disruption of SH2-SBP interaction can mimic c-Src dephosphorylation and activate the kinase. Two rationally designed phosphopeptides, namely EPQpYEEIEN and EPQpYEELEN, were determined as strong binders of SH2 domain (K d = 8.3 and 15 nM, respectively) and potent activators of

  6. Effects of cellular non-protein sulfhydryl depletion in radiation induced oncogenic transformation and genotoxicity in mouse C3H 10T1/2 cells

    International Nuclear Information System (INIS)

    Hei, T.K.; Geard, C.R.; Hall, E.J.

    1984-01-01

    A study was made of the effects of cellular non-protein sulfhydryl (NPSH) depletion on cytotoxicity, cell cycle kinetics, oncogenic transformation and sister chromatid exchange (SCE) in C 3 H 10T1/2 cells. Using DL-Buthionine S-R-Sulfoximine (BSO) to deplete thiols, it was found spectrophotometrically that less than 5% of control NPSH level remained in the cells after 24-hour treatment under aerated conditions. Such NPSH depleted cells, when subject to a 3 Gy γ-ray treatment, were found to have no radiosensitizing response either in terms of cell survival or oncogenic transformation. In addition, decreased levels of NPSH had no effect on spontaneous or radiation-induced SCE nor were cell cycle kinetics additionally altered. Therefore, the inability of NPSH depletion to alter γ-ray induced cellular transformation was unrelated to any possible effect of BSO on the cell cycle. These results suggest that such depletion may result in little or no additional oncogenic or genotoxic effects on aerated normal tissues

  7. Y-box Binding Protein-1 Enhances Oncogenic Transforming Growth Factor β Signaling in Breast Cancer Cells via Triggering Phospho-Activation of Smad2.

    Science.gov (United States)

    Stope, Matthias B; Weiss, Martin; Koensgen, Dominique; Popp, Simone L; Joffroy, Christian; Mustea, Alexander; Buck, Miriam B; Knabbe, Cornelius

    2017-12-01

    Transforming growth factor β (TGFβ) plays a role in diverse oncogenic pathways including cell proliferation and cell motility and is regulated by the pleiotropic factor Y-box binding protein-1 (YB-1). In breast cancer, Sma/Mad related protein 2 (Smad2) represents the most common downstream transducer in TGFβ signaling. Here, YB-1's impact on Smad2 phospho-activation was characterized by incubation of the breast cancer cell line MCF-7 with or without TGFβ1 in the absence or presence of overexpressed YB-1 protein. The phospho-status of Smad2 was assessed via western blotting. Analysis of MCF-7 cells revealed no induction of total Smad2 neither in the presence of TGFβ1, nor during YB-1 overexpression. In contrast, incubation with TGFβ1 led to an increase of phosphorylated Smad2 forms which was significantly amplified by simultaneously overexpressed YB-1 (2.8±0.2-fold). Oncogenic YB-1 indirectly enhances TGFβ signaling cascades via Smad2 phospho-activation and may represent a promising factor for future diagnosis and therapy of breast cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Novel mutation predicted to disrupt SGOL1 protein function

    African Journals Online (AJOL)

    Rohit Gupta

    2012-11-02

    Nov 2, 2012 ... structural consequences of mutation over folding conformation of the 3rd exon. Further we carried .... Coiled Coil domain [PDB IDs: 3FGA] was retrieved from. Protein Data ... 1.0 nm of 216 SPC water molecules. We used 2CLА ...

  9. Oncogenicity of L-type amino-acid transporter 1 (LAT1) revealed by targeted gene disruption in chicken DT40 cells: LAT1 is a promising molecular target for human cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ohkawa, Mayumi [Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Ohno, Yoshiya [Laboratory of Immunobiology, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe-shi, Hyogo 650-8530 (Japan); Masuko, Kazue; Takeuchi, Akiko; Suda, Kentaro; Kubo, Akihiro; Kawahara, Rieko; Okazaki, Shogo [Cell Biology Laboratory, Department of Pharmaceutical Sciences, School of Pharmacy, Kinki University, 4-1 Kowakae 3-chome, Higashiosaka-shi, Osaka 577-8502 (Japan); Tanaka, Toshiyuki [Laboratory of Immunobiology, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe-shi, Hyogo 650-8530 (Japan); Saya, Hideyuki [Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8502 (Japan); Seki, Masayuki; Enomoto, Takemi [Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Yagi, Hideki [Cell Biology Laboratory, Department of Pharmaceutical Sciences, School of Pharmacy, Kinki University, 4-1 Kowakae 3-chome, Higashiosaka-shi, Osaka 577-8502 (Japan); Hashimoto, Yoshiyuki [Tohoku University, Sendai (Japan); Masuko, Takashi, E-mail: masuko@phar.kindai.ac.jp [Cell Biology Laboratory, Department of Pharmaceutical Sciences, School of Pharmacy, Kinki University, 4-1 Kowakae 3-chome, Higashiosaka-shi, Osaka 577-8502 (Japan)

    2011-03-25

    Highlights: {yields} We established LAT1 amino-acid transporter-disrupted DT40 cells. {yields} LAT1-disrupted cells showed slow growth and lost the oncogenicity. {yields} siRNA and mAb inhibited human tumor growth in vitro and in vivo. {yields} LAT1 is a promising target molecule for cancer therapy. -- Abstract: L-type amino-acid transporter 1 (LAT1) is the first identified light chain of CD98 molecule, disulfide-linked to a heavy chain of CD98. Following cDNA cloning of chicken full-length LAT1, we have constructed targeting vectors for the disruption of chicken LAT1 gene from genomic DNA of chicken LAT1 consisting of 5.4 kb. We established five homozygous LAT1-disrupted (LAT1{sup -/-}) cell clones, derived from a heterozygous LAT1{sup +/-} clone of DT40 chicken B cell line. Reactivity of anti-chicken CD98hc monoclonal antibody (mAb) with LAT1{sup -/-} DT40 cells was markedly decreased compared with that of wild-type DT40 cells. All LAT1{sup -/-} cells were deficient in L-type amino-acid transporting activity, although alternative-splice variant but not full-length mRNA of LAT1 was detected in these cells. LAT1{sup -/-} DT40 clones showed outstandingly slow growth in liquid culture and decreased colony-formation capacity in soft agar compared with wild-type DT40 cells. Cell-cycle analyses indicated that LAT1{sup -/-} DT40 clones have prolonged cell-cycle phases compared with wild-type or LAT1{sup +/-} DT40 cells. Knockdown of human LAT1 by small interfering RNAs resulted in marked in vitro cell-growth inhibition of human cancer cells, and in vivo tumor growth of HeLa cells in athymic mice was significantly inhibited by anti-human LAT1 mAb. All these results indicate essential roles of LAT1 in the cell proliferation and occurrence of malignant phenotypes and that LAT1 is a promising candidate as a molecular target of human cancer therapy.

  10. Oncogenicity of L-type amino-acid transporter 1 (LAT1) revealed by targeted gene disruption in chicken DT40 cells: LAT1 is a promising molecular target for human cancer therapy

    International Nuclear Information System (INIS)

    Ohkawa, Mayumi; Ohno, Yoshiya; Masuko, Kazue; Takeuchi, Akiko; Suda, Kentaro; Kubo, Akihiro; Kawahara, Rieko; Okazaki, Shogo; Tanaka, Toshiyuki; Saya, Hideyuki; Seki, Masayuki; Enomoto, Takemi; Yagi, Hideki; Hashimoto, Yoshiyuki; Masuko, Takashi

    2011-01-01

    Highlights: → We established LAT1 amino-acid transporter-disrupted DT40 cells. → LAT1-disrupted cells showed slow growth and lost the oncogenicity. → siRNA and mAb inhibited human tumor growth in vitro and in vivo. → LAT1 is a promising target molecule for cancer therapy. -- Abstract: L-type amino-acid transporter 1 (LAT1) is the first identified light chain of CD98 molecule, disulfide-linked to a heavy chain of CD98. Following cDNA cloning of chicken full-length LAT1, we have constructed targeting vectors for the disruption of chicken LAT1 gene from genomic DNA of chicken LAT1 consisting of 5.4 kb. We established five homozygous LAT1-disrupted (LAT1 -/- ) cell clones, derived from a heterozygous LAT1 +/- clone of DT40 chicken B cell line. Reactivity of anti-chicken CD98hc monoclonal antibody (mAb) with LAT1 -/- DT40 cells was markedly decreased compared with that of wild-type DT40 cells. All LAT1 -/- cells were deficient in L-type amino-acid transporting activity, although alternative-splice variant but not full-length mRNA of LAT1 was detected in these cells. LAT1 -/- DT40 clones showed outstandingly slow growth in liquid culture and decreased colony-formation capacity in soft agar compared with wild-type DT40 cells. Cell-cycle analyses indicated that LAT1 -/- DT40 clones have prolonged cell-cycle phases compared with wild-type or LAT1 +/- DT40 cells. Knockdown of human LAT1 by small interfering RNAs resulted in marked in vitro cell-growth inhibition of human cancer cells, and in vivo tumor growth of HeLa cells in athymic mice was significantly inhibited by anti-human LAT1 mAb. All these results indicate essential roles of LAT1 in the cell proliferation and occurrence of malignant phenotypes and that LAT1 is a promising candidate as a molecular target of human cancer therapy.

  11. Supercharging Protein Complexes from Aqueous Solution Disrupts their Native Conformations

    Science.gov (United States)

    Sterling, Harry J.; Kintzer, Alexander F.; Feld, Geoffrey K.; Cassou, Catherine A.; Krantz, Bryan A.; Williams, Evan R.

    2012-02-01

    The effects of aqueous solution supercharging on the solution- and gas-phase structures of two protein complexes were investigated using traveling-wave ion mobility-mass spectrometry (TWIMS-MS). Low initial concentrations of m-nitrobenzyl alcohol ( m-NBA) in the electrospray ionization (ESI) solution can effectively increase the charge of concanavalin A dimers and tetramers, but at higher m-NBA concentrations, the increases in charge are accompanied by solution-phase dissociation of the dimers and up to a ~22% increase in the collision cross section (CCS) of the tetramers. With just 0.8% m-NBA added to the ESI solution of a ~630 kDa anthrax toxin octamer complex, the average charge is increased by only ~4% compared with the "native" complex, but it is sufficiently destabilized so that extensive gas-phase fragmentation occurs in the relatively high pressure regions of the TWIMS device. Anthrax toxin complexes exist in either a prechannel or a transmembrane channel state. With m-NBA, the prechannel state of the complex has the same CCS/charge ratio in the gas phase as the transmembrane channel state of the same complex formed without m-NBA, yet undergoes extensive dissociation, indicating that destabilization from supercharging occurs in the ESI droplet prior to ion formation and is not a result of Coulombic destabilization in the gas phase as a result of higher charging. These results demonstrate that the supercharging of large protein complexes is the result of conformational changes induced by the reagents in the ESI droplets, where enrichment of the supercharging reagent during droplet evaporation occurs.

  12. Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice

    International Nuclear Information System (INIS)

    Andres, A.C.; Schoenenberger, C.A.; Groner, B.; Henninghausen, L.; LeMeur, M.; Gelinger, P.

    1987-01-01

    The activated human Ha-ras oncogene was subjected to the control of the promoter region of the murine whey acidic protein (Wap) gene, which is expressed in mammary epithelial cells in response to lactogenic hormones. The Wap-ras gene was stably introduced into the mouse germ line of five transgenic mice (one male and four females). Wap-ras expression was observed in the mammary glands of lactating females in two lines derived from female founders. The tissue-directed and hormone-dependent Wap expression was conferred on the Ha-ras oncogene. The signals governing Wap expression are located within 2.5 kilobases of 5' flanking sequence. The other two lines derived from female founders did not express the chimeric gene. In the line derived from the male founder the Wap-ras gene is integrated into the Y chromosome. Expression was found in the salivary gland of male animals only. After a long latency, Wap-ras-expressing mice developed tumors. The tumors arose in tissues expressing Wap-ras - i.e., mammary or salivary glands. Compared to the corresponding nonmalignant tissues, Wap-ras expression was enhanced in the tumors

  13. Influence of x-rays and UV-light on the presence of oncogene proteins in spleen cells of leukemic mice

    International Nuclear Information System (INIS)

    Popovic Hadzija, M.; Poljak Blazi, M.

    1996-01-01

    Proto-oncogenes are involved in growth, defferentiation and proliferation of normal cells, and in process of neoplastic transformation. In genome of normal cells, exist also tumor-suppressor genes, which contribute to cancer when they are inactivated. Those genes are target for carcinogenesis provoked by radiation. However, species specific genetic factors are important in determing which, if any, gene will be transformed by radiation. It is possible to presume that oncogenes are involved in the development of radioresistant phenotype of ML. Because of that, we examined the presence of c-myc protein in ML cells during the growth of ML and after the irradiation of these cells. Also, we examined the presence of tumor-suppressor protein p53, because inactivation or loss of p53 gene is in connection with transformation of cells. ML is strain specific for RFM mice. Spleen cells were tested 9 (nonterminal phase NTP) or 12 days (terminal phase TP) after inoculation of ML. Cells from NTP were also irradiate with x-rays or UV-light. C-myc protein expresse 74.98% spleen cells of healthy RFM mice. Wild type of p53 protein was detected in 60% of these cells, but mp53 was found in only 5.3% of cells. These results could be explained by the role of c-myc and p53 proteins in regulation of biologic processes. A few spleen cells of NTP expressed c-myc (15%) and mp53 (9.6%) proteins. But, in the same phase higher expressions of wp53 protein (30.5%) was found. On the other hand, the number of c-myc positive cells in TP of leukemia explanation lies in connection of c-myc protein and process of programmed cell death (apoptosis). During growth of ML the number of mp53 positive cells increased (to 47.8%), but wp53 positive cells decreased (to13.4%9). Both types of irradiation provoked strong activation of cellular c-myc gene in ML cells of NTP. We found about 95% c-myc positive cells after x-rays and 93% after UV-light

  14. Evaluation of yolk protein as biomarkers for endocrine disruption in molluscs

    DEFF Research Database (Denmark)

    Morthorst, Jane Ebsen; Holbech, Henrik; Kinnberg, Karin Lund

    is also regulated by estrogens in molluscs even though it still remains unknown if and where vertebrate steroids are synthesized in molluscs and regulation of the endocrine system in molluscs is also unknown. By using our newly developed ELISA the present work investigates if yolk protein is a suitable......During recent years invertebrates and especially molluscs have received increasing attention in the field of endocrine disruption and development of OECD test guidelines to assess the effects of endocrine disrupting compounds (EDCs) in molluscs is under development. The development of standardized...... tests to detect effects of EDCs in molluscs has proved cumbersome due to lack of specific biomarkers and endpoints for endocrine effects. Intersex (presence of oocytes in the testis) and induction of vitellogenin (the yolk protein precursor in oviparous vertebrates) have been used as biomarkers for EDCs...

  15. Large-scale analysis of protein expression changes in human keratinocytes immortalized by human papilloma virus type 16 E6 and E7 oncogenes

    Directory of Open Access Journals (Sweden)

    Arnouk Hilal

    2009-08-01

    Full Text Available Abstract Background Infection with high-risk type human papilloma viruses (HPVs is associated with cervical carcinomas and with a subset of head and neck squamous cell carcinomas. Viral E6 and E7 oncogenes cooperate to achieve cell immortalization by a mechanism that is not yet fully understood. Here, human keratinocytes were immortalized by long-term expression of HPV type 16 E6 or E7 oncoproteins, or both. Proteomic profiling was used to compare expression levels for 741 discrete protein features. Results Six replicate measurements were performed for each group using two-dimensional difference gel electrophoresis (2D-DIGE. The median within-group coefficient of variation was 19–21%. Significance of between-group differences was tested based on Significance Analysis of Microarray and fold change. Expression of 170 (23% of the protein features changed significantly in immortalized cells compared to primary keratinocytes. Most of these changes were qualitatively similar in cells immortalized by E6, E7, or E6/7 expression, indicating convergence on a common phenotype, but fifteen proteins (~2% were outliers in this regulatory pattern. Ten demonstrated opposite regulation in E6- and E7-expressing cells, including the cell cycle regulator p16INK4a; the carbohydrate binding protein Galectin-7; two differentially migrating forms of the intermediate filament protein Cytokeratin-7; HSPA1A (Hsp70-1; and five unidentified proteins. Five others had a pattern of expression that suggested cooperativity between the co-expressed oncoproteins. Two of these were identified as forms of the small heat shock protein HSPB1 (Hsp27. Conclusion This large-scale analysis provides a framework for understanding the cooperation between E6 and E7 oncoproteins in HPV-driven carcinogenesis.

  16. Acidosis Decreases c-Myc Oncogene Expression in Human Lymphoma Cells: A Role for the Proton-Sensing G Protein-Coupled Receptor TDAG8

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2013-10-01

    Full Text Available Acidosis is a biochemical hallmark of the tumor microenvironment. Here, we report that acute acidosis decreases c-Myc oncogene expression in U937 human lymphoma cells. The level of c-Myc transcripts, but not mRNA or protein stability, contributes to c-Myc protein reduction under acidosis. The pH-sensing receptor TDAG8 (GPR65 is involved in acidosis-induced c-Myc downregulation. TDAG8 is expressed in U937 lymphoma cells, and the overexpression or knockdown of TDAG8 further decreases or partially rescues c-Myc expression, respectively. Acidic pH alone is insufficient to reduce c-Myc expression, as it does not decrease c-Myc in H1299 lung cancer cells expressing very low levels of pH-sensing G protein-coupled receptors (GPCRs. Instead, c-Myc is slightly increased by acidosis in H1299 cells, but this increase is completely inhibited by ectopic overexpression of TDAG8. Interestingly, TDAG8 expression is decreased by more than 50% in human lymphoma samples in comparison to non-tumorous lymph nodes and spleens, suggesting a potential tumor suppressor function of TDAG8 in lymphoma. Collectively, our results identify a novel mechanism of c-Myc regulation by acidosis in the tumor microenvironment and indicate that modulation of TDAG8 and related pH-sensing receptor pathways may be exploited as a new approach to inhibit Myc expression.

  17. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    International Nuclear Information System (INIS)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C.; Ballestas, Mary E.; Elmets, Craig A.; Robbins, David J.; Matalon, Sadis; Deshane, Jessy S.; Afaq, Farrukh; Bickers, David R.; Athar, Mohammad

    2013-01-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions

  18. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Ballestas, Mary E. [Department of Pediatrics Infectious Disease, Children' s of Alabama, School of Medicine, University of Alabama at Birmingham, AL (United States); Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Robbins, David J. [Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami (United States); Matalon, Sadis [Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL (United States); Deshane, Jessy S. [Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Afaq, Farrukh [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Bickers, David R. [Department of Dermatology, Columbia University Medical Center, New York (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2013-11-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions.

  19. v-Src oncogene product increases sphingosine kinase 1 expression through mRNA stabilization: alteration of AU-rich element-binding proteins.

    Science.gov (United States)

    Sobue, S; Murakami, M; Banno, Y; Ito, H; Kimura, A; Gao, S; Furuhata, A; Takagi, A; Kojima, T; Suzuki, M; Nozawa, Y; Murate, T

    2008-10-09

    Sphingosine kinase 1 (SPHK1) is overexpressed in solid tumors and leukemia. However, the mechanism of SPHK1 overexpression by oncogenes has not been defined. We found that v-Src-transformed NIH3T3 cells showed a high SPHK1 mRNA, SPHK1 protein and SPHK enzyme activity. siRNA of SPHK1 inhibited the growth of v-Src-NIH3T3, suggesting the involvement of SPHK1 in v-Src-induced oncogenesis. v-Src-NIH3T3 showed activations of protein kinase C-alpha, signal transducers and activators of transcription 3 and c-Jun NH(2)-terminal kinase. Their inhibition suppressed SPHK1 expression in v-Src-NIH3T3, whereas their overexpression increased SPHK1 mRNA in NIH3T3. Unexpectedly, the nuclear run-on assay and the promoter analysis using 5'-promoter region of mouse SPHK1 did not show any significant difference between mock- and v-Src-NIH3T3. Furthermore, the half-life of SPHK1 mRNA in mock-NIH3T3 was nearly 15 min, whereas that of v-Src-NIH3T3 was much longer. Examination of two AU-rich region-binding proteins, AUF1 and HuR, that regulate mRNA decay reciprocally, showed decreased total AUF1 protein associated with increased tyrosine-phosphorylated form and increased serine-phosphorylated HuR protein in v-Src-NIH3T3. Modulation of AUF1 and HuR by their overexpression or siRNA revealed that SPHK1 mRNA in v-Src- and mock-NIH3T3 was regulated reciprocally by these factors. Our results showed, for the first time, a novel mechanism of v-Src-induced SPHK1 overexpression.

  20. Oncogenic c-Myc-induced lymphomagenesis is inhibited non-redundantly by the p19Arf–Mdm2–p53 and RP–Mdm2–p53 pathways

    OpenAIRE

    Meng, X; Carlson, NR; Dong, J; Zhang, Y

    2015-01-01

    The multifaceted oncogene c-Myc plays important roles in the development and progression of human cancer. Recent in vitro and in vivo studies have shown that the p19Arf–Mdm2–p53 and the ribosomal protein (RP)–Mdm2–p53 pathways are both essential in preventing oncogenic c-Myc-induced tumorigenesis. Disruption of each pathway individually by p19Arf deletion or by Mdm2C305F mutation, which disrupts RP-Mdm2 binding, accelerates Eμ-myc transgene-induced pre-B/B-cell lymphoma in mice at seemingly s...

  1. EBV tegument protein BNRF1 disrupts DAXX-ATRX to activate viral early gene transcription.

    Directory of Open Access Journals (Sweden)

    Kevin Tsai

    2011-11-01

    Full Text Available Productive infection by herpesviruses involve the disabling of host-cell intrinsic defenses by viral encoded tegument proteins. Epstein-Barr Virus (EBV typically establishes a non-productive, latent infection and it remains unclear how it confronts the host-cell intrinsic defenses that restrict viral gene expression. Here, we show that the EBV major tegument protein BNRF1 targets host-cell intrinsic defense proteins and promotes viral early gene activation. Specifically, we demonstrate that BNRF1 interacts with the host nuclear protein Daxx at PML nuclear bodies (PML-NBs and disrupts the formation of the Daxx-ATRX chromatin remodeling complex. We mapped the Daxx interaction domain on BNRF1, and show that this domain is important for supporting EBV primary infection. Through reverse transcription PCR and infection assays, we show that BNRF1 supports viral gene expression upon early infection, and that this function is dependent on the Daxx-interaction domain. Lastly, we show that knockdown of Daxx and ATRX induces reactivation of EBV from latently infected lymphoblastoid cell lines (LCLs, suggesting that Daxx and ATRX play a role in the regulation of viral chromatin. Taken together, our data demonstrate an important role of BNRF1 in supporting EBV early infection by interacting with Daxx and ATRX; and suggest that tegument disruption of PML-NB-associated antiviral resistances is a universal requirement for herpesvirus infection in the nucleus.

  2. EBV Tegument Protein BNRF1 Disrupts DAXX-ATRX to Activate Viral Early Gene Transcription

    Science.gov (United States)

    Tsai, Kevin; Thikmyanova, Nadezhda; Wojcechowskyj, Jason A.; Delecluse, Henri-Jacques; Lieberman, Paul M.

    2011-01-01

    Productive infection by herpesviruses involve the disabling of host-cell intrinsic defenses by viral encoded tegument proteins. Epstein-Barr Virus (EBV) typically establishes a non-productive, latent infection and it remains unclear how it confronts the host-cell intrinsic defenses that restrict viral gene expression. Here, we show that the EBV major tegument protein BNRF1 targets host-cell intrinsic defense proteins and promotes viral early gene activation. Specifically, we demonstrate that BNRF1 interacts with the host nuclear protein Daxx at PML nuclear bodies (PML-NBs) and disrupts the formation of the Daxx-ATRX chromatin remodeling complex. We mapped the Daxx interaction domain on BNRF1, and show that this domain is important for supporting EBV primary infection. Through reverse transcription PCR and infection assays, we show that BNRF1 supports viral gene expression upon early infection, and that this function is dependent on the Daxx-interaction domain. Lastly, we show that knockdown of Daxx and ATRX induces reactivation of EBV from latently infected lymphoblastoid cell lines (LCLs), suggesting that Daxx and ATRX play a role in the regulation of viral chromatin. Taken together, our data demonstrate an important role of BNRF1 in supporting EBV early infection by interacting with Daxx and ATRX; and suggest that tegument disruption of PML-NB-associated antiviral resistances is a universal requirement for herpesvirus infection in the nucleus. PMID:22102817

  3. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli.

    Science.gov (United States)

    Urfer, Matthias; Bogdanovic, Jasmina; Lo Monte, Fabio; Moehle, Kerstin; Zerbe, Katja; Omasits, Ulrich; Ahrens, Christian H; Pessi, Gabriella; Eberl, Leo; Robinson, John A

    2016-01-22

    Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Modification of an acetone-sodium dodecyl sulfate disruption method for cellular protein extraction from neuropathogenic Clostridium botulinum

    Science.gov (United States)

    An acetone-sodium dodecyl sulfate (SDS) disruption method was used for the extraction of cellular proteins from neurotoxigenic Clostridium botulinum. The amount of protein extracted per gram of dry weight and the protein profile as revealed by polyacrylamide gel electrophoresis (PAGE) was comparabl...

  5. Generalization of fear inhibition by disrupting hippocampal protein synthesis-dependent reconsolidation process.

    Science.gov (United States)

    Yang, Chih-Hao; Huang, Chiung-Chun; Hsu, Kuei-Sen

    2011-09-01

    Repetitive replay of fear memories may precipitate the occurrence of post-traumatic stress disorder and other anxiety disorders. Hence, the suppression of fear memory retrieval may help prevent and treat these disorders. The formation of fear memories is often linked to multiple environmental cues and these interconnected cues may act as reminders for the recall of traumatic experiences. However, as a convenience, a simple paradigm of one cue pairing with the aversive stimulus is usually used in studies of fear conditioning in animals. Here, we built a more complex fear conditioning model by presenting several environmental stimuli during fear conditioning and characterize the effectiveness of extinction training and the disruption of reconsolidation process on the expression of learned fear responses. We demonstrate that extinction training with a single-paired cue resulted in cue-specific attenuation of fear responses but responses to other cures were unchanged. The cue-specific nature of the extinction persisted despite training sessions combined with D-cycloserine treatment reveals a significant weakness in extinction-based treatment. In contrast, the inhibition of the dorsal hippocampus (DH) but not the basolateral amygdala (BLA)-dependent memory reconsolidation process using either protein synthesis inhibitors or genetic disruption of cAMP-response-element-binding protein-mediated transcription comprehensively disrupted the learned connections between fear responses and all paired environmental cues. These findings emphasize the distinct role of the DH and the BLA in the reconsolidation process of fear memories and further indicate that the disruption of memory reconsolidation process in the DH may result in generalization of fear inhibition.

  6. Characterization of Two C. Elegans Homologuses of Oncogenic Inhibitor of Apoptosis Proteins (IAPs) and Identification of Interacting Genes

    National Research Council Canada - National Science Library

    Fraser, Andrew

    2000-01-01

    .... I have previously identified two BIR-containing Proteins (BIRPs) in the nematode worm C. elegans. One of these, BIR-l, appears to play no role in the regulation of programmed cell death in C. elegans...

  7. Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins.

    Science.gov (United States)

    Yoon, Jaewoo; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2011-02-01

    Proteolytic degradation by secreted proteases into the culture medium is one of the significant problems to be solved in heterologous protein production by filamentous fungi including Aspergillus oryzae. Double (tppA, and pepE) and quintuple (tppA, pepE, nptB, dppIV, and dppV) disruption of protease genes enhanced human lysozyme (HLY) and bovine chymosin (CHY) production by A. oryzae. In this study, we used a quintuple protease gene disruptant and performed successive rounds of disruption for five additional protease genes (alpA, pepA, AopepAa, AopepAd, and cpI), which were previously investigated by DNA microarray analyses for their expression. Gene disruption was performed by pyrG marker recycling with a highly efficient gene-targeting background (∆ligD) as previously reported. As a result, the maximum yields of recombinant CHY and HLY produced by a decuple protease gene disruptant were approximately 30% and 35%, respectively, higher than those produced by a quintuple protease gene disruptant. Thus, we successfully constructed a decuple protease gene disruptant possessing highly improved capability of heterologous protein production. This is the first report on decuple protease gene disruption that improved the levels of heterologous protein production by the filamentous fungus A. oryzae.

  8. A prototypical non-malignant epithelial model to study genome dynamics and concurrently monitor micro-RNAs and proteins in situ during oncogene-induced senescence.

    Science.gov (United States)

    Komseli, Eirini-Stavroula; Pateras, Ioannis S; Krejsgaard, Thorbjørn; Stawiski, Konrad; Rizou, Sophia V; Polyzos, Alexander; Roumelioti, Fani-Marlen; Chiourea, Maria; Mourkioti, Ioanna; Paparouna, Eleni; Zampetidis, Christos P; Gumeni, Sentiljana; Trougakos, Ioannis P; Pefani, Dafni-Eleftheria; O'Neill, Eric; Gagos, Sarantis; Eliopoulos, Aristides G; Fendler, Wojciech; Chowdhury, Dipanjan; Bartek, Jiri; Gorgoulis, Vassilis G

    2018-01-10

    Senescence is a fundamental biological process implicated in various pathologies, including cancer. Regarding carcinogenesis, senescence signifies, at least in its initial phases, an anti-tumor response that needs to be circumvented for cancer to progress. Micro-RNAs, a subclass of regulatory, non-coding RNAs, participate in senescence regulation. At the subcellular level micro-RNAs, similar to proteins, have been shown to traffic between organelles influencing cellular behavior. The differential function of micro-RNAs relative to their subcellular localization and their role in senescence biology raises concurrent in situ analysis of coding and non-coding gene products in senescent cells as a necessity. However, technical challenges have rendered in situ co-detection unfeasible until now. In the present report we describe a methodology that bypasses these technical limitations achieving for the first time simultaneous detection of both a micro-RNA and a protein in the biological context of cellular senescence, utilizing the new commercially available SenTraGor TM compound. The method was applied in a prototypical human non-malignant epithelial model of oncogene-induced senescence that we generated for the purposes of the study. For the characterization of this novel system, we applied a wide range of cellular and molecular techniques, as well as high-throughput analysis of the transcriptome and micro-RNAs. This experimental setting has three advantages that are presented and discussed: i) it covers a "gap" in the molecular carcinogenesis field, as almost all corresponding in vitro models are fibroblast-based, even though the majority of neoplasms have epithelial origin, ii) it recapitulates the precancerous and cancerous phases of epithelial tumorigenesis within a short time frame under the light of natural selection and iii) it uses as an oncogenic signal, the replication licensing factor CDC6, implicated in both DNA replication and transcription when over

  9. Safe taste memory consolidation is disrupted by a protein synthesis inhibitor in the nucleus accumbens shell.

    Science.gov (United States)

    Pedroza-Llinás, R; Ramírez-Lugo, L; Guzmán-Ramos, K; Zavala-Vega, S; Bermúdez-Rattoni, F

    2009-07-01

    Consolidation is the process by which a new memory is stabilized over time, and is dependent on de novo protein synthesis. A useful model for studying memory formation is gustatory memory, a type of memory in which a novel taste may become either safe by not being followed by negative consequences (attenuation of neophobia, AN), or aversive by being followed by post-digestive malaise (conditioned taste aversion, CTA). Here we evaluated the effects of the administration of a protein synthesis inhibitor in the nucleus accumbens (NAc) shell for either safe or aversive taste memory trace consolidation. To test the effects on CTA and AN of protein synthesis inhibition, anisomycin (100microg/microl) was bilaterally infused into the NAc shell of Wistar rats' brains. We found that post-trial protein synthesis blockade impaired the long-term safe taste memory. However, protein synthesis inhibition failed to disrupt the long-term memory of CTA. In addition, we infused anisomycin in the NAc shell after the pre-exposure to saccharin in a latent inhibition of aversive taste. We found that the protein synthesis inhibition impaired the consolidation of safe taste memory, allowing the aversive taste memory to form and consolidate. Our results suggest that protein synthesis is required in the NAc shell for consolidation of safe but not aversive taste memories, supporting the notion that consolidation of taste memory is processed in several brain regions in parallel, and implying that inhibitory interactions between both taste memory traces do occur.

  10. Membrane Incorporation, Channel Formation, and Disruption of Calcium Homeostasis by Alzheimer's β-Amyloid Protein

    Directory of Open Access Journals (Sweden)

    Masahiro Kawahara

    2011-01-01

    Full Text Available Oligomerization, conformational changes, and the consequent neurodegeneration of Alzheimer's β-amyloid protein (AβP play crucial roles in the pathogenesis of Alzheimer's disease (AD. Mounting evidence suggests that oligomeric AβPs cause the disruption of calcium homeostasis, eventually leading to neuronal death. We have demonstrated that oligomeric AβPs directly incorporate into neuronal membranes, form cation-sensitive ion channels (“amyloid channels”, and cause the disruption of calcium homeostasis via the amyloid channels. Other disease-related amyloidogenic proteins, such as prion protein in prion diseases or α-synuclein in dementia with Lewy bodies, exhibit similarities in the incorporation into membranes and the formation of calcium-permeable channels. Here, based on our experimental results and those of numerous other studies, we review the current understanding of the direct binding of AβP into membrane surfaces and the formation of calcium-permeable channels. The implication of composition of membrane lipids and the possible development of new drugs by influencing membrane properties and attenuating amyloid channels for the treatment and prevention of AD is also discussed.

  11. Use of non-conventional cell disruption method for extraction of proteins from black yeasts

    Directory of Open Access Journals (Sweden)

    Maja eLeitgeb

    2016-04-01

    Full Text Available The influence of pressure and treatment time on cells disruption of different black yeasts and on activities of extracted proteins using supercritical carbon dioxide process was studied. The cells of three different black yeasts Phaeotheca triangularis, Trimatostroma salinum and Wallemia ichthyophaga were exposed to supercritical carbon dioxide (SC CO2 by varying pressure at fixed temperature (35 °C. The black yeasts cell walls were disrupted and the content of the cells was spilled into the liquid medium. The impact of SC CO2 conditions on secretion of enzymes and proteins from black yeast cells suspension was studied. The residual activity of the enzymes cellulase, β-glucosidase, α-amylase and protease was studied by enzymatic assay. The viability of black yeast cells was determined by measuring the optical density of the cell suspension at 600 nm. The total protein concentration in the suspension was determined on UV-Vis spectrophotometer at 595 nm. The release of intracellular and extracellular products from black yeast cells was achieved. Also, the observation by an environmental scanning electron microscopy shows major morphological changes with SC CO2 treated cells. The advantages of the proposed method are in a simple use which is also possible for heat sensitive materials on one hand and on the other hand integration of the extraction of enzymes and their use in biocatalytical reactions.

  12. Use of Non-Conventional Cell Disruption Method for Extraction of Proteins from Black Yeasts

    Science.gov (United States)

    Čolnik, Maja; Primožič, Mateja; Knez, Željko; Leitgeb, Maja

    2016-01-01

    The influence of pressure and treatment time on cells disruption of different black yeasts and on activities of extracted proteins using supercritical carbon dioxide process was studied. The cells of three different black yeasts Phaeotheca triangularis, Trimatostroma salinum, and Wallemia ichthyophaga were exposed to supercritical carbon dioxide (SC CO2) by varying pressure at fixed temperature (35°C). The black yeasts cell walls were disrupted, and the content of the cells was spilled into the liquid medium. The impact of SC CO2 conditions on secretion of enzymes and proteins from black yeast cells suspension was studied. The residual activity of the enzymes cellulase, β-glucosidase, α-amylase, and protease was studied by enzymatic assay. The viability of black yeast cells was determined by measuring the optical density of the cell suspension at 600 nm. The total protein concentration in the suspension was determined on UV–Vis spectrophotometer at 595 nm. The release of intracellular and extracellular products from black yeast cells was achieved. Also, the observation by an environmental scanning electron microscopy shows major morphological changes with SC CO2-treated cells. The advantages of the proposed method are in a simple use, which is also possible for heat-sensitive materials on one hand and on the other hand integration of the extraction of enzymes and their use in biocatalytical reactions. PMID:27148527

  13. High-content image informatics of the structural nuclear protein NuMA parses trajectories for stem/progenitor cell lineages and oncogenic transformation

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Sebastián L. [Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ (United States); Liu, Er; Arvind, Varun [Department of Biomedical Engineering, Rutgers University, Piscataway, NJ (United States); Bushman, Jared [Department of Chemistry and Chemical Biology, New Jersey Center for Biomaterials, Piscataway, NJ (United States); School of Pharmacy, University of Wyoming, Laramie, WY (United States); Sung, Hak-Joon [Department of Chemistry and Chemical Biology, New Jersey Center for Biomaterials, Piscataway, NJ (United States); Department of Biomedical Engineering, Vanderbilt University, Nashville, TN (United States); Becker, Matthew L. [Department of Polymer Science and Engineering, University of Akron, Akron, OH (United States); Lelièvre, Sophie [Department of Basic Medical Sciences, Purdue University, West Lafayette, IN (United States); Kohn, Joachim [Department of Chemistry and Chemical Biology, New Jersey Center for Biomaterials, Piscataway, NJ (United States); Vidi, Pierre-Alexandre, E-mail: pvidi@wakehealth.edu [Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC (United States); Moghe, Prabhas V., E-mail: moghe@rutgers.edu [Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ (United States); Department of Biomedical Engineering, Rutgers University, Piscataway, NJ (United States)

    2017-02-01

    Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regions of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative “imaging-derived” parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions. - Highlights: • High-content analysis of nuclear shape and organization classify stem and progenitor cells poised for distinct lineages. • Early oncogenic changes in mesenchymal stem cells (MSCs) are also detected with nuclear descriptors. • A new class of cancer-mitigating biomaterials was identified based on image

  14. High-content image informatics of the structural nuclear protein NuMA parses trajectories for stem/progenitor cell lineages and oncogenic transformation

    International Nuclear Information System (INIS)

    Vega, Sebastián L.; Liu, Er; Arvind, Varun; Bushman, Jared; Sung, Hak-Joon; Becker, Matthew L.; Lelièvre, Sophie; Kohn, Joachim; Vidi, Pierre-Alexandre; Moghe, Prabhas V.

    2017-01-01

    Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regions of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative “imaging-derived” parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions. - Highlights: • High-content analysis of nuclear shape and organization classify stem and progenitor cells poised for distinct lineages. • Early oncogenic changes in mesenchymal stem cells (MSCs) are also detected with nuclear descriptors. • A new class of cancer-mitigating biomaterials was identified based on image

  15. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts.

    Science.gov (United States)

    Jaquemar, D; Schenker, T; Trueb, B

    1999-03-12

    We have identified a novel transformation-sensitive mRNA, which is present in cultured fibroblasts but is lacking in SV40 transformed cells as well as in many mesenchymal tumor cell lines. The corresponding gene is located on human chromosome 8 in band 8q13. The open reading frame of the mRNA encodes a protein of 1119 amino acids forming two distinct domains. The N-terminal domain consists of 18 repeats that are related to the cytoskeletal protein ankyrin. The C-terminal domain contains six putative transmembrane segments that resemble many ion channels. This overall structure is reminiscent of TRP-like proteins that function as store-operated calcium channels. The novel protein with an Mr of 130 kDa is expressed at a very low level in human fibroblasts and at a moderate level in liposarcoma cells. Overexpression in eukaryotic cells appears to interfere with normal growth, suggesting that it might play a direct or indirect role in signal transduction and growth control.

  16. T-cell responses to oncogenic Merkel cell polyomavirus proteins distinguish patients with Merkel cell carcinoma from healthy donors

    DEFF Research Database (Denmark)

    Lyngaa, Rikke; Pedersen, Natasja Wulff; Schrama, David

    2014-01-01

    Purpose: Merkel cell carcinoma (MCC) is a highly aggressive skin cancer with strong evidence of viral carcinogenesis. The association of MCC with the Merkel cell polyomavirus (MCPyV) may explain the explicit immunogenicity of MCC. Indeed, MCPyV-encoded proteins are likely targets for cytotoxic...

  17. Ectopic protein interactions within BRD4–chromatin complexes drive oncogenic megadomain formation in NUT midline carcinoma

    OpenAIRE

    Alekseyenko, Artyom A.; Walsh, Erica M.; Zee, Barry M.; Pakozdi, Tibor; Hsi, Peter; Lemieux, Madeleine E.; Dal Cin, Paola; Ince, Tan A.; Kharchenko, Peter V.; Kuroda, Mitzi I.; French, Christopher A.

    2017-01-01

    Chromatin factors generally act within large, multisubunit complexes; thus, identifying both their normal and aberrant interactors in cancer should provide important information regarding potential targets for therapeutic intervention. Here, we apply this principle to analysis of BRD4–NUT, a fusion oncoprotein that drives an aggressive subtype of squamous cell cancer. We identify ZNF532 as a prominent BRD4–NUT–interacting protein in an established NUT midline carcinoma patient cell line, and ...

  18. Particulate matter air pollution disrupts endothelial cell barrier via calpain-mediated tight junction protein degradation

    Directory of Open Access Journals (Sweden)

    Wang Ting

    2012-08-01

    Full Text Available Abstract Background Exposure to particulate matter (PM is a significant risk factor for increased cardiopulmonary morbidity and mortality. The mechanism of PM-mediated pathophysiology remains unknown. However, PM is proinflammatory to the endothelium and increases vascular permeability in vitro and in vivo via ROS generation. Objectives We explored the role of tight junction proteins as targets for PM-induced loss of lung endothelial cell (EC barrier integrity and enhanced cardiopulmonary dysfunction. Methods Changes in human lung EC monolayer permeability were assessed by Transendothelial Electrical Resistance (TER in response to PM challenge (collected from Ft. McHenry Tunnel, Baltimore, MD, particle size >0.1 μm. Biochemical assessment of ROS generation and Ca2+ mobilization were also measured. Results PM exposure induced tight junction protein Zona occludens-1 (ZO-1 relocation from the cell periphery, which was accompanied by significant reductions in ZO-1 protein levels but not in adherens junction proteins (VE-cadherin and β-catenin. N-acetyl-cysteine (NAC, 5 mM reduced PM-induced ROS generation in ECs, which further prevented TER decreases and atteneuated ZO-1 degradation. PM also mediated intracellular calcium mobilization via the transient receptor potential cation channel M2 (TRPM2, in a ROS-dependent manner with subsequent activation of the Ca2+-dependent protease calpain. PM-activated calpain is responsible for ZO-1 degradation and EC barrier disruption. Overexpression of ZO-1 attenuated PM-induced endothelial barrier disruption and vascular hyperpermeability in vivo and in vitro. Conclusions These results demonstrate that PM induces marked increases in vascular permeability via ROS-mediated calcium leakage via activated TRPM2, and via ZO-1 degradation by activated calpain. These findings support a novel mechanism for PM-induced lung damage and adverse cardiovascular outcomes.

  19. Identifying Breast Cancer Oncogenes

    Science.gov (United States)

    2011-10-01

    cells we observed that it promoted transformation of HMLE cells, suggesting a tumor suppressive role of Merlin in breast cancer (Figure 4B). A...08-1-0767 TITLE: Identifying Breast Cancer Oncogenes PRINCIPAL INVESTIGATOR: Yashaswi Shrestha...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 W81XWH-08-1-0767 Identifying Breast Cancer Oncogenes Yashaswi Shrestha Dana-Farber

  20. Degradation of p53 by human Alphapapillomavirus E6 proteins shows a stronger correlation with phylogeny than oncogenicity.

    Directory of Open Access Journals (Sweden)

    Leiping Fu

    2010-09-01

    Full Text Available Human Papillomavirus (HPV E6 induced p53 degradation is thought to be an essential activity by which high-risk human Alphapapillomaviruses (alpha-HPVs contribute to cervical cancer development. However, most of our understanding is derived from the comparison of HPV16 and HPV11. These two viruses are relatively distinct viruses, making the extrapolation of these results difficult. In the present study, we expand the tested strains (types to include members of all known HPV species groups within the Alphapapillomavirus genus.We report the biochemical activity of E6 proteins from 27 HPV types representing all alpha-HPV species groups to degrade p53 in human cells. Expression of E6 from all HPV types epidemiologically classified as group 1 carcinogens significantly reduced p53 levels. However, several types not associated with cancer (e.g., HPV53, HPV70 and HPV71 were equally active in degrading p53. HPV types within species groups alpha 5, 6, 7, 9 and 11 share a most recent common ancestor (MRCA and all contain E6 ORFs that degrade p53. A unique exception, HPV71 E6 ORF that degraded p53 was outside this clade and is one of the most prevalent HPV types infecting the cervix in a population-based study of 10,000 women. Alignment of E6 ORFs identified an amino acid site that was highly correlated with the biochemical ability to degrade p53. Alteration of this amino acid in HPV71 E6 abrogated its ability to degrade p53, while alteration of this site in HPV71-related HPV90 and HPV106 E6s enhanced their capacity to degrade p53.These data suggest that the alpha-HPV E6 proteins' ability to degrade p53 is an evolved phenotype inherited from a most recent common ancestor of the high-risk species that does not always segregate with carcinogenicity. In addition, we identified an amino-acid residue strongly correlated with viral p53 degrading potential.

  1. Macrophage Capping Protein CapG Is a Putative Oncogene Involved in Migration and Invasiveness in Ovarian Carcinoma

    Directory of Open Access Journals (Sweden)

    J. Glaser

    2014-01-01

    Full Text Available The actin binding protein CapG modulates cell motility by interacting with the cytoskeleton. CapG is associated with tumor progression in different nongynecologic tumor entities and overexpression in breast cancer cell lines correlates with a more invasive phenotype in vitro. Here, we report a significant CapG overexpression in 18/47 (38% of ovarian carcinomas (OC analyzed by qRealTime-PCR analyses. Functional analyses in OC cell lines through siRNA mediated CapG knockdown and CapG overexpression showed CapG-dependent cell migration and invasiveness. A single nucleotide polymorphism rs6886 inside the CapG gene was identified, affecting a CapG phosphorylation site and thus potentially modifying CapG function. The minor allele frequency (MAF of SNP rs6886 (c.1004A/G was higher and the homozygous (A/A, His335 genotype was significantly more prevalent in patients with fallopian tube carcinomas (50% as in controls (10%. With OC being one of the most lethal cancer diseases, the detection of novel biomarkers such as CapG could reveal new diagnostic and therapeutic targets. Moreover, in-depth analyses of SNP rs6886 related to FTC and OC will contribute to a better understanding of carcinogenesis and progression of OC.

  2. Chemically Induced Degradation of the Oncogenic Transcription Factor BCL6

    Directory of Open Access Journals (Sweden)

    Nina Kerres

    2017-09-01

    Full Text Available The transcription factor BCL6 is a known driver of oncogenesis in lymphoid malignancies, including diffuse large B cell lymphoma (DLBCL. Disruption of its interaction with transcriptional repressors interferes with the oncogenic effects of BCL6. We used a structure-based drug design to develop highly potent compounds that block this interaction. A subset of these inhibitors also causes rapid ubiquitylation and degradation of BCL6 in cells. These compounds display significantly stronger induction of expression of BCL6-repressed genes and anti-proliferative effects than compounds that merely inhibit co-repressor interactions. This work establishes the BTB domain as a highly druggable structure, paving the way for the use of other members of this protein family as drug targets. The magnitude of effects elicited by this class of BCL6-degrading compounds exceeds that of our equipotent non-degrading inhibitors, suggesting opportunities for the development of BCL6-based lymphoma therapeutics.

  3. Loosenin, a novel protein with cellulose-disrupting activity from Bjerkandera adusta.

    Science.gov (United States)

    Quiroz-Castañeda, Rosa E; Martínez-Anaya, Claudia; Cuervo-Soto, Laura I; Segovia, Lorenzo; Folch-Mallol, Jorge L

    2011-02-11

    Expansins and expansin-like proteins loosen cellulose microfibrils, possibly through the rupture of intramolecular hydrogen bonds. Together with the use of lignocellulolytic enzymes, these proteins are potential molecular tools to treat plant biomass to improve saccharification yields. Here we describe a new type of expansin-related fungal protein that we have called loosenin. Its corresponding gene, loos1, from the basidiomycete Bjerkandera adusta, was cloned and heterologously expressed in Saccharomyces cerevisiae. LOOS1 is distantly related to plant expansins through the shared presence of a DPBB domain, however domain II found in plant expansins is absent. LOOS1 binds tightly to cellulose and chitin, and we demonstrate that cotton fibers become susceptible to the action of a commercial cellulase following treatment with LOOS1. Natural fibers of Agave tequilana also become susceptible to hydrolysis by cellulases after loosenin treatment. LOOS1 is a new type of protein with disrupting activity on cellulose. LOOS1 binds polysaccharides, and given its enhancing properties on the action of hydrolytic enzymes, LOOS1 represents a potential additive in the production of fermentable sugars from lignocellulose.

  4. Loosenin, a novel protein with cellulose-disrupting activity from Bjerkandera adusta

    Directory of Open Access Journals (Sweden)

    Segovia Lorenzo

    2011-02-01

    Full Text Available Abstract Background Expansins and expansin-like proteins loosen cellulose microfibrils, possibly through the rupture of intramolecular hydrogen bonds. Together with the use of lignocellulolytic enzymes, these proteins are potential molecular tools to treat plant biomass to improve saccharification yields. Results Here we describe a new type of expansin-related fungal protein that we have called loosenin. Its corresponding gene, loos1, from the basidiomycete Bjerkandera adusta, was cloned and heterologously expressed in Saccharomyces cerevisiae. LOOS1 is distantly related to plant expansins through the shared presence of a DPBB domain, however domain II found in plant expansins is absent. LOOS1 binds tightly to cellulose and chitin, and we demonstrate that cotton fibers become susceptible to the action of a commercial cellulase following treatment with LOOS1. Natural fibers of Agave tequilana also become susceptible to hydrolysis by cellulases after loosenin treatment. Conclusions LOOS1 is a new type of protein with disrupting activity on cellulose. LOOS1 binds polysaccharides, and given its enhancing properties on the action of hydrolytic enzymes, LOOS1 represents a potential additive in the production of fermentable sugars from lignocellulose.

  5. Disruption of a Ciliary B9 Protein Complex Causes Meckel Syndrome

    Science.gov (United States)

    Dowdle, William E.; Robinson, Jon F.; Kneist, Andreas; Sirerol-Piquer, M. Salomé; Frints, Suzanna G.M.; Corbit, Kevin C.; Zaghloul, Norran A.; van Lijnschoten, Gesina; Mulders, Leon; Verver, Dideke E.; Zerres, Klaus; Reed, Randall R.; Attié-Bitach, Tania; Johnson, Colin A.; García-Verdugo, José Manuel; Katsanis, Nicholas; Bergmann, Carsten; Reiter, Jeremy F.

    2011-01-01

    Nearly every ciliated organism possesses three B9 domain-containing proteins: MKS1, B9D1, and B9D2. Mutations in human MKS1 cause Meckel syndrome (MKS), a severe ciliopathy characterized by occipital encephalocele, liver ductal plate malformations, polydactyly, and kidney cysts. Mouse mutations in either Mks1 or B9d2 compromise ciliogenesis and result in phenotypes similar to those of MKS. Given the importance of these two B9 proteins to ciliogenesis, we examined the role of the third B9 protein, B9d1. Mice lacking B9d1 displayed polydactyly, kidney cysts, ductal plate malformations, and abnormal patterning of the neural tube, concomitant with compromised ciliogenesis, ciliary protein localization, and Hedgehog (Hh) signal transduction. These data prompted us to screen MKS patients for mutations in B9D1 and B9D2. We identified a homozygous c.301A>C (p.Ser101Arg) B9D2 mutation that segregates with MKS, affects an evolutionarily conserved residue, and is absent from controls. Unlike wild-type B9D2 mRNA, the p.Ser101Arg mutation failed to rescue zebrafish phenotypes induced by the suppression of b9d2. With coimmunoprecipitation and mass spectrometric analyses, we found that Mks1, B9d1, and B9d2 interact physically, but that the p.Ser101Arg mutation abrogates the ability of B9d2 to interact with Mks1, further suggesting that the mutation compromises B9d2 function. Our data indicate that B9d1 is required for normal Hh signaling, ciliogenesis, and ciliary protein localization and that B9d1 and B9d2 are essential components of a B9 protein complex, disruption of which causes MKS. PMID:21763481

  6. SV40 late protein VP4 forms toroidal pores to disrupt membranes for viral release.

    Science.gov (United States)

    Raghava, Smita; Giorda, Kristina M; Romano, Fabian B; Heuck, Alejandro P; Hebert, Daniel N

    2013-06-04

    Nonenveloped viruses are generally released from the cell by the timely lysis of host cell membranes. SV40 has been used as a model virus for the study of the lytic nonenveloped virus life cycle. The expression of SV40 VP4 at later times during infection is concomitant with cell lysis. To investigate the role of VP4 in viral release and its mechanism of action, VP4 was expressed and purified from bacteria as a fusion protein for use in membrane disruption assays. Purified VP4 perforated membranes as demonstrated by the release of fluorescent markers encapsulated within large unilamellar vesicles or liposomes. Dynamic light scattering results revealed that VP4 treatment did not cause membrane lysis or change the size of the liposomes. Liposomes encapsulated with 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-3-indacene-labeled streptavidin were used to show that VP4 formed stable pores in membranes. These VP4 pores had an inner diameter of 1-5 nm. Asymmetrical liposomes containing pyrene-labeled lipids in the outer monolayer were employed to monitor transbilayer lipid diffusion. Consistent with VP4 forming toroidal pore structures in membranes, VP4 induced transbilayer lipid diffusion or lipid flip-flop. Altogether, these studies support a central role for VP4 acting as a viroporin in the disruption of cellular membranes to trigger SV40 viral release by forming toroidal pores that unite the outer and inner leaflets of membrane bilayers.

  7. The Oncogenic Fusion Proteins SET-Nup214 and Sequestosome-1 (SQSTM1)-Nup214 Form Dynamic Nuclear Bodies and Differentially Affect Nuclear Protein and Poly(A)+ RNA Export*

    Science.gov (United States)

    Port, Sarah A.; Mendes, Adélia; Valkova, Christina; Spillner, Christiane; Fahrenkrog, Birthe; Kaether, Christoph; Kehlenbach, Ralph H.

    2016-01-01

    Genetic rearrangements are a hallmark of several forms of leukemia and can lead to oncogenic fusion proteins. One example of an affected chromosomal region is the gene coding for Nup214, a nucleoporin that localizes to the cytoplasmic side of the nuclear pore complex (NPC). We investigated two such fusion proteins, SET-Nup214 and SQSTM1 (sequestosome)-Nup214, both containing C-terminal portions of Nup214. SET-Nup214 nuclear bodies containing the nuclear export receptor CRM1 were observed in the leukemia cell lines LOUCY and MEGAL. Overexpression of SET-Nup214 in HeLa cells leads to the formation of similar nuclear bodies that recruit CRM1, export cargo proteins, and certain nucleoporins and concomitantly affect nuclear protein and poly(A)+ RNA export. SQSTM1-Nup214, although mostly cytoplasmic, also forms nuclear bodies and inhibits nuclear protein but not poly(A)+ RNA export. The interaction of the fusion proteins with CRM1 is RanGTP-dependent, as shown in co-immunoprecipitation experiments and binding assays. Further analysis revealed that the Nup214 parts mediate the inhibition of nuclear export, whereas the SET or SQSTM1 part determines the localization of the fusion protein and therefore the extent of the effect. SET-Nup214 nuclear bodies are highly mobile structures, which are in equilibrium with the nucleoplasm in interphase and disassemble during mitosis or upon treatment of cells with the CRM1-inhibitor leptomycin B. Strikingly, we found that nucleoporins can be released from nuclear bodies and reintegrated into existing NPC. Our results point to nuclear bodies as a means of preventing the formation of potentially insoluble and harmful protein aggregates that also may serve as storage compartments for nuclear transport factors. PMID:27613868

  8. The Oncogenic Fusion Proteins SET-Nup214 and Sequestosome-1 (SQSTM1)-Nup214 Form Dynamic Nuclear Bodies and Differentially Affect Nuclear Protein and Poly(A)+ RNA Export.

    Science.gov (United States)

    Port, Sarah A; Mendes, Adélia; Valkova, Christina; Spillner, Christiane; Fahrenkrog, Birthe; Kaether, Christoph; Kehlenbach, Ralph H

    2016-10-28

    Genetic rearrangements are a hallmark of several forms of leukemia and can lead to oncogenic fusion proteins. One example of an affected chromosomal region is the gene coding for Nup214, a nucleoporin that localizes to the cytoplasmic side of the nuclear pore complex (NPC). We investigated two such fusion proteins, SET-Nup214 and SQSTM1 (sequestosome)-Nup214, both containing C-terminal portions of Nup214. SET-Nup214 nuclear bodies containing the nuclear export receptor CRM1 were observed in the leukemia cell lines LOUCY and MEGAL. Overexpression of SET-Nup214 in HeLa cells leads to the formation of similar nuclear bodies that recruit CRM1, export cargo proteins, and certain nucleoporins and concomitantly affect nuclear protein and poly(A) + RNA export. SQSTM1-Nup214, although mostly cytoplasmic, also forms nuclear bodies and inhibits nuclear protein but not poly(A) + RNA export. The interaction of the fusion proteins with CRM1 is RanGTP-dependent, as shown in co-immunoprecipitation experiments and binding assays. Further analysis revealed that the Nup214 parts mediate the inhibition of nuclear export, whereas the SET or SQSTM1 part determines the localization of the fusion protein and therefore the extent of the effect. SET-Nup214 nuclear bodies are highly mobile structures, which are in equilibrium with the nucleoplasm in interphase and disassemble during mitosis or upon treatment of cells with the CRM1-inhibitor leptomycin B. Strikingly, we found that nucleoporins can be released from nuclear bodies and reintegrated into existing NPC. Our results point to nuclear bodies as a means of preventing the formation of potentially insoluble and harmful protein aggregates that also may serve as storage compartments for nuclear transport factors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Hepatitis B virus core protein allosteric modulators can distort and disrupt intact capsids.

    Science.gov (United States)

    Schlicksup, Christopher John; Wang, Joseph Che-Yen; Francis, Samson; Venkatakrishnan, Balasubramanian; Turner, William W; VanNieuwenhze, Michael; Zlotnick, Adam

    2018-01-29

    Defining mechanisms of direct-acting antivirals facilitates drug development and our understanding of virus function. Heteroaryldihydropyrimidines (HAPs) inappropriately activate assembly of hepatitis B virus (HBV) core protein (Cp), suppressing formation of virions. We examined a fluorophore-labeled HAP, HAP-TAMRA. HAP-TAMRA induced Cp assembly and also bound pre-assembled capsids. Kinetic and spectroscopic studies imply that HAP-binding sites are usually not available but are bound cooperatively. Using cryo-EM, we observed that HAP-TAMRA asymmetrically deformed capsids, creating a heterogeneous array of sharp angles, flat regions, and outright breaks. To achieve high resolution reconstruction (HAP-TAMRA caused quasi-sixfold vertices to become flatter and fivefold more angular. This transition led to asymmetric faceting. That a disordered crosslink could rescue symmetry implies that capsids have tensegrity properties. Capsid distortion and disruption is a new mechanism by which molecules like the HAPs can block HBV infection. © 2017, Schlicksup et al.

  10. Hepatitis B virus core protein allosteric modulators can distort and disrupt intact capsids

    Science.gov (United States)

    Schlicksup, Christopher John; Wang, Joseph Che-Yen; Francis, Samson; Venkatakrishnan, Balasubramanian; Turner, William W; VanNieuwenhze, Michael

    2018-01-01

    Defining mechanisms of direct-acting antivirals facilitates drug development and our understanding of virus function. Heteroaryldihydropyrimidines (HAPs) inappropriately activate assembly of hepatitis B virus (HBV) core protein (Cp), suppressing formation of virions. We examined a fluorophore-labeled HAP, HAP-TAMRA. HAP-TAMRA induced Cp assembly and also bound pre-assembled capsids. Kinetic and spectroscopic studies imply that HAP-binding sites are usually not available but are bound cooperatively. Using cryo-EM, we observed that HAP-TAMRA asymmetrically deformed capsids, creating a heterogeneous array of sharp angles, flat regions, and outright breaks. To achieve high resolution reconstruction (particle symmetry. We deduced that HAP-TAMRA caused quasi-sixfold vertices to become flatter and fivefold more angular. This transition led to asymmetric faceting. That a disordered crosslink could rescue symmetry implies that capsids have tensegrity properties. Capsid distortion and disruption is a new mechanism by which molecules like the HAPs can block HBV infection. PMID:29377794

  11. Vernonia DGATs can complement the disrupted oil and protein metabolism in epoxygenase-expressing soybean seeds.

    Science.gov (United States)

    Li, Runzhi; Yu, Keshun; Wu, Yongmei; Tateno, Mizuki; Hatanaka, Tomoko; Hildebrand, David F

    2012-01-01

    Plant oils can be useful chemical feedstocks such as a source of epoxy fatty acids. High seed-specific expression of a Stokesia laevis epoxygenase (SlEPX) in soybeans only results in 3-7% epoxide levels. SlEPX-transgenic soybean seeds also exhibited other phenotypic alterations, such as altered seed fatty acid profiles, reduced oil accumulation, and variable protein levels. SlEPX-transgenic seeds showed a 2-5% reduction in total oil content and protein levels of 30.9-51.4%. To address these pleiotrophic effects of SlEPX expression on other traits, transgenic soybeans were developed to co-express SlEPX and DGAT (diacylglycerol acyltransferase) genes (VgDGAT1 & 2) isolated from Vernonia galamensis, a high accumulator of epoxy fatty acids. These side effects of SlEPX expression were largely overcome in the DGAT co-expressing soybeans. Total oil and protein contents were restored to the levels in non-transgenic soybeans, indicating that both VgDGAT1 and VgDGAT2 could complement the disrupted phenotypes caused by over-expression of an epoxygenase in soybean seeds. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Oncogenes, radiation and cancer

    International Nuclear Information System (INIS)

    Michelin, S.C.

    1998-01-01

    The discovery of the oncogenic virus and the analysis of its nucleic acid, together with the development of new biochemical technology have permitted the partial knowledge of the molecular mechanisms responsible for the cellular neoplastic transformation. This work, besides describing the discovery of the first oncogenic virus and the experiments to demonstrate the existence of the oncogenes, summarizes its activation mechanisms and its intervention in cellular metabolisms. Ionizing radiation is among the external agents that induce the neoplastic process. Its participation in the genesis of this process and the contribution of oncogenes to the cellular radioresistance are among the topics, which are referred to another topic that makes reference. At the same time as the advancement of theoretical knowledge, lines of investigation for the application of the new concepts in diagnosis, prognosis and therapeutical treatment, were developed. An example of this, is the study of the participation of the oncogen c-erbB-2 in human breast cancer and its implications on the anti tumoral therapy. (author) [es

  13. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1)

    DEFF Research Database (Denmark)

    Marzec, Michal; Zhang, Qian; Goradia, Ami

    2008-01-01

    The mechanisms of malignant cell transformation caused by the oncogenic, chimeric nucleophosmin (NPM)/anaplastic lymphoma kinase (ALK) remain only partially understood, with most of the previous studies focusing mainly on the impact of NPM/ALK on cell survival and proliferation. Here we report th...

