WorldWideScience

Sample records for disposal wells

  1. Wastewater Disposal Wells, Fracking, and Environmental Injustice in Southern Texas.

    Science.gov (United States)

    Johnston, Jill E; Werder, Emily; Sebastian, Daniel

    2016-03-01

    To investigate race and poverty in areas where oil and gas wastewater disposal wells, which are used to permanently inject wastewater from hydraulic fracturing (fracking) operations, are permitted. With location data of oil and gas disposal wells permitted between 2007 and 2014 in the Eagle Ford area, a region of intensive fracking in southern Texas, we analyzed the racial composition of residents living less than 5 kilometers from a disposal well and those farther away, adjusting for rurality and poverty, using a Poisson regression. The proportion of people of color living less than 5 kilometers from a disposal well was 1.3 times higher than was the proportion of non-Hispanic Whites. Adjusting for rurality, disposal wells were 2.04 times (95% confidence interval = 2.02, 2.06) as common in areas with 80% people of color or more than in majority White areas. Disposal wells are also disproportionately sited in high-poverty areas. Wastewater disposal wells in southern Texas are disproportionately permitted in areas with higher proportions of people of color and residents living in poverty, a pattern known as "environmental injustice."

  2. Disposal of liquid radioactive wastes through wells or shafts

    International Nuclear Information System (INIS)

    Perkins, B.L.

    1982-01-01

    This report describes disposal of liquids and, in some cases, suitable solids and/or entrapped gases, through: (1) well injection into deep permeable strata, bounded by impermeable layers; (2) grout injection into an impermeable host rock, forming fractures in which the waste solidifies; and (3) slurrying into excavated subsurface cavities. Radioactive materials are presently being disposed of worldwide using all three techniques. However, it would appear that if the techniques were verified as posing minimum hazards to the environment and suitable site-specific host rock were identified, these disposal techniques could be more widely used

  3. Combination gas producing and waste-water disposal well

    Science.gov (United States)

    Malinchak, Raymond M.

    1984-01-01

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  4. Subsurface waste disposal by means of wells - A selective annotated bibliography

    Science.gov (United States)

    Rima, Donald Robert; Chase, Edith B.; Myers, Beverly M.

    1971-01-01

    Subsurface waste disposal by means of wells is the practice of using drilled wells to inject unwanted substances into underground rock formations. The use of wells for this purpose is not a new idea. As long ago as the end of the last century, it was common practice to drill wells for the express purpose of draining swamps and small lakes to reclaim the land for agricultural purposes. A few decades later in the 1920's and 1930's many oil companies began using injection wells to dispose of oil-field brines and to repressurize oil reservoirs. During World War II, the Atomic Energy Commission began using injection wells to dispose of certain types of radioactive wastes. More recently, injection wells have been drilled to dispose of a variety of byproducts of industrial processes. The number of such wells has increased rapidly since Congress passed the Clean Streams Act of 1966, which restricted the discharge of waste into surface waters.Many scientists and public officials question the propriety of using the term "disposal" when referring to the underground injection of wastes. Their reasons are that underground injection is not, as many advocates claim, "a complete and final answer" to the waste-disposal problem. Rather, it is merely a process wherein the injected wastes are committed to the subsurface with uncertainty as to their ultimate fate or limits of confinement. In effect, the wastes, undiminished and unchanged, are removed from the custody of man and placed in the custody of nature.Although the concept of waste-injection wells is relatively simple, the effects of waste injection can be very complex, particularly when dealing with the exotic and complex components of some industrial wastes. Besides the physical forces of injection, there are many varied interactions between the injected wastes and the materials within the injection zone. Because these changes occur out of sight in the subsurface, they are difficult to assess and not generally understood. In

  5. Combination gas-producing and waste-water disposal well. [DOE patent application

    Science.gov (United States)

    Malinchak, R.M.

    1981-09-03

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  6. Well-construction and hydrogeologic data for observation wells in the vicinity of a low-level radioactive-waste disposal site near Sheffield, Illinois

    Science.gov (United States)

    Mansue, Lawrence J.; Mills, Patrick C.

    1991-01-01

    The U.S. Geological Survey conducted hydrogeologic studies at the low-level radioactive-waste disposal site near Sheffield, Illinois, from 1976 through 1987. During that period, 108 observation wells were installed in the vicinity of the disposal site in glacial and post-glacial deposits of Quaternary age and bedrock of Pennsylvanian age. Data in this report include the location of each well, the date each well was drilled, the geologic units penetrated by each well, the physical measurements of each well, the elevations of the top (measuring point) of each well and geologic-unit contacts at each well, and the highest and lowest recorded water levels in each well.

  7. Control of environmental impact of low-level aqueous fuel reprocessing wastes by deep-well disposal

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Steindler, M.J.

    1978-01-01

    The following conclusions are made: (1) the technology and much experience for this disposal method are available; (2) large areas of the U.S. offer geological formations suitable for deep well disposal, but substantial effort may be required in the choice of a specific site; (3) although costs are substantial, they are small compared to associated environmental and energy benefits; (4) impacts on water consumers would be minimized through regulatory checks of siting, construction, and monitoring, and also through natural dilution and radioactive decay; (5) disposal wells must satisfy regulations, of recently-increased stringency, on siting, design, construction, operation, monitoring, and decommissioning

  8. Possibility of Radioactive and Toxic WasteDisposal in a Rock Ssalt Deposits in Slovakia Combining Wells and Cavities

    Directory of Open Access Journals (Sweden)

    Škvareková Erika

    2004-09-01

    Full Text Available Disposal of radioactive and toxic waste in rock salt can be performed in two ways – disposal in the salt mine repository or disposal in the deep wells connected with salt cavity. Presented article deals with the option of the disposal in a salt cavity at medium depths. The article also cover partially salt deposits in Slovakia and their potential suitability for waste disposal..

  9. Automated disposal of produced water from a coalbed methane well field, a case history

    International Nuclear Information System (INIS)

    Luckianow, B.J.; Findley, M.L.; Paschal, W.T.

    1994-01-01

    This paper provides an overview of the automated disposal system for produced water designed and operated by Taurus Exploration, Inc. This presentation draws from Taurus' case study in the planning, design, construction, and operation of production water disposal facilities for the Mt. Olive well field, located in the Black Warrior Basin of Alabama. The common method for disposing of water produced from coalbed methane wells in the Warrior Basin is to discharge into a receiving stream. The limiting factor in the discharge method is the capability of the receiving stream to assimilate the chloride component of the water discharged. During the winter and spring, the major tributaries of the Black Warrior River are capable of assimilating far more production water than operations can generate. During the summer and fall months, however, these same tributaries can approach near zero flow, resulting in insufficient flow for dilution. During such periods pumping shut-down within the well field can be avoided by routing production waters into a storage facility. This paper discusses the automated production water disposal system on Big Sandy Creek designed and operated by Taurus. This system allows for continuous discharge to the receiving stream, thus taking full advantage of Big Sandy Creek's assimilative capacity, while allowing a provision for excess produced water storage and future stream discharge

  10. Design, placement, and sampling of groundwater monitoring wells for the management of hazardous waste disposal facilities

    International Nuclear Information System (INIS)

    Tsai, S.Y.

    1988-01-01

    Groundwater monitoring is an important technical requirement in managing hazardous waste disposal facilities. The purpose of monitoring is to assess whether and how a disposal facility is affecting the underlying groundwater system. This paper focuses on the regulatory and technical aspects of the design, placement, and sampling of groundwater monitoring wells for hazardous waste disposal facilities. Such facilities include surface impoundments, landfills, waste piles, and land treatment facilities. 8 refs., 4 figs

  11. Work plan for monitor well/groundwater elevation data recorder installation at the Cheney Disposal site, Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1994-09-01

    In May 1990, during the excavation for the Grand Junction, Colorado, Cheney Reservoir disposal cell (Cheney), a water bearing paleochannel was encountered along the northern boundary of the excavation (designated the Northwest Paleochannel). To ensure the long-term integrity of the disposal embankment, remedial actions were taken including the excavation of the paleochannel and underlying material to bedrock, backfilling of the trapezoidal trench with granular material, and placement of a geotextile liner above the granular material. Compacted clay backfill was placed above the reconstructed paleochannel trench, and the northwest corner was restored to the designated grade. Investigation of other paleochannels determined that ground water flow terminated before it migrated as far west as the disposal cell. Therefore, flow in these paleochannels would have no impact on the disposal cell. Although characterization efforts did not indicate the presence of a ground water-bearing paleochannel south of the disposal cell, the potential could not be ruled out. As a best management practice for long-term monitoring at Cheney, two monitor wells will be installed within the paleochannels. One well will be installed within 50 feet (ft) west of the reconstructed Northwest Paleochannel. The second well will be installed near the southwestern (downgradient) corner of the disposal cell. The purposes of these wells are to characterize ground water flow (if any) within the paleochannels and to monitor the potential for water movement (seepage) into or out of the disposal cell. Initial monitoring of the paleochannels will consist of water level elevation measurement collection and trend analysis to evaluate fluctuations in storage. The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of two ground water monitor wells and two ground water elevation data recorders (data loggers) at Cheney

  12. Water quality considerations resulting in the impaired injectivity of water injection and disposal wells

    International Nuclear Information System (INIS)

    Bennion, D.B.; Thomas, F.B.; Imer, D.; Ma, T.

    2000-01-01

    An environmentally responsible way to improve hydrocarbon recovery is to maintain pressure by water injection. This is a desirable method because unwanted produced water from oil and gas wells can be re-injected into producing or disposal formations. The success of the operation, however, depends on injecting the necessary volume of water economically, below the fracture gradient pressure of the formation. Well placement, geometry and inherent formation quality and relative permeability characteristics are some of the many other factors which influence the success of any injection project. Poor injection or poor quality of disposal water can also compromise the injectivity for even high quality sandstone or carbonate formations. This would necessitate costly workovers and recompletions. This paper presented some leading edge diagnostic techniques and evaluation methods to determine the quality of injected water. The same techniques could be used to better understand the effect of potential contaminants such as suspended solids, corrosion products, skim/carryover oil and grease, scales, precipitates, emulsions, oil wet hydrocarbon agglomerates and many other conditions which cause injectivity degradation. 14 refs., 1 tab., 15 figs

  13. Considerations affecting deep-well disposal of tritium-bearing low-level aqueous waste from nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Warner, D.L.; Steindler, M.J.

    1977-03-01

    Present concepts of disposal of low-level aqueous wastes (LLAW) that contain much of the fission-product tritium from light water reactors involve dispersal to the atmosphere or to surface streams at fuel reprocessing plants. These concepts have been challenged in recent years. Deep-well injection of low-level aqueous wastes, an alternative to biospheric dispersal, is the subject of this presentation. Many factors must be considered in assessing its feasibility, including technology, costs, environmental impact, legal and regulatory constraints, and siting. Examination of these factors indicates that the technology of deep-well injection, extensively developed for other industrial wastes, would require little innovation before application to low-level aqueous wastes. Costs would be low, of the order of magnitude of 10 -4 mill/kWh. The environmental impact of normal deep-well disposal would be small, compared with dispersal to the atmosphere or to surface streams; abnormal operation would not be expected to produce catastrophic results. Geologically suitable sites are abundant in the U.S., but a well would best be co-located with the fuel-reprocessing plant where the LLAW is produced. Legal and regulatory constraints now being developed will be the most important determinants of the feasibility of applying the method

  14. Simulation of the distribution of radionuclides in the reservoir bed for deep-well injection disposal of acid liquid radioactive waste

    International Nuclear Information System (INIS)

    Noskov, M.D.; Istomin, A.D.; Kesler, A.G.; Zubkov, A.A.; Zakharova, E.V.; Egorov, G.F.

    2007-01-01

    A mathematical model was developed for describing the changes in the state of the reservoir bed for dee-well injection disposal of acid liquid radioactive waste. The model considers the multicomponent filtration of the solution in the heterogeneous bed, sorption-desorption of radionuclides, taking into account the dependence of the distribution coefficient on the temperature and pH, as well as radioactive decay, interaction of acids with minerals, radiation-chemical and thermochemical decomposition of the acids, and dynamics of the temperature field, taking into account the convective heat transfer, thermal conductivity, and radiogenic heat release. The results of the simulation of the migration of radionuclides were reported, as well as of the distribution of the acids and the dynamics of the temperature field in the vicinity of the injection well of the site for deep-well injection disposal of the waste from Siberian Chemical Combine. A man-caused barrier is formed in the vicinity of the injection well, hindering the spread of radionuclides in the reservoir bed [ru

  15. Underground disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-08-15

    Disposal of low- and intermediate-level radioactive wastes by shallow land burial, emplacement in suitable abandoned mines, or by deep well injection and hydraulic fracturing has been practised in various countries for many years. In recent years considerable efforts have been devoted in most countries that have nuclear power programmes to developing and evaluating appropriate disposal systems for high-level and transuranium-bearing waste, and to studying the potential for establishing repositories in geological formations underlaying their territories. The symposium, organized jointly by the IAEA and OECD's Nuclear Energy Agency in cooperation with the Geological Survey of Finland, provided an authoritative account of the status of underground disposal programmes throughout the world in 1979. It was evidence of the experience that has been gained and the comprehensive investigations that have been performed to study various options for the underground disposal of radioactive waste since the last IAEA/NEA symposium on this topic (Disposal of Radioactive Waste into the Ground) was held in 1967 in Vienna. The 10 sessions covered the following topics: National programme and general studies, Disposal of solid waste at shallow depth and in rock caverns, underground disposal of liquid waste by deep well injection and hydraulic fracturing, Disposal in salt formations, Disposal in crystalline rocks and argillaceous sediments, Thermal aspects of disposal in deep geological formations, Radionuclide migration studies, Safety assessment and regulatory aspects.

  16. Disposal options for disused radioactive sources

    International Nuclear Information System (INIS)

    2005-01-01

    This report presents a review of relevant information on the various technical factors and issues, as well as approaches and relevant technologies, leading to the identification of potential disposal options for disused radioactive sources. The report attempts to provide a logical 'road map' for the disposal of disused radioactive sources, taking into consideration the high degree of variability in the radiological properties of such types of radioactive waste. The use of borehole or shaft type repositories is highlighted as a potential disposal option, particularly for those countries that have limited resources and are looking for a simple, safe and cost effective solution for the disposal of their radioactive source inventories. It offers information about usage and characteristics of radioactive sources, disposal considerations, identification and screening of disposal options as well as waste packaging and acceptance criteria for disposal. The information provided in the report could be adapted or adopted to identify and develop specific disposal options suitable for the type and inventory of radioactive sources kept in storage in a given Member State

  17. Disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-01-15

    The problem of disposal can be tackled in two ways: the waste can be diluted and dispersed so that the radiation to which any single individual would be subjected would be negligible, or it can be concentrated and permanently isolated from man and his immediate environment. A variety of methods for the discharge of radioactive waste into the ground were described at the Monaco conference. They range from letting liquid effluent run into pits or wells at appropriately chosen sites to the permanent storage of high activity material at great depth in geologically suitable strata. Another method discussed consists in the incorporation of high level fission products in glass which is either buried or stored in vaults. Waste disposal into rivers, harbours, outer continental shelves and the open sea as well as air disposal are also discussed. Many of the experts at the Monaco conference were of the view that most of the proposed, or actually applied, methods of waste disposal were compatible with safety requirements. Some experts, felt that certain of these methods might not be harmless. This applied to the possible hazards of disposal in the sea. There seemed to be general agreement, however, that much additional research was needed to devise more effective and economical methods of disposal and to gain a better knowledge of the effects of various types of disposal operations, particularly in view of the increasing amounts of waste material that will be produced as the nuclear energy industry expands

  18. Records of wells and chemical analyses of water from wells for the period June 13, 1984 to December 4, 1986 at the Maxey Flats Radioactive Waste Disposal Site, Kentucky

    Science.gov (United States)

    Lyverse, M.A.