  14. Protein/lipid coaggregates are formed during α-synuclein-induced disruption of lipid bilayers

    DEFF Research Database (Denmark)

    van Maarschalkerweerd, Andreas; Vetri, Valeria; Langkilde, Annette Eva

    2014-01-01

    Amyloid formation is associated with neurodegenerative diseases such as Parkinson's disease (PD). Significant α-synuclein (αSN) deposition in lipid-rich Lewy bodies is a hallmark of PD. Nonetheless, an unraveling of the connection between neurodegeneration and amyloid fibrils, including the molec......Amyloid formation is associated with neurodegenerative diseases such as Parkinson's disease (PD). Significant α-synuclein (αSN) deposition in lipid-rich Lewy bodies is a hallmark of PD. Nonetheless, an unraveling of the connection between neurodegeneration and amyloid fibrils, including...... the molecular mechanisms behind potential amyloid-mediated toxic effects, is still missing. Interaction between amyloid aggregates and the lipid cell membrane is expected to play a key role in the disease progress. Here, we present experimental data based on hybrid analysis of two-photon-microscopy, solution...... small-angle X-ray scattering and circular dichroism data. Data show in real time changes in liposome morphology and stability upon protein addition and reveal that membrane disruption mediated by amyloidogenic αSN is associated with dehydration of anionic lipid membranes and stimulation of protein...

  15. Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells

    International Nuclear Information System (INIS)

    Sides, Mark D.; Block, Gregory J.; Shan, Bin; Esteves, Kyle C.; Lin, Zhen; Flemington, Erik K.; Lasky, Joseph A.

    2011-01-01

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies.

  16. Viral Interactions with PDZ Domain-Containing Proteins—An Oncogenic Trait?

    Directory of Open Access Journals (Sweden)

    Claire D. James

    2016-01-01

    Full Text Available Many of the human viruses with oncogenic capabilities, either in their natural host or in experimental systems (hepatitis B and C, human T cell leukaemia virus type 1, Kaposi sarcoma herpesvirus, human immunodeficiency virus, high-risk human papillomaviruses and adenovirus type 9, encode in their limited genome the ability to target cellular proteins containing PSD95/ DLG/ZO-1 (PDZ interaction modules. In many cases (but not always, the viruses have evolved to bind the PDZ domains using the same short linear peptide motifs found in host protein-PDZ interactions, and in some cases regulate the interactions in a similar fashion by phosphorylation. What is striking is that the diverse viruses target a common subset of PDZ proteins that are intimately involved in controlling cell polarity and the structure and function of intercellular junctions, including tight junctions. Cell polarity is fundamental to the control of cell proliferation and cell survival and disruption of polarity and the signal transduction pathways involved is a key event in tumourigenesis. This review focuses on the oncogenic viruses and the role of targeting PDZ proteins in the virus life cycle and the contribution of virus-PDZ protein interactions to virus-mediated oncogenesis. We highlight how many of the viral associations with PDZ proteins lead to deregulation of PI3K/AKT signalling, benefitting virus replication but as a consequence also contributing to oncogenesis.

  17. An Anti-Oncogenic Role for Decorin in Mammary Carcinoma

    National Research Council Canada - National Science Library

    Iozzo, Renato V

    2004-01-01

    .... In the preliminary data that support the basis of this proposal, we discovered that decorin causes a functional inactivation of the oncogenic ErbB2 protein in mammary carcinoma cells overexpressing ErbB2...

  18. Improved heterologous protein production by a tripeptidyl peptidase gene (AosedD) disruptant of the filamentous fungus Aspergillus oryzae.

    Science.gov (United States)

    Zhu, Lin; Nemoto, Takeshi; Yoon, Jaewoo; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2012-01-01

    Proteolytic degradation is one of the serious bottlenecks limiting the yields of heterologous protein production by Aspergillus oryzae. In this study, we selected a tripeptidyl peptidase gene AosedD (AO090166000084) as a candidate potentially degrading the heterologous protein, and performed localization analysis of the fusion protein AoSedD-EGFP in A. oryzae. As a result, the AoSedD-EGFP was observed in the septa and cell walls as well as in the culture medium, suggesting that AoSedD is a secretory enzyme. An AosedD disruptant was constructed to investigate an effect of AoSedD on the production level of heterologous proteins and protease activity. Both of the total protease and tripeptidyl peptidase activities in the culture medium of the AosedD disruptant were decreased as compared to those of the control strain. The maximum yields of recombinant bovine chymosin (CHY) and human lysozyme (HLY) produced by the AosedD disruptants showed approximately 2.9- and 1.7-fold increases, respectively, as compared to their control strains. These results suggest that AoSedD is one of the major proteases involved in the proteolytic degradation of recombinant proteins in A. oryzae.

  19. Brain amyloid β protein and memory disruption in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Weiming Xia

    2010-09-01

    Full Text Available Weiming XiaCenter for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USAAbstract: The development of amyloid-containing neuritic plaques is an invariable characteristic of Alzheimer’s diseases (AD. The conversion from monomeric amyloid β protein (Aβ to oligomeric Aβ and finally neuritic plaques is highly dynamic. The specific Aß species that is correlated with disease severity remains to be discovered. Oligomeric Aβ has been detected in cultured cells, rodent and human brains, as well as human cerebrospinal fluid. Synthetic, cell, and brain derived Aβ oligomers have been found to inhibit hippocampal long-term potentiation (LTP and this effect can be suppressed by the blockage of Aβ oligomer formation. A large body of evidence suggests that Aβ oligomers inhibit N-methyl-D-aspartate receptor dependent LTP; additional receptors have also been found to elicit downstream pathways upon binding to Aβ oligomers. Amyloid antibodies and small molecular compounds that reduce brain Aβ levels and block Aβ oligomer formation are capable of reversing synaptic dysfunction and these approaches hold a promising therapeutic potential to rescue memory disruption.Keywords: Alzheimer, amyloid, oligomer, long-term potentiation, NMDA

  20. Ablation of whirlin long isoform disrupts the USH2 protein complex and causes vision and hearing loss.

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2010-05-01

    Full Text Available Mutations in whirlin cause either Usher syndrome type II (USH2, a deafness-blindness disorder, or nonsyndromic deafness. The molecular basis for the variable disease expression is unknown. We show here that only the whirlin long isoform, distinct from a short isoform by virtue of having two N-terminal PDZ domains, is expressed in the retina. Both long and short isoforms are expressed in the inner ear. The N-terminal PDZ domains of the long whirlin isoform mediates the formation of a multi-protein complex that includes usherin and VLGR1, both of which are also implicated in USH2. We localized this USH2 protein complex to the periciliary membrane complex (PMC in mouse photoreceptors that appears analogous to the frog periciliary ridge complex. The latter is proposed to play a role in photoreceptor protein trafficking through the connecting cilium. Mice carrying a targeted disruption near the N-terminus of whirlin manifest retinal and inner ear defects, reproducing the clinical features of human USH2 disease. This is in contrast to mice with mutations affecting the C-terminal portion of whirlin in which the phenotype is restricted to the inner ear. In mice lacking any one of the USH2 proteins, the normal localization of all USH2 proteins is disrupted, and there is evidence of protein destabilization. Taken together, our findings provide new insights into the pathogenic mechanism of Usher syndrome. First, the three USH2 proteins exist as an obligatory functional complex in vivo, and loss of one USH2 protein is functionally close to loss of all three. Second, defects in the three USH2 proteins share a common pathogenic process, i.e., disruption of the PMC. Third, whirlin mutations that ablate the N-terminal PDZ domains lead to Usher syndrome, but non-syndromic hearing loss will result if they are spared.

  1. Acetylation of the c-MYC oncoprotein is required for cooperation with the HTLV-1 p30{sup II} accessory protein and the induction of oncogenic cellular transformation by p30{sup II}/c-MYC

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Megan M.; Ko, Bookyung; Kim, Janice; Brady, Rebecca; Heatley, Hayley C.; He, Jeffrey; Harrod, Carolyn K.; Barnett, Braden [Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design, and Delivery, Southern Methodist University, Dallas, TX 75275-0376 (United States); Ratner, Lee [Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Lairmore, Michael D. [University of California-Davis, School of Veterinary Medicine, One Shields Avenue, Davis, CA 95618 (United States); Martinez, Ernest [Department of Biochemistry, University of California, Riverside, CA 92521 (United States); Lüscher, Bernhard [Institute of Biochemistry, Klinikum, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen (Germany); Robson, Craig N. [Northern Institute for Cancer Research, Newcastle University, The Medical School, Newcastle upon Tyne, NE2 4HH (United Kingdom); Henriksson, Marie [Department of Microbiology, Cell and Tumor Biology, Karolinska Institutet, Stockholm (Sweden); Harrod, Robert, E-mail: rharrod@smu.edu [Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design, and Delivery, Southern Methodist University, Dallas, TX 75275-0376 (United States)

    2015-02-15

    The human T-cell leukemia retrovirus type-1 (HTLV-1) p30{sup II} protein is a multifunctional latency-maintenance factor that negatively regulates viral gene expression and deregulates host signaling pathways involved in aberrant T-cell growth and proliferation. We have previously demonstrated that p30{sup II} interacts with the c-MYC oncoprotein and enhances c-MYC-dependent transcriptional and oncogenic functions. However, the molecular and biochemical events that mediate the cooperation between p30{sup II} and c-MYC remain to be completely understood. Herein we demonstrate that p30{sup II} induces lysine-acetylation of the c-MYC oncoprotein. Acetylation-defective c-MYC Lys→Arg substitution mutants are impaired for oncogenic transformation with p30{sup II} in c-myc{sup −/−} HO15.19 fibroblasts. Using dual-chromatin-immunoprecipitations (dual-ChIPs), we further demonstrate that p30{sup II} is present in c-MYC-containing nucleoprotein complexes in HTLV-1-transformed HuT-102 T-lymphocytes. Moreover, p30{sup II} inhibits apoptosis in proliferating cells expressing c-MYC under conditions of genotoxic stress. These findings suggest that c-MYC-acetylation is required for the cooperation between p30{sup II}/c-MYC which could promote proviral replication and contribute to HTLV-1-induced carcinogenesis. - Highlights: • Acetylation of c-MYC is required for oncogenic transformation by HTLV-1 p30{sup II}/c-MYC. • Acetylation-defective c-MYC mutants are impaired for foci-formation by p30{sup II}/c-MYC. • The HTLV-1 p30{sup II} protein induces lysine-acetylation of c-MYC. • p30{sup II} is present in c-MYC nucleoprotein complexes in HTLV-1-transformed T-cells. • HTLV-1 p30{sup II} inhibits apoptosis in c-MYC-expressing proliferating cells.

  2. Granzyme B Disrupts Central Metabolism and Protein Synthesis in Bacteria to Promote an Immune Cell Death Program.

    Science.gov (United States)

    Dotiwala, Farokh; Sen Santara, Sumit; Binker-Cosen, Andres Ariel; Li, Bo; Chandrasekaran, Sriram; Lieberman, Judy

    2017-11-16

    Human cytotoxic lymphocytes kill intracellular microbes. The cytotoxic granule granzyme proteases released by cytotoxic lymphocytes trigger oxidative bacterial death by disrupting electron transport, generating superoxide anion and inactivating bacterial oxidative defenses. However, they also cause non-oxidative cell death because anaerobic bacteria are also killed. Here, we use differential proteomics to identify granzyme B substrates in three unrelated bacteria: Escherichia coli, Listeria monocytogenes, and Mycobacteria tuberculosis. Granzyme B cleaves a highly conserved set of proteins in all three bacteria, which function in vital biosynthetic and metabolic pathways that are critical for bacterial survival under diverse environmental conditions. Key proteins required for protein synthesis, folding, and degradation are also substrates, including multiple aminoacyl tRNA synthetases, ribosomal proteins, protein chaperones, and the Clp system. Because killer cells use a multipronged strategy to target vital pathways, bacteria may not easily become resistant to killer cell attack. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Petri Net-Based Model of Helicobacter pylori Mediated Disruption of Tight Junction Proteins in Stomach Lining during Gastric Carcinoma

    Directory of Open Access Journals (Sweden)

    Anam Naz

    2017-09-01

    Full Text Available Tight junctions help prevent the passage of digestive enzymes and microorganisms through the space between adjacent epithelial cells lining. However, Helicobacter pylori encoded virulence factors negatively regulate these tight junctions and contribute to dysfunction of gastric mucosa. Here, we have predicted the regulation of important tight junction proteins, such as Zonula occludens-1, Claudin-2 and Connexin32 in the presence of pathogenic proteins. Molecular events such as post translational modifications and crosstalk between phosphorylation, O-glycosylation, palmitoylation and methylation are explored which may compromise the integrity of these tight junction proteins. Furthermore, the signaling pathways disrupted by dysregulated kinases, proteins and post-translational modifications are reviewed to design an abstracted computational model showing the situation-dependent dynamic behaviors of these biological processes and entities. A qualitative hybrid Petri Net model is therefore constructed showing the altered host pathways in the presence of virulence factor cytotoxin-associated gene A, leading to the disruption of tight junction proteins. The model is qualitative logic-based, which does not depend on any kinetic parameter and quantitative data and depends on knowledge derived from experiments. The designed model provides insights into the tight junction disruption and disease progression. Model is then verified by the available experimental data, nevertheless formal in vitro experimentation is a promising way to ensure its validation. The major findings propose that H. pylori activated kinases are responsible to trigger specific post translational modifications within tight junction proteins, at specific sites. These modifications may favor alterations in gastric barrier and provide a route to bacterial invasion into host cells.

  4. Oncogene expression in primary lung tumors in dogs that inhaled 239PuO2

    International Nuclear Information System (INIS)

    Kelly, G.; Kerkof, P.R.; Haley, P.J.

    1988-01-01

    Ten radiation-induced and three spontaneous lung tumors were analyzed for aberrant expression of known oncogenes. In 12 of 13 tumors tested, sequences hybridizing to the c-myc oncogene were expressed at levels 1.5 times higher than sequences hybridizing to β-actin. This level of oncogene expression was also observed in 9 of 13 tumors for 1 or more members of the ras family of oncogenes. Seven of thirteen tumors examined express sequences that hybridize with clones of v-ros or c-met. The ros and met clones both code for oncogenes whose normal homologues are transmembrane proteins related to the insulin receptor. (author)

  5. Prophylactic effect of rebamipide on aspirin-induced gastric lesions and disruption of tight junctional protein zonula occludens-1 distribution.

    Science.gov (United States)

    Suzuki, Takahiro; Yoshida, Norimasa; Nakabe, Nami; Isozaki, Yutaka; Kajikawa, Hirokazu; Takagi, Tomohisa; Handa, Osamu; Kokura, Satoshi; Ichikawa, Hiroshi; Naito, Yuji; Matsui, Hirofumi; Yoshikawa, Toshikazu

    2008-03-01

    Aspirin and nonsteroidal anti-inflammatory agents are known to induce gastroduodenal complications such as ulcer, bleeding, and dyspepsia. In this study, we examined the prophylactic effect of rebamipide, an anti-ulcer agent with free-radical scavenging and anti-inflammatory effect, on acidified aspirin-induced gastric mucosal injury in rats. In addition, we investigated the mucosal barrier functions disrupted by aspirin. Oral administration of acidified aspirin resulted in linear hemorrhagic erosions with increasing myeloperoxidase activity and thiobarbituric acid-reactive substance concentrations in the gastric mucosa. Rebamipide suppressed these acidified aspirin-induced gastric lesions and inflammatory changes significantly, and its protective effect was more potent in the case of repeated (twice daily for 3 days) treatment than single treatment before aspirin administration. Immunostaining of zonula occludens (ZO)-1, one of the tight junctional proteins, was strengthened in rat gastric mucosa after repeated administration of rebamipide. In addition, aspirin induced the increasing transport of fluorescine isothiocyanate-labeled dextrans with localized disruption and decreased expression of ZO-1 protein on rat gastric mucosal cell line RGM-1. Rebamipide effectively prevented aspirin-induced permeability changes and disruption of ZO-1 distribution. These results suggest that rebamipide protects against aspirin-induced gastric mucosal lesions by preserving gastric epithelial cell-to cell integrity in addition to the anti-inflammatory effects.

  6. The APC/C E3 Ligase Complex Activator FZR1 Restricts BRAF Oncogenic Function.

    Science.gov (United States)

    Wan, Lixin; Chen, Ming; Cao, Juxiang; Dai, Xiangpeng; Yin, Qing; Zhang, Jinfang; Song, Su-Jung; Lu, Ying; Liu, Jing; Inuzuka, Hiroyuki; Katon, Jesse M; Berry, Kelsey; Fung, Jacqueline; Ng, Christopher; Liu, Pengda; Song, Min Sup; Xue, Lian; Bronson, Roderick T; Kirschner, Marc W; Cui, Rutao; Pandolfi, Pier Paolo; Wei, Wenyi

    2017-04-01

    BRAF drives tumorigenesis by coordinating the activation of the RAS/RAF/MEK/ERK oncogenic signaling cascade. However, upstream pathways governing BRAF kinase activity and protein stability remain undefined. Here, we report that in primary cells with active APC FZR1 , APC FZR1 earmarks BRAF for ubiquitination-mediated proteolysis, whereas in cancer cells with APC-free FZR1, FZR1 suppresses BRAF through disrupting BRAF dimerization. Moreover, we identified FZR1 as a direct target of ERK and CYCLIN D1/CDK4 kinases. Phosphorylation of FZR1 inhibits APC FZR1 , leading to elevation of a cohort of oncogenic APC FZR1 substrates to facilitate melanomagenesis. Importantly, CDK4 and/or BRAF/MEK inhibitors restore APC FZR1 E3 ligase activity, which might be critical for their clinical effects. Furthermore, FZR1 depletion cooperates with AKT hyperactivation to transform primary melanocytes, whereas genetic ablation of Fzr1 synergizes with Pten loss, leading to aberrant coactivation of BRAF/ERK and AKT signaling in mice. Our findings therefore reveal a reciprocal suppression mechanism between FZR1 and BRAF in controlling tumorigenesis. Significance: FZR1 inhibits BRAF oncogenic functions via both APC-dependent proteolysis and APC-independent disruption of BRAF dimers, whereas hyperactivated ERK and CDK4 reciprocally suppress APC FZR1 E3 ligase activity. Aberrancies in this newly defined signaling network might account for BRAF hyperactivation in human cancers, suggesting that targeting CYCLIN D1/CDK4, alone or in combination with BRAF/MEK inhibition, can be an effective anti-melanoma therapy. Cancer Discov; 7(4); 424-41. ©2017 AACR. See related commentary by Zhang and Bollag, p. 356 This article is highlighted in the In This Issue feature, p. 339 . ©2017 American Association for Cancer Research.

  7. The use of yolk protein as biomarkers for endocrine disruption in molluscs

    DEFF Research Database (Denmark)

    Holbech, Henrik; Kinnberg, Karin Lund; Bjerregaard, Poul

    Invertebrates and especially molluscs have received increasing attention in relation to endocrine disrupting chemicals (EDs) during the last few years and the development of OECD test guidelines to assess the effect of EDs with molluscs are in progress. One of the main problems with the development...

  8. Protein differential expression induced by endocrine disrupting compounds in a terrestrial isopod.

    NARCIS (Netherlands)

    Lemos, M.F.L.; Esteves, A.C.; Samyn, B.; Timperman, I.; van Beeumen, J.; Correia, A.D.; van Gestel, C.A.M.; Soares, A.M.V.M.

    2010-01-01

    Endocrine disrupting compounds (EDCs) have been studied due to their impact on human health and increasing awareness of their impact on wildlife species. Studies concerning the organ-specific molecular effects of EDC in invertebrates are important to understand the mechanisms of action of this class

  9. Conditioned taste aversion memory and c-Fos induction are disrupted in RIIbeta-protein kinase A mutant mice.

    Science.gov (United States)

    Koh, Ming Teng; Clarke, Sharon N D A; Spray, Kristina J; Thiele, Todd E; Bernstein, Ilene L

    2003-07-14

    The cAMP-dependent protein kinase (PKA) signaling pathway has been implicated in many forms of learning. The present studies examined conditioned taste aversion (CTA) learning, an amygdala-dependent task, in mice with a targeted disruption of a gene for a specific regulatory subunit of PKA (RIIbeta), which is selectively expressed in amygdala. Null mutant (RIIbeta(-/-)) mice and littermate controls (RIIbeta(+/+)) were tested for protein synthesis-independent short-term memory (STM) and protein synthesis-dependent long-term memory (LTM) for CTAs. The ability of the unconditioned stimulus (US) drug, LiCl, to induce c-Fos in regions thought to be important in this learning was also determined. RIIbeta(-/-) mice showed significant impairment in CTA memory when tested 24h after training (LTM). In contrast, STM was normal. With regard to the c-Fos response to LiCl, the US drug, significant elevations were evident in brainstem (nucleus of the solitary tract) and pontine (parabrachial nucleus) regions, in mutants as well as wild-type controls. However, in amygdala, elevations were seen in controls but were absent in the mutants. These findings suggest that disruption of PKA signaling interferes with LTM consolidation of CTA and that a possible mediator of this effect is interference with c-Fos expression in amygdala which may be necessary for CTA memory.

  10. Endothelium-targeted overexpression of heat shock protein 27 ameliorates blood–brain barrier disruption after ischemic brain injury

    Science.gov (United States)

    Jiang, Xiaoyan; Zhang, Lili; Pu, Hongjian; Hu, Xiaoming; Zhang, Wenting; Cai, Wei; Gao, Yanqin; Leak, Rehana K.; Keep, Richard F.; Bennett, Michael V. L.; Chen, Jun

    2017-01-01

    The damage borne by the endothelial cells (ECs) forming the blood–brain barrier (BBB) during ischemic stroke and other neurological conditions disrupts the structure and function of the neurovascular unit and contributes to poor patient outcomes. We recently reported that structural aberrations in brain microvascular ECs—namely, uncontrolled actin polymerization and subsequent disassembly of junctional proteins, are a possible cause of the early onset BBB breach that arises within 30–60 min of reperfusion after transient focal ischemia. Here, we investigated the role of heat shock protein 27 (HSP27) as a direct inhibitor of actin polymerization and protectant against BBB disruption after ischemia/reperfusion (I/R). Using in vivo and in vitro models, we found that targeted overexpression of HSP27 specifically within ECs—but not within neurons—ameliorated BBB impairment 1–24 h after I/R. Mechanistically, HSP27 suppressed I/R-induced aberrant actin polymerization, stress fiber formation, and junctional protein translocation in brain microvascular ECs, independent of its protective actions against cell death. By preserving BBB integrity after I/R, EC-targeted HSP27 overexpression attenuated the infiltration of potentially destructive neutrophils and macrophages into brain parenchyma, thereby improving long-term stroke outcome. Notably, early poststroke administration of HSP27 attached to a cell-penetrating transduction domain (TAT-HSP27) rapidly elevated HSP27 levels in brain microvessels and ameliorated I/R-induced BBB disruption and subsequent neurological deficits. Thus, the present study demonstrates that HSP27 can function at the EC level to preserve BBB integrity after I/R brain injury. HSP27 may be a therapeutic agent for ischemic stroke and other neurological conditions involving BBB breakdown. PMID:28137866

  11. Disruption of the Acyl-CoA binding protein gene delays hepatic adaptation to metabolic changes at weaning

    DEFF Research Database (Denmark)

    Neess, Ditte; Marcher, Ann-Britt; Bloksgaard, Maria

    The acyl-CoA binding protein/diazepam binding inhibitor (ACBP/DBI) is an evolutionary conserved intracellular protein that binds C14-C22 acyl-CoA esters with very high affinity. ACBP is thought to act as an acyl-CoA transporter, and in vitro analyses have indicated that ACBP can transport acyl......-CoA esters between different enzymatic systems. However, little is known about the in vivo function in mammalian cells. We have generated mice with targeted disruption of ACBP (ACBP-/-). These mice are viable and fertile and develop normally. However, around weaning the ACBP-/- mice show decreased growth......) family, around the weaning period. As a result, the hepatic de novo cholesterogenesis is significantly decreased at weaning. The delayed induction of SREBP target genes around weaning is caused by a compromised processing and decreased expression of SREBP precursors leading to reduced binding of SREBP...

  12. Eukaryotic translation initiator protein 1A isoform, CCS-3, enhances the transcriptional repression of p21CIP1 by proto-oncogene FBI-1 (Pokemon/ZBTB7A).

    Science.gov (United States)

    Choi, Won-Il; Kim, Youngsoo; Kim, Yuri; Yu, Mi-young; Park, Jungeun; Lee, Choong-Eun; Jeon, Bu-Nam; Koh, Dong-In; Hur, Man-Wook

    2009-01-01

    FBI-1, a member of the POK (POZ and Kruppel) family of transcription factors, plays a role in differentiation, oncogenesis, and adipogenesis. eEF1A is a eukaryotic translation elongation factor involved in several cellular processes including embryogenesis, oncogenic transformation, cell proliferation, and cytoskeletal organization. CCS-3, a potential cervical cancer suppressor, is an isoform of eEF1A. We found that eEF1A forms a complex with FBI-1 by co-immunoprecipitation, SDS-PAGE, and MALDI-TOF Mass analysis of the immunoprecipitate. GST fusion protein pull-downs showed that FBI-1 directly interacts with eEF1A and CCS-3 via the zinc finger and POZ-domain of FBI-1. FBI-1 co-localizes with either eEF1A or CCS-3 at the nuclear periplasm. CCS-3 enhances transcriptional repression of the p21CIP1 gene (hereafter referred to as p21) by FBI-1. The POZ-domain of FBI-1 interacts with the co-repressors, SMRT and BCoR. We found that CCS-3 also interacts with the co-repressors independently. The molecular interaction between the co-repressors and CCS-3 at the POZ-domain of FBI-1 appears to enhance FBI-1 mediated transcriptional repression. Our data suggest that CCS-3 may be important in cell differentiation, tumorigenesis, and oncogenesis by interacting with the proto-oncogene FBI-1 and transcriptional co-repressors. Copyright 2009 S. Karger AG, Basel.

  13. α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models.

    Science.gov (United States)

    Mazzulli, Joseph R; Zunke, Friederike; Isacson, Ole; Studer, Lorenz; Krainc, Dimitri

    2016-02-16

    Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by the accumulation of protein aggregates comprised of α-synuclein (α-syn). A major barrier in treatment discovery for PD is the lack of identifiable therapeutic pathways capable of reducing aggregates in human neuronal model systems. Mutations in key components of protein trafficking and cellular degradation machinery represent important risk factors for PD; however, their precise role in disease progression and interaction with α-syn remains unclear. Here, we find that α-syn accumulation reduced lysosomal degradation capacity in human midbrain dopamine models of synucleinopathies through disrupting hydrolase trafficking. Accumulation of α-syn at the cell body resulted in aberrant association with cis-Golgi-tethering factor GM130 and disrupted the endoplasmic reticulum-Golgi localization of rab1a, a key mediator of vesicular transport. Overexpression of rab1a restored Golgi structure, improved hydrolase trafficking and activity, and reduced pathological α-syn in patient neurons. Our work suggests that enhancement of lysosomal hydrolase trafficking may prove beneficial in synucleinopathies and indicates that human midbrain disease models may be useful for identifying critical therapeutic pathways in PD and related disorders.

  14. A Network-Based Model of Oncogenic Collaboration for Prediction of Drug Sensitivity

    Directory of Open Access Journals (Sweden)

    Ted G Laderas

    2015-12-01

    Full Text Available Tumorigenesis is a multi-step process, involving the acquisition of multiple oncogenic mutations that transform cells, resulting in systemic dysregulation that enables proliferation, among other cancer hallmarks. High throughput omics techniques are used in precision medicine, allowing identification of these mutations with the goal of identifying treatments that target them. However, the multiplicity of oncogenes required for transformation, known as oncogenic collaboration, makes assigning effective treatments difficult. Motivated by this observation, we propose a new type of oncogenic collaboration where mutations in genes that interact with an oncogene may contribute to its dysregulation, a new genomic feature that we term surrogate oncogenes. By mapping mutations to a protein/protein interaction network, we can determine significance of the observed distribution using permutation-based methods. For a panel of 38 breast cancer cell lines, we identified significant surrogate oncogenes in oncogenes such as BRCA1 and ESR1. In addition, using Random Forest Classifiers, we show that these significant surrogate oncogenes predict drug sensitivity for 74 drugs in the breast cancer cell lines with a mean error rate of 30.9%. Additionally, we show that surrogate oncogenes are predictive of survival in patients. The surrogate oncogene framework incorporates unique or rare mutations on an individual level. Our model has the potential for integrating patient-unique mutations in predicting drug-sensitivity, suggesting a potential new direction in precision medicine, as well as a new approach for drug development. Additionally, we show the prevalence of significant surrogate oncogenes in multiple cancers within the Cancer Genome Atlas, suggesting that surrogate oncogenes may be a useful genomic feature for guiding pancancer analyses and assigning therapies across many tissue types.

  15. The expanded octarepeat domain selectively binds prions and disrupts homomeric prion protein interactions

    NARCIS (Netherlands)

    Leliveld, S. R.; Dame, R.T.; Wuite, G.J.L.; Stitz, L.; Korth, C.

    2006-01-01

    Insertion of additional octarepeats into the prion protein gene has been genetically linked to familial Creutzfeldt Jakob disease and hence to de novo generation of infectious prions. The pivotal event during prion formation is the conversion of the normal prion protein (PrP

  16. Loss of Subcellular Lipid Transport Due to ARV1 Deficiency Disrupts Organelle Homeostasis and Activates the Unfolded Protein Response*

    Science.gov (United States)

    Shechtman, Caryn F.; Henneberry, Annette L.; Seimon, Tracie A.; Tinkelenberg, Arthur H.; Wilcox, Lisa J.; Lee, Eunjee; Fazlollahi, Mina; Munkacsi, Andrew B.; Bussemaker, Harmen J.; Tabas, Ira; Sturley, Stephen L.

    2011-01-01

    The ARV1-encoded protein mediates sterol transport from the endoplasmic reticulum (ER) to the plasma membrane. Yeast ARV1 mutants accumulate multiple lipids in the ER and are sensitive to pharmacological modulators of both sterol and sphingolipid metabolism. Using fluorescent and electron microscopy, we demonstrate sterol accumulation, subcellular membrane expansion, elevated lipid droplet formation, and vacuolar fragmentation in ARV1 mutants. Motif-based regression analysis of ARV1 deletion transcription profiles indicates activation of Hac1p, an integral component of the unfolded protein response (UPR). Accordingly, we show constitutive splicing of HAC1 transcripts, induction of a UPR reporter, and elevated expression of UPR targets in ARV1 mutants. IRE1, encoding the unfolded protein sensor in the ER lumen, exhibits a lethal genetic interaction with ARV1, indicating a viability requirement for the UPR in cells lacking ARV1. Surprisingly, ARV1 mutants expressing a variant of Ire1p defective in sensing unfolded proteins are viable. Moreover, these strains also exhibit constitutive HAC1 splicing that interacts with DTT-mediated perturbation of protein folding. These data suggest that a component of UPR induction in arv1Δ strains is distinct from protein misfolding. Decreased ARV1 expression in murine macrophages also results in UPR induction, particularly up-regulation of activating transcription factor-4, CHOP (C/EBP homologous protein), and apoptosis. Cholesterol loading or inhibition of cholesterol esterification further elevated CHOP expression in ARV1 knockdown cells. Thus, loss or down-regulation of ARV1 disturbs membrane and lipid homeostasis, resulting in a disruption of ER integrity, one consequence of which is induction of the UPR. PMID:21266578

  17. 3D view to tumor suppression: Lkb1, polarity and the arrest of oncogenic c-Myc.

    Science.gov (United States)

    Partanen, Johanna I; Nieminen, Anni I; Klefstrom, Juha

    2009-03-01

    Machiavelli wrote, in his famous political treatise Il Principe, about disrupting organization by planting seeds of dissension or by eliminating necessary support elements. Tumor cells do exactly that by disrupting the organized architecture of epithelial cell layers during progression from contained benign tumor to full-blown invasive cancer. However, it is still unclear whether tumor cells primarily break free by activating oncogenes powerful enough to cause chaos or by eliminating tumor suppressor genes guarding the order of the epithelial organization. Studies in Drosophila have exposed genes that encode key regulators of the epithelial apicobasal polarity and which, upon inactivation, cause disorganization of the epithelial layers and promote unscheduled cell proliferation. These polarity regulator/tumor suppressor proteins, which include products of neoplastic tumor suppressor genes (nTSGs), are carefully positioned in polarized epithelial cells to maintain the order of epithelial structures and to impose a restraint on cell proliferation. In this review, we have explored the presence and prevalence of somatic mutations in the human counterparts of Drosophila polarity regulator/tumor suppressor genes across the human cancers. The screen points out LKB1, which is a causal genetic lesion in Peutz-Jeghers cancer syndrome, a gene mutated in certain sporadic cancers and a human homologue of the fly polarity gene par-4. We review the evidence linking Lkb1 protein to polarity regulation in the scope of our recent results suggesting a coupled role for Lkb1 as an architect of organized acinar structures and a suppressor of oncogenic c-Myc. We finally present models to explain how Lkb1-dependent formation of epithelial architecture is coupled to suppression of normal and oncogene-induced proliferation.

  18. Further enhanced production of heterologous proteins by double-gene disruption (ΔAosedD ΔAovps10) in a hyper-producing mutant of Aspergillus oryzae.

    Science.gov (United States)

    Zhu, Lin; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2013-07-01

    The filamentous fungus Aspergillus oryzae is used as one of the most favored hosts for heterologous protein production due to its ability to secrete large amounts of proteins into the culture medium. We previously generated a hyper-producing mutant strain of A. oryzae, AUT1, which produced 3.2- and 2.6-fold higher levels of bovine chymosin (CHY) and human lysozyme (HLY), respectively, compared with the wild-type strain. However, further enhancement of heterologous protein production by multiple gene disruption is difficult because of the low gene-targeting efficiency in strain AUT1. Here, we disrupted the ligD gene, which is involved in nonhomologous recombination, and the pyrG gene to create uridine/uracil auxotrophy in strain AUT1, to generate a hyper-producing mutant applicable to pyrG marker recycling with highly efficient gene targeting. We generated single and double disruptants of the tripeptidyl peptidase gene AosedD and vacuolar sorting receptor gene Aovps10 in the hyper-producing mutant background, and found that all disruptants showed significant increases in heterologous protein production. Particularly, double disruption of the Aovps10 and AosedD genes increased the production levels of CHY and HLY by 1.6- and 2.1-fold, respectively, compared with the parental strain. Thus, we successfully generated a fungal host for further enhancing the heterologous protein production ability by combining mutational and molecular breeding techniques.

  19. Disruption of endocytic trafficking protein Rab7 impairs invasiveness of cholangiocarcinoma cells.

    Science.gov (United States)

    Suwandittakul, Nantana; Reamtong, Onrapak; Molee, Pattamaporn; Maneewatchararangsri, Santi; Sutherat, Maleerat; Chaisri, Urai; Wongkham, Sopit; Adisakwattana, Poom

    2017-09-07

    Alterations and mutations of endo-lysosomal trafficking proteins have been associated with cancer progression. Identification and characterization of endo-lysosomal trafficking proteins in invasive cholangiocarcinoma (CCA) cells may benefit prognosis and drug design for CCA. To identify and characterize endo-lysosomal trafficking proteins in invasive CCA. A lysosomal-enriched fraction was isolated from a TNF-α induced invasive CCA cell line (KKU-100) and uninduced control cells and protein identification was performed with nano-LC MS/MS. Novel lysosomal proteins that were upregulated in invasive CCA cells were validated by real-time RT-PCR. We selected Rab7 for further studies of protein level using western blotting and subcellular localization using immunofluorescence. The role of Rab7 in CCA invasion was determined by siRNA gene knockdown and matrigel transwell assay. Rab7 mRNA and protein were upregulated in invasive CCA cells compared with non-treated controls. Immunofluorescence studies demonstrated that Rab7 was expressed predominantly in invasive CCA cells and was localized in the cytoplasm and lysosomes. Suppression of Rab7 translation significantly inhibited TNF-α-induced cell invasion compared to non-treated control (p= 0.044). Overexpression of Rab7 in CCA cells was associated with cell invasion, supporting Rab7 as a novel candidate for the development of diagnostic and therapeutic strategies for CCA.

  20. Overexpression of Arabidopsis plasmodesmata germin-like proteins disrupts root growth and development.

    Science.gov (United States)

    Ham, Byung-Kook; Li, Gang; Kang, Byung-Ho; Zeng, Fanchang; Lucas, William J

    2012-09-01

    In plants, a population of non-cell-autonomous proteins (NCAPs), including numerous transcription factors, move cell to cell through plasmodesmata (PD). In many cases, the intercellular trafficking of these NCAPs is regulated by their interaction with specific PD components. To gain further insight into the functions of this NCAP pathway, coimmunoprecipitation experiments were performed on a tobacco (Nicotiana tabacum) plasmodesmal-enriched cell wall protein preparation using as bait the NCAP, pumpkin (Cucurbita maxima) PHLOEM PROTEIN16 (Cm-PP16). A Cm-PP16 interaction partner, Nt-PLASMODESMAL GERMIN-LIKE PROTEIN1 (Nt-PDGLP1) was identified and shown to be a PD-located component. Arabidopsis thaliana putative orthologs, PDGLP1 and PDGLP2, were identified; expression studies indicated that, postgermination, these proteins were preferentially expressed in the root system. The PDGLP1 signal peptide was shown to function in localization to the PD by a novel mechanism involving the endoplasmic reticulum-Golgi secretory pathway. Overexpression of various tagged versions altered root meristem function, leading to reduced primary root but enhanced lateral root growth. This effect on root growth was corrected with an inability of these chimeric proteins to form stable PD-localized complexes. PDGLP1 and PDGLP2 appear to be involved in regulating primary root growth by controlling phloem-mediated allocation of resources between the primary and lateral root meristems.

  1. SPRYSEC effectors: a versatile protein-binding platform to disrupt plant innate immunity

    Directory of Open Access Journals (Sweden)

    Amalia Diaz-Granados

    2016-10-01

    Full Text Available Persistent infections by sedentary plant-parasitic nematodes are a major threat to important food crops all over the world. These round worms manipulate host plant cell morphology and physiology to establish sophisticated feeding structures. Key modifications to plant cells during their transition into feeding structures are largely attributed to the activity of effectors secreted by the nematodes. The SPRYSEC effectors were initially identified in the potato cyst nematodes Globodera rostochiensis and G. pallida, and are characterized by a single SPRY domain, a non-catalytic domain present in modular proteins with different functions. The SPRY domain is wide-spread among eukaryotes and thought to be involved in mediating protein-protein interactions. Thus far, the SPRY domain is only reported as a functional domain in effectors of plant-parasitic nematodes, but not of other plant pathogens. SPRYSEC effectors have been implicated in both suppression and activation of plant immunity, but other possible roles in nematode virulence remain undefined. Here, we review the latest reports on the structure, function, and sequence diversity of SPRYSEC effectors, which provide support for a model featuring these effectors as a versatile protein-binding platform for the nematodes to target a wide range of host proteins during parasitism.

  2. Oncogene expression in primary lung tumors in dogs that inhaled {sup 239}PuO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, G; Kerkof, P R; Haley, P J

    1988-12-01

    Ten radiation-induced and three spontaneous lung tumors were analyzed for aberrant expression of known oncogenes. In 12 of 13 tumors tested, sequences hybridizing to the c-myc oncogene were expressed at levels 1.5 times higher than sequences hybridizing to {beta}-actin. This level of oncogene expression was also observed in 9 of 13 tumors for 1 or more members of the ras family of oncogenes. Seven of thirteen tumors examined express sequences that hybridize with clones of v-ros or c-met. The ros and met clones both code for oncogenes whose normal homologues are transmembrane proteins related to the insulin receptor. (author)

  3. The Non-structural Protein of Crimean-Congo Hemorrhagic Fever Virus Disrupts the Mitochondrial Membrane Potential and Induces Apoptosis*

    Science.gov (United States)

    Barnwal, Bhaskar; Karlberg, Helen; Mirazimi, Ali; Tan, Yee-Joo

    2016-01-01

    Viruses have developed distinct strategies to overcome the host defense system. Regulation of apoptosis in response to viral infection is important for virus survival and dissemination. Like other viruses, Crimean-Congo hemorrhagic fever virus (CCHFV) is known to regulate apoptosis. This study, for the first time, suggests that the non-structural protein NSs of CCHFV, a member of the genus Nairovirus, induces apoptosis. In this report, we demonstrated the expression of CCHFV NSs, which contains 150 amino acid residues, in CCHFV-infected cells. CCHFV NSs undergoes active degradation during infection. We further demonstrated that ectopic expression of CCHFV NSs induces apoptosis, as reflected by caspase-3/7 activity and cleaved poly(ADP-ribose) polymerase, in different cell lines that support CCHFV replication. Using specific inhibitors, we showed that CCHFV NSs induces apoptosis via both intrinsic and extrinsic pathways. The minimal active region of the CCHFV NSs protein was determined to be 93–140 amino acid residues. Using alanine scanning, we demonstrated that Leu-127 and Leu-135 are the key residues for NSs-induced apoptosis. Interestingly, CCHFV NSs co-localizes in mitochondria and also disrupts the mitochondrial membrane potential. We also demonstrated that Leu-127 and Leu-135 are important residues for disruption of the mitochondrial membrane potential by NSs. Therefore, these results indicate that the C terminus of CCHFV NSs triggers mitochondrial membrane permeabilization, leading to activation of caspases, which, ultimately, leads to apoptosis. Given that multiple factors contribute to apoptosis during CCHFV infection, further studies are needed to define the involvement of CCHFV NSs in regulating apoptosis in infected cells. PMID:26574543

  4. Oncogene-inducible organoids as a miniature platform to assess cancer characteristics

    NARCIS (Netherlands)

    Mizutani, Tomohiro; Tsukamoto, Yoshiyuki; Clevers, Hans

    2017-01-01

    Direct effects of oncogenic proteins or inhibitor treatments on signaling pathways are difficult to assess in transgenic mice. In this issue, Riemer et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201610058) demonstrate that oncogene-inducible organoids offer the experimental versatility of

  5. Oncogenes, radiation and cancer; Oncogenes, radiacion y cancer

    Energy Technology Data Exchange (ETDEWEB)

    Michelin, S C

    1999-12-31

    The discovery of the oncogenic virus and the analysis of its nucleic acid, together with the development of new biochemical technology have permitted the partial knowledge of the molecular mechanisms responsible for the cellular neoplastic transformation. This work, besides describing the discovery of the first oncogenic virus and the experiments to demonstrate the existence of the oncogenes, summarizes its activation mechanisms and its intervention in cellular metabolisms. Ionizing radiation is among the external agents that induce the neoplastic process. Its participation in the genesis of this process and the contribution of oncogenes to the cellular radioresistance are among the topics, which are referred to another topic that makes reference. At the same time as the advancement of theoretical knowledge, lines of investigation for the application of the new concepts in diagnosis, prognosis and therapeutical treatment, were developed. An example of this, is the study of the participation of the oncogen c-erbB-2 in human breast cancer and its implications on the anti tumoral therapy. (author) 87 refs., 7 figs., 3 tabs. [Espanol] El descubrimiento de los virus oncogenicos y el analisis de su acido nucleico, junto con el desarrollo de nuevas tecnicas bioquimicas, ha permitido conocer parcialmente los mecanismos moleculares responsables de la transformacion de una celula normal en neoplasica. En este trabajo, ademas de describir el descubrimiento de los primeros virus oncogenicos y las experiencias para demostrar la existencia de los oncogenes, se resumen sus mecanismos de activacion y su intervencion en el metabolismo celular. Entre los agentes expernos que inducen un proceso oncogenico, se encuentran las radiaciones ionizantes. Su participacion en la genesis de este proceso y la contribucion de los oncogenes a la radioresistencia de las celulas tumorales, es otro de los temas a que se hace referencia. Paralelamente al avance del conocimiento teorico, se

  6. Disease-associated mutations disrupt functionally important regions of intrinsic protein disorder.

    Directory of Open Access Journals (Sweden)

    Vladimir Vacic

    Full Text Available The effects of disease mutations on protein structure and function have been extensively investigated, and many predictors of the functional impact of single amino acid substitutions are publicly available. The majority of these predictors are based on protein structure and evolutionary conservation, following the assumption that disease mutations predominantly affect folded and conserved protein regions. However, the prevalence of the intrinsically disordered proteins (IDPs and regions (IDRs in the human proteome together with their lack of fixed structure and low sequence conservation raise a question about the impact of disease mutations in IDRs. Here, we investigate annotated missense disease mutations and show that 21.7% of them are located within such intrinsically disordered regions. We further demonstrate that 20% of disease mutations in IDRs cause local disorder-to-order transitions, which represents a 1.7-2.7 fold increase compared to annotated polymorphisms and neutral evolutionary substitutions, respectively. Secondary structure predictions show elevated rates of transition from helices and strands into loops and vice versa in the disease mutations dataset. Disease disorder-to-order mutations also influence predicted molecular recognition features (MoRFs more often than the control mutations. The repertoire of disorder-to-order transition mutations is limited, with five most frequent mutations (R→W, R→C, E→K, R→H, R→Q collectively accounting for 44% of all deleterious disorder-to-order transitions. As a proof of concept, we performed accelerated molecular dynamics simulations on a deleterious disorder-to-order transition mutation of tumor protein p63 and, in agreement with our predictions, observed an increased α-helical propensity of the region harboring the mutation. Our findings highlight the importance of mutations in IDRs and refine the traditional structure-centric view of disease mutations. The results of this study

  7. The antituberculosis antibiotic capreomycin inhibits protein synthesis by disrupting interaction between ribosomal proteins L12 and L10.

    Science.gov (United States)

    Lin, Yuan; Li, Yan; Zhu, Ningyu; Han, Yanxing; Jiang, Wei; Wang, Yanchang; Si, Shuyi; Jiang, Jiandong

    2014-01-01

    Capreomycin is a second-line drug for multiple-drug-resistant tuberculosis (TB). However, with increased use in clinics, the therapeutic efficiency of capreomycin is decreasing. To better understand TB resistance to capreomycin, we have done research to identify the molecular target of capreomycin. Mycobacterium tuberculosis ribosomal proteins L12 and L10 interact with each other and constitute the stalk of the 50S ribosomal subunit, which recruits initiation and elongation factors during translation. Hence, the L12-L10 interaction is considered to be essential for ribosomal function and protein synthesis. Here we provide evidence showing that capreomycin inhibits the L12-L10 interaction by using an established L12-L10 interaction assay. Overexpression of L12 and/or L10 in M. smegmatis, a species close to M. tuberculosis, increases the MIC of capreomycin. Moreover, both elongation factor G-dependent GTPase activity and ribosome-mediated protein synthesis are inhibited by capreomycin. When protein synthesis was blocked with thiostrepton, however, the bactericidal activity of capreomycin was restrained. All of these results suggest that capreomycin seems to inhibit TB by interrupting the L12-L10 interaction. This finding might provide novel clues for anti-TB drug discovery.

  8. Oncogenic cancer/testis antigens

    DEFF Research Database (Denmark)

    Gjerstorff, Morten F; Andersen, Mads H; Ditzel, Henrik J

    2015-01-01

    Recent developments have set the stage for immunotherapy as a supplement to conventional cancer treatment. Consequently, a significant effort is required to further improve efficacy and specificity, particularly the identification of optimal therapeutic targets for clinical testing. Cancer....../testis antigens are immunogenic, highly cancer-specific, and frequently expressed in various types of cancer, which make them promising candidate targets for cancer immunotherapy, including cancer vaccination and adoptive T-cell transfer with chimeric T-cell receptors. Our current understanding of tumor...... immunology and immune escape suggests that targeting oncogenic antigens may be beneficial, meaning that identification of cancer/testis antigens with oncogenic properties is of high priority. Recent work from our lab and others provide evidence that many cancer/testis antigens, in fact, have oncogenic...

  9. Disruption of Protein Mannosylation Affects Candida guilliermondii Cell Wall, Immune Sensing, and Virulence

    Directory of Open Access Journals (Sweden)

    María J. Navarro-Arias

    2016-12-01

    Full Text Available The fungal cell wall contains glycoproteins that interact with the host immune system. In the prominent pathogenic yeast Candida albicans, Pmr1 acts as a Golgi-resident ion pump that provides cofactors to mannosyltransferases, regulating the synthesis of mannans attached to glycoproteins. To gain insight into a putative conservation of such a crucial process within opportunistic yeasts, we were particularly interested in studying the role of the PMR1 homolog in a low-virulent species that rarely causes candidiasis, Candida guilliermondii. We disrupted C. guilliermondii PMR1 and found that loss of Pmr1 affected cell growth and morphology, biofilm formation, susceptibility to cell wall perturbing agents, mannan levels, and the wall composition and organization. Despite there was a significant increment in the amount of β1,3-glucan exposed at the wall surface, this positively influenced only the ability of the mutant to stimulate IL-10 production by human monocytes, suggesting that recognition of both mannan and β1,3-glucan, is required to stimulate strong levels of pro-inflammatory cytokines. Accordingly, our results indicate C. guilliermondii sensing by monocytes was critically dependent on the recognition of N-linked mannans and β1,3-glucan, as reported in other Candida species. In addition, chemical remotion of cell wall O-linked mannans was found to positively influence the recognition of C. guilliermondii by human monocytes, suggesting that O-linked mannans mask other cell wall components from immune cells. This observation contrasts with that reported in C. albicans. Finally, mice infected with C. guilliermondii pmr1 null mutant cells had significantly lower fungal burdens compared to animals challenged with the parental strain. Accordingly, the null mutant showed inability to kill larvae in the Galleria mellonella infection model. This study thus demonstrates that mannans are relevant for the C. guilliermondii-host interaction, with

  10. Molecular Docking Explains Atomic Interaction between Plant-originated Ligands and Oncogenic E7 Protein of High Risk Human Papillomavirus Type 16

    Directory of Open Access Journals (Sweden)

    Satish Kumar

    2014-12-01

    Full Text Available Cervical cancer caused by Human papillomavirus (HPV is one of the leading causes of cancer mortality in women worldwide, particularly in the developing countries. In the last few decades, various compounds from plant origin such as Curcumin, Epigallocatechin gallate (EGCG, Jaceosidin, Resveratrol etc. have been used as anti cancer therapeutic agents. Different studies have shown these plant-originated compounds are able to suppress HPV infection. The E6 and E7 oncoproteins of high-risk HPV play a key role in HPV related cancers. In this study, we explored these ligands from plants origin against E7 oncoprotein of high risk HPV 16, which is known to inactivate tumor suppressor pRb protein. A robust homology model of HPV 16 E7 was built to foresee the interaction mechanism of E7 oncoprotein with these ligands using structure-based drug designing approach. Docking studies demonstrate the interaction of these ligands with pRb binding site of E7 protein by residues Tyr52, Asn53, Val55, Phe57, Cys59, Ser63, Thr64, Thr72, Arg77, Glu80 and Asp81 and help restoration of pRb functioning. This in silico based atomic interaction between these ligands and E7 protein may assist in validating the plant-originated ligands as effective drugs against HPV.

  11. Targeted disruption of fibrinogen like protein-1 accelerates hepatocellular carcinoma development

    International Nuclear Information System (INIS)

    Nayeb-Hashemi, Hamed; Desai, Anal; Demchev, Valeriy; Bronson, Roderick T.; Hornick, Jason L.; Cohen, David E.; Ukomadu, Chinweike

    2015-01-01

    Fibrinogen like protein-1 (Fgl1) is a predominantly liver expressed protein that has been implicated as both a hepatoprotectant and a hepatocyte mitogen. Fgl1 expression is decreased in hepatocellular carcinoma (HCC) and its loss correlates with a poorly differentiated phenotype. To better elucidate the role of Fgl1 in hepatocarcinogenesis, we treated mice wild type or null for Fgl1 with diethyl nitrosamine and monitored for incidence of hepatocellular cancer. We find that mice lacking Fgl1 develop HCC at more than twice the rate of wild type mice. We show that hepatocellular cancers from Fgl1 null mice are molecularly distinct from those of the wild type mice. In tumors from Fgl1 null mice there is enhanced activation of Akt and downstream targets of the mammalian target of rapamycin (mTOR). In addition, there is paradoxical up regulation of putative hepatocellular cancer tumor suppressors; tripartite motif-containing protein 35 (Trim35) and tumor necrosis factor super family 10b (Tnfrsf10b). Taken together, these findings suggest that Fgl1 acts as a tumor suppressor in hepatocellular cancer through an Akt dependent mechanism and supports its role as a potential therapeutic target in HCC. - Highlights: • Fgl1 knockout mice (Fgl1KO) are more prone to carcinogen-induced liver cancer compared to wild type (WT) mates. • Tumors from the Fgl1KO are molecularly distinct with enhanced Akt and mTOR activity in comparison with Fgl1WT tumors. • Tumors from the Fgl1KO have enhanced expression of Trim35 and Tnfrsf10b, putative HCC tumor suppressors

  12. Targeted disruption of fibrinogen like protein-1 accelerates hepatocellular carcinoma development

    Energy Technology Data Exchange (ETDEWEB)

    Nayeb-Hashemi, Hamed; Desai, Anal; Demchev, Valeriy [Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine. Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States); Bronson, Roderick T. [Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02115 (United States); Hornick, Jason L. [Department of Pathology, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States); Cohen, David E. [Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine. Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States); Ukomadu, Chinweike, E-mail: cukomadu@partners.org [Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine. Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States)

    2015-09-18

    Fibrinogen like protein-1 (Fgl1) is a predominantly liver expressed protein that has been implicated as both a hepatoprotectant and a hepatocyte mitogen. Fgl1 expression is decreased in hepatocellular carcinoma (HCC) and its loss correlates with a poorly differentiated phenotype. To better elucidate the role of Fgl1 in hepatocarcinogenesis, we treated mice wild type or null for Fgl1 with diethyl nitrosamine and monitored for incidence of hepatocellular cancer. We find that mice lacking Fgl1 develop HCC at more than twice the rate of wild type mice. We show that hepatocellular cancers from Fgl1 null mice are molecularly distinct from those of the wild type mice. In tumors from Fgl1 null mice there is enhanced activation of Akt and downstream targets of the mammalian target of rapamycin (mTOR). In addition, there is paradoxical up regulation of putative hepatocellular cancer tumor suppressors; tripartite motif-containing protein 35 (Trim35) and tumor necrosis factor super family 10b (Tnfrsf10b). Taken together, these findings suggest that Fgl1 acts as a tumor suppressor in hepatocellular cancer through an Akt dependent mechanism and supports its role as a potential therapeutic target in HCC. - Highlights: • Fgl1 knockout mice (Fgl1KO) are more prone to carcinogen-induced liver cancer compared to wild type (WT) mates. • Tumors from the Fgl1KO are molecularly distinct with enhanced Akt and mTOR activity in comparison with Fgl1WT tumors. • Tumors from the Fgl1KO have enhanced expression of Trim35 and Tnfrsf10b, putative HCC tumor suppressors.

  13. Loss of Oca2 disrupts the unfolded protein response and increases resistance to endoplasmic reticulum stress in melanocytes.

    Science.gov (United States)

    Cheng, Tsing; Orlow, Seth J; Manga, Prashiela

    2013-11-01

    Accumulation of proteins in the endoplasmic reticulum (ER) typically induces stress and initiates the unfolded protein response (UPR) to facilitate recovery. If homeostasis is not restored, apoptosis is induced. However, adaptation to chronic UPR activation can increase resistance to subsequent acute ER stress. We therefore investigated adaptive mechanisms in Oculocutaneous albinism type 2 (Oca2)-null melanocytes where UPR signaling is arrested despite continued tyrosinase accumulation leading to resistance to the chemical ER stressor thapsigargin. Although thapsigargin triggers UPR activation, instead of Perk-mediated phosphorylation of eIF2α, in Oca2-null melanocytes, eIF2α was rapidly dephosphorylated upon treatment. Dephosphorylation was mediated by the Gadd34-PP1α phosphatase complex. Gadd34-complex inhibition blocked eIF2α dephosphorylation and significantly increased Oca2-null melanocyte sensitivity to thapsigargin. Thus, Oca2-null melanocytes adapt to acute ER stress by disruption of pro-apoptotic Perk signaling, which promotes cell survival. This is the first study to demonstrate rapid eIF2α dephosphorylation as an adaptive mechanism to ER stress. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Plasmalemmal Vesicle Associated Protein-1 (PV-1 is a marker of blood-brain barrier disruption in rodent models

    Directory of Open Access Journals (Sweden)

    Ali Zarina S

    2008-02-01

    Full Text Available Abstract Background Plasmalemmal vesicle associated protein-1 (PV-1 is selectively expressed in human brain microvascular endothelial cells derived from clinical specimens of primary and secondary malignant brain tumors, cerebral ischemia, and other central nervous system (CNS diseases associated with blood-brain barrier breakdown. In this study, we characterize the murine CNS expression pattern of PV-1 to determine whether localized PV-1 induction is conserved across species and disease state. Results We demonstrate that PV-1 is selectively upregulated in mouse blood vessels recruited by brain tumor xenografts at the RNA and protein levels, but is not detected in non-neoplastic brain. Additionally, PV-1 is induced in a mouse model of acute ischemia. Expression is confined to the cerebovasculature within the region of infarct and is temporally regulated. Conclusion Our results confirm that PV-1 is preferentially induced in the endothelium of mouse brain tumors and acute ischemic brain tissue and corresponds to blood-brain barrier disruption in a fashion analogous to human patients. Characterization of PV-1 expression in mouse brain is the first step towards development of rodent models for testing anti-edema and anti-angiogenesis therapeutic strategies based on this molecule.

  15. Lack of protein-tyrosine sulfation disrupts photoreceptor outer segment morphogenesis, retinal function and retinal anatomy.

    Science.gov (United States)

    Sherry, David M; Murray, Anne R; Kanan, Yogita; Arbogast, Kelsey L; Hamilton, Robert A; Fliesler, Steven J; Burns, Marie E; Moore, Kevin L; Al-Ubaidi, Muayyad R

    2010-11-01

    To investigate the role(s) of protein-tyrosine sulfation in the retina, we examined retinal function and structure in mice lacking tyrosylprotein sulfotransferases (TPST) 1 and 2. Tpst double knockout (DKO; Tpst1(-/-) /Tpst2 (-/-) ) retinas had drastically reduced electroretinographic responses, although their photoreceptors exhibited normal responses in single cell recordings. These retinas appeared normal histologically; however, the rod photoreceptors had ultrastructurally abnormal outer segments, with membrane evulsions into the extracellular space, irregular disc membrane spacing and expanded intradiscal space. Photoreceptor synaptic terminals were disorganized in Tpst DKO retinas, but established ultrastructurally normal synapses, as did bipolar and amacrine cells; however, the morphology and organization of neuronal processes in the inner retina were abnormal. These results indicate that protein-tyrosine sulfation is essential for proper outer segment morphogenesis and synaptic function, but is not critical for overall retinal structure or synapse formation, and may serve broader functions in neuronal development and maintenance. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  16. Human Thyroid Cancer-1 (TC-1 is a vertebrate specific oncogenic protein that protects against copper and pro-apoptotic genes in yeast

    Directory of Open Access Journals (Sweden)

    Natalie K. Jones

    2015-07-01

    Full Text Available The human Thyroid Cancer-1 (hTC-1 protein, also known as C8orf4 was initially identified as a gene that was up-regulated in human thyroid cancer. Here we show that hTC-1 is a peptide that prevents the effects of over-expressing Bax in yeast. Analysis of the 106 residues of hTC-1 in available protein databases revealed direct orthologues in jawed-vertebrates, including mammals, frogs, fish and sharks. No TC-1 orthologue was detected in lower organisms, including yeast. Here we show that TC-1 is a general pro-survival peptide since it prevents the growth- and cell death-inducing effects of copper in yeast. Human TC-1 also prevented the deleterious effects that occur due to the over-expression of a number of key pro-apoptotic peptides, including YCA1, YBH3, NUC1, and AIF1. Even though the protective effects were more pronounced with the over-expression of YBH3 and YCA1, hTC-1 could still protect yeast mutants lacking YBH3 and YCA1 from the effects of copper sulfate. This suggests that the protective effects of TC-1 are not limited to specific pathways or processes. Taken together, our results indicate that hTC-1 is a pro-survival protein that retains its function when heterologously expressed in yeast. Thus yeast is a useful model to characterize the potential roles in cell death and survival of cancer related genes.

  17. A Novel Role for Keratin 17 in Coordinating Oncogenic Transformation and Cellular Adhesion in Ewing Sarcoma

    Science.gov (United States)

    Sankar, Savita; Tanner, Jason M.; Bell, Russell; Chaturvedi, Aashi; Randall, R. Lor; Beckerle, Mary C.

    2013-01-01

    Oncogenic transformation in Ewing sarcoma is caused by EWS/FLI, an aberrant transcription factor fusion oncogene. Glioma-associated oncogene homolog 1 (GLI1) is a critical target gene activated by EWS/FLI, but the mechanism by which GLI1 contributes to the transformed phenotype of Ewing sarcoma was unknown. In this work, we identify keratin 17 (KRT17) as a direct downstream target gene upregulated by GLI1. We demonstrate that KRT17 regulates cellular adhesion by activating AKT/PKB (protein kinase B) signaling. In addition, KRT17 is necessary for oncogenic transformation in Ewing sarcoma and accounts for much of the GLI1-mediated transformation function but via a mechanism independent of AKT signaling. Taken together, our data reveal previously unknown molecular functions for a cytoplasmic intermediate filament protein, KRT17, in coordinating EWS/FLI- and GLI1-mediated oncogenic transformation and cellular adhesion in Ewing sarcoma. PMID:24043308

  18. High-content image informatics of the structural nuclear protein NuMA parses trajectories for stem/progenitor cell lineages and oncogenic transformation.

    Science.gov (United States)

    Vega, Sebastián L; Liu, Er; Arvind, Varun; Bushman, Jared; Sung, Hak-Joon; Becker, Matthew L; Lelièvre, Sophie; Kohn, Joachim; Vidi, Pierre-Alexandre; Moghe, Prabhas V

    2017-02-01

    Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regions of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative "imaging-derived" parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Transformation and oncogenicity by Adenoviruses

    NARCIS (Netherlands)

    Bernards, R.A.; Eb, A.J. van der

    1984-01-01

    Adenoviruses have attracted considerable attention since it was discovered by TRENTIN et all. and HUEBNER et al. that certain species (formerly called serotypes) are oncogenic when injected into newborn hamsters. Since then, adenoviruses have been used extensively as a model for studies on tumor

  20. [Expression of erythroblastic leukemia viral oncogene homolog 3 (ErbB-3) binding protein-1, matrix metalloproteinases, eplthelial cadherin in adenoid cystic carcinoma and correlation analysis].

    Science.gov (United States)

    Sun, Jian; Yu, You-cheng; Luo, Yi-xi; Tian, Zhen

    2012-12-01

    To investigate the expression of ErbB-3 binding protein-1 (EBP-1), matrix metalloproteinase 9 (MMP-9) and E-cadherin (E-cad) in adenoid cystic carcinoma and their correlation. Immunohistochemistry(PV6000 method) was used to detect EBP-1, MMP-9 and E-cad expression in 66 cases of adenoid cystic carcinoma tissues and matched para-cancerous normal tissues. In this study all cases were successfully followed up. The positive expression rate of EBP-1 in adenoid cystic carcinoma tissues was 85%. EBP-1 expression was significantly correlated to pathological pattern and clinical stage (P correlation between EBP-1 and E-cad expression, and positive correlation between EBP-1 and MMP-9. EBP-1 and its correlation with MMP-9 and E-cad may be used as useful indicators for clinical assessment of tumor biological behavior and prognosis in patients with adenoid cystic carcinoma.