    1987-01-01

    Lithologic data are presented for 113 wells drilled at the Maxey Flats Radioactive Waste Disposal Site for the period June 13, 1984 to December 4, 1986. Water levels, tritium concentrations, and specific conductance are also presented for wells yielding sufficient water for measuring and sampling. At least one sample was collected from most wells for the determination of gross alpha and beta activity. These activities and the results for gamma emitting radionuclides (Cobalt 60 and Cesium 137) are also presented. (USGS)

  19. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1982-01-01

    This book provides information on the origin, characteristics and methods of processing of radioactive wastes, as well as the philosophy and practice of their storage and disposal. Chapters are devoted to the following topics: radioactive wastes, characteristics of radioactive wastes, processing liquid and solid radioactive wastes, processing wastes from spent fuel reprocessing, processing gaseous radioactive wastes, fixation of radioactive concentrates, solidification of high-level radioactive wastes, use of radioactive wastes as raw material, radioactive waste disposal, transport of radioactive wastes and economic problems of radioactive wastes disposal. (C.F.)

  20. Sewage Disposal in Port Harcourt, Nigeria.

    Science.gov (United States)

    Ayotamuno, M. J.

    1993-01-01

    This survey of the Port Harcourt, Nigeria, sewage disposal system exemplifies sewage disposal in the developing world. Results reveal that some well-constructed and maintained drains, as well as many open drains and septic tanks, expose women and children to the possibility of direct contact with parasitic organisms and threaten water resources.…

  1. Salt disposal: Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report presents the findings of a study conducted for the National Waste Terminal Storage (NWTS) Program. Permanent disposal options are examined for salt resulting from the excavation of a waste repository in the bedded salt deposits of the Paradox Basin of southeastern Utah. The study is based on a repository salt backfill compaction of 60% of the original density which leaves a total of 8 million tons of 95% pure salt to be disposed of over a 30-year period. The feasibility, impacts, and mitigation methods are examined for five options: commercial disposal, permanent onsite surface disposal, permanent offsite disposal, deepwell injection, and ocean and Great Salt Lake disposal. The study concludes the following: Commercial marketing of all repository salt would require a subsidy for transportation to major salt markets. Permanent onsite surface storage is both economically and technically feasible. Permanent offsite disposal is technically feasible but would incur additional transportation costs. Selection of an offsite location would provide a means of mitigating impacts associated with surface storage at the repository site. Deepwell injection is an attractive disposal method; however, the large water requirement, high cost of development, and poor performance of similar operating brine disposal wells eliminates this option from consideration as the primary means of disposal for the Paradox Basin. Ocean disposal is expensive because of high transportation cost. Also, regulatory approval is unlikely. Ocean disposal should be eliminated from further consideration in the Paradox Basin. Great Salt Lake disposal appears to be technically feasible. Great Salt Lake disposal would require state approval and would incur substantial costs for salt transportation. Permanent onsite disposal is the least expensive method for disposal of all repository salt

  2. Dry well cooling device

    International Nuclear Information System (INIS)

    Suzuki, Hiroyuki.

    1997-01-01

    A plurality of blowing ports with introduction units are disposed to a plurality of ducts in a dry well, and a cooling unit comprising a cooler, a blower and an isolating valve is disposed outside of the dry well. Cooling air and the atmosphere in the dry well are mixed to form a cooling gas and blown into the dry well to control the temperature. Since the cooling unit is disposed outside of the dry well, the maintenance of the cooling unit can be performed even during the plant operation. In addition, since dampers opened/closed depending on the temperature of the atmosphere are disposed to the introduction units for controlling the temperature of the cooling gas, the temperature of the atmosphere in the dry well can be set to a predetermined level rapidly. Since an axial flow blower is used as the blower of the cooling unit, it can be contained in a ventilation cylinder. Then, the atmosphere in the dry well flowing in the ventilation cylinder can be prevented from leaking to the outside. (N.H.)

  3. Land disposal alternatives for low-level waste

    International Nuclear Information System (INIS)

    Alexander, P.; Lindeman, R.; Saulnier, G.; Adam, J.; Sutherland, A.; Gruhlke, J.; Hung, C.

    1982-01-01

    The objective of this project is to develop data regarding the effectiveness and costs of the following options for disposing of specific low-level nuclear waste streams; sanitary landfill; improved shallow land burial; intermediate depth disposal; deep well injection; conventional shallow land burial; engineered surface storage; deep geological disposal; and hydrofracturing. This will be accomplished through the following steps: (1) characterize the properties of the commercial low-level wastes requiring disposal; (2) evaluate the various options for disposing of this waste, characterize selected representative waste disposal sites and design storage facilities suitable for use at those sites; (3) calculate the effects of various waste disposal options on population health risks; (4) estimate the costs of various waste disposal options for specific sites; and (5) perform trade-off analyses of the benefits of various waste disposal options against the costs of implementing these options. These steps are described. 2 figures, 2 tables

  4. Disposal options for radioactive waste

    International Nuclear Information System (INIS)

    Olivier, J.P.

    1991-01-01

    On the basis of the radionuclide composition and the relative toxicity of radioactive wastes, a range of different options are available for their disposal. Practically all disposal options rely on confinement of radioactive materials and isolation from the biosphere. Dilution and dispersion into the environment are only used for slightly contaminated gaseous and liquid effluents produced during the routine operation of nuclear facilities, such as power plants. For the bulk of solid radioactive waste, whatever the contamination level and decay of radiotoxicity with time are, isolation from the biosphere is the objective of waste disposal policies. The paper describes disposal approaches and the various techniques used in this respect, such as shallow land burial with minimum engineered barriers, engineered facilities built at/near the surface, rock cavities at great depth and finally deep geologic repositories for long-lived waste. The concept of disposing long-lived waste into seabed sediment layers is also discussed, as well as more remote possibilities, such as disposal in outer space or transmutation. For each of these disposal methods, the measures to be adopted at institutional level to reinforce technical isolation concepts are described. To the extent possible, some comments are made with regard to the applicability of such disposal methods to other hazardous wastes. (au)

  5. Financing of radioactive waste disposal

    International Nuclear Information System (INIS)

    Reich, J.

    1989-01-01

    Waste disposal is modelled as a financial calculus. In this connection the particularity is not primarily the dimension to be expected of financial requirement but above all the uncertainty of financial requirement as well as the ecological, socio-economic and especially also the temporal dimension of the Nuclear Waste Disposal project (disposal of spent fuel elements from light-water reactors with and without reprocessing, decommissioning = safe containment and disposal of nuclear power plants, permanent isolation of radioactive waste from the biosphere, intermediate storage). Based on the above mentioned factors the author analyses alternative approaches of financing or financial planning. He points out the decisive significance of the perception of risks or the evaluation of risks by involved or affected persons - i.e. the social acceptance of planned and designed waste disposal concepts - for the achievement and assessment of alternative solutions. With the help of an acceptance-specific risk measure developed on the basis of a mathematical chaos theory he illustrates, in a model, the social influence on the financing of nuclear waste disposal. (orig./HP) [de

  6. Report on radioactive waste disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The safe management of radioactive wastes constitutes an essential part of the IAEA programme. A large number of reports and conference proceedings covering various aspects of the subject have been issued. The Technical Review Committee on Underground Disposal (February 1988) recommended that the Secretariat issue a report on the state of the art of underground disposal of radioactive wastes. The Committee recommended the need for a report that provided an overview of the present knowledge in the field. This report covers the basic principles associated with the state of the art of near surface and deep geological radioactive waste disposal, including examples of prudent practice, and basic information on performance assessment methods. It does not include a comprehensive description of the waste management programmes in different countries nor provide a textbook on waste disposal. Such books are available elsewhere. Reviewing all the concepts and practices of safe radioactive waste disposal in a document of reasonable size is not possible; therefore, the scope of this report has been limited to cover essential parts of the subject. Exotic disposal techniques and techniques for disposing of uranium mill tailings are not covered, and only brief coverage is provided for disposal at sea and in the sea-bed. The present report provides a list of references to more specialized reports on disposal published by the IAEA as well as by other bodies, which may be consulted if additional information is sought. 108 refs, 22 figs, 2 tabs

  7. Water-quality characteristics and trends for selected wells possibly influenced by wastewater disposal at the Idaho National Laboratory, Idaho, 1981-2012

    Science.gov (United States)

    Davis, Linda C.; Bartholomay, Roy C.; Fisher, Jason C.; Maimer, Neil V.

    2015-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, analyzed water-quality data collected from 64 aquifer wells and 35 perched groundwater wells at the Idaho National Laboratory (INL) from 1981 through 2012. The wells selected for the study were wells that possibly were affected by wastewater disposal at the INL. The data analyzed included tritium, strontium-90, major cations, anions, nutrients, trace elements, total organic carbon, and volatile organic compounds. The analyses were performed to examine water-quality trends that might influence future management decisions about the number of wells to sample at the INL and the type of constituents to monitor.

  8. Shallow ground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This guidebook outlines the factors to be considered in site selection, design, operation, shut-down and surveillance as well as the regulatory requirements of repositories for safe disposal of radioactive waste in shallow ground. No attempt is made to summarize the existing voluminous literature on the many facets of radioactive waste disposal. In the context of this guidebook, shallow ground disposal refers to the emplacement of radioactive waste, with or without engineered barriers, above or below the ground surface, where the final protective covering is of the order of a few metres thick. Deep geological disposal and other underground disposal methods, management of mill tailings and disposal into the sea have been or will be considered in other IAEA publications. These guidelines have been made sufficiently general to cover a broad variety of climatic, hydrogeological and biological conditions. They may need to be interpreted or modified to reflect local conditions and national regulations

  9. High-level waste processing and disposal

    International Nuclear Information System (INIS)

    Crandall, J.L.; Krause, H.; Sombret, C.; Uematsu, K.

    1984-01-01

    The national high-level waste disposal plans for France, the Federal Republic of Germany, Japan, and the United States are covered. Three conclusions are reached. The first conclusion is that an excellent technology already exists for high-level waste disposal. With appropriate packaging, spent fuel seems to be an acceptable waste form. Borosilicate glass reprocessing waste forms are well understood, in production in France, and scheduled for production in the next few years in a number of other countries. For final disposal, a number of candidate geological repository sites have been identified and several demonstration sites opened. The second conclusion is that adequate financing and a legal basis for waste disposal are in place in most countries. Costs of high-level waste disposal will probably add about 5 to 10% to the costs of nuclear electric power. The third conclusion is less optimistic. Political problems remain formidable in highly conservative regulations, in qualifying a final disposal site, and in securing acceptable transport routes

  10. Disposal of high level radioactive wastes in geological formations

    International Nuclear Information System (INIS)

    Martins, L.A.M.; Carvalho Bastos, J.P. de

    1978-01-01

    The disposal of high-activity radioactive wastes is the most serious problem for the nuclear industry. Among the solutions, the disposal of wastes in approriated geological formations is the most realistic and feasible. In this work the methods used for geological disposal, as well as, the criteria, programs and analysis for selecting a bite for waste disposal are presented [pt

  11. Disposable bioprocessing: the future has arrived.

    Science.gov (United States)

    Rao, Govind; Moreira, Antonio; Brorson, Kurt

    2009-02-01

    Increasing cost pressures are driving the rapid adoption of disposables in bioprocessing. While well ensconced in lab-scale operations, the lower operating/ validation costs at larger scale and relative ease of use are leading to these systems entering all stages and operations of a typical biopharmaceutical manufacturing process. Here, we focus on progress made in the incorporation of disposable equipment with sensor technology in bioprocessing throughout the development cycle. We note that sensor patch technology is mostly being adapted to disposable cell culture devices, but future adaptation to downstream steps is conceivable. Lastly, regulatory requirements are also briefly assessed in the context of disposables and the Process Analytical Technologies (PAT) and Quality by Design (QbD) initiatives.

  12. No nuclear power. No disposal facility?

    Energy Technology Data Exchange (ETDEWEB)

    Feinhals, J. [DMT GmbH und Co.KG, Hamburg (Germany)

    2016-07-01

    Countries with a nuclear power programme are making strong efforts to guarantee the safe disposal of radioactive waste. The solutions in those countries are large disposal facilities near surface or in deep geological layers depending on the activity and half-life of the nuclides in the waste. But what will happen with the radioactive waste in countries that do not have NPPs but have only low amounts of radioactive waste from medical, industrial and research facilities as well as from research reactors? Countries producing only low amounts of radioactive waste need convincing solutions for the safe and affordable disposal of their radioactive waste. As they do not have a fund by an operator of nuclear power plants, those countries need an appropriate and commensurate solution for the disposal of their waste. In a first overview five solutions seem to be appropriate: (i) the development of multinational disposal facilities by using the existing international knowhow; (ii) common disposal with hazardous waste; (iii) permanent storage; (iv) use of an existing mine or tunnel; (v) extension of the borehole disposal concept for all the categories of radioactive wastes.

  13. Post-disposal safety assessment of toxic and radioactive waste: waste types, disposal practices, disposal criteria, assessment methods and post-disposal impacts

    International Nuclear Information System (INIS)

    Torres, C.; Simon, I.; Little, R.H.; Charles, D.; Grogan, H.A.; Smith, G.M.; Sumerling, T.J.; Watkins, B.M.

    1993-01-01

    The need for safety assessments of waste disposal stems not only from the implementation of regulations requiring the assessment of environmental effects, but also from the more general need to justify decisions on protection requirements. As waste-disposal methods have become more technologically based, through the application of more highly engineered design concepts and through more rigorous and specific limitations on the types and quantities of the waste disposed, it follows that assessment procedures also must become more sophisticated. It is the overall aim of this study to improve the predictive modelling capacity for post-disposal safety assessments of land-based disposal facilities through the development and testing of a comprehensive, yet practicable, assessment framework. This report records all the work which has been undertaken during Phase 1 of the study. Waste types, disposal practices, disposal criteria and assessment methods for both toxic and radioactive waste are reviewed with the purpose of identifying those features relevant to assessment methodology development. Difference and similarities in waste types, disposal practices, criteria and assessment methods between countries, and between toxic and radioactive wastes are highlighted and discussed. Finally, an approach to identify post-disposal impacts, how they arise and their effects on humans and the environment is described

  14. Review of very low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Wang Jinsheng; Guo Minli; Tian Hao; Teng Yanguo

    2005-01-01

    Very low level waste (VLLW) is a new type of radioactive wastes proposed recently. No widely acceptable definition and disposal rules have been established for it. This paper reviews the definition of VLLW in some countries where VLLW was researched early, as well as the disposal policies and methods of VLLW that the IAEA and these countries followed. In addition, the safety assessment programs for VLLW disposal are introduced. It is proved the research of VLLW is urgent and essential in china through the comparison of VLLW disposal between china and these counties. At last, this paper points out the future development of VLLW disposal research in China. (authors)

  15. Underground disposal of radioactive waste regulations in The Netherlands

    International Nuclear Information System (INIS)

    Cornelis, J.C.

    1978-01-01

    The only method of final disposal of radioactive waste currently envisaged in the Netherlands is disposal in rock-salt. This question is at present being studied by governmental authorities, and a public discussion is foreseen for the near future. Various Ministries, as well as local authorities at both provincial and municipal levels, are involved in the licensing and control of waste disposal. The principal stages are site selection (including that for test-drilling), construction of the mine, and supervision of the repository. These activities are governed by the legislation on mining as well as by nuclear regulations. One matter still to be decided is the nature of the body to be responsible for conducting the disposal operations. (NEA) [fr

  16. 40 CFR 144.6 - Classification of wells.

    Science.gov (United States)

    2010-07-01

    ... radioactive waste disposal sites to dispose of hazardous waste or radioactive waste into a formation which... waste management facilities, or by owners or operators of radioactive waste disposal sites to dispose of... one quarter mile of the well bore, an underground source of drinking water. (3) Radioactive waste...