  1. Inhibition of the oncogenic fusion protein EWS-FLI1 causes G2-M cell cycle arrest and enhanced vincristine sensitivity in Ewing's sarcoma.

    Science.gov (United States)

    Zöllner, Stefan K; Selvanathan, Saravana P; Graham, Garrett T; Commins, Ryan M T; Hong, Sung Hyeok; Moseley, Eric; Parks, Sydney; Haladyna, Jessica N; Erkizan, Hayriye V; Dirksen, Uta; Hogarty, Michael D; Üren, Aykut; Toretsky, Jeffrey A

    2017-10-03

    Ewing's sarcoma (ES) is a rare and highly malignant cancer that grows in the bones or surrounding tissues mostly affecting adolescents and young adults. A chimeric fusion between the RNA binding protein EWS and the ETS family transcription factor FLI1 (EWS-FLI1), which is generated from a chromosomal translocation, is implicated in driving most ES cases by modulation of transcription and alternative splicing. The small-molecule YK-4-279 inhibits EWS-FLI1 function and induces apoptosis in ES cells. We aimed to identify both the underlying mechanism of the drug and potential combination therapies that might enhance its antitumor activity. We tested 69 anticancer drugs in combination with YK-4-279 and found that vinca alkaloids exhibited synergy with YK-4-279 in five ES cell lines. The combination of YK-4-279 and vincristine reduced tumor burden and increased survival in mice bearing ES xenografts. We determined that independent drug-induced events converged to cause this synergistic therapeutic effect. YK-4-279 rapidly induced G 2 -M arrest, increased the abundance of cyclin B1, and decreased EWS-FLI1-mediated generation of microtubule-associated proteins, which rendered cells more susceptible to microtubule depolymerization by vincristine. YK-4-279 reduced the expression of the EWS-FLI1 target gene encoding the ubiquitin ligase UBE2C, which, in part, contributed to the increase in cyclin B1. YK-4-279 also increased the abundance of proapoptotic isoforms of MCL1 and BCL2, presumably through inhibition of alternative splicing by EWS-FLI1, thus promoting cell death in response to vincristine. Thus, a combination of vincristine and YK-4-279 might be therapeutically effective in ES patients. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation.

    Science.gov (United States)

    Choi, Dongsic; Lee, Tae Hoon; Spinelli, Cristiana; Chennakrishnaiah, Shilpa; D'Asti, Esterina; Rak, Janusz

    2017-07-01

    Pathogenesis of human cancers bridges intracellular oncogenic driver events and their impact on intercellular communication. Among multiple mediators of this 'pathological connectivity' the role of extracellular vesicles (EVs) and their subsets (exosomes, ectosomes, oncosomes) is of particular interest for several reasons. The release of EVs from cancer cells represents a unique mechanism of regulated expulsion of bioactive molecules, a process that also mediates cell-to-cell transfer of lipids, proteins, and nucleic acids. Biological effects of these processes have been implicated in several aspects of cancer-related pathology, including tumour growth, invasion, angiogenesis, metastasis, immunity and thrombosis. Notably, the emerging evidence suggests that oncogenic mutations may impact several aspects of EV-mediated cell-cell communication including: (i) EV release rate and protein content; (ii) molecular composition of cancer EVs; (iii) the inclusion of oncogenic and mutant macromolecules in the EV cargo; (iv) EV-mediated release of genomic DNA; (v) deregulation of mechanisms responsible for EV biogenesis (vesiculome) and (vi) mechanisms of EV uptake by cancer cells. Intriguingly, EV-mediated intercellular transfer of mutant and oncogenic molecules between subpopulations of cancer cells, their indolent counterparts and stroma may exert profound biological effects that often resemble (but are not tantamount to) oncogenic transformation, including changes in cell growth, clonogenicity and angiogenic phenotype, or cause cell stress and death. However, several biological barriers likely curtail a permanent horizontal transformation of normal cells through EV-mediated mechanisms. The ongoing analysis and targeting of EV-mediated intercellular communication pathways can be viewed as a new therapeutic paradigm in cancer, while the analysis of oncogenic cargo contained in EVs released from cancer cells into biofluids is being developed for clinical use as a biomarker

  3. Change of mitotic cycle and DNA repair in embryonic cells of rat, immortalized by E1 A oncogene and transformated by E1 A and c-Ha-Ras oncogenes under ionizing radiation action

    International Nuclear Information System (INIS)

    Kirillova, T.V.

    1997-01-01

    Comparison investigation into the repair of mitotic cycle and the reunion of DN single- and double-strand breaks in gamma-ray irradiated initial E1 A oncogene immortalized and E1 A and c-Ha-Ras oncogene transformed (mutant form) lines of rat embryonic fibroblasts was carried out. Possible involvement of Ras gene product in DNA repair speed governing and absence of tumor suppression function of p 53 protein in the embryonic and E1 A oncogene immortalized cells of rat fibroblast, as well as, presence of the mentioned function of p 53 protein in E1 A and c-Ha-Ras oncogene transformed cells were studied [ru

  4. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity.

    Science.gov (United States)

    Rosebrock, Tracy R; Zeng, Lirong; Brady, Jennifer J; Abramovitch, Robert B; Xiao, Fangming; Martin, Gregory B

    2007-07-19

    Many bacterial pathogens of plants and animals use a type III secretion system to deliver diverse virulence-associated 'effector' proteins into the host cell. The mechanisms by which these effectors act are mostly unknown; however, they often promote disease by suppressing host immunity. One type III effector, AvrPtoB, expressed by the plant pathogen Pseudomonas syringae pv. tomato, has a carboxy-terminal domain that is an E3 ubiquitin ligase. Deletion of this domain allows an amino-terminal region of AvrPtoB (AvrPtoB(1-387)) to be detected by certain tomato varieties leading to immunity-associated programmed cell death. Here we show that a host kinase, Fen, physically interacts with AvrPtoB(1-387 )and is responsible for activating the plant immune response. The AvrPtoB E3 ligase specifically ubiquitinates Fen and promotes its degradation in a proteasome-dependent manner. This degradation leads to disease susceptibility in Fen-expressing tomato lines. Various wild species of tomato were found to exhibit immunity in response to AvrPtoB(1-387 )and not to full-length AvrPtoB. Thus, by acquiring an E3 ligase domain, AvrPtoB has thwarted a highly conserved host resistance mechanism.

  5. Regulation of Thrombin-Induced Lung Endothelial Cell Barrier Disruption by Protein Kinase C Delta.

    Directory of Open Access Journals (Sweden)

    Lishi Xie

    Full Text Available Protein Kinase C (PKC plays a significant role in thrombin-induced loss of endothelial cell (EC barrier integrity; however, the existence of more than 10 isozymes of PKC and tissue-specific isoform expression has limited our understanding of this important second messenger in vascular homeostasis. In this study, we show that PKCδ isoform promotes thrombin-induced loss of human pulmonary artery EC barrier integrity, findings substantiated by PKCδ inhibitory studies (rottlerin, dominant negative PKCδ construct and PKCδ silencing (siRNA. In addition, we identified PKCδ as a signaling mediator upstream of both thrombin-induced MLC phosphorylation and Rho GTPase activation affecting stress fiber formation, cell contraction and loss of EC barrier integrity. Our inhibitor-based studies indicate that thrombin-induced PKCδ activation exerts a positive feedback on Rho GTPase activation and contributes to Rac1 GTPase inhibition. Moreover, PKD (or PKCμ and CPI-17, two known PKCδ targets, were found to be activated by PKCδ in EC and served as modulators of cytoskeleton rearrangement. These studies clarify the role of PKCδ in EC cytoskeleton regulation, and highlight PKCδ as a therapeutic target in inflammatory lung disorders, characterized by the loss of barrier integrity, such as acute lung injury and sepsis.

  6. Alpha-tocopherol transfer protein disruption confers resistance to malarial infection in mice

    Directory of Open Access Journals (Sweden)

    Takeya Motohiro

    2010-04-01

    Full Text Available Abstract Background Various factors impact the severity of malaria, including the nutritional status of the host. Vitamin E, an intra and extracellular anti-oxidant, is one such nutrient whose absence was shown previously to negatively affect Plasmodium development. However, mechanisms of this Plasmodium inhibition, in addition to means by which to exploit this finding as a therapeutic strategy, remain unclear. Methods α-TTP knockout mice were infected with Plasmodium berghei NK65 or Plasmodium yoelii XL-17, parasitaemia, survival rate were monitored. In one part of the experiments mice were fed with a supplemented diet of vitamin E and then infected. In addition, parasite DNA damage was monitored by means of comet assay and 8-OHdG test. Moreover, infected mice were treated with chloroquine and parasitaemia and survival rate were monitored. Results Inhibition of α-tocopherol transfer protein (α-TTP, a determinant of vitamin E concentration in circulation, confers resistance to malarial infection as a result of oxidative damage to the parasites. Furthermore, in combination with the anti-malarial drug chloroquine results were even more dramatic. Conclusion Considering that these knockout mice lack observable negative impacts typical of vitamin E deficiency, these results suggest that inhibition of α-TTP activity in the liver may be a useful strategy in the prevention and treatment of malaria infection. Moreover, a combined strategy of α-TTP inhibition and chloroquine treatment might be effective against drug resistant parasites.

  7. The oncogenic fusion protein RUNX1-CBFA2T1 supports proliferation and inhibits senescence in t(8;21)-positive leukaemic cells

    International Nuclear Information System (INIS)

    Martinez, Natalia; Heidenreich, Olaf; Drescher, Bettina; Riehle, Heidemarie; Cullmann, Claire; Vornlocher, Hans-Peter; Ganser, Arnold; Heil, Gerhard; Nordheim, Alfred; Krauter, Jürgen

    2004-01-01

    The fusion protein RUNX1-CBFA2T1 associated with t(8;21)-positive acute myeloid leukaemia is a potent inhibitor of haematopoetic differentiation. The role of RUNX1-CBFA2T1 in leukaemic cell proliferation is less clear. We examined the consequences of siRNA-mediated RUNX1-CBFA2T1 depletion regarding proliferation and clonogenicity of t(8;21)-positive cell lines. The t(8;21)-positive cell line Kasumi-1 was electroporated with RUNX1-CBFA2T1 or control siRNAs followed by analysis of proliferation, colony formation, cell cycle distribution, apoptosis and senescence. Electroporation of Kasumi-1 cells with RUNX1-CBFA2T1 siRNAs, but not with control siRNAs, resulted in RUNX1-CBFA2T1 suppression which lasted for at least 5 days. A single electroporation with RUNX1-CBFA2T1 siRNA severely diminished the clonogenicity of Kasumi-1 cells. Prolonged RUNX1-CBFA2T1 depletion inhibited proliferation in suspension culture and G1-S transition during the cell cycle, diminished the number of apoptotic cells, but induced cellular senescence. The addition of haematopoetic growth factors could not rescue RUNX1-CBFA2T1-depleted cells from senescence, and could only partially restore their clonogenicity. RUNX1-CBFA2T1 supports the proliferation and expansion of t(8;21)-positive leukaemic cells by preventing cellular senescence. These findings suggest a central role of RUNX1-CBFA2T1 in the maintenance of the leukaemia. Therefore, RUNX1-CBFA2T1 is a promising and leukaemia-specific target for molecularly defined therapeutic approaches

  8. Y682 mutation of amyloid precursor protein promotes endo-lysosomal dysfunction by disrupting APP-SorLA interaction

    Directory of Open Access Journals (Sweden)

    Luca Rosario La Rosa

    2015-04-01

    Full Text Available The intracellular transport and localization of amyloid precursor protein (APP are critical determinants of APP processing and β-amyloid peptide production, thus crucially important for the pathophysiology of Alzheimer’s disease (AD. Notably, the C-terminal Y682ENPTY687 domain of APP binds to specific adaptors controlling APP trafficking and sorting in neurons. Mutation on the Y682 residue to glycine (Y682G leads to altered APP sorting in hippocampal neurons that favors its accumulation in intracellular compartments and the release of soluble APPα. Such alterations induce premature aging and learning and cognitive deficits in APP Y682G mutant mice (APPYG/YG. Here, we report that Y682G mutation affects formation of the APP complex with sortilin-related receptor (SorLA, resulting in endo-lysosomal dysfunctions and neuronal degeneration. Moreover, disruption of the APP/SorLA complex changes the trafficking pathway of SorLA, with its consequent increase in secretion outside neurons. Mutations in the SorLA gene are a prognostic factor in AD, and increases in SorLA levels in cerebrospinal fluid are predictive of AD in humans. These results might open new possibilities in comprehending the role played by SorLA in its interaction with APP and in the progression of neuronal degeneration. In addition, they further underline the crucial role played by Y682 residue in controlling APP trafficking in neurons.

  9. The N Terminus of the Retinoblastoma Protein Inhibits DNA Replication via a Bipartite Mechanism Disrupted in Partially Penetrant Retinoblastomas

    Science.gov (United States)

    Borysov, Sergiy I.; Nepon-Sixt, Brook S.

    2015-01-01

    The N-terminal domain of the retinoblastoma (Rb) tumor suppressor protein (RbN) harbors in-frame exon deletions in partially penetrant hereditary retinoblastomas and is known to impair cell growth and tumorigenesis. However, how such RbN deletions contribute to Rb tumor- and growth-suppressive functions is unknown. Here we establish that RbN directly inhibits DNA replication initiation and elongation using a bipartite mechanism involving N-terminal exons lost in cancer. Specifically, Rb exon 7 is necessary and sufficient to target and inhibit the replicative CMG helicase, resulting in the accumulation of inactive CMGs on chromatin. An independent N-terminal loop domain, which forms a projection, specifically blocks DNA polymerase α (Pol-α) and Ctf4 recruitment without affecting DNA polymerases ε and δ or the CMG helicase. Individual disruption of exon 7 or the projection in RbN or Rb, as occurs in inherited cancers, partially impairs the ability of Rb/RbN to inhibit DNA replication and block G1-to-S cell cycle transit. However, their combined loss abolishes these functions of Rb. Thus, Rb growth-suppressive functions include its ability to block replicative complexes via bipartite, independent, and additive N-terminal domains. The partial loss of replication, CMG, or Pol-α control provides a potential molecular explanation for how N-terminal Rb loss-of-function deletions contribute to the etiology of partially penetrant retinoblastomas. PMID:26711265

  10. The scaffold protein RACK1 is a target of endocrine disrupting chemicals (EDCs) with important implication in immunity

    Energy Technology Data Exchange (ETDEWEB)

    Buoso, Erica; Galasso, Marilisa; Ronfani, Melania [Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia (Italy); Papale, Angela; Galbiati, Valentina [Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano (Italy); Eberini, Ivano [Laboratorio di Biochimica e Biofisica Computazionale, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan (Italy); Marinovich, Marina [Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano (Italy); Racchi, Marco [Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia (Italy); Corsini, Emanuela, E-mail: emanuela.corsini@unimi.it [Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano (Italy)

    2017-06-15

    We recently demonstrated the existence of a complex hormonal balance between steroid hormones in the control of RACK1 (Receptor for Activated C Kinase 1) expression and immune activation, suggesting that this scaffold protein may also be targeted by endocrine disrupting chemicals (EDCs). As a proof of concept, we investigated the effect of the doping agent nandrolone, an androgen receptor (AR) agonist, and of p,p′DDT (dichlorodiphenyltrichloroethane) and its main metabolite p,p′DDE (dichlorodiphenyldichloroethylene), a weak and strong AR antagonist, respectively, on RACK1 expression and innate immune response. In analogy to endogenous androgens, nandrolone induced a dose-related increase in RACK1 transcriptional activity and protein expression, resulting in increased LPS-induced IL-8 and TNF-α production and proliferation in THP-1 cells. Conversely, p,p′DDT and p,p′DDE significantly decrease RACK1 expression, LPS-induced cytokine production and CD86 expression; with p,p′DDE exerting a stronger repressor effect than p,p′DDT, consistent with its stronger AR antagonistic effect. These results indicate that RACK1 could be a relevant target of EDCs, responding in opposite ways to agonist or antagonist of AR, representing a bridge between the endocrine system and the innate immune system. - Highlights: • RACK1 expression can be induced by AR agonists with a consequent enhancement of the response to LPS. • RACK1 can be negatively modulated by the AR antagonists DDT and its main metabolite p,p′DDE. • RACK1 can be a relevant target of EDCs, representing a bridge between the endocrine system and the immune system.

  11. The human T-cell leukemia virus type-1 p30II protein activates p53 and induces the TIGAR and suppresses oncogene-induced oxidative stress during viral carcinogenesis.

    Science.gov (United States)

    Romeo, Megan; Hutchison, Tetiana; Malu, Aditi; White, Averi; Kim, Janice; Gardner, Rachel; Smith, Katie; Nelson, Katherine; Bergeson, Rachel; McKee, Ryan; Harrod, Carolyn; Ratner, Lee; Lüscher, Bernhard; Martinez, Ernest; Harrod, Robert

    2018-05-01

    In normal cells, aberrant oncogene expression leads to the accumulation of cytotoxic metabolites, including reactive oxygen species (ROS), which can cause oxidative DNA-damage and apoptosis as an intrinsic barrier against neoplastic disease. The c-Myc oncoprotein is overexpressed in many lymphoid cancers due to c-myc gene amplification and/or 8q24 chromosomal translocations. Intriguingly, p53 is a downstream target of c-Myc and hematological malignancies, such as adult T-cell leukemia/lymphoma (ATL), frequently contain wildtype p53 and c-Myc overexpression. We therefore hypothesized that p53-regulated pro-survival signals may thwart the cell's metabolic anticancer defenses to support oncogene-activation in lymphoid cancers. Here we show that the Tp53-induced glycolysis and apoptosis regulator (TIGAR) promotes c-myc oncogene-activation by the human T-cell leukemia virus type-1 (HTLV-1) latency-maintenance factor p30 II , associated with c-Myc deregulation in ATL clinical isolates. TIGAR prevents the intracellular accumulation of c-Myc-induced ROS and inhibits oncogene-induced cellular senescence in ATL, acute lymphoblastic leukemia, and multiple myeloma cells with elevated c-Myc expression. Our results allude to a pivotal role for p53-regulated antioxidant signals as mediators of c-Myc oncogenic functions in viral and non-viral lymphoid tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Amplification of the Ect2 proto-oncogene and over-expression of Ect2 mRNA and protein in nickel compound and methylcholanthrene-transformed 10T1/2 mouse fibroblast cell lines

    International Nuclear Information System (INIS)

    Clemens, Farrah; Verma, Rini; Ramnath, Jamuna; Landolph, Joseph R.

    2005-01-01

    Occupational exposure of humans to mixtures of insoluble and soluble nickel (Ni) compounds correlates with increased incidences of lung, sinus, and pharyngeal tumors. Specific insoluble Ni compounds are carcinogenic to animals by inhalation and induce morphological and neoplastic transformation of cultured rodent cells. Our objectives were to (1) understand mechanisms of nickel ion-induced cell transformation, hence carcinogenesis and (2) develop biomarkers of nickel ion exposure and nickel ion-induced cell transformation. We isolated mRNAs from green nickel oxide (NiO), crystalline nickel monosulfide (NiS), and 3-methylcholanthrene (MCA) transformed C3H/10T1/2 Cl 8 cell lines, and determined by mRNA differential display that nine mRNA fragments were differentially expressed between Ni transformed and non-transformed 10T1/2 cell lines. Fragment R2-5 was expressed at higher steady-state levels in the transformed cell lines. R2-5 had 100% sequence identity to part of the coding region of Ect2, a mouse proto-oncogene encoding a GDP-GTP exchange factor. The 3.9-kb Ect2 transcript was expressed at 1.6- to 3.6-fold higher steady-state levels in four Ni transformed, and in two MCA-transformed, cell lines. Ect2 protein was expressed at 3.0- to 4.5-fold higher steady-state levels in Ni-transformed and in MCA-transformed cell lines. The Ect2 gene was amplified by 3.5- to 10-fold in Ni transformed, and by 2.5- to 3-fold in MCA transformed cell lines. Binding of nickel ions to enzymes of DNA synthesis likely caused amplification of the Ect2 gene. Ect2 gene amplification and over-expression of Ect2 mRNA and protein can cause microtubule disassembly and cytokinesis, contributing to induction and maintenance of morphological, anchorage-independent, and neoplastic transformation of these cell lines. Over-expression of Ect2 protein is a useful biomarker to detect exposure to nickel compounds and nickel ion-induced morphological and neoplastic cell transformation

  13. Disruption of the Cdc42/Par6/aPKC or Dlg/Scrib/Lgl Polarity Complex Promotes Epithelial Proliferation via Overlapping Mechanisms.

    Science.gov (United States)

    Schimizzi, Gregory V; Maher, Meghan T; Loza, Andrew J; Longmore, Gregory D

    2016-01-01

    The establishment and maintenance of apical-basal polarity is a defining characteristic and essential feature of functioning epithelia. Apical-basal polarity (ABP) proteins are also tumor suppressors that are targeted for disruption by oncogenic viruses and are commonly mutated in human carcinomas. Disruption of these ABP proteins is an early event in cancer development that results in increased proliferation and epithelial disorganization through means not fully characterized. Using the proliferating Drosophila melanogaster wing disc epithelium, we demonstrate that disruption of the junctional vs. basal polarity complexes results in increased epithelial proliferation via distinct downstream signaling pathways. Disruption of the basal polarity complex results in JNK-dependent proliferation, while disruption of the junctional complex primarily results in p38-dependent proliferation. Surprisingly, the Rho-Rok-Myosin contractility apparatus appears to play opposite roles in the regulation of the proliferative phenotype based on which polarity complex is disrupted. In contrast, non-autonomous Tumor Necrosis Factor (TNF) signaling appears to suppress the proliferation that results from apical-basal polarity disruption, regardless of which complex is disrupted. Finally we demonstrate that disruption of the junctional polarity complex activates JNK via the Rho-Rok-Myosin contractility apparatus independent of the cortical actin regulator, Moesin.

  14. Disrupting the Scaffold to Improve Focal Adhesion Kinase–Targeted Cancer Therapeutics

    Science.gov (United States)

    Cance, William G.; Kurenova, Elena; Marlowe, Timothy; Golubovskaya, Vita

    2013-01-01

    Focal adhesion kinase (FAK) is emerging as a promising cancer target because it is highly expressed at both the transcriptional and translational level in cancer and is involved in many aspects of tumor growth, invasion, and metastasis. Existing FAK-based therapeutics focus on inhibiting the kinase's catalytic function and not the large scaffold it creates that includes many oncogenic receptor tyrosine kinases and tumor suppressor proteins. Targeting the FAK scaffold is a feasible and promising approach for developing highly specific therapeutics that disrupt FAK signaling pathways in cancer. PMID:23532331

  15. Disrupting the scaffold to improve focal adhesion kinase-targeted cancer therapeutics.

    Science.gov (United States)

    Cance, William G; Kurenova, Elena; Marlowe, Timothy; Golubovskaya, Vita

    2013-03-26

    Focal adhesion kinase (FAK) is emerging as a promising cancer target because it is highly expressed at both the transcriptional and translational level in cancer and is involved in many aspects of tumor growth, invasion, and metastasis. Existing FAK-based therapeutics focus on inhibiting the kinase's catalytic function and not the large scaffold it creates that includes many oncogenic receptor tyrosine kinases and tumor suppressor proteins. Targeting the FAK scaffold is a feasible and promising approach for developing highly specific therapeutics that disrupt FAK signaling pathways in cancer.

  16. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse)

    OpenAIRE

    Zhou, Yihua; Xu, Bixiong C.; Maheshwari, Hiralal G.; He, Li; Reed, Michael; Lozykowski, Maria; Okada, Shigeru; Cataldo, Lori; Coschigamo, Karen; Wagner, Thomas E.; Baumann, Gerhard; Kopchick, John J.

    1997-01-01

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/...

  17. Disruption of mitochondrial electron transport chain function potentiates the pro-apoptotic effects of MAPK inhibition.

    Science.gov (United States)

    Trotta, Andrew P; Gelles, Jesse D; Serasinghe, Madhavika N; Loi, Patrick; Arbiser, Jack L; Chipuk, Jerry E

    2017-07-14

    The mitochondrial network is a major site of ATP production through the coupled integration of the electron transport chain (ETC) with oxidative phosphorylation. In melanoma arising from the V600E mutation in the kinase v-RAF murine sarcoma viral oncogene homolog B (BRAF V600E ), oncogenic signaling enhances glucose-dependent metabolism while reducing mitochondrial ATP production. Likewise, when BRAF V600E is pharmacologically inhibited by targeted therapies ( e.g. PLX-4032/vemurafenib), glucose metabolism is reduced, and cells increase mitochondrial ATP production to sustain survival. Therefore, collateral inhibition of oncogenic signaling and mitochondrial respiration may help enhance the therapeutic benefit of targeted therapies. Honokiol (HKL) is a well tolerated small molecule that disrupts mitochondrial function; however, its underlying mechanisms and potential utility with targeted anticancer therapies remain unknown. Using wild-type BRAF and BRAF V600E melanoma model systems, we demonstrate here that HKL administration rapidly reduces mitochondrial respiration by broadly inhibiting ETC complexes I, II, and V, resulting in decreased ATP levels. The subsequent energetic crisis induced two cellular responses involving cyclin-dependent kinases (CDKs). First, loss of CDK1-mediated phosphorylation of the mitochondrial division GTPase dynamin-related protein 1 promoted mitochondrial fusion, thus coupling mitochondrial energetic status and morphology. Second, HKL decreased CDK2 activity, leading to G 1 cell cycle arrest. Importantly, although pharmacological inhibition of oncogenic MAPK signaling increased ETC activity, co-treatment with HKL ablated this response and vastly enhanced the rate of apoptosis. Collectively, these findings integrate HKL action with mitochondrial respiration and shape and substantiate a pro-survival role of mitochondrial function in melanoma cells after oncogenic MAPK inhibition.

  18. [Oncogenic action of ionizing radiation

    International Nuclear Information System (INIS)

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. The carcinogenicity of energetic electrons was determined for comparison with the neon ion results. As in past reports we will describe progress in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) DNA strand breaks in the epidermis as a function of radiation penetration; (3) oncogene activation in radiation-induced rat skin cancers. 72 refs., 6 tabs

  19. The Expression, Purification, and Characterization of a Ras Oncogene (Bras2) in Silkworm (Bombyx mori)

    OpenAIRE

    Lv, Zhengbing; Wang, Tao; Zhuang, Wenhua; Wang, Dan; Chen, Jian; Nie, Zuoming; Liu, Lili; Zhang, Wenping; Wang, Lisha; Wang, Deming; Wu, Xiangfu; Li, Jun; Qian, Lian; Zhang, Yaozhou

    2013-01-01

    The Ras oncogene of silkworm pupae (Bras2) may belong to the Ras superfamily. It shares 77% of its amino acid identity with teratocarcinoma oncogene 21 (TC21) related ras viral oncogene homolog-2 (R-Ras2) and possesses an identical core effector region. The mRNA of Bombyx mori Bras2 has 1412 bp. The open reading frame contains 603 bp, which encodes 200 amino acid residues. This recombinant BmBras2 protein was subsequently used as an antigen to raise a rabbit polyclonal antibody. Western blott...

  20. p53 Loss Synergizes with Estrogen and Papillomaviral Oncogenes to Induce Cervical and Breast Cancers

    Science.gov (United States)

    Shai, Anny; Pitot, Henry C.; Lambert, Paul F.

    2010-01-01

    Whereas the tumor suppressor p53 gene is frequently mutated in most human cancers, this is not the case in human papillomavirus (HPV)-associated cancers, presumably because the viral E6 oncoprotein inactivates the p53 protein. The ability of E6 to transform cells in tissue culture and induce cancers in mice correlates in part with its ability to inactivate p53. In this study, we compared the expression of the HPV16 E6 oncogene to the conditional genetic disruption of p53 in the context of a mouse model for cervical cancer in which estrogen is a critical cofactor. Nearly all of the K14Crep53f/f mice treated with estrogen developed cervical cancer, a stark contrast to its complete absence in like-treated K14E6WTp53f/f mice, indicating that HPV16 E6 must only partially inactivate p53. p53-independent activities of E6 also contributed to carcinogenesis, but in the female reproductive tract, these activities were manifested only in the presence of the HPV16 E7 oncogene. Interestingly, treatment of K14Crep53f/f mice with estrogen also resulted in mammary tumors after only a short latency, many of which were positive for estrogen receptor α. The majority of these mammary tumors were of mixed cell types, suggestive of their originating from a multipotent progenitor. Furthermore, a subset of mammary tumors arising in the estrogen-treated, p53-deficient mammary glands exhibited evidence of an epithelial to mesenchymal transition. These data show the importance of the synergy between estrogen and p53 insufficiency in determining basic properties of carcinogenesis in hormone-responsive tissues, such as the breast and the reproductive tract. PMID:18413729

  1. Targeted disruption of the mouse Csrp2 gene encoding the cysteine- and glycine-rich LIM domain protein CRP2 result in subtle alteration of cardiac ultrastructure

    Directory of Open Access Journals (Sweden)

    Stoll Doris

    2008-08-01

    Full Text Available Abstract Background The cysteine and glycine rich protein 2 (CRP2 encoded by the Csrp2 gene is a LIM domain protein expressed in the vascular system, particularly in smooth muscle cells. It exhibits a bimodal subcellular distribution, accumulating at actin-based filaments in the cytosol and in the nucleus. In order to analyze the function of CRP2 in vivo, we disrupted the Csrp2 gene in mice and analysed the resulting phenotype. Results A ~17.3 kbp fragment of the murine Csrp2 gene containing exon 3 through 6 was isolated. Using this construct we confirmed the recently determined chromosomal localization (Chromosome 10, best fit location between markers D10Mit203 proximal and D10Mit150 central. A gene disruption cassette was cloned into exon 4 and a mouse strain lacking functional Csrp2 was generated. Mice lacking CRP2 are viable and fertile and have no obvious deficits in reproduction and survival. However, detailed histological and electron microscopic studies reveal that CRP2-deficient mice have subtle alterations in their cardiac ultrastructure. In these mice, the cardiomyocytes display a slight increase in their thickness, indicating moderate hypertrophy at the cellular level. Although the expression of several intercalated disc-associated proteins such as β-catenin, N-RAP and connexin-43 were not affected in these mice, the distribution of respective proteins was changed within heart tissue. Conclusion We conclude that the lack of CRP2 is associated with alterations in cardiomyocyte thickness and hypertrophy.

  2. Investigating Disruption

    DEFF Research Database (Denmark)

    Lundgaard, Stine Schmieg; Rosenstand, Claus Andreas Foss

    This book shares knowledge collected from 2015 and onward within the Consortium for Digital Disruption anchored at Aalborg University (www.dd.aau.dk). Evidenced by this publication, the field of disruptive innovation research has gone through several stages of operationalizing the theory. In recent...... years, researchers are increasingly looking back towards the origins of the theory in attempts to cure it from its most obvious flaws. This is especially true for the use of the theory in making predictions about future disruptions. In order to continue to develop a valuable theory of disruption, we...... find it useful to first review what the theory of disruptive innovation initially was, how it has developed, and where we are now. A cross section of disruptive innovation literature has been reviewed in order to form a general foundation from which we might better understand the changing world...

  3. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    Energy Technology Data Exchange (ETDEWEB)

    Eum, Sung Yong, E-mail: seum@miami.edu; Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP

  4. BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L).

    Science.gov (United States)

    Maiuri, Maria Chiara; Criollo, Alfredo; Tasdemir, Ezgi; Vicencio, José Miguel; Tajeddine, Nicolas; Hickman, John A; Geneste, Olivier; Kroemer, Guido

    2007-01-01

    Beclin 1 has recently been identified as novel BH3-only protein, meaning that it carries one Bcl-2-homology-3 (BH3) domain. As other BH3-only proteins, Beclin 1 interacts with anti-apoptotic multidomain proteins of the Bcl-2 family (in particular Bcl-2 and its homologue Bcl-X(L)) by virtue of its BH3 domain, an amphipathic alpha-helix that binds to the hydrophobic cleft of Bcl-2/Bcl-X(L). The BH3 domains of other BH3-only proteins such as Bad, as well as BH3-mimetic compounds such as ABT737, competitively disrupt the inhibitory interaction between Beclin 1 and Bcl-2/Bcl-X(L). This causes autophagy of mitochondria (mitophagy) but not of the endoplasmic reticulum (reticulophagy). Only ER-targeted (not mitochondrion-targeted) Bcl-2/Bcl-X(L) can inhibit autophagy induced by Beclin 1, and only Beclin 1-Bcl-2/Bcl-X(L) complexes present in the ER (but not those present on heavy membrane fractions enriched in mitochondria) are disrupted by ABT737. These findings suggest that the Beclin 1-Bcl-2/Bcl-X(L) complexes that normally inhibit autophagy are specifically located in the ER and point to an organelle-specific regulation of autophagy. Furthermore, these data suggest a spatial organization of autophagy and apoptosis control in which BH3-only proteins exert two independent functions. On the one hand, they can induce apoptosis, by (directly or indirectly) activating the mitochondrion-permeabilizing function of pro-apoptotic multidomain proteins from the Bcl-2 family. On the other hand, they can activate autophagy by liberating Beclin 1 from its inhibition by Bcl-2/Bcl-X(L) at the level of the endoplasmic reticulum.

  5. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  6. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    International Nuclear Information System (INIS)

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy

  7. ARF and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress

    International Nuclear Information System (INIS)

    Pauklin, Siim; Kristjuhan, Arnold; Maimets, Toivo; Jaks, Viljar

    2005-01-01

    Induction of apoptosis is pivotal for eliminating cells with damaged DNA or deregulated proliferation. We show that tumor suppressor ARF and ATM/ATR kinase pathways cooperate in the induction of apoptosis in response to elevated expression of c-myc, β-catenin or human papilloma virus E7 oncogenes. Overexpression of oncogenes leads to the formation of phosphorylated H2AX foci, induction of Rad51 protein levels and ATM/ATR-dependent phosphorylation of p53. Inhibition of ATM/ATR kinases abolishes both induction of Rad51 and phosphorylation of p53, and remarkably reduces the level of apoptosis induced by co-expression of oncogenes and ARF. However, the induction of apoptosis is downregulated in p53-/- cells and does not depend on activities of ATM/ATR kinases, indicating that efficient induction of apoptosis by oncogene activation depends on coordinated action of ARF and ATM/ATR pathways in the regulation of p53

  8. The Parkinson’s disease-associated protein α-synuclein disrupts stress signaling – a possible implication for methamphetamine use?

    Directory of Open Access Journals (Sweden)

    Shaoxiao Wang

    2014-03-01

    Full Text Available The human neuronal protein α-synuclein (α-syn has been linked by a plethora of studies as a causative factor in sporadic Parkinson’s disease (PD. To speed the pace of discovery about the biology and pathobiology of α-syn, organisms such as yeast, worms, and flies have been used to investigate the mechanisms by which elevated levels of α-syn are toxic to cells and to screen for drugs and genes that suppress this toxicity. We recently reported [Wang et al. Proc. Natl. Acad. Sci.(2012 109: 16119–16124] that human α-syn, at high expression levels, disrupts stress-activated signal transduction pathways in both yeast and human neuroblastoma cells. Disruption of these signaling pathways ultimately leads to vulnerability to stress and to cell death. Here we discuss how the disruption of cell signaling by α-syn may have relevance to the parkinsonism that is associated with the abuse of the drug methamphetamine (meth.

  9. Disruption model

    International Nuclear Information System (INIS)

    Murray, J.G.; Bronner, G.

    1982-07-01

    Calculations of disruption time and energy dissipation have been obtained by simulating the plasma as an electrical conducting loop that varies in resistivity, current density, major radius. The calculations provide results which are in good agreement with experimental observations. It is believed that this approach allows engineering designs for disruptions to be completed in large tokamaks such as INTOR or FED

  10. Mutation of a Conserved Nuclear Export Sequence in Chikungunya Virus Capsid Protein Disrupts Host Cell Nuclear Import.

    Science.gov (United States)

    Jacobs, Susan C; Taylor, Adam; Herrero, Lara J; Mahalingam, Suresh; Fazakerley, John K

    2017-10-20

    Transmitted by mosquitoes; chikungunya virus (CHIKV) is responsible for frequent outbreaks of arthritic disease in humans. CHIKV is an arthritogenic alphavirus of the Togaviridae family. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleus. In encephalitic alphaviruses nuclear translocation induces host cell shut off; however, the role of capsid protein nuclear localisation in arthritogenic alphaviruses remains unclear. Using replicon systems, we investigated a nuclear export sequence (NES) in the N-terminal region of capsid protein; analogous to that found in encephalitic alphavirus capsid but uncharacterised in CHIKV. The chromosomal maintenance 1 (CRM1) export adaptor protein mediated CHIKV capsid protein export from the nucleus and a region within the N-terminal part of CHIKV capsid protein was required for active nuclear targeting. In contrast to encephalitic alphaviruses, CHIKV capsid protein did not inhibit host nuclear import; however, mutating the NES of capsid protein (∆NES) blocked host protein access to the nucleus. Interactions between capsid protein and the nucleus warrant further investigation.

  11. Topical delivery of low-cost protein drug candidates made in chloroplasts for biofilm disruption and uptake by oral epithelial cells.

    Science.gov (United States)

    Liu, Yuan; Kamesh, Aditya C; Xiao, Yuhong; Sun, Victor; Hayes, Michael; Daniell, Henry; Koo, Hyun

    2016-10-01

    Protein drugs (PD) are minimally utilized in dental medicine due to high cost and invasive surgical delivery. There is limited clinical advancement in disrupting virulent oral biofilms, despite their high prevalence in causing dental caries. Poor efficacy of antimicrobials following topical treatments or to penetrate and disrupt formed biofilms is a major challenge. We report an exciting low-cost approach using plant-made antimicrobial peptides (PMAMPs) retrocyclin or protegrin with complex secondary structures (cyclic/hairpin) for topical use to control biofilms. The PMAMPs rapidly killed the pathogen Streptococcus mutans and impaired biofilm formation following a single topical application of tooth-mimetic surface. Furthermore, we developed a synergistic approach using PMAMPs combined with matrix-degrading enzymes to facilitate their access into biofilms and kill the embedded bacteria. In addition, we identified a novel role for PMAMPs in delivering drugs to periodontal and gingival cells, 13-48 folds more efficiently than any other tested cell penetrating peptides. Therefore, PDs fused with protegrin expressed in plant cells could potentially play a dual role in delivering therapeutic proteins to gum tissues while killing pathogenic bacteria when delivered as topical oral formulations or in chewing gums. Recent FDA approval of plant-produced PDs augurs well for clinical advancement of this novel concept. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Disrupted Disclosure

    DEFF Research Database (Denmark)

    Krause Hansen, Hans; Uldam, Julie

    appearances become challenged through disruptive disclosures in mediaenvironments characterized by multiple levels of visibility, with companies both observing andbeing observed by civil society groups that criticize them; (c) why and how the mobilization aroundtransparency and ensuing practices...

  13. Family Disruptions

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Family Life Medical Home Family Dynamics Adoption & Foster Care ... Life Listen Español Text Size Email Print Share Family Disruptions Page Content Article Body No matter how ...

  14. Disruption of microbial biofilms by an extracellular protein isolated from epibiotic tropical marine strain of Bacillus licheniformis

    Digital Repository Service at National Institute of Oceanography (India)

    Dusane, D.H; Damare, S.R.; Nancharaiah, Y.V.; Ramaiah, N.; Venugopalan, V.P.; Kumar, A.R.; Zinjarde, S.S.

    -TOF) analysis revealed the antimicrobial agent to be a 14 kDa protein designated as BL-DZ1. The protein was stable at 75 degrees C for 30 min and over a pH range of 3.0 to 11.0. The sequence alignment of the MALDI-fingerprint showed homology with the NCBI entry...

  15. Maternal protein restriction induced-hypertension is associated to oxidative disruption at transcriptional and functional levels in the medulla oblongata.

    Science.gov (United States)

    de Brito Alves, José L; de Oliveira, Jéssica M D; Ferreira, Diorginis J S; Barros, Monique A de V; Nogueira, Viviane O; Alves, Débora S; Vidal, Hubert; Leandro, Carol G; Lagranha, Cláudia J; Pirola, Luciano; da Costa-Silva, João H

    2016-12-01

    Maternal protein restriction during pregnancy and lactation predisposes the adult offspring to sympathetic overactivity and arterial hypertension. Although the underlying mechanisms are poorly understood, dysregulation of the oxidative balance has been proposed as a putative trigger of neural-induced hypertension. The aim of the study was to evaluate the association between the oxidative status at transcriptional and functional levels in the medulla oblongata and maternal protein restriction induced-hypertension. Wistar rat dams were fed a control (normal protein; 17% protein) or a low protein ((Lp); 8% protein) diet during pregnancy and lactation, and male offspring was studied at 90 days of age. Direct measurements of baseline arterial blood pressure (ABP) and heart rate (HR) were recorded in awakened offspring. In addition, quantitative RT-PCR was used to assess the mRNA expression of superoxide dismutase 1 (SOD1) and 2 (SOD2), catalase (CAT), glutathione peroxidase (GPx), Glutamatergic receptors (Grin1, Gria1 and Grm1) and GABA(A)-receptor-associated protein like 1 (Gabarapl1). Malondialdehyde (MDA) levels, CAT and SOD activities were examined in ventral and dorsal medulla. Lp rats exhibited higher ABP. The mRNA expression levels of SOD2, GPx and Gabarapl1 were down regulated in medullary tissue of Lp rats (Pmedulla. Taken together, our data suggest that maternal protein restriction induced-hypertension is associated with medullary oxidative dysfunction at transcriptional level and with impaired antioxidant capacity in the ventral medulla. © 2016 John Wiley & Sons Australia, Ltd.

  16. Natural loss-of-function mutation of myeloid differentiation protein 88 disrupts its ability to form Myddosomes

    NARCIS (Netherlands)

    Nagpal, K.; Plantinga, T.S.; Sirois, C.M.; Monks, B.G.; Latz, E.; Netea, M.G.; Golenbock, D.T.

    2011-01-01

    Myeloid differentiation protein 88 (MyD88) is a key signaling adapter in Toll-like receptor (TLR) signaling. MyD88 is also one of the most polymorphic adapter proteins. We screened the reported nonsynonymous coding mutations in MyD88 to identify variants with altered function. In reporter assays, a

  17. Digital Disruption

    DEFF Research Database (Denmark)

    Rosenstand, Claus Andreas Foss

    det digitale domæne ud over det niveau, der kendetegner den nuværende debat, så præsenteres der ny viden om digital disruption. Som noget nyt udlægges Clayton Christens teori om disruptiv innovation med et særligt fokus på små organisationers mulighed for eksponentiel vækst. Specielt udfoldes...... forholdet mellem disruption og den stadig accelererende digitale udvikling i konturerne til ny teoridannelse om digital disruption. Bogens undertitel ”faretruende og fascinerende forandringer” peger på, at der er behov for en nuanceret debat om digital disruption i modsætning til den tone, der er slået an i...... videre kalder et ”disruption-råd”. Faktisk er rådet skrevet ind i 2016 regeringsgrundlaget for VLK-regeringen. Disruption af organisationer er ikke et nyt fænomen; men hastigheden, hvormed det sker, er stadig accelererende. Årsagen er den globale mega-trend: Digitalisering. Og derfor er specielt digital...

  18. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice

    Science.gov (United States)

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-01-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/- Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the kinetics, dependence, and persistence of p53-mediated response to oxidative and oncogenic stresses in Fanca-/- cells. Notably, oxidative stress induces persistent p53 response in Fanca-/- cells, likely due to accumulation of unrepaired DNA damage. On the other hand, whereas WT cells exhibit prolonged response to oncogene activation, the p53-activating signals induced by oncogenic ras are short-lived in Fanca-/- cells, suggesting that Fanca may be required for the cell to engage p53 during constitutive ras activation. We propose that the FA proteins protect cells from stress-induced proliferative arrest and tumor evolution by acting as a modulator of the signaling pathways that link FA to p53. PMID:19047147

  19. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice.

    Science.gov (United States)

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-12-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here, we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/-Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the kinetics, dependence, and persistence of p53-mediated response to oxidative and oncogenic stresses in Fanca-/- cells. Notably, oxidative stress induces persistent p53 response in Fanca-/- cells, likely due to accumulation of unrepaired DNA damage. On the other hand, whereas wild-type cells exhibit prolonged response to oncogene activation, the p53-activating signals induced by oncogenic ras are short-lived in Fanca-/- cells, suggesting that Fanca may be required for the cell to engage p53 during constitutive ras activation. We propose that the FA proteins protect cells from stress-induced proliferative arrest and tumor evolution by acting as a modulator of the signaling pathways that link FA to p53.

  20. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice

    OpenAIRE

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-01-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/- Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the ...

  1. Disruption of microbial biofilms by an extracellular protein isolated from epibiotic tropical marine strain of Bacillus licheniformis.

    Directory of Open Access Journals (Sweden)

    Devendra H Dusane

    Full Text Available BACKGROUND: Marine epibiotic bacteria produce bioactive compounds effective against microbial biofilms. The study examines antibiofilm ability of a protein obtained from a tropical marine strain of Bacillus licheniformis D1. METHODOLOGY/PRINCIPAL FINDINGS: B. licheniformis strain D1 isolated from the surface of green mussel, Perna viridis showed antimicrobial activity against pathogenic Candida albicans BH, Pseudomonas aeruginosa PAO1 and biofouling Bacillus pumilus TiO1 cultures. The antimicrobial activity was lost after treatment with trypsin and proteinase K. The protein was purified by ultrafiltration and size-exclusion chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF analysis revealed the antimicrobial agent to be a 14 kDa protein designated as BL-DZ1. The protein was stable at 75°C for 30 min and over a pH range of 3.0 to 11.0. The sequence alignment of the MALDI-fingerprint showed homology with the NCBI entry for a hypothetical protein (BL00275 derived from B. licheniformis ATCC 14580 with the accession number gi52082584. The protein showed minimum inhibitory concentration (MIC value of 1.6 µg/ml against C. albicans. Against both P. aeruginosa and B. pumilus the MIC was 3.12 µg/ml. The protein inhibited microbial growth, decreased biofilm formation and dispersed pre-formed biofilms of the representative cultures in polystyrene microtiter plates and on glass surfaces. CONCLUSION/SIGNIFICANCE: We isolated a protein from a tropical marine strain of B. licheniformis, assigned a function to the hypothetical protein entry in the NCBI database and described its application as a potential antibiofilm agent.

  2. Disruption of Microbial Biofilms by an Extracellular Protein Isolated from Epibiotic Tropical Marine Strain of Bacillus licheniformis

    Science.gov (United States)

    Dusane, Devendra H.; Damare, Samir R.; Nancharaiah, Yarlagadda V.; Ramaiah, N.; Venugopalan, Vayalam P.; Kumar, Ameeta Ravi; Zinjarde, Smita S.

    2013-01-01

    Background Marine epibiotic bacteria produce bioactive compounds effective against microbial biofilms. The study examines antibiofilm ability of a protein obtained from a tropical marine strain of Bacillus licheniformis D1. Methodology/Principal Findings B. licheniformis strain D1 isolated from the surface of green mussel, Perna viridis showed antimicrobial activity against pathogenic Candida albicans BH, Pseudomonas aeruginosa PAO1 and biofouling Bacillus pumilus TiO1 cultures. The antimicrobial activity was lost after treatment with trypsin and proteinase K. The protein was purified by ultrafiltration and size-exclusion chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis revealed the antimicrobial agent to be a 14 kDa protein designated as BL-DZ1. The protein was stable at 75°C for 30 min and over a pH range of 3.0 to 11.0. The sequence alignment of the MALDI-fingerprint showed homology with the NCBI entry for a hypothetical protein (BL00275) derived from B. licheniformis ATCC 14580 with the accession number gi52082584. The protein showed minimum inhibitory concentration (MIC) value of 1.6 µg/ml against C. albicans. Against both P. aeruginosa and B. pumilus the MIC was 3.12 µg/ml. The protein inhibited microbial growth, decreased biofilm formation and dispersed pre-formed biofilms of the representative cultures in polystyrene microtiter plates and on glass surfaces. Conclusion/Significance We isolated a protein from a tropical marine strain of B. licheniformis, assigned a function to the hypothetical protein entry in the NCBI database and described its application as a potential antibiofilm agent. PMID:23691235

  3. Disruption of Fyn SH3 domain interaction with a proline-rich motif in liver kinase B1 results in activation of AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Eijiro Yamada

    Full Text Available Fyn-deficient mice display increased AMP-activated Protein Kinase (AMPK activity as a result of Fyn-dependent regulation of Liver Kinase B1 (LKB1 in skeletal muscle. Mutation of Fyn-specific tyrosine sites in LKB1 results in LKB1 export into the cytoplasm and increased AMPK activation site phosphorylation. This study characterizes the structural elements responsible for the physical interaction between Fyn and LKB1. Effects of point mutations in the Fyn SH2/SH3 domains and in the LKB1 proline-rich motif on 1 Fyn and LKB1 binding, 2 LKB1 subcellular localization and 3 AMPK phosphorylation were investigated in C2C12 muscle cells. Additionally, novel LKB1 proline-rich motif mimicking cell permeable peptides were generated to disrupt Fyn/LKB1 binding and investigate the consequences on AMPK activity in both C2C12 cells and mouse skeletal muscle. Mutation of either Fyn SH3 domain or the proline-rich motif of LKB1 resulted in the disruption of Fyn/LKB1 binding, re-localization of 70% of LKB1 signal in the cytoplasm and a 2-fold increase in AMPK phosphorylation. In vivo disruption of the Fyn/LKB1 interaction using LKB1 proline-rich motif mimicking cell permeable peptides recapitulated Fyn pharmacological inhibition. We have pinpointed the structural elements within Fyn and LKB1 that are responsible for their binding, demonstrating the functionality of this interaction in regulating AMPK activity.

  4. Artemisinin disrupts androgen responsiveness of human prostate cancer cells by stimulating the 26S proteasome-mediated degradation of the androgen receptor protein.

    Science.gov (United States)

    Steely, Andrea M; Willoughby, Jamin A; Sundar, Shyam N; Aivaliotis, Vasiliki I; Firestone, Gary L

    2017-10-01

    Androgen receptor (AR) expression and activity is highly linked to the development and progression of prostate cancer and is a target of therapeutic strategies for this disease. We investigated whether the antimalarial drug artemisinin, which is a sesquiterpene lactone isolated from the sweet wormwood plant Artemisia annua, could alter AR expression and responsiveness in cultured human prostate cancer cell lines. Artemisinin treatment induced the 26S proteasome-mediated degradation of the receptor protein, without altering AR transcript levels, in androgen-responsive LNCaP prostate cancer cells or PC-3 prostate cancer cells expressing exogenous wild-type AR. Furthermore, artemisinin stimulated AR ubiquitination and AR receptor interactions with the E3 ubiquitin ligase MDM2 in LNCaP cells. The artemisinin-induced loss of AR protein prevented androgen-responsive cell proliferation and ablated total AR transcriptional activity. The serine/threonine protein kinase AKT-1 was shown to be highly associated with artemisinin-induced proteasome-mediated degradation of AR protein. Artemisinin treatment activated AKT-1 enzymatic activity, enhanced receptor association with AKT-1, and induced AR serine phosphorylation. Treatment of LNCaP cells with the PI3-kinase inhibitor LY294002, which inhibits the PI3-kinase-dependent activation of AKT-1, prevented the artemisinin-induced AR degradation. Furthermore, in transfected receptor-negative PC-3 cells, artemisinin failed to stimulate the degradation of an altered receptor protein (S215A/S792A) with mutations in its two consensus AKT-1 serine phosphorylation sites. Taken together, our results indicate that artemisinin induces the degradation of AR protein and disrupts androgen responsiveness of human prostate cancer cells, suggesting that this natural compound represents a new potential therapeutic molecule that selectively targets AR levels.

  5. In-frame seven amino-acid duplication in AIP arose over the last 3000 years, disrupts protein interaction and stability and is associated with gigantism.

    Science.gov (United States)

    Salvatori, Roberto; Radian, Serban; Diekmann, Yoan; Iacovazzo, Donato; David, Alessia; Gabrovska, Plamena; Grassi, Giorgia; Bussell, Anna-Marie; Stals, Karen; Weber, Astrid; Quinton, Richard; Crowne, Elizabeth C; Corazzini, Valentina; Metherell, Lou; Kearney, Tara; Du Plessis, Daniel; Sinha, Ajay Kumar; Baborie, Atik; Lecoq, Anne-Lise; Chanson, Philippe; Ansorge, Olaf; Ellard, Sian; Trainer, Peter J; Balding, David; Thomas, Mark G; Korbonits, Márta

    2017-09-01

    Mutations in the aryl hydrocarbon receptor-interacting protein ( AIP ) gene are associated with pituitary adenoma, acromegaly and gigantism. Identical alleles in unrelated pedigrees could be inherited from a common ancestor or result from recurrent mutation events. Observational, inferential and experimental study, including: AIP mutation testing; reconstruction of 14 AIP -region (8.3 Mbp) haplotypes; coalescent-based approximate Bayesian estimation of the time to most recent common ancestor (tMRCA) of the derived allele; forward population simulations to estimate current number of allele carriers; proposal of mutation mechanism; protein structure predictions; co-immunoprecipitation and cycloheximide chase experiments. Nine European-origin, unrelated c.805_825dup-positive pedigrees (four familial, five sporadic from the UK, USA and France) included 16 affected (nine gigantism/four acromegaly/two non-functioning pituitary adenoma patients and one prospectively diagnosed acromegaly patient) and nine unaffected carriers. All pedigrees shared a 2.79 Mbp haploblock around AIP with additional haploblocks privately shared between subsets of the pedigrees, indicating the existence of an evolutionarily recent common ancestor, the 'English founder', with an estimated median tMRCA of 47 generations (corresponding to 1175 years) with a confidence interval (9-113 generations, equivalent to 225-2825 years). The mutation occurred in a small tandem repeat region predisposed to slipped strand mispairing. The resulting seven amino-acid duplication disrupts interaction with HSP90 and leads to a marked reduction in protein stability. The c.805_825dup allele, originating from a common ancestor, associates with a severe clinical phenotype and a high frequency of gigantism. The mutation is likely to be the result of slipped strand mispairing and affects protein-protein interactions and AIP protein stability. © 2017 The authors.

  6. The cis decoy against the estrogen response element suppresses breast cancer cells via target disrupting c-fos not mitogen-activated protein kinase activity.

    Science.gov (United States)

    Wang, Li Hua; Yang, Xiao Yi; Zhang, Xiaohu; Mihalic, Kelly; Xiao, Weihua; Farrar, William L

    2003-05-01

    Breast cancer, the most common malignancy in women, has been demonstrated to be associated with the steroid hormone estrogen and its receptor (ER), a ligand-activated transcription factor. Therefore, we developed a phosphorothiolate cis-element decoy against the estrogen response element (ERE decoy) to target disruption of ER DNA binding and transcriptional activity. Here, we showed that the ERE decoy potently ablated the 17beta-estrogen-inducible cell proliferation and induced apoptosis of human breast carcinoma cells by functionally affecting expression of c-fos gene and AP-1 luciferase gene reporter activity. Specificity of the decoy was demonstrated by its ability to directly block ER binding to a cis-element probe and transactivation. Moreover, the decoy failed to inhibit ER-mediated mitogen-activated protein kinase signaling pathways and cell growth of ER-negative breast cancer cells. Taken together, these data suggest that estrogen-mediated cell growth of breast cancer cells can be preferentially restricted via targeted disruption of ER at the level of DNA binding by a novel and specific decoy strategy applied to steroid nuclear receptors.

  7. Disrupting self-assembly and toxicity of amyloidogenic protein oligomers by "molecular tweezers" - from the test tube to animal models.

    Science.gov (United States)

    Attar, Aida; Bitan, Gal

    2014-01-01

    Despite decades of research, therapy for diseases caused by abnormal protein folding and aggregation (amyloidoses) is limited to treatment of symptoms and provides only temporary and moderate relief to sufferers. The failure in developing successful disease-modifying drugs for amyloidoses stems from the nature of the targets for such drugs - primarily oligomers of amyloidogenic proteins, which are distinct from traditional targets, such as enzymes or receptors. The oligomers are metastable, do not have well-defined structures, and exist in dynamically changing mixtures. Therefore, inhibiting the formation and toxicity of these oligomers likely will require out-of-the-box thinking and novel strategies. We review here the development of a strategy based on targeting the combination of hydrophobic and electrostatic interactions that are key to the assembly and toxicity of amyloidogenic proteins using lysine (K)-specific "molecular tweezers" (MTs). Our discussion includes a survey of the literature demonstrating the important role of K residues in the assembly and toxicity of amyloidogenic proteins and the development of a lead MT derivative called CLR01, from an inhibitor of protein aggregation in vitro to a drug candidate showing effective amelioration of disease symptoms in animal models of Alzheimer's and Parkinson's diseases.

  8. V-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas

    International Nuclear Information System (INIS)

    Langdon, W.Y.; Klinken, S.P.; Hartley, J.W.; Morse, H.C. III; Ruscetti, S.K.

    1989-01-01

    Cas NS-1 is an acutely transforming murine retrovirus that induces pre-B and pro-B cell lymphomas. Molecular cloning showed it was generated from the ecotropic Cas-Br-M virus by sequential recombinations with endogenous retroviral sequences and a cellular oncogene. The oncogene sequence shows no homology with known oncogenes but some similarity to the yeast transcriptional activator GCN4. A 100-kDa gag-cbl fusion protein, with no detectable kinase activity, is responsible for the cellular transformation. The cellular homologue of v-cbl, present in mouse and human DNA, is expressed in a range of hemopoietic lineages

  9. Politisk disruption

    DEFF Research Database (Denmark)

    Tække, Jesper

    2018-01-01

    Dette blogindlæg giver en kort analyse af hvordan de sociale medier ved at give en ny tid har åbnet for den disruption af de politiske processer som især Trump stå som et eksempel på.......Dette blogindlæg giver en kort analyse af hvordan de sociale medier ved at give en ny tid har åbnet for den disruption af de politiske processer som især Trump stå som et eksempel på....

  10. Disrupting Business

    DEFF Research Database (Denmark)

    Cox, Geoff; Bazzichelli, Tatiana

    Disruptive Business explores some of the interconnections between art, activism and the business concept of disruptive innovation. With a backdrop of the crisis of financial capitalism, austerity cuts in the cultural sphere, the idea is to focus on potential art strategies in relation to a broken...... economy. In a perverse way, we ask whether this presents new opportunities for cultural producers to achieve more autonomy over their production process. If it is indeed possible, or desirable, what alternative business models emerge? The book is concerned broadly with business as material for reinvention...

  11. Disruption of the acyl-coa binding protein gene delays hepatic adaptation to metabolic changes at weaning

    DEFF Research Database (Denmark)

    Neess, Ditte; Bloksgaard, Maria; Sørensen, Signe Bek

    2011-01-01

    The acyl-CoA binding protein/diazepam binding inhibitor (ACBP/DBI) is an intracellular protein that binds C14-C22 acyl-CoA esters and is thought to act as an acyl-CoA transporter. In vitro analyses have indicated that ACBP can transport acyl-CoA esters between different enzymatic systems; however....... The delayed induction of SREBP target genes around weaning is caused by a compromised processing and decreased expression of SREBP precursors leading to reduced binding of SREBP to target sites in chromatin. In conclusion, lack of ACBP interferes with the normal metabolic adaptation to weaning and leads...

  12. Dual Function of Novel Pollen Coat (Surface) Proteins: IgE-binding Capacity and Proteolytic Activity Disrupting the Airway Epithelial Barrier

    Science.gov (United States)

    Bashir, Mohamed Elfatih H.; Ward, Jason M.; Cummings, Matthew; Karrar, Eltayeb E.; Root, Michael; Mohamed, Abu Bekr A.; Naclerio, Robert M.; Preuss, Daphne

    2013-01-01

    Background The pollen coat is the first structure of the pollen to encounter the mucosal immune system upon inhalation. Prior characterizations of pollen allergens have focused on water-soluble, cytoplasmic proteins, but have overlooked much of the extracellular pollen coat. Due to washing with organic solvents when prepared, these pollen coat proteins are typically absent from commercial standardized allergenic extracts (i.e., “de-fatted”), and, as a result, their involvement in allergy has not been explored. Methodology/Principal Findings Using a unique approach to search for pollen allergenic proteins residing in the pollen coat, we employed transmission electron microscopy (TEM) to assess the impact of organic solvents on the structural integrity of the pollen coat. TEM results indicated that de-fatting of Cynodon dactylon (Bermuda grass) pollen (BGP) by use of organic solvents altered the structural integrity of the pollen coat. The novel IgE-binding proteins of the BGP coat include a cysteine protease (CP) and endoxylanase (EXY). The full-length cDNA that encodes the novel IgE-reactive CP was cloned from floral RNA. The EXY and CP were purified to homogeneity and tested for IgE reactivity. The CP from the BGP coat increased the permeability of human airway epithelial cells, caused a clear concentration-dependent detachment of cells, and damaged their barrier integrity. Conclusions/Significance Using an immunoproteomics approach, novel allergenic proteins of the BGP coat were identified. These proteins represent a class of novel dual-function proteins residing on the coat of the pollen grain that have IgE-binding capacity and proteolytic activity, which disrupts the integrity of the airway epithelial barrier. The identification of pollen coat allergens might explain the IgE-negative response to available skin-prick-testing proteins in patients who have positive symptoms. Further study of the role of these pollen coat proteins in allergic responses is

  13. Dual function of novel pollen coat (surface proteins: IgE-binding capacity and proteolytic activity disrupting the airway epithelial barrier.

    Directory of Open Access Journals (Sweden)

    Mohamed Elfatih H Bashir

    Full Text Available BACKGROUND: The pollen coat is the first structure of the pollen to encounter the mucosal immune system upon inhalation. Prior characterizations of pollen allergens have focused on water-soluble, cytoplasmic proteins, but have overlooked much of the extracellular pollen coat. Due to washing with organic solvents when prepared, these pollen coat proteins are typically absent from commercial standardized allergenic extracts (i.e., "de-fatted", and, as a result, their involvement in allergy has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Using a unique approach to search for pollen allergenic proteins residing in the pollen coat, we employed transmission electron microscopy (TEM to assess the impact of organic solvents on the structural integrity of the pollen coat. TEM results indicated that de-fatting of Cynodon dactylon (Bermuda grass pollen (BGP by use of organic solvents altered the structural integrity of the pollen coat. The novel IgE-binding proteins of the BGP coat include a cysteine protease (CP and endoxylanase (EXY. The full-length cDNA that encodes the novel IgE-reactive CP was cloned from floral RNA. The EXY and CP were purified to homogeneity and tested for IgE reactivity. The CP from the BGP coat increased the permeability of human airway epithelial cells, caused a clear concentration-dependent detachment of cells, and damaged their barrier integrity. CONCLUSIONS/SIGNIFICANCE: Using an immunoproteomics approach, novel allergenic proteins of the BGP coat were identified. These proteins represent a class of novel dual-function proteins residing on the coat of the pollen grain that have IgE-binding capacity and proteolytic activity, which disrupts the integrity of the airway epithelial barrier. The identification of pollen coat allergens might explain the IgE-negative response to available skin-prick-testing proteins in patients who have positive symptoms. Further study of the role of these pollen coat proteins in allergic

  14. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse)

    Science.gov (United States)

    Zhou, Yihua; Xu, Bixiong C.; Maheshwari, Hiralal G.; He, Li; Reed, Michael; Lozykowski, Maria; Okada, Shigeru; Cataldo, Lori; Coschigamo, Karen; Wagner, Thomas E.; Baumann, Gerhard; Kopchick, John J.

    1997-01-01

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans. PMID:9371826

  15. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse).

    Science.gov (United States)

    Zhou, Y; Xu, B C; Maheshwari, H G; He, L; Reed, M; Lozykowski, M; Okada, S; Cataldo, L; Coschigamo, K; Wagner, T E; Baumann, G; Kopchick, J J

    1997-11-25

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans.

  16. Disruption of a Guard Cell–Expressed Protein Phosphatase 2A Regulatory Subunit, RCN1, Confers Abscisic Acid Insensitivity in Arabidopsis

    Science.gov (United States)

    Kwak, June M.; Moon, Ji-Hye; Murata, Yoshiyuki; Kuchitsu, Kazuyuki; Leonhardt, Nathalie; DeLong, Alison; Schroeder, Julian I.

    2002-01-01

    Pharmacological studies have led to a model in which the phytohormone abscisic acid (ABA) may be positively transduced via protein phosphatases of the type 1 (PP1) or type 2A (PP2A) families. However, pharmacological evidence also exists that PP1s or PP2As may function as negative regulators of ABA signaling. Furthermore, recessive disruption mutants in protein phosphatases that function in ABA signal transduction have not yet been identified. A guard cell–expressed PP2A gene, RCN1, which had been characterized previously as a molecular component affecting auxin transport and gravity response, was isolated. A T-DNA disruption mutation in RCN1 confers recessive ABA insensitivity to Arabidopsis. The rcn1 mutation impairs ABA-induced stomatal closing and ABA activation of slow anion channels. Calcium imaging analyses show a reduced sensitivity of ABA-induced cytosolic calcium increases in rcn1, whereas mechanisms downstream of cytosolic calcium increases show wild-type responses, suggesting that RCN1 functions in ABA signal transduction upstream of cytosolic Ca2+ increases. Furthermore, rcn1 shows ABA insensitivity in ABA inhibition of seed germination and ABA-induced gene expression. The PP1 and PP2A inhibitor okadaic acid phenocopies the rcn1 phenotype in wild-type plants both in ABA-induced cytosolic calcium increases and in seed germination, and the wild-type RCN1 genomic DNA complements rcn1 phenotypes. These data show that RCN1 functions as a general positive transducer of early ABA signaling. PMID:12417706

  17. Disruption of the murine major vault protein (MVP/LRP) gene does not induce hypersensitivity to cytostatics.

    Science.gov (United States)

    Mossink, Marieke H; van Zon, Arend; Fränzel-Luiten, Erna; Schoester, Martijn; Kickhoefer, Valerie A; Scheffer, George L; Scheper, Rik J; Sonneveld, Pieter; Wiemer, Erik A C

    2002-12-15

    Vaults are ribonucleoprotein particles with a distinct structure and a high degree of conservation between species. Although no function has been assigned to the complex yet, there is some evidence for a role of vaults in multidrug resistance. To confirm a direct relation between vaults and multidrug resistance, and to investigate other possible functions of vaults, we have generated a major vault protein (MVP/lung resistance-related protein) knockout mouse model. The MVP(-/-) mice are viable, healthy, and show no obvious abnormalities. We investigated the sensitivity of MVP(-/-) embryonic stem cells and bone marrow cells derived from the MVP-deficient mice to various cytostatic agents with different mechanisms of action. Neither the MVP(-/-) embryonic stem cells nor the MVP(-/-) bone marrow cells showed an increased sensitivity to any of the drugs examined, as compared with wild-type cells. Furthermore, the activities of the ABC-transporters P-glycoprotein, multidrug resistance-associated protein and breast cancer resistance protein were unaltered on MVP deletion in these cells. In addition, MVP wild-type and deficient mice were treated with the anthracycline doxorubicin. Both groups of mice responded similarly to the doxorubicin treatment. Our results suggest that MVP/vaults are not directly involved in the resistance to cytostatic agents.

  18. Oncogenes and radiation resistance - a review

    International Nuclear Information System (INIS)

    Dritschilo, A.

    1992-01-01

    Oncogenes exert their effects on the genetic programs of cells by regulating signal transduction pathways, resulting in multi-factorial genetic responses. By such actions, the genetic elements responsible for the cellular responses to ionizing radiation may be affected. Reports implicating the association of oncogene expression with modulation of the radiation response include the ras, raf, and myc genes. Experiments overexpressing H-ras and c-raf-1 using genetically engineered constructs result in enhanced post-radiation cellular survival. Conversely, inhibition of raf gene expression has resulted in relative radiation sensitization and delay of human squamous cell carcinoma tumor growth in nude mice. There appears to be a potential strategy for therapeutic intervention. The identification of genes that confer survival advantage following radiation exposure, and understanding their mechanisms of action, may permit a genetically based intervention for radiation sensitization. One such approach employs oligo-deoxynucleotides complementary to oncogene-encoded in RNA's (antisense DNA). (author)

  19. The R35 residue of the influenza A virus NS1 protein has minimal effects on nuclear localization but alters virus replication through disrupting protein dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Lalime, Erin N.; Pekosz, Andrew, E-mail: apekosz@jhsph.edu

    2014-06-15

    The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 in addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization. - Highlights: • Mutations were introduced into influenza NS1 NLS1. • NS1 R37A, R38A, K41A viruses had minimal changes in replication and NS1 localization. • Viruses from NS1 R35A rescue all contained additional mutations at D39. • NS1 R35A D39X mutations recover dimerization lost in NS1 R35A mutations. • These results reaffirm the importance of dimerization for NS1 protein function.

  20. The R35 residue of the influenza A virus NS1 protein has minimal effects on nuclear localization but alters virus replication through disrupting protein dimerization

    International Nuclear Information System (INIS)

    Lalime, Erin N.; Pekosz, Andrew

    2014-01-01

    The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 in addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization. - Highlights: • Mutations were introduced into influenza NS1 NLS1. • NS1 R37A, R38A, K41A viruses had minimal changes in replication and NS1 localization. • Viruses from NS1 R35A rescue all contained additional mutations at D39. • NS1 R35A D39X mutations recover dimerization lost in NS1 R35A mutations. • These results reaffirm the importance of dimerization for NS1 protein function

  1. Genetic Disruption of Protein Kinase STK25 Ameliorates Metabolic Defects in a Diet-Induced Type 2 Diabetes Model

    OpenAIRE

    Amrutkar, Manoj; Cansby, Emmelie; Chursa, Urszula; Nu?ez-Dur?n, Esther; Chancl?n, Bel?n; St?hlman, Marcus; Frid?n, Vincent; Manner?s-Holm, Louise; Wickman, Anna; Smith, Ulf; B?ckhed, Fredrik; Bor?n, Jan; Howell, Brian W.; Mahlapuu, Margit

    2015-01-01

    Understanding the molecular networks controlling ectopic lipid deposition, glucose tolerance, and insulin sensitivity is essential to identifying new pharmacological approaches to treat type 2 diabetes. We recently identified serine/threonine protein kinase 25 (STK25) as a negative regulator of glucose and insulin homeostasis based on observations in myoblasts with acute depletion of STK25 and in STK25-overexpressing transgenic mice. Here, we challenged Stk25 knockout mice and wild-type litte...

  2. Oncogenic osteomalacia diagnosed by blood pool scintigraphy

    International Nuclear Information System (INIS)

    Palaniswamy, Shanmuga Sundaram; Subramanyam, Padma; Kumar, Harish

    2011-01-01

    Oncogenic osteomalacia is a rare metabolic bone disease characterized by phosphaturia and hypophosphatemia. Certain tumors secrete a phosphaturic factor, which results in this metabolic abnormality; this factor called as phosphatonin, is in fact a fibroblast growth factor 23 (FGF-23) involved closely in phosphate homeostasis and skeletogenesis. Complete excision of these tumors facilitates reversal of the problem. We have reported here the case of a patient who was crippled with this disease and on thorough investigation revealed an oncogenic osteomalacia with tumor focus in the right tibia. The tumor was identified as a mesenchymal tumor, i.e., hemangiopericytoma. Tumor excision alleviated patient symptoms with rapid symptomatic and biochemical improvement

  3. Monocrotaline pyrrole-induced megalocytosis of lung and breast epithelial cells: Disruption of plasma membrane and Golgi dynamics and an enhanced unfolded protein response

    International Nuclear Information System (INIS)

    Mukhopadhyay, Somshuvra; Shah, Mehul; Patel, Kirit; Sehgal, Pravin B.

    2006-01-01

    The pyrrolizidine alkaloid monocrotaline (MCT) initiates pulmonary hypertension by inducing a 'megalocytosis' phenotype in target pulmonary arterial endothelial, smooth muscle and Type II alveolar epithelial cells. In cultured endothelial cells, a single exposure to the pyrrolic derivative of monocrotaline (MCTP) results in large cells with enlarged endoplasmic reticulum (ER) and Golgi and increased vacuoles. However, these cells fail to enter mitosis. Largely based upon data from endothelial cells, we proposed earlier that a disruption of the trafficking and mitosis-sensor functions of the Golgi (the 'Golgi blockade' hypothesis) may represent the subcellular mechanism leading to MCTP-induced megalocytosis. In the present study, we investigated the applicability of the Golgi blockade hypothesis to epithelial cells. MCTP induced marked megalocytosis in cultures of lung A549 and breast MCF-7 cells. This was associated with a change in the distribution of the cis-Golgi scaffolding protein GM130 from a discrete juxtanuclear localization to a circumnuclear distribution consistent with an anterograde block of GM130 trafficking to/through the Golgi. There was also a loss of plasma membrane caveolin-1 and E-cadherin, cortical actin together with a circumnuclear accumulation of clathrin heavy chain (CHC) and α-tubulin. Flotation analyses revealed losses/alterations in the association of caveolin-1, E-cadherin and CHC with raft microdomains. Moreover, megalocytosis was accompanied by an enhanced unfolded protein response (UPR) as evidenced by nuclear translocation of Ire1α and glucose regulated protein 58 (GRP58/ER-60/ERp57) and a circumnuclear accumulation of PERK kinase and protein disulfide isomerase (PDI). These data further support the hypothesis that an MCTP-induced Golgi blockade and enhanced UPR may represent the subcellular mechanism leading to enlargement of ER and Golgi and subsequent megalocytosis

  4. Genetic Disruption of Protein Kinase STK25 Ameliorates Metabolic Defects in a Diet-Induced Type 2 Diabetes Model

    DEFF Research Database (Denmark)

    Amrutkar, Manoj; Cansby, Emmelie; Chursa, Urszula

    2015-01-01

    Understanding the molecular networks controlling ectopic lipid deposition, glucose tolerance, and insulin sensitivity is essential to identifying new pharmacological approaches to treat type 2 diabetes. We recently identified serine/threonine protein kinase 25 (STK25) as a negative regulator...... to the metabolic phenotype of Stk25 transgenic mice, reinforcing the validity of the results. The findings suggest that STK25 deficiency protects against the metabolic consequences of chronic exposure to dietary lipids and highlight the potential of STK25 antagonists for the treatment of type 2 diabetes....

  5. Localisation of lung cancer by a radiolabelled monoclonal antibody against the c-myc oncogene product

    Energy Technology Data Exchange (ETDEWEB)

    Chan, S Y.T.; Evan, G I; Ritson, A; Watson, J; Wraight, P; Sikora, K

    1986-11-01

    A set of mouse monoclonal antibodies against the c-myc oncogene product, a 62,000 dalton nuclear binding protein involved in cell cycle control, has been constructed by immunisation with synthetic peptide fragments. One such antibody, CT14, was radiolabelled with /sup 131/I and administered to 20 patients with different malignant diseases. Good tumour localisation was observed in 12 out of 14 patients with primary bronchial carcinoma but not in patients with pulmonary metastases from primary tumours elsewhere. Successfully localised tumours were all 3 cm or more in diameter. Monoclonal antibodies against oncogene products may provide novel selective tools for the diagnosis and therapy of cancer.

  6. The 18-kDa translocator protein (TSPO disrupts mammary epithelial morphogenesis and promotes breast cancer cell migration.

    Directory of Open Access Journals (Sweden)

    Xiaoting Wu

    Full Text Available Mitochondria play important roles in cancer progression and have emerged as viable targets for cancer therapy. Increasing levels of the outer mitochondrial membrane protein, 18-kDa translocator protein (TSPO, are associated with advancing breast cancer stage. In particular, higher TSPO levels are found in estrogen receptor (ER-negative breast tumors, compared with ER-positive tumors. In this study, we sought to define the roles of TSPO in the acquisition of breast cancer malignancy. Using a three-dimensional Matrigel culture system, we determined the impact of elevated TSPO levels on mammary epithelial morphogenesis. Our studies demonstrate that stable overexpression of TSPO in mammary epithelial MCF10A acini drives proliferation and provides partial resistance to luminal apoptosis, resulting in enlarged acinar structures with partially filled lumen that resemble early stage breast lesions leading to breast cancer. In breast cancer cell lines, TSPO silencing or TSPO overexpression significantly altered the migratory activity. In addition, we found that combination treatment with the TSPO ligands (PK 11195 or Ro5-4864 and lonidamine, a clinical phase II drug targeting mitochondria, decreased viability of ER-negative breast cancer cell lines. Taken together, these data demonstrate that increases in TSPO levels at different stages of breast cancer progression results in the acquisition of distinct properties associated with malignancy. Furthermore, targeting TSPO, particularly in combination with other mitochondria-targeting agents, may prove useful for the treatment of ER-negative breast cancer.

  7. Bioinformatics of non small cell lung cancer and the ras proto-oncogene

    CERN Document Server

    Kashyap, Amita; Babu M, Naresh

    2015-01-01

    Cancer is initiated by activation of oncogenes or inactivation of tumor suppressor genes. Mutations in the K-ras proto-oncogene are responsible for 10–30% of adenocarcinomas. Clinical Findings point to a wide variety of other cancers contributing to lung cancer incidence. Such a scenario makes identification of lung cancer difficult and thus identifying its mechanisms can contribute to the society. Identifying unique conserved patterns common to contributing proto-oncogenes may further be a boon to Pharmacogenomics and pharmacoinformatics. This calls for ab initio/de novo drug discovery that in turn will require a comprehensive in silico approach of Sequence, Domain, Phylogenetic and Structural analysis of the receptors, ligand screening and optimization and detailed Docking studies. This brief involves extensive role of the RAS subfamily that includes a set of proteins, which cause an over expression of cancer-causing genes like M-ras and initiate tumour formation in lungs. SNP Studies and Structure based ...

  8. Endocrine disruption screening by protein and gene expression of vitellogenin in freshly isolated and cryopreserved rainbow trout hepatocytes.

    Science.gov (United States)

    Markell, Lauren K; Mingoia, Robert T; Peterson, Heather M; Yao, Jianhong; Waters, Stephanie M; Finn, James P; Nabb, Diane L; Han, Xing

    2014-08-18

    Xenobiotics may activate the estrogen receptor, resulting in alteration of normal endocrine functions in animals and humans. Consequently, this necessitates development of assay end points capable of identifying estrogenic xenobiotics. In the present study, we screened the potential estrogenicity of chemicals via their ability to induce vitellogenin (VTG) expression in cultured primary hepatocytes from male trout. A routine method for VTG detection measures the secretion of the protein by enzyme-linked immunosorbent assay (ELISA) in freshly isolated trout hepatocytes. However, this lengthy (6 days) culturing procedure requires that hepatocyte isolation is performed each time the assay is run. We optimized this methodology by investigating the utility of cryopreserved hepatocytes, shortening the incubation time, performing a quantitative real-time PCR (qPCR) method for VTG quantification, and verifying the model system with reference chemicals 17β-estradiol, estrone, diethylstilbestrol, hexestrol, genistein, and a negative control, corticosterone. To test the performance of both freshly isolated and cryopreserved hepatocytes, mRNA was collected from hepatocytes following 24 h treatment for VTG gene expression analysis, whereas cell culture media was collected for a VTG ELISA 96 h post-treatment. EC50 values were obtained for each reference chemical except for corticosterone, which exhibited no induction of VTG gene or protein level. Our results show linear concordance between ELISA and qPCR detection methods. Although there was approximately 50% reduction in VTG inducibility following cryopreservation, linear concordance of EC50 values was found between freshly isolated and cryopreserved hepatocytes, indicating that cryopreservation does not alter the functional assessment of estrogen receptor activation and therefore VTG expression. These studies demonstrate that qPCR is a sensitive and specific method for detecting VTG gene expression that can be used together

  9. Lithium an emerging contaminant: Bioavailability, effects on protein expression, and homeostasis disruption in short-term exposure of rainbow trout

    Energy Technology Data Exchange (ETDEWEB)

    Tkatcheva, Victoria, E-mail: victoria.tkatcheva@gmail.com [Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6 (Canada); Poirier, David; Chong-Kit, Richard; Furdui, Vasile I.; Burr, Christopher; Leger, Ray; Parmar, Jaspal; Switzer, Teresa [Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6 (Canada); Maedler, Stefanie; Reiner, Eric J. [Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6 (Canada); University of Toronto, Department of Chemistry, 80 St. George Street, Toronto, ON M5S 3H6 (Canada); Sherry, James P.; Simmons, Denina B.D. [Aquatic Contaminants Research Division, Environment Canada, Burlington, ON L7R 4A6 (Canada)

    2015-04-15

    Highlights: • Lithium is highly bioavailable and elevated in fish brain after 48 h of waterborne Li-exposure. • Elevated Li correlated with decreased Na and Ca, and resulted in down regulation of LDL and Ptgs2. • Increased expression of Atp7b and WDr38 was observed with increased Li-exposure. • We identify the need for data on the occurrence of Li in surface, waste and drinking waters. - Abstract: Worldwide production of lithium (Li) has increased dramatically during the past decade, driven by the demand for high charge density batteries. Information about Li in the aquatic environment is limited. The present study was designed to explore the effects of Li in rainbow trout (Oncorhynchus mykiss). Juvenile trout were exposed to a nominal concentration of 1.0 mg Li/L in three separate exposures. Major ion concentrations were measured in brain and plasma by ion chromatography. Plasma proteins and fatty acids were measured by HPLC–MS/MS. Lithium accumulated in the brain and plasma. Arachidonic acid was elevated in plasma after 48 h. Elevated concentrations of Li in brain were associated with depressed concentrations of sodium, magnesium, potassium and ammonium relative to the control. In plasma, sodium and calcium were also depressed. Several changes occurred to plasma proteins corresponding to Li exposure: inhibition of prostaglandin synthase (Ptgs2), increased expression of copper transporting ATP synthases, and Na{sup +}/K{sup +} ATPase. To our knowledge, ours is the first study to demonstrate elevated Li concentrations in fish brain, with associated effects on ion regulation.

  10. Lithium an emerging contaminant: Bioavailability, effects on protein expression, and homeostasis disruption in short-term exposure of rainbow trout

    International Nuclear Information System (INIS)

    Tkatcheva, Victoria; Poirier, David; Chong-Kit, Richard; Furdui, Vasile I.; Burr, Christopher; Leger, Ray; Parmar, Jaspal; Switzer, Teresa; Maedler, Stefanie; Reiner, Eric J.; Sherry, James P.; Simmons, Denina B.D.

    2015-01-01

    Highlights: • Lithium is highly bioavailable and elevated in fish brain after 48 h of waterborne Li-exposure. • Elevated Li correlated with decreased Na and Ca, and resulted in down regulation of LDL and Ptgs2. • Increased expression of Atp7b and WDr38 was observed with increased Li-exposure. • We identify the need for data on the occurrence of Li in surface, waste and drinking waters. - Abstract: Worldwide production of lithium (Li) has increased dramatically during the past decade, driven by the demand for high charge density batteries. Information about Li in the aquatic environment is limited. The present study was designed to explore the effects of Li in rainbow trout (Oncorhynchus mykiss). Juvenile trout were exposed to a nominal concentration of 1.0 mg Li/L in three separate exposures. Major ion concentrations were measured in brain and plasma by ion chromatography. Plasma proteins and fatty acids were measured by HPLC–MS/MS. Lithium accumulated in the brain and plasma. Arachidonic acid was elevated in plasma after 48 h. Elevated concentrations of Li in brain were associated with depressed concentrations of sodium, magnesium, potassium and ammonium relative to the control. In plasma, sodium and calcium were also depressed. Several changes occurred to plasma proteins corresponding to Li exposure: inhibition of prostaglandin synthase (Ptgs2), increased expression of copper transporting ATP synthases, and Na + /K + ATPase. To our knowledge, ours is the first study to demonstrate elevated Li concentrations in fish brain, with associated effects on ion regulation

  11. Effect of ionizing radiation on the biological activity of activated oncogenes and dormant proto-oncogenes

    International Nuclear Information System (INIS)

    Angenent, G.C.; Berg, K.J. van den.

    1984-01-01

    The authors have studied the effect of ionizing radiation on the cloned human activated Ha-ras oncogene, on the Ha-ras gene in integrated form and on the dormant proto-oncogene murine c-mos using the NIH/3T3 transfection system. NIH/3T3 cells were transfected with DNA from the plasmid pT24 carrying the cloned Ha-ras oncogene of the T24 bladder carcinoma cell line. Various individual foci which developed were injected into nude mice. DNA was isolated from tumours, digested with the restriction enzyme Bam HI, electrophoresed on agarose and blotted onto nitrocellulose filter according to Southern. Hybridization with a pT24 probe showed that all the primary foci of transformed cells contained various fragments of the pT24 plasmid indicating that fibroblast transformation had been induced by introduction of the Ha-ras oncogene. (Auth.)

  12. Papillomavirus E6 proteins

    International Nuclear Information System (INIS)

    Howie, Heather L.; Katzenellenbogen, Rachel A.; Galloway, Denise A.

    2009-01-01

    The papillomaviruses are small DNA viruses that encode approximately eight genes, and require the host cell DNA replication machinery for their viral DNA replication. Thus papillomaviruses have evolved strategies to induce host cell DNA synthesis balanced with strategies to protect the cell from unscheduled replication. While the papillomavirus E1 and E2 genes are directly involved in viral replication by binding to and unwinding the origin of replication, the E6 and E7 proteins have auxillary functions that promote proliferation. As a consequence of disrupting the normal checkpoints that regulate cell cycle entry and progression, the E6 and E7 proteins play a key role in the oncogenic properties of human papillomaviruses with a high risk of causing anogenital cancers (HR HPVs). As a consequence, E6 and E7 of HR HPVs are invariably expressed in cervical cancers. This article will focus on the E6 protein and its numerous activities including inactivating p53, blocking apoptosis, activating telomerase, disrupting cell adhesion, polarity and epithelial differentiation, altering transcription and reducing immune recognition

  13. Deciphering hepatocellular responses to metabolic and oncogenic stress

    Directory of Open Access Journals (Sweden)

    Kathrina L. Marcelo

    2015-08-01

    Full Text Available Each cell type responds uniquely to stress and fractionally contributes to global and tissue-specific stress responses. Hepatocytes, liver macrophages (MΦ, and sinusoidal endothelial cells (SEC play functionally important and interdependent roles in adaptive processes such as obesity and tumor growth. Although these cell types demonstrate significant phenotypic and functional heterogeneity, their distinctions enabling disease-specific responses remain understudied. We developed a strategy for the simultaneous isolation and quantification of these liver cell types based on antigenic cell surface marker expression. To demonstrate the utility and applicability of this technique, we quantified liver cell-specific responses to high-fat diet (HFD or diethylnitrosamine (DEN, a liver-specific carcinogen, and found that while there was only a marginal increase in hepatocyte number, MΦ and SEC populations were quantitatively increased. Global gene expression profiling of hepatocytes, MΦ and SEC identified characteristic gene signatures that define each cell type in their distinct physiological or pathological states. Integration of hepatic gene signatures with available human obesity and liver cancer microarray data provides further insight into the cell-specific responses to metabolic or oncogenic stress. Our data reveal unique gene expression patterns that serve as molecular “fingerprints” for the cell-centric responses to pathologic stimuli in the distinct microenvironment of the liver. The technical advance highlighted in this study provides an essential resource for assessing hepatic cell-specific contributions to metabolic and oncogenic stress, information that could unveil previously unappreciated molecular mechanisms for the cellular crosstalk that underlies the continuum from metabolic disruption to obesity and ultimately hepatic cancer.

  14. Mapping the brain pathways of traumatic memory: inactivation of protein kinase M zeta in different brain regions disrupts traumatic memory processes and attenuates traumatic stress responses in rats.

    Science.gov (United States)

    Cohen, Hagit; Kozlovsky, Nitsan; Matar, Michael A; Kaplan, Zeev; Zohar, Joseph

    2010-04-01

    Protein kinase M zeta (PKMzeta), a constitutively active isoform of protein kinase C, has been implicated in protein synthesis-dependent maintenance of long-term potentiation and memory storage in the brain. Recent studies reported that local application of ZIP, a membrane-permeant PKMzeta inhibitor, into the insular cortex (IC) of behaving rats abolished long-term memory of taste associations. This study assessed the long-term effects of local applications of ZIP microinjected immediately (1 h) or 10 days after predator scent stress exposure, in a controlled prospectively designed animal model for PTSD. Four brain structures known to be involved in memory processes and in anxiety were investigated: lateral ventricle (LV), dorsal hippocampus (DH), basolateral amygdala and IC. The outcome measures included behavior in an elevated plus maze and acoustic startle response 7 days after microinjection, and freezing behavior upon exposure to trauma-related cue 8 days after microinjection. Previously acquired/encoded memories associated with the IC were also assessed. Inactivation of PKMzeta in the LV or DH within 1h of exposure effectively reduced PTSD-like behavioral disruption and trauma cue response 8 days later. Inactivation of PKMzeta 10 days after exposure had equivalent effects only when administered in the IC. The effect was demonstrated to be specific for trauma memories, whereas previously acquired data were unaffected by the procedure. Predator scent related memories are located in different brain areas at different times beginning with an initial hippocampus-dependent consolidation process, and are eventually stored in the IC. These bring the IC to the forefront as a potential region of significance in processes related to traumatic stress-induced disorders. 2010 Elsevier B.V. and ECNP. All rights reserved.

  15. Homozygous disruption of PDZD7 by reciprocal translocation in a consanguineous family: a new member of the Usher syndrome protein interactome causing congenital hearing impairment.

    Science.gov (United States)

    Schneider, Eberhard; Märker, Tina; Daser, Angelika; Frey-Mahn, Gabriele; Beyer, Vera; Farcas, Ruxandra; Schneider-Rätzke, Brigitte; Kohlschmidt, Nicolai; Grossmann, Bärbel; Bauss, Katharina; Napiontek, Ulrike; Keilmann, Annerose; Bartsch, Oliver; Zechner, Ulrich; Wolfrum, Uwe; Haaf, Thomas

    2009-02-15

    A homozygous reciprocal translocation, 46,XY,t(10;11),t(10;11), was detected in a boy with non-syndromic congenital sensorineural hearing impairment. Both parents and their four other children were heterozygous translocation carriers, 46,XX,t(10;11) and 46,XY,t(10;11), respectively. Fluorescence in situ hybridization of region-specific clones to patient chromosomes was used to localize the breakpoints within bacterial artificial chromosome (BAC) RP11-108L7 on chromosome 10q24.3 and within BAC CTD-2527F12 on chromosome 11q23.3. Junction fragments were cloned by vector ligation and sequenced. The chromosome 10 breakpoint was identified within the PDZ domain containing 7 (PDZD7) gene, disrupting the open reading frame of transcript PDZD7-C (without PDZ domain) and the 5'-untranslated region of transcript PDZD7-D (with one PDZ and two prolin-rich domains). The chromosome 11 breakpoint was localized in an intergenic segment. Reverse transcriptase-polymerase chain reaction analysis revealed PDZD7 expression in the human inner ear. A murine Pdzd7 transcript that is most similar in structure to human PDZD7-D is known to be expressed in the adult inner ear and retina. PDZD7 shares sequence homology with the PDZ domain-containing genes, USH1C (harmonin) and DFNB31 (whirlin). Allelic mutations in harmonin and whirlin can cause both Usher syndrome (USH1C and USH2D, respectively) and congenital hearing impairment (DFNB18 and DFNB31, respectively). Protein-protein interaction assays revealed the integration of PDZD7 in the protein network related to the human Usher syndrome. Collectively, our data provide strong evidence that PDZD7 is a new autosomal-recessive deafness-causing gene and also a prime candidate gene for Usher syndrome.

  16. Oncogene mutational profile in nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Zhang ZC

    2014-03-01

    Full Text Available Zi-Chen Zhang,1,* Sha Fu,1,* Fang Wang,1 Hai-Yun Wang,1 Yi-Xin Zeng,2 Jian-Yong Shao11Department of Molecular Diagnostics, 2Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China *These authors contributed equally to this work Abstract: Nasopharyngeal carcinoma (NPC is a common tumor in Southern China, but the oncogene mutational status of NPC patients has not been clarified. Using time-of-flight mass spectrometry, 238 mutation hotspots in 19 oncogenes were examined in 123 NPC patients. The relationships between mutational status and clinical data were assessed with a χ2 or Fisher's exact test. Survival analysis was performed using the Kaplan–Meier method with the log-rank test. In 123 patients, 21 (17.1% NPC tumors were positive for mutations in eight oncogenes: six patients had PIK3CA mutations (4.9%, five NRAS mutations (4.1%, four KIT mutations (3.3%, two PDGFRA mutations (1.6%, two ABL mutations (1.6%, and one with simultaneous mutations in HRAS, EGFR, and BRAF (1%. Patients with mutations were more likely to relapse or develop metastasis than those with wild-type alleles (P=0.019. No differences or correlations were found in other clinical characteristics or in patient survival. No mutations were detected in oncogenes AKT1, AKT2, CDK, ERBB2, FGFR1, FGFR3, FLT3, JAK2, KRAS, MET, and RET. These results demonstrate an association between NPC and mutations in NRAS, KIT, PIK3CA, PDGFRA, and ABL, which are associated with patient relapse and metastasis. Keywords: NPC, oncogene, mutation

  17. MAP17, a ROS-dependent oncogene

    International Nuclear Information System (INIS)

    Carnero, Amancio

    2012-01-01

    MAP17 is a small 17 kDa non-glycosylated membrane protein previously identified as being overexpressed in carcinomas. Breast tumor cells that overexpress MAP17 show an increased tumoral phenotype with enhanced proliferative capabilities both in the presence or the absence of contact inhibition, decreased apoptotic sensitivity, and increased migration. MAP17-expressing clones also grow better in nude mice. The increased malignant cell behavior induced by MAP17 is associated with an increase in reactive oxygen species (ROS) production, and the treatment of MAP17-expressing cells with antioxidants results in a reduction in the tumorigenic properties of these cells. The MAP17-dependent increase in ROS and tumorigenesis relies on its PDZ-binding domain because disruption of this sequence by point mutations abolishes the ability of MAP17 to enhance ROS production and tumorigenesis. MAP17 is overexpressed in a great variety of human carcinomas, including breast tumors. Immunohistochemical analysis of MAP17 during cancer progression demonstrates that overexpression of the protein strongly correlates with tumoral progression. Generalized MAP17 overexpression in human carcinomas indicates that MAP17 can be a good marker for tumorigenesis and, especially, for malignant progression.

  18. A Poly-ADP-Ribose Trigger Releases the Auto-Inhibition of a Chromatin Remodeling Oncogene

    DEFF Research Database (Denmark)

    Singh, Hari R; Nardozza, Aurelio P; Möller, Ingvar R

    2017-01-01

    DNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain......-macrodomain interactions, promotes an ungated conformation, and activates the remodeler's ATPase. ALC1 fragments lacking the regulatory macrodomain relax chromatin in vivo without requiring PARP1 activation. Further, the ATPase restricts the macrodomain's interaction with PARP1 under non-DNA damage conditions. Somatic...... cancer mutants disrupt ALC1's auto-inhibition and activate chromatin remodeling. Our data show that the NAD+-metabolite and nucleic acid PAR triggers ALC1 to drive chromatin relaxation. Modular allostery in this oncogene tightly controls its robust, DNA-damage-dependent activation....

  19. CXCR4 Protein Epitope Mimetic Antagonist POL5551 Disrupts Metastasis and Enhances Chemotherapy Effect in Triple-Negative Breast Cancer.

    Science.gov (United States)

    Xiang, Jingyu; Hurchla, Michelle A; Fontana, Francesca; Su, Xinming; Amend, Sarah R; Esser, Alison K; Douglas, Garry J; Mudalagiriyappa, Chidananda; Luker, Kathryn E; Pluard, Timothy; Ademuyiwa, Foluso O; Romagnoli, Barbara; Tuffin, Gérald; Chevalier, Eric; Luker, Gary D; Bauer, Michael; Zimmermann, Johann; Aft, Rebecca L; Dembowsky, Klaus; Weilbaecher, Katherine N

    2015-11-01

    The SDF-1 receptor CXCR4 has been associated with early metastasis and poorer prognosis in breast cancers, especially the most aggressive triple-negative subtype. In line with previous reports, we found that tumoral CXCR4 expression in patients with locally advanced breast cancer was associated with increased metastases and rapid tumor progression. Moreover, high CXCR4 expression identified a group of bone marrow-disseminated tumor cells (DTC)-negative patients at high risk for metastasis and death. The protein epitope mimetic (PEM) POL5551, a novel CXCR4 antagonist, inhibited binding of SDF-1 to CXCR4, had no direct effects on tumor cell viability, but reduced migration of breast cancer cells in vitro. In two orthotopic models of triple-negative breast cancer, POL5551 had little inhibitory effect on primary tumor growth, but significantly reduced distant metastasis. When combined with eribulin, a chemotherapeutic microtubule inhibitor, POL5551 additively reduced metastasis and prolonged survival in mice after resection of the primary tumor compared with single-agent eribulin. Hypothesizing that POL5551 may mobilize tumor cells from their microenvironment and sensitize them to chemotherapy, we used a "chemotherapy framing" dosing strategy. When administered shortly before and after eribulin treatment, three doses of POL5551 with eribulin reduced bone and liver tumor burden more effectively than chemotherapy alone. These data suggest that sequenced administration of CXCR4 antagonists with cytotoxic chemotherapy synergize to reduce distant metastases. ©2015 American Association for Cancer Research.

  20. Hepatitis C Virus and Disrupted Interferon Signaling Promote Lymphoproliferation via Type II CD95 and Interleukins

    Science.gov (United States)

    MACHIDA, KEIGO; TSUKIYAMA-KOHARA, KYOKO; SEKIGUCH, SATOSHI; SEIKE, EIJI; TÓNE, SHIGENOBU; HAYASHI, YUKIKO; TOBITA, YOSHIMI; KASAMA, YURI; SHIMIZU, MASUMI; TAKAHASHI, HIDEMI; TAYA, CHYOJI; YONEKAWA, HIROMICHI; TANAKA, NOBUYUKI; KOHARA, MICHINORI

    2014-01-01

    BACKGROUND & AIMS The molecular mechanisms of lymphoproliferation associated with the disruption of interferon (IFN) signaling and chronic hepatitis C virus (HCV) infection are poorly understood. Lymphomas are extrahepatic manifestations of HCV infection; we sought to clarify the molecular mechanisms of these processes. METHODS We established interferon regulatory factor-1– null (irf-1−/−) mice with inducible and persistent expression of HCV structural proteins (irf-1/CN2 mice). All the mice (n = 900) were observed for at least 600 days after Cre/loxP switching. Histologic analyses, as well as analyses of lymphoproliferation, sensitivity to Fas-induced apoptosis, colony formation, and cytokine production, were performed. Proteins associated with these processes were also assessed. RESULTS Irf-1/CN2 mice had extremely high incidences of lymphomas and lymphoproliferative disorders and displayed increased mortality. Disruption of irf-1 reduced the sensitivity to Fas-induced apoptosis and decreased the levels of caspases-3/7 and caspase-9 messenger RNA species and enzymatic activities. Furthermore, the irf-1/CN2 mice showed decreased activation of caspases-3/7 and caspase-9 and increased levels of interleukin (IL)-2, IL-10, and Bcl-2, as well as increased Bcl-2 expression, which promoted oncogenic transformation of lymphocytes. IL-2 and IL-10 were induced by the HCV core protein in splenocytes. CONCLUSIONS Disruption of IFN signaling resulted in development of lymphoma, indicating that differential signaling occurs in lymphocytes compared with liver. This mouse model, in which HCV expression and disruption of IFN signaling synergize to promote lymphoproliferation, will be an important tool for the development of therapeutic agents that target the lymphoproliferative pathway. PMID:19362089

  1. Oncogenes and radiosensitivity: in vitro studies. Potential impact in radiotherapy

    International Nuclear Information System (INIS)

    Alapetite, C.; Moustacchi, E.; Cosset, J.M.

    1992-01-01

    It is of interest to address the question of whether or not activated oncogenes can influence tumorigenic cell response to radiations. Malignant transformation through transfection of oncogenes offers a possibility for in vitro comparison of transformed cells and parental cells. Murin cellular system analysis suggests an acquisition of radioresistance through some oncogenes transfection. In human cells, only a limited number of oncogenes (ras and myc) has been studied so far. To date, no crucial influence could be demonstrated. The extension of the analysis to other oncogenes and suppressor genes could potentially be helpful for the choice and the modalities of cancer treatment

  2. PI3K/Akt signaling is involved in the disruption of gap junctional communication caused by v-Src and TNF-α.

    Science.gov (United States)

    Ito, Satoko; Hyodo, Toshinori; Hasegawa, Hitoki; Yuan, Hong; Hamaguchi, Michinari; Senga, Takeshi

    2010-09-17

    Gap junctional communication, which is mediated by the connexin protein family, is essential for the maintenance of normal tissue function and homeostasis. Loss of intercellular communication results in a failure to coordinately regulate cellular functions, and it can facilitate tumorigenesis. Expression of oncogenes and stimulation with cytokines has been shown to suppress intercellular communication; however, the exact mechanism by which intercellular communication is disrupted by these factors remains uncertain. In this report, we show that Akt is essential for the disruption of gap junctional communication in v-Src-transformed cells. In addition, inhibition of Akt restores gap junctional communication after it is suppressed by TNF-α signaling. Furthermore, we demonstrate that the expression of a constitutively active form of Akt1, but not of Akt2 or Akt3, is sufficient to suppress gap junctional communication. Our results clearly define Akt1 as one of the critical regulators of gap junctional communication. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Oncogenic N-Ras Stimulates SRF-Mediated Transactivation via H3 Acetylation at Lysine 9

    Directory of Open Access Journals (Sweden)

    Sun-Ju Yi

    2018-01-01

    Full Text Available Signal transduction pathways regulate the gene expression by altering chromatin dynamics in response to mitogens. Ras proteins are key regulators linking extracellular stimuli to a diverse range of biological responses associated with gene regulation. In mammals, the three ras genes encode four Ras protein isoforms: H-Ras, K-Ras4A, K-Ras4B, and N-Ras. Although emerging evidence suggests that Ras isoforms differentially regulate gene expressions and are functionally nonredundant, the mechanisms underlying Ras specificity and Ras signaling effects on gene expression remain unclear. Here, we show that oncogenic N-Ras acts as the most potent regulator of SRF-, NF-κB-, and AP-1-dependent transcription. N-Ras-RGL2 axis is a distinct signaling pathway for SRF target gene expression such as Egr1 and JunB, as RGL2 Ras binding domain (RBD significantly impaired oncogenic N-Ras-induced SRE activation. By monitoring the effect of Ras isoforms upon the change of global histone modifications in oncogenic Ras-overexpressed cells, we discovered that oncogenic N-Ras elevates H3K9ac/H3K23ac levels globally in the chromatin context. Importantly, chromatin immunoprecipitation (ChIP assays revealed that H3K9ac is significantly enriched at the promoter and coding regions of Egr1 and JunB. Collectively, our findings define an undocumented role of N-Ras in modulating of H3 acetylation and in gene regulation.

  4. The Leukemic Stem Cell Niche: Adaptation to “Hypoxia” versus Oncogene Addiction

    Directory of Open Access Journals (Sweden)

    Giulia Cheloni

    2017-01-01

    Full Text Available Previous studies based on low oxygen concentrations in the incubation atmosphere revealed that metabolic factors govern the maintenance of normal hematopoietic or leukemic stem cells (HSC and LSC. The physiological oxygen concentration in tissues ranges between 0.1 and 5.0%. Stem cell niches (SCN are placed in tissue areas at the lower end of this range (“hypoxic” SCN, to which stem cells are metabolically adapted and where they are selectively hosted. The data reported here indicated that driver oncogenic proteins of several leukemias are suppressed following cell incubation at oxygen concentration compatible with SCN physiology. This suppression is likely to represent a key positive regulator of LSC survival and maintenance (self-renewal within the SCN. On the other hand, LSC committed to differentiation, unable to stand suppression because of addiction to oncogenic signalling, would be unfit to home in SCN. The loss of oncogene addiction in SCN-adapted LSC has a consequence of crucial practical relevance: the refractoriness to inhibitors of the biological activity of oncogenic protein due to the lack of their molecular target. Thus, LSC hosted in SCN are suited to sustain the long-term maintenance of therapy-resistant minimal residual disease.

  5. Characterization of TRPS1 and ERAS as oncogenes implicated in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Gonzalez, L.

    2015-07-01

    New high throughput technologies have made possible to identify putative oncogenes in breast cancer. In this project we aim to relate and characterise two novel putative oncogenes, ERAS and TRPS1, in their role in human breast cancer. TRPS1, an atypical GATA factor, modulates cell proliferation and controls cell cycle progression through repression of GATA-regulated genes, therefore acting as a tumour suppressor gene. Conversely, TRPS1 expression has been shown to be significantly elevated in luminal and in a lesser extent in basal breast cancer cells, presenting roles both as an oncogene and as a tumour suppressor gene in breast cancer development. The aim of this project is therefore to determine the characteristics of TRPS1 either as a putative novel human oncogene or as a tumour suppressor gene in breast cancer cells. To this aim, we have cloned a novel isoform of TRPS1 and introduced it into several breast cancer cell lines. Our results show that overexpression of this isoform of TRPS1 results in variations in motility in non-carcinogenic cell lines, as well as in a series of EMT-like changes such as the down-regulation of the EMT marker E-cadherin, both of which can be associated to an increase in malignancy, suggesting an oncogenic behaviour for TRPS1. Furthermore, our results suggest that constitutively active members of the RAS protein family induce the expression of TRPS1, establishing a relationship between both genes. We can conclude that the effects of TRPS1 overexpression are moderate, inducing some changes but not fully transforming the cells. Therefore we cannot confirm that TRPS1 is a putative oncogene in breast cancer. (Author)

  6. Sustainable Disruptions

    DEFF Research Database (Denmark)

    Friis, Silje Alberthe Kamille; Kjær, Lykke Bloch

    2016-01-01

    Since 2012 the Sustainable Disruptions (SD) project at the Laboratory for Sustainability at Design School Kolding (DK) has developed and tested a set of design thinking tools, specifically targeting the barriers to economically, socially, and environmentally sustainable business development....... The tools have been applied in practice in collaboration with 11 small and medium sized companies (SMEs). The study investigates these approaches to further understand how design thinking can contribute to sustainable transition in a business context. The study and the findings are relevant to organizations...... invested in the issue of sustainable business development, in particular the leaders and employees of SMEs, but also to design education seeking new ways to consciously handle and teach the complexity inherent in sustainable transformation. Findings indicate that the SD design thinking approach contributes...

  7. Oncogenic transformation with radiation and chemicals: review

    International Nuclear Information System (INIS)

    Hall, E.J.; Hei, T.K.

    1985-01-01

    Quantitative in vitro assay systems for oncogenic transformation are a powerful research tool. They may be based on short-term cultures of hamster embryo cells, or established cell lines of mouse origin. While X-ray-induced transformation of human cells has been demonstrated, it has proved difficult to develop quantitative assay systems based on cells of human origin. The presently available quantitative assays have two quite distinct basic uses. First, they may be useful to accumulate data which is essentially pragmatic in nature. For example, they may be used to compare and contrast the oncogenic potential of chemotherapeutic agents or hypoxic cell sensitizers used or proposed in the clinic. They may be used to identify compounds that inhibit or suppress the transformation incidence resulting from known oncogenic agents, or they may be used to demonstrate the interaction between two different agents, such as radiation and asbestos. Second, they may prove to be invaluable in the study of the basic mechanisms of carcinogenesis, inasmuch as they represent models of tumourigenesis in which the various steps can be manipulated and modified more readily and in a controlled way. (author)

  8. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises.

    Science.gov (United States)

    El-Araby, Amr M; Fouad, Abdelrahman A; Hanbal, Amr M; Abdelwahab, Sara M; Qassem, Omar M; El-Araby, Moustafa E

    2016-02-01

    Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Oncogenes and tumor suppressors in the molecular pathogenesis of acute promyelocytic leukemia.

    Science.gov (United States)

    Pandolfi, P P

    2001-04-01

    Acute promyelocytic leukemia (APL) is associated with reciprocal chromosomal translocations always involving the retinoic acid receptor alpha (RARalpha) gene on chromosome 17 and variable partner genes (X genes) on distinct chromosomes. RARalpha fuses to the PML gene in the vast majority of APL cases, and in a few cases to the PLZF, NPM, NuMA and Stat5b genes, respectively, leading to the generation of RARalpha-X: and X:-RARalpha fusion genes. Both fusion proteins can exert oncogenic functions through their ability to interfere with the activities of X and RARalpha proteins. Here, it will be discussed in detail how an extensive biochemical analysis as well as a systematic in vivo genetic approach in the mouse has allowed the definition of the multiple oncogenic activities of PML-RARalpha, and how it has become apparent that this oncoprotein is able to impair RARalpha at the transcription level and the tumor suppressive function of the PML protein.

  10. The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3' kinase pathway.

    Science.gov (United States)

    Sattler, M; Salgia, R; Okuda, K; Uemura, N; Durstin, M A; Pisick, E; Xu, G; Li, J L; Prasad, K V; Griffin, J D

    1996-02-15

    Chronic myelogenous leukemia (CML) and some acute lymphoblastic leukemias (ALL) are caused by the t(9;22) chromosome translocation, which produces the constitutively activated BCR/ABL tyrosine kinase. When introduced into factor dependent hematopoietic cell lines, BCR/ABL induces the tyrosine phosphorylation of many cellular proteins. One prominent BCR/ABL substrate is p120CBL, the cellular homolog of the v-Cbl oncoprotein. In an effort to understand the possible contribution of p120CBL to transformation by BCR/ABL, we looked for cellular proteins which associate with p120CBL in hematopoietic cell lines transformed by BCR/ABL. In addition to p210BCR/ABL and c-ABL, p120CBL coprecipitated with an 85 kDa phosphoprotein, which was identified as the p85 subunit of PI3K. Anti-p120CBL immunoprecipitates from BCR/ABL-transformed, but not from untransformed, cell lines contained PI3K lipid kinase activity. Interestingly, the adaptor proteins CRKL and c-CRK were also found in these complexes. In vitro binding studies indicated that the SH2 domains of CRKL and c-CRK bound directly to p120CBL, while the SH3 domains of c-CRK and CRKL bound to BCR/ABL and c-ABL. The N-terminal and the C-terminal SH2 and the SH3 domain of p85PI3K bound directly in vitro to p120CBL. The ABL-SH2, but not ABL-SH3, could also bind to p120CBL. These data suggest that BCR/ABL may induce the formation of multimeric complexes of signaling proteins which include p120CBL, PI3K, c-CRK or CRKL, c-ABL and BCR/ABL itself.

  11. The Homeodomain Transcription Factor Cdx1 Does Not Behave as an Oncogene in Normal Mouse Intestine

    Directory of Open Access Journals (Sweden)

    Mary Ann S. Crissey

    2008-01-01

    Full Text Available The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium.

  12. Endocrine Disrupting Chemicals (EDCs)

    Science.gov (United States)

    ... Center Pacientes y Cuidadores Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone ... Hormones and Health › Endocrine Disrupting Chemicals (EDCs) The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) EDCs Myth vs. ...

  13. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling

    OpenAIRE

    Shrestha, Yashaswi; Schafer, Eric J.; Boehm, Jesse S.; Thomas, Sapana R.; He, Frank; Du, Jinyan; Wang, Shumei; Barretina, Jordi; Weir, Barbara A.; Zhao, Jean J.; Polyak, Kornelia; Golub, Todd R.; Beroukhim, Rameen; Hahn, William C.

    2011-01-01

    Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK Mitogen-Activated Protein Kinase (MAPK) pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce ...

  14. MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christoph Campregher

    Full Text Available BACKGROUND/AIM: Elevated microsatellite instability at selected tetranucleotide repeats (EMAST is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. METHODS: HCT116 and HCT116+chr3 (both MSH3-deficient and primary human colon epithelial cells (HCEC, MSH3-wildtype were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs were assessed by Comet assay. RESULTS: Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10(-4 at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50, apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. CONCLUSIONS: MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon

  15. Intracortical osteoblastic osteosarcoma with oncogenic rickets

    International Nuclear Information System (INIS)

    Hasegawa, T.; Hirohashi, Setsuo; Shimoda, Tadakazu; Yokoyama, Ryohei; Beppu, Yasuo; Maeda, Shotaro

    1999-01-01

    Intracortical osteosarcoma is the rarest variant of osteosarcoma, occurring within, and usually confined to, the cortical bone. Oncogenic osteomalacia, or rickets, is an unusual clinicopathologic entity in which vitamin D-resistant osteomalacia, or rickets, occurs in association with some tumors of soft tissue or bone. We present a case of oncogenic rickets associated with intracortical osteosarcoma of the tibia in a 9-year-old boy, whose roentgenographic abnormalities of rickets disappeared and pertinent laboratory data except for serum alkaline phosphatase became normal after surgical resection of the tumor. Histologically, the tumor was an osteosarcoma with a prominent osteoblastic pattern. An unusual microscopic feature was the presence of matrix mineralization showing rounded calcified structures (calcified spherules). Benign osteoblastic tumors, such as osteoid osteoma and osteoblastoma, must be considered in the differential diagnosis because of the relatively low cellular atypia and mitotic activity of this tumor. The infiltrating pattern with destruction or engulfment of normal bone is a major clue to the correct diagnosis of intracortical osteosarcoma. The co-existing radiographic changes of rickets were due to the intracortical osteosarcoma. (orig.)

  16. Intracortical osteoblastic osteosarcoma with oncogenic rickets

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T.; Hirohashi, Setsuo [Pathology Division, National Cancer Center Research Institute, Tokyo (Japan); Shimoda, Tadakazu [Clinical Laboratory Division, National Cancer Center Hospital, Tokyo (Japan); Yokoyama, Ryohei; Beppu, Yasuo [Orthopedic Division, National Cancer Center Hospital, Tokyo (Japan); Maeda, Shotaro [Department of Pathology, Nippon Medical School Hospital, Tokyo (Japan)

    1999-01-01

    Intracortical osteosarcoma is the rarest variant of osteosarcoma, occurring within, and usually confined to, the cortical bone. Oncogenic osteomalacia, or rickets, is an unusual clinicopathologic entity in which vitamin D-resistant osteomalacia, or rickets, occurs in association with some tumors of soft tissue or bone. We present a case of oncogenic rickets associated with intracortical osteosarcoma of the tibia in a 9-year-old boy, whose roentgenographic abnormalities of rickets disappeared and pertinent laboratory data except for serum alkaline phosphatase became normal after surgical resection of the tumor. Histologically, the tumor was an osteosarcoma with a prominent osteoblastic pattern. An unusual microscopic feature was the presence of matrix mineralization showing rounded calcified structures (calcified spherules). Benign osteoblastic tumors, such as osteoid osteoma and osteoblastoma, must be considered in the differential diagnosis because of the relatively low cellular atypia and mitotic activity of this tumor. The infiltrating pattern with destruction or engulfment of normal bone is a major clue to the correct diagnosis of intracortical osteosarcoma. The co-existing radiographic changes of rickets were due to the intracortical osteosarcoma. (orig.) With 8 figs., 25 refs.

  17. Oncogenic Ras-Induced Morphologic Change Is through MEK/ERK Signaling Pathway to Downregulate Stat3 at a Posttranslational Level in NIH3T3 Cells

    Directory of Open Access Journals (Sweden)

    Hsuan-Heng Yeh

    2008-01-01

    Full Text Available Ras is a key regulator of the MAP kinase-signaling cascade and may cause morphologic change of Ras-transformed cells. Signal transducer and activator of transcription 3 (Stat3 can be activated by cytokine stimulation. In this study, we unravel that Ha-rasV12 overexpression can downregulate the expression of Stat3 protein at a posttranslational level in NIH3T3 cells. Furthermore, we demonstrate that Stat3 expression downregulated by Ha-rasV12 overexpression is through proteosome degradation and not through a mTOR/p70S6K-related signaling pathway. The suppression of Stat3 accompanied by the morphologic change induced by Ha-rasV12 was through mitogen extracellular kinase (MEK/extracellular-regulated kinase (ERK signaling pathway. Microtubule disruption is involved in Ha-rasV12-induced morphologic change, which could be reversed by overexpression of Stat3. Taken together, we are the first to demonstrate that Stat3 protein plays a critical role in Ha-rasV12-induced morphologic change. Oncogenic Ras-triggered morphologic change is through the activation of MEK/ERK to posttranslationally downregulate Stat3 expression. Our finding may shed light on developing novel therapeutic strategies against Ras-related tumorigenesis.

  18. Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adapter protein.

    Science.gov (United States)

    Garrity, P A; Rao, Y; Salecker, I; McGlade, J; Pawson, T; Zipursky, S L

    1996-05-31

    Mutations in the Drosophila gene dreadlocks (dock) disrupt photoreceptor cell (R cell) axon guidance and targeting. Genetic mosaic analysis and cell-type-specific expression of dock transgenes demonstrate dock is required in R cells for proper innervation. Dock protein contains one SH2 and three SH3 domains, implicating it in tyrosine kinase signaling, and is highly related to the human proto-oncogene Nck. Dock expression is detected in R cell growth cones in the target region. We propose Dock transmits signals in the growth cone in response to guidance and targeting cues. These findings provide an important step for dissection of signaling pathways regulating growth cone motility.

  19. Ascorbate/menadione-induced oxidative stress kills cancer cells that express normal or mutated forms of the oncogenic protein Bcr-Abl. An in vitro and in vivo mechanistic study.

    Science.gov (United States)

    Beck, Raphaël; Pedrosa, Rozangela Curi; Dejeans, Nicolas; Glorieux, Christophe; Levêque, Philippe; Gallez, Bernard; Taper, Henryk; Eeckhoudt, Stéphane; Knoops, Laurent; Calderon, Pedro Buc; Verrax, Julien

    2011-10-01

    Numerous studies suggest that generation of oxidative stress could be useful in cancer treatment. In this study, we evaluated, in vitro and in vivo, the antitumor potential of oxidative stress induced by ascorbate/menadione (asc/men). This combination of a reducing agent (ascorbate) and a redox active quinone (menadione) generates redox cycling leading to formation of reactive oxygen species (ROS). Asc/men was tested in several cell types including K562 cells (a stable human-derived leukemia cell line), freshly isolated leukocytes from patients with chronic myeloid leukemia, BaF3 cells (a murine pro-B cell line) transfected with Bcr-Abl and peripheral blood leukocytes derived from healthy donors. Although these latter cells were resistant to asc/men, survival of all the other cell lines was markedly reduced, including the BaF3 cells expressing either wild-type or mutated Bcr-Abl. In a standard in vivo model of subcutaneous tumor transplantation, asc/men provoked a significant delay in the proliferation of K562 and BaF3 cells expressing the T315I mutated form of Bcr-Abl. No effect of asc/men was observed when these latter cells were injected into blood of mice most probably because of the high antioxidant potential of red blood cells, as shown by in vitro experiments. We postulate that cancer cells are more sensitive to asc/men than healthy cells because of their lack of antioxidant enzymes, mainly catalase. The mechanism underlying this cytotoxicity involves the oxidative cleavage of Hsp90 with a subsequent loss of its chaperone function thus leading to degradation of wild-type and mutated Bcr-Abl protein.

  20. Analysis of nucleo-cytoplasmic shuttling of the proto-oncogene SET/I2PP2A

    NARCIS (Netherlands)

    Lam, B. Daniel; Anthony, Eloise C.; Hordijk, Peter L.

    2012-01-01

    SET/I2PP2A is a nuclear protein that was initially identified as an oncogene in human undifferentiated acute myeloid leukemia, fused to the nuclear porin Nup-214. In addition, SET is a potent inhibitior of the phosphatase PP2A. Previously, we proposed a model in which the small GTPase Rac1 recruits

  1. Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    NARCIS (Netherlands)

    Schaub, Franz X.; Dhankani, Varsha; Berger, Ashton C.; Trivedi, Mihir; Richardson, Anne B.; Shaw, Reid; Zhao, Wei; Zhang, Xiaoyang; Ventura, Andrea; Liu, Yuexin; Ayer, Donald E.; Hurlin, Peter J.; Cherniack, Andrew D.; Eisenman, Robert N.; Bernard, Brady; Grandori, Carla; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Parker, Joel S.; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David A.; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Angulo Gonzalez, Ana Maria; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Mora Pinero, Edna M.; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz

    2018-01-01

    Although the MYC oncogene has been implicated in cancer, a systematic assessment of alterations of MYC, related transcription factors, and co-regulatory proteins, forming the proximal MYC network (PMN), across human cancers is lacking. Using computational approaches, we define genomic and proteomic

  2. Selective elimination of high constitutive activity or chemokine binding in the human herpesvirus 8 encoded seven transmembrane oncogene ORF74

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Kledal, T N; Holst, Peter Johannes

    2000-01-01

    Open reading frame 74 (ORF74) encoded by human herpesvirus 8 is a highly constitutively active seven transmembrane (7TM) receptor stimulated by angiogenic chemokines, e.g. growth-related oncogene-alpha, and inhibited by angiostatic chemokines e.g. interferon-gamma-inducible protein. Transgenic mice...

  3. The novel mouse mutant, chuzhoi, has disruption of Ptk7 protein and exhibits defects in neural tube, heart and lung development and abnormal planar cell polarity in the ear

    Directory of Open Access Journals (Sweden)

    Paudyal Anju

    2010-08-01

    Full Text Available Abstract Background The planar cell polarity (PCP signalling pathway is fundamental to a number of key developmental events, including initiation of neural tube closure. Disruption of the PCP pathway causes the severe neural tube defect of craniorachischisis, in which almost the entire brain and spinal cord fails to close. Identification of mouse mutants with craniorachischisis has proven a powerful way of identifying molecules that are components or regulators of the PCP pathway. In addition, identification of an allelic series of mutants, including hypomorphs and neomorphs in addition to complete nulls, can provide novel genetic tools to help elucidate the function of the PCP proteins. Results We report the identification of a new N-ethyl-N-nitrosourea (ENU-induced mutant with craniorachischisis, which we have named chuzhoi (chz. We demonstrate that chuzhoi mutant embryos fail to undergo initiation of neural tube closure, and have characteristics consistent with defective convergent extension. These characteristics include a broadened midline and reduced rate of increase of their length-to-width ratio. In addition, we demonstrate disruption in the orientation of outer hair cells in the inner ear, and defects in heart and lung development in chuzhoi mutants. We demonstrate a genetic interaction between chuzhoi mutants and both Vangl2Lp and Celsr1Crsh mutants, strengthening the hypothesis that chuzhoi is involved in regulating the PCP pathway. We demonstrate that chuzhoi maps to Chromosome 17 and carries a splice site mutation in Ptk7. This mutation results in the insertion of three amino acids into the Ptk7 protein and causes disruption of Ptk7 protein expression in chuzhoi mutants. Conclusions The chuzhoi mutant provides an additional genetic resource to help investigate the developmental basis of several congenital abnormalities including neural tube, heart and lung defects and their relationship to disruption of PCP. The chuzhoi mutation

  4. Gene activated by growth factors is related to the oncogene v-jun

    International Nuclear Information System (INIS)

    Ryder, K.; Lau, L.F.; Nathans, D.

    1988-01-01

    The authors have recently identified by cDNA cloning a set of genes that are rapidly activated in cultured mouse cells by protein growth factors. Here they report that the nucleotide sequence of a cDNA (clone 465) derived from one of these immediate early genes (hereafter called jun-B) encodes a protein homologous to that encoded by the avian sarcoma virus 17 oncogene v-jun. Homology between the jun-B and v-jun proteins is in two regions: one near the N terminus and the other at the C terminus. The latter sequence was shown to have regions of sequence similarity to the DNA-binding domain of the yeast transcriptional regulatory protein GCN4 and to the oncogenic protein fos. Southern blots of human, mouse, and chicken DNA demonstrate that jun-B and c-jun are different genes and that there may be other vertebrate genes related to jun-B and c-jun. These findings suggest that there is a jun family of genes encoding related transcriptional regulatory proteins. The jun-B protein, and perhaps other members of the jun family, may play a role in regulating the genomic response to growth factors

  5. Melanoma Suppressor Functions of the Carcinoma Oncogene FOXQ1

    Directory of Open Access Journals (Sweden)

    Archis Bagati

    2017-09-01

    Full Text Available Lineage-specific regulation of tumor progression by the same transcription factor is understudied. We find that levels of the FOXQ1 transcription factor, an oncogene in carcinomas, are decreased during melanoma progression. Moreover, in contrast to carcinomas, FOXQ1 suppresses epithelial-to-mesenchymal transition, invasion, and metastasis in melanoma cells. We find that these lineage-specific functions of FOXQ1 largely depend on its ability to activate (in carcinomas or repress (in melanoma transcription of the N-cadherin gene (CDH2. We demonstrate that FOXQ1 interacts with nuclear β-catenin and TLE proteins, and the β-catenin/TLE ratio, which is higher in carcinoma than melanoma cells, determines the effect of FOXQ1 on CDH2 transcription. Accordingly, other FOXQ1-dependent phenotypes can be manipulated by altering nuclear β-catenin or TLE proteins levels. Our data identify FOXQ1 as a melanoma suppressor and establish a mechanism underlying its inverse lineage-specific transcriptional regulation of transformed phenotypes.

  6. Characterization of a human cell line stably over-expressing the candidate oncogene, dual specificity phosphatase 12.

    Directory of Open Access Journals (Sweden)

    Erica L Cain

    2011-04-01

    Full Text Available Analysis of chromosomal rearrangements within primary tumors has been influential in the identification of novel oncogenes. Identification of the "driver" gene(s within cancer-derived amplicons is, however, hampered by the fact that most amplicons contain many gene products. Amplification of 1q21-1q23 is strongly associated with liposarcomas and microarray-based comparative genomic hybridization narrowed down the likely candidate oncogenes to two: the activating transcription factor 6 (atf6 and the dual specificity phosphatase 12 (dusp12. While atf6 is an established transcriptional regulator of the unfolded protein response, the potential role of dusp12 in cancer remains uncharacterized.To evaluate the oncogenic potential of dusp12, we established stable cell lines that ectopically over-express dusp12 in isolation and determined whether this cell line acquired properties frequently associated with transformed cells. Here, we demonstrate that cells over-expressing dusp12 display increased cell motility and resistance to apoptosis. Additionally, over-expression of dusp12 promoted increased expression of the c-met proto-oncogene and the collagen and laminin receptor intergrin alpha 1 (itga1 which is implicated in metastasis.Collectively, these results suggest that dusp12 is oncologically relevant and exposes a potential association between dusp12 and established oncogenes that could be therapeutically targeted.