  17. Timing of High-level Waste Disposal

    International Nuclear Information System (INIS)

    2008-01-01

    This study identifies key factors influencing the timing of high-level waste (HLW) disposal and examines how social acceptability, technical soundness, environmental responsibility and economic feasibility impact on national strategies for HLW management and disposal. Based on case study analyses, it also presents the strategic approaches adopted in a number of national policies to address public concerns and civil society requirements regarding long-term stewardship of high-level radioactive waste. The findings and conclusions of the study confirm the importance of informing all stakeholders and involving them in the decision-making process in order to implement HLW disposal strategies successfully. This study will be of considerable interest to nuclear energy policy makers and analysts as well as to experts in the area of radioactive waste management and disposal. (author)

  18. High-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Burkholder, H.C.

    1985-01-01

    The meeting was timely because many countries had begun their site selection processes and their engineering designs were becoming well-defined. The technology of nuclear waste disposal was maturing, and the institutional issues arising from the implementation of that technology were being confronted. Accordingly, the program was structured to consider both the technical and institutional aspects of the subject. The meeting started with a review of the status of the disposal programs in eight countries and three international nuclear waste management organizations. These invited presentations allowed listeners to understand the similarities and differences among the various national approaches to solving this very international problem. Then seven invited presentations describing nuclear waste disposal from different perspectives were made. These included: legal and judicial, electric utility, state governor, ethical, and technical perspectives. These invited presentations uncovered several issues that may need to be resolved before high-level nuclear wastes can be emplaced in a geologic repository in the United States. Finally, there were sixty-six contributed technical presentations organized in ten sessions around six general topics: site characterization and selection, repository design and in-situ testing, package design and testing, disposal system performance, disposal and storage system cost, and disposal in the overall waste management system context. These contributed presentations provided listeners with the results of recent applied RandD in each of the subject areas

  19. DOE's planning process for mixed low-level waste disposal

    International Nuclear Information System (INIS)

    Case, J.T.; Letourneau, M.J.; Chu, M.S.Y.

    1995-01-01

    A disposal planning process was established by the Department of Energy (DOE) Mixed Low-Level Waste (MLLW) Disposal Workgroup. The process, jointly developed with the States, includes three steps: site-screening, site-evaluation, and configuration study. As a result of the screening process, 28 sites have been eliminated from further consideration for MLLW disposal and 4 sites have been assigned a lower priority for evaluation. Currently 16 sites are being evaluated by the DOE for their potential strengths and weaknesses as MLLW disposal sites. The results of the evaluation will provide a general idea of the technical capability of the 16 disposal sites; the results can also be used to identify which treated MLLW streams can be disposed on-site and which should be disposed of off-site. The information will then serve as the basis for a disposal configuration study, which includes analysis of both technical as well as non-technical issues, that will lead to the ultimate decision on MLLW disposal site locations

  20. Nuclear waste disposal in subseabed geologic formatons: the Seabed Disposal Program

    International Nuclear Information System (INIS)

    Anderson, D.R.

    1979-05-01

    The goal of the Seabed Disposal Program is to assess the technical and environmental feasibility of using geologic formations under the sea floor for the disposal of processed high-level radioactive wastes or repackaged spent reactor fuel. Studies are focused on the abyssal hill regions of the sea floors in the middle of tectonic plates and under massive surface current gyres. The red-clay sediments here are from 50 to 100 meters thick, are continuously depositional (without periods of erosion), and have been geologically and climatologically stable for millions of years. Mineral deposits and biological activity are minimal, and bottom currents are weak and variable. Five years of research have revealed no technological reason why nuclear waste disposal in these areas would be impractical. However, scientific assessment is not complete. Also, legal political, and sociological factors may well become the governing elements in such use of international waters. These factors are being examined as part of the work of the Seabed Working Group, an international adjunct of the Seabed Program, with members from France, England, Japan, Canada, and the United States

  1. Nuclear waste disposal in subseabed geologic formatons: the Seabed Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.R.

    1979-05-01

    The goal of the Seabed Disposal Program is to assess the technical and environmental feasibility of using geologic formations under the sea floor for the disposal of processed high-level radioactive wastes or repackaged spent reactor fuel. Studies are focused on the abyssal hill regions of the sea floors in the middle of tectonic plates and under massive surface current gyres. The red-clay sediments here are from 50 to 100 meters thick, are continuously depositional (without periods of erosion), and have been geologically and climatologically stable for millions of years. Mineral deposits and biological activity are minimal, and bottom currents are weak and variable. Five years of research have revealed no technological reason why nuclear waste disposal in these areas would be impractical. However, scientific assessment is not complete. Also, legal political, and sociological factors may well become the governing elements in such use of international waters. These factors are being examined as part of the work of the Seabed Working Group, an international adjunct of the Seabed Program, with members from France, England, Japan, Canada, and the United States.

  2. Radioactive Waste Technical and Normative Aspects of its Disposal

    CERN Document Server

    Streffer, Christian; Kamp, Georg; Kröger, Wolfgang; Rehbinder, Eckard; Renn, Ortwin; Röhlig, Klaus-Jürgen

    2012-01-01

    Waste caused by the use of radioactive material in research, medicine and technologies, above all high level waste from nuclear power plants, must be disposed of safely. However, the strategies discussed for the disposal of radioactive waste as well as proposals for choosing a proper site for final waste disposal are strongly debated. An appropriate disposal must satisfy complex technical requirements and must meet stringent conditions to appropriately protect man and nature from risks of radioactivity over very long periods. Ethical, legal and social conditions must be considered as well. An interdisciplinary team of experts from relevant fields compiled the current status and developed criteria as well as strategies which meet the requirements of safety and security for present and future generations. The study also provides specific recommendations that will improve and optimize the chances for the selection of a repository site implementing the participation of stakeholders including the general public an...

  3. 10 CFR 61.52 - Land disposal facility operation and disposal site closure.

    Science.gov (United States)

    2010-01-01

    ... DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.52 Land disposal... wastes by placing in disposal units which are sufficiently separated from disposal units for the other... between any buried waste and the disposal site boundary and beneath the disposed waste. The buffer zone...

  4. Preliminary disposal limits, plume interaction factors, and final disposal limits

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-11

    In the 2008 E-Area Performance Assessment (PA), each final disposal limit was constructed as the product of a preliminary disposal limit and a plume interaction factor. The following mathematical development demonstrates that performance objectives are generally expected to be satisfied with high confidence under practical PA scenarios using this method. However, radionuclides that experience significant decay between a disposal unit and the 100-meter boundary, such as H-3 and Sr-90, can challenge performance objectives, depending on the disposed-of waste composition, facility geometry, and the significance of the plume interaction factor. Pros and cons of analyzing single disposal units or multiple disposal units as a group in the preliminary disposal limits analysis are also identified.

  5. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea.

  6. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    International Nuclear Information System (INIS)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu

    2016-01-01

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea

  7. Waste and Disposal: Demonstration

    International Nuclear Information System (INIS)

    Neerdael, B.; Buyens, M.; De Bruyn, D.; Volckaert, G.

    2002-01-01

    Within the Belgian R and D programme on geological disposal, demonstration experiments have become increasingly important. In this contribution to the scientific report 2001, an overview is given of SCK-CEN's activities and achievements in the field of large-scale demonstration experiments. In 2001, main emphasis was on the PRACLAY project, which is a large-scale experiment to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation. The PRACLAY experiment will contribute to enhance understanding of water flow and mass transport in dense clay-based materials as well as to improve the design of the reference disposal concept. In the context of PRACLAY, a surface experiment (OPHELIE) has been developed to prepare and to complement PRACLAY-related experimental work in the HADES Underground Research Laboratory. In 2001, efforts were focussed on the operation of the OPHELIE mock-up. SCK-CEN also contributed to the SELFRAC roject which studies the self-healing of fractures in a clay formation

  8. Low-level-waste-disposal methodologies

    International Nuclear Information System (INIS)

    Wheeler, M.L.; Dragonette, K.

    1981-01-01

    This report covers the followng: (1) history of low level waste disposal; (2) current practice at the five major DOE burial sites and six commercial sites with dominant features of these sites and radionuclide content of major waste types summarized in tables; (3) site performance with performance record on burial sites tabulated; and (4) proposed solutions. Shallow burial of low level waste is a continuously evolving practice, and each site has developed its own solutions to the handling and disposal of unusual waste forms. There are no existing national standards for such disposal. However, improvements in the methodology for low level waste disposal are occurring on several fronts. Standardized criteria are being developed by both the Nuclear Regulatory Commission (NRC) and by DOE. Improved techniques for shallow burial are evolving at both commercial and DOE facilities, as well as through research sponsored by NRC, DOE, and the Environmental Protection Agency. Alternatives to shallow burial, such as deeper burial or the use of mined cavities is also being investigated by DOE

  9. Talk about disposal for very low level waste

    International Nuclear Information System (INIS)

    Luo Shanggeng

    2008-01-01

    This paper describes the significance of segregation of very low level waste (VLLW), the current VLLW-definition and its limit value, and presents an introduction of four VLLW-disposing approaches operated world wide, as well as disposal of VLLW in China are also briefly discussed and suggested. (authors)

  10. Inspection and verification of waste packages for near surface disposal

    International Nuclear Information System (INIS)

    2000-01-01

    Extensive experience has been gained with various disposal options for low and intermediate level waste at or near surface disposal facilities. Near surface disposal is based on proven and well demonstrated technologies. To ensure the safety of near surface disposal facilities when available technologies are applied, it is necessary to control and assure the quality of the repository system's performance, which includes waste packages, engineered features and natural barriers, as well as siting, design, construction, operation, closure and institutional controls. Recognizing the importance of repository performance, the IAEA is producing a set of technical publications on quality assurance and quality control (QA/QC) for waste disposal to provide Member States with technical guidance and current information. These publications cover issues on the application of QA/QC programmes to waste disposal, long term record management, and specific QA/QC aspects of waste packaging, repository design and R and D. Waste package QA/QC is especially important because the package is the primary barrier to radionuclide release from a disposal facility. Waste packaging also involves interface issues between the waste generator and the disposal facility operator. Waste should be packaged by generators to meet waste acceptance requirements set for a repository or disposal system. However, it is essential that the disposal facility operator ensure that waste packages conform with disposal facility acceptance requirements. Demonstration of conformance with disposal facility acceptance requirements can be achieved through the systematic inspection and verification of waste packages at both the waste generator's site and at the disposal facility, based on a waste package QA/QC programme established by the waste generator and approved by the disposal operator. However, strategies, approaches and the scope of inspection and verification will be somewhat different from country to country

  11. The effect of liner hydraulic conductivity on disposal cell performance

    International Nuclear Information System (INIS)

    Yu, C.; Yuan, Y.C.; Chia, Y.P.

    1988-01-01

    Multilayered disposal cells are frequently used for the disposal of radioactive and hazardous wastes. These disposal cells consist of materials with different permeabilities that are placed in various thicknesses at the bottom as well as in the cover of the cell. Typically, a layer of permeable material is placed above a layer with low permeability; the permeable layer functions as a drainage/leachate collection system and the low-permeability layer functions as a migration barrier/liner. This paper analyzes the effects of infiltration through unsaturated soil liners on the long-term performance of the disposal cell. Based on the results of this study, it is concluded that the long-term performance of a disposal cell is dependent on a well-designed cell cover. The design should emphasize a cap with less permeable material to prevent water from infiltrating the disposal cell. An impermeable bottom liner is effective only in the short term; however, it can eventually result in saturation of the wastes and cause the bathtub effect over the long term

  12. Final disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kroebel, R [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Projekt Wiederaufarbeitung und Abfallbehandlung; Krause, H [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Abt. zur Behandlung Radioaktiver Abfaelle

    1978-08-01

    This paper discusses the final disposal possibilities for radioactive wastes in the Federal Republic of Germany and the related questions of waste conditioning, storage methods and safety. The programs in progress in neighbouring CEC countries and in the USA are also mentioned briefly. The autors conclude that the existing final disposal possibilities are sufficiently well known and safe, but that they could be improved still further by future development work. The residual hazard potential of radioactive wastes from fuel reprocessing after about 1000 years of storage is lower that of known inorganic core deposits.

  13. Shallow ground disposal of radioactive wastes. A guidebook

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This guidebook outlines the factors to be considered in site selection, design, operation, shut-down and surveillance as well as the regulatory requirements of repositories for safe disposal of radioactive waste in shallow ground. No attempt is made to summarize the existing voluminous literature on the many facets of radioactive waste disposal. In the context of this guidebook, shallow ground disposal refers to the emplacement of radioactive waste, with or without engineered barriers, above or below the ground surface, where the final protective covering is of the order of a few metres thick. Deep geological disposal and other underground disposal methods, management of mill tailings and disposal into the sea have been or will be considered in other IAEA publications. These guidelines have been made sufficiently general to cover a broad variety of climatic, hydrogeological and biological conditions. They may need to be interpreted or modified to reflect local conditions and national regulations.

  14. Execution techniques for high-level radioactive waste disposal. 2. Fundamental concept of geological disposal and implementing approach of disposal project

    International Nuclear Information System (INIS)

    Kawanishi, Motoi; Komada, Hiroya; Tsuchino, Susumu; Shiozaki, Isao; Kitayama, Kazumi; Akasaka, Hidenari; Inagaki, Yusuke; Kawamura, Hideki

    1999-01-01

    The making high activity of the high-level radioactive waste disposal business shall be fully started after establishing of the implementing organization which is planned around 2000. Considering each step of disposal business, in this study, the implementation procedure for a series of disposal business such as the selection of the disposal site, the construction and operation of the disposal facility, the closure and decommissioning of the disposal facility and the management after closure, which are carried forward by the implementation body is discussed in detail from the technical viewpoint and an example of the master schedule is proposed. Furthermore, we investigate and propose the concept of the geological disposal which becomes important in carrying forward to making of the business of the disposal, such as the present site selection smoothly, the fundamental idea of the safe securing for disposal, the basic idea to get trust to the disposal technique and the geological environmental condition which is the basic condition of this whole study for the disposal business making. (author)

  15. Innovative Disposal Practices at the Nevada Test Site to Meet Its Low-Level Waste Generators' Future Disposal Needs

    International Nuclear Information System (INIS)

    Di Sanza, E.F.; Carilli, J.T.

    2006-01-01

    Low-level radioactive waste (LLW) streams which have a clear, defined pathway to disposal are becoming less common as U.S. Department of Energy accelerated cleanup sites enters their closure phase. These commonly disposed LLW waste streams are rapidly being disposed and the LLW inventory awaiting disposal is dwindling. However, more complex waste streams that have no path for disposal are now requiring attention. The U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NSO) Environmental Management Program is charged with the responsibility of carrying out the disposal of onsite and off-site defense-generated and research-related LLW at the Nevada. Test Site (NTS). The NSO and its generator community are constantly pursuing new LLW disposal techniques while meeting the core mission of safe and cost-effective disposal that protects the worker, the public and the environment. From trenches to present-day super-cells, the NTS disposal techniques must change to meet the LLW generator's disposal needs. One of the many ways the NTS is addressing complex waste streams is by designing waste specific pits and trenches. This ensures unusual waste streams with high-activity or large packaging have a disposal path. Another option the NTS offers is disposal of classified low-level radioactive-contaminated material. In order to perform this function, the NTS has a safety plan in place as well as a secure facility. By doing this, the NTS can accept DOE generated classified low-level radioactive-contaminated material that would be equivalent to U.S. Nuclear Regulatory Commission Class B, C, and Greater than Class C waste. In fiscal year 2006, the NTS will be the only federal disposal facility that will be able to dispose mixed low-level radioactive waste (MLLW) streams. This is an activity that is highly anticipated by waste generators. In order for the NTS to accept MLLW, generators will have to meet the stringent requirements of the NTS

  16. Nonradiological groundwater quality at low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Goode, D.J.

    1986-04-01

    The NRC is investigating appropriate regulatory options for disposal of low-level radioactive waste containing nonradiological hazardous constituents, as defined by EPA regulations. Standard EPA/RCRA procedures to determine hazardous organics, metals, indicator parameters, and general water quality are applied to samples from groundwater monitoring wells at two commercial low-level radioactive waste disposal sites. At the Sheffield, IL site (nonoperating), several typical organic solvents are identified in elevated concentrations in onsite wells and in an offsite area exhibiting elevated tritium concentrations. At the Barnwell, SC site (operating), only very low concentrations of three organics are found in wells adjacent to disposal units. Hydrocarbons associated with petroleum products are detected at both sites. Hazardous constituents associated with previosuly identified major LLW mixed waste streams, toluene, xylene, chromium, and lead, are at or below detection limits or at background levels in all samples. Review of previously collected data also supports the conclusion that organic solvents are the primary nonradiological contaminants associated with LLW disposal

  17. Well drilling summary report for well 199-N-106A

    International Nuclear Information System (INIS)

    Walker, L.D.