  7. Identification of ALV-J associated acutely transforming virus Fu-J carrying complete v-fps oncogene.

    Science.gov (United States)

    Wang, Yixin; Li, Jianliang; Li, Yang; Fang, Lichun; Sun, Xiaolong; Chang, Shuang; Zhao, Peng; Cui, Zhizhong

    2016-06-01

    Transduction of oncogenes by ALVs and generation of acute transforming viruses is common in natural viral infections. In order to understand the molecular basis for the rapid oncogenicity of Fu-J, an acutely transforming avian leukosis virus isolated from fibrosarcomas in crossbreed broilers infected with subgroup J avian leukosis virus (ALV-J) in China, complete genomic structure of Fu-J virus was determined by PCR amplification and compared with those of Fu-J1, Fu-J2, Fu-J3, Fu-J4, and Fu-J5 reported previously. The results showed that the genome of Fu-J was defective, with parts of gag gene replaced by the complete v-fps oncogene and encoded a 137 kDa Gag-fps fusion protein. Sequence analysis revealed that Fu-J and Fu-J1 to Fu-J5 were related quasi-species variants carrying different lengths of v-fps oncogenes generated from recombination between helper virus and c-fps gene. Comparison of virus carrying v-fps oncogene also gave us a glimpse of the molecular characterization and evolution process of the acutely transforming ALV.

  8. Oncogenic Notch signaling in T-cell and B-cell lymphoproliferative disorders.

    Science.gov (United States)

    Chiang, Mark Y; Radojcic, Vedran; Maillard, Ivan

    2016-07-01

    This article highlights recent discoveries about Notch activation and its oncogenic functions in lymphoid malignancies, and discusses the therapeutic potential of Notch inhibition. NOTCH mutations arise in a broad spectrum of lymphoid malignancies and are increasingly scrutinized as putative therapeutic targets. In T-cell acute lymphoblastic leukemia (T-ALL), NOTCH1 mutations affect the extracellular negative regulatory region and lead to constitutive Notch activation, although mutated receptors remain sensitive to Notch ligands. Other NOTCH1 mutations in T-ALL and NOTCH1/2 mutations in multiple B-cell malignancies truncate the C-terminal proline (P), glutamic acid (E), serine (S), threonine (T)-rich (PEST) domain, leading to decreased Notch degradation after ligand-mediated activation. Thus, targeting Notch ligand-receptor interactions could provide therapeutic benefits. In addition, we discuss recent reports on clinical testing of Notch inhibitors in T-ALL that influenced contemporary thinking on the challenges of targeting Notch in cancer. We review advances in the laboratory to address these challenges in regards to drug targets, the Notch-driven metabolome, and the sophisticated protein-protein interactions at Notch-dependent superenhancers that underlie oncogenic Notch functions. Notch signaling is a recurrent oncogenic pathway in multiple T- and B-cell lymphoproliferative disorders. Understanding the complexity and consequences of Notch activation is critical to define optimal therapeutic strategies targeting the Notch pathway.

  9. Early bichemical markers of effects: Enzyme induction, oncogene activation and markers of oxidative damage

    DEFF Research Database (Denmark)

    Poulsen, Henrik E.; Loft, Steffen

    1995-01-01

    Early bichemical marker, enzyme induction, oncogene activation, oxidative damage, low-density lipoprotein......Early bichemical marker, enzyme induction, oncogene activation, oxidative damage, low-density lipoprotein...

  10. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma

    Science.gov (United States)

    Drier, Yotam; Cotton, Matthew J.; Williamson, Kaylyn E.; Gillespie, Shawn M.; Ryan, Russell J.H.; Kluk, Michael J.; Carey, Christopher D.; Rodig, Scott J.; Sholl, Lynette M; Afrogheh, Amir H.; Faquin, William C.; Queimado, Lurdes; Qi, Jun; Wick, Michael J.; El-Naggar, Adel K.; Bradner, James E.; Moskaluk, Christopher A.; Aster, Jon C.; Knoechel, Birgit; Bernstein, Bradley E.

    2016-01-01

    Translocation events are frequent in cancer and may create chimeric fusions or ‘regulatory rearrangements’ that drive oncogene overexpression. Here we identify super-enhancer translocations that drive overexpression of the oncogenic transcription factor MYB as a recurrent theme in adenoid cystic carcinoma (ACC). Whole-genome sequencing data and chromatin maps reveal distinct chromosomal rearrangements that juxtapose super-enhancers to the MYB locus. Chromosome conformation capture confirms that the translocated enhancers interact with the MYB promoter. Remarkably, MYB protein binds to the translocated enhancers, creating a positive feedback loop that sustains its expression. MYB also binds enhancers that drive different regulatory programs in alternate cell lineages in ACC, cooperating with TP63 in myoepithelial cells and a Notch program in luminal epithelial cells. Bromodomain inhibitors slow tumor growth in ACC primagraft models in vivo. Thus, our study identifies super-enhancer translocations that drive MYB expression and provides insight into downstream MYB functions in the alternate ACC lineages. PMID:26829750

  11. Plasma membrane disruption: repair, prevention, adaptation

    Science.gov (United States)

    McNeil, Paul L.; Steinhardt, Richard A.

    2003-01-01

    Many metazoan cells inhabit mechanically stressful environments and, consequently, their plasma membranes are frequently disrupted. Survival requires that the cell rapidly repair or reseal the disruption. Rapid resealing is an active and complex structural modification that employs endomembrane as its primary building block, and cytoskeletal and membrane fusion proteins as its catalysts. Endomembrane is delivered to the damaged plasma membrane through exocytosis, a ubiquitous Ca2+-triggered response to disruption. Tissue and cell level architecture prevent disruptions from occurring, either by shielding cells from damaging levels of force, or, when this is not possible, by promoting safe force transmission through the plasma membrane via protein-based cables and linkages. Prevention of disruption also can be a dynamic cell or tissue level adaptation triggered when a damaging level of mechanical stress is imposed. Disease results from failure of either the preventive or resealing mechanisms.

  12. Targeted disruption of a ring-infected erythrocyte surface antigen (RESA)-like export protein gene in Plasmodium falciparum confers stable chondroitin 4-sulfate cytoadherence capacity

    DEFF Research Database (Denmark)

    Goel, Suchi; Muthusamy, Arivalagan; Miao, Jun

    2014-01-01

    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family proteins mediate the adherence of infected erythrocytes to microvascular endothelia of various organs, including the placenta, thereby contributing to cerebral, placental, and other severe malaria pathogenesis. Several paras...

  13. The oncogenic action of ionizing radiation on rat skin

    International Nuclear Information System (INIS)

    Burns, F.J.

    1991-01-01

    Progress has occurred in several areas corresponding to the specific aims of the proposal: (1) Progression and multiple events in radiation carcinogenesis of rat skin as a function of LET; (2) cell cycle kinetics of irradiated rat epidermis as determined by double labeling and double emulsion autoradiography; (3) oncogene activation detected by in situ hybridization in radiation-induced rat skin tumors; (4) amplification of the c-myc oncogene in radiation-induced rat skin tumors as a function of LET; and (5) transformation of rat skin keratinocytes by ionizing radiation in combination with c-Ki-ras and c-myc oncogenes. 111 refs., 13 figs., 12 tabs

  14. Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells

    International Nuclear Information System (INIS)

    Lee, Tae Hoon; Chennakrishnaiah, Shilpa; Audemard, Eric; Montermini, Laura; Meehan, Brian; Rak, Janusz

    2014-01-01

    Highlights: • Oncogenic H-ras stimulates emission of extracellular vesicles containing double-stranded DNA. • Vesicle-associated extracellular DNA contains mutant N-ras sequences. • Vesicles mediate intercellular transfer of mutant H-ras DNA to normal fibroblasts where it remains for several weeks. • Fibroblasts exposed to vesicles containing H-ras DNA exhibit increased proliferation. - Abstract: Cell free DNA is often regarded as a source of genetic cancer biomarkers, but the related mechanisms of DNA release, composition and biological activity remain unclear. Here we show that rat epithelial cell transformation by the human H-ras oncogene leads to an increase in production of small, exosomal-like extracellular vesicles by viable cancer cells. These EVs contain chromatin-associated double-stranded DNA fragments covering the entire host genome, including full-length H-ras. Oncogenic N-ras and SV40LT sequences were also found in EVs emitted from spontaneous mouse brain tumor cells. Disruption of acidic sphingomyelinase and the p53/Rb pathway did not block emission of EV-related oncogenic DNA. Exposure of non-transformed RAT-1 cells to EVs containing mutant H-ras DNA led to the uptake and retention of this material for an extended (30 days) but transient period of time, and stimulated cell proliferation. Thus, our study suggests that H-ras-mediated transformation stimulates vesicular emission of this histone-bound oncogene, which may interact with non-transformed cells

  15. Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Hoon; Chennakrishnaiah, Shilpa [Montreal Children’s Hospital, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Audemard, Eric [McGill University and Genome Quebec Innovation Centre, Montreal, Quebec (Canada); Montermini, Laura; Meehan, Brian [Montreal Children’s Hospital, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Rak, Janusz, E-mail: janusz.rak@mcgill.ca [Montreal Children’s Hospital, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec (Canada)

    2014-08-22

    Highlights: • Oncogenic H-ras stimulates emission of extracellular vesicles containing double-stranded DNA. • Vesicle-associated extracellular DNA contains mutant N-ras sequences. • Vesicles mediate intercellular transfer of mutant H-ras DNA to normal fibroblasts where it remains for several weeks. • Fibroblasts exposed to vesicles containing H-ras DNA exhibit increased proliferation. - Abstract: Cell free DNA is often regarded as a source of genetic cancer biomarkers, but the related mechanisms of DNA release, composition and biological activity remain unclear. Here we show that rat epithelial cell transformation by the human H-ras oncogene leads to an increase in production of small, exosomal-like extracellular vesicles by viable cancer cells. These EVs contain chromatin-associated double-stranded DNA fragments covering the entire host genome, including full-length H-ras. Oncogenic N-ras and SV40LT sequences were also found in EVs emitted from spontaneous mouse brain tumor cells. Disruption of acidic sphingomyelinase and the p53/Rb pathway did not block emission of EV-related oncogenic DNA. Exposure of non-transformed RAT-1 cells to EVs containing mutant H-ras DNA led to the uptake and retention of this material for an extended (30 days) but transient period of time, and stimulated cell proliferation. Thus, our study suggests that H-ras-mediated transformation stimulates vesicular emission of this histone-bound oncogene, which may interact with non-transformed cells.

  16. Targeting protein neddylation: a novel therapeutic strategy for the treatment of cancer.

    Science.gov (United States)

    Wang, Meng; Medeiros, Bruno C; Erba, Harry P; DeAngelo, Daniel J; Giles, Francis J; Swords, Ronan T

    2011-03-01

    The NEDD8 (neural precursor cell-expressed developmentally downregulated 8) conjugation pathway regulates the post-translational modification of oncogenic proteins. This pathway has important potential for cancer therapeutics. Several proteins vital in cancer biology are regulated by protein neddylation. These observations led to the development of a small molecule inhibitor that disrupts protein neddylation and leads to cancer cell death and important activity in early phase clinical trials. This review provides an extensive coverage of cellular protein homeostasis with particular emphasis on the NEDD8 conjugation pathway. Insights into a new investigational drug that specifically disrupts the NEDD8 pathway are discussed. The clinical data for this agent are also updated. Neddylation controls key cellular pathways found to be dysregulated in many cancers. Protein neddylation is a relatively under-explored pathway for pharmacologic inhibition in cancer. Selective disruption of this pathway has demonstrated clinical activity in patients with myeloid neoplasms and is worth exploring further in combination with other anti-leukemia agents.

  17. Bleomycin Can Cleave an Oncogenic Noncoding RNA.

    Science.gov (United States)

    Angelbello, Alicia J; Disney, Matthew D

    2018-01-04

    Noncoding RNAs are pervasive in cells and contribute to diseases such as cancer. A question in biomedical research is whether noncoding RNAs are targets of medicines. Bleomycin is a natural product that cleaves DNA; however, it is known to cleave RNA in vitro. Herein, an in-depth analysis of the RNA cleavage preferences of bleomycin A5 is presented. Bleomycin A5 prefers to cleave RNAs with stretches of AU base pairs. Based on these preferences and bioinformatic analysis, the microRNA-10b hairpin precursor was identified as a potential substrate for bleomycin A5. Both in vitro and cellular experiments demonstrated cleavage. Importantly, chemical cleavage by bleomycin A5 in the microRNA-10b hairpin precursors occurred near the Drosha and Dicer enzymatic processing sites and led to destruction of the microRNA. Evidently, oncogenic noncoding RNAs can be considered targets of cancer medicines and might elicit their pharmacological effects by targeting noncoding RNA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The Expression, Purification, and Characterization of a Ras Oncogene (Bras2 in Silkworm (Bombyx mori

    Directory of Open Access Journals (Sweden)

    Zhengbing Lv

    2013-01-01

    Full Text Available The Ras oncogene of silkworm pupae (Bras2 may belong to the Ras superfamily. It shares 77% of its amino acid identity with teratocarcinoma oncogene 21 (TC21 related ras viral oncogene homolog-2 (R-Ras2 and possesses an identical core effector region. The mRNA of Bombyx mori Bras2 has 1412 bp. The open reading frame contains 603 bp, which encodes 200 amino acid residues. This recombinant BmBras2 protein was subsequently used as an antigen to raise a rabbit polyclonal antibody. Western blotting and real-time PCR analyses showed that BmBras2 was expressed during four developmental stages. The BmBras2 expression level was the highest in the pupae and was low in other life cycle stages. BmBras2 was expressed in all eight tested tissues, and it was highly expressed in the head, intestine, and epidermis. Subcellular localization studies indicated that BmBras2 was predominantly localized in the nuclei of Bm5 cells, although cytoplasmic staining was also observed to a lesser extent. A cell proliferation assay showed that rBmBras2 could stimulate the proliferation of hepatoma cells. The higher BmBras2 expression levels in the pupal stage, tissue expression patterns, and a cell proliferation assay indicated that BmBras2 promotes cell division and proliferation, most likely by influencing cell signal transduction.

  19. The Expression, Purification, and Characterization of a Ras Oncogene (Bras2) in Silkworm (Bombyx mori).

    Science.gov (United States)

    Lv, Zhengbing; Wang, Tao; Zhuang, Wenhua; Wang, Dan; Chen, Jian; Nie, Zuoming; Liu, Lili; Zhang, Wenping; Wang, Lisha; Wang, Deming; Wu, Xiangfu; Li, Jun; Qian, Lian; Zhang, Yaozhou

    2013-01-01

    The Ras oncogene of silkworm pupae (Bras2) may belong to the Ras superfamily. It shares 77% of its amino acid identity with teratocarcinoma oncogene 21 (TC21) related ras viral oncogene homolog-2 (R-Ras2) and possesses an identical core effector region. The mRNA of Bombyx mori Bras2 has 1412 bp. The open reading frame contains 603 bp, which encodes 200 amino acid residues. This recombinant BmBras2 protein was subsequently used as an antigen to raise a rabbit polyclonal antibody. Western blotting and real-time PCR analyses showed that BmBras2 was expressed during four developmental stages. The BmBras2 expression level was the highest in the pupae and was low in other life cycle stages. BmBras2 was expressed in all eight tested tissues, and it was highly expressed in the head, intestine, and epidermis. Subcellular localization studies indicated that BmBras2 was predominantly localized in the nuclei of Bm5 cells, although cytoplasmic staining was also observed to a lesser extent. A cell proliferation assay showed that rBmBras2 could stimulate the proliferation of hepatoma cells. The higher BmBras2 expression levels in the pupal stage, tissue expression patterns, and a cell proliferation assay indicated that BmBras2 promotes cell division and proliferation, most likely by influencing cell signal transduction.

  20. Mutant p53 - heat shock response oncogenic cooperation: a new mechanism of cancer cell survival

    Directory of Open Access Journals (Sweden)

    Evguenia eAlexandrova

    2015-04-01

    Full Text Available The main tumor suppressor function of p53 as a ‘guardian of the genome’ is to respond to cellular stress by transcriptional activation of apoptosis, growth arrest or senescence in damaged cells. Not surprisingly, mutations in the p53 gene are the most frequent genetic alteration in human cancers. Importantly, mutant p53 (mutp53 proteins not only lose their wild-type tumor suppressor activity, but also can actively promote tumor development. Two main mechanisms accounting for mutp53 proto-oncogenic activity are inhibition of the wild-type p53 in a dominant-negative fashion and gain of additional oncogenic activities known as gain-of-function (GOF. Here we discuss a novel mechanism of mutp53 GOF, which relies on its oncogenic cooperation with the heat shock machinery. This coordinated adaptive mechanism renders cancer cells more resistant to proteotoxic stress and provides both, a strong survival advantage to cancer cells and a promising means for therapeutic intervention.

  1. Novel Combinatorial Chemistry-Derived Inhibitors of Oncogenic Phosphatases

    National Research Council Canada - National Science Library

    Lazo, John

    1999-01-01

    Our overall goal of this US Army Breast Cancer Grant entitled "Novel Combinatorial Chemistry-Derived Inhibitors of Oncogenic Phosphatases" is to identity and develop novel therapeutic agents for human breast cancer...

  2. Oncogenic osteomalacia associated with soft tissue chondromyxoid fibroma

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Mi E-mail: jmpark@cmc.cuk.ac.kr; Woo, Young Kyun; Kang, Moo Il; Kang, Chang Suk; Hahn, Seong Tae

    2001-08-01

    Oncogenic osteomalacia is a rarely described clinical entity characterized by hypophosphatemia, phosphaturia, and a low concentration of 1,25-dihydroxyvitamin D{sub 3}. It is most often associated with benign mesenchymal tumor and can be cured with surgical removal of the tumor. In this paper, we present a case of oncogenic osteomalacia caused by chondromyxoid fibroma in the soft tissue of the sole of the foot in a 56-year-old woman.

  3. Oncogenic osteomalacia associated with soft tissue chondromyxoid fibroma

    International Nuclear Information System (INIS)

    Park, Jeong Mi; Woo, Young Kyun; Kang, Moo Il; Kang, Chang Suk; Hahn, Seong Tae

    2001-01-01

    Oncogenic osteomalacia is a rarely described clinical entity characterized by hypophosphatemia, phosphaturia, and a low concentration of 1,25-dihydroxyvitamin D 3 . It is most often associated with benign mesenchymal tumor and can be cured with surgical removal of the tumor. In this paper, we present a case of oncogenic osteomalacia caused by chondromyxoid fibroma in the soft tissue of the sole of the foot in a 56-year-old woman

  4. A Comparative Analysis of the Mechanism of Toll-Like Receptor-Disruption by TIR-Containing Protein C from Uropathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Anna Waldhuber

    2016-02-01

    Full Text Available The TIR-containing protein C (TcpC of uropathogenic Escherichia coli strains is a powerful virulence factor by impairing the signaling cascade of Toll-like receptors (TLRs. Several other bacterial pathogens like Salmonella, Yersinia, Staphylococcus aureus but also non-pathogens express similar proteins. We discuss here the pathogenic potential of TcpC and its interaction with TLRs and TLR-adapter proteins on the molecular level and compare its activity with the activity of other bacterial TIR-containing proteins. Finally, we analyze and compare the structure of bacterial TIR-domains with the TIR-domains of TLRs and TLR-adapters.

  5. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling.

    Science.gov (United States)

    Shrestha, Y; Schafer, E J; Boehm, J S; Thomas, S R; He, F; Du, J; Wang, S; Barretina, J; Weir, B A; Zhao, J J; Polyak, K; Golub, T R; Beroukhim, R; Hahn, W C

    2012-07-19

    Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK MAPK pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce anchorage-independent growth in a derivative of immortalized human mammary epithelial cells (HMLE). We identified p21-activated kinase 1 (PAK1) as a kinase that permitted HMLE cells to form anchorage-independent colonies. PAK1 is amplified in several human cancer types, including 30--33% of breast tumor samples and cancer cell lines. The kinase activity of PAK1 is necessary for PAK1-induced transformation. Moreover, we show that PAK1 simultaneously activates MAPK and MET signaling; the latter via inhibition of merlin. Disruption of these activities inhibits PAK1-driven anchorage-independent growth. These observations establish PAK1 amplification as an alternative mechanism for MAPK activation in human breast cancer and credential PAK1 as a breast cancer oncogene that coordinately regulates multiple signaling pathways, the cooperation of which leads to malignant transformation.

  6. A Poly-ADP-Ribose Trigger Releases the Auto-Inhibition of a Chromatin Remodeling Oncogene.

    Science.gov (United States)

    Singh, Hari R; Nardozza, Aurelio P; Möller, Ingvar R; Knobloch, Gunnar; Kistemaker, Hans A V; Hassler, Markus; Harrer, Nadine; Blessing, Charlotte; Eustermann, Sebastian; Kotthoff, Christiane; Huet, Sébastien; Mueller-Planitz, Felix; Filippov, Dmitri V; Timinszky, Gyula; Rand, Kasper D; Ladurner, Andreas G

    2017-12-07

    DNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain with the ATPase module mediates auto-inhibition. PARP1 activation suppresses this inhibitory interaction. Crucially, release from auto-inhibition requires a poly-ADP-ribose (PAR) binding macrodomain. We identify tri-ADP-ribose as a potent PAR-mimic and synthetic allosteric effector that abrogates ATPase-macrodomain interactions, promotes an ungated conformation, and activates the remodeler's ATPase. ALC1 fragments lacking the regulatory macrodomain relax chromatin in vivo without requiring PARP1 activation. Further, the ATPase restricts the macrodomain's interaction with PARP1 under non-DNA damage conditions. Somatic cancer mutants disrupt ALC1's auto-inhibition and activate chromatin remodeling. Our data show that the NAD + -metabolite and nucleic acid PAR triggers ALC1 to drive chromatin relaxation. Modular allostery in this oncogene tightly controls its robust, DNA-damage-dependent activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos

    Directory of Open Access Journals (Sweden)

    Brook T Chernet

    2015-01-01

    Full Text Available In addition to the immediate microenvironment, long-range signaling may be an important component of cancer. Molecular-genetic analyses have implicated gap junctions – key mediators of cell-cell communication – in carcinogenesis. We recently showed that the resting voltage potential of distant cell groups is a key determinant of metastatic transformation and tumor induction. Here, we show in the Xenopus laevis model that gap junctional communication (GJC is a modulator of the long-range bioelectric signaling that regulates tumor formation. Genetic disruption of GJC taking place within tumors, within remote host tissues, or between the host and tumors – significantly lowers the incidence of tumors induced by KRAS mutations. The most pronounced suppression of tumor incidence was observed upon GJC disruption taking place farther away from oncogene-expressing cells, revealing a role for GJC in distant cells in the control of tumor growth. In contrast, enhanced GJC communication through the overexpression of wild-type connexin Cx26 increased tumor incidence. Our data confirm a role for GJC in tumorigenesis, and reveal that this effect is non-local. Based on these results and on published data on movement of ions through GJs, we present a quantitative model linking the GJC coupling and bioelectrical state of cells to the ability of oncogenes to initiate tumorigenesis. When integrated with data on endogenous bioelectric signaling during left-right patterning, the model predicts differential tumor incidence outcomes depending on the spatial configurations of gap junction paths relative to tumor location and major anatomical body axes. Testing these predictions, we found that the strongest influence of GJ modulation on tumor suppression by hyperpolarization occurred along the embryonic left-right axis. Together, these data reveal new, long-range aspects of cancer control by the host’s physiological parameters.

  8. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    International Nuclear Information System (INIS)

    Wang, Hongtao; Gao, Peng; Zheng, Jie

    2014-01-01

    Highlights: • As 2 O 3 inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As 2 O 3 than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As 2 O 3 than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As 2 O 3 is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As 2 O 3 ) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As 2 O 3 induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As 2 O 3 on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As 2 O 3 than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As 2 O 3 than HPV 16-positive CaSki and SiHa cells. After As 2 O 3 treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As 2 O 3 is a potential anticancer drug for cervical cancer

  9. Characterization of ERAS, a putative novel human oncogene, in skin and breast

    Energy Technology Data Exchange (ETDEWEB)

    Peña Avalos, B.L. de la

    2014-07-01

    Most human tumors have mutations in genes of the RAS small GTPase protein family. RAS works as a molecular switch for signaling pathways that modulate many aspects of cell behavior, including proliferation, differentiation, motility and death. Oncogenic mutations in RAS prevent GTP hydrolysis, locking RAS in a permanently active state, being the most common mutations in HRAS, KRAS and NRAS. The human RAS family consists of at least 36 different genes, many of which have been scarcely studied. One of these relatively unknown genes is ERAS (ES cell-expressed RAS), which is a constitutively active RAS protein, localized in chromosome X and expressed only in embryonic cells, being undetectable in adult tissues. New high throughput technologies have made it possible to screen complete cancer genomes for identification of mutations associated to cancer. Using the Sleeping Beauty (SB) transposon system, ERAS was identified as a putative novel oncogene in non-melanoma skin and breast cancers. The major aim of this project is to determine the general characteristics of ERAS as a putative novel human oncogene in skin and breast cells. Forced expression of ERAS results in drastic changes in cell shape, proliferation and motility. When ERAS is overexpressed in skin and breast human cells it is mainly localized in the cytoplasmic membrane. ERAS activates the phosphatidylinositol-3-OH kinase (PI3K) pathway but not the mitogen-activated protein kinase (MAPK) pathway. ERAS-expressing cells suffer spontaneous morphologic and phenotypic EMT-like changes, including cytoskeleton reorganization, vimentin and N-cadherin up-regulation and down-regulation of E-cadherin, which can be associated with increased malignancy, and invasive and metastatic potential. Our results suggest that inappropriate expression of ERAS lead to transformation of human cells. (Author)

  10. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses1

    Science.gov (United States)

    Belkina, Anna C.; Nikolajczyk, Barbara S.; Denis, Gerald V.

    2013-01-01

    Histone acetylation regulates activation and repression of multiple inflammatory genes known to play critical roles in chronic inflammatory diseases. However, proteins responsible for translating the histone acetylation code into an orchestrated pro-inflammatory cytokine response remain poorly characterized. Bromodomain extra terminal (BET) proteins are “readers” of histone acetylation marks with demonstrated roles in gene transcription, but the ability of BET proteins to coordinate the response of inflammatory cytokine genes through translation of histone marks is unknown. We hypothesize that members of the BET family of dual bromodomain-containing transcriptional regulators directly control inflammatory genes. We examined the genetic model of brd2 lo mice, a BET protein hypomorph, to show that Brd2 is essential for pro-inflammatory cytokine production in macrophages. Studies that utilize siRNA knockdown and a small molecule inhibitor of BET protein binding, JQ1, independently demonstrate BET proteins are critical for macrophage inflammatory responses. Furthermore, we show that Brd2 and Brd4 physically associate with the promoters of inflammatory cytokine genes in macrophages. This association is absent in the presence of BET inhibition by JQ1. Finally, we demonstrate that JQ1 ablates cytokine production in vitro and blunts the “cytokine storm” in endotoxemic mice by reducing levels of IL-6 and TNF-α while rescuing mice from LPS-induced death. We propose that targeting BET proteins with small molecule inhibitors will benefit hyper-inflammatory conditions associated with high levels of cytokine production. PMID:23420887

  11. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses.

    Science.gov (United States)

    Belkina, Anna C; Nikolajczyk, Barbara S; Denis, Gerald V

    2013-04-01

    Histone acetylation regulates activation and repression of multiple inflammatory genes known to play critical roles in chronic inflammatory diseases. However, proteins responsible for translating the histone acetylation code into an orchestrated proinflammatory cytokine response remain poorly characterized. Bromodomain and extraterminal (BET) proteins are "readers" of histone acetylation marks, with demonstrated roles in gene transcription, but the ability of BET proteins to coordinate the response of inflammatory cytokine genes through translation of histone marks is unknown. We hypothesize that members of the BET family of dual bromodomain-containing transcriptional regulators directly control inflammatory genes. We examined the genetic model of brd2 lo mice, a BET protein hypomorph, to show that Brd2 is essential for proinflammatory cytokine production in macrophages. Studies that use small interfering RNA knockdown and a small-molecule inhibitor of BET protein binding, JQ1, independently demonstrate BET proteins are critical for macrophage inflammatory responses. Furthermore, we show that Brd2 and Brd4 physically associate with the promoters of inflammatory cytokine genes in macrophages. This association is absent in the presence of BET inhibition by JQ1. Finally, we demonstrate that JQ1 ablates cytokine production in vitro and blunts the "cytokine storm" in endotoxemic mice by reducing levels of IL-6 and TNF-α while rescuing mice from LPS-induced death. We propose that targeting BET proteins with small-molecule inhibitors will benefit hyperinflammatory conditions associated with high levels of cytokine production.

  12. Mitotic Stress Is an Integral Part of the Oncogene-Induced Senescence Program that Promotes Multinucleation and Cell Cycle Arrest

    Directory of Open Access Journals (Sweden)

    Dina Dikovskaya

    2015-09-01

    Full Text Available Oncogene-induced senescence (OIS is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signaling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here, we show that multinucleate OIS cells originate mostly from failed mitosis. Prior to senescence, mutant H-RasV12 activation in primary human fibroblasts compromised mitosis, concordant with abnormal expression of mitotic genes functionally linked to the observed mitotic spindle and chromatin defects. Simultaneously, H-RasV12 activation enhanced survival of cells with damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional upregulation of Mcl1 was, at least in part, responsible for enhanced survival and slippage of cells with mitotic defects. Importantly, mitotic slippage and oncogene signaling cooperatively induced senescence and key senescence effectors p21 and p16. In summary, activated Ras coordinately triggers mitotic disruption and enhanced cell survival to promote formation of multinucleate senescent cells.

  13. Mice with targeted disruption of the acyl-CoA binding protein display attenuated urine concentrating ability and diminished renal aquaporin-3 abundance

    DEFF Research Database (Denmark)

    Langaa, Stine; Bloksgaard, Maria; Bek, Signe

    2012-01-01

    epithelial cells. Here we show that ACBP is widely expressed in human and mouse kidney epithelium with the highest expression in the proximal convoluted tubules. To elucidate the role of ACBP in the renal epithelium, mice with targeted disruption of the ACBP gene (ACBP(-/-)) were used to study water and Na......Cl balance as well as urine concentrating ability in metabolic cages. Food intake and urinary excretion of Na(+) and K(+) did not differ between ACBP(-/-) and (+/+) mice. Water intake and diuresis were significantly higher at baseline in ACBP(-/-) mice compared to that of (+/+) mice. Subsequent to 20h water...... deprivation, ACBP(-/-) mice exhibited increased diuresis, reduced urine osmolality, elevated hematocrit and higher relative weight loss compared to (+/+) mice. There were no significant differences in plasma concentrations of renin, corticosterone and aldosterone between mice of the two genotypes. At baseline...

  14. Long-range effects of direct-hit ultraviolet and particle radiation in oncogene activation

    International Nuclear Information System (INIS)

    Ladik, J.J.

    1990-01-01

    A simple statistical analysis shows that the oncogene-activation effect of chemical carcinogens cannot be explained if one takes into account only short-range effects. As one of the most probable solid state physical long-range effects, the generation at the site of carcinogen binding of travelling solitary waves, which can interfere with DNA-blocking protein interactions, is discussed. It has been shown that the direct hit carcinogenic effects on DNA by ultraviolet--or particle radiation can also be explained by the generation of solitary waves (in the latter case the first step is a collective plasma oscillation which decays to individual local excitations and ionizations)

  15. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2

    OpenAIRE

    Zuo, Tao; Liu, Runhua; Zhang, Huiming; Chang, Xing; Liu, Yan; Wang, Lizhong; Zheng, Pan; Liu, Yang

    2007-01-01

    S-phase kinase-associated protein 2 (SKP2) is a component of the E3 ubiquitin ligase SKP1-Cul1-Fbox complex. Overexpression of SKP2 results in cell cycle dysregulation and carcinogenesis; however, the genetic lesions that cause this upregulation are poorly understood. We recently demonstrated that forkhead box P3 (FOXP3) is an X-linked breast cancer suppressor and an important repressor of the oncogene ERBB2/HER2. Since FOXP3 suppresses tumor growth regardless of whether the tumors overexpres...

  16. The Homeodomain Transcription Factor Cdx1 Does Not Behave as an Oncogene in Normal Mouse Intestine1

    Science.gov (United States)

    Crissey, Mary Ann S; Guo, Rong-Jun; Fogt, Franz; Li, Hong; Katz, Jonathan P; Silberg, Debra G; Suh, Eun Ran; Lynch, John P

    2008-01-01

    The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium. PMID:18231635

  17. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Copp& #233; , Jean-Philippe; Patil, Christopher; Rodier, Francis; Sun, Yu; Munoz, Denise; Goldstein, Joshua; Nelson, Peter; Desprez, Pierre-Yves; Campisi, Judith

    2008-10-24

    Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.

  18. ΔNp63α is an oncogene that induces Lsh expression and promotes stem-like proliferation

    Science.gov (United States)

    Keyes, William M.; Pecoraro, Matteo; Aranda, Victoria; Vernersson-Lindahl, Emma; Li, Wangzhi; Vogel, Hannes; Guo, Xuecui; Garcia, Elvin L.; Michurina, Tatyana V.; Enikolopov, Grigori; Muthuswamy, Senthil K.; Mills, Alea A.

    2014-01-01

    SUMMARY The p53 homolog p63 is essential for development, yet its role in cancer is not clear. We discovered that p63 deficiency evokes the tumor suppressive mechanism of cellular senescence, causing a striking absence of stratified epithelia such as the skin. Here we identify the predominant p63 isoform, ΔNp63α, as a protein that bypasses oncogene induced senescence to drive tumorigenesis in vivo. Interestingly, bypass of senescence promotes stem-like proliferation and maintains survival of the keratin 15-positive stem cell population. Furthermore, we identify the chromatin remodeling protein Lsh as a new target of ΔNp63α that is an essential mediator of senescence bypass. These findings indicate that ΔNp63α is an oncogene that cooperates with Ras to promote tumor-initiating stem-like proliferation, and suggest that Lsh-mediated chromatin remodeling events are critical to this process. PMID:21295273

  19. Internal disruption in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1990-01-01

    A review of results of experimental and theoretical investigations of internal disruption in tokamaks is given. Specific features of various types of saw-tooth oscillations are described and their classification is performed. Theoretical models of the process of development of internal disruption instability are discussed. Effect of internal disruption on parameters of plasma, confined in tokamak, is considered. Scalings of period and amplitude of saw-tooth oscillations, as well as version radius are presented. Different methods for stabilizing instability of internal disruption are described

  20. Internal disruptions in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1990-01-01

    Experimental and theoretical studies of the phenomenon of internal disruptions in tokamaks are reviewed. A classification scheme is introduced and the features of different types of sawtooth oscillations are described. A theoretical model for the development of the internal disruption instability is discussed. The effect of internal disruptions on the parameters of plasma confined in tokamaks is discussed. Scaling laws for the period and amplitude of sawtooth oscillations, as well as for the inversion radius, are presented. Different methods of stabilizing the internal disruption instability are described

  1. Targeted disruption of py235ebp-1: Invasion of erythrocytes by Plasmodium yoelii using an alternative py235 erythrocyte binding protein

    KAUST Repository

    Ogun, Solabomi A.

    2011-02-17

    Plasmodium yoelii YM asexual blood stage parasites express multiple members of the py235 gene family, part of the super-family of genes including those coding for Plasmodium vivax reticulocyte binding proteins and Plasmodium falciparum RH proteins. We previously identified a Py235 erythrocyte binding protein (Py235EBP-1, encoded by the PY01365 gene) that is recognized by protective mAb 25.77. Proteins recognized by a second protective mAb 25.37 have been identified by mass spectrometry and are encoded by two genes, PY01185 and PY05995/PY03534. We deleted the PY01365 gene and examined the phenotype. The expression of the members of the py235 family in both the WT and gene deletion parasites was measured by quantitative RT-PCR and RNA-Seq. py235ebp-1 expression was undetectable in the knockout parasite, but transcription of other members of the family was essentially unaffected. The knockout parasites continued to react with mAb 25.77; and the 25.77-binding proteins in these parasites were the PY01185 and PY05995/PY03534 products. The PY01185 product was also identified as erythrocyte binding. There was no clear change in erythrocyte invasion profile suggesting that the PY01185 gene product (designated PY235EBP-2) is able to fulfill the role of EBP-1 by serving as an invasion ligand although the molecular details of its interaction with erythrocytes have not been examined. The PY01365, PY01185, and PY05995/PY03534 genes are part of a distinct subset of the py235 family. In P. falciparum, the RH protein genes are under epigenetic control and expression correlates with binding to distinct erythrocyte receptors and specific invasion pathways, whereas in P. yoelii YM all the genes are expressed and deletion of one does not result in upregulation of another. We propose that simultaneous expression of multiple Py235 ligands enables invasion of a wide range of host erythrocytes even in the presence of antibodies to one or more of the proteins and that this functional

  2. Targeted disruption of py235ebp-1: Invasion of erythrocytes by Plasmodium yoelii using an alternative py235 erythrocyte binding protein

    KAUST Repository

    Ogun, Solabomi A.; Tewari, Rita; Otto, Thomas D.; Howell, Steven A.; Knuepfer, Ellen; Cunningham, Deirdre A.; Xu, Zhengyao; Pain, Arnab; Holder, Anthony A.

    2011-01-01

    Plasmodium yoelii YM asexual blood stage parasites express multiple members of the py235 gene family, part of the super-family of genes including those coding for Plasmodium vivax reticulocyte binding proteins and Plasmodium falciparum RH proteins. We previously identified a Py235 erythrocyte binding protein (Py235EBP-1, encoded by the PY01365 gene) that is recognized by protective mAb 25.77. Proteins recognized by a second protective mAb 25.37 have been identified by mass spectrometry and are encoded by two genes, PY01185 and PY05995/PY03534. We deleted the PY01365 gene and examined the phenotype. The expression of the members of the py235 family in both the WT and gene deletion parasites was measured by quantitative RT-PCR and RNA-Seq. py235ebp-1 expression was undetectable in the knockout parasite, but transcription of other members of the family was essentially unaffected. The knockout parasites continued to react with mAb 25.77; and the 25.77-binding proteins in these parasites were the PY01185 and PY05995/PY03534 products. The PY01185 product was also identified as erythrocyte binding. There was no clear change in erythrocyte invasion profile suggesting that the PY01185 gene product (designated PY235EBP-2) is able to fulfill the role of EBP-1 by serving as an invasion ligand although the molecular details of its interaction with erythrocytes have not been examined. The PY01365, PY01185, and PY05995/PY03534 genes are part of a distinct subset of the py235 family. In P. falciparum, the RH protein genes are under epigenetic control and expression correlates with binding to distinct erythrocyte receptors and specific invasion pathways, whereas in P. yoelii YM all the genes are expressed and deletion of one does not result in upregulation of another. We propose that simultaneous expression of multiple Py235 ligands enables invasion of a wide range of host erythrocytes even in the presence of antibodies to one or more of the proteins and that this functional

  3. Targeted disruption of py235ebp-1: invasion of erythrocytes by Plasmodium yoelii using an alternative Py235 erythrocyte binding protein.

    Directory of Open Access Journals (Sweden)

    Solabomi A Ogun

    2011-02-01

    Full Text Available Plasmodium yoelii YM asexual blood stage parasites express multiple members of the py235 gene family, part of the super-family of genes including those coding for Plasmodium vivax reticulocyte binding proteins and Plasmodium falciparum RH proteins. We previously identified a Py235 erythrocyte binding protein (Py235EBP-1, encoded by the PY01365 gene that is recognized by protective mAb 25.77. Proteins recognized by a second protective mAb 25.37 have been identified by mass spectrometry and are encoded by two genes, PY01185 and PY05995/PY03534. We deleted the PY01365 gene and examined the phenotype. The expression of the members of the py235 family in both the WT and gene deletion parasites was measured by quantitative RT-PCR and RNA-Seq. py235ebp-1 expression was undetectable in the knockout parasite, but transcription of other members of the family was essentially unaffected. The knockout parasites continued to react with mAb 25.77; and the 25.77-binding proteins in these parasites were the PY01185 and PY05995/PY03534 products. The PY01185 product was also identified as erythrocyte binding. There was no clear change in erythrocyte invasion profile suggesting that the PY01185 gene product (designated PY235EBP-2 is able to fulfill the role of EBP-1 by serving as an invasion ligand although the molecular details of its interaction with erythrocytes have not been examined. The PY01365, PY01185, and PY05995/PY03534 genes are part of a distinct subset of the py235 family. In P. falciparum, the RH protein genes are under epigenetic control and expression correlates with binding to distinct erythrocyte receptors and specific invasion pathways, whereas in P. yoelii YM all the genes are expressed and deletion of one does not result in upregulation of another. We propose that simultaneous expression of multiple Py235 ligands enables invasion of a wide range of host erythrocytes even in the presence of antibodies to one or more of the proteins and that this

  4. Vav3 oncogene activates estrogen receptor and its overexpression may be involved in human breast cancer

    International Nuclear Information System (INIS)

    Lee, Kiwon; Liu, Yin; Mo, Jun Qin; Zhang, Jinsong; Dong, Zhongyun; Lu, Shan

    2008-01-01

    Our previous study revealed that Vav3 oncogene is overexpressed in human prostate cancer, activates androgen receptor, and stimulates growth in prostate cancer cells. The current study is to determine a potential role of Vav3 oncogene in human breast cancer and impact on estrogen receptor a (ERα)-mediated signaling axis. Immunohistochemistry analysis was performed in 43 breast cancer specimens and western blot analysis was used for human breast cancer cell lines to determine the expression level of Vav3 protein. The impact of Vav3 on breast cancer cell growth was determined by siRNA knockdown of Vav3 expression. The role of Vav3 in ERα activation was examined in luciferase reporter assays. Deletion mutation analysis of Vav3 protein was performed to localize the functional domain involved in ERα activation. Finally, the interaction of Vav3 and ERα was assessed by GST pull-down analysis. We found that Vav3 was overexpressed in 81% of human breast cancer specimens, particularly in poorly differentiated lesions. Vav3 activated ERα partially via PI3K-Akt signaling and stimulated growth of breast cancer cells. Vav3 also potentiated EGF activity for cell growth and ERα activation in breast cancer cells. More interestingly, we found that Vav3 complexed with ERα. Consistent with its function for AR, the DH domain of Vav3 was essential for ERα activation. Vav3 oncogene is overexpressed in human breast cancer. Vav3 complexes with ERα and enhances ERα activity. These findings suggest that Vav3 overexpression may aberrantly enhance ERα-mediated signaling axis and play a role in breast cancer development and/or progression

  5. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region.

    Science.gov (United States)

    Bellacosa, A; Testa, J R; Staal, S P; Tsichlis, P N

    1991-10-11

    The v-akt oncogene codes for a 105-kilodalton fusion phosphoprotein containing Gag sequences at its amino terminus. Sequence analysis of v-akt and biochemical characterization of its product revealed that it codes for a protein kinase C-related serine-threonine kinase whose cellular homolog is expressed in most tissues, with the highest amount found in thymus. Although Akt is a serine-threonine kinase, part of its regulatory region is similar to the Src homology-2 domain, a structural motif characteristic of cytoplasmic tyrosine kinases that functions in protein-protein interactions. This suggests that Akt may form a functional link between tyrosine and serine-threonine phosphorylation pathways.

  6. Overexpression of binding protein and disruption of the PMR1 gene synergistically stimulate secretion of bovine prochymosin but not plant thaumatin in yeast.

    NARCIS (Netherlands)

    Harmsen, M.M.; Bruyne, M.I.; Raué, H.A.; Maat, J.

    1996-01-01

    When the heterologous proteins thaumatin and bovine prochymosin are produced in yeast cells as a fusion with the yeast invertase secretory signal peptide, less than 2% of the product is secreted in a biologically active form into the medium. The remainder accumulates intracellularly in a misfolded

  7. Deletion of PDZD7 disrupts the Usher syndrome type 2 protein complex in cochlear hair cells and causes hearing loss in mice.

    Science.gov (United States)

    Zou, Junhuang; Zheng, Tihua; Ren, Chongyu; Askew, Charles; Liu, Xiao-Ping; Pan, Bifeng; Holt, Jeffrey R; Wang, Yong; Yang, Jun

    2014-05-01

    Usher syndrome type 2 (USH2) is the predominant form of USH, a leading genetic cause of combined deafness and blindness. PDZD7, a paralog of two USH causative genes, USH1C and USH2D (WHRN), was recently reported to be implicated in USH2 and non-syndromic deafness. It encodes a protein with multiple PDZ domains. To understand the biological function of PDZD7 and the pathogenic mechanism caused by PDZD7 mutations, we generated and thoroughly characterized a Pdzd7 knockout mouse model. The Pdzd7 knockout mice exhibit congenital profound deafness, as assessed by auditory brainstem response, distortion product otoacoustic emission and cochlear microphonics tests, and normal vestibular function, as assessed by their behaviors. Lack of PDZD7 leads to the disorganization of stereocilia bundles and a reduction in mechanotransduction currents and sensitivity in cochlear outer hair cells. At the molecular level, PDZD7 determines the localization of the USH2 protein complex, composed of USH2A, GPR98 and WHRN, to ankle links in developing cochlear hair cells, likely through its direct interactions with these three proteins. The localization of PDZD7 to the ankle links of cochlear hair bundles also relies on USH2 proteins. In photoreceptors of Pdzd7 knockout mice, the three USH2 proteins largely remain unchanged at the periciliary membrane complex. The electroretinogram responses of both rod and cone photoreceptors are normal in knockout mice at 1 month of age. Therefore, although the organization of the USH2 complex appears different in photoreceptors, it is clear that PDZD7 plays an essential role in organizing the USH2 complex at ankle links in developing cochlear hair cells. GenBank accession numbers: KF041446, KF041447, KF041448, KF041449, KF041450, KF041451.

  8. Oncogenic osteomalacia due to FGF23-expressing colon adenocarcinoma.

    Science.gov (United States)

    Leaf, David E; Pereira, Renata C; Bazari, Hasan; Jüppner, Harald

    2013-03-01

    Oncogenic osteomalacia, a paraneoplastic syndrome associated with hypophosphatemia due to increased urinary phosphate excretion, is caused by excessive synthesis and secretion of fibroblast growth factor 23 (FGF23), a phosphaturic hormone that is normally produced by osteocytes. Most cases of oncogenic osteomalacia have been associated with benign tumors of bone or soft tissue; however, whether malignant neoplasms can also produce and secrete FGF23 is currently unknown. The aim was to determine whether a malignant neoplasm could cause oncogenic osteomalacia through excessive production and secretion of FGF23. We describe an 80-year-old woman with stage IV colon adenocarcinoma who presented with severe hypophosphatemia (0.4 mg/dL; reference, 2.6-4.5 mg/dL). Fractional excretion of phosphate was 34% (reference, osteomalacia should be considered in the differential diagnosis for patients with a malignant tumor who present with hypophosphatemia.

  9. Reprogramming Antagonizes the Oncogenicity of HOXA13-Long Noncoding RNA HOTTIP Axis in Gastric Cancer Cells.

    Science.gov (United States)

    Wu, Deng-Chyang; Wang, Sophie S W; Liu, Chung-Jung; Wuputra, Kenly; Kato, Kohsuke; Lee, Yen-Liang; Lin, Ying-Chu; Tsai, Ming-Ho; Ku, Chia-Chen; Lin, Wen-Hsin; Wang, Shin-Wei; Kishikawa, Shotaro; Noguchi, Michiya; Wu, Chu-Chieh; Chen, Yi-Ting; Chai, Chee-Yin; Lin, Chen-Lung Steve; Kuo, Kung-Kai; Yang, Ya-Han; Miyoshi, Hiroyuki; Nakamura, Yukio; Saito, Shigeo; Nagata, Kyosuke; Lin, Chang-Shen; Yokoyama, Kazunari K

    2017-10-01

    Reprogramming of cancer cells into induced pluripotent stem cells (iPSCs) is a compelling idea for inhibiting oncogenesis, especially through modulation of homeobox proteins in this reprogramming process. We examined the role of various long noncoding RNAs (lncRNAs)-homeobox protein HOXA13 axis on the switching of the oncogenic function of bone morphogenetic protein 7 (BMP7), which is significantly lost in the gastric cancer cell derived iPS-like cells (iPSLCs). BMP7 promoter activation occurred through the corecruitment of HOXA13, mixed-lineage leukemia 1 lysine N-methyltransferase, WD repeat-containing protein 5, and lncRNA HoxA transcript at the distal tip (HOTTIP) to commit the epigenetic changes to the trimethylation of lysine 4 on histone H3 in cancer cells. By contrast, HOXA13 inhibited BMP7 expression in iPSLCs via the corecruitment of HOXA13, enhancer of zeste homolog 2, Jumonji and AT rich interactive domain 2, and lncRNA HoxA transcript antisense RNA (HOTAIR) to various cis-element of the BMP7 promoter. Knockdown experiments demonstrated that HOTTIP contributed positively, but HOTAIR regulated negatively to HOXA13-mediated BMP7 expression in cancer cells and iPSLCs, respectively. These findings indicate that the recruitment of HOXA13-HOTTIP and HOXA13-HOTAIR to different sites in the BMP7 promoter is crucial for the oncogenic fate of human gastric cells. Reprogramming with octamer-binding protein 4 and Jun dimerization protein 2 can inhibit tumorigenesis by switching off BMP7. Stem Cells 2017;35:2115-2128. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  10. The BH3 α-Helical Mimic BH3-M6 Disrupts Bcl-XL, Bcl-2, and MCL-1 Protein-Protein Interactions with Bax, Bak, Bad, or Bim and Induces Apoptosis in a Bax- and Bim-dependent Manner*

    Science.gov (United States)

    Kazi, Aslamuzzaman; Sun, Jiazhi; Doi, Kenichiro; Sung, Shen-Shu; Takahashi, Yoshinori; Yin, Hang; Rodriguez, Johanna M.; Becerril, Jorge; Berndt, Norbert; Hamilton, Andrew D.; Wang, Hong-Gang; Sebti, Saïd M.

    2011-01-01

    A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-XL, and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-XL and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-XL, Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-XL/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-XL, Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612. PMID:21148306

  11. The BH3 alpha-helical mimic BH3-M6 disrupts Bcl-X(L), Bcl-2, and MCL-1 protein-protein interactions with Bax, Bak, Bad, or Bim and induces apoptosis in a Bax- and Bim-dependent manner.

    Science.gov (United States)

    Kazi, Aslamuzzaman; Sun, Jiazhi; Doi, Kenichiro; Sung, Shen-Shu; Takahashi, Yoshinori; Yin, Hang; Rodriguez, Johanna M; Becerril, Jorge; Berndt, Norbert; Hamilton, Andrew D; Wang, Hong-Gang; Sebti, Saïd M

    2011-03-18

    A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-X(L), and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-X(L) and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-X(L), Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-X(L)/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-X(L), Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612.

  12. Disruptions in JET

    International Nuclear Information System (INIS)

    Wesson, J.A.; Gill, R.D.; Hugon, M.

    1989-01-01

    In JET, both high density and low-q operation are limited by disruptions. The density limit disruptions are caused initially by impurity radiation. This causes a contraction of the plasma temperature profile and leads to an MHD unstable configuration. There is evidence of magnetic island formation resulting in minor disruptions. After several minor disruptions, a major disruption with a rapid energy quench occurs. This event takes place in two stages. In the first stage there is a loss of energy from the central region. In the second stage there is a more rapid drop to a very low temperature, apparently due to a dramatic increase in impurity radiation. The final current decay takes place in the resulting cold plasma. During the growth of the MHD instability the initially rotating mode is brought to rest. This mode locking is believed to be due to an electromagnetic interaction with the vacuum vessel and external magnetic field asymmetries. The low-q disruptions are remarkable for the precision with which they occur at q ψ = 2. These disruptions do not have extended precursors or minor disruptions. The instability grows and locks rapidly. The energy quench and current decay are generally similar to those of the density limit. (author). 43 refs, 35 figs, 3 tabs

  13. Disruption of prefoldin-2 protein synthesis in root-knot nematodes via host-mediated gene silencing efficiently reduces nematode numbers and thus protects plants.

    Science.gov (United States)

    Ajjappala, Hemavathi; Chung, Ha Young; Sim, Joon-Soo; Choi, Inchan; Hahn, Bum-Soo

    2015-03-01

    The aim of this study is to demonstrate the feasibility of down-regulating endogeneous prefoldin-2 root-knot nematode transcripts by expressing dsRNA with sequence identity to the nematode gene in tobacco roots under the influence of strong Arabidopsis ubiquitin (UBQ1) promoter. Root-knot nematodes (RKNs) are sedentary endoparasites infecting a wide range of plant species. They parasitise the root system, thereby disrupting water and nutrient uptake and causing major reductions in crop yields. The most reliable means of controlling RKNs is via the use of soil fumigants such as methyl bromide. With the emergence of RNA interference (RNAi) technology, which permits host-mediated nematode gene silencing, a new strategy to control plant pathogens has become available. In the present study, we investigated host-induced RNAi gene silencing of prefoldin-2 in transgenic Nicotiana benthamiana. Reductions in prefoldin-2 mRNA transcript levels were observed when nematodes were soaked in a dsRNA solution in vitro. Furthermore, nematode reproduction was suppressed in RNAi transgenic lines, as evident by reductions in the numbers of root knots (by 34-60 % in independent RNAi lines) and egg masses (by 33-58 %). Endogenous expression of prefoldin-2, analysed via real-time polymerase chain reaction and Western blotting, revealed that the gene was strongly expressed in the pre-parasitic J2 stage. Our observations demonstrate the relevance and potential importance of targeting the prefoldin gene during the nematode life cycle. The work also suggests that further improvements in silencing efficiency in economically important crops can be accomplished using RNAi directed against plant-parasitic nematodes.

  14. Disruptions in Tokamaks

    International Nuclear Information System (INIS)

    Bondeson, A.

    1987-01-01

    This paper discusses major and minor disruptions in Tokamaks. A number of models and numerical simulations of disruptions based on resistive MHD are reviewed. A discussion is given of how disruptive current profiles are correlated with the experimentally known operational limits in density and current. It is argued that the q a =2 limit is connected with stabilization of the m=2/n=1 tearing mode for a approx.< 2.7 by resistive walls and mode rotation. Experimental and theoretical observations indicate that major disruptions usually occur in at least two phases, first a 'predisruption', or loss of confinement in the region 1 < q < 2, leaving the q approx.= 1 region almost unaffected, followed by a final disruption of the central part, interpreted here as a toroidal n = 1 external kink mode. (author)

  15. Disruption of the podosome adaptor protein TKS4 (SH3PXD2B) causes the skeletal dysplasia, eye, and cardiac abnormalities of Frank-Ter Haar Syndrome.

    Science.gov (United States)

    Iqbal, Zafar; Cejudo-Martin, Pilar; de Brouwer, Arjan; van der Zwaag, Bert; Ruiz-Lozano, Pilar; Scimia, M Cecilia; Lindsey, James D; Weinreb, Robert; Albrecht, Beate; Megarbane, Andre; Alanay, Yasemin; Ben-Neriah, Ziva; Amenduni, Mariangela; Artuso, Rosangela; Veltman, Joris A; van Beusekom, Ellen; Oudakker, Astrid; Millán, José Luis; Hennekam, Raoul; Hamel, Ben; Courtneidge, Sara A; van Bokhoven, Hans

    2010-02-12

    Frank-Ter Haar syndrome (FTHS), also known as Ter Haar syndrome, is an autosomal-recessive disorder characterized by skeletal, cardiovascular, and eye abnormalities, such as increased intraocular pressure, prominent eyes, and hypertelorism. We have conducted homozygosity mapping on patients representing 12 FTHS families. A locus on chromosome 5q35.1 was identified for which patients from nine families shared homozygosity. For one family, a homozygous deletion mapped exactly to the smallest region of overlapping homozygosity, which contains a single gene, SH3PXD2B. This gene encodes the TKS4 protein, a phox homology (PX) and Src homology 3 (SH3) domain-containing adaptor protein and Src substrate. This protein was recently shown to be involved in the formation of actin-rich membrane protrusions called podosomes or invadopodia, which coordinate pericellular proteolysis with cell migration. Mice lacking Tks4 also showed pronounced skeletal, eye, and cardiac abnormalities and phenocopied the majority of the defects associated with FTHS. These findings establish a role for TKS4 in FTHS and embryonic development. Mutation analysis revealed five different homozygous mutations in SH3PXD2B in seven FTHS families. No SH3PXD2B mutations were detected in six other FTHS families, demonstrating the genetic heterogeneity of this condition. Interestingly however, dermal fibroblasts from one of the individuals without an SH3PXD2B mutation nevertheless expressed lower levels of the TKS4 protein, suggesting a common mechanism underlying disease causation. Copyright (c) 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. In-frame seven amino-acid duplication in AIP arose over the last 3000 years, disrupts protein interaction & stability and is associated with gigantism.

    OpenAIRE

    Salvatori, R.; Radian, S.; Diekmann, Y.; Iacovazzo, D.; David, A.; Grabovska, P.; Grassi, G.; Bussell, A-M; Stals, K.; Weber, A.; Quinton, R.; Crowne, E.; Corazzini, V.; Metherell, L. A.; Kearney, T.

    2017-01-01

    OBJECTIVE: Mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene are associated with pituitary adenoma, acromegaly and gigantism. Identical alleles in unrelated pedigrees could be inherited from a common ancestor or result from recurrent mutation events. DESIGN & METHODS: Observational, inferential and experimental study, including: AIP mutation testing; reconstruction of 14 AIP-region (8.3 Mbp) haplotypes; coalescent-based approximate Bayesian estimation of the time to mo...

  17. In-frame seven amino-acid duplication in AIP arose over the last 3000 years, disrupts protein interaction and stability and is associated with gigantism

    OpenAIRE

    Salvatori, Roberto; Radian, Serban; Diekmann, Yoan; Iacovazzo, Donato; David, Alessia; Gabrovska, Plamena; Grassi, Giorgia; Bussell, Anna-Marie; Stals, Karen; Weber, Astrid; Quinton, Richard; Crowne, Elizabeth C; Corazzini, Valentina; Metherell, Lou; Kearney, Tara

    2017-01-01

    Objective Mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene are associated with pituitary adenoma, acromegaly and gigantism. Identical alleles in unrelated pedigrees could be inherited from a common ancestor or result from recurrent mutation events. Design and methods Observational, inferential and experimental study, including: AIP mutation testing; reconstruction of 14 AIP-region (8.3?Mbp) haplotypes; coalescent-based approximate Bayesian estimation of the time to mo...

  18. Pokemon proto-oncogene in oral cancer: potential role in the early phase of tumorigenesis.

    Science.gov (United States)

    Sartini, D; Lo Muzio, L; Morganti, S; Pozzi, V; Di Ruscio, G; Rocchetti, R; Rubini, C; Santarelli, A; Emanuelli, M

    2015-05-01

    Oral squamous cell carcinoma (OSCC) represents about 90% of all oral neoplasms with a poor clinical prognosis. To improve survival of OSCC patients, it is fundamental to understand the basic molecular mechanisms characterizing oral carcinogenesis. Dysregulation of oncogenes and tumor suppressor genes seems to play a central role in tumorigenesis, including malignant transformation of the oral cavity. We analyzed the expression levels of the pro-oncogenic transcription factor Pokemon through real-time PCR, Western blot and immunohistochemistry in tumor, and normal oral tissue samples obtained from 22 patients with OSCC. The relationship between tumor characteristics and the level of Pokemon intratumor expression was also analyzed. Pokemon was significantly downregulated in OSCC. In particular, both mRNA and protein levels (tumor vs normal tissue) inversely correlated with histological grading, suggesting its potential role as a prognostic factor for OSCC. Moreover, a significant inverse correlation was found between Pokemon protein expression levels (OSCC vs normal oral mucosa) and tumor size, supporting the hypothesis that Pokemon could play an important role in the early phase of tumor expansion. This work shows that reduced expression of Pokemon is a peculiar feature of OSCC. Additional studies may establish the effective role of Pokemon in oral tumorigenesis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Activation of the JNK pathway is essential for transformation by the Met oncogene.

    Science.gov (United States)

    Rodrigues, G A; Park, M; Schlessinger, J

    1997-05-15

    The Met/Hepatocyte Growth Factor (HGF) receptor tyrosine kinase is oncogenically activated through a rearrangement that creates a hybrid gene Tpr-Met. The resultant chimeric p65(Tpr-Met) protein is constitutively phosphorylated on tyrosine residues in vivo and associates with a number of SH2-containing signaling molecules including the p85 subunit of PI-3 kinase and the Grb2 adaptor protein, which couples receptor tyrosine kinases to the Ras signaling pathway. Mutation of the binding site for Grb2 impairs the ability of Tpr-Met oncoprotein to transform fibroblasts, suggesting that the activation of the Ras/MAP kinase signaling pathway through Grb2 may be essential for cellular transformation. To test this hypothesis dominant-negative mutants of Grb2 with deletions of the SH3 domains were introduced into Tpr-Met transformed fibroblasts. Cells overexpressing the mutants were found to be morphologically reverted and exhibited reduced growth in soft agar. Surprisingly, the Grb2 mutants blocked activation of the JNK/SAPK but not MAP kinase activity induced by the Tpr-Met oncoprotein. Additionally, cells expressing dominant-negative Grb2 mutants had reduced PI-3-kinase activity and dominant-negative mutants of Rac1 blocked both Tpr-Met-induced transformation and activation of JNK. These experiments reveal a novel link between Met and the JNK pathway, which is essential for transformation by this oncogene.

  20. Antineoplastic Effects of siRNA against TMPRSS2-ERG Junction Oncogene in Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Giorgia Urbinati

    Full Text Available TMPRSS2-ERG junction oncogene is present in more than 50% of patients with prostate cancer and its expression is frequently associated with poor prognosis. Our aim is to achieve gene knockdown by siRNA TMPRSS2-ERG and then to assess the biological consequences of this inhibition. First, we designed siRNAs against the two TMPRSS2-ERG fusion variants (III and IV, most frequently identified in patients' biopsies. Two of the five siRNAs tested were found to efficiently inhibit mRNA of both TMPRSS2-ERG variants and to decrease ERG protein expression. Microarray analysis further confirmed ERG inhibition by both siRNAs TMPRSS2-ERG and revealed one common down-regulated gene, ADRA2A, involved in cell proliferation and migration. The siRNA against TMPRSS2-ERG fusion variant IV showed the highest anti-proliferative effects: Significantly decreased cell viability, increased cleaved caspase-3 and inhibited a cluster of anti-apoptotic proteins. To propose a concrete therapeutic approach, siRNA TMPRSS2-ERG IV was conjugated to squalene, which can self-organize as nanoparticles in water. The nanoparticles of siRNA TMPRSS2-ERG-squalene injected intravenously in SCID mice reduced growth of VCaP xenografted tumours, inhibited oncoprotein expression and partially restored differentiation (decrease in Ki67. In conclusion, this study offers a new prospect of treatment for prostate cancer based on siRNA-squalene nanoparticles targeting TMPRSS2-ERG junction oncogene.

  1. Disruption of Intracellular ATP Generation and Tight Junction Protein Expression during the Course of Brain Edema Induced by Subacute Poisoning of 1,2-Dichloroethane

    Directory of Open Access Journals (Sweden)

    Gaoyang Wang

    2018-01-01

    Full Text Available The aim of this study was to explore changes in intracellular ATP generation and tight junction protein expression during the course of brain edema induced by subacute poisoning of 1,2-dichloroethane (1,2-DCE. Mice were exposed to 1.2 g/m3 1,2-DCE for 3.5 h per day for 1, 2, or 3 days, namely group A, B, and C. Na+-K+-ATPase and Ca2+-ATPase activity, ATP and lactic acid content, intracellular free Ca2+ concentration and ZO-1 and occludin expression in the brain were measured. Results of present study disclosed that Ca2+-ATPase activities in group B and C, and Na+/K+-ATPase activity in group C decreased, whereas intracellular free Ca2+ concentrations in group B and C increased significantly compared with control. Moreover, ATP content decreased, whereas lactic acid content increased significantly in group C compared with control. On the other hand, expressions of ZO-1 and occludin at both the protein and gene levels in group B and C decreased significantly compared with control. In conclusion, findings from this study suggest that calcium overload and depressed expression of tight junction associated proteins, such as ZO-1 and occludin might play an important role in the early phase of brain edema formation induced by subacute poisoning of 1,2-DCE.

  2. The structural pathway of interleukin 1 (IL-1 initiated signaling reveals mechanisms of oncogenic mutations and SNPs in inflammation and cancer.

    Directory of Open Access Journals (Sweden)

    Saliha Ece Acuner Ozbabacan

    2014-02-01

    Full Text Available Interleukin-1 (IL-1 is a large cytokine family closely related to innate immunity and inflammation. IL-1 proteins are key players in signaling pathways such as apoptosis, TLR, MAPK, NLR and NF-κB. The IL-1 pathway is also associated with cancer, and chronic inflammation increases the risk of tumor development via oncogenic mutations. Here we illustrate that the structures of interfaces between proteins in this pathway bearing the mutations may reveal how. Proteins are frequently regulated via their interactions, which can turn them ON or OFF. We show that oncogenic mutations are significantly at or adjoining interface regions, and can abolish (or enhance the protein-protein interaction, making the protein constitutively active (or inactive, if it is a repressor. We combine known structures of protein-protein complexes and those that we have predicted for the IL-1 pathway, and integrate them with literature information. In the reconstructed pathway there are 104 interactions between proteins whose three dimensional structures are experimentally identified; only 15 have experimentally-determined structures of the interacting complexes. By predicting the protein-protein complexes throughout the pathway via the PRISM algorithm, the structural coverage increases from 15% to 71%. In silico mutagenesis and comparison of the predicted binding energies reveal the mechanisms of how oncogenic and single nucleotide polymorphism (SNP mutations can abrogate the interactions or increase the binding affinity of the mutant to the native partner. Computational mapping of mutations on the interface of the predicted complexes may constitute a powerful strategy to explain the mechanisms of activation/inhibition. It can also help explain how an oncogenic mutation or SNP works.

  3. MECP2 Is a Frequently Amplified Oncogene with a Novel Epigenetic Mechanism That Mimics the Role of Activated RAS in Malignancy

    DEFF Research Database (Denmark)

    Neupane, Manish; Clark, Allison P.; Landini, Serena

    2016-01-01

    An unbiased genome-scale screen for unmutated genes that drive cancer growth when overexpressed identified methyl cytosine-guanine dinucleotide (CpG) binding protein 2 (MECP2) as a novel oncogene. MECP2 resides in a region of the X-chromosome that is significantly amplified across 18% of cancers,...

  4. Potential use of Vitellogenin and Zona radiata proteins as biomarkers of endocrine disruption in Peregrine falcon exposed to organochlorine compounds (DDTs, PCBs, PCDDs and PCDFs)

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, B. [CSIC, Inst. of Organic Chemistry, Madrid (Spain); Mori, G.; Concejero, M.A.; Casini, S.; Fossi, M.C. [Siena Univ. (Italy)

    2004-09-15

    Many different classes of environmental contaminants such as industrial chemicals (e.g. alkylphenols, polychlorinated biphenyls, pesticides, PAHs, polychlorinated dibenzo-p-dioxins, and dibenzofurans), ''can cause adverse effects in the reproductive functions of intact organisms or their progenies, consequent to changes in endocrine functions'' showing a so-called Endocrine disruptor activity. Avian raptor species, such as peregrine falcon (Falco peregrinus) for their peculiar position in the food web are potentially at risk in relation to the accumulation of Persistent Organic Pollutants (POPs) and toxic metals. Recent studies carried out with Peregrine falcon (Falco peregrinus) in Spain reveal a contamination with organochlorine compounds (PCDDs, PCDFs, PCBs and DDTs) which could be responsible of the decrease of successful pairs observed during the last ten years. Thus there is a need to develop sensitive diagnostic monitoring tools for the evaluation of toxicological risk and potential effects on the reproductive function and population dynamic of avian top predator species. Two markers for the detection of EDs effects in oviparous vertebrates are induction of Vitellogenin (Vtg) and Zona Radiata Proteins (ZR). Vtg, a complex phospholipoglycoprotein, is the major egg-yolk protein precursor and is normally synthesized by females in response to estradiol. ZR together with Zona Pellucida (ZP) constitutes in birds part of the eggshell. These proteins (Vtg, ZR and ZP) are normally synthesised in the liver as a response to an estrogen signal given by Estradiol. Males and sexually undifferentiated specimens also have the Vtg and ZR genes but do not express them unless exposed to estrogenic compounds. The main aim of this preliminary study was to develop methods for the detection of Vtg and ZR in plasma obtained from peregrine falcon as a specific biomarker for the evaluation of the effects of EDCs.

  5. Protein: FBA3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA3 Ubiquitination CBLB RNF56 CBLB E3 ubiquitin-protein ligase CBL-B Casitas B-lineage lymphoma pr...oto-oncogene b, RING finger protein 56, SH3-binding protein CBL-B, Signal transduction prote

  6. Identification of Novel Ovarian Cancer Oncogenes that Function by Regulating Exosome Function

    Science.gov (United States)

    2017-09-01

    Novel Ovarian Cancer Oncogenes that Function by Regulating Exosome Function September 2017 x 1Sep2016...31Aug2017 Email: mbirrer@partners.org 6 Identification of Novel Ovarian Cancer Oncogenes that Function by Regulating Exosome Function xx

  7. Understanding disruptions in tokamaksa)

    Science.gov (United States)

    Zakharov, Leonid E.; Galkin, Sergei A.; Gerasimov, Sergei N.; contributors, JET-EFDA

    2012-05-01

    This paper describes progress achieved since 2007 in understanding disruptions in tokamaks, when the effect of plasma current sharing with the wall was introduced into theory. As a result, the toroidal asymmetry of the plasma current measurements during vertical disruption event (VDE) on the Joint European Torus was explained. A new kind of plasma equilibria and mode coupling was introduced into theory, which can explain the duration of the external kink 1/1 mode during VDE. The paper presents first results of numerical simulations using a free boundary plasma model, relevant to disruptions.

  8. Oncogenic and incidental HPV types associated with histologically ...

    African Journals Online (AJOL)

    Background. In Africa, data on the relationship between oncogenic human papillomavirus (HPV) types, immune status and cervical preinvasive lesions are lacking. Methods. We investigated low-risk (lrHPV) and high-risk (hrHPV) HPV types in a cohort of women with cervical intraepithelial neoplasia (CIN) II/III confirmed on ...

  9. Targeting MET Amplification as a New Oncogenic Driver

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hisato [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Okamoto, Isamu, E-mail: okamotoi@kokyu.med.kyushu-u.ac.jp [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Center for Clinical and Translational Research, Kyushu University Hospital, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582 (Japan); Okamoto, Wataru [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Division of Transrlational Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577 (Japan); Tanizaki, Junko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, HIM223, 450 Brookline Avenue, Boston, MA 02215 (United States); Nakagawa, Kazuhiko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Nishio, Kazuto [Department of Genome Biology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan)

    2014-07-22

    Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy.

  10. Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation

    NARCIS (Netherlands)

    Malta, Tathiane M.; Sokolov, Artem; Gentles, Andrew J.; Burzykowski, Tomasz; Poisson, Laila; Weinstein, John N.; Kamińska, Bożena; Huelsken, Joerg; Omberg, Larsson; Gevaert, Olivier; Colaprico, Antonio; Czerwińska, Patrycja; Mazurek, Sylwia; Mishra, Lopa; Heyn, Holger; Krasnitz, Alex; Godwin, Andrew K.; Lazar, Alexander J.; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Parker, Joel S.; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David A.; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Gonzalez, Ana Maria Angulo; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Pinero, Edna M.Mora; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz; Stuart, Joshua M.; Hoadley, Katherine A.; Laird, Peter W.; Noushmehr, Houtan; Wiznerowicz, Maciej

    2018-01-01

    Cancer progression involves the gradual loss of a differentiated phenotype and acquisition of progenitor and stem-cell-like features. Here, we provide novel stemness indices for assessing the degree of oncogenic dedifferentiation. We used an innovative one-class logistic regression (OCLR)

  11. Targeting MET Amplification as a New Oncogenic Driver

    International Nuclear Information System (INIS)

    Kawakami, Hisato; Okamoto, Isamu; Okamoto, Wataru; Tanizaki, Junko; Nakagawa, Kazuhiko; Nishio, Kazuto

    2014-01-01

    Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy

  12. Locostatin, a disrupter of Raf kinase inhibitor protein, inhibits extracellular matrix production, proliferation, and migration in human uterine leiomyoma and myometrial cells.

    Science.gov (United States)

    Janjusevic, Milijana; Greco, Stefania; Islam, Md Soriful; Castellucci, Clara; Ciavattini, Andrea; Toti, Paolo; Petraglia, Felice; Ciarmela, Pasquapina

    2016-11-01

    To investigate the presence of Raf kinase inhibitor protein (RKIP) in human myometrium and leiomyoma as well as to determine the effect of locostatin (RKIP inhibitor) on extracellular matrix (ECM) production, proliferation, and migration in human myometrial and leiomyoma cells. Laboratory study. Human myometrium and leiomyoma. Thirty premenopausal women who were admitted to the hospital for myomectomy or hysterectomy. Myometrial and leiomyoma tissues were used to investigate the localization and the expression level of RKIP through immunohistochemistry and Western blotting. Myometrial and leiomyoma cells were treated with locostatin (10 μM) to measure ECM expression by real-time polymerase chain reaction, GSK3β expression by Western blotting, cell migration by wound-healing assay, and cell proliferation by MTT assay and immunocytochemistry. The expression of RKIP in human myometrial and leiomyoma tissue; ECM components and GSK3β expression, migration, and proliferation in myometrial and leiomyoma cells. RKIP is expressed in human myometrial and leiomyoma tissue. Locostatin treatment resulted in the activation of the mitogen-activated protein kinase (MAPK) signal pathway (ERK phosphorylation), providing a powerful validation of our targeting protocol. Further, RKIP inhibition by locostatin reduces ECM components. Moreover, the inhibition of RKIP by locostatin impaired cell proliferation and migration in both leiomyoma and myometrial cells. Finally, locostatin treatment reduced GSK3β expression. Therefore, even if the activation of MAPK pathway should increase proliferation and migration, the destabilization of GSK3β leads to the reduction of proliferation and migration of myometrial and leiomyoma cells. Our results indicate that RKIP may be involved in leiomyoma pathophysiology. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Activation of protein kinase C and disruption of endothelial monolayer integrity by sodium arsenite-Potential mechanism in the development of atherosclerosis

    International Nuclear Information System (INIS)

    Pereira, Flavia E.; Coffin, J. Douglas; Beall, Howard D.

    2007-01-01

    Arsenic exposure has been shown to exacerbate atherosclerosis, beginning with activation of the endothelium that lines the vessel wall. Endothelial barrier integrity is maintained by proteins of the adherens junction (AJ) such as vascular endothelial cadherin (VE-cadherin) and β-catenin and their association with the actin cytoskeleton. In the present study, human aortic endothelial cells (HAECs) were exposed to 1, 5 and 10 μM sodium arsenite [As(III)] for 1, 6, 12 and 24 h, and the effects on endothelial barrier integrity were determined. Immunofluorescence studies revealed formation of actin stress fibers and non-uniform VE-cadherin and β-catenin staining at cell-cell junctions that were concentration- and time-dependent. Intercellular gaps were observed with a measured increase in endothelial permeability. In addition, concentration-dependent increases in tyrosine phosphorylation (PY) of β-catenin and activation of protein kinase Cα (PKCα) were observed. Inhibition of PKCα restored VE-cadherin and β-catenin staining at cell-cell junctions and abolished the As(III)-induced formation of actin stress fibers and intercellular gaps. Endothelial permeability and PY of β-catenin were also reduced to basal levels. These results demonstrate that As(III) induces activation of PKCα, which leads to increased PY of β-catenin downstream of PKCα activation. Phosphorylation of β-catenin plausibly severs the association of VE-cadherin and β-catenin, which along with formation of actin stress fibers, results in intercellular gap formation and increased endothelial permeability. To the best of our knowledge, this is the first report demonstrating that As(III) causes a loss of endothelial monolayer integrity, which potentially could contribute to the development of atherosclerosis

  14. Moderate hypoxia followed by reoxygenation results in blood-brain barrier breakdown via oxidative stress-dependent tight-junction protein disruption.

    Directory of Open Access Journals (Sweden)

    Christoph M Zehendner

    Full Text Available Re-canalization of cerebral vessels in ischemic stroke is pivotal to rescue dysfunctional brain areas that are exposed to moderate hypoxia within the penumbra from irreversible cell death. Goal of the present study was to evaluate the effect of moderate hypoxia followed by reoxygenation (MHR on the evolution of reactive oxygen species (ROS and blood-brain barrier (BBB integrity in brain endothelial cells (BEC. BBB integrity was assessed in BEC in vitro and in microvessels of the guinea pig whole brain in situ preparation. Probes were exposed to MHR (2 hours 67-70 mmHg O2, 3 hours reoxygenation, BEC or towards occlusion of the arteria cerebri media (MCAO with or without subsequent reperfusion in the whole brain preparation. In vitro BBB integrity was evaluated using trans-endothelial electrical resistance (TEER and transwell permeability assays. ROS in BEC were evaluated using 2',7'-dichlorodihydrofluorescein diacetate (DCF, MitoSox and immunostaining for nitrotyrosine. Tight-junction protein (TJ integrity in BEC, stainings for nitrotyrosine and FITC-albumin extravasation in the guinea pig brain preparation were assessed by confocal microscopy. Diphenyleneiodonium (DPI was used to investigate NADPH oxidase dependent ROS evolution and its effect on BBB parameters in BEC. MHR impaired TJ proteins zonula occludens 1 (ZO-1 and claudin 5 (Cl5, decreased TEER, and significantly increased cytosolic ROS in BEC. These events were blocked by the NADPH oxidase inhibitor DPI. MCAO with or without subsequent reoxygenation resulted in extravasation of FITC-albumin and ROS generation in the penumbra region of the guinea pig brain preparation and confirmed BBB damage. BEC integrity may be impaired through ROS in MHR on the level of TJ and the BBB is also functionally impaired in moderate hypoxic conditions followed by reperfusion in a complex guinea pig brain preparation. These findings suggest that the BBB is susceptible towards MHR and that ROS play a key role

  15. 5S rRNA and accompanying proteins in gonads: powerful markers to identify sex and reproductive endocrine disruption in fish.

    Science.gov (United States)

    Diaz de Cerio, Oihane; Rojo-Bartolomé, Iratxe; Bizarro, Cristina; Ortiz-Zarragoitia, Maren; Cancio, Ibon

    2012-07-17

    In anuran ovaries, 5S rDNA is regulated transcriptionally by transcription factor IIIA (TFIIIA), which upon transcription, binds 5S rRNA, forming 7S RNP. 5S rRNA can be stockpiled also in the form of 42S RNP bound to 42sp43. The aim of the present study was to assess the differential transcriptional regulation of 5S rRNA and associated proteins in thicklip gray mullet (Chelon labrosus) gonads. Up to 75% of the total RNA from mullet ovaries was 5S rRNA. qPCR quantification of 5S rRNA expression, in gonads of histologically sexed individuals from different geographical areas, successfully sexed animals. All males had expression levels that were orders of magnitude below expression levels in females, throughout an annual reproductive cycle, with the exception of two individuals: one in November and one in December. Moreover, intersex mullets from a polluted harbor had expression levels between both sexes. TFIIIA and 42sp43 were also very active transcriptionally in gonads of female and intersex mullets, in comparison to males. Nucleocytoplasmatic transport is important in this context and we also analyzed transcriptional levels of importins-α1, -α2, and -β2 and different exportins. Importin-αs behaved similarly to 5S rRNA. Thus, 5S rRNA and associated proteins constitute very powerful molecular markers of sex and effects of xenosterogens in fish gonads, with potential technological applications in the analysis of fish stock dynamics and reproduction as well as in environmental health assessment.

  16. Heartland virus NSs protein disrupts host defenses by blocking the TBK1 kinase-IRF3 transcription factor interaction and signaling required for interferon induction.

    Science.gov (United States)

    Ning, Yun-Jia; Feng, Kuan; Min, Yuan-Qin; Deng, Fei; Hu, Zhihong; Wang, Hualin

    2017-10-06

    Heartland virus (HRTV) is a pathogenic phlebovirus related to the severe fever with thrombocytopenia syndrome virus (SFTSV), another phlebovirus causing life-threatening disease in humans. Previous findings have suggested that SFTSV can antagonize the host interferon (IFN) system via viral nonstructural protein (NSs)-mediated sequestration of antiviral signaling proteins into NSs-induced inclusion bodies. However, whether and how HRTV counteracts the host innate immunity is unknown. Here, we report that HRTV NSs (HNSs) also antagonizes IFN and cytokine induction and bolsters viral replication, although no noticeable inclusion body formation was observed in HNSs-expressing cells. Furthermore, HNSs inhibited the virus-triggered activation of IFN-β promoter by specifically targeting the IFN-stimulated response element but not the NF-κB response element. Consistently, HNSs blocked the phosphorylation and nuclear translocation of IFN regulatory factor 3 (IRF3, an IFN-stimulated response element-activating transcription factor). Reporter gene assays next showed that HNSs blockades the antiviral signaling mediated by RIG-I-like receptors likely at the level of TANK-binding kinase 1 (TBK1). Indeed, HNSs strongly interacts with TBK1 as indicated by confocal microscopy and pulldown analyses, and we also noted that the scaffold dimerization domain of TBK1 is required for the TBK1-HNSs interaction. Finally, pulldown assays demonstrated that HNSs expression dose-dependently diminishes a TBK1-IRF3 interaction, further explaining the mechanism for HNSs function. Collectively, these data suggest that HNSs, an antagonist of host innate immunity, interacts with TBK1 and thereby hinders the association of TBK1 with its substrate IRF3, thus blocking IRF3 activation and transcriptional induction of the cellular antiviral responses. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Acrolein Disrupts Tight Junction Proteins and Causes Endoplasmic Reticulum Stress-Mediated Epithelial Cell Death Leading to Intestinal Barrier Dysfunction and Permeability.

    Science.gov (United States)

    Chen, Wei-Yang; Wang, Min; Zhang, Jingwen; Barve, Shirish S; McClain, Craig J; Joshi-Barve, Swati

    2017-12-01

    Increasing evidence suggests that environmental and dietary factors can affect intestinal epithelial integrity leading to gut permeability and bacterial translocation. Intestinal barrier dysfunction is a pathogenic process associated with many chronic disorders. Acrolein is an environmental and dietary pollutant and a lipid-derived endogenous metabolite. The impact of acrolein on the intestine has not been investigated before and is evaluated in this study, both in vitro and in vivo. Our data demonstrate that oral acrolein exposure in mice caused damage to the intestinal epithelial barrier, resulting in increased permeability and subsequently translocation of bacterial endotoxin-lipopolysaccharide into the blood. Similar results were seen in vitro using established Caco-2 cell monolayers wherein acrolein decreased barrier function and increased permeability. Acrolein also caused the down-regulation and/or redistribution of three representative tight junction proteins (ie, zonula occludens-1, Occludin, Claudin-1) that critically regulate epithelial paracellular permeability. In addition, acrolein induced endoplasmic reticulum stress-mediated death of epithelial cells, which is an important mechanism contributing to intestinal barrier damage/dysfunction, and gut permeability. Overall, we demonstrate that exposure to acrolein affects the intestinal epithelium by decrease/redistribution of tight junction proteins and endoplasmic reticulum stress-mediated epithelial cell death, thereby resulting in loss of barrier integrity and function. Our findings highlight the adverse consequences of environmental and dietary pollutants on intestinal barrier integrity/function with relevance to gut permeability and the development of disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. The inhibitory NKR-P1B:Clr-b recognition axis facilitates detection of oncogenic transformation and cancer immunosurveillance

    DEFF Research Database (Denmark)

    Tanaka, M; Fine, Jason; Kirkham, Christina

    2018-01-01

    Natural killer (NK) cells express receptors specific for MHC class I (MHC-I) molecules involved in "missing-self" recognition of cancer and virus-infected cells. Here we elucidate the role of MHC-I-independent NKR-P1B:Clr-b interactions in the detection of oncogenic transformation by NK cells. Ras......-b protein, in turn promoting missing-self recognition via the NKR-P1B inhibitory receptor. Both Ras- and c-Myc-mediated Clr-b loss selectively augmented cytotoxicity of oncogene-transformed leukemia cells by NKR-P1B+ NK cells in vitro and enhanced rejection by WT mice in vivo. Interestingly, genetic...

  19. High-Risk Human Papillomaviral Oncogenes E6 and E7 Target Key Cellular Pathways to Achieve Oncogenesis.

    Science.gov (United States)

    Yeo-Teh, Nicole S L; Ito, Yoshiaki; Jha, Sudhakar

    2018-06-08

    Infection with high-risk human papillomavirus (HPV) has been linked to several human cancers, the most prominent of which is cervical cancer. The integration of the viral genome into the host genome is one of the manners in which the viral oncogenes E6 and E7 achieve persistent expression. The most well-studied cellular targets of the viral oncogenes E6 and E7 are p53 and pRb, respectively. However, recent research has demonstrated the ability of these two viral factors to target many more cellular factors, including proteins which regulate epigenetic marks and splicing changes in the cell. These have the ability to exert a global change, which eventually culminates to uncontrolled proliferation and carcinogenesis.

  20. Malignant transformation of diploid human fibroblasts by transfection of oncogenes. Part 2, Progress report, July 1989--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, J.J.

    1992-12-31

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  1. The DNA damage checkpoint precedes activation of ARF in response to escalating oncogenic stress during tumorigenesis

    DEFF Research Database (Denmark)

    Evangelou, K.; Bartkova, J.; Kotsinas, A.

    2013-01-01

    oncogenes showed that the delayed upregulation of ARF reflected a requirement for a higher, transcriptionally based threshold of oncogenic stress, elicited by at least two oncogenic 'hits', compared with lower activation threshold for DDR. We propose that relative to DDR activation, ARF provides...

  2. Disruptive Mood Dysregulation Disorder

    Science.gov (United States)

    ... Application Process Managing Grants Clinical Research Training Small Business Research Labs at NIMH Labs at NIMH Home Research ... Chat on Disruptive Mood Dysregulation Disorder (Archived Transcript) Research and ... Journal Articles: References and abstracts from MEDLINE/PubMed (National ...

  3. Disruption Rose Tinted II

    OpenAIRE

    Livingstone, Andrew

    2009-01-01

    'Disruption - Rose Tinted II' continues to engage narratives of historical English china as previously explored in the work 'Rose Tinted'. This work engages the sleepy rural idyll which is overlaid with visual contemporary social commentary.

  4. Resting potential, oncogene-induced tumorigenesis, and metastasis: the bioelectric basis of cancer in vivo

    Science.gov (United States)

    Lobikin, Maria; Chernet, Brook; Lobo, Daniel; Levin, Michael

    2012-12-01

    Cancer may result from localized failure of instructive cues that normally orchestrate cell behaviors toward the patterning needs of the organism. Steady-state gradients of transmembrane voltage (Vmem) in non-neural cells are instructive, epigenetic signals that regulate pattern formation during embryogenesis and morphostatic repair. Here, we review molecular data on the role of bioelectric cues in cancer and present new findings in the Xenopus laevis model on how the microenvironment's biophysical properties contribute to cancer in vivo. First, we investigated the melanoma-like phenotype arising from serotonergic signaling by ‘instructor’ cells—a cell population that is able to induce a metastatic phenotype in normal melanocytes. We show that when these instructor cells are depolarized, blood vessel patterning is disrupted in addition to the metastatic phenotype induced in melanocytes. Surprisingly, very few instructor cells need to be depolarized for the hyperpigmentation phenotype to occur; we present a model of antagonistic signaling by serotonin receptors that explains the unusual all-or-none nature of this effect. In addition to the body-wide depolarization-induced metastatic phenotype, we investigated the bioelectrical properties of tumor-like structures induced by canonical oncogenes and cancer-causing compounds. Exposure to carcinogen 4-nitroquinoline 1-oxide (4NQO) induces localized tumors, but has a broad (and variable) effect on the bioelectric properties of the whole body. Tumors induced by oncogenes show aberrantly high sodium content, representing a non-invasive diagnostic modality. Importantly, depolarized transmembrane potential is not only a marker of cancer but is functionally instructive: susceptibility to oncogene-induced tumorigenesis is significantly reduced by forced prior expression of hyperpolarizing ion channels. Importantly, the same effect can be achieved by pharmacological manipulation of endogenous chloride channels, suggesting

  5. Computational design of selective peptides to discriminate between similar PDZ domains in an oncogenic pathway.

    Science.gov (United States)

    Zheng, Fan; Jewell, Heather; Fitzpatrick, Jeremy; Zhang, Jian; Mierke, Dale F; Grigoryan, Gevorg

    2015-01-30

    Reagents that target protein-protein interactions to rewire signaling are of great relevance in biological research. Computational protein design may offer a means of creating such reagents on demand, but methods for encoding targeting selectivity are sorely needed. This is especially challenging when targeting interactions with ubiquitous recognition modules--for example, PDZ domains, which bind C-terminal sequences of partner proteins. Here we consider the problem of designing selective PDZ inhibitor peptides in the context of an oncogenic signaling pathway, in which two PDZ domains (NHERF-2 PDZ2-N2P2 and MAGI-3 PDZ6-M3P6) compete for a receptor C-terminus to differentially modulate oncogenic activities. Because N2P2 has been shown to increase tumorigenicity and M3P6 to decreases it, we sought to design peptides that inhibit N2P2 without affecting M3P6. We developed a structure-based computational design framework that models peptide flexibility in binding yet is efficient enough to rapidly analyze tradeoffs between affinity and selectivity. Designed peptides showed low-micromolar inhibition constants for N2P2 and no detectable M3P6 binding. Peptides designed for reverse discrimination bound M3P6 tighter than N2P2, further testing our technology. Experimental and computational analysis of selectivity determinants revealed significant indirect energetic coupling in the binding site. Successful discrimination between N2P2 and M3P6, despite their overlapping binding preferences, is highly encouraging for computational approaches to selective PDZ targeting, especially because design relied on a homology model of M3P6. Still, we demonstrate specific deficiencies of structural modeling that must be addressed to enable truly robust design. The presented framework is general and can be applied in many scenarios to engineer selective targeting. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. P53 suppresses expression of the 14-3-3gamma oncogene

    Directory of Open Access Journals (Sweden)

    Qi Wenqing

    2011-08-01

    Full Text Available Abstract Background 14-3-3 proteins are a family of highly conserved proteins that are involved in a wide range of cellular processes. Recent evidence indicates that some of these proteins have oncogenic activity and that they may promote tumorigenesis. We previously showed that one of the 14-3-3 family members, 14-3-3gamma, is over expressed in human lung cancers and that it can induce transformation of rodent cells in vitro. Methods qRTPCR and Western blot analysis were performed to examine 14-3-3gamma expression in non-small cell lung cancers (NSCLC. Gene copy number was analyzed by qPCR. P53 mutations were detected by direct sequencing and also by western blot. CHIP and yeast one hybrid assays were used to detect p53 binding to 14-3-3gamma promoter. Results Quantitative rtPCR results showed that the expression level of 14-3-3gamma was elevated in the majority of NSCLC that we examined which was also consistent with protein expression. Further analysis of the expression pattern of 14-3-3gamma in lung tumors showed a correlation with p53 mutations suggesting that p53 might suppress 14-3-3 gamma expression. Analysis of the gamma promoter sequence revealed the presence of a p53 consensus binding motif and in vitro assays demonstrated that wild-type p53 bound to this motif when activated by ionizing radiation. Deletion of the p53 binding motif eliminated p53's ability to suppress 14-3-3gamma expression. Conclusion Increased expression of 14-3-3gamma in lung cancer coincides with loss of functional p53. Hence, we propose that 14-3-3gamma's oncogenic activities cooperate with loss of p53 to promote lung tumorigenesis.

  7. WIP-YAP/TAZ as A New Pro-Oncogenic Pathway in Glioma

    Directory of Open Access Journals (Sweden)

    Sergio Rivas

    2018-06-01

    Full Text Available Wild-type p53 (wtp53 is described as a tumour suppressor gene, and mutations in p53 occur in many human cancers. Indeed, in high-grade malignant glioma, numerous molecular genetics studies have established central roles of RTK-PI3K-PTEN and ARF-MDM2-p53 INK4a-RB pathways in promoting oncogenic capacity. Deregulation of these signalling pathways, among others, drives changes in the glial/stem cell state and environment that permit autonomous growth. The initially transformed cell may undergo subsequent modifications, acquiring a more complete tumour-initiating phenotype responsible for disease advancement to stages that are more aggressive. We recently established that the oncogenic activity of mutant p53 (mtp53 is driven by the actin cytoskeleton-associated protein WIP (WASP-interacting protein, correlated with tumour growth, and more importantly that both proteins are responsible for the tumour-initiating cell phenotype. We reported that WIP knockdown in mtp53-expressing glioblastoma greatly reduced proliferation and growth capacity of cancer stem cell (CSC-like cells and decreased CSC-like markers, such as hyaluronic acid receptor (CD44, prominin-1 (CD133, yes-associated protein (YAP and transcriptional co-activator with PDZ-binding motif (TAZ. We thus propose a new CSC signalling pathway downstream of mtp53 in which Akt regulates WIP and controls YAP/TAZ stability. WIP drives a mechanism that stimulates growth signals, promoting YAP/TAZ and β-catenin stability in a Hippo-independent fashion, which allows cells to coordinate processes such as proliferation, stemness and invasiveness, which are key factors in cancer progression. Based on this multistep tumourigenic model, it is tantalizing to propose that WIP inhibitors may be applied as an effective anti-cancer therapy.

  8. Digital disruption ?syndromes.

    Science.gov (United States)

    Sullivan, Clair; Staib, Andrew

    2017-05-18

    The digital transformation of hospitals in Australia is occurring rapidly in order to facilitate innovation and improve efficiency. Rapid transformation can cause temporary disruption of hospital workflows and staff as processes are adapted to the new digital workflows. The aim of this paper is to outline various types of digital disruption and some strategies for effective management. A large tertiary university hospital recently underwent a rapid, successful roll-out of an integrated electronic medical record (EMR). We observed this transformation and propose several digital disruption "syndromes" to assist with understanding and management during digital transformation: digital deceleration, digital transparency, digital hypervigilance, data discordance, digital churn and post-digital 'depression'. These 'syndromes' are defined and discussed in detail. Successful management of this temporary digital disruption is important to ensure a successful transition to a digital platform. What is known about this topic? Digital disruption is defined as the changes facilitated by digital technologies that occur at a pace and magnitude that disrupt established ways of value creation, social interactions, doing business and more generally our thinking. Increasing numbers of Australian hospitals are implementing digital solutions to replace traditional paper-based systems for patient care in order to create opportunities for improved care and efficiencies. Such large scale change has the potential to create transient disruption to workflows and staff. Managing this temporary disruption effectively is an important factor in the successful implementation of an EMR. What does this paper add? A large tertiary university hospital recently underwent a successful rapid roll-out of an integrated electronic medical record (EMR) to become Australia's largest digital hospital over a 3-week period. We observed and assisted with the management of several cultural, behavioural and

  9. Search and Disrupt

    DEFF Research Database (Denmark)

    Ørding Olsen, Anders

    . However, incumbent sources engaged in capability reconfiguration to accommodate disruption improve search efforts in disruptive technologies. The paper concludes that the value of external sources is contingent on more than their knowledge. Specifically, interdependence of sources in search gives rise...... to influence from individual strategic interests on the outcomes. More generally, this points to the need for understanding the two-way influence of sources, rather than viewing external search as one-way knowledge accessing....

  10. Oncogene Mimicry as a Mechanism of Primary Resistance to BRAF Inhibitors

    Directory of Open Access Journals (Sweden)

    Martin L. Sos

    2014-08-01

    Full Text Available Despite the development of potent RAF/mitogen-activated protein kinase (MAPK pathway inhibitors, only a fraction of BRAF-mutant patients benefit from treatment with these drugs. Using a combined chemogenomics and chemoproteomics approach, we identify drug-induced RAS-RAF-MEK complex formation in a subset of BRAF-mutant cancer cells characterized by primary resistance to vemurafenib. In these cells, autocrine interleukin-6 (IL-6 secretion may contribute to the primary resistance phenotype via induction of JAK/STAT3 and MAPK signaling. In a subset of cell lines, combined IL-6/MAPK inhibition is able to overcome primary resistance to BRAF-targeted therapy. Overall, we show that the signaling plasticity exerted by primary resistant BRAF-mutant cells is achieved by their ability to mimic signaling features of oncogenic RAS, a strategy that we term “oncogene mimicry.” This model may guide future strategies for overcoming primary resistance observed in these tumors.

  11. WSB1 overcomes oncogene-induced senescence by targeting ATM for degradation

    Science.gov (United States)

    Kim, Jung Jin; Lee, Seung Baek; Yi, Sang-Yeop; Han, Sang-Ah; Kim, Sun-Hyun; Lee, Jong-Min; Tong, Seo-Yun; Yin, Ping; Gao, Bowen; Zhang, Jun; Lou, Zhenkun

    2017-01-01

    Oncogene-induced senescence (OIS) or apoptosis through the DNA-damage response is an important barrier of tumorigenesis. Overcoming this barrier leads to abnormal cell proliferation, genomic instability, and cellular transformation, and finally allows cancers to develop. However, it remains unclear how the OIS barrier is overcome. Here, we show that the E3 ubiquitin ligase WD repeat and SOCS box-containing protein 1 (WSB1) plays a role in overcoming OIS. WSB1 expression in primary cells helps the bypass of OIS, leading to abnormal proliferation and cellular transformation. Mechanistically, WSB1 promotes ATM ubiquitination, resulting in ATM degradation and the escape from OIS. Furthermore, we identify CDKs as the upstream kinase of WSB1. CDK-mediated phosphorylation activates WSB1 by promoting its monomerization. In human cancer tissue and in vitro models, WSB1-induced ATM degradation is an early event during tumorigenic progression. We suggest that WSB1 is one of the key players of early oncogenic events through ATM degradation and destruction of the tumorigenesis barrier. Our work establishes an important mechanism of cancer development and progression in premalignant lesions. PMID:27958289

  12. Engineering CHO cells with an oncogenic KIT improves cells growth, resilience to stress, and productivity.

    Science.gov (United States)

    Mahameed, Mohamed; Tirosh, Boaz

    2017-11-01

    An optimized biomanufacturing process in mammalian cells is contingent on the ability of the producing cells to reach high viable cell densities. In addition, at the peak of growth, cells need to continue producing the biological entity at a consistent quality. Thus, engineering cells with robust growth performance and resilience to variable stress conditions is highly desirable. The tyrosine kinase receptor, KIT, plays a key role in cell differentiation and the survival of several immune cell types. Its oncogenic mutant, D816V, endows cells with high proliferation capacity, and resistance to kinase inhibitors. Importantly, this onco-KIT mutant when introduced into various cell types is arrested in the endoplasmic reticulum in a constitutively active form. Here, we investigated the effect of oncogenic D816V KIT on the performance of CHO-K1 cells under conventional tissue culture growth settings and when adapted, to shaking conditions. The onco-KIT promoted global protein synthesis, elevated the expression of a secretable transgene, enhanced proliferation, and improved the overall titers of a model glycoprotein. Moreover, the expression of the onco-KIT endowed the cells with a remarkable resistance to various stress conditions. Our data suggest that the introduction of onco-KIT can serve as a strategy for improving glycoprotein biomanufacturing. Biotechnol. Bioeng. 2017;114: 2560-2570. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Large-scale analysis by SAGE reveals new mechanisms of v-erbA oncogene action

    Directory of Open Access Journals (Sweden)

    Faure Claudine

    2007-10-01

    Full Text Available Abstract Background: The v-erbA oncogene, carried by the Avian Erythroblastosis Virus, derives from the c-erbAα proto-oncogene that encodes the nuclear receptor for triiodothyronine (T3R. v-ErbA transforms erythroid progenitors in vitro by blocking their differentiation, supposedly by interference with T3R and RAR (Retinoic Acid Receptor. However, v-ErbA target genes involved in its transforming activity still remain to be identified. Results: By using Serial Analysis of Gene Expression (SAGE, we identified 110 genes deregulated by v-ErbA and potentially implicated in the transformation process. Bioinformatic analysis of promoter sequence and transcriptional assays point out a potential role of c-Myb in the v-ErbA effect. Furthermore, grouping of newly identified target genes by function revealed both expected (chromatin/transcription and unexpected (protein metabolism functions potentially deregulated by v-ErbA. We then focused our study on 15 of the new v-ErbA target genes and demonstrated by real time PCR that in majority their expression was activated neither by T3, nor RA, nor during differentiation. This was unexpected based upon the previously known role of v-ErbA. Conclusion: This paper suggests the involvement of a wealth of new unanticipated mechanisms of v-ErbA action.

  14. Overexpression of hepatoma-derived growth factor in melanocytes does not lead to oncogenic transformation

    International Nuclear Information System (INIS)

    Sedlmaier, Angela; Wernert, Nicolas; Gallitzendörfer, Rainer; Abouzied, Mekky M; Gieselmann, Volkmar; Franken, Sebastian

    2011-01-01

    HDGF is a growth factor which is overexpressed in a wide range of tumors. Importantly, expression levels were identified as a prognostic marker in some types of cancer such as melanoma. To investigate the presumed oncogenic/transforming capacity of HDGF, we generated transgenic mice overexpressing HDGF in melanocytes. These mice were bred with mice heterozygous for a defective copy of the Ink4a tumor suppressor gene and were exposed to UV light to increase the risk for tumor development both genetically and physiochemically. Mice were analyzed by immunohistochemistry and Western blotting. Furthermore, primary melanocytes were isolated from different strains created. Transgenic animals overexpressed HDGF in hair follicle melanocytes. Interestingly, primary melanocytes isolated from transgenic animals were not able to differentiate in vitro whereas cells isolated from wild type and HDGF-deficient animals were. Although, HDGF -/- /Ink4a +/- mice displayed an increased number of epidermoid cysts after exposure to UV light, no melanomas or premelanocytic alterations could be detected in this mouse model. The results therefore provide no evidence that HDGF has a transforming capacity in tumor development. Our results in combination with previous findings point to a possible role in cell differentiation and suggest that HDGF promotes tumor progression after secondary upregulation and may represent another protein fitting into the concept of non-oncogene addiction of tumor tissue

  15. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2.

    Science.gov (United States)

    Zuo, Tao; Liu, Runhua; Zhang, Huiming; Chang, Xing; Liu, Yan; Wang, Lizhong; Zheng, Pan; Liu, Yang

    2007-12-01

    S-phase kinase-associated protein 2 (SKP2) is a component of the E3 ubiquitin ligase SKP1-Cul1-Fbox complex. Overexpression of SKP2 results in cell cycle dysregulation and carcinogenesis; however, the genetic lesions that cause this upregulation are poorly understood. We recently demonstrated that forkhead box P3 (FOXP3) is an X-linked breast cancer suppressor and an important repressor of the oncogene ERBB2/HER2. Since FOXP3 suppresses tumor growth regardless of whether the tumors overexpress ERBB2/HER2, additional FOXP3 targets may be involved in its tumor suppressor activity. Here, we show that mammary carcinomas from mice heterozygous for a Foxp3 mutation exhibited increased Skp2 expression. Ectopic expression of FOXP3 in mouse mammary cancer cells repressed SKP2 expression with a corresponding increase in p27 and polyploidy. Conversely, siRNA silencing of the FOXP3 gene in human mammary epithelial cells increased SKP2 expression. We also show that Foxp3 directly interacted with and repressed the Skp2 promoter. Moreover, the analysis of over 200 primary breast cancer samples revealed an inverse correlation between FOXP3 and SKP2 levels. Finally, we demonstrated that downregulation of SKP2 was critical for FOXP3-mediated growth inhibition in breast cancer cells that do not overexpress ERBB2/HER2. Our data provide genetic, biochemical, and functional evidence that FOXP3 is a novel transcriptional repressor for the oncogene SKP2.

  16. Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary cancer.

    Directory of Open Access Journals (Sweden)

    Kevin A Kwei

    2008-05-01

    Full Text Available Pancreatobiliary cancers have among the highest mortality rates of any cancer type. Discovering the full spectrum of molecular genetic alterations may suggest new avenues for therapy. To catalogue genomic alterations, we carried out array-based genomic profiling of 31 exocrine pancreatic cancers and 6 distal bile duct cancers, expanded as xenografts to enrich the tumor cell fraction. We identified numerous focal DNA amplifications and deletions, including in 19% of pancreatobiliary cases gain at cytoband 18q11.2, a locus uncommonly amplified in other tumor types. The smallest shared amplification at 18q11.2 included GATA6, a transcriptional regulator previously linked to normal pancreas development. When amplified, GATA6 was overexpressed at both the mRNA and protein levels, and strong immunostaining was observed in 25 of 54 (46% primary pancreatic cancers compared to 0 of 33 normal pancreas specimens surveyed. GATA6 expression in xenografts was associated with specific microarray gene-expression patterns, enriched for GATA binding sites and mitochondrial oxidative phosphorylation activity. siRNA mediated knockdown of GATA6 in pancreatic cancer cell lines with amplification led to reduced cell proliferation, cell cycle progression, and colony formation. Our findings indicate that GATA6 amplification and overexpression contribute to the oncogenic phenotypes of pancreatic cancer cells, and identify GATA6 as a candidate lineage-specific oncogene in pancreatobiliary cancer, with implications for novel treatment strategies.

  17. Disruption of the hydrogen bonding network determines the pH-induced non-fluorescent state of the fluorescent protein ZsYellow by protonation of Glu221.

    Science.gov (United States)

    Bae, Ji-Eun; Kim, In Jung; Nam, Ki Hyun

    2017-11-04

    Many fluorescent proteins (FPs) exhibit fluorescence quenching at a low pH. This pH-induced non-fluorescent state of an FP serves as a useful indicator of the cellular pH. ZsYellow is widely used as an optical marker in molecular biology, but its pH-induced non-fluorescent state has not been characterized. Here, we report the pH-dependent spectral properties of ZsYellow, which exhibited the pH-induced non-fluorescence state at a pH below 4.0. We determined the crystal structures of ZsYellow at pH 3.5 (non-fluorescence state) and 8.0 (fluorescence state), which revealed the cis-configuration of the chromophore without pH-induced isomerization. In the non-fluorescence state, Arg95, which is involved in stabilization of the exited state of the chromophore, was found to more loosely interact with the carbonyl oxygen atom of the chromophore when compared to the interaction at pH 8.0. In the fluorescence state, Glu221, which is involved in the hydrogen bonding network around the chromophore, stably interacted with Gln42 and His202. By contrast, in the non-fluorescence state, the protonated conserved Glu221 residue exhibited a large conformational change and was separated from His202 by 5.46 Å, resulting in breakdown of the hydrogen bond network. Our results provide insight into the critical role of the conserved Glu221 residue for generating the pH-induced non-fluorescent state. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Primary structure of the human fgr proto-oncogene product p55/sup c-fgr/

    Energy Technology Data Exchange (ETDEWEB)

    Katamine, S.; Notario, V.; Rao, C.D.; Miki, T.; Cheah, M.S.C.; Tronick, S.R.; Robbins, K.C.

    1988-01-01

    Normal human c-fgr cDNA clones were constructed by using normal peripheral blood mononuclear cell mRNA as a template. Nucleotide sequence analysis of two such clones revealed a 1,587-base-pair-long open reading frame which predicted the primary amino acid sequence of the c-fgr translational product. Homology of this protein with the v-fgr translational product stretched from codons 128 to 516, where 32 differences among 388 codons were observed. Sequence similarity with human c-src, c-yes, and fyn translations products began at amino acid position 76 of the predicted c-fgr protein and extended nearly to its C-terminus. In contrast, the stretch of 75 amino acids at the N-terminus demonstrated a greatly reduced degree of relatedness to these same proteins. To verify the deduced amino acid sequence, antibodies were prepared against peptides representing amino- and carboxy-terminal regions of the predicted c-fgr translational product. Both antibodies specifically recognized a 55-kilodalton protein expressed in COS-1 cells transfected with a c-fgr cDNA expression plasmid. Moreover, the same protein was immunoprecipitated from an Epstein-Barr virus-infected Burkitt's lymphoma cell line which expressed c-fgr mRNA but not in its uninfected fgr mRNA-negative counterpart. These findings identified the 55-kilodalton protein as the product of the human fgr proto-oncogene.

  19. Disruption prediction at JET

    International Nuclear Information System (INIS)

    Milani, F.

    1998-12-01

    The sudden loss of the plasma magnetic confinement, known as disruption, is one of the major issue in a nuclear fusion machine as JET (Joint European Torus). Disruptions pose very serious problems to the safety of the machine. The energy stored in the plasma is released to the machine structure in few milliseconds resulting in forces that at JET reach several Mega Newtons. The problem is even more severe in the nuclear fusion power station where the forces are in the order of one hundred Mega Newtons. The events that occur during a disruption are still not well understood even if some mechanisms that can lead to a disruption have been identified and can be used to predict them. Unfortunately it is always a combination of these events that generates a disruption and therefore it is not possible to use simple algorithms to predict it. This thesis analyses the possibility of using neural network algorithms to predict plasma disruptions in real time. This involves the determination of plasma parameters every few milliseconds. A plasma boundary reconstruction algorithm, XLOC, has been developed in collaboration with Dr. D. O'Brien and Dr. J. Ellis capable of determining the plasma wall/distance every 2 milliseconds. The XLOC output has been used to develop a multilayer perceptron network to determine plasma parameters as l i and q ψ with which a machine operational space has been experimentally defined. If the limits of this operational space are breached the disruption probability increases considerably. Another approach for prediction disruptions is to use neural network classification methods to define the JET operational space. Two methods have been studied. The first method uses a multilayer perceptron network with softmax activation function for the output layer. This method can be used for classifying the input patterns in various classes. In this case the plasma input patterns have been divided between disrupting and safe patterns, giving the possibility of

  20. The Oncogenic Risks of Diagnostic CT Scam Studies in Children

    International Nuclear Information System (INIS)

    Brent, R.

    2004-01-01

    Brenner et al (2001) reported that estimates of the exposure to children from CT scans indicates that the exposures are both higher than from conventional radiographic studies and higher than is necessary to obtain quality examinations. utilizing the oncogenic risk data from the RERF study in Japan, Brenner et al estimated that the oncogenic risk in this population of CT exposed children exposed each year would result in an additional 500 cases of cancer. This risk estimate is supported by the RERF epidemiological data obtained from the populations exposed in Hiroshima and Nagasaki. the increased risks associated with the increased exposure from CT scans have raised concern and stimulated discussion. Although there is little doubt about the benefits of CT scans in improving the health care of children, there is concern about the estimated oncogenic risk, especially since the frequency of CT studies has been increasing. Applying the oncogenic risks of ionizing radiation from the RERF data may not be appropriate for all types of radiation exposure for accurately predicting the incidence of cancer in exposed children because of the impact of 1) partial versus whole-body irradiation, and 2) the protraction of the exposure. Other population of children who have been exposed to radiation and whose incidence of cancer has been studied will be presented and those studies indicate that the risk of cancer is much lower or not increased at all with exposures in the diagnostic range. finally, the dramatic impact of the use of CT scans in clinical pediatric practice saves lives and improves diagnostic accuracy. Therefore, it is crucial that a scholarly evaluation of the risks and benefits should be initiated. The radiology community and the manufacturers have already initiated programs to decrease the exposure significantly. But it is essential that well-planned, retrospective and prospective epidemiology studies should be initiated to study the oncogenic risks. If you want to

  1. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongtao [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China); Gao, Peng [Department of Internal Medicine, University of Iowa, Iowa City, IA 52242 (United States); Zheng, Jie, E-mail: jiezheng54@126.com [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China)

    2014-09-05

    Highlights: • As{sub 2}O{sub 3} inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As{sub 2}O{sub 3} is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As{sub 2}O{sub 3}) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As{sub 2}O{sub 3} induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As{sub 2}O{sub 3} on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As{sub 2}O{sub 3} than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As{sub 2}O{sub 3} than HPV 16-positive CaSki and SiHa cells. After As{sub 2}O{sub 3} treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As{sub 2}O{sub 3} is a potential anticancer drug for cervical cancer.

  2. Comparison of the oncogenic potential of several chemotherapeutic agents

    International Nuclear Information System (INIS)

    Miller, R.C.; Hall, E.J.; Osmak, R.S.

    1981-01-01

    Several chemotherapeutic drugs that have been routinely used in cancer treatment were tested for their carcinogenic potential. Two antitumor antibiotics (adriamycin and vincristine), an alkalating agent (melphalan), 5-azacytidine and the bifunctional agent cis-platinum that mimics alkylating agents and/or binds Oxygen-6 or Nitrogen-7 atoms of quanine were tested. Cell killing and cancer induction was assessed using in vitro transformation system. C3H/10T 1/2 cells, while normally exhibiting contact inhibition, can undergo transformation from normal contact inhibited cells to tumorgenic cells when exposed to chemical carcinogens. These cells have been used in the past by this laboratory to study oncogenic transformation of cells exposed to ionizing radiation and electron affinic compounds that sensitize hypoxic cells to x-rays. The endpoints of cell killing and oncogenic transformation presented here give an estimate of the carcinogenic potential of these agents

  3. Oncogenic osteomalacia presenting as bilateral stress fractures of the tibia

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Kenjirou; Ohnishi, Takeshi; Ishikawa, Tohru [Department of Radiology, St. Marianna University Hospital, Kanagawa (Japan); Tani, Haruo [Department of Internal Medicine III, St. Marianna University Hospital, Kawasaki City, Kanagawa (Japan); Uesugi, Keisuke [Department of Otolaryngology, St. Marianna University Hospital, Kawasaki City, Kanagawa (Japan); Takagi, Masayuki [Department of Pathology, St. Marianna University Hospital, Kawasaki City, Kanagawa (Japan)

    1999-01-01

    We report on a patient with bilateral stress fractures of the tibia who subsequently showed classic biochemical features of oncogenic osteomalacia. Conventional radiographs were normal. MR imaging revealed symmetric, bilateral, band-like low-signal lesions perpendicular to the medial cortex of the tibiae and corresponding to the only lesions subsequently seen on the bone scan. A maxillary sinus lesion was subsequently detected and surgically removed resulting in prompt alleviation of symptoms and normalization of hypophosphatemia and low 1,25-(OH){sub 2} vitamin D{sub 3}. The lesion was pathologically diagnosed as a hemangiopericytoma-like tumor. Patients with oncogenic osteomalacia may present with stress fractures limited to the tibia, as seen in athletes. The clue to the real diagnosis lies in paying close attention to the serum phosphate levels, especially in patients suffering generalized symptoms of weakness and not given to unusual physical activity. (orig.) With 4 figs., 6 refs.

  4. Oncogenic osteomalacia presenting as bilateral stress fractures of the tibia

    International Nuclear Information System (INIS)

    Ohashi, Kenjirou; Ohnishi, Takeshi; Ishikawa, Tohru; Tani, Haruo; Uesugi, Keisuke; Takagi, Masayuki

    1999-01-01

    We report on a patient with bilateral stress fractures of the tibia who subsequently showed classic biochemical features of oncogenic osteomalacia. Conventional radiographs were normal. MR imaging revealed symmetric, bilateral, band-like low-signal lesions perpendicular to the medial cortex of the tibiae and corresponding to the only lesions subsequently seen on the bone scan. A maxillary sinus lesion was subsequently detected and surgically removed resulting in prompt alleviation of symptoms and normalization of hypophosphatemia and low 1,25-(OH) 2 vitamin D 3 . The lesion was pathologically diagnosed as a hemangiopericytoma-like tumor. Patients with oncogenic osteomalacia may present with stress fractures limited to the tibia, as seen in athletes. The clue to the real diagnosis lies in paying close attention to the serum phosphate levels, especially in patients suffering generalized symptoms of weakness and not given to unusual physical activity. (orig.)

  5. BDNF: An Oncogene or Tumor Suppressor?

    Science.gov (United States)

    Radin, Daniel P; Patel, Parth

    2017-08-01

    Neurotrophins are a family of growth factors that are vital to the proper development of the central nervous system. Their effects on cells are governed by the expression and activation of the tyrosine kinase receptors TrkA, TrkB and TrkC. TrkB has been immensely implicated in mediating neuronal migration, development and differentiation. It has also been shown to protect several neuronal cell types from an array of cytotoxic stressors after activation by its conjugate ligand brain-derived neurotrophic factor (BDNF). Over the past two decades, it has been shown that TrkB and BDNF are up-regulated in many types of cancers, conferring aggressive phenotypes underpinned by their resistance to several standard chemotherapeutic agents. This resistance to chemotherapy is modulated by the downstream targets of the TrkB receptor which include the well-characterized PI3K /Akt growth pathway, a hallmark of uncontrolled cancer cell growth and proliferation. Pre-clinical efforts to develop inhibitors of this receptor are promising, and such inhibitors also seem to sensitize cancer cells to standard chemotherapies. However, new evidence suggests that BDNF overexpression in the hypothalamus has immunoaugmenting properties, eliciting an increased anti-tumor immune response and reducing the activity of several proteins that would normally confer resistance to chemotherapeutic agents. In the current work, we provide a global analysis of the physiological consequences of TrkB receptor activation in vitro and discuss the dynamic consequences of TrkB activation in vivo. Finally, we propose a clinically-feasible option for increasing BDNF expression in the hypothalamus to more readily utilize the oncolytic effects of BDNF. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. The disruption management model.

    Science.gov (United States)

    McAlister, James

    2011-10-01

    Within all organisations, business continuity disruptions present a set of dilemmas that managers may not have dealt with before in their normal daily duties. The disruption management model provides a simple but effective management tool to enable crisis management teams to stay focused on recovery in the midst of a business continuity incident. The model has four chronological primary headlines, which steer the team through a quick-time crisis decision-making process. The procedure facilitates timely, systematic, rationalised and justified decisions, which can withstand post-event scrutiny. The disruption management model has been thoroughly tested within an emergency services environment and is proven to significantly support clear and concise decision making in a business continuity context.

  7. Emerging and Disruptive Technologies.

    Science.gov (United States)

    Kricka, Larry J

    2016-08-01

    Several emerging or disruptive technologies can be identified that might, at some point in the future, displace established laboratory medicine technologies and practices. These include increased automation in the form of robots, 3-D printing, technology convergence (e.g., plug-in glucose meters for smart phones), new point-of-care technologies (e.g., contact lenses with sensors, digital and wireless enabled pregnancy tests) and testing locations (e.g., Retail Health Clinics, new at-home testing formats), new types of specimens (e.g., cell free DNA), big biology/data (e.g., million genome projects), and new regulations (e.g., for laboratory developed tests). In addition, there are many emerging technologies (e.g., planar arrays, mass spectrometry) that might find even broader application in the future and therefore also disrupt current practice. One interesting source of disruptive technology may prove to be the Qualcomm Tricorder XPrize, currently in its final stages.

  8. Sustainable Disruption Management

    DEFF Research Database (Denmark)

    Vaaben, Bo Valdemar

    The world we live in is globalized. Goods are seldom made in the place where they are used or consumed, and we do increasingly travel to other countries for either business or pleasure. In our everyday lives we rely on well-functioning global transportations systems to continue the standard...... in the same way, when operation is disrupted. Never the less, we may recall that the Suez Canal was closed due to riots in Egypt, that the fuel price was impacted by threats of closing of the Strait of Hormuz, and we do from time to time hear about acts of piracy outside the coast of Somalia. All...... papers combining disruption management and flight planning through an integrated optimization approach. An additional contribution of the thesis is to show how flexible flight speeds can be used to improve recovery from disruptions, while at the same time allowing an airline to trade off fuel costs...

  9. Expression of proto-oncogenes in non-Hodgkin's lymphomas by in situ hybridization with biotinylated DNA probes

    International Nuclear Information System (INIS)

    Hamatani, Kiyohiro; Yoshida, Kuniko; Abe, Masumi; Shimaoka, Katsutaro; Shiku, Hiroshi; Akiyama, Mitoshi; Kondo, Hisayoshi.

    1989-11-01

    Expression of six proto-oncogenes (fos, myc, myb, Ki-ras, Ha-ras, and N-ras) in 43 cases of non-Hodgkin's lymphoma was analyzed by means of in situ hybridization. Biotinylated DNA probes of the six oncogenes and those of the immunoglobulin H-chain (IgH) gene and the T cell receptor β-chain (TCRβ) gene were used. The results of in situ hybridization performed under blind conditions by IgH and TCRβ gene probes were compatible with those of typing by cell surface markers. The nuclear protein-related proto-oncogenes, fos myc, and myb, were expressed in about 70 % - 80 % of all cases regardless of phenotypes, histology or histologic grade. On the contrary, genes of the ras family were expressed in fewer cases except for the Ki-ras gene which was more frequently expressed by cases of the T cell immunophenotype with a high malignancy grade. The results of dot hybridization with RNA extracted from some cases were compatible with those of in situ hybridization, further demonstrating the specificity of in situ hybridization. (author)

  10. Characterization of IKBKE as a Breast Cancer Oncogene

    Science.gov (United States)

    2011-10-01

    HMLE -MEKDD cells stably expressing either pWZL or MF-IKKε. Immunoblot analysis by IKKε antibody. (D) IP with an IKK antibody from MCF-7 breast cancer ...summary is presented of research performed during three years of a project to further characterize the breast cancer oncogene IKKε. Two specific aims...constitutive IKKε transgenic mouse model to study the role of IKKε in breast cancer initiation and maintenance. The long term goals of this research

  11. Molecular biology III - Oncogenes and tumor suppressor genes

    International Nuclear Information System (INIS)

    Giaccia, Amato J.

    1996-01-01

    Purpose: The purpose of this course is to introduce to radiation oncologists the basic concepts of tumorigenesis, building on the information that will be presented in the first and second part of this series of lectures. Objective: Our objective is to increase the current understanding of radiation oncologists with the process of tumorigenesis, especially focusing on genes that are altered in many tumor types that are potential candidates for novel molecular strategies. As strategies to treat cancer of cancer are becoming more sophisticated, it will be important for both the practitioner and academician to develop a basic understanding of the function of cancer 'genes'. This will be the third in a series of refresher courses that are meant to address recent advances in Cancer Biology in a way that both clinicians without previous knowledge of molecular biology or experienced researchers will find interesting. The lecture will begin with a basic overview of tumorigenesis; methods of detecting chromosome/DNA alterations, approaches used to isolate oncogenes and tumor suppressor genes, and their role in cell killing by apoptosis. Special attention will be given to oncogenes and tumor suppressor genes that are modulated by ionizing radiation and the tumor microenvironment. We will relate the biology of oncogenes and tumor suppressor genes to basic aspects of radiation biology that would be important in clinical practice. Finally, we will review recent studies on the prognostic significance of p53 mutations and apoptosis in tumor specimens. The main point of this lecture is to relate both researcher and clinician what are the therapeutic ramifications of oncogene and tumor suppressor gene mutations found in human neoptasia

  12. The oncogenic action of ionizing radiation on rat skin

    International Nuclear Information System (INIS)

    Burns, F.J.; Garte, S.J.

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. Progress is described in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) oncogene activation in radiation-induced rat skin cancers; (3) DNA strand breaks in the epidermis as a function of radiation penetration. 59 refs., 4 tabs

  13. Expression of the Pokemon proto-oncogene in nasopharyngeal carcinoma cell lines and tissues.

    Science.gov (United States)

    Jiao, Wei; Liu, Fei; Tang, Feng-Zhu; Lan, Jiao; Xiao, Rui-Ping; Chen, Xing-Zhou; Ye, Hui-Lan; Cai, Yong-Lin

    2013-01-01

    To study the differentiated expression of the proto-oncogene Pokemon in nasopharyngeal carcinoma (NPC) cell lines and tissues, mRNA and protein expression levels of CNE1, CNE2, CNE3 and C666-1 were detected separately by reverse transcription polymerase chain reaction (RT-PCR), real-time PCR and Western-blotting. The immortalized nasopharyngeal epithelial cell line NP69 was used as a control. The Pokemon protein expression level in biopsy specimens from chronic rhinitis patients and undifferentiated non keratinizing NPC patients was determined by Western-blotting and arranged from high to low: C666-1>CNE1>CNE2> CNE3>NP69. The Pokemon mRNA expression level was also arranged from high to low: CNE1>CNE2>NP69>C666-1>CNE3. Pokemon expression of NP69 and C666-1 obviously varied from mRNA to protein. The Pokemon protein level of NPC biopsy specimens was obviously higher than in chronic rhinitis. The data suggest that high Pokemon protein expression is closely associated with undifferentiated non-keratinizing NPC and may provide useful information for NPC molecular target therapy.

  14. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer.

    Science.gov (United States)

    Kamerkar, Sushrut; LeBleu, Valerie S; Sugimoto, Hikaru; Yang, Sujuan; Ruivo, Carolina F; Melo, Sonia A; Lee, J Jack; Kalluri, Raghu

    2017-06-22

    The mutant form of the GTPase KRAS is a key driver of pancreatic cancer but remains a challenging therapeutic target. Exosomes are extracellular vesicles generated by all cells, and are naturally present in the blood. Here we show that enhanced retention of exosomes, compared to liposomes, in the circulation of mice is likely due to CD47-mediated protection of exosomes from phagocytosis by monocytes and macrophages. Exosomes derived from normal fibroblast-like mesenchymal cells were engineered to carry short interfering RNA or short hairpin RNA specific to oncogenic Kras G12D , a common mutation in pancreatic cancer. Compared to liposomes, the engineered exosomes (known as iExosomes) target oncogenic KRAS with an enhanced efficacy that is dependent on CD47, and is facilitated by macropinocytosis. Treatment with iExosomes suppressed cancer in multiple mouse models of pancreatic cancer and significantly increased overall survival. Our results demonstrate an approach for direct and specific targeting of oncogenic KRAS in tumours using iExosomes.