    1996-02-01

    Past liquid waste disposal practices within the 100-N Area have resulted in the contamination of the underlying sediments and groundwater. The release of large volumes of liquid effluent to the 1301-N and 1325-N Liquid Waste Disposal Facilities caused the transport of 90 Sr and other contaminants to the groundwater. Further discussion of 100-N Area hydrogeology is provided in Hartman and Lindsey (1993). A pump-and-treat system combined with a vertical barrier is the preferred alternative for the N Springs Expedited Response Action. This document is a compilation of the data collected during the drilling of well 199-N-106A, an extraction well for the 100-N Pump-and-Treat Project

  18. Closure of shallow underground injection wells

    International Nuclear Information System (INIS)

    Veil, J.A.; Grunewald, B.

    1993-01-01

    Shallow injection wells have long been used for disposing liquid wastes. Some of these wells have received hazardous or radioactive wastes. According to US Environmental Protection Agency (EPA) regulations, Class IV wells are those injection wells through which hazardous or radioactive wastes are injected into or above an underground source of drinking water (USDW). These wells must be closed. Generally Class V wells are injection wells through which fluids that do not contain hazardous or radioactive wastes are injected into or above a USDW. Class V wells that are responsible for violations of drinking water regulations or that pose a threat to human health must also be closed. Although EPA regulations require closure of certain types of shallow injection wells, they do not provide specific details on the closure process. This paper describes the regulatory background, DOE requirements, and the steps in a shallow injection well closure process: Identification of wells needing closure; monitoring and disposal of accumulated substances; filling and sealing of wells; and remediation. In addition, the paper describes a major national EPA shallow injection well enforcement initiative, including closure plan guidance for wells used to dispose of wastes from service station operations

  19. Household waste disposal in Mekelle city, Northern Ethiopia

    International Nuclear Information System (INIS)

    Tadesse, Tewodros; Ruijs, Arjan; Hagos, Fitsum

    2008-01-01

    In many cities of developing countries, such as Mekelle (Ethiopia), waste management is poor and solid wastes are dumped along roadsides and into open areas, endangering health and attracting vermin. The effects of demographic factors, economic and social status, waste and environmental attributes on household solid waste disposal are investigated using data from household survey. Household level data are then analyzed using multinomial logit estimation to determine the factors that affect household waste disposal decision making. Results show that demographic features such as age, education and household size have an insignificant impact over the choice of alternative waste disposal means, whereas the supply of waste facilities significantly affects waste disposal choice. Inadequate supply of waste containers and longer distance to these containers increase the probability of waste dumping in open areas and roadsides relative to the use of communal containers. Higher household income decreases the probability of using open areas and roadsides as waste destinations relative to communal containers. Measures to make the process of waste disposal less costly and ensuring well functioning institutional waste management would improve proper waste disposal

  20. TECHNO – ECONOMIC ACCEPTABILITY ANALISYS OF WASTE DISPOSAL BY INJECTION INTO APPROPRIATE FORMATION

    Directory of Open Access Journals (Sweden)

    Vladislav Brkić

    2013-12-01

    Full Text Available During exploration and production of oil and natural gas, various types of waste must be disposed in a permanent and safe way. There is a range of methods for processing and disposal of waste, such as disposal into landfills, solidification, namely chemical stabilization, thermal processing, appropriate formation injections uncovered by a deep well, disposal into salt domes and bioremediation. The method of waste disposal into appropriate formations is a method where strict geological and technical criteria must be satisfied when applied. A fundamental scientific hypothesis has been formulated whereby economic acceptability of the waste injection method, as a main method for waste disposal, is to be shown by an economic evaluation. The results of this research are relevant since there has been an intention in Croatia and worldwide to abandon wells permanently due to oil and gas reservoirs depletion and therefore it is essential to estimate economic impacts of the waste injection method application. In that way, profitability of using existing wells for waste disposal in oil industry has been increased, leading to the improvement of petroleum company’s business activities (the paper is published in Croatian.

  1. Disposal safety

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    International consensus does not seem to be necessary or appropriate for many of the issues concerned with the safety of nuclear waste disposal. International interaction on the technical aspects of disposal has been extensive, and this interaction has contributed greatly to development of a consensus technical infrastructure for disposal. This infrastructure provides a common and firm base for regulatory, political, and social actions in each nation

  2. French surface disposal experience. The disposal of large waste

    International Nuclear Information System (INIS)

    Dutzer, Michel; Lecoq, Pascal; Duret, Franck; Mandoki, Robert

    2006-01-01

    More than 90 percent of the volume of radioactive waste that are generated in France can be managed in surface disposal facilities. Two facilities are presently operated by ANDRA: the Centre de l'Aube disposal facility that is dedicated to low and intermediate short lived waste and the Morvilliers facility for very low level waste. The Centre de l'Aube facility was designed at the end of the years 1980 to replace the Centre de la Manche facility that ended operation in 1994. In order to achieve as low external exposure as possible for workers it was decided to use remote handling systems as much as possible. Therefore it was necessary to standardize the types of waste containers. But taking into account the fact that these waste were conditioned in existing facilities, it was not possible to change a major part of existing packages. As a consequence, 6 mobile roofs were constructed to handle 12 different types of waste packages in the disposal vaults. The scope of Centre de l'Aube was mainly to dispose operational waste. However some packages, as 5 or 10 m 3 metallic boxes, could be used for larger waste generated by decommissioning activities. The corresponding flow was supposed to be small. After the first years of operations, it appeared interesting to develop special procedures to dispose specific large waste in order to avoid external exposure costly cutting works in the generating facilities. A 40 m 3 box and a large remote handling device were disposed in vaults that were currently used for other types of packages. Such a technique could not be used for the disposal of vessel heads that were replaced in 55 pressurised water power reactors. The duration of disposal and conditioning operation was not compatible with the flow of standard packages that were delivered in the vaults. Therefore a specific type of vault was designed, including handling and conditioning equipment. The first pressure vessel head was delivered on the 29 of July 2004, 6 heads have been

  3. The disposal of Canada's nuclear fuel waste: engineering for a disposal facility

    International Nuclear Information System (INIS)

    Simmons, G.R.; Baumgartner, P.

    1994-01-01

    This report presents some general considerations for engineering a nuclear fuel waste disposal facility, alternative disposal-vault concepts and arrangements, and a conceptual design of a used-fuel disposal centre that was used to assess the technical feasibility, costs and potential effects of disposal. The general considerations and alternative disposal-vault arrangements are presented to show that options are available to allow the design to be adapted to actual site conditions. The conceptual design for a used-fuel disposal centre includes descriptions of the two major components of the disposal facility, the Used-Fuel Packaging Plant and the disposal vault; the ancillary facilities and services needed to carry out the operations are also identified. The development of the disposal facility, its operation, its decommissioning, and the reclamation of the site are discussed. The costs, labour requirements and schedules used to assess socioeconomic effects and that may be used to assess the cost burden of waste disposal to the consumer of nuclear energy are estimated. The Canadian Nuclear Fuel Waste Management Program is funded jointly by AECL and Ontario Hydro under the auspices of the CANDU Owners Group. (author)

  4. HLW disposal dilemma

    International Nuclear Information System (INIS)

    Andrei, V.; Glodeanu, F.

    2003-01-01

    ' strategy is now considered. There is a broad agreement that national organizations are responsible for finding their own solutions for disposal of their wastes. However, this does not mean that they have to find solutions within their own countries. This is the concept of international or multinational sheared repositories, well sited and safe facilities operated for the benefit of a number of users, with effective use of shared resources. This may be the only realistic option for some national programmes. On 22nd February 2002 a small group of organisations from 5 countries inaugurated a new association to support the concept of sharing facilities for storage and disposal of all types of long-lived radioactive wastes. The founding members are from Belgium (ONDRAF Waste Agency), Bulgaria (Kozloduy Power Plant), Hungary (PURAM Waste Agency), Japan (Obayashi Corporation) and Switzerland (Colenco Power Engineering, backed by two of the Swiss nuclear power utilities). The Association is open to all organisations sharing its goals; discussions with a range of further potential members are already underway. Romania might consider the regional disposal option. (authors)

  5. Radioactive waste storage and disposal: the challenge

    International Nuclear Information System (INIS)

    Prince, A.T.

    1978-03-01

    Solutions to waste management problems are available. After radium is removed, tailings from uranium ores can be disposed of safely in well-designed retention areas. Work is being done on the processing of non-fuel reactor wastes through incineration, reverse osmosis, and evaporation. Spent fuels have been stored safely for years in pools; dry storage in concrete cannisters is being investigated. Ultimate disposal of high-level wastes will be in deep, stable geologic formations. (LL)

  6. Disposal facility for radioactive wastes

    International Nuclear Information System (INIS)

    Utsunomiya, Toru.

    1985-01-01

    Purpose: To remove heat generated from radioactive wastes thereby prevent the working circumstances from being worsened in a disposal-facility for radioactive wastes. Constitution: The disposal-facility comprises a plurality of holes dug out into the ground inside a tunnel excavated for the storage of radioactive wastes. After placing radioactive wastes into the shafts, re-filling materials are directly filled with a purpose of reducing the dosage. Further, a plurality of heat pipes are inserted into the holes and embedded within the re-filling materials so as to gather heat from the radioactive wastes. The heat pipes are connected to a heat exchanger disposed within the tunnel. As a result, heating of the solidified radioactive wastes itself or the containing vessel to high temperature can be avoided, as well as thermal degradation of the re-filling materials and the worsening in the working circumstance within the tunnel can be overcome. (Moriyama, K.)

  7. Progress toward disposal of LLRW in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Charlesworth, D. H.

    1989-08-15

    Low-level radioactive wastes are managed in Canada currently by interim storage methods operated by the major generators of the wastes. The potential benefits of permanent disposal have led Atomic Energy of Canada Limited to undertake a development and demonstration program to make the transition from storage to disposal at its Chalk River Nuclear Laboratories. The first stages of the demonstration are based on an enhanced version of shallow land burial for the least hazardous wastes, and a unique design of a belowground concrete vault. The program includes the development and testing of the auxiliary equipment, processes and procedures necessary to support the disposal system, as well as the performance assessment methods and information needed to assure its safety.

  8. Progress toward disposal of LLRW in Canada

    International Nuclear Information System (INIS)

    Charlesworth, D.H.

    1989-08-01

    Low-level radioactive wastes are managed in Canada currently by interim storage methods operated by the major generators of the wastes. The potential benefits of permanent disposal have led Atomic Energy of Canada Limited to undertake a development and demonstration program to make the transition from storage to disposal at its Chalk River Nuclear Laboratories. The first stages of the demonstration are based on an enhanced version of shallow land burial for the least hazardous wastes, and a unique design of a belowground concrete vault. The program includes the development and testing of the auxiliary equipment, processes and procedures necessary to support the disposal system, as well as the performance assessment methods and information needed to assure its safety

  9. Alternative Concept to Enhance the Disposal Efficiency for CANDU Spent Fuel Disposal System

    International Nuclear Information System (INIS)

    Lee, Jong Youl; Cho, Dong Geun; Kook, Dong Hak; Lee, Min Soo; Choi, Heui Joo

    2011-01-01

    There are two types of nuclear reactors in Korea and they are PWR type and CANDU type. The safe management of the spent fuels from these reactors is very important factor to maintain the sustainable energy supply with nuclear power plant. In Korea, a reference disposal system for the spent fuels has been developed through a study on the direct disposal of the PWR and CANDU spent fuel. Recently, the research on the demonstration and the efficiency analyses of the disposal system has been performed to make the disposal system safer and more economic. PWR spent fuels which include a lot of reusable material can be considered being recycled and a study on the disposal of HLW from this recycling process is being performed. CANDU spent fuels are considered being disposed of directly in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System (KRS) which was to dispose of both PWR type and CANDU type, the more effective CANDU spent fuel disposal systems were developed. To do this, the disposal canister for CANDU spent fuels was modified to hold the storage basket for 60 bundles which is used in nuclear power plant. With these modified disposal canister concepts, the disposal concepts to meet the thermal requirement that the temperature of the buffer materials should not be over 100 .deg. C were developed. These disposal concepts were reviewed and analyzed in terms of disposal effective factors which were thermal effectiveness, U-density, disposal area, excavation volume, material volume etc. and the most effective concept was proposed. The results of this study will be used in the development of various wastes disposal system together with the HLW wastes from the PWR spent fuel recycling process.

  10. Environmental restoration waste materials co-disposal

    International Nuclear Information System (INIS)

    Phillips, S.J.; Alexander, R.G.; England, J.L.; Kirdendall, J.R.; Raney, E.A.; Stewart, W.E.; Dagan, E.B.; Holt, R.G.

    1993-09-01

    Co-disposal of radioactive and hazardous waste is a highly efficient and cost-saving technology. The technology used for final treatment of soil-washing size fractionization operations is being demonstrated on simulated waste. Treated material (wasterock) is used to stabilize and isolate retired underground waste disposal structures or is used to construct landfills or equivalent surface or subsurface structures. Prototype equipment is under development as well as undergoing standardized testing protocols to prequalify treated waste materials. Polymer and hydraulic cement solidification agents are currently used for geotechnical demonstration activities

  11. Low level waste disposal

    International Nuclear Information System (INIS)

    Barthoux, A.

    1985-01-01

    Final disposal of low level wastes has been carried out for 15 years on the shallow land disposal of the Manche in the north west of France. Final participant in the nuclear energy cycle, ANDRA has set up a new waste management system from the production center (organization of the waste collection) to the disposal site including the setting up of a transport network, the development of assessment, additional conditioning, interim storage, the management of the disposal center, records of the location and characteristics of the disposed wastes, site selection surveys for future disposals and a public information Department. 80 000 waste packages representing a volume of 20 000 m 3 are thus managed and disposed of each year on the shallow land disposal. The disposal of low level wastes is carried out according to their category and activity level: - in tumuli for very low level wastes, - in monoliths, a concrete structure, of the packaging does not provide enough protection against radioactivity [fr

  12. Waste disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure

  13. Disposal facility for spent nuclear fuel. Environmental impact assessment program

    International Nuclear Information System (INIS)

    1998-01-01

    The report presents the Environmental Impact Assessment (EIA) of the high level radioactive waste disposal in Finland. In EIA different alternatives concerning site selection, construction, operation and sealing of the disposal facility as well as waste transportation and encapsulation of the waste are considered

  14. Waste disposal

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste, as a unavoidable remnant from the use of radioactive substances and nuclear technology. It is potentially hazardous to health and must therefore be managed to protect humans and the environment. The main bulk of radioactive waste must be permanently disposed in engineered repositories. Appropriate safety standards for repository design and construction are required along with the development and implementation of appropriate technologies for the design, construction, operation and closure of the waste disposal systems. As backend of the fuel cycle, resolving the issue of waste disposal is often considered as a prerequisite to the (further) development of nuclear energy programmes. Waste disposal is therefore an essential part of the waste management strategy that contributes largely to build confidence and helps decision-making when appropriately managed. The International Atomic Energy Agency provides assistance to Member States to enable safe and secure disposal of RW related to the development of national RWM strategies, including planning and long-term project management, the organisation of international peer-reviews for research and demonstration programmes, the improvement of the long-term safety of existing Near Surface Disposal facilities including capacity extension, the selection of potential candidate sites for different waste types and disposal options, the characterisation of potential host formations for waste facilities and the conduct of preliminary safety assessment, the establishment and transfer of suitable technologies for the management of RW, the development of technological solutions for some specific waste, the building of confidence through training courses, scientific visits and fellowships, the provision of training, expertise, software or hardware, and laboratory equipment, and the assessment of waste management costs and the provision of advice on cost minimisation aspects

  15. Hybrid disposal systems and nitrogen removal in individual sewage disposal systems

    Energy Technology Data Exchange (ETDEWEB)

    Franks, A.L.