  15. Activation of oncogenes by radon progeny and x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Ling, C.C.

    1990-01-01

    The overall goal of this proposal is to study the carcinogenic effect of both high and low LET radiation at the molecular level, utilizing techniques developed in molecular biology, cancer cell biology and radiation biology. The underlying assumption is that malignant transformation of normal cells is a multistep process requiring two or more molecular events in the genomic DNA. We hypothesize that radiation may induce such events in one or more steps of the multistep process. We will use in vitro models of transformation that reproduce the stepwise progression of normal cells toward the transformed phenotype and ask whether radiation can provide the necessary activating function at discrete steps along this path. Our strategy involves transfecting into normal primary cells a variety of cloned oncogenes that are known to supply only some of the functions necessary for full transformation. These partially transformed'' cells will be the targets for irradiation by x-rays and alpha particles. The results will provide the basis for assessing the ability of ionizing radiation to activate oncogenic functions that complement'' the oncogene already present in the transfected cells and produce the fully transformed phenotype. Progress is described. 121 refs.

  16. Activation of oncogenes by radon progeny and x-rays

    International Nuclear Information System (INIS)

    Ling, C.C.

    1990-01-01

    The overall goal of this proposal is to study the carcinogenic effect of both high and low LET radiation at the molecular level, utilizing techniques developed in molecular biology, cancer cell biology and radiation biology. The underlying assumption is that malignant transformation of normal cells is a multistep process requiring two or more molecular events in the genomic DNA. We hypothesize that radiation may induce such events in one or more steps of the multistep process. We will use in vitro models of transformation that reproduce the stepwise progression of normal cells toward the transformed phenotype and ask whether radiation can provide the necessary activating function at discrete steps along this path. Our strategy involves transfecting into normal primary cells a variety of cloned oncogenes that are known to supply only some of the functions necessary for full transformation. These ''partially transformed'' cells will be the targets for irradiation by x-rays and alpha particles. The results will provide the basis for assessing the ability of ionizing radiation to activate oncogenic functions that ''complement'' the oncogene already present in the transfected cells and produce the fully transformed phenotype. Progress is described. 121 refs

  17. Ras oncogenes in oral cancer: the past 20 years.

    Science.gov (United States)

    Murugan, Avaniyapuram Kannan; Munirajan, Arasambattu Kannan; Tsuchida, Nobuo

    2012-05-01

    Oral squamous cell carcinoma (OSCC) of head and neck is associated with high morbidity and mortality in both Western and Asian countries. Several risk factors for the development of oral cancer are very well established, including tobacco chewing, betel quid, smoking, alcohol drinking and human papilloma virus (HPV) infection. Apart from these risk factors, many genetic factors such as oncogenes, tumor suppressor genes and regulatory genes are identified to involve in oral carcinogenesis with these risk factors dependent and independent manner. Ras is one of the most frequently genetically deregulated oncogene in oral cancer. In this review, we analyze the past 22years of literature on genetic alterations such as mutations and amplifications of the isoforms of the ras oncogene in oral cancer. Further, we addressed the isoform-specific role of the ras in oral carcinogenesis. We also discussed how targeting the Akt and MEK, downstream effectors of the PI3K/Akt and MAPK pathways, respectively, would probably pave the possible molecular therapeutic target for the ras driven tumorigenesis in oral cancer. Analysis of these ras isoforms may critically enlighten specific role of a particular ras isoform in oral carcinogenesis, enhance prognosis and pave the way for isoform-specific molecular targeted therapy in OSCC. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Disruption of genes encoding eIF4E binding proteins-1 and -2 does not alter basal or sepsis-induced changes in skeletal muscle protein synthesis in male or female mice.

    Science.gov (United States)

    Steiner, Jennifer L; Pruznak, Anne M; Deiter, Gina; Navaratnarajah, Maithili; Kutzler, Lydia; Kimball, Scot R; Lang, Charles H

    2014-01-01

    Sepsis decreases skeletal muscle protein synthesis in part by impairing mTOR activity and the subsequent phosphorylation of 4E-BP1 and S6K1 thereby controlling translation initiation; however, the relative importance of changes in these two downstream substrates is unknown. The role of 4E-BP1 (and -BP2) in regulating muscle protein synthesis was assessed in wild-type (WT) and 4E-BP1/BP2 double knockout (DKO) male mice under basal conditions and in response to sepsis. At 12 months of age, body weight, lean body mass and energy expenditure did not differ between WT and DKO mice. Moreover, in vivo rates of protein synthesis in gastrocnemius, heart and liver did not differ between DKO and WT mice. Sepsis decreased skeletal muscle protein synthesis and S6K1 phosphorylation in WT and DKO male mice to a similar extent. Sepsis only decreased 4E-BP1 phosphorylation in WT mice as no 4E-BP1/BP2 protein was detected in muscle from DKO mice. Sepsis decreased the binding of eIF4G to eIF4E in WT mice; however, eIF4E•eIF4G binding was not altered in DKO mice under either basal or septic conditions. A comparable sepsis-induced increase in eIF4B phosphorylation was seen in both WT and DKO mice. eEF2 phosphorylation was similarly increased in muscle from WT septic mice and both control and septic DKO mice, compared to WT control values. The sepsis-induced increase in muscle MuRF1 and atrogin-1 (markers of proteolysis) as well as TNFα and IL-6 (inflammatory cytokines) mRNA was greater in DKO than WT mice. The sepsis-induced decrease in myocardial and hepatic protein synthesis did not differ between WT and DKO mice. These data suggest overall basal protein balance and synthesis is maintained in muscle of mice lacking both 4E-BP1/BP2 and that sepsis-induced changes in mTOR signaling may be mediated by a down-stream mechanism independent of 4E-BP1 phosphorylation and eIF4E•eIF4G binding.

  19. Genetic variations and alternative splicing. The Glioma associated oncogene 1, GLI1.

    Directory of Open Access Journals (Sweden)

    Peter eZaphiropoulos

    2012-07-01

    Full Text Available Alternative splicing is a post-transcriptional regulatory process that is attaining stronger recognition as a modulator of gene expression. Alternative splicing occurs when the primary RNA transcript is differentially processed into more than one mature RNAs. This is the result of a variable definition/inclusion of the exons, the sequences that are excised from the primary RNA to form the mature RNAs. Consequently, RNA expression can generate a collection of differentially spliced RNAs, which may distinctly influence subsequent biological events, such as protein synthesis or other biomolecular interactions. Still the mechanisms that control exon definition and exon inclusion are not fully clarified. This mini-review highlights advances in this field as well as the impact of single nucleotide polymorphisms in affecting splicing decisions. The Glioma associated oncogene 1, GLI1, is taken as an example in addressing the role of nucleotide substitutions for splicing regulation.

  20. A Screen Identifies the Oncogenic Micro-RNA miR-378a-5p as a Negative Regulator of Oncogene-Induced Senescence

    DEFF Research Database (Denmark)

    Kooistra, Susanne Marije; Rudkjær, Lise Christine; Lees, Michael James

    2014-01-01

    Oncogene-induced senescence (OIS) can occur in response to hyperactive oncogenic signals and is believed to be a fail-safe mechanism protecting against tumorigenesis. To identify new factors involved in OIS, we performed a screen for microRNAs that can overcome or inhibit OIS in human diploid fib...

  1. HECTD3 Mediates an HSP90-Dependent Degradation Pathway for Protein Kinase Clients

    Directory of Open Access Journals (Sweden)

    Zhaobo Li

    2017-06-01

    Full Text Available Inhibition of the ATPase cycle of the HSP90 chaperone promotes ubiquitylation and proteasomal degradation of its client proteins, which include many oncogenic protein kinases. This provides the rationale for HSP90 inhibitors as cancer therapeutics. However, the mechanism by which HSP90 ATPase inhibition triggers ubiquitylation is not understood, and the E3 ubiquitin ligases involved are largely unknown. Using a siRNA screen, we have identified components of two independent degradation pathways for the HSP90 client kinase CRAF. The first requires CUL5, Elongin B, and Elongin C, while the second requires the E3 ligase HECTD3, which is also involved in the degradation of MASTL and LKB1. HECTD3 associates with HSP90 and CRAF in cells via its N-terminal DOC domain, which is mutationally disrupted in tumor cells with activated MAP kinase signaling. Our data implicate HECTD3 as a tumor suppressor modulating the activity of this important oncogenic signaling pathway.

  2. EphrinB1 expression is dysregulated and promotes oncogenic signaling in medulloblastoma.

    Science.gov (United States)

    McKinney, Nicole; Yuan, Liangping; Zhang, Hongying; Liu, Jingbo; Cho, Yoon-Jae; Rushing, Elisabeth; Schniederjan, Matthew; MacDonald, Tobey J

    2015-01-01

    Eph receptors and ephrin ligands are master regulators of oncogenic signaling required for proliferation, migration, and metastasis. Yet, Eph/ephrin expression and activity in medulloblastoma (MB), the most common malignant brain tumor of childhood, remains poorly defined. We hypothesized that Eph/ephrins are differentially expressed by sonic hedgehog (SHH) and non-SHH MB and that specific members contribute to the aggressive phenotype. Affymetrix gene expression profiling of 29 childhood MB, separated into SHH (N = 11) and non-SHH (N = 18), was performed followed by protein validation of selected Eph/ephrins in another 60 MB and two MB cell lines (DAOY, D556). Functional assays were performed using MB cells overexpressing or deleted for selected ephrins. We found EPHB4 and EFNA4 almost exclusively expressed by SHH MB, whereas EPHA2, EPHA8, EFNA1 and EFNA3 are predominantly expressed by non-SHH MB. The remaining family members, except EFNB1, are ubiquitously expressed by over 70-90 % MB, irrespective of subgroup. EFNB1 is the only member differentially expressed by 28 % of SHH and non-SHH MB. Corresponding protein expression for EphB/ephrinB1 and B2 was validated in MB. Only ephrinB2 was also detected in fetal cerebellum, indicating that EphB/ephrinB1 expression is MB-specific. EphrinB1 immunopositivity localizes to tumor cells within MB with the highest proliferative index. EphrinB1 overexpression promotes EphB activation, alters F-actin distribution and morphology, decreases adhesion, and significantly promotes proliferation. Either silencing or overexpression of ephrinB1 impairs migration. These results indicate that EphrinB1 is uniquely dysregulated in MB and promotes oncogenic responses in MB cells, implicating ephrinB1 as a potential target.

  3. Clarifying the impact of polycomb complex component disruption in human cancers.

    Science.gov (United States)

    Yamamoto, Yukiya; Abe, Akihiro; Emi, Nobuhiko

    2014-04-01

    The dysregulation of proper transcriptional control is a major cause of developmental diseases and cancers. Polycomb proteins form chromatin-modifying complexes that transcriptionally silence genome regions in higher eukaryotes. The BCL6 corepressor (BCOR) complex comprises ring finger protein 1B (RNF2/RING1B), polycomb group ring finger 1 (PCGF1), and lysine-specific demethylase 2B (KDM2B) and is uniquely recruited to nonmethylated CpG islands, where it removes histone H3K36me2 and induces repressive histone H2A monoubiquitylation. Germline BCOR mutations have been detected in patients with oculofaciocardiodental and Lenz microphthalmia syndromes, which are inherited conditions. Recently, several variants of BCOR and BCOR-like 1 (BCORL1) chimeric fusion transcripts were reported in human cancers, including acute promyelocytic leukemia, bone sarcoma, and hepatocellular carcinoma. In addition, massively parallel sequencing has identified inactivating somatic BCOR and BCORL1 mutations in patients with acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia, medulloblastoma, and retinoblastoma. More importantly, patients with AML and MDS with BCOR mutations exhibit poor prognosis. This perspective highlights the detection of BCOR mutations and fusion transcripts of BCOR and BCORL1 and discusses their importance for diagnosing cancer subtypes and estimating the treatment responses of patients. Furthermore, this perspective proposes the need for additional functional studies to clarify the oncogenic mechanism by which BCOR and BCORL1 are disrupted in cancers, and how this may lead to the development of novel therapeutics. Mol Cancer Res; 12(4); 479-84. ©2014 AACR.

  4. Statistical analysis of JET disruptions

    International Nuclear Information System (INIS)

    Tanga, A.; Johnson, M.F.

    1991-07-01

    In the operation of JET and of any tokamak many discharges are terminated by a major disruption. The disruptive termination of a discharge is usually an unwanted event which may cause damage to the structure of the vessel. In a reactor disruptions are potentially a very serious problem, hence the importance of studying them and devising methods to avoid disruptions. Statistical information has been collected about the disruptions which have occurred at JET over a long span of operations. The analysis is focused on the operational aspects of the disruptions rather than on the underlining physics. (Author)

  5. From General Aberrant Alternative Splicing in Cancers and Its Therapeutic Application to the Discovery of an Oncogenic DMTF1 Isoform

    Directory of Open Access Journals (Sweden)

    Na Tian

    2017-03-01

    Full Text Available Alternative pre-mRNA splicing is a crucial process that allows the generation of diversified RNA and protein products from a multi-exon gene. In tumor cells, this mechanism can facilitate cancer development and progression through both creating oncogenic isoforms and reducing the expression of normal or controllable protein species. We recently demonstrated that an alternative cyclin D-binding myb-like transcription factor 1 (DMTF1 pre-mRNA splicing isoform, DMTF1β, is increasingly expressed in breast cancer and promotes mammary tumorigenesis in a transgenic mouse model. Aberrant pre-mRNA splicing is a typical event occurring for many cancer-related functional proteins. In this review, we introduce general aberrant pre-mRNA splicing in cancers and discuss its therapeutic application using our recent discovery of the oncogenic DMTF1 isoform as an example. We also summarize new insights in designing novel targeting strategies of cancer therapies based on the understanding of deregulated pre-mRNA splicing mechanisms.

  6. Emerging and Disruptive Technologies

    OpenAIRE

    Kricka, Larry J.

    2016-01-01

    Several emerging or disruptive technologies can be identified that might, at some point in the future, displace established laboratory medicine technologies and practices. These include increased automation in the form of robots, 3-D printing, technology convergence (e.g., plug-in glucose meters for smart phones), new point-of-care technologies (e.g., contact lenses with sensors, digital and wireless enabled pregnancy tests) and testing locations (e.g., Retail Health Clinics, new at-home test...

  7. Role of cannabinoid receptor CB2 in HER2 pro-oncogenic signaling in breast cancer.

    Science.gov (United States)

    Pérez-Gómez, Eduardo; Andradas, Clara; Blasco-Benito, Sandra; Caffarel, María M; García-Taboada, Elena; Villa-Morales, María; Moreno, Estefanía; Hamann, Sigrid; Martín-Villar, Ester; Flores, Juana M; Wenners, Antonia; Alkatout, Ibrahim; Klapper, Wolfram; Röcken, Christoph; Bronsert, Peter; Stickeler, Elmar; Staebler, Annette; Bauer, Maret; Arnold, Norbert; Soriano, Joaquim; Pérez-Martínez, Manuel; Megías, Diego; Moreno-Bueno, Gema; Ortega-Gutiérrez, Silvia; Artola, Marta; Vázquez-Villa, Henar; Quintanilla, Miguel; Fernández-Piqueras, José; Canela, Enric I; McCormick, Peter J; Guzmán, Manuel; Sánchez, Cristina

    2015-06-01

    Pharmacological activation of cannabinoid receptors elicits antitumoral responses in different cancer models. However, the biological role of these receptors in tumor physio-pathology is still unknown. We analyzed CB2 cannabinoid receptor protein expression in two series of 166 and 483 breast tumor samples operated in the University Hospitals of Kiel, Tübingen, and Freiburg between 1997 and 2010 and CB2 mRNA expression in previously published DNA microarray datasets. The role of CB2 in oncogenesis was studied by generating a mouse line that expresses the human V-Erb-B2 Avian Erythroblastic Leukemia Viral Oncogene Homolog 2 (HER2) rat ortholog (neu) and lacks CB2 and by a variety of biochemical and cell biology approaches in human breast cancer cells in culture and in vivo, upon modulation of CB2 expression by si/shRNAs and overexpression plasmids. CB2-HER2 molecular interaction was studied by colocalization, coimmunoprecipitation, and proximity ligation assays. Statistical tests were two-sided. We show an association between elevated CB2 expression in HER2+ breast tumors and poor patient prognosis (decreased overall survival, hazard ratio [HR] = 0.29, 95% confidence interval [CI] = 0.09 to 0.71, P = .009) and higher probability to suffer local recurrence (HR = 0.09, 95% CI = 0.049 to 0.54, P = .003) and to develop distant metastases (HR = 0.33, 95% CI = 0.13 to 0.75, P = .009). We also demonstrate that genetic inactivation of CB2 impairs tumor generation and progression in MMTV-neu mice. Moreover, we show that HER2 upregulates CB2 expression by activating the transcription factor ELK1 via the ERK cascade and that an increased CB2 expression activates the HER2 pro-oncogenic signaling at the level of the tyrosine kinase c-SRC. Finally, we show HER2 and CB2 form heteromers in cancer cells. Our findings reveal an unprecedented role of CB2 as a pivotal regulator of HER2 pro-oncogenic signaling in breast cancer, and they suggest that CB2 may be a biomarker with

  8. The non-small cell lung cancer EGFR extracellular domain mutation, M277E, is oncogenic and drug-sensitive

    Directory of Open Access Journals (Sweden)

    Yu S

    2017-09-01

    Full Text Available Su Yu,1,2 Yang Zhang,1 Yunjian Pan,1 Chao Cheng,1,3 Yihua Sun,1,3 Haiquan Chen1–4 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; 2Cancer Research Center, Fudan University Shanghai Cancer Center, Shanghai, China; 3Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; 4Institutes of Biomedical Sciences, Fudan University, Shanghai, China Purpose: To identify novel oncogenic mutations in non-small cell lung cancer patient specimens that lack mutations in known targetable genes (“pan-negative” patients.Methods: Comprehensive mutational analyses were performed on 1,356 lung adenocarcinoma specimens. In this cohort of patients, common lung cancer oncogenic driver mutations were detected in the epidermal growth factor receptor (EGFR kinase domain, the human epidermal growth factor receptor 2 kinase domain, as well as the KRAS, BRAF, ALK, ROS1 and RET genes. A sub-cohort of pan-negative patient specimens was assayed for mutations in the EGFR extracellular domain (ECD. Additionally, EGFR mutant NIH-3T3 stable cell lines were constructed and assessed for protein content, anchorage-independent growth, and tumor formation in xenograft models to identify oncogenic mutations. BaF3 lymphocytes were also used to test sensitivities of the mutations to tyrosine kinase inhibitors.Results: In pan-negative lung adenocarcinoma cases, a novel oncogenic EGFR ECD mutation was identified (M277E. EGFR M277E mutations encoded oncoproteins that transformed NIH-3T3 cells to grow in the absence of exogenous epidermal growth factor. Transformation was further evidenced by anchorage-independent growth and tumor formation in immunocompromised xenograft mouse models. Finally, as seen in the canonical EGFR L858R mutation, the M277E mutation conferred sensitivity to both erlotinib and cetuximab in BaF3 cell lines and to erlotinib in xenograft models.Conclusion: Here, a new EGFR driver mutation, M277E

  9. Disrupting the Industry with Play

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop

    2016-01-01

    or two ago. This is significantly disrupting the industry in several market sectors. This paper describes the components of the playware and embodied artificial intelligence research that has led to disruption in the industrial robotics sector, and which points to the next disruption of the health care...

  10. Wound Disruption Following Colorectal Operations.

    Science.gov (United States)

    Moghadamyeghaneh, Zhobin; Hanna, Mark H; Carmichael, Joseph C; Mills, Steven; Pigazzi, Alessio; Nguyen, Ninh T; Stamos, Michael J

    2015-12-01

    Postoperative wound disruption is associated with high morbidity and mortality. We sought to identify the risk factors and outcomes of wound disruption following colorectal resection. The American College of Surgeons National Surgical Quality Improvement Program (NSQIP) database was used to examine the clinical data of patients who underwent colorectal resection from 2005 to 2013. Multivariate regression analysis was performed to identify risk factors of wound disruption. We sampled a total of 164,297 patients who underwent colorectal resection. Of these, 2073 (1.3 %) had wound disruption. Patients with wound disruption had significantly higher mortality (5.1 vs. 1.9 %, AOR: 1.46, P = 0.01). The highest risk of wound disruption was seen in patients with wound infection (4.8 vs. 0.9 %, AOR: 4.11, P disruption such as chronic steroid use (AOR: 1.71, P disruption compared to open surgery (AOR: 0.61, P disruption occurs in 1.3 % of colorectal resections, and it correlates with mortality of patients. Wound infection is the strongest predictor of wound disruption. Chronic steroid use, obesity, severe COPD, prolonged operation, non-elective admission, and serum albumin level are strongly associated with wound disruption. Utilization of the laparoscopic approach may decrease the risk of wound disruption when possible.

  11. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding.

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  12. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  13. Induction of intrahepatic cholangiocellular carcinoma by liver-specific disruption of Smad4 and Pten in mice

    OpenAIRE

    Xu, Xiaoling; Kobayashi, Shogo; Qiao, Wenhui; Li, Cuiling; Xiao, Cuiying; Radaeva, Svetlana; Stiles, Bangyan; Wang, Rui-Hong; Ohara, Nobuya; Yoshino, Tadashi; LeRoith, Derek; Torbenson, Michael S.; Gores, Gregory J.; Wu, Hong; Gao, Bin

    2006-01-01

    Cholangiocellular carcinoma (CC), the second most common primary liver cancer, is associated with a poor prognosis. It has been shown that CCs harbor alterations of a number of tumor-suppressor genes and oncogenes, yet key regulators for tumorigenesis remain unknown. Here we have generated a mouse model that develops CC with high penetrance using liver-specific targeted disruption of tumor suppressors SMAD4 and PTEN. In the absence of SMAD4 and PTEN, hyperplastic foci emerge exclusively from ...

  14. TRAP1 Regulation of Cancer Metabolism: Dual Role as Oncogene or Tumor Suppressor

    Directory of Open Access Journals (Sweden)

    Danilo Swann Matassa

    2018-04-01

    Full Text Available Metabolic reprogramming is an important issue in tumor biology. An unexpected inter- and intra-tumor metabolic heterogeneity has been strictly correlated to tumor outcome. Tumor Necrosis Factor Receptor-Associated Protein 1 (TRAP1 is a molecular chaperone involved in the regulation of energetic metabolism in cancer cells. This protein is highly expressed in several cancers, such as glioblastoma, colon, breast, prostate and lung cancers and is often associated with drug resistance. However, TRAP1 is also downregulated in specific tumors, such as ovarian, bladder and renal cancers, where its lower expression is correlated with the worst prognoses and chemoresistance. TRAP1 is the only mitochondrial member of the Heat Shock Protein 90 (HSP90 family that directly interacts with respiratory complexes, contributing to their stability and activity but it is still unclear if such interactions lead to reduced or increased respiratory capacity. The role of TRAP1 is to enhance or suppress oxidative phosphorylation; the effects of such regulation on tumor development and progression are controversial. These observations encourage the study of the mechanisms responsible for the dualist role of TRAP1 as an oncogene or oncosuppressor in specific tumor types. In this review, TRAP1 puzzling functions were recapitulated with a special focus on the correlation between metabolic reprogramming and tumor outcome. We wanted to investigate whether metabolism-targeting drugs can efficiently interfere with tumor progression and whether they might be combined with chemotherapeutics or molecular-targeted agents to counteract drug resistance and reduce therapeutic failure.

  15. Natural immune responses against eight oncogenic human papillomaviruses in the ASCUS-LSIL triage study

    Science.gov (United States)

    Wilson, Lauren E.; Pawlita, Michael; Castle, Phillip E.; Waterboer, Tim; Sahasrabuddhe, Vikrant; Gravitt, Patti E.; Schiffman, Mark; Wentzensen, Nicolas

    2014-01-01

    Only a subset of women with human papillomavirus (HPV) infections will become seropositive, and the factors influencing seroconversion are not well-understood. We used a multiplex serology assay in women with mildly abnormal cytology results to examine seroreactivity to oncogenic HPV genotypes. An unbiased subset of women in the atypical squamous cell of undetermined significance /low-grade squamous intraepithelial lesion Triage Study (ALTS) provided blood samples at trial enrollment for serological testing. A Luminex assay based on GST-L1 fusion proteins as antigens was used to test seroreactivity against eight carcinogenic HPV genotypes (16, 18, 31, 33, 35, 45, 52, 58). We analyzed the relationship between seroprevalence in women free of precancer (N=2464) and HPV DNA status, age, sexual behavior, and other HPV-related risk factors. The overall seroprevalence was 24.5% for HPV16 L1 and ~ 20% for 18L1 and 31L1. Among women free of precancer, seroprevalence peaked in women less than 29 years and decreased with age. Type-specific seroprevalence was associated with baseline DNA detection for HPV16 (OR= 1.36, 95%CI: 1.04–1.79) and HPV18 (OR= 2.31, 95%CI: 1.61–3.32), as well as for HPV52 and HPV58. Correlates of sexual exposure were associated with increased seroprevalence across most genotypes. Women who were current or former smokers were less likely to be seropositive for all eight of the tested oncogenic genotypes. The multiplex assay showed associations between seroprevalence and known risk factors for HPV infection across nearly all tested HPV genotypes but associations between DNA- and serostatus were weak, suggesting possible misclassification of the participants’ HPV serostatus. PMID:23588935

  16. Mitochondrial clearance by the STK38 kinase supports oncogenic Ras-induced cell transformation

    Science.gov (United States)

    Bettoun, Audrey; Surdez, Didier; Vallerand, David; Gundogdu, Ramazan; Sharif, Ahmad A.D.; Gomez, Marta; Cascone, Ilaria; Meunier, Brigitte; White, Michael A.; Codogno, Patrice; Parrini, Maria Carla; Camonis, Jacques H.; Hergovich, Alexander

    2016-01-01

    Oncogenic Ras signalling occurs frequently in many human cancers. However, no effective targeted therapies are currently available to treat patients suffering from Ras-driven tumours. Therefore, it is imperative to identify downstream effectors of Ras signalling that potentially represent promising new therapeutic options. Particularly, considering that autophagy inhibition can impair the survival of Ras-transformed cells in tissue culture and mouse models, an understanding of factors regulating the balance between autophagy and apoptosis in Ras-transformed human cells is needed. Here, we report critical roles of the STK38 protein kinase in oncogenic Ras transformation. STK38 knockdown impaired anoikis resistance, anchorage-independent soft agar growth, and in vivo xenograft growth of Ras-transformed human cells. Mechanistically, STK38 supports Ras-driven transformation through promoting detachment-induced autophagy. Even more importantly, upon cell detachment STK38 is required to sustain the removal of damaged mitochondria by mitophagy, a selective autophagic process, to prevent excessive mitochondrial reactive oxygen species production that can negatively affect cancer cell survival. Significantly, knockdown of PINK1 or Parkin, two positive regulators of mitophagy, also impaired anoikis resistance and anchorage-independent growth of Ras-transformed human cells, while knockdown of USP30, a negative regulator of PINK1/Parkin-mediated mitophagy, restored anchorage-independent growth of STK38-depleted Ras-transformed human cells. Therefore, our findings collectively reveal novel molecular players that determine whether Ras-transformed human cells die or survive upon cell detachment, which potentially could be exploited for the development of novel strategies to target Ras-transformed cells. PMID:27283898

  17. MicroRNA-205 downregulates mixed-lineage-AF4 oncogene expression in acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Dou L

    2013-08-01

    Full Text Available Liping Dou,1,* Jingxin Li,1,* Dehua Zheng,2,* Yonghui Li,1 Xiaoning Gao,1 Chengwang Xu,1 Li Gao,1 Lili Wang,1 Li Yu1 1Department of Hematology, Chinese PLA General Hospital, Beijing, People's Republic of China; 2Department of Hepatobiliary Surgery, Organ Transplant Center, Chinese PLA 309th Hospital, Beijing, People's Republic of China*These authors contributed equally to this workAbstract: Myeloid/lymphoid or mixed-lineage AF4 acute lymphoblastic leukemia (MLL-AF4 ALL is a pediatric leukemia that occurs rarely in adults. MLL-AF4 ALL is typically characterized by the presence of chromosomal translocation (t(4;11(q21;q23, leading to expression of MLL-AF4 fusion protein. Although MLL-AF4 fusion protein triggers a molecular pathogenesis and hematological presentations that are unique to leukemias, the precise role of this oncogene in leukemogenesis remains unclear. Previous studies have indicated that microRNAs (miRs might modulate the expression of MLL-AF4 ALL fusion protein, thereby suggesting the involvement of miR in progression or suppression of MLL-AF4 ALL. We have previously demonstrated that miR-205 negatively regulates transcription of an MLL-AF4 luciferase reporter. Here, we report that exogenous expression of miR-205 in MLL-AF4 human cell lines (RS4;11 and MV4-11 inversely regulates the expression of MLL-AF4 at both messenger RNA (mRNA and protein level. Furthermore, miR-205 significantly induced apoptosis in MLL-AF4 cells as evidenced by Annexin V staining using fluorescence-activated cell sorting (FACS analysis. The proliferative capacity of leukemic cells was suppressed by miR-205. The addition of an miR-205 inhibitor was able to restore the observed effects. In conclusion, these findings demonstrate that miR-205 may have potential value as a novel therapeutic agent in the treatment of MLL-AF4 ALL.Keywords: miR-205, MLL-AF4, leukemia, microRNA, oncogene expression, untranslated regions, proliferation

  18. Orphan receptor GPR110, an oncogene overexpressed in lung and prostate cancer

    International Nuclear Information System (INIS)

    Lum, Amy M; Wang, Bruce B; Beck-Engeser, Gabriele B; Li, Lauri; Channa, Namitha; Wabl, Matthias

    2010-01-01

    GPR110 is an orphan G protein-coupled receptor--a receptor without a known ligand, a known signaling pathway, or a known function. Despite the lack of information, one can assume that orphan receptors have important biological roles. In a retroviral insertion mutagenesis screen in the mouse, we identified GPR110 as an oncogene. This prompted us to study the potential isoforms that can be gleaned from known GPR110 transcripts, and the expression of these isoforms in normal and transformed human tissues. Various epitope-tagged isoforms of GPR110 were expressed in cell lines and assayed by western blotting to determine cleavage, surface localization, and secretion patterns. GPR110 transcript and protein levels were measured in lung and prostate cancer cell lines and clinical samples, respectively, by quantitative PCR and immunohistochemistry. We found four potential splice variants of GPR110. Of these variants, we confirmed three as being expressed as proteins on the cell surface. Isoform 1 is the canonical form, with a molecular mass of about 100 kD. Isoforms 2 and 3 are truncated products of isoform 1, and are 25 and 23 kD, respectively. These truncated isoforms lack the seven-span transmembrane domain characteristic of GPR proteins and thus are not likely to be membrane anchored; indeed, isoform 2 can be secreted. Compared with the median gene expression of ~200 selected genes, GPR110 expression was low in most tissues. However, it had higher than average gene expression in normal kidney tissue and in prostate tissues originating from older donors. Although identified as an oncogene in murine T lymphomas, GPR110 is greatly overexpressed in human lung and prostate cancers. As detected by immunohistochemistry, GPR110 was overexpressed in 20 of 27 (74%) lung adenocarcinoma tissue cores and in 17 of 29 (59%) prostate adenocarcinoma tissue cores. Additionally, staining with a GPR110 antibody enabled us to differentiate between benign prostate hyperplasia and potential

  19. Retroviruses Hijack Chromatin Loops to Drive Oncogene Expression and Highlight the Chromatin Architecture around Proto-Oncogenic Loci

    Science.gov (United States)

    Pattison, Jillian M.; Wright, Jason B.; Cole, Michael D.

    2015-01-01

    The majority of the genome consists of intergenic and non-coding DNA sequences shown to play a major role in different gene regulatory networks. However, the specific potency of these distal elements as well as how these regions exert function across large genomic distances remains unclear. To address these unresolved issues, we closely examined the chromatin architecture around proto-oncogenic loci in the mouse and human genomes to demonstrate a functional role for chromatin looping in distal gene regulation. Using cell culture models, we show that tumorigenic retroviral integration sites within the mouse genome occur near existing large chromatin loops and that this chromatin architecture is maintained within the human genome as well. Significantly, as mutagenesis screens are not feasible in humans, we demonstrate a way to leverage existing screens in mice to identify disease relevant human enhancers and expose novel disease mechanisms. For instance, we characterize the epigenetic landscape upstream of the human Cyclin D1 locus to find multiple distal interactions that contribute to the complex cis-regulation of this cell cycle gene. Furthermore, we characterize a novel distal interaction upstream of the Cyclin D1 gene which provides mechanistic evidence for the abundant overexpression of Cyclin D1 occurring in multiple myeloma cells harboring a pathogenic translocation event. Through use of mapped retroviral integrations and translocation breakpoints, our studies highlight the importance of chromatin looping in oncogene expression, elucidate the epigenetic mechanisms crucial for distal cis-regulation, and in one particular instance, explain how a translocation event drives tumorigenesis through upregulation of a proto-oncogene. PMID:25799187

  20. Determination of the transforming activities of adenovirus oncogenes.

    Science.gov (United States)

    Speiseder, Thomas; Nevels, Michael; Dobner, Thomas

    2014-01-01

    The last 50 years of molecular biological investigations into human adenoviruses (Ads) have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of the Ad productive infection cycle in permissive host cells. Also, initial observations concerning the transforming potential of human Ads subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer and established Ads as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human Ads is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in Ad-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, studies on the transforming potential of several E4 gene products have now revealed new pathways that point to novel general mechanisms of virus-mediated oncogenesis. In this chapter we describe in vitro and in vivo assays to determine the transforming and oncogenic activities of the E1A, E1B, and E4 oncoproteins in primary baby rat kidney cells, human amniotic fluid cells and athymic nude mice.

  1. [High oncogenic risk human papillomavirus and urinary bladder cancer].

    Science.gov (United States)

    Loran, O B; Sinyakova, L A; Gundorova, L V; Kosov, V A; Kosova, I V; Pogodina, I E; Kolbasov, D N

    2017-07-01

    To determine the role of human papillomavirus (HPV) of high oncogenic risk in the development of urinary bladder cancer. 100 patients (72 men and 28 women) aged 38 to 90 years (mean age 65+/-10 years) diagnosed with bladder cancer were examined and underwent treatment. Clinical assessment was complemented by enzyme-linked immunosorbent assays for the presence of antiviral antibodies to herpes simplex virus (HSV) type 1 and type 2, cytomegalovirus (CMV), Epstein-Barr virus (EBV), urethra scraping for detecting high oncogenic risk HPV. Tumor tissue was sampled for PCR virus detection. Semi-quantitative analysis was used to evaluate the components of lymphocyte-plasmocyte and leukocyte infiltrates and cytopathic changes in tumor tissue. There were positive correlations between cytopathic cell changes (koylocytosis and intranuclear inclusions, as manifestations of HPV) and the level of antiviral antibodies, the presence of viruses in the tumor, as well as with the components of the lymphoid-plasmocyte infiltrate. Negative correlations were found between the presence of papillomatosis and the above changes. Human papillomavirus is believed to be a trigger for the initiation of a tumor in young patients with a latent infection (CMV and EBV, HSV, HPV). Cytopathic changes (kylocytosis and intranuclear inclusions) were associated with the activity and morphological features of herpes-viral infections. Their degree varied depending on the stage of the process, but not on the anaplasia degree. Papillomatosis is associated with a more favorable course of the tumor process.

  2. Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma

    Directory of Open Access Journals (Sweden)

    Dinesh K. Singh

    2017-01-01

    Full Text Available Efforts to identify and target glioblastoma (GBM drivers have primarily focused on receptor tyrosine kinases (RTKs. Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2 transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2 and zinc-finger E-box binding homeobox 1 (ZEB1, which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo.

  3. Oncogenic programmes and Notch activity: an 'organized crime'?

    Science.gov (United States)

    Dominguez, Maria

    2014-04-01

    The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Disruption of Ttll5/stamp gene (tubulin tyrosine ligase-like protein 5/SRC-1 and TIF2-associated modulatory protein gene) in male mice causes sperm malformation and infertility.

    Science.gov (United States)

    Lee, Geun-Shik; He, Yuanzheng; Dougherty, Edward J; Jimenez-Movilla, Maria; Avella, Matteo; Grullon, Sean; Sharlin, David S; Guo, Chunhua; Blackford, John A; Awasthi, Smita; Zhang, Zhenhuan; Armstrong, Stephen P; London, Edra C; Chen, Weiping; Dean, Jurrien; Simons, S Stoney

    2013-05-24

    TTLL5/STAMP (tubulin tyrosine ligase-like family member 5) has multiple activities in cells. TTLL5 is one of 13 TTLLs, has polyglutamylation activity, augments the activity of p160 coactivators (SRC-1 and TIF2) in glucocorticoid receptor-regulated gene induction and repression, and displays steroid-independent growth activity with several cell types. To examine TTLL5/STAMP functions in whole animals, mice were prepared with an internal deletion that eliminated several activities of the Stamp gene. This mutation causes both reduced levels of STAMP mRNA and C-terminal truncation of STAMP protein. Homozygous targeted mutant (Stamp(tm/tm)) mice appear normal except for marked decreases in male fertility associated with defects in progressive sperm motility. Abnormal axonemal structures with loss of tubulin doublets occur in most Stamp(tm/tm) sperm tails in conjunction with substantial reduction in α-tubulin polyglutamylation, which closely correlates with the reduction in mutant STAMP mRNA. The axonemes in other structures appear unaffected. There is no obvious change in the organs for sperm development of WT versus Stamp(tm/tm) males despite the levels of WT STAMP mRNA in testes being 20-fold higher than in any other organ examined. This defect in male fertility is unrelated to other Ttll genes or 24 genes previously identified as important for sperm function. Thus, STAMP appears to participate in a unique, tissue-selective TTLL-mediated pathway for α-tubulin polyglutamylation that is required for sperm maturation and motility and may be relevant for male fertility.

  5. Disruption of Ttll5/Stamp Gene (Tubulin Tyrosine Ligase-like Protein 5/SRC-1 and TIF2-associated Modulatory Protein Gene) in Male Mice Causes Sperm Malformation and Infertility*

    Science.gov (United States)

    Lee, Geun-Shik; He, Yuanzheng; Dougherty, Edward J.; Jimenez-Movilla, Maria; Avella, Matteo; Grullon, Sean; Sharlin, David S.; Guo, Chunhua; Blackford, John A.; Awasthi, Smita; Zhang, Zhenhuan; Armstrong, Stephen P.; London, Edra C.; Chen, Weiping; Dean, Jurrien; Simons, S. Stoney

    2013-01-01

    TTLL5/STAMP (tubulin tyrosine ligase-like family member 5) has multiple activities in cells. TTLL5 is one of 13 TTLLs, has polyglutamylation activity, augments the activity of p160 coactivators (SRC-1 and TIF2) in glucocorticoid receptor-regulated gene induction and repression, and displays steroid-independent growth activity with several cell types. To examine TTLL5/STAMP functions in whole animals, mice were prepared with an internal deletion that eliminated several activities of the Stamp gene. This mutation causes both reduced levels of STAMP mRNA and C-terminal truncation of STAMP protein. Homozygous targeted mutant (Stamptm/tm) mice appear normal except for marked decreases in male fertility associated with defects in progressive sperm motility. Abnormal axonemal structures with loss of tubulin doublets occur in most Stamptm/tm sperm tails in conjunction with substantial reduction in α-tubulin polyglutamylation, which closely correlates with the reduction in mutant STAMP mRNA. The axonemes in other structures appear unaffected. There is no obvious change in the organs for sperm development of WT versus Stamptm/tm males despite the levels of WT STAMP mRNA in testes being 20-fold higher than in any other organ examined. This defect in male fertility is unrelated to other Ttll genes or 24 genes previously identified as important for sperm function. Thus, STAMP appears to participate in a unique, tissue-selective TTLL-mediated pathway for α-tubulin polyglutamylation that is required for sperm maturation and motility and may be relevant for male fertility. PMID:23558686

  6. Disruptive Space Technology

    OpenAIRE

    Benson, Jim

    2004-01-01

    In 1997 "The Innovator’s Dilemma" by Clayton M. Christensen became a popular book in the small satellite and launch vehicle communities. But like the weather, every one talks about “Disruptive Technology” but few do anything about it. In the ‘70s and ‘80s, people were looking for “Paradigm Shifts,” and since the resurrection of Donald Rumsfeld, a recent watchword has been “Transformational Technology.” But today’s buzzword is now “Responsive Space Systems.”

  7. Disruption - Access cards service

    CERN Multimedia

    2014-01-01

    We would like to inform you that between 10 November and 15 December 2014, the access cards service in Building 55 will be disrupted, as the GS Department has decided to improve the facilities for users of this building. During the work, you will find the registration, biometric registration and dosimeter exchange services on the second floor of Building 55 and the vehicle sticker service on the ground floor along with the access cards service. We thank you for your understanding and apologise for any inconvenience caused.

  8. Disruptions in the TFTR tokamak

    International Nuclear Information System (INIS)

    Janos, A.; Fredrickson, E.D.; McGuire, K.; Batha, S.H.; Bell, M.G.; Bitter, M.; Budny, R.; Bush, C.E.; Efthimion, P.C.; Hawryluk, R.J.; Hill, K.W.; Hosea, J.; Jobes, F.C.; Johnson, D.W.; Levinton, F.; Mansfield, D.; Meade, D.; Medley, S.S.; Monticello, D.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Park, H.; Park, W.; Post, D.E.; Schivell, J.; Strachan, J.D.; Taylor, G.; Ulrickson, M.; Goeler, S. von; Wilfrid, E.; Wong, K.L.; Yamada, M.; Young, K.M.; Zarnstorff, M.C.; Zweben, S.J.; Drake, J.F.; Kleva, R.G.; Fleischmann, H.H.

    1993-03-01

    For a successful reactor, it will be useful to predict the occurrence of disruptions and to understand disruption effects including how a plasma disrupts onto the wall and how reproducibly it does so. Studies of disruptions on TFTR at both high-β pol and high-density have shown that, in both types, a fast growing m/n=1/1 mode plays an important role. In highdensity disruptions, a newly observed fast m/n = 1/1 mode occurs early in the thermal decay phase. For the first time in TFTR q-profile measurements just prior to disruptions have been made. Experimental studies of heat deposition patterns on the first wall of TFTR due to disruptions have provided information on MHD phenomena prior to or during the disruption, how the energy is released to the wall, and the reproducibility of the heat loads from disruptions. This information is important in the design of future devices such as ITER. Several new processes of runaway electron generation are theoretically suggested and their application to TFTR and ITER is considered, together with a preliminary assessment of x-ray data from runaways generated during disruptions

  9. bcr-abl oncogene activation in Philadelphia chromosome-positive acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Hermans, A.; Gow, J.; Selleri, L.; von Lindern, M.; Hagemeijer, A.; Wiedemann, L. M.; Grosveld, G.

    1988-01-01

    Tumor-specific alterations in oncogenes are thought to play a central role in the development of cancer. An example is the consistent fusion of the bcr gene to the c-abl oncogene on the Ph chromosome in CML. The Ph chromosome can also be observed in ALL. About 50% of Ph+ ALL cases, in contrast to

  10. Functional analysis of the RAD50/MRE11 protein complex through targeted disruption of the murine RAD50 genomic locus: implications for DNA double strand break repair. An astro research fellowship presentation

    International Nuclear Information System (INIS)

    Yao, Michelle S.; Bladl, Anthony R.; Petrini, John H.J.

    1997-01-01

    Purpose/Objective: The products of the S. cerevisiae genes ScRAD50 and ScMRE11 act in a protein complex and are required for non-homologous end-joining, the predominant mechanism of DNA double strand break (dsb) repair in mammalian cells. Mutation of these genes results in sensitivity to ionizing radiation (IR), a defect in initiation of meiosis, increased and error-prone recombination during mitosis, and overall genomic instability. This resultant phenotype is reminiscent of that seen in mammalian syndromes of genomic instability such as ataxia-telangiectasia and Bloom syndrome, hallmarks of which are radiation sensitivity and predisposition to malignancy. The murine homologues to ScRAD50 and ScMRE11 have recently been identified; both demonstrate impressive primary sequence conservation with their yeast counterparts, and are expected to mediate conserved functions. The roles of muRAD50 in genomic maintenance and in dsb repair will be examined in two parts. The first will include a determination of normal muRAD50 expression patterns. Second, the effects of disruption of the muRAD50 gene will be assessed. A specific targeting event has introduced a conditional murad50 null mutation into the genome of murine embryonic stem (ES) cells. These mutant ES cells are being used to create mutant mice, thus allowing functional characterization of muRAD50 on both the cellular and organismic levels. Such analyses will contribute to the delineation of the mammalian dsb repair pathway and to the cellular response to IR, and will serve as a mammalian model system for genomic instability. Materials and Methods: Wild-type tissue expression patterns and protein-protein interactions were determined by standard biochemical techniques, including immunoprecipitation, polyacrylamide gel electrophoresis, and Western blotting. Molecular cloning techniques were used to create the gene targeting vectors, which were designed to result in either a deletion of exon 1 (equivalent to a null

  11. The crucial role of the proto-oncogene c-mos in regulation of oocyte maturation

    Directory of Open Access Journals (Sweden)

    Irena Jałocha

    2010-12-01

    Full Text Available Meiosis arrest before fertilization is a common and unique feature of oogenesis in many animal species. On account of the unclear biological significance of meiosis arrest at various stages and for different durations in different animal species, this process and its regulation are the subject of many scientific studies. Studies on the development of ovarian teratomas proved to be helpful in defining the role of particular genes and biochemical cycles in control of the cell cycle in animals. These benign tumors are a valuable source of information on oocyte maturation. The [i]c-mos[/i] proto-oncogene, which is specifically expressed in female and male germ cells, plays a crucial role in control of meiotic cell division in mammals. Its product – Mos protein kinase – acting through mitogen-activated protein kinases (MAPKs regulates critical cellular functions required for homeostasis and decides about cell survival or apoptosis. The MAPK kinase kinase – MAPK kinase – MAPK (MKKK-MKK-MAPK phosphorelay system, in view of its role in cells, seems to be the ideal target for therapeutic intervention in cancer and other diseases. The recent research on human oocytes suggests that the basic mechanisms regulating various stages of oocyte maturation are similar to those described in animals.

  12. Regulation of expression of the c-sis proto-oncogene

    Energy Technology Data Exchange (ETDEWEB)

    Ratner, L. (Washington Univ., St. Louis, MO (USA))

    1989-06-12

    Regulation of expression of platelet derived growth factor polypeptide B encoded by the c-sis proto-oncogene is important in a number of physiological and pathological conditions. Sequences in the 1,028 nucleotide long 5{prime} untranslated region of the c-sis mRNA were found to inhibit protein synthesis. The inhibition is relieved by deletion of nucleotides 154-378 or 398-475. Sequences within 375 nucleotides upstream of the RNA initiation sites are important for transcriptional activity. Sequences in two portions of this region, between {minus}375 and {minus}235 nucleotides and between {minus}235 and {minus}99 nucleotides relative to the RNA CAP site are important for full activity. A transcriptional enhancer activity is demonstrated by its ability to increase the activity of the human T lymphotropic virus type (HTLV) I promoter at a distance and in an orientation-independent manner. Furthermore, sequences upstream of the c-sis RNA CAP site respond to the HTLV I transactivator protein to increase RNA synthesis from either the c-sis or HTLV I promoter.

  13. An identity crisis for fps/fes: oncogene or tumor suppressor?

    Science.gov (United States)

    Sangrar, Waheed; Zirgnibl, Ralph A; Gao, Yan; Muller, William J; Jia, Zongchao; Greer, Peter A

    2005-05-01

    Fps/Fes proteins were among the first members of the protein tyrosine kinase family to be characterized as dominant-acting oncoproteins. Addition of retroviral GAG sequences or other experimentally induced mutations activated the latent transforming potential of Fps/Fes. However, activating mutations in fps/fes had not been found in human tumors until recently, when mutational analysis of a panel of colorectal cancers identified four somatic mutations in sequences encoding the Fps/Fes kinase domain. Here, we report biochemical and theoretical structural analysis demonstrating that three of these mutations result in inactivation, not activation, of Fps/Fes, whereas the fourth mutation compromised in vivo activity. These results did not concur with a classic dominant-acting oncogenic role for fps/fes involving activating somatic mutations but instead raised the possibility that inactivating fps/fes mutations might promote tumor progression in vivo. Consistent with this, we observed that tumor onset in a mouse model of breast epithelial cancer occurred earlier in mice targeted with either null or kinase-inactivating fps/fes mutations. Furthermore, a fps/fes transgene restored normal tumor onset kinetics in targeted fps/fes null mice. These data suggest a novel and unexpected tumor suppressor role for Fps/Fes in epithelial cells.

  14. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways.

    Science.gov (United States)

    Stępiński, Dariusz

    2016-08-01

    Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development.

  15. Using 18F FDG PET/CT to Detect an occult Mesenchymal Tumor Causing Oncogenic Osteomalacia

    International Nuclear Information System (INIS)

    Seo, Hyo Jung; Choi, Yun Jung; Kim, Hyun Jeong; Jeong, Yong Hyu; Cho, Arthur; Lee, Jae Hoon; Yun, Mijin; Lee, Jong Doo; Kang, Won Jun

    2011-01-01

    Oncogenic osteomalacia is a rare paraneoplastic syndrome characterized by renal phosphate excretion, hypophosphatemia, and osteomalacia. This syndrome is often caused by tumors of mesenchymal origin. Patients with oncogenic osteomalacia have abnormal bone mineralization, resulting in a high frequency of fractures. Tumor resection is the treatment of choice, as it will often correct the metabolic imbalance. Although oncogenic osteomalacia is a potentially curable disease, diagnosis is difficult and often delayed because of the small size and sporadic location of the tumor. Bone scintigraphy and radiography best characterize osteoma lacia; magnetic resonance imaging findings are nonspecific. Here, we report a case of oncogenic osteomalacia secondary to a phosphaturic mesenchymal tumor that was successfully detected by 18F fluorodeoxyglucose positron emission tomography/computed tomography ( 18F FDG PET/CT). This case illustrates the advantages of 18F FDG PET/CT in detecting the occult mesenchymal tumor that causes oncogenic osteomalacia.

  16. Liposome Disruption Assay to Examine Lytic Properties of Biomolecules.

    Science.gov (United States)

    Jimah, John R; Schlesinger, Paul H; Tolia, Niraj H

    2017-08-05

    Proteins may have three dimensional structural or amino acid features that suggest a role in targeting and disrupting lipids within cell membranes. It is often necessary to experimentally investigate if these proteins and biomolecules are able to disrupt membranes in order to conclusively characterize the function of these biomolecules. Here, we describe an in vitro assay to evaluate the membrane lytic properties of proteins and biomolecules. Large unilamellar vesicles (liposomes) containing carboxyfluorescein at fluorescence-quenching concentrations are treated with the biomolecule of interest. A resulting increase in fluorescence due to leakage of the dye from liposomes and subsequent dilution in the buffer demonstrates that the biomolecule is sufficient for disrupting liposomes and membranes. Additionally, since liposome disruption may occur via pore-formation or via general solubilization of lipids similar to detergents, we provide a method to distinguish between these two mechanisms. Pore-formation can be identified and evaluated by examining the blockade of carboxyfluorescein release with dextran molecules that fit the pore. The methods described here were used to determine that the malaria vaccine candidate CelTOS and proapoptotic Bax disrupt liposomes by pore formation (Saito et al. , 2000; Jimah et al. , 2016). Since membrane lipid binding by a biomolecule precedes membrane disruption, we recommend the companion protocol: Jimah et al. , 2017.

  17. Cell disruption for microalgae biorefineries.

    Science.gov (United States)

    Günerken, E; D'Hondt, E; Eppink, M H M; Garcia-Gonzalez, L; Elst, K; Wijffels, R H

    2015-01-01

    Microalgae are a potential source for various valuable chemicals for commercial applications ranging from nutraceuticals to fuels. Objective in a biorefinery is to utilize biomass ingredients efficiently similarly to petroleum refineries in which oil is fractionated in fuels and a variety of products with higher value. Downstream processes in microalgae biorefineries consist of different steps whereof cell disruption is the most crucial part. To maintain the functionality of algae biochemicals during cell disruption while obtaining high disruption yields is an important challenge. Despite this need, studies on mild disruption of microalgae cells are limited. This review article focuses on the evaluation of conventional and emerging cell disruption technologies, and a comparison thereof with respect to their potential for the future microalgae biorefineries. The discussed techniques are bead milling, high pressure homogenization, high speed homogenization, ultrasonication, microwave treatment, pulsed electric field treatment, non-mechanical cell disruption and some emerging technologies. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Disruptions in DIII-D

    International Nuclear Information System (INIS)

    Reiman, A.; Taylor, P.; Kellman, A.; LaHaye, R.

    1996-01-01

    We report on the results of a statistical analysis of the DIII-D disruption data base, and on an examination of a selected subset of the shots to determine the likely causes of disruptions. The statistical analysis focuses on the dependence of the disruption rate on key dimensionless parameters. We find that the disruption frequency is high at modest values of the parameters, and that it can be relatively low at operational limits. For example, the disruption frequency in an ITER relevant regime (β N /l i ∼ 2, 3 G > 0.6, where n G is the Greenwald limit) is approximately 23%. For this range of q, the disruption frequency rises only modestly to about 35% at the β limit, consistent with previous observations of a soft β limit for this q regime. For the range 6 95 G G < .9) in all q regimes we have studied. The location of the minimum moves to higher density with increasing q

  19. Use of glycolytic pathways for inhibiting or measuring oncogenic signaling

    Science.gov (United States)

    Onodera, Yasuhito; Bissell, Mina

    2017-06-27

    Disclosed are methods in which glucose metabolism is correlated to oncogenesis through certain specific pathways; inhibition of certain enzymes is shown to interfere with oncogenic signaling, and measurement of certain enzyme levels is correlated with patient survival. The present methods comprise measuring level of expression of at least one of the enzymes involved in glucose uptake or metabolism, wherein increased expression of the at least one of the enzymes relative to expression in a normal cell correlates with poor prognosis of disease in a patient. Preferably the genes whose expression level is measured include GLUT3, PFKP, GAPDH, ALDOC, LDHA and GFPT2. Also disclosed are embodiments directed towards downregulating the expression of some genes in glucose uptake and metabolism.

  20. Mutations of the KRAS oncogene in endometrial hyperplasia and carcinoma.

    Directory of Open Access Journals (Sweden)

    Wiesława Niklińska

    2009-05-01

    Full Text Available The aim of this study was to examine the prevalence and clinicopathological significance of KRAS point mutation in endometrial hyperplasia and carcinoma. We analysed KRAS in 11 cases of complex atypical hyperplasia and in 49 endometrial carcinomas using polymerase chain reaction associated with restriction fragment length polymorphism (PCR-RFPL. Point mutations at codon 12 of KRAS oncogene were identified in 7 of 49 (14,3% tumor specimens and in 2 of 11 (18,2% hyperplasias. No correlation was found between KRAS gene mutation and age at onset, histology, grade of differentiation and clinical stage. We conclude that KRAS mutation is a relatively common event in endometrial carcinogenesis, but with no prognostic value.

  1. Oncogenic osteomalacia: a clinicopathologic study of 17 bone lesions.

    Science.gov (United States)

    Park, Y. K.; Unni, K. K.; Beabout, J. W.; Hodgson, S. F.

    1994-01-01

    Oncogenic osteomalacia is an unusual and rare clinicopathologic syndrome characterized by mesenchymal tumors that apparently produce osteomalacia and biochemical abnormalities consisting of hypophosphatemia, normocalcemia, and increased levels of alkaline phosphatase. We collected from the Mayo Clinic files and from our consultation files the records for 17 cases of osteomalacia associated with bone lesions. There were five cases of fibrous dysplasia, three of hemangiopericytoma, and two of phosphaturic mesenchymal tumor. There was one case each of osteosarcoma, chondroblastoma, chondromyxoid fibroma, malignant fibrous histiocytoma, giant cell tumor, metaphyseal fibrous defect, and hemangioma. In this study we can figure out that the most common characteristic histologic features of our cases were hemangiopericytomatous vascular proliferation, fine lace-like stromal calcification, and stromal giant cells. In most of the cases, the clinical and biochemical symptoms and signs resolved soon after complete resection of the lesion. When the lesion recurred or metastasized, the symptoms and signs also recurred. PMID:7848576

  2. Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge.

    Science.gov (United States)

    Jung, Jaeyun; Yeom, Chanjoo; Choi, Yeon-Sook; Kim, Sinae; Lee, EunJi; Park, Min Ji; Kang, Sang Wook; Kim, Sung Bae; Chang, Suhwan

    2015-08-21

    The roles of oncogenic miRNAs are widely recognized in many cancers. Inhibition of single miRNA using antagomiR can efficiently knock-down a specific miRNA. However, the effect is transient and often results in subtle phenotype, as there are other miRNAs contribute to tumorigenesis. Here we report a multi-potent miRNA sponge inhibiting multiple miRNAs simultaneously. As a model system, we targeted miR-21, miR-155 and miR-221/222, known as oncogenic miRNAs in multiple tumors including breast and pancreatic cancers. To achieve efficient knockdown, we generated perfect and bulged-matched miRNA binding sites (MBS) and introduced multiple copies of MBS, ranging from one to five, in the multi-potent miRNA sponge. Luciferase reporter assay showed the multi-potent miRNA sponge efficiently inhibited 4 miRNAs in breast and pancreatic cancer cells. Furthermore, a stable and inducible version of the multi-potent miRNA sponge cell line showed the miRNA sponge efficiently reduces the level of 4 target miRNAs and increase target protein level of these oncogenic miRNAs. Finally, we showed the miRNA sponge sensitize cells to cancer drug and attenuate cell migratory activity. Altogether, our study demonstrates the multi-potent miRNA sponge is a useful tool to examine the functional impact of simultaneous inhibition of multiple miRNAs and proposes a therapeutic potential.

  3. Overview of core disruptive accidents

    International Nuclear Information System (INIS)

    Marchaterre, J.F.

    1977-01-01

    An overview of the analysis of core-disruptive accidents is given. These analyses are for the purpose of understanding and predicting fast reactor behavior in severe low probability accident conditions, to establish the consequences of such conditions and to provide a basis for evaluating consequence limiting design features. The methods are used to analyze core-disruptive accidents from initiating event to complete core disruption, the effects of the accident on reactor structures and the resulting radiological consequences are described

  4. Oncogenic signalling pathways in benign odontogenic cysts and tumours.

    Science.gov (United States)

    Diniz, Marina Gonçalves; Gomes, Carolina Cavalieri; de Sousa, Sílvia Ferreira; Xavier, Guilherme Machado; Gomez, Ricardo Santiago

    2017-09-01

    The first step towards the prevention of cancer is to develop an in-depth understanding of tumourigenesis and the molecular basis of malignant transformation. What drives tumour initiation? Why do most benign tumours fail to metastasize? Oncogenic mutations, previously considered to be the hallmark drivers of cancers, are reported in benign cysts and tumours, including those that have an odontogenic origin. Despite the presence of such alterations, the vast majority of odontogenic lesions are benign and never progress to the stage of malignant transformation. As these lesions are likely to develop due to developmental defects, it is possible that they harbour quiet genomes. Now the question arises - do they result from DNA replication errors? Specific candidate genes have been sequenced in odontogenic lesions, revealing recurrent BRAF mutation in the case of ameloblastoma, KRAS mutation in adenomatoid odontogenic tumours, PTCH1 mutation in odontogenic keratocysts, and CTNNB1 (Beta-catenin) mutation in calcifying odontogenic cysts. Studies on these benign and rare entities might reveal important information about the tumorigenic process and the mechanisms that hinder/halt neoplastic progression. This is because the role of relatively common oncogenic mutations seems to be context dependent. In this review, each mutation signature of the odontogenic lesion and the affected signalling pathways are discussed in the context of tooth development and tumorigenesis. Furthermore, behavioural differences between different types of odontogenic lesions are explored and discussed based on the molecular alteration described. This review also includes the employment of molecular results for guiding therapeutic approaches towards odontogenic lesions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Oncogenic Radiation Abscopal Effects In Vivo: Interrogating Mouse Skin

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, Mariateresa, E-mail: mariateresa.mancuso@enea.it [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); Leonardi, Simona [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); Giardullo, Paola; Pasquali, Emanuela [Department of Radiation Physics, Guglielmo Marconi University, Rome (Italy); Tanori, Mirella [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); De Stefano, Ilaria [Department of Radiation Physics, Guglielmo Marconi University, Rome (Italy); Casciati, Arianna [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); Naus, Christian C. [Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia (Canada); Pazzaglia, Simonetta; Saran, Anna [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy)

    2013-08-01

    Purpose: To investigate the tissue dependence in transmission of abscopal radiation signals and their oncogenic consequences in a radiosensitive mouse model and to explore the involvement of gap junction intercellular communication (GJIC) in mediating radiation tumorigenesis in off-target mouse skin. Methods and Materials: Patched1 heterozygous (Ptch1{sup +/−}) mice were irradiated at postnatal day 2 (P2) with 10 Gy of x-rays. Individual lead cylinders were used to protect the anterior two-thirds of the body, whereas the hindmost part was directly exposed to radiation. To test the role of GJICs and their major constituent connexin43 (Cx43), crosses between Ptch1{sup +/−} and Cx43{sup +/−} mice were similarly irradiated. These mouse groups were monitored for their lifetime, and skin basal cell carcinomas (BCCs) were counted and recorded. Early responses to DNA damage - Double Strand Breaks (DSBs) and apoptosis - were also evaluated in shielded and directly irradiated skin areas. Results: We report abscopal tumor induction in the shielded skin of Ptch1{sup +/−} mice after partial-body irradiation. Endpoints were induction of early nodular BCC-like tumors and macroscopic infiltrative BCCs. Abscopal tumorigenesis was significantly modulated by Cx43 status, namely, Cx43 reduction was associated with decreased levels of DNA damage and oncogenesis in out-of-field skin, suggesting a key role of GJIC in transmission of oncogenic radiation signals to unhit skin. Conclusions: Our results further characterize the nature of abscopal responses and the implications they have on pathologic processes in different tissues, including their possible underlying mechanistic bases.