    1993-06-01

    The use of individual disposal systems in ground-water basins that have adverse salt balance conditions and/or geologically unsuitable locations, has become a major problem in many areas of the world. There has been much research in design of systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of the treated waste in areas with adverse geologic conditions and systems for the removal of nitrogen and phosphorus prior to percolation to the ground water. This paper outlines the history of development and rationale for design and construction of individual sewage disposal systems and describes the designs and limitations of the hybrid and denitrification units. The disposal systems described include Mounds, Evapotranspiration and Evapotranspiration/Infiltration systems. The denitrification units include those using methanol, sulfur and limestone, gray water and secondary treated wastewater for energy sources.

  16. Disposal of spent nuclear fuel from NPP Krsko

    International Nuclear Information System (INIS)

    Mele, I.

    2004-01-01

    In order to get a clear view of the future liabilities of Slovenia and Croatia regarding the long term management of radioactive waste and spent nuclear fuel produced by the NPP Krsko, an estimation of disposal cost for low and intermediate level waste (LILW) as well as for spent nuclear fuel is needed. This cost estimation represents the basis for defining the target value for the financial resources to be accrued by the two national decommissioning and waste disposal funds, as determined in the agreement between Slovenia and Croatia on the ownership and exploitation of the NPP Krsko from March 2003, and for specifying their financial strategies. The one and only record of the NPP Krsko spent fuel disposal costs was made in the NPP Krsko Decommissioning Plan from 1996 [1]. As a result of incomplete input data, the above SF disposal cost estimate does not incorporate all cost elements. A new cost estimation was required in the process of preparation of the Joint Decommissioning and Waste Management Programme according to the provisions of the above mentioned agreement between Slovenia and Croatia. The basic presumptions and reference scenario for the disposal of spent nuclear fuel on which the cost estimation is based, as well as the applied methodology and results of cost estimation, are presented in this paper. Alternatives to the reference scenario and open questions which need to be resolved before the relevant final decision is taken, are also briefly discussed. (author)

  17. The disposal of orphan wastes using the greater confinement disposal concept

    International Nuclear Information System (INIS)

    Bonano, E.J.; Chu, M.S.Y.; Price, L.L.; Conrad, S.H.; Dickman, P.T.

    1991-01-01

    In the United States, radioactive wastes are conventionally classified as high-level wastes, transuranic wastes, or low-level wastes. Each of these types of wastes, by law, has a ''home'' for their final disposal; i.e., high-level wastes are destined for disposal at the proposed repository at Yucca Mountain, transuranic waste for the proposed Waste Isolation Pilot Plant, and low-level waste for shallow-land disposal sites. However, there are some radioactive wastes within the United States Department of Energy (DOE) complex that do not meet the criteria established for disposal of either high-level waste, transuranic waste, or low-level waste. The former are called ''special-case'' or ''orphan'' wastes. This paper describes an ongoing project sponsored by the DOE's Nevada Operations Office for the disposal of orphan wastes at the Radioactive Waste Management Site at Area 5 of the Nevada Test Site using the greater confinement disposal (GCD) concept. The objectives of the GCD project are to evaluate the safety of the site for disposal of orphan wastes by assessing compliance with pertinent regulations through performance assessment, and to examine the feasibility of this disposal concept as a cost-effective, safe alternative for management of orphan wastes within the DOE complex. Decisions on the use of GCD or other alternate disposal concepts for orphan wastes be expected to be addressed in a Programmatic Environmental Impact Statement being prepared by DOE. The ultimate decision to use GCD will require a Record of Decision through the National Environmental Policy Act (NEPA) process. 20 refs., 3 figs., 2 tabs

  18. From disposal at sea to distribution of oil-based cuttings

    International Nuclear Information System (INIS)

    Boehm, J.T.C.; Laan, L.V.D.

    1994-01-01

    The environmental impact of cutting discharges has led to a significant change in the way oilbased mud has been used at the Dutch Continental Shelf (DCS). The industry has converted from direct disposal of oilbased cuttings to a zero oil disposal at sea by transfer of cuttings to land. Moreover, distillation of cuttings has resulted in a closed-loop application of the base oil. This method has been developed as a standard operation even before the zero oil disposal limit became effective in 1993. Although the well costs have increased with 2.5% as a result of the new requirement, the extra costs amount to only a small fraction of the extra well costs if only waterbased mud would be allowed. Both industry and environment benefit and it has resulted in an increased use of oilbased mud since 1991 at the DCS. Further scope for reduction of environmental impact related to waste disposal is limited. The remaining concerns are related to the prevention of oil spills

  19. Composite analysis E-area vaults and saltstone disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.

  20. Composite analysis E-area vaults and saltstone disposal facilities

    International Nuclear Information System (INIS)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public

  1. The Dutch geologic radioactive waste disposal project

    International Nuclear Information System (INIS)

    Hamstra, J.; Verkerk, B.

    1981-01-01

    The Final Report reviews the work on geologic disposal of radioactive waste performed in the Netherlands over the period 1 January 1978 to 31 December 1979. The attached four topical reports cover detailed subjects of this work. The radionuclide release consequences of an accidental flooding of the underground excavations during the operational period was studied by the institute for Atomic Sciences in Agriculture (Italy). The results of the quantitative examples made for different effective cross-sections of the permeable layer connecting the mine excavations with the boundary of the salt dome, are that under all circumstances the concentration of the waste nuclides in drinking water will remain well within the ICRP maximum permissible concentrations. Further analysis work was done on what minima can be achieved for both the maximum local rock salt temperatures at the disposal borehole walls and the maximum global rock salt temperatures halfway between a square of disposal boreholes. Different multi-layer disposal configurations were analysed and compared. A more detailed description is given of specific design and construction details of a waste repository such as the shaft sinking and construction, the disposal mine development, the mine ventilation and the different plugging and sealing procedures for both the disposal boreholes and the shafts. Thanks to the hospitality of the Gesellschaft fuer Strahlenforschung, an underground working area in the Asse mine became available for performing a dry drilling experiment, which resulted successfully in the drilling of a 300 m deep disposal borehole from a mine room at the -750 m level

  2. Direct ultimate disposal - state of investigations and prospects

    International Nuclear Information System (INIS)

    Gasterstaedt, N.

    1991-01-01

    Based on a decision adopted by the Prime Ministers on 25/10/90, the principles governing preventive waste management of nuclear power plants are reviewed. Increasing importance is attached to the direct ultimate disposal alternative. The legal and political framework, the technology involved, the state of developments, future activities under the R and D programme as well as a cost estimate of direct ultimate disposal are presented. (orig.) [de

  3. Waste and Disposal: Research and Development

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.

    2002-01-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2001 in three topical areas are reported on: performance assessments (PA), waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. SCK-CEN partcipated in several PA projects supported by the European Commission. In the BENIPA project, the role of bentonite barriers in performance assessments of HLW disposal systems is evaluated. The applicability of various output variables (concentrations, fluxes) as performance and safety indicators is investigated in the SPIN project. The BORIS project investigates the chemical behaviour and the migration of radionuclides at the Borehole injection site at Krasnoyarsk-26 and Tomsk-7. SCK-CEN contributed to an impact assessment of a radium storage facility at Olen (Belgium) and conducted PA for site-specific concepts regarding surface or deep disposal of low-level waste at the nuclear zones in the Mol-Dessel region. As regards R and D on waste forms and packages, SCK continued research on the compatbility of various waste forms (bituminised waste, vitrified waste, spent fuel) with geological disposal in clay. Main emphasis in 2001 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to

  4. Waste and Disposal: Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P

    2002-04-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2001 in three topical areas are reported on: performance assessments (PA), waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. SCK-CEN partcipated in several PA projects supported by the European Commission. In the BENIPA project, the role of bentonite barriers in performance assessments of HLW disposal systems is evaluated. The applicability of various output variables (concentrations, fluxes) as performance and safety indicators is investigated in the SPIN project. The BORIS project investigates the chemical behaviour and the migration of radionuclides at the Borehole injection site at Krasnoyarsk-26 and Tomsk-7. SCK-CEN contributed to an impact assessment of a radium storage facility at Olen (Belgium) and conducted PA for site-specific concepts regarding surface or deep disposal of low-level waste at the nuclear zones in the Mol-Dessel region. As regards R and D on waste forms and packages, SCK continued research on the compatbility of various waste forms (bituminised waste, vitrified waste, spent fuel) with geological disposal in clay. Main emphasis in 2001 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to

  5. Financing of radioactive waste disposal. Finanzierung der nuklearen Entsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Reich, J

    1989-01-01

    Waste disposal is modelled as a financial calculus. In this connection the particularity is not primarily the dimension to be expected of financial requirement but above all the uncertainty of financial requirement as well as the ecological, socio-economic and especially also the temporal dimension of the Nuclear Waste Disposal project (disposal of spent fuel elements from light-water reactors with and without reprocessing, decommissioning = safe containment and disposal of nuclear power plants, permanent isolation of radioactive waste from the biosphere, intermediate storage). Based on the above mentioned factors the author analyses alternative approaches of financing or financial planning. He points out the decisive significance of the perception of risks or the evaluation of risks by involved or affected persons - i.e. the social acceptance of planned and designed waste disposal concepts - for the achievement and assessment of alternative solutions. With the help of an acceptance-specific risk measure developed on the basis of a mathematical chaos theory he illustrates, in a model, the social influence on the financing of nuclear waste disposal. (orig./HP).

  6. Nuclear waste disposal: two social criteria

    International Nuclear Information System (INIS)

    Rochlin, G.I.

    1977-01-01

    Two criteria--technical irreversibility and site multiplicity--have been suggested for use in establishing standards for the disposal of nuclear wastes. They have been constructed specifically to address the reduction of future risk in the face of inherent uncertainty concerning the social and political developments that might occur over the required periods of waste isolation, to provide for safe disposal without the requirement of a guaranteed future ability to recognize, detect, or repair errors and failures. Decisions as to how to apply or weigh these criteria in conjunction with other waste management goals must be made by societies and their governments. The purpose of this paper was not to preempt this process, but to construct a framework that facilitates consideration of the ethical and normative components of the problem of nuclear waste disposal. The minimum ethical obligation of a waste disposal plan is to examine most thoroughly the potential consequences of present actions, to acknowledge them openly, and to minimize the potential for irremediable harm. An ethically sound waste management policy must reflect not only our knowledge and skills, but our limitations as well

  7. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  8. DOE SNF technology development necessary for final disposal

    International Nuclear Information System (INIS)

    Hale, D.L.; Fillmore, D.L.; Windes, W.E.

    1996-01-01

    Existing technology is inadequate to allow safe disposal of the entire inventory of US Department of Energy (DOE) spent nuclear fuel (SNF). Needs for SNF technology development were identified for each individual fuel type in the diverse inventory of SNF generated by past, current, and future DOE materials production, as well as SNF returned from domestic and foreign research reactors. This inventory consists of 259 fuel types with different matrices, cladding materials, meat composition, actinide content, and burnup. Management options for disposal of SNF include direct repository disposal, possible including some physical or chemical preparation, or processing to produce a qualified waste form by using existing aqueous processes or new treatment processes. Technology development needed for direct disposal includes drying, mitigating radionuclide release, canning, stabilization, and characterization technologies. While existing aqueous processing technology is fairly mature, technology development may be needed to apply one of these processes to SNF different than for which the process was originally developed. New processes to treat SNF not suitable for disposal in its current form were identified. These processes have several advantages over existing aqueous processes

  9. Disposal of olive oil mill wastes in evaporation ponds: effects on soil properties.

    Science.gov (United States)

    Kavvadias, V; Doula, M K; Komnitsas, K; Liakopoulou, N

    2010-10-15

    The most common practice followed in the Med countries for the management of olive oil mill wastes (OMW) involves disposal in evaporation ponds or direct disposal on soil. So far there is lack of reliable information regarding the long-term effects of OMW application on soils. This study assesses the effects of OMW disposal in evaporation ponds on underlying soil properties in the wider disposal site as well as the impacts of untreated OMW application on agricultural soils. In case of active disposal sites, the carbonate content in most soils was decreased, whereas soil EC, as well as Cl(-), SO(4)(2-), PO(4)(3-), NH(4)(+) and particularly K(+) concentrations were substantially increased. Soil pH was only marginally affected. Phenol, total N, available P and PO(4)(3-) concentrations were considerably higher in the upper soil layers in areas adjacent to the ponds. Available B as well as DTPA extractable Cu, Mn, Zn and Fe increased substantially. Most surface soil parameters exhibited increased values at the inactive site 6 years after mill closure and cease of OMW disposal activities but differences were diminished in deeper layers. It is therefore concluded that long-term uncontrolled disposal of raw OMW on soils may affect soil properties and subsequently enhance the risk for groundwater contamination. 2010 Elsevier B.V. All rights reserved.

  10. Radioactive waste disposal: an international law perspective

    International Nuclear Information System (INIS)

    Barrie, G.N.

    1989-01-01

    The question of radioactive waste disposal is the most intractable technical and political problem facing nuclear industry. Environmentalists world-wide demand a nuclear waste policy that must be ecologically acceptable internationally. Radioactive wastes and oil pollution were the first two types of marine pollution to receive international attention and various marine pollution controls were established. Ocean disposal was co-ordinated by the Nuclear Energy Agency and the Organization of Economic Co-operation and Development in 1967. The first treaty was the 1958 Convention on the High Seas (High Seas Convention). In response to its call for national co-operation the International Atomic Energy Agency (IAEA) established its Brynielson panel. The IAEA first issued guidelines on sea dumping in 1961. The London Dumping Convention, written in 1972, is the only global agreement concerned solely with the disposal of wastes in the marine environment by dumping. None of the global agreements make specific reference to sea-bed disposal of high-level radioactive wastes. Negotiations began at the Third UN Conference on the Law of the Sea (UNCLOS III) for the codification of a comprehensive treaty concerned with the protection, conservation, sustainable use and development of the marine environment. Burial in deep geological formations is a method of HLW disposal which decreases the chances of accidental intrusion by mankind and has little likelihood of malicious intrusion. National waste management programmes of different countries differ but there is agreement on the acceptable technical solutions to issues of waste management. The final disposition of HLW - storage or disposal - has not been decisively determined, but there is growing consensus that geological land-based disposal is the most viable alternative. Expanded international technical co-operation could well reduce the time needed to develop effective waste disposal mechanisms

  11. Design of the disposal facility 2012

    International Nuclear Information System (INIS)

    Saanio, T.; Ikonen, A.; Keto, P.; Kirkkomaeki, T.; Kukkola, T.; Nieminen, J.; Raiko, H.

    2013-11-01

    The spent nuclear fuel accumulated from the nuclear power plants in Olkiluoto in Eurajoki and in Haestholmen in Loviisa will be disposed of in Olkiluoto. A facility complex will be constructed at Olkiluoto, and it will include two nuclear waste facilities according to Government Degree 736/2008. The nuclear waste facilities are an encapsulation plant, constructed to encapsulate spent nuclear fuel and a disposal facility consisting of an underground repository and other underground rooms and above ground service spaces. The repository is planned to be excavated to a depth of 400 - 450 meters. Access routes to the disposal facility are an inclined access tunnel and vertical shafts. The encapsulated fuel is transferred to the disposal facility in the canister lift. The canisters are transferred from the technical rooms to the disposal area via central tunnel and deposited in the deposition holes which are bored in the floors of the deposition tunnels and are lined beforehand with compacted bentonite blocks. Two parallel central tunnels connect all the deposition tunnels and these central tunnels are inter-connected at regular intervals. The solution improves the fire safety of the underground rooms and allows flexible backfilling and closing of the deposition tunnels in stages during the operational phase of the repository. An underground rock characterization facility, ONKALO, is excavated at the disposal level. ONKALO is designed and constructed so that it can later serve as part of the repository. The goal is that the first part of the disposal facility will be constructed under the building permit phase in the 2010's and operations will start in the 2020's. The fuel from 4 operating reactors as well the fuel from the fifth nuclear power plant under construction, has been taken into account in designing the disposal facility. According to the information from TVO and Fortum, the amount of the spent nuclear fuel is 5,440 tU. The disposal facility is being excavated

  12. Disposal facilities for radioactive waste - legislative requirements for siting

    International Nuclear Information System (INIS)

    Markova-Mihaylova, Radosveta

    2015-01-01

    The specifics of radioactive waste, namely the content of radionuclides require the implementation of measures to protect human health and the environment against the hazards arising from ionizing radiation, including disposal of waste in appropriate facilities. The legislative requirements for siting of such facilities, and classification of radioactive waste, as well as the disposal methods, are presented in this publication

  13. Disposal of mixed waste: Technical, institutional, and policy factors

    International Nuclear Information System (INIS)

    Waters, R.D.; Gruebel, M.M.; Letourneau, M.J.; Case, J.T.

    1996-01-01

    In conjunction with the affected States as part of their interactions required by the Federal Facilities Compliance Act, the Department of Energy has been developing a process for a disposal configuration for its mixed low-level waste (MLLW). This effort, spanning more than two years, has reduced the potential disposal sites from 49 to 15. The remaining 15 sites have been subjected to a performance evaluation to determine their strengths and weaknesses for disposal of MLLW. The process has included institutional and policy factors as well as strictly technical analyses, and technical analyses must be supported by technical analyses, and technical analyses must be performed within a framework which includes some institutional considerations, with the institutional considerations selected for inclusion largely a matter of policy. While the disposal configuration process is yet to be completed, the experience to date offers a viable approach for solving some of these issues. Additionally, several factors remain to be addressed before an MLLW disposal configuration can be developed

  14. Proposal of a SiC disposal canister for very deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui-Joo; Lee, Minsoo; Lee, Jong-Youl; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper authors proposed a silicon carbide, SiC, disposal canister for the DBD concept in Korea. A. Kerber et al. first proposed the SiC canister for a geological disposal of HLW, CANDU or HTR spent nuclear fuels. SiC has some drawbacks in welding or manufacturing a large canister. Thus, we designed a double layered disposal canister consisting of a stainless steel outer layer and a SiC inner layer. KAERI has been interested in developing a very deep borehole disposal (DBD) of HLW generated from pyroprocessing of PWR spent nuclear fuel and supported the relevant R and D with very limited its own budget. KAERI team reviewed the DBD concept proposed by Sandia National Laboratories (SNL) and developed its own concept. The SNL concept was based on the steel disposal canister. The authors developed a new technology called cold spray coating method to manufacture a copper-cast iron disposal canister for a geological disposal of high level waste in Korea. With this method, 8 mm thin copper canister with 400 mm in diameter and 1200 mm in height was made. In general, they do not give any credit on the lifetime of a disposal canister in DBD concept unlike the geological disposal. In such case, the expensive copper canister should be replaced with another one. We designed a disposal canister using SiC for DBD. According to an experience in manufacturing a small size canister, the fabrication of a large-size one is a challenge. Also, welding of SiC canister is not easy. Several pathways are being paved to overcome it.

  15. Research on geological disposal: R and D concept on geological disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The objective on geological disposal of high-level radioactive wastes are to ensure the long term radiological protection of the human and his environment in accordance with current internationally agreed radiation protection principles. The principle of geological disposal is to settle the high-level wastes in deep underground so as to isolate them from the human and his environment considering the existence of groundwater. Japan is currently in the stage of assessing technical feasibility of geological disposal to the extent practicable. In accordance with the AEC (Atomic Energy Commission) policy in 1989, PNC (Power Reactor and Nuclear Fuel Development Corporation) has conducted the research and development on geological disposal in three areas: 1) studies of geological environment, 2) research and development of disposal technology, and 3) performance assessment study. (author)

  16. Cosmic disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Morisawa, S [Kyoto Univ. (Japan). Faculty of Engineering

    1975-03-01

    The technical and economical possibility and safety of the disposal of highly radioactive waste into cosmos are reviewed. The disposal of highly radioactive waste is serious problem to be solved in the near future, because it is produced in large amounts by the reprocessing of spent fuel. The promising methods proposed are (i) underground disposal, (ii) ocean disposal, (iii) cosmic disposal and (iv) extinguishing disposal. The final disposal method is not yet decided internationally. The radioactive waste contains very long life nuclides, for example transuranic elements and actinide elements. The author thinks the most perfect and safe disposal method for these very long life nuclides is the disposal into cosmos. The space vehicle carrying radioactive waste will be launched safely into outer space with recent space technology. The selection of orbit for vehicles (earth satellite or orbit around planets) or escape from solar system, selection of launching rocket type pretreatment of waste, launching weight, and the cost of cosmic disposal were investigated roughly and quantitatively. Safety problem of cosmic disposal should be examined from the reliable safety study data in the future.

  17. Radioactive waste disposal assessment - overview of biosphere processes and models

    International Nuclear Information System (INIS)

    Coughtrey, P.J.

    1992-09-01

    This report provides an overview of biosphere processes and models in the general context of the radiological assessment of radioactive waste disposal as a basis for HMIP's response to biosphere aspects of Nirex's submissions for disposal of radioactive wastes in a purpose-built repository at Sellafield, Cumbria. The overview takes into account published information from the UK as available from Nirex's safety and assessment research programme and HMIP's disposal assessment programme, as well as that available from studies in the UK and elsewhere. (Author)

  18. Environmental impacts of ocean disposal of CO2

    International Nuclear Information System (INIS)

    Adams, E.; Herzog, H.; Auerbach, D.

    1995-01-01

    One option to reduce atmospheric CO 2 levels is to capture and sequester power plant CO 2 Commercial CO 2 capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO 2 is highly uncertain. The deep ocean is one of only a few possible CO 2 disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO 2 . The term disposal is really a misnomer because the atmosphere and ocean eventually equilibrate on a timescale of 1000 years regardless of where the CO 2 is originally discharged. However, peak atmospheric CO 2 concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO 2 injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO 2 will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. Our project has been examining these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. The end-product will be a report issued during the summer of 1996 consisting of two volumes an executive summary (Vol I) and a series of six, individually authored topical reports (Vol II). A workshop with invited participants from the U.S. and abroad will review the draft findings in January, 1996

  19. Are Disposable and Standard Gonioscopy Lenses Comparable?

    Science.gov (United States)

    Lee, Bonny; Szirth, Bernard C; Fechtner, Robert D; Khouri, Albert S

    2017-04-01

    Gonioscopy is important in the evaluation and treatment of glaucoma. With increased scrutiny of acceptable sterilization processes for health care instruments, disposable gonioscopy lenses have recently been introduced. Single-time use lenses are theorized to decrease infection risk and eliminate the issue of wear and tear seen on standard, reusable lenses. However, patient care would be compromised if the quality of images produced by the disposable lens were inferior to those produced by the reusable lens. The purpose of this study was to compare the quality of images produced by disposable versus standard gonioscopy lenses. A disposable single mirror lens (Sensor Medical Technology) and a standard Volk G-1 gonioscopy lens were used to image 21 volunteers who were prospectively recruited for the study. Images of the inferior and temporal angles of each subject's left eye were acquired using a slit-lamp camera through the disposable and standard gonioscopy lens. In total, 74 images were graded using the Spaeth gonioscopic system and for clarity and quality. Clarity was scored as 1 or 2 and defined as either (1) all structures perceived or (2) all structures not perceived. Quality was scored as 1, 2, or 3, and defined as (1) all angle landmarks clear and well focused, (2) some angle landmarks clear, others blurred, or (3) angle landmarks could not be ascertained. The 74 images were divided into images taken with the disposable single mirror lens and images taken with the standard Volk G-1 gonioscopy lens. The clarity and quality scores for each of these 2 image groups were averaged and P-values were calculated. Average quality of images produced with the standard lens was 1.46±0.56 compared with 1.54±0.61 for those produced with the disposable lens (P=0.55). Average clarity of images produced with the standard lens was 1.47±0.51 compared with 1.49±0.51 (P=0.90) with the disposable lens. We conclude that there is no significant difference in quality of images

  20. History of geological disposal concept (3). Implementation phase of geological disposal (2000 upward)

    International Nuclear Information System (INIS)

    Masuda, Sumio; Sakuma, Hideki; Umeki, Hiroyuki

    2015-01-01

    Important standards and concept about geological disposal have been arranged as an international common base and are being generalized. The authors overview the concept of geological disposal, and would like this paper to help arouse broad discussions for promoting the implementation plan of geological disposal projects in the future. In recent years, the scientific and technological rationality of geological disposal has been recognized internationally. With the addition of discussions from social viewpoints such as ethics, economy, etc., geological disposal projects are in the stage of starting after establishment of social consensus. As an international common base, the following consolidated and systematized items have been presented as indispensable elements in promoting business projects: (1) step-by-step approach, (2) safety case, (3) reversibility and recovery potential, and (4) trust building and communications. This paper outlines the contents of the following cases, where international common base was reflected on the geological disposal projects in Japan: (1) final disposal method and safety regulations, and (2) impact of the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Station accident on geological disposal plan. (A.O.)

  1. Criteria for long-term hazard assessment of chemotoxic and radiotoxic waste disposal

    International Nuclear Information System (INIS)

    Merz, E.R.

    1988-01-01

    Present-day human activities generate chemotoxic as well as radiotoxic wastes. They must likewise be considered as extremely hazardous. If wastes are composed simultaneously of both kinds, as may occur in nuclear facility operations or nuclear medical applications, the material is called mixed waste. Whereas radioactive waste management and disposal have received considerable attention in the past, less care has been devoted to chemotoxic wastes. Also, mixed wastes may pose problems diverging from singly composed materials. The disposal of mixed wastes is not sufficiently well regulated in the Federal Republic of Germany. Currently, non-radioactive hazardous wastes are mostly disposed of by shallow land burial. Much more rigorous safety precautions are applied with regard to radioactive wastes. According to the orders of the German Federal Government, their disposal is only permitted in continental underground repositories. These repository requirements for radioactive waste disposal should be superior to the near-surface disposal facilities. At present, federal and state legislation do not permit hazardous chemical and radioactive wastes to be deposited simultaneously. It is doubtful whether this instruction is always suitable and also justified. This paper presents a modified strategy

  2. The development of international safety standards on geological disposal

    International Nuclear Information System (INIS)

    McCartin, T.

    2005-01-01

    The IAEA is developing a set of safety requirements for geologic disposal to be used by both developers and regulators for planning, designing, operating, and closing a geologic disposal facility. Safety requirements would include quantitative criteria for assessing safety of geologic disposal facilities as well as requirements for development of the facility and the safety strategy including the safety case. Geologic disposal facilities are anticipated to be developed over a period of at least a few decades. Key decisions, e.g., on the disposal concept, siting, design, operational management and closure, are expected to be made in a series of steps. Decisions will be made based on the information available at each step and the confidence that may be placed in that information. A safety strategy is important for ensuring that at each step during the development of the disposal facility, an adequate understanding of the safety implications of the available options is developed such that the ultimate goal of providing an acceptable level of operational and post closure safety will be met. A safety case for a geologic disposal facility would present all the safety relevant aspects of the site, the facility design and the managerial and regulatory controls. The safety case and its supporting assessments illustrates the level of protection provided and shall give reasonable assurance that safety standards will be met. Overall, the safety case provides confidence in the feasibility of implementing the disposal system as designed, convincing estimates of the performance of the disposal system and a reasonable assurance that safety standards will be met. (author)

  3. Ocean Disposal Site Monitoring

    Science.gov (United States)

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  4. Geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sato, Tsutomu

    2000-01-01

    For disposing method of radioactive wastes, various feasibilities are investigated at every nations and international organizations using atomic energy, various methods such as disposal to cosmic space, disposal to ice sheet at the South Pole and so forth, disposal into ocean bed or its sediments, and disposal into ground have been examined. It is, however, impossible institutionally at present, to have large risk on accident in the disposal to cosmic space, to be prohibited by the South Pole Treaty on the disposal to ice sheet at the South Pole, and to be prohibited by the treaty on prevention of oceanic pollution due to the disposal of wastes and so forth on the disposal into oceanic bed or its sediments (London Treaty). Against them, the ground disposal is thought to be the most powerful method internationally from some reasons shown as follows: no burden to the next generation because of no need in long-term management by human beings; safety based on scientific forecasting; disposal in own nation; application of accumulated technologies on present mining industries, civil engineering, and so forth to construction of a disposal facility; and, possibility to take out wastes again, if required. For the ground disposal, wastes must be buried into the ground and evaluated their safety for long terms. It is a big subject to be taken initiative by engineers on geoscience who have quantified some phenomena in the ground and at ultra long term. (G.K.)

  5. Environmental protection for subsea wells

    International Nuclear Information System (INIS)

    Diehl, R.J.; Osborne, R.S.; Elwood, J.

    1991-01-01

    This patent describes an apparatus for receiving and containing surplus fluid from a subsea well installation on the ocean floor including a subsea wellhead assembly disposed in an enclosed protective chamber. It comprises a fluid-carrying conduit connected to the exterior of the protective chamber in fluid communication with the interior of the protective chamber; an inflatable dracon disposed upon and against the ocean floor in protective relation thereto when deflated and releasably connected in fluid communication to an outlet of the conduit; and pressure-balanced relief valve means disposed in the conduit between the outlet and the protective chamber for communicating surplus fluid from the interior of such chamber to the dracon when the fluid pressure within such chamber exceeds a predetermined value. This patent describes a method of completing an underwater well. It comprises installing a hollow cylindrical silo body with attached conductor guide casing into the sea floor; drilling and casing a well through the silo body and conductor guide casing; installing a wellhead assembly on top of the drilled and cased well inside of the silo body; installing a pressure-containing lid on top of the silo body, forming an enclosed protective chamber and isolating the interior of the chamber from the surrounding hydrostatic head of the sea water

  6. Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  7. Disposal of Surplus Weapons Grade Plutonium

    International Nuclear Information System (INIS)

    Alsaed, H.; Gottlieb, P.