  6. Oncogenic Radiation Abscopal Effects In Vivo: Interrogating Mouse Skin

    International Nuclear Information System (INIS)

    Mancuso, Mariateresa; Leonardi, Simona; Giardullo, Paola; Pasquali, Emanuela; Tanori, Mirella; De Stefano, Ilaria; Casciati, Arianna; Naus, Christian C.; Pazzaglia, Simonetta; Saran, Anna

    2013-01-01

    Purpose: To investigate the tissue dependence in transmission of abscopal radiation signals and their oncogenic consequences in a radiosensitive mouse model and to explore the involvement of gap junction intercellular communication (GJIC) in mediating radiation tumorigenesis in off-target mouse skin. Methods and Materials: Patched1 heterozygous (Ptch1 +/− ) mice were irradiated at postnatal day 2 (P2) with 10 Gy of x-rays. Individual lead cylinders were used to protect the anterior two-thirds of the body, whereas the hindmost part was directly exposed to radiation. To test the role of GJICs and their major constituent connexin43 (Cx43), crosses between Ptch1 +/− and Cx43 +/− mice were similarly irradiated. These mouse groups were monitored for their lifetime, and skin basal cell carcinomas (BCCs) were counted and recorded. Early responses to DNA damage - Double Strand Breaks (DSBs) and apoptosis - were also evaluated in shielded and directly irradiated skin areas. Results: We report abscopal tumor induction in the shielded skin of Ptch1 +/− mice after partial-body irradiation. Endpoints were induction of early nodular BCC-like tumors and macroscopic infiltrative BCCs. Abscopal tumorigenesis was significantly modulated by Cx43 status, namely, Cx43 reduction was associated with decreased levels of DNA damage and oncogenesis in out-of-field skin, suggesting a key role of GJIC in transmission of oncogenic radiation signals to unhit skin. Conclusions: Our results further characterize the nature of abscopal responses and the implications they have on pathologic processes in different tissues, including their possible underlying mechanistic bases

  7. Disrupted Refugee Family Life

    DEFF Research Database (Denmark)

    Shapiro, Ditte Krogh

    2017-01-01

    Fleeing civil war involves managing life threatening events and multiple disruptions of everyday life. The theoretical potentials of analysing the recreation of everyday family life among Syrian refugees in Denmark is explored based on conceptualizations that emphasize the collective agency...... of family members in social historical contexts. Studying the multiple perspectives of family members shows how social support conceptualized as care practises is conflictual in the changing everyday family practices that are transformed by policy. The purpose of studying how families manage to flee civil...... war and struggle to recreate an everyday life in exile is to contribute with contextualization and expansion of mainstream understandings of family life, suffering, and resilience in refugee family trajectories in multiple contexts....

  8. Disruptive Technology: An Uncertain Future

    Science.gov (United States)

    2005-05-21

    Technology that overturns market -- Military - Technology that causes a fundamental change in force structure, basing, and capability balance * Disruptive Technologies may arise from systems or enabling technology.

  9. Major disruption process in tokamak

    International Nuclear Information System (INIS)

    Kurita, Gen-ichi; Azumi, Masafumi; Tuda, Takashi; Takizuka, Tomonori; Tsunematsu, Toshihide; Tokuda, Shinji; Itoh, Kimitaka; Takeda, Tatsuoki

    1981-11-01

    The major disruption in a cylindrical tokamak is investigated by using the multi-helicity code, and the destabilization of the 3/2 mode by the mode coupling with the 2/1 mode is confirmed. The evolution of the magnetic field topology caused by the major disruption is studied in detail. The effect of the internal disruption on the 2/1 magnetic island width is also studied. The 2/1 magnetic island is not enhanced by the flattening of the q-profile due to the internal disruption. (author)

  10. Inhibitor of CDK interacting with cyclin A1 (INCA1) regulates proliferation and is repressed by oncogenic signaling

    DEFF Research Database (Denmark)

    Baumer, Nicole; Tickenbrock, Lara; Tschanter, Petra

    2011-01-01

    The cell cycle is driven by the kinase activity of cyclin/CDK complexes which is negatively regulated by CDK inhibitor proteins. Recently, we identified INCA1 as interaction partner and substrate of cyclin A1 in complex with CDK2. On a functional level, we identified a novel cyclin binding site...... in the INCA1 protein. INCA1 inhibited CDK2 activity and cell proliferation. The inihibitory effects depended on the cyclin-interacting domain. Mitogenic and oncogenic signals suppressed INCA1 expression, while it was induced by cell cycle arrest. We established a deletional mouse model that showed increased...... CDK2 activity in spleen with altered spleen architecture in Inca1-/- mice. Inca1-/- embryonic fibroblasts showed an increase in the fraction of S-phase cells. Furthermore, blasts from ALL and AML patients expressed significantly reduced INCA1 levels highlighting its relevance for growth control...

  11. Binomial mitotic segregation of MYCN-carrying double minutes in neuroblastoma illustrates the role of randomness in oncogene amplification.

    Directory of Open Access Journals (Sweden)

    Gisela Lundberg

    2008-08-01

    Full Text Available Amplification of the oncogene MYCN in double minutes (DMs is a common finding in neuroblastoma (NB. Because DMs lack centromeric sequences it has been unclear how NB cells retain and amplify extrachromosomal MYCN copies during tumour development.We show that MYCN-carrying DMs in NB cells translocate from the nuclear interior to the periphery of the condensing chromatin at transition from interphase to prophase and are preferentially located adjacent to the telomere repeat sequences of the chromosomes throughout cell division. However, DM segregation was not affected by disruption of the telosome nucleoprotein complex and DMs readily migrated from human to murine chromatin in human/mouse cell hybrids, indicating that they do not bind to specific positional elements in human chromosomes. Scoring DM copy-numbers in ana/telophase cells revealed that DM segregation could be closely approximated by a binomial random distribution. Colony-forming assay demonstrated a strong growth-advantage for NB cells with high DM (MYCN copy-numbers, compared to NB cells with lower copy-numbers. In fact, the overall distribution of DMs in growing NB cell populations could be readily reproduced by a mathematical model assuming binomial segregation at cell division combined with a proliferative advantage for cells with high DM copy-numbers.Binomial segregation at cell division explains the high degree of MYCN copy-number variability in NB. Our findings also provide a proof-of-principle for oncogene amplification through creation of genetic diversity by random events followed by Darwinian selection.

  12. Repression of transcription mediated at a thyroid hormone response element by the v-erb-A oncogene product

    DEFF Research Database (Denmark)

    Sap, J; Muñoz, A; Schmitt, J

    1989-01-01

    Several recent observations, such as the identification of the cellular homologue of the v-erb-A oncogene as a thyroid-hormone receptor, have strongly implicated nuclear oncogenes in transcriptional control mechanisms. The v-erb-A oncogene blocks the differentiation of erythroid cells, and changes...

  13. Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Song-Ze, E-mail: dingsongze@hotmail.com [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Yang, Yu-Xiu; Li, Xiu-Ling [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Michelli-Rivera, Audrey [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Han, Shuang-Yin [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Wang, Lei; Pratheeshkumar, Poyil; Wang, Xin; Lu, Jian; Yin, Yuan-Qin; Budhraja, Amit; Hitron, Andrew J. [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

    2013-05-15

    Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial–mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology. Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention. - Graphical abstract: Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanisms in lung epithelial cells. - Highlights: • We study if Cr(VI) might induce EMT and invasion in epithelial cells. • Cr(VI) induces EMT by altering E-cadherin and vimentin expression. • It also increases cell invasion and promotes oncogenic transformation. • Catalase reduces Cr(VI)-induced EMT, invasion and

  14. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzato, Annalisa; Biolatti, Marta [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Institute for Cancer Research at Candiolo, Candiolo, Torino (Italy); Delogu, Giuseppe [Department of Biomedical Sciences-Histology, University of Sassari, Sassari (Italy); Capobianco, Giampiero [Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Sassari (Italy); Farace, Cristiano [Department of Biomedical Sciences-Histology, University of Sassari, Sassari (Italy); Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco [Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Sassari (Italy); Madeddu, Roberto [Department of Biomedical Sciences-Histology, University of Sassari, Sassari (Italy); National Institute of Biostructures and Biosystems, Rome (Italy); Olivero, Martina [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Institute for Cancer Research at Candiolo, Candiolo, Torino (Italy); Di Renzo, Maria Flavia, E-mail: mariaflavia.direnzo@unito.it [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Institute for Cancer Research at Candiolo, Candiolo, Torino (Italy)

    2013-10-15

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. - highlights: • CSE1L is a key player in nucleocytoplasmic traffic by forming complex with Ran. • AKT phosphorylates RanBP3 that regulates the nucleocytoplasmic gradient of Ran. • The activated oncogenic AKT drives the nuclear accumulation of CSE1L. • CSE1L in the nucleus up-regulates genes conveying pro-oncogenic signals. • CSE1L might contribute to tumor progression driven by the activated oncogenic AKT.

  15. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells

    International Nuclear Information System (INIS)

    Lorenzato, Annalisa; Biolatti, Marta; Delogu, Giuseppe; Capobianco, Giampiero; Farace, Cristiano; Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco; Madeddu, Roberto; Olivero, Martina; Di Renzo, Maria Flavia

    2013-01-01

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. - highlights: • CSE1L is a key player in nucleocytoplasmic traffic by forming complex with Ran. • AKT phosphorylates RanBP3 that regulates the nucleocytoplasmic gradient of Ran. • The activated oncogenic AKT drives the nuclear accumulation of CSE1L. • CSE1L in the nucleus up-regulates genes conveying pro-oncogenic signals. • CSE1L might contribute to tumor progression driven by the activated oncogenic AKT

  16. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress.

    Science.gov (United States)

    Macheret, Morgane; Halazonetis, Thanos D

    2018-03-01

    Oncogene-induced DNA replication stress contributes critically to the genomic instability that is present in cancer. However, elucidating how oncogenes deregulate DNA replication has been impeded by difficulty in mapping replication initiation sites on the human genome. Here, using a sensitive assay to monitor nascent DNA synthesis in early S phase, we identified thousands of replication initiation sites in cells before and after induction of the oncogenes CCNE1 and MYC. Remarkably, both oncogenes induced firing of a novel set of DNA replication origins that mapped within highly transcribed genes. These ectopic origins were normally suppressed by transcription during G1, but precocious entry into S phase, before all genic regions had been transcribed, allowed firing of origins within genes in cells with activated oncogenes. Forks from oncogene-induced origins were prone to collapse, as a result of conflicts between replication and transcription, and were associated with DNA double-stranded break formation and chromosomal rearrangement breakpoints both in our experimental system and in a large cohort of human cancers. Thus, firing of intragenic origins caused by premature S phase entry represents a mechanism of oncogene-induced DNA replication stress that is relevant for genomic instability in human cancer.

  17. Enhancers of Polycomb EPC1 and EPC2 sustain the oncogenic potential of MLL leukemia stem cells

    Science.gov (United States)

    Huang, Xu; Spencer, Gary J; Lynch, James T; Ciceri, Filippo; Somerville, Tim D D; Somervaille, Tim C P

    2013-01-01

    Through a targeted knockdown (KD) screen of chromatin regulatory genes we identified the EP400 complex components EPC1 and EPC2 as critical oncogenic co-factors in acute myeloid leukemia (AML). EPC1 and EPC2 were required for the clonogenic potential of human AML cells of multiple molecular subtypes. Focusing on MLL-mutated AML as an exemplar, Epc1 or Epc2 KD induced apoptosis of murine MLL-AF9 AML cells and abolished leukemia stem cell potential. By contrast, normal hematopoietic stem and progenitor cells (HSPC) were spared. Similar selectivity was observed for human primary AML cells versus normal CD34+ HSPC. In keeping with these distinct functional consequences, Epc1 or Epc2 KD induced divergent transcriptional consequences in murine MLL-AF9 granulocyte-macrophage progenitor-like (GMP) cells versus normal GMP, with a signature of increased MYC activity in leukemic but not normal cells. This was caused by accumulation of MYC protein and was also observed following KD of other EP400 complex genes. Pharmacological inhibition of MYC:MAX dimerization, or concomitant MYC KD, reduced apoptosis following EPC1 KD, linking the accumulation of MYC to cell death. Therefore EPC1 and EPC2 are components of a complex which directly or indirectly serves to prevent MYC accumulation and AML cell apoptosis, thus sustaining oncogenic potential. PMID:24166297

  18. Adenovirus-Mediated Delivery of Decoy Hyper Binding Sites Targeting Oncogenic HMGA1 Reduces Pancreatic and Liver Cancer Cell Viability.

    Science.gov (United States)

    Hassan, Faizule; Ni, Shuisong; Arnett, Tyler C; McKell, Melanie C; Kennedy, Michael A

    2018-03-30

    High mobility group AT-hook 1 (HMGA1) protein is an oncogenic architectural transcription factor that plays an essential role in early development, but it is also implicated in many human cancers. Elevated levels of HMGA1 in cancer cells cause misregulation of gene expression and are associated with increased cancer cell proliferation and increased chemotherapy resistance. We have devised a strategy of using engineered viruses to deliver decoy hyper binding sites for HMGA1 to the nucleus of cancer cells with the goal of sequestering excess HMGA1 at the decoy hyper binding sites due to binding competition. Sequestration of excess HMGA1 at the decoy binding sites is intended to reduce HMGA1 binding at the naturally occurring genomic HMGA1 binding sites, which should result in normalized gene expression and restored sensitivity to chemotherapy. As proof of principle, we engineered the replication defective adenovirus serotype 5 genome to contain hyper binding sites for HMGA1 composed of six copies of an individual HMGA1 binding site, referred to as HMGA-6. A 70%-80% reduction in cell viability and increased sensitivity to gemcitabine was observed in five different pancreatic and liver cancer cell lines 72 hr after infection with replication defective engineered adenovirus serotype 5 virus containing the HMGA-6 decoy hyper binding sites. The decoy hyper binding site strategy should be general for targeting overexpression of any double-stranded DNA-binding oncogenic transcription factor responsible for cancer cell proliferation.

  19. DNA damage and repair in oncogenic transformation by heavy ion radiation

    Science.gov (United States)

    Yang, T. C.; Mei, M.; George, K. A.; Craise, L. M.

    1996-01-01

    Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 micrometer2 at about 500 keV/micrometer. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/micrometer produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/micrometer). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.

  20. A New Crucial Protein Interaction Element That Targets the Adenovirus E4-ORF1 Oncoprotein to Membrane Vesicles▿

    OpenAIRE

    Chung, Sang-Hyuk; Frese, Kristopher K.; Weiss, Robert S.; Prasad, B. V. Venkataram; Javier, Ronald T.

    2007-01-01

    Human adenovirus type 9 exclusively elicits mammary tumors in experimental animals, and the primary oncogenic determinant of this virus is the E4-ORF1 oncogene, as opposed to the well-known E1A and E1B oncogenes. The tumorigenic potential of E4-ORF1, as well as its ability to oncogenically stimulate phosphatidylinositol 3-kinase (PI3K), depends on a carboxyl-terminal PDZ domain-binding motif (PBM) that mediates interactions with several different membrane-associated cellular PDZ proteins, inc...

  1. Expression and role of oncogenic miRNA-224 in esophageal squamous cell carcinoma

    International Nuclear Information System (INIS)

    He, Xiaoyan; Zhang, Zhimei; Li, Ming; Li, Shuo; Ren, Lihua; Zhu, Hong; Xiao, Bin; Shi, Ruihua

    2015-01-01

    Aberrant expression of miR-224 is associated with tumor development and progression. This study investigated the role of miR-224 in esophageal squamous cell carcinoma (ESCC) ex vivo and in vitro. A total of 103 esophageal intraepithelial neoplasia, ESCC tissue specimens, and their matched distant normal tissues were collected to test miR-224 expression using qRT-PCR analysis. Western blot was used to quantify the level of PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1) and PHLPP2 in ESCC tissues. Cell viability, apoptosis, invasion, and colony formation assays were used to assess the altered phenotypes of esophageal cancer cell lines after miR-224 expression or inhibition. A luciferase reporter assay was used to confirm miR-224 binding to PHLPP1 and PHLPP2 mRNA. miR-224 was significantly overexpressed in esophageal intraepithelial neoplasia and ESCC tissues, while the expression of PHLPP1 and PHLPP2 proteins, the target genes of miR-224, was downregulated in ESCC tissues. miR-224 expression was associated with advanced clinical TNM stage, pathologic grade, and the level of PHLPP1 and PHLPP2 proteins in ESCC tissues. Ectopic overexpression of miR-224 promoted proliferation, migration, and invasion, but suppressed apoptosis of ESCC cells. miR-224 was able to bind to the 3′ untranslated region (3′-UTR) of PHLPP1 and PHLPP2 mRNA to suppress their expression. The current study demonstrated that miR-224 acts as an oncogenic miRNA in ESCC, possibly by targeting PHLPP1 and PHLPP2. The online version of this article (doi:10.1186/s12885-015-1581-6) contains supplementary material, which is available to authorized users

  2. Disrupting Ethnography through Rhizoanalysis

    Directory of Open Access Journals (Sweden)

    Diana Masny

    2014-10-01

    Full Text Available This article interrogates principles of ethnography in education proposed by Mills and Morton: raw tellings, analytic pattern, vignette and empathy. This article adopts a position that is uncomfortable, unconventional and interesting. It involves a deterritorialization/ rupture of ethnography in education in order to reterritorialize a different concept: rhizoanalysis, a way to position theory and data that is multilayered, complex and messy. Rhizoanalysis, the main focus of this article is not a method. It is an approach to research conditioned by a reality in which Deleuze and Guattari disrupt representation, interpretation and subjectivity. In this article, Multiple Literacies Theory, a theoretical and practical framework, becomes a lens to examine a rhizomatic study of a Korean family recently arrived to Australia and attending English as a second language classes. Observations and interviews recorded the daily lives of the family. The vignettes were selected by reading data intensively and immanently through a process of palpation, an innovative approach to educational research. Rhizoanalysis proposes to abandon the given and invent different ways of thinking about and doing research and what might happen when reading data differently, intensively and immanently, through Multiple Literacies Theory. Rhizoanalysis, a game-changer in the way research can be conducted, affords a different lens to tackle issues in education through research.

  3. Activating mutation in MET oncogene in familial colorectal cancer

    Directory of Open Access Journals (Sweden)

    Schildkraut Joellen M

    2011-10-01

    Full Text Available Abstract Background In developed countries, the lifetime risk of developing colorectal cancer (CRC is 5%, and it is the second leading cause of death from cancer. The presence of family history is a well established risk factor with 25-35% of CRCs attributable to inherited and/or familial factors. The highly penetrant inherited colon cancer syndromes account for approximately 5%, leaving greater than 20% without clear genetic definition. Familial colorectal cancer has been linked to chromosome 7q31 by multiple affected relative pair studies. The MET proto-oncogene which resides in this chromosomal region is considered a candidate for genetic susceptibility. Methods MET exons were amplified by PCR from germline DNA of 148 affected sibling pairs with colorectal cancer. Amplicons with altered sequence were detected with high-resolution melt-curve analysis using a LightScanner (Idaho Technologies. Samples demonstrating alternative melt curves were sequenced. A TaqMan assay for the specific c.2975C >T change was used to confirm this mutation in a cohort of 299 colorectal cancer cases and to look for allelic amplification in tumors. Results Here we report a germline non-synonymous change in the MET proto-oncogene at amino acid position T992I (also reported as MET p.T1010I in 5.2% of a cohort of sibling pairs affected with CRC. This genetic variant was then confirmed in a second cohort of individuals diagnosed with CRC and having a first degree relative with CRC at prevalence of 4.1%. This mutation has been reported in cancer cells of multiple origins, including 2.5% of colon cancers, and in Conclusions Although the MET p.T992I genetic mutation is commonly found in somatic colorectal cancer tissues, this is the first report also implicating this MET genetic mutation as a germline inherited risk factor for familial colorectal cancer. Future studies on the cancer risks associated with this mutation and the prevalence in different at-risk populations will

  4. Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs.

    Directory of Open Access Journals (Sweden)

    Simon Leuchs

    Full Text Available Mutation of the tumor suppressor p53 plays a major role in human carcinogenesis. Here we describe gene-targeted porcine mesenchymal stem cells (MSCs and live pigs carrying a latent TP53(R167H mutant allele, orthologous to oncogenic human mutant TP53(R175H and mouse Trp53(R172H, that can be activated by Cre recombination. MSCs carrying the latent TP53(R167H mutant allele were analyzed in vitro. Homozygous cells were p53 deficient, and on continued culture exhibited more rapid proliferation, anchorage independent growth, and resistance to the apoptosis-inducing chemotherapeutic drug doxorubicin, all characteristic of cellular transformation. Cre mediated recombination activated the latent TP53(R167H allele as predicted, and in homozygous cells expressed mutant p53-R167H protein at a level ten-fold greater than wild-type MSCs, consistent with the elevated levels found in human cancer cells. Gene targeted MSCs were used for nuclear transfer and fifteen viable piglets were produced carrying the latent TP53(R167H mutant allele in heterozygous form. These animals will allow study of p53 deficiency and expression of mutant p53-R167H to model human germline, or spontaneous somatic p53 mutation. This work represents the first inactivation and mutation of the gatekeeper tumor suppressor gene TP53 in a non-rodent mammal.

  5. Clinical implication of elevated human cervical cancer oncogene-1 expression in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Liu, Ying; Li, Ke; Ren, Zhonghai; Li, Shenglei; Zhang, Hongyan; Fan, Qingxia

    2012-07-01

    The human cervical cancer oncogene 1 (HCCR-1), a novel human oncoprotein, has been shown to be upregulated in various human tumors and plays a critical role in tumorigenesis and tumor progression. Here, the authors investigated HCCR-1 level in esophageal squamous cell carcinoma (ESCC) tissues and assessed the correlation between HCCR-1 level and prognosis of the patients with ESCC. HCCR-1 levels were investigated by immunohistochemistry, in situ hybridization, real-time quantitative RT-PCR and Western blotting methods; Kaplan-Meier curve was used to evaluate the prognostic value of HCCR-1 level in patients with ESCC using log-rank test. HCCR-1 displayed high levels in ESCC tissues compared to squamous dysplasia tissues and normal esophageal epithelial tissues. No significant correlation was observed between the levels of HCCR-1 mRNA and protein and gender and age (all p>0.05) but obviously related to histological grade, clinical stage, and lymph node metastasis (all p<0.001). Moreover, the survival rate of the patients with low HCCR-1 levels was higher than that of the patients with high HCCR-1 levels (both p<0.05). These data demonstrate that HCCR-1 may be used as a novel predictor for the prognosis of the patients with ESCC.

  6. Mitochondrial dysfunctions in cancer: genetic defects and oncogenic signaling impinging on TCA cycle activity.

    Science.gov (United States)

    Desideri, Enrico; Vegliante, Rolando; Ciriolo, Maria Rosa

    2015-01-28

    The tricarboxylic acid (TCA) cycle is a central route for oxidative metabolism. Besides being responsible for the production of NADH and FADH2, which fuel the mitochondrial electron transport chain to generate ATP, the TCA cycle is also a robust source of metabolic intermediates required for anabolic reactions. This is particularly important for highly proliferating cells, like tumour cells, which require a continuous supply of precursors for the synthesis of lipids, proteins and nucleic acids. A number of mutations among the TCA cycle enzymes have been discovered and their association with some tumour types has been established. In this review we summarise the current knowledge regarding alterations of the TCA cycle in tumours, with particular attention to the three germline mutations of the enzymes succinate dehydrogenase, fumarate hydratase and isocitrate dehydrogenase, which are involved in the pathogenesis of tumours, and to the aberrant regulation of TCA cycle components that are under the control of oncogenes and tumour suppressors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Concurrent mutation in exons 1 and 2 of the K-ras oncogene in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Fiorella Guadagni

    2012-01-01

    Full Text Available The K-ras gene is frequently mutated in colorectal cancer and has been associated with tumor initiation and progression; approximately 90% of the activating mutations are found in codons 12 and 13 of exon 1 and just under 5% in codon 61 located in exon 2. These mutations determine single aminoacidic substitutions in the GTPase pocket leading to a block of the GTP hydrolytic activity of the K-ras p21 protein, and therefore to its constitutive activation. Point mutations in sites of the K-ras gene, other than codons 12, 13 and 61, and other types of genetic alterations, may occur in a minority of cases, such as in the less frequent cases of double mutations in the K-ras gene. However, all mutations in this gene, even those which occur in non-canonical sites or double mutations, are relevant oncogenic alterations in colorectal cancer and may underlie K-ras pathway hyperactivation. In the present study, we report the case of a patient with colorectal cancer presenting a concurrent point mutation in exons 1 and 2 of the K-ras gene, a GGT to TGT substitution (Glycine to Cysteine at codon 12, and a GAC to AAC substitution (Aspartic Acid to Asparagine at codon 57. In addition, we found in the same patient’s sample a silent polymorphism at codon 11 (Ala11Ala of exon 1. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 4, pp. 729–733

  8. Rapid internalization of the oncogenic K+ channel K(V10.1.

    Directory of Open Access Journals (Sweden)

    Tobias Kohl

    Full Text Available K(V10.1 is a mammalian brain voltage-gated potassium channel whose ectopic expression outside of the brain has been proven relevant for tumor biology. Promotion of cancer cell proliferation by K(V10.1 depends largely on ion flow, but some oncogenic properties remain in the absence of ion permeation. Additionally, K(V10.1 surface populations are small compared to large intracellular pools. Control of protein turnover within cells is key to both cellular plasticity and homeostasis, and therefore we set out to analyze how endocytic trafficking participates in controlling K(V10.1 intracellular distribution and life cycle. To follow plasma membrane K(V10.1 selectively, we generated a modified channel of displaying an extracellular affinity tag for surface labeling by α-bungarotoxin. This modification only minimally affected K(V10.1 electrophysiological properties. Using a combination of microscopy and biochemistry techniques, we show that K(V10.1 is constitutively internalized involving at least two distinct pathways of endocytosis and mainly sorted to lysosomes. This occurs at a relatively fast rate. Simultaneously, recycling seems to contribute to maintain basal K(V10.1 surface levels. Brief K(V10.1 surface half-life and rapid lysosomal targeting is a relevant factor to be taken into account for potential drug delivery and targeting strategies directed against K(V10.1 on tumor cells.

  9. Shared Oncogenic Pathways Implicated in Both Virus-Positive and UV-Induced Merkel Cell Carcinomas.

    Science.gov (United States)

    González-Vela, María Del Carmen; Curiel-Olmo, Soraya; Derdak, Sophia; Beltran, Sergi; Santibañez, Miguel; Martínez, Nerea; Castillo-Trujillo, Alfredo; Gut, Martha; Sánchez-Pacheco, Roxana; Almaraz, Carmen; Cereceda, Laura; Llombart, Beatriz; Agraz-Doblas, Antonio; Revert-Arce, José; López Guerrero, José Antonio; Mollejo, Manuela; Marrón, Pablo Isidro; Ortiz-Romero, Pablo; Fernandez-Cuesta, Lynnette; Varela, Ignacio; Gut, Ivo; Cerroni, Lorenzo; Piris, Miguel Ángel; Vaqué, José Pedro

    2017-01-01

    Merkel cell carcinoma (MCC) is a highly malignant neuroendocrine tumor of the skin whose molecular pathogenesis is not completely understood, despite the role that Merkel cell polyomavirus can play in 55-90% of cases. To study potential mechanisms driving this disease in clinically characterized cases, we searched for somatic mutations using whole-exome sequencing, and extrapolated our findings to study functional biomarkers reporting on the activity of the mutated pathways. Confirming previous results, Merkel cell polyomavirus-negative tumors had higher mutational loads with UV signatures and more frequent mutations in TP53 and RB compared with their Merkel cell polyomavirus-positive counterparts. Despite important genetic differences, the two Merkel cell carcinoma etiologies both exhibited nuclear accumulation of oncogenic transcription factors such as NFAT or nuclear factor of activated T cells (NFAT), P-CREB, and P-STAT3, indicating commonly deregulated pathogenic mechanisms with the potential to serve as targets for therapy. A multivariable analysis identified phosphorylated CRE-binding protein as an independent survival factor with respect to clinical variables and Merkel cell polyomavirus status in our cohort of Merkel cell carcinoma patients. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer.

    Science.gov (United States)

    Slamon, D J; Godolphin, W; Jones, L A; Holt, J A; Wong, S G; Keith, D E; Levin, W J; Stuart, S G; Udove, J; Ullrich, A

    1989-05-12

    Carcinoma of the breast and ovary account for one-third of all cancers occurring in women and together are responsible for approximately one-quarter of cancer-related deaths in females. The HER-2/neu proto-oncogene is amplified in 25 to 30 percent of human primary breast cancers and this alteration is associated with disease behavior. In this report, several similarities were found in the biology of HER-2/neu in breast and ovarian cancer, including a similar incidence of amplification, a direct correlation between amplification and over-expression, evidence of tumors in which overexpression occurs without amplification, and the association between gene alteration and clinical outcome. A comprehensive study of the gene and its products (RNA and protein) was simultaneously performed on a large number of both tumor types. This analysis identified several potential shortcomings of the various methods used to evaluate HER-2/neu in these diseases (Southern, Northern, and Western blots, and immunohistochemistry) and provided information regarding considerations that should be addressed when studying a gene or gene product in human tissue. The data presented further support the concept that the HER-2/neu gene may be involved in the pathogenesis of some human cancers.

  11. Thigmotaxis Mediates Trail Odour Disruption.

    Science.gov (United States)

    Stringer, Lloyd D; Corn, Joshua E; Sik Roh, Hyun; Jiménez-Pérez, Alfredo; Manning, Lee-Anne M; Harper, Aimee R; Suckling, David M

    2017-05-10

    Disruption of foraging using oversupply of ant trail pheromones is a novel pest management application under investigation. It presents an opportunity to investigate the interaction of sensory modalities by removal of one of the modes. Superficially similar to sex pheromone-based mating disruption in moths, ant trail pheromone disruption lacks an equivalent mechanistic understanding of how the ants respond to an oversupply of their trail pheromone. Since significant compromise of one sensory modality essential for trail following (chemotaxis) has been demonstrated, we hypothesised that other sensory modalities such as thigmotaxis could act to reduce the impact on olfactory disruption of foraging behaviour. To test this, we provided a physical stimulus of thread to aid trailing by Argentine ants otherwise under disruptive pheromone concentrations. Trail following success was higher using a physical cue. While trail integrity reduced under continuous over-supply of trail pheromone delivered directly on the thread, provision of a physical cue in the form of thread slightly improved trail following and mediated trail disruption from high concentrations upwind. Our results indicate that ants are able to use physical structures to reduce but not eliminate the effects of trail pheromone disruption.

  12. Sleep disruption in chronic rhinosinusitis.

    Science.gov (United States)

    Mahdavinia, Mahboobeh; Schleimer, Robert P; Keshavarzian, Ali

    2017-05-01

    Chronic rhinosinusitis (CRS) is a common disease of the upper airways and paranasal sinuses with a marked decline in quality of life (QOL). CRS patients suffer from sleep disruption at a significantly higher proportion (60 to 75%) than in the general population (8-18 %). Sleep disruption in CRS causes decreased QOL and is linked to poor functional outcomes such as impaired cognitive function and depression. Areas covered: A systematic PubMed/Medline search was done to assess the results of studies that have investigated sleep and sleep disturbances in CRS. Expert commentary: These studies reported sleep disruption in most CRS patients. The main risk factors for sleep disruption in CRS include allergic rhinitis, smoking, and high SNOT-22 total scores. The literature is inconsistent with regard to the prevalence of sleep-related disordered breathing (e.g. obstructive sleep apnea) in CRS patients. Although nasal obstruction is linked to sleep disruption, the extent of sleep disruption in CRS seems to expand beyond that expected from physical blockage of the upper airways alone. Despite the high prevalence of sleep disruption in CRS, and its detrimental effects on QOL, the literature contains a paucity of studies that have investigated the mechanisms underlying this major problem in CRS.

  13. The Effect of Coexistence of a Pair of Mutated Oncogenes on the Survival Rate of Invasive Breast Carcinoma Patients

    Science.gov (United States)

    Nair, D. R.

    2017-12-01

    The purpose of this project was to determine the effect of two mutated oncogenes on the survival rate from invasive breast carcinoma when in comparison to the mutation of a single oncogene on the survival rate. An oncogene is defined as a gene, that when mutated, can lead to cancer. The two oncogenes used in this project were human epidermal growth factor receptor 2 (HER2) and c-myc (MYC). HER2 and MYC are both oncogenes that contribute to the formation of cancer. HER2 proteins are receptors on breast cells, and when the HER2 gene is mutated, there is an overexpression of HER2 protein on the breast cell. This makes the breast cells proliferate uncontrollably. MYC is a gene that codes for a transcription factor that plays a role in cell cycle progression. The overexpression of MYC also leads to the proliferation of cells. I hypothesized that if there is a mutation in both the MYC and HER2 genes, then the survival rate of invasive breast carcinoma patients will be lower compared to patients with the mutations of only MYC or HER2. To test this hypothesis, we conducted individual gene searches in CBioPortal for HER2 in the datasets from the studies titled TCGA Nature 2012, TCGA Cell 2015, and TCGA Provisional. We conducted individual gene searches in CBioPortal for MYC in the same datasets. The survival rate data was then exported and analyzed for patients with mutations of either HER2 or MYC and with mutations of both genes. To determine the cases that had both HER2 and MYC mutations, we found the overlapping cases in both HER2 and MYC groups for all three datasets. We calculated the median of the survival data for cases where either HER2 or MYC was mutated and cases where both MYC and HER2 were mutated. From the first dataset, the median of MYC data was 95.53, HER2 data was 95.83, and both HER2 and MYC data was 91.24. In the second dataset, the median of MYC data was 92.17 , HER2 data was 93.5, and both HER2 and MYC data was 87.95 . In the third dataset, the median

  14. When Disruptive Approaches Meet Disruptive Technologies: Learning at a Distance.

    Science.gov (United States)

    Gibson, Chere Campbell

    2000-01-01

    Reviews research on constructivism in learning and selection of learning strategies. Suggests linking constructivism with instructional technologies for continuing medical education in order to "disrupt" reactive, habitual ways of learning and encourage active engagement. (SK)

  15. Plasma disruption modeling and simulation

    International Nuclear Information System (INIS)

    Hassanein, A.

    1994-01-01

    Disruptions in tokamak reactors are considered a limiting factor to successful operation and reliable design. The behavior of plasma-facing components during a disruption is critical to the overall integrity of the reactor. Erosion of plasma facing-material (PFM) surfaces due to thermal energy dump during the disruption can severely limit the lifetime of these components and thus diminish the economic feasibility of the reactor. A comprehensive understanding of the interplay of various physical processes during a disruption is essential for determining component lifetime and potentially improving the performance of such components. There are three principal stages in modeling the behavior of PFM during a disruption. Initially, the incident plasma particles will deposit their energy directly on the PFM surface, heating it to a very high temperature where ablation occurs. Models for plasma-material interactions have been developed and used to predict material thermal evolution during the disruption. Within a few microseconds after the start of the disruption, enough material is vaporized to intercept most of the incoming plasma particles. Models for plasma-vapor interactions are necessary to predict vapor cloud expansion and hydrodynamics. Continuous heating of the vapor cloud above the material surface by the incident plasma particles will excite, ionize, and cause vapor atoms to emit thermal radiation. Accurate models for radiation transport in the vapor are essential for calculating the net radiated flux to the material surface which determines the final erosion thickness and consequently component lifetime. A comprehensive model that takes into account various stages of plasma-material interaction has been developed and used to predict erosion rates during reactor disruption, as well during induced disruption in laboratory experiments

  16. Neutron-energy-dependent cell survival and oncogenic transformation.

    Science.gov (United States)

    Miller, R C; Marino, S A; Martin, S G; Komatsu, K; Geard, C R; Brenner, D J; Hall, E J

    1999-12-01

    Both cell lethality and neoplastic transformation were assessed for C3H10T1/2 cells exposed to neutrons with energies from 0.040 to 13.7 MeV. Monoenergetic neutrons with energies from 0.23 to 13.7 MeV and two neutron energy spectra with average energies of 0.040 and 0.070 MeV were produced with a Van de Graaff accelerator at the Radiological Research Accelerator Facility (RARAF) in the Center for Radiological Research of Columbia University. For determination of relative biological effectiveness (RBE), cells were exposed to 250 kVp X rays. With exposures to 250 kVp X rays, both cell survival and radiation-induced oncogenic transformation were curvilinear. Irradiation of cells with neutrons at all energies resulted in linear responses as a function of dose for both biological endpoints. Results indicate a complex relationship between RBEm and neutron energy. For both survival and transformation, RBEm was greatest for cells exposed to 0.35 MeV neutrons. RBEm was significantly less at energies above or below 0.35 MeV. These results are consistent with microdosimetric expectation. These results are also compatible with current assessments of neutron radiation weighting factors for radiation protection purposes. Based on calculations of dose-averaged LET, 0.35 MeV neutrons have the greatest LET and therefore would be expected to be more biologically effective than neutrons of greater or lesser energies.

  17. FOXM1 is an oncogenic mediator in Ewing Sarcoma.

    Directory of Open Access Journals (Sweden)

    Laura Christensen

    Full Text Available Ewing Family Tumors (Ewing Sarcoma and peripheral Primitive Neuroectodermal Tumor are common bone and soft tissue malignancies of childhood, adolescence and young adulthood. Chromosomal translocation in these tumors produces fusion oncogenes of the EWS/ETS class, with EWS/FLI1 being by far the most common. EWS/ETS chimera are the only well established driver mutations in these tumors and they function as aberrant transcription factors. Understanding the downstream genes whose expression is modified has been a central approach to the study of these tumors. FOXM1 is a proliferation associated transcription factor which has increasingly been found to play a role in the pathogenesis of a wide range of human cancers. Here we demonstrate that FOXM1 is expressed in Ewing primary tumors and cell lines. Reduction in FOXM1 expression in Ewing cell lines results in diminished potential for anchorage independent growth. FOXM1 expression is enhanced by EWS/FLI1, though, unlike other tumor systems, it is not driven by expression of the EWS/FLI1 target GLI1. Thiostrepton is a compound known to inhibit FOXM1 by direct binding. We show that Thiostrepton diminishes FOXM1 expression in Ewing cell lines and this reduction reduces cell viability through an apoptotic mechanism. FOXM1 is involved in Ewing tumor pathogenesis and may prove to be a useful therapeutic target in Ewing tumors.

  18. Long Intergenic Noncoding RNA 00511 Acts as an Oncogene in Non–small-cell Lung Cancer by Binding to EZH2 and Suppressing p57

    Directory of Open Access Journals (Sweden)

    Cheng-Cao Sun

    2016-01-01

    Full Text Available Long noncoding RNAs (lncRNAs play crucial roles in carcinogenesis. However, the function and mechanism of lncRNAs in human non–small-cell lung cancer (NSCLC are still remaining largely unknown. Long intergenic noncoding RNA 00511 (LINC00511 has been found to be upregulated and acts as an oncogene in breast cancer, but little is known about its expression pattern, biological function and underlying mechanism in NSCLC. Herein, we identified LINC00511 as an oncogenic lncRNA by driving tumorigenesis in NSCLC. We found LINC00511 was upregulated and associated with oncogenesis, tumor size, metastasis, and poor prognosis in NSCLC. Moreover, LINC00511 affected cell proliferation, invasiveness, metastasis, and apoptosis in multiple NSCLC cell lines. Mechanistically, LINC00511 bound histone methyltransferase enhancer of zeste homolog 2 ((EZH2, the catalytic subunit of the polycomb repressive complex 2 (PRC2, a highly conserved protein complex that regulates gene expression by methylating lysine 27 on histone H3, and acted as a modular scaffold of EZH2/PRC2 complexes, coordinated their localization, and specified the histone modification pattern on the target genes, including p57, and consequently altered NSCLC cell biology. Thus, LINC00511 is mechanistically, functionally, and clinically oncogenic in NSCLC. Targeting LINC00511 and its pathway may be meaningful for treating patients with NSCLC.

  19. Co-chaperone BAG2 Determines the Pro-oncogenic Role of Cathepsin B in Triple-Negative Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kyung-Min Yang

    2017-12-01

    Full Text Available Summary: Triple-negative breast cancer (TNBC is considered incurable with currently available treatments, highlighting the need for therapeutic targets and predictive biomarkers. Here, we report a unique role for Bcl-2-associated athanogene 2 (BAG2, which is significantly overexpressed in TNBC, in regulating the dual functions of cathepsin B as either a pro- or anti-oncogenic enzyme. Silencing BAG2 suppresses tumorigenesis and lung metastasis and induces apoptosis by increasing the intracellular mature form of cathepsin B, whereas BAG2 expression induces metastasis by blocking the auto-cleavage processing of pro-cathepsin B via interaction with the propeptide region. BAG2 regulates pro-cathepsin B/annexin II complex formation and facilitates the trafficking of pro-cathespin-B-containing TGN38-positive vesicles toward the cell periphery, leading to the secretion of pro-cathepsin B, which induces metastasis. Collectively, our results uncover BAG2 as a regulator of the oncogenic function of pro-cathepsin B and a potential diagnostic and therapeutic target that may reduce the burden of metastatic breast cancer. : The mechanisms controlling the pro- and anti-oncogenic roles of cathepsin B are unclear. Yang et al. find that BAG2 is a regulator of the dual functions of its client protein, CTSB, facilitating the progression of TNBC. Keywords: BAG2, cathepsin B, TNBC, tumorigenesis, metastasis, breast cancer, TGN38

  20. C/EBPβ represses p53 to promote cell survival downstream of DNA damage independent of oncogenic Ras and p19Arf

    Science.gov (United States)

    Ewing, SJ; Zhu, S; Zhu, F; House, JS; Smart, RC

    2013-01-01

    CCAAT/enhancer-binding protein-β (C/EBPβ) is a mediator of cell survival and tumorigenesis. When C/EBPβ−/− mice are treated with carcinogens that produce oncogenic Ras mutations in keratinocytes, they respond with abnormally elevated keratinocyte apoptosis and a block in skin tumorigenesis. Although this aberrant carcinogen-induced apoptosis results from abnormal upregulation of p53, it is not known whether upregulated p53 results from oncogenic Ras and its ability to induce p19Arf and/or activate DNA-damage response pathways or from direct carcinogen-induced DNA damage. We report that p19Arf is dramatically elevated in C/EBPβ−/− epidermis and that C/EBPβ represses a p19Arf promoter reporter. To determine whether p19Arf is responsible for the proapoptotic phenotype in C/EBPβ−/− mice, C/EBPβ−/−;p19Arf−/− mice were generated. C/EBPβ−/−;p19Arf−/− mice responded to carcinogen treatment with increased p53 and apoptosis, indicating p19Arf is not essential. To ascertain whether oncogenic Ras activation induces aberrant p53 and apoptosis in C/EBPβ−/− epidermis, we generated K14-ER:Ras; C/EBPβ−/− mice. Oncogenic Ras activation induced by 4-hydroxytamoxifen did not produce increased p53 or apoptosis. Finally, when C/EBPβ−/− mice were treated with differing types of DNA-damaging agents, including alkylating chemotherapeutic agents, they displayed aberrant levels of p53 and apoptosis. These results indicate that C/EBPβ represses p53 to promote cell survival downstream of DNA damage and suggest that inhibition of C/EBPβ may be a target for cancer cotherapy to increase the efficacy of alkylating chemotherapeutic agents. PMID:18636078

  1. Oncogenic K-Ras Activates p38 to Maintain Colorectal Cancer Cell Proliferation during MEK Inhibition

    Directory of Open Access Journals (Sweden)

    Winan J. van Houdt

    2010-01-01

    Full Text Available Background: Colon carcinomas frequently contain activating mutations in the K-ras proto-oncogene. K-ras itself is a poor drug target and drug development efforts have mostly focused on components of the classical Ras-activated MEK/ERK pathway. Here we have studied whether endogenous oncogenic K-ras affects the dependency of colorectal tumor cells on MEK/ERK signaling.

  2. Protein Profiling of Isolated Leukocytes, Myofibroblasts, Epithelial, Basal, and Endothelial Cells from Normal, Hyperplastic, Cancerous, and Inflammatory Human Prostate Tissues

    Directory of Open Access Journals (Sweden)

    Zahraa I. Khamis, Kenneth A. Iczkowski, Ziad J. Sahab, Qing-Xiang Amy Sang

    2010-01-01

    Full Text Available In situ neoplastic prostate cells are not lethal unless they become invasive and metastatic. For cells to become invasive, the prostate gland must undergo degradation of the basement membrane and disruption of the basal cell layer underneath the luminal epithelia. Although the roles of proteinases in breaking down the basement membrane have been well-studied, little is known about the factors that induce basal cell layer disruption, degeneration, and its eventual disappearance in invasive cancer. It is hypothesized that microenvironmental factors may affect the degradation of the basal cell layer, which if protected may prevent tumor progression and invasion. In this study, we have revealed differential protein expression patterns between epithelial and stromal cells isolated from different prostate pathologies and identified several important epithelial and stromal proteins that may contribute to inflammation and malignant transformation of human benign prostate tissues to cancerous tissues using matrix-assisted laser desorption ionization time-of-flight mass spectrometry and proteomics methods. Cellular retinoic acid-binding protein 2 was downregulated in basal cells of benign prsotate. Caspase-1 and interleukin-18 receptor 1 were highly expressed in leukocytes of prostate cancer. Proto-oncogene Wnt-3 was downregulated in endothelial cells of prostatitis tissue and tyrosine phosphatase non receptor type 1 was only found in normal and benign endothelial cells. Poly ADP-ribose polymerase 14 was downregulated in myofibroblasts of prostatitis tissue. Interestingly, integrin alpha-6 was upregulated in epithelial cells but not detected in myofibroblasts of prostate cancer. Further validation of these proteins may generate new strategies for the prevention of basal cell layer disruption and subsequent cancer invasion.

  3. Symposium on disruptive instabilities at Garching

    International Nuclear Information System (INIS)

    Lackner, K.

    1979-01-01

    The phenomenon of disruptive instabilities was investigated with a special care at the IPP at Garching. After lectures and panel sessions it appears suitable, to subdivide the disruptive phenomena into four classes: 1. The internal disruption (the socalled saw-tooth oscillators). 2. the socalled reconnection disruptions. 3. The large disruptions. 4. The small disruptions. The four appearance forms of the phenomena are briefly explained. (GG) [de

  4. A Network Disruption Modeling Tool

    National Research Council Canada - National Science Library

    Leinart, James

    1998-01-01

    Given that network disruption has been identified as a military objective and C2-attack has been identified as the mechanism to accomplish this objective, a target set must be acquired and priorities...

  5. Quantitative two-dimensional gel electrophoresis analysis of human fibroblasts transformed by ras oncogenes.

    Science.gov (United States)

    Miller, M J; Maher, V M; McCormick, J J

    1992-11-01

    Quantitative two-dimensional gel electrophoresis was used to compare the cellular protein patterns of a normal foreskin-derived human fibroblasts cell line (LG1) and three immortal derivatives of LG1. One derivative, designated MSU-1.1 VO, was selected for its ability to grow in the absence of serum and is non-tumorigenic in athymic mice. The other two strains were selected for focus-formation following transfection with either Ha-ras or N-ras oncogenes and form high grade malignant tumors. Correspondence and cluster analysis provided a nonbiased estimate of the relative similarity of the different two-dimensional patterns. These techniques separated the gel patterns into three distinct classes: LG1, MSU-1.1 VO, and the ras transformed cell strains. The MSU-1.1 VO cells were more closely related to the parental LG1 than to the ras-transformed cells. The differences between the three classes were primarily quantitative in nature: 16% of the spots demonstrated statistically significant changes (P 2) in the rate of incorporation of radioactive amino acids. The patterns from the two ras-transformed cell strains were similar, and variations in the expression of proteins that occurred between the separate experiments obscured consistent differences between the Ha-ras and N-ras transformed cells. However, while only 9 out of 758 spots were classified as different (1%), correspondence analysis could consistently separate the two ras transformants. One of these spots was five times more intense in the Ha-ras transformed cells than the N-ras.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. The WIP1 oncogene promotes progression and invasion of aggressive medulloblastoma variants.

    Science.gov (United States)

    Buss, M C; Remke, M; Lee, J; Gandhi, K; Schniederjan, M J; Kool, M; Northcott, P A; Pfister, S M; Taylor, M D; Castellino, R C

    2015-02-26

    Recent studies suggest that medulloblastoma, the most common malignant brain tumor of childhood, is comprised of four disease variants. The WIP1 oncogene is overexpressed in Group 3 and 4 tumors, which contain medulloblastomas with the most aggressive clinical behavior. Our data demonstrate increased WIP1 expression in metastatic medulloblastomas, and inferior progression-free and overall survival of patients with WIP1 high-expressing medulloblastoma. Microarray analysis identified upregulation of genes involved in tumor metastasis, including the G protein-coupled receptor CXCR4, in medulloblastoma cells with high WIP1 expression. Stimulation with the CXCR4 ligand SDF1α activated PI-3 kinase signaling, and promoted growth and invasion of WIP1 high-expressing medulloblastoma cells in a p53-dependent manner. When xenografted into the cerebellum of immunodeficient mice, medulloblastoma cells with stable or endogenous high WIP1 expression exhibited strong expression of CXCR4 and activated AKT in primary and invasive tumor cells. WIP1 or CXCR4 knockdown inhibited medulloblastoma growth and invasion. WIP1 knockdown also improved the survival of mice xenografted with WIP1 high-expressing medulloblastoma cells. WIP1 knockdown inhibited cell surface localization of CXCR4 by suppressing expression of the G protein receptor kinase 5, GRK5. Restoration of wild-type GRK5 promoted Ser339 phosphorylation of CXCR4 and inhibited the growth of WIP1-stable medulloblastoma cells. Conversely, GRK5 knockdown inhibited Ser339 phosphorylation of CXCR4, increased cell surface localization of CXCR4 and promoted the growth of medulloblastoma cells with low WIP1 expression. These results demonstrate crosstalk among WIP1, CXCR4 and GRK5, which may be important for the aggressive phenotype of a subclass of medulloblastomas in children.

  7. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated RAS oncogene and SV40 T-antigen

    Energy Technology Data Exchange (ETDEWEB)

    Su, L.-N.; Little, J.B. (Harvard School of Public Health, Boston, MA (United States))

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself. (author).

  8. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated RAS oncogene and SV40 T-antigen

    International Nuclear Information System (INIS)

    Su, L.-N.; Little, J.B.

    1992-01-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself. (author)

  9. DISRUPTIVE TECHNOLOGIES: AN EXPANDED VIEW

    OpenAIRE

    JAMES M. UTTERBACK; HAPPY J. ACEE

    2005-01-01

    The term "disruptive technology" as coined by Christensen (1997, The Innovator's Dilemma; How New Technologies Cause Great Firms to Fail. Harvard Business School Press) refers to a new technology having lower cost and performance measured by traditional criteria, but having higher ancillary performance. Christensen finds that disruptive technologies may enter and expand emerging market niches, improving with time and ultimately attacking established products in their traditional markets. This...

  10. TLX homeodomain oncogenes mediate T cell maturation arrest in T-ALL via interaction with ETS1 and suppression of TCRα gene expression.

    Science.gov (United States)

    Dadi, Saïda; Le Noir, Sandrine; Payet-Bornet, Dominique; Lhermitte, Ludovic; Zacarias-Cabeza, Joaquin; Bergeron, Julie; Villarèse, Patrick; Vachez, Elodie; Dik, Willem A; Millien, Corinne; Radford, Isabelle; Verhoeyen, Els; Cosset, François-Loïc; Petit, Arnaud; Ifrah, Norbert; Dombret, Hervé; Hermine, Olivier; Spicuglia, Salvatore; Langerak, Anton W; Macintyre, Elizabeth A; Nadel, Bertrand; Ferrier, Pierre; Asnafi, Vahid

    2012-04-17

    Acute lymphoblastic leukemias (ALLs) are characterized by multistep oncogenic processes leading to cell-differentiation arrest and proliferation. Specific abrogation of maturation blockage constitutes a promising therapeutic option in cancer, which requires precise understanding of the underlying molecular mechanisms. We show that the cortical thymic maturation arrest in T-lineage ALLs that overexpress TLX1 or TLX3 is due to binding of TLX1/TLX3 to ETS1, leading to repression of T cell receptor (TCR) α enhanceosome activity and blocked TCR-Jα rearrangement. TLX1/TLX3 abrogation or enforced TCRαβ expression leads to TCRα rearrangement and apoptosis. Importantly, the autoextinction of clones carrying TCRα-driven TLX1 expression supports TLX "addiction" in TLX-positive leukemias and provides further rationale for targeted therapy based on disruption of TLX1/TLX3. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Improvements in disruption prediction at ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Aledda, R., E-mail: raffaele.aledda@diee.unica.it; Cannas, B., E-mail: cannas@diee.unica.it; Fanni, A., E-mail: fanni@diee.unica.it; Pau, A., E-mail: alessandro.pau@diee.unica.it; Sias, G., E-mail: giuliana.sias@diee.unica.it

    2015-10-15

    Highlights: • A disruption prediction system for AUG, based on a logistic model, is designed. • The length of the disruptive phase is set for each disruption in the training set. • The model is tested on dataset different from that used during the training phase. • The generalization capability and the aging of the model have been tested. • The predictor performance is compared with the locked mode detector. - Abstract: In large-scale tokamaks disruptions have the potential to create serious damage to the facility. Hence disruptions must be avoided, but, when a disruption is unavoidable, minimizing its severity is mandatory. A reliable detection of a disruptive event is required to trigger proper mitigation actions. To this purpose machine learning methods have been widely studied to design disruption prediction systems at ASDEX Upgrade. The training phase of the proposed approaches is based on the availability of disrupted and non-disrupted discharges. In literature disruptive configurations were assumed appearing into the last 45 ms of each disruption. Even if the achieved results in terms of correct predictions were good, it has to be highlighted that the choice of such a fixed temporal window might have limited the prediction performance. In fact, it generates confusing information in cases of disruptions with disruptive phase different from 45 ms. The assessment of a specific disruptive phase for each disruptive discharge represents a relevant issue in understanding the disruptive events. In this paper, the Mahalanobis distance is applied to define a specific disruptive phase for each disruption, and a logistic regressor has been trained as disruption predictor. The results show that enhancements on the achieved performance on disruption prediction are possible by defining a specific disruptive phase for each disruption.

  12. Improvements in disruption prediction at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Aledda, R.; Cannas, B.; Fanni, A.; Pau, A.; Sias, G.

    2015-01-01

    Highlights: • A disruption prediction system for AUG, based on a logistic model, is designed. • The length of the disruptive phase is set for each disruption in the training set. • The model is tested on dataset different from that used during the training phase. • The generalization capability and the aging of the model have been tested. • The predictor performance is compared with the locked mode detector. - Abstract: In large-scale tokamaks disruptions have the potential to create serious damage to the facility. Hence disruptions must be avoided, but, when a disruption is unavoidable, minimizing its severity is mandatory. A reliable detection of a disruptive event is required to trigger proper mitigation actions. To this purpose machine learning methods have been widely studied to design disruption prediction systems at ASDEX Upgrade. The training phase of the proposed approaches is based on the availability of disrupted and non-disrupted discharges. In literature disruptive configurations were assumed appearing into the last 45 ms of each disruption. Even if the achieved results in terms of correct predictions were good, it has to be highlighted that the choice of such a fixed temporal window might have limited the prediction performance. In fact, it generates confusing information in cases of disruptions with disruptive phase different from 45 ms. The assessment of a specific disruptive phase for each disruptive discharge represents a relevant issue in understanding the disruptive events. In this paper, the Mahalanobis distance is applied to define a specific disruptive phase for each disruption, and a logistic regressor has been trained as disruption predictor. The results show that enhancements on the achieved performance on disruption prediction are possible by defining a specific disruptive phase for each disruption.

  13. IQGAP1 is an oncogenic target in canine melanoma.

    Directory of Open Access Journals (Sweden)

    Becky H Lee

    Full Text Available Canine oral mucosal melanoma is an aggressive malignant neoplasm and is characterized by local infiltration and a high metastatic potential. The disease progression is similar to that of human oral melanomas. Whereas human cutaneous melanoma is primarily driven by activating mutations in Braf (60% or Nras (20%, human mucosal melanoma harbors these mutations much less frequently. This makes therapeutic targeting and research modeling of the oral form potentially different from that of the cutaneous form in humans. Similarly, research has found only rare Nras mutations and no activating Braf mutations in canine oral melanomas, but they are still reliant on MAPK signaling. IQGAP1 is a signaling scaffold that regulates oncogenic ERK1/2 MAPK signaling in human Ras- and Raf- driven cancers, including melanomas. To investigate whether IQGAP1 is a potential target in canine melanoma, we examined the expression and localization of IQGAP1 in primary canine melanomas and canine oral melanoma cell lines obtained from the University of California-Davis. Using CRISPR/Cas9 knockout of IQGAP1, we examined effects on downstream ERK1/2 pathway activity and assayed proliferation of cell lines when treated with a peptide that blocks the interaction between IQGAP1 and ERK1/2. We observed that canine IQGAP1 is expressed and localizes to a similar extent in both human and canine melanoma by qPCR, Western blot, and immunofluorescence. Deletion of IQGAP1 reduces MAPK pathway activation in cell lines, similar to effects seen in human BrafV600E cell lines. Additionally, we demonstrated reduced proliferation when these cells are treated with a blocking peptide in vitro.

  14. Investigating the structure and dynamics of the PIK3CA wild-type and H1047R oncogenic mutant.

    Directory of Open Access Journals (Sweden)

    Paraskevi Gkeka

    2014-10-01

    Full Text Available The PIK3CA gene is one of the most frequently mutated oncogenes in human cancers. It encodes p110α, the catalytic subunit of phosphatidylinositol 3-kinase alpha (PI3Kα, which activates signaling cascades leading to cell proliferation, survival, and cell growth. The most frequent mutation in PIK3CA is H1047R, which results in enzymatic overactivation. Understanding how the H1047R mutation causes the enhanced activity of the protein in atomic detail is central to developing mutant-specific therapeutics for cancer. To this end, Surface Plasmon Resonance (SPR experiments and Molecular Dynamics (MD simulations were carried out for both wild-type (WT and H1047R mutant proteins. An expanded positive charge distribution on the membrane binding regions of the mutant with respect to the WT protein is observed through MD simulations, which justifies the increased ability of the mutated protein variant to bind to membranes rich in anionic lipids in our SPR experiments. Our results further support an auto-inhibitory role of the C-terminal tail in the WT protein, which is abolished in the mutant protein due to loss of crucial intermolecular interactions. Moreover, Functional Mode Analysis reveals that the H1047R mutation alters the twisting motion of the N-lobe of the kinase domain with respect to the C-lobe and shifts the position of the conserved P-loop residues in the vicinity of the active site. These findings demonstrate the dynamical and structural differences of the two proteins in atomic detail and propose a mechanism of overactivation for the mutant protein. The results may be further utilized for the design of mutant-specific PI3Kα inhibitors that exploit the altered mutant conformation.

  15. The Human Cytomegalovirus Strain DB Activates Oncogenic Pathways in Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2018-04-01

    Full Text Available Background: Human cytomegalovirus (HCMV establishes a persistent life-long infection and increasing evidence indicates HCMV infection can modulate signaling pathways associated with oncogenesis. Breast milk is an important route of HCMV transmission in humans and we hypothesized that mammary epithelial cells could be one of the main cellular targets of HCMV infection. Methods: The infectivity of primary human mammary epithelial cells (HMECs was assessed following infection with the HCMV-DB strain, a clinical isolate with a marked macrophage-tropism. The impact of HCMV-DB infection on expression of p53 and retinoblastoma proteins, telomerase activity and oncogenic pathways (c-Myc, Akt, Ras, STAT3 was studied. Finally the transformation of HCMV-DB infected HMECs was evaluated using soft agar assay. CTH cells (CMV Transformed HMECs were detected in prolonged cultures of infected HMECs. Tumor formation was observed in NOD/SCID Gamma (NSG mice injected with CTH cells. Detection of long non coding RNA4.9 (lncRNA4.9 gene was assessed in CTH cells, tumors isolated from xenografted NSG mice and biopsies of patients with breast cancer using qualitative and quantitative PCR. Results: We found that HCMV, especially a clinical strain named HCMV-DB, infects HMECs in vitro. The clinical strain HCMV-DB replicates productively in HMECs as evidenced by detection of early and late viral transcripts and proteins. Following infection of HMECs with HCMV-DB, we observed the inactivation of retinoblastoma and p53 proteins, the activation of telomerase activity, the activation of the proto-oncogenes c-Myc and Ras, the activation of Akt and STAT3, and the upregulation of cyclin D1 and Ki67 antigen. Colony formation was observed in soft agar seeded with HCMV-DB-infected HMECs. Prolonged culture of infected HMECs resulted in the development of clusters of spheroid cells that we called CTH cells (CMV Transformed HMECs. CTH cells when injected in NOD/SCID Gamma (NSG mice

  16. Elevated expression of proto-oncogenes accompany enhanced induction of heat-shock genes after exposure of rat embryos in utero to ionizing irradiation

    International Nuclear Information System (INIS)

    Higo, H.; Lee, J.Y.; Satow, Y.; Higo, K.

    1989-01-01

    We have recently found that the effects of exposing rat embryos in utero to teratogens capable of producing cardiac anomalies were expressed later as enhanced induction of heat-shock proteins (hsp70 family) when embryonic hearts were cultured in vitro. However, it remained to be determined whether heat-shock proteins are induced in vivo after exposure to teratogens. The heat-shock response in some mammalian systems is known to be accompanied by elevated expression of proto-oncogenes. Using gene-specific DNA probes, we examined the levels of the expression (transcription) of heat-shock protein genes and two nuclear proto-oncogenes, c-fos and c-myc, in the embryos removed from irradiated pregnant mother rats 4 or 5 days after the irradiation. We found that the levels of expression in vivo of the hsp70 and c-myc genes in the irradiated embryos increased by approximately twofold as compared with those in the control. The expression in vivo of the c-fos gene was not detected in either the irradiated or non-irradiated embryos. After 0.5-hr incubation in vitro of the embryos, however, the expression of the c-fos gene in the irradiated embryos was highly enhanced whereas the control showed no changes. Although the exact functions of these gene products still remain obscure, the enhanced expression of hsp70 gene(s) and the nuclear proto-oncogenes observed in the present study may reflect repair of intracellular damages and/or regeneration of tissue by compensatory cell proliferation, processes that may disturb the normal program of organogenesis

  17. Aubergine and piRNAs promote germline stem cell self-renewal by repressing the proto-oncogene Cbl.

    Science.gov (United States)

    Rojas-Ríos, Patricia; Chartier, Aymeric; Pierson, Stéphanie; Simonelig, Martine

    2017-11-02

    PIWI proteins play essential roles in germ cells and stem cell lineages. In Drosophila , Piwi is required in somatic niche cells and germline stem cells (GSCs) to support GSC self-renewal and differentiation. Whether and how other PIWI proteins are involved in GSC biology remains unknown. Here, we show that Aubergine (Aub), another PIWI protein, is intrinsically required in GSCs for their self-renewal and differentiation. Aub needs to be loaded with piRNAs to control GSC self-renewal and acts through direct mRNA regulation. We identify the Cbl proto-oncogene, a regulator of mammalian hematopoietic stem cells, as a novel GSC differentiation factor. Aub stimulates GSC self-renewal by repressing Cbl mRNA translation and does so in part through recruitment of the CCR4-NOT complex. This study reveals the role of piRNAs and PIWI proteins in controlling stem cell homeostasis via translational repression and highlights piRNAs as major post-transcriptional regulators in key developmental decisions. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  18. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1979-01-01

    Three basic topics are addressed for the disruptive event analysis: first, the range of disruptive consequences of a radioactive waste repository by volcanic activity; second, the possible reduction of the risk of disruption by volcanic activity through selective siting of a repository; and third, the quantification of the probability of repository disruption by volcanic activity

  19. Disruption studies on ASDEX upgrade

    International Nuclear Information System (INIS)

    Pautasso, G.; Egorov, S.; Finken, K.H.

    2003-01-01

    Disruptions generate large thermal and mechanical stresses on the tokamak components and are occasionally responsible for damages to the machine. For a future reactor disruptions have a significant impact on the design since all loading conditions must be analyzed in accordance with stricter design criteria (due to safety or difficult maintenance). Therefore the uncertainties affecting the predicted stresses must be reduced as much as possible with a more comprehensive set of measurements and analyses in this generation of experimental machines, and avoidance/predictive methods must be developed further. Disruption studies on ASDEX Upgrade are focused on these subjects, namely on: (1) understanding the physical mechanisms