    2000-01-01

    The Office of Fissile Materials Disposition is responsible for disposing of inventories of surplus US weapons-usable plutonium and highly enriched uranium as well as providing, technical support for, and ultimate implementation of, efforts to obtain reciprocal disposition of surplus Russian plutonium. On January 4, 2000, the Department of Energy issued a Record of Decision to dispose of up to 50 metric tons of surplus weapons-grade plutonium using two methods. Up to 17 metric tons of surplus plutonium will be immobilized in a ceramic form, placed in cans and embedded in large canisters containing high-level vitrified waste for ultimate disposal in a geologic repository. Approximately 33 metric tons of surplus plutonium will be used to fabricate MOX fuel (mixed oxide fuel, having less than 5% plutonium-239 as the primary fissile material in a uranium-235 carrier matrix). The MOX fuel will be used to produce electricity in existing domestic commercial nuclear reactors. This paper reports the major waste-package-related, long-term disposal impacts of the two waste forms that would be used to accomplish this mission. Particular emphasis is placed on the possibility of criticality. These results are taken from a summary report published earlier this year

  8. Safety case for the disposal of spent nuclear fuel at Olkiluoto. Description of the disposal system 2012

    International Nuclear Information System (INIS)

    2012-12-01

    Description of the Disposal System sits within Posiva Oy's Safety Case 'TURVA-2012' report portfolio and has the objective presenting the initial state of the disposal system for the safety case for the disposal of spent nuclear fuel at Olkiluoto, Finland. Disposal system is an entity composed of a repository system and surface environment. The repository system includes the spent nuclear fuel, canister, buffer, backfill, and closure components as well as the host rock. The repository system components have assigned safety functions (except for the spent nuclear fuel) and are subject to requirements. The initial state is presented for each component, and references to the main supporting reports are given to guide the reader for more details. Conditions for each component vary in time and space, due to the time of emplacement and due to the tolerances set for the compositions, geometries and other properties depending on the component. The disposal operation is foreseen to commence ∼ 2020. At the beginning of the postclosure period, around 2120, all the engineered components have been installed and the operation is finalised. The system evolution during the operational phase is discussed in detail in Performance Assessment. The initial state for the host rock is defined to be essentially equal to the baseline conditions prior to starting the construction of the underground characterisation facility ONKALO. For the surface environment, the initial state is the present conditions prevailing. For any other component of the disposal system, the initial state is defined as the state it has when the direct control over that specific part of the system ceases and only limited information can be made available on the subsequent development of conditions in that part of the system or its near field. (orig.)

  9. Safety case for the disposal of spent nuclear fuel at Olkiluoto. Description of the disposal system 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    Description of the Disposal System sits within Posiva Oy's Safety Case 'TURVA-2012' report portfolio and has the objective presenting the initial state of the disposal system for the safety case for the disposal of spent nuclear fuel at Olkiluoto, Finland. Disposal system is an entity composed of a repository system and surface environment. The repository system includes the spent nuclear fuel, canister, buffer, backfill, and closure components as well as the host rock. The repository system components have assigned safety functions (except for the spent nuclear fuel) and are subject to requirements. The initial state is presented for each component, and references to the main supporting reports are given to guide the reader for more details. Conditions for each component vary in time and space, due to the time of emplacement and due to the tolerances set for the compositions, geometries and other properties depending on the component. The disposal operation is foreseen to commence {approx} 2020. At the beginning of the postclosure period, around 2120, all the engineered components have been installed and the operation is finalised. The system evolution during the operational phase is discussed in detail in Performance Assessment. The initial state for the host rock is defined to be essentially equal to the baseline conditions prior to starting the construction of the underground characterisation facility ONKALO. For the surface environment, the initial state is the present conditions prevailing. For any other component of the disposal system, the initial state is defined as the state it has when the direct control over that specific part of the system ceases and only limited information can be made available on the subsequent development of conditions in that part of the system or its near field. (orig.)

  10. Waste disposal: preliminary studies

    International Nuclear Information System (INIS)

    Carvalho, J.F. de.

    1983-01-01

    The problem of high level radioactive waste disposal is analyzed, suggesting an alternative for the final waste disposal from irradiated fuel elements. A methodology for determining the temperature field around an underground disposal facility is presented. (E.G.) [pt

  11. The legal system of nuclear waste disposal

    International Nuclear Information System (INIS)

    Dauk, W.

    1983-01-01

    This doctoral thesis presents solutions to some of the legal problems encountered in the interpretation of the various laws and regulations governing nuclear waste disposal, and reveals the legal system supporting the variety of individual regulations. Proposals are made relating to modifications of problematic or not well defined provisions, in order to contribute to improved juridical security, or inambiguity in terms of law. The author also discusses the question of the constitutionality of the laws for nuclear waste disposal. Apart from the responsibility of private enterprise to contribute to safe treatment or recycling, within the framework of the integrated waste management concept, and apart from the Government's responsibility for interim or final storage of radioactive waste, there is a third possibility included in the legal system for waste management, namely voluntary measures taken by private enterprise for radioactive waste disposal. The licence to be applied for in accordance with section 3, sub-section (1) of the Radiation Protection Ordinance is interpreted to pertain to all measures of radioactive waste disposal, thus including final storage of radioactive waste by private companies. Although the terminology and systematic concept of nuclear waste disposal are difficult to understand, there is a functionable system of legal provisions contained therein. This system fits into the overall concept of laws governing technical safety and safety engineering. (orig./HSCH) [de

  12. Salt disposal of heat-generating nuclear waste

    International Nuclear Information System (INIS)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  13. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  14. Space disposal of nuclear wastes: socio-political aspects. Volume 2

    International Nuclear Information System (INIS)

    Laporte, T.; Metlay, D.; Windham, P.

    1976-12-01

    The character and scope of the secondary impacts of a space disposal program on the daily lives of people are estimated. These include public health and safety, environmental concerns, socioeconomic benefits and costs, civil liberties, and psychological effects. The types of accidents that might occur during space disposal operations and their indirect as well as direct consequences are discussed as well as the difficulties involved in constructing a management and operational organization that maintains the required high level of vigilance and performance over many years of routine operation

  15. Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    Price, L.

    1994-09-01

    The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE's Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS

  16. Evaluation of Proposed New LLW Disposal Activity: Disposal of Aqueous PUREX Waste Stream in the Saltstone Disposal Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2003-01-01

    The Aqueous PUREX waste stream from Tanks 33 and 35, which have been blended in Tank 34, has been identified for possible processing through the Saltstone Processing Facility for disposal in the Saltstone Disposal Facility

  17. Patients’ Knowledge and Attitude toward the Disposal of Medications

    Directory of Open Access Journals (Sweden)

    Aeshah AlAzmi

    2017-01-01

    Full Text Available Background. Safe disposal of medications is of high concern as malpractice may lead to harmful consequences such as undesirable effects, prescription drug abuse, overstocking, self-medication, accidental overdose, and even death. There is a lack of uniform and nationwide guidance on how patients should safely dispose their leftover medications. This study aims to assess patients’ knowledge and attitude regarding the disposal of medications. Method. This research is a cross-sectional study. A self-administered questionnaire was used to collect data from various outpatient pharmaceutical services in King Abdulaziz Medical City (KAMC, Jeddah. Results. The study revealed that 73% of the respondents throw the medications in the trash, 14% return the medications to a pharmacy, 5% never dispose them, and 3% donate the medications to a friend or charity centers. More than 80% of the respondents never received any information or advice from healthcare providers about safe and proper disposal of medications. Conclusion. Our findings suggest that there is an immediate requirement for the establishment of collaborative and uniform guidelines for the safe disposal of leftover medications. A policy for drug donation needs to be included in routine patient education as well as educational and collective programs for the public.

  18. Waste and Disposal: Concept and Demonstration

    International Nuclear Information System (INIS)

    Neerdael, B.; Buyens, M.; De Bruyn, D.; Volckaert, G.

    2001-01-01

    Principal achievements in 2000 with regard to the PRACLAY programme are presented. The PRACLAY project has been conceived to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation. Within this context, various aspects concerning design and operation are investigated.The PRACLAY experiment will contribute to enhance understanding of water flow and mass transport in dense clay-based materials as well as to improve the design of the reference disposal concept. In 2000, efforts were focussed on the operation of the OPHELIE mock-up, which is a surface experiment designed to prepare and to complement PRACLAY-related experimental work in the HADES Underground Research Laboratory

  19. Disposal Concepts for Radioactive Waste. Final Report of the Expert Group on Disposal Concepts for Radioactive Waste (EKRA)

    International Nuclear Information System (INIS)

    Wildi, Walter; Dermange, Francois; Appel, Detlef; Buser, Marcos; Eckhardt, Anne; Hufschmied, Peter; Keusen, Hans-Rudolf; Aebersold, Michael

    2000-01-01

    At the beginning of 1999, talks between the Swiss Federal Government, the siting Cantons (Cantons in which nuclear power plants are located and Canton Nidwalden), environmental organisations and the nuclear power plant operators on the lifetime of the existing power plants and solution of the waste management problem failed to reach a satisfactory outcome. In view of this, the Head of the Federal Department for the Environment, Transport, Energy and Communication (UVEK) decided to set up the Expert Group on Disposal Concepts for Radioactive Waste (EKRA) in June 1999. EKRA then worked on providing the background for a comparison of different waste management concepts. The group developed the concept of monitored long-term geological disposal and compared this with geological disposal, interim storage and indefinite storage. The aspects of active and passive safety, monitoring and control, as well as retrievability of waste were at the fore-front of these deliberations. This report presents the conclusions and recommendations of EKRA

  20. Disposal Concepts for Radioactive Waste. Final Report of the Expert Group on Disposal Concepts for Radioactive Waste (EKRA)

    Energy Technology Data Exchange (ETDEWEB)

    Wildi, Walter; Dermange, Francois [Univ. of Geneva, CH-1211 Geneva (Switzerland); Appel, Detlef [PanGeo, Hannover (Germany); Buser, Marcos [Buser and Finger, Zurich (Switzerland); Eckhardt, Anne [Basler and Hofmann, Zurich (Switzerland); Hufschmied, Peter [Emch and Berger, Bern (Switzerland); Keusen, Hans-Rudolf [Geotest, Zollikofen (Switzerland); Aebersold, Michael [Swiss Federal Office of Energy (BFE), CH-3003 Bern (Switzerland)

    2000-01-15

    At the beginning of 1999, talks between the Swiss Federal Government, the siting Cantons (Cantons in which nuclear power plants are located and Canton Nidwalden), environmental organisations and the nuclear power plant operators on the lifetime of the existing power plants and solution of the waste management problem failed to reach a satisfactory outcome. In view of this, the Head of the Federal Department for the Environment, Transport, Energy and Communication (UVEK) decided to set up the Expert Group on Disposal Concepts for Radioactive Waste (EKRA) in June 1999. EKRA then worked on providing the background for a comparison of different waste management concepts. The group developed the concept of monitored long-term geological disposal and compared this with geological disposal, interim storage and indefinite storage. The aspects of active and passive safety, monitoring and control, as well as retrievability of waste were at the fore-front of these deliberations. This report presents the conclusions and recommendations of EKRA.

  1. Geological aspects of the nuclear waste disposal problem

    International Nuclear Information System (INIS)

    Laverov, N.P.; Omelianenko, B.L.; Velichkin, V.I.

    1994-06-01

    For the successful solution of the high-level waste (HLW) problem in Russia one must take into account such factors as the existence of the great volume of accumulated HLW, the large size and variety of geological conditions in the country, and the difficult economic conditions. The most efficient method of HLW disposal consists in the maximum use of protective capacities of the geological environment and in using inexpensive natural minerals for engineered barrier construction. In this paper, the principal trends of geological investigation directed toward the solution of HLW disposal are considered. One urgent practical aim is the selection of sites in deep wells in regions where the HLW is now held in temporary storage. The aim of long-term investigations into HLW disposal is to evaluate geological prerequisites for regional HLW repositories

  2. Third invitational well-testing symposium: well testing in low permeability environments

    Energy Technology Data Exchange (ETDEWEB)

    Doe, T.W.; Schwarz, W.J. (eds.)

    1981-03-01

    The testing of low permeability rocks is common to waste disposal, fossil energy resource development, underground excavation, and geothermal energy development. This document includes twenty-six papers and abstracts, divided into the following sessions: opening session, case histories and related phenomena, well test design in low permeability formations, analysis and interpretation of well test data, and instrumentation for well tests. Separate abstracts were prepared for 15 of the 16 papers; the remaining paper has been previously abstracted. (DLC)

  3. Third invitational well-testing symposium: well testing in low permeability environments

    International Nuclear Information System (INIS)

    Doe, T.W.; Schwarz, W.J.

    1981-03-01

    The testing of low permeability rocks is common to waste disposal, fossil energy resource development, underground excavation, and geothermal energy development. This document includes twenty-six papers and abstracts, divided into the following sessions: opening session, case histories and related phenomena, well test design in low permeability formations, analysis and interpretation of well test data, and instrumentation for well tests. Separate abstracts were prepared for 15 of the 16 papers; the remaining paper has been previously abstracted

  4. New technique for landfill leachate well installation

    International Nuclear Information System (INIS)

    Hornsby, R.G.; Miller, M.S.

    1991-01-01

    The installation method fulfilled our expectations. The entire well installation took eight writing days to complete, for an average of two wells per day. It met our Health and Safety, waste volume, environmental risk and uniform sandpack expectations. Health and Safety concerns were minimal. We found that virtually all work could be completed using Level D protection. The volume of waste produced by the well installation was extremely low. The core samples and casing scrapings were the only well installation wastes directly produced. The waste containers which required sampling prior to disposal were: Decontaminated water (330 gallons), Personnel protective equipment and water (715 gallons), Soil cores (25 gallons), Land leachate (440 gallons). Each waste type was sampled and submitted to a laboratory for analyses of full Appendix 3 plus U.S. EPA toxicity parameters. The results verified that all of the wastes could be disposed of on-site. Since the only drilling wastes were the clay core samples and the very small amount of material adhering to the casing, contamination of the new clay cap did not occur. A uniform sandpack was guaranteed through the use of a presanded well screen. The loose sand added when the casing was removed served to fill any voids. All the leachate wells have water in them, and it appears that they will function adequately. We are in the process of constructing a treatment and storage facility to manage the liquids to be extracted for off-site disposal. The long-term effectiveness of the wells will be quantified. This well installation method should be considered in situations requiring the following: expedited installation; reduced Health and Safety concerns; reduced disposal costs; reduced potential for adverse environmental impact; and comparable installation costs. The choice of this method must include considerations of the subsurface geology and the nature of any manmade materials

  5. Self-disposal option for heat-generating waste - 59182

    International Nuclear Information System (INIS)

    Ojovan, Michael I.; Poluektov, Pavel P.; Kascheev, Vladimir A.

    2012-01-01

    well as from intermediate-depth or deep boreholes. Self-disposal can also be used with a novel purpose - to penetrate into the very deep Earth's layers beneath the Moho's discontinuity and to explore Earth interior. (authors)

  6. Alternative disposal technologies for new low-level radioactive waste disposal/storage facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    A Draft Environmental Impact Statement for Waste Management Activities for groundwater protection has been prepared for the Savannah River Plant. Support documentation for the DEIS included an Environmental Information Document on new radioactive waste disposal and storage facilities in which possible alternative disposal technologies were examined in depth. Six technologies that would meet the needs of the Savannah River Plant that selected for description and analysis include near surface disposal, near surface disposal with exceptions, engineered storage, engineered disposal, vault disposal of untreated waste, and a combination of near surface disposal, engineered disposal, and engineered storage. 2 refs

  7. Low-level radioactive mixed waste land disposal facility -- Permanent disposal

    International Nuclear Information System (INIS)

    Erpenbeck, E.G.; Jasen, W.G.

    1993-03-01

    Radioactive mixed waste (RMW) disposal at US Department of Energy (DOE) facilities is subject to the Resource Conservation and Recovery Act of 1976 (RCRA) and the Hazardous and Solid Waste Amendments of 1984 (HSWA). Westinghouse Hanford Company, in Richland, Washington, has completed the design of a radioactive mixed waste land disposal facility, which is based on the best available technology compliant with RCRA. When completed, this facility will provide permanent disposal of solid RMW, after treatment, in accordance with the Land Disposal Restrictions. The facility includes a double clay and geosynthetic liner with a leachate collection system to minimize potential leakage of radioactive or hazardous constituents from the landfill. The two clay liners will be capable of achieving a permeability of less than 1 x 10 -7 cm/s. The two clay liners, along with the two high density polyethylene (HDPE) liners and the leachate collection and removal system, provide a more than conservative, physical containment of any potential radioactive and/or hazardous contamination

  8. Main approaches to solving the problems of radioactive waste processing and disposal

    International Nuclear Information System (INIS)

    Tarasov, V.M.; Syrkus, M.N.

    1989-01-01

    papers devoted to the problems of processing and disposal of radioactive wastes, formed during nuclear facility operation and after decommissioning are reviewed. Techniques for gaseous and liquid waste solidification, as well as solid waste processing by mechanical fragmentation and combustion are considered. Possibilities of radioactive waste disposal in cosmic space, their burial at the bed of seas ansd oceans, in geological storages are discussed. Special attention disposal. The conclusion is made that today there are no any uniform way for radiactive waste disposal and standard technical means for its realization. Solution of the problems considered should be of a complex character and it is carried out within international research programs

  9. 40 CFR 144.80 - What is a Class V injection well?

    Science.gov (United States)

    2010-07-01

    ... of radioactive waste disposal sites to dispose of hazardous waste or radioactive waste into a... hazardous waste management facilities, or by owners or operators of radioactive waste disposal sites to... one quarter mile of the well bore, an underground source of drinking water; (3) Radioactive waste...

  10. Very Low Activity Waste Disposal Facility Recently Commissioned as an Extension of El Cabril LILW Disposal Facility in Spain

    International Nuclear Information System (INIS)

    Zuloaga, P.; Navarro, M.

    2009-01-01

    This paper describes the Very Low Activity Radioactive Waste (VLLW) disposal facility, designed, built and operated by ENRESA as a part of El Cabril LILW disposal facility. El Cabril facility was commissioned in 1992 and has 28 concrete vaults with an internal volume of 100,000 m 3 , as well as waste treatment systems and waste characterization laboratories. The total needs identified in Spain for LILW disposal are of some 176,000 m 3 , of which around 120,000 m3 might be classified as VLLW This project was launched in 2003 and the major licensing steps have been town planning license (2003), construction authorization (after Environmental Impact Statement and report from Nuclear Safety Council-CSN, 2006), and Operations Authorization (after report from CSN, July 2008). The new VLLW disposal facility has a capacity for 130,000 meters cube in four disposal cells of approximately the same size. Only the first cell has been built. The design of the barriers is based on the European Directive for elimination of dangerous waste and consists of a clay layer 1 m, 3 cm geo-bentonite films, and 4 mm HDPE film. In order to minimize leachate volumes collected and help a good monitoring of the site, each cell is divided into different sections, which are protected during operation -before placing a provisional HDPE capping- by a light shelter and where leachate collection is segregated from other sections. (authors)

  11. Uncertainties about the safety of disposal leading to a wish to keep alternatives open. Discussion on the concepts 'storage' ('wait and see') vs. 'disposal' and 'retrievable disposal' vs. 'definitive disposal'

    International Nuclear Information System (INIS)

    Norrby, S.

    2000-01-01

    Uncertainties about the safety of final disposal may lead to unwillingness to take decisions about waste management issues that may seem to be non-reversible. This has lead to proposals that we should wait with decisions on final measures and instead store the waste for some period of time. Also the possibility of retrieval may lead to decisions not to go for permanent disposal but instead to retrievable disposal. These aspects and the pros and cons are discussed both from a more general perspective and also with some reflections from the Swedish programme for nuclear waste management and disposal. (author)

  12. International Collaboration Activities in Different Geologic Disposal Environments

    International Nuclear Information System (INIS)

    Birkholzer, Jens

    2015-01-01

    This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. Since 2012, in an effort coordinated by Lawrence Berkeley National Laboratory, UFD has advanced active collaboration with several international geologic disposal programs in Europe and Asia. Such collaboration allows the UFD Campaign to benefit from a deep knowledge base with regards to alternative repository environments developed over decades, and to utilize international investments in research facilities (such as underground research laboratories), saving millions of R&D dollars that have been and are being provided by other countries. To date, UFD's International Disposal R&D Program has established formal collaboration agreements with five international initiatives and several international partners, and national lab scientists associated with UFD have conducted specific collaborative R&D activities that align well with its R&D priorities.

  13. International Collaboration Activities in Different Geologic Disposal Environments

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-01

    This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. Since 2012, in an effort coordinated by Lawrence Berkeley National Laboratory, UFD has advanced active collaboration with several international geologic disposal programs in Europe and Asia. Such collaboration allows the UFD Campaign to benefit from a deep knowledge base with regards to alternative repository environments developed over decades, and to utilize international investments in research facilities (such as underground research laboratories), saving millions of R&D dollars that have been and are being provided by other countries. To date, UFD’s International Disposal R&D Program has established formal collaboration agreements with five international initiatives and several international partners, and national lab scientists associated with UFD have conducted specific collaborative R&D activities that align well with its R&D priorities.

  14. Radiological Impact Assessment in Disposal of Treated Sludge

    International Nuclear Information System (INIS)

    Khairuddin Mohamad Kontol; Ismail Sulaiman; Faizal Azrin Abdul Razalim

    2015-01-01

    Sludge and scales produced during oil and gas production contain enhanced naturally occurring radioactive material (NORM). Sludge and scales are under the jurisdiction of Department of Environment (DOE) and also Atomic Energy Licensing Board (AELB). AELB has issued a guideline regarding the disposal of sludge and scales as in its guideline (LEM/TEK/30 SEM.2, 1996). In this guideline, Radiological Impact Assessment (RIA) should be carried out on all proposed disposals and has to demonstrate that no member of public will be exposed to more than 1 mSv/y. This paper presented RIA analysis using RESRAD computer code for the disposal of treated sludge. RESRAD (RESidual RADioactive) developed by Argonne National Laboratory is to estimate radiation doses and risks from residual radioactive materials. The dose received by the member of public is found to be well below the stipulated limit. (author)

  15. Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

    2013-07-29

    Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  16. Inventory of radioactive waste disposals at sea

    International Nuclear Information System (INIS)

    1999-08-01

    The IAEA was requested by the Contracting Parties to the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (London Convention 1972) to develop and maintain an inventory of radioactive material entering the marine environment from all sources. The rationale for having such an inventory is related to its use as an information base with which the impact of radionuclides from different sources entering the marine environment can be assessed and compared. To respond to the request of the London Convention, the IAEA has undertaken the development of the inventory to include: disposal at sea of radioactive wastes, and accidents and losses at sea involving radioactive materials. This report addresses disposal at sea of radioactive waste, a practice which continued from 1946 to 1993. It is a revision of IAEA-TECDOC-588, Inventory of Radioactive Material Entering the Marine Environment: Sea Disposal of Radioactive Waste, published in 1991. In addition to the data already published in IAEA-TECDOC-588, the present publication includes detailed official information on sea disposal operations carried out by the former Soviet Union and the Russian Federation provided in 1993 as well as additional information provided by Sweden in 1992 and the United Kingdom in 1997 and 1998

  17. Analysis of nuclear waste disposal in space, phase 3. Volume 2: Technical report

    Science.gov (United States)

    Rice, E. E.; Miller, N. E.; Yates, K. R.; Martin, W. E.; Friedlander, A. L.

    1980-01-01

    The options, reference definitions and/or requirements currently envisioned for the total nuclear waste disposal in space mission are summarized. The waste form evaluation and selection process is documented along with the physical characteristics of the iron nickel-base cermet matrix chosen for disposal of commercial and defense wastes. Safety aspects of radioisotope thermal generators, the general purpose heat source, and the Lewis Research Center concept for space disposal are assessed as well as the on-pad catastrophic accident environments for the uprated space shuttle and the heavy lift launch vehicle. The radionuclides that contribute most to long-term risk of terrestrial disposal were determined and the effects of resuspension of fallout particles from an accidental release of waste material were studied. Health effects are considered. Payload breakup and rescue technology are discussed as well as expected requirements for licensing, supporting research and technology, and safety testing.

  18. Environmental impacts of ocean disposal of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Adams, E.; Herzog, H.; Auerbach, D. [and others

    1995-11-01

    One option to reduce atmospheric CO{sub 2} levels is to capture and sequester power plant CO{sub 2} Commercial CO{sub 2} capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO{sub 2} is highly uncertain. The deep ocean is one of only a few possible CO{sub 2} disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO{sub 2}. The term disposal is really a misnomer because the atmosphere and ocean eventually equilibrate on a timescale of 1000 years regardless of where the CO{sub 2} is originally discharged. However, peak atmospheric CO{sub 2} concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO{sub 2} injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO{sub 2} will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. Our project has been examining these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. The end-product will be a report issued during the summer of 1996 consisting of two volumes an executive summary (Vol I) and a series of six, individually authored topical reports (Vol II). A workshop with invited participants from the U.S. and abroad will review the draft findings in January, 1996.

  19. Research on geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The aims of this research are to develop criteria for reviewing reliability and suitability of the result from Preliminary Investigations to be submitted by the implementer, and to establish a basic policy for safety review. For development of reliability and suitability criteria for reviewing the result of Preliminary Investigations, we evaluated the uncertainties and their influence from limited amount of investigations, as well as we identified important procedures during investigations and constructions of models, as follows: (1) uncertainties after limited amount of geological exploration and drilling, (2) influence of uncertainties in regional groundwater flow model, (3) uncertainties of DFN (Discrete Fracture Network) models in the fractured rock, (4) analyzed investigation methods described in implementer's report, and (5) identified important aspects in investigation which need to be reviewed and follow QA (Quality Assurance). For development of reliability and suitability criteria for reviewing the result of Detailed Investigations, we analyzed important aspects in investigation which supplies data to design and safety assessment, as well as studied the applicability of pressure interference data during excavation to verify hydrogeological model. Regarding the research for safety review, uncertainties of geologic process in long time-scale was studied. In FY2012, we started to evaluate the structural stabilities of concrete and bentonite in disposal environment. Finally, we continued to accumulate the knowledge on geological disposal into the database system. (author)

  20. Toxic and hazardous waste disposal. Volume 4. New and promising ultimate disposal options

    International Nuclear Information System (INIS)

    Pojasek, R.B.

    1980-01-01

    Separate abstrats were prepared for four of the eighteen chapters of this book which reviews several disposal options available to the generators of hazardous wastes. The chapters not abstracted deal with land disposal of hazardous wastes, the solidification/fixation processes, waste disposal by incineration and molten salt combustion and the use of stabilized industrial waste for land reclamation and land farming

  1. Hungary. Closure issues for centralized waste treatment and disposal facility in Puspokszilagy, Hungary

    International Nuclear Information System (INIS)

    2001-01-01

    The facility was commissioned in 1976. At the time that its mission was formulated, the facility was designed to collect, transport, treat as necessary and dispose all radioactive waste originating from institutional use of radioactivity. The facility is government owned and presently operated by the Budapest branch of the State Public Health and Medical Officer Services. The disposal site is located on the ridge of a hill near Puspokszilagy village approximately 40 km Northeast of Budapest. The disposal units are located in Quaternary layers of silt and clay sequences. Annual average precipitation is approximately 650-700 mm. The facility is a typical shallow land, near surface engineered type disposal unit. There are concrete trenches and shallow wells for waste disposal purposes

  2. The psychosocial consequences of spent fuel disposal

    International Nuclear Information System (INIS)

    Paavola, J.; Eraenen, L.

    1999-03-01

    In this report the potential psychosocial consequences of spent fuel disposal to inhabitants of a community are assessed on the basis of earlier research. In studying the situation, different interpretations and meanings given to nuclear power are considered. First, spent fuel disposal is studied as fear-arousing and consequently stressful situation. Psychosomatic effects of stress and coping strategies used by an individual are presented. Stress as a collective phenomenon and coping mechanisms available for a community are also assessed. Stress reactions caused by natural disasters and technological disasters are compared. Consequences of nuclear power plant accidents are reviewed, e.g. research done on the accident at Three Mile Island power plant. Reasons for the disorganising effect on a community caused by a technological disaster are compared to the altruistic community often seen after natural disasters. The potential reactions that a spent fuel disposal plant can arouse in inhabitants are evaluated. Both short-term and long-term reactions are evaluated as well as reactions under normal functioning, after an incident and as a consequence of an accident. Finally an evaluation of how the decision-making system and citizens' opportunity to influence the decision-making affect the experience of threat is expressed. As a conclusion we see that spent fuel disposal can arouse fear and stress in people. However, the level of the stress is probably low. The stress is at strongest at the time of the starting of the spent fuel disposal plant. With time people get used to the presence of the plant and the threat experienced gets smaller. (orig.)

  3. Shallow disposal of radioactive waste

    International Nuclear Information System (INIS)

    1985-02-01

    A review and evaluation of computer codes capable of simulating the various processes that are instrumental in determining the dose rate to individuals resulting from the shallow disposal of radioactive waste was conducted. Possible pathways of contamination, as well as the mechanisms controlling radionuclide movement along these pathways have been identified. Potential transport pathways include the unsaturated and saturated ground water systems, surface water bodies, atmospheric transport and movement (and accumulation) in the food chain. Contributions to dose may occur as a result of ingestion of contaminated water and food, inhalation of contaminated air and immersion in contaminated air/water. Specific recommendations were developed regarding the selection and modification of a model to meet the needs associated with the prediction of dose rates to individuals as a consequence of shallow radioactive waste disposal. Specific technical requirements with regards to risk, sensitivity and uncertainty analyses have been addressed

  4. The politics of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kemp, R.

    1992-01-01

    Plans for radioactive waste disposal have been among the most controversial of all environmental policies, provoking vociferous public opposition in a number of countries. This book looks at the problem from an international perspective, and shows how proposed solutions have to be politically and environmentally, as well as technologically acceptable. In the book the technical and political agenda behind low and intermediate level radioactive waste disposal in the UK, Western Europe, Scandinavia and North America is examined. The technical issues and the industrial proposals and analyses and factors which have been crucial in affecting relative levels of public acceptability are set out. Why Britain has lagged behind countries such as Sweden and France in establishing Low Level Waste (LLW) and Intermediate Level Waste (ILW) sites, the strength of the 'not in my backyard' syndrome in Britain, and comparisons of Britain's decision-making process with the innovative and open pattern followed in the US and Canada are examined. An important insight into the problems facing Nirex, Britain's radioactive waste disposal company, which is seeking to establish an underground waste site at Sellafield in Cumbria is given. (author)

  5. Korean Reference HLW Disposal System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Lee, J. Y.; Kim, S. S. (and others)

    2008-03-15

    This report outlines the results related to the development of Korean Reference Disposal System for High-level radioactive wastes. The research has been supported around for 10 years through a long-term research plan by MOST. The reference disposal method was selected via the first stage of the research during which the technical guidelines for the geological disposal of HLW were determined too. At the second stage of the research, the conceptual design of the reference disposal system was made. For this purpose the characteristics of the reference spent fuels from PWR and CANDU reactors were specified, and the material and specifications of the canisters were determined in term of structural analysis and manufacturing capability in Korea. Also, the mechanical and chemical characteristics of the domestic Ca-bentonite were analyzed in order to supply the basic design parameters of the buffer. Based on these parameters the thermal and mechanical analysis of the near-field was carried out. Thermal-Hydraulic-Mechanical behavior of the disposal system was analyzed. The reference disposal system was proposed through the second year research. At the final third stage of the research, the Korean Reference disposal System including the engineered barrier, surface facilities, and underground facilities was proposed through the performance analysis of the disposal system.

  6. Underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This report is an overview document for the series of IAEA reports dealing with underground waste disposal to be prepared in the next few years. It provides an introduction to the general considerations involved in implementing underground disposal of radioactive wastes. It suggests factors to be taken into account for developing and assessing waste disposal concepts, including the conditioned waste form, the geological containment and possible additional engineered barriers. These guidelines are general so as to cover a broad range of conditions. They are generally applicable to all types of underground disposal, but the emphasis is on disposal in deep geological formations. Some information presented here may require slight modifications when applied to shallow ground disposal or other types of underground disposal. Modifications may also be needed to reflect local conditions. In some specific cases it may be that not all the considerations dealt with in this book are necessary; on the other hand, while most major considerations are believed to be included, they are not meant to be all-inclusive. The book primarily concerns only underground disposal of the wastes from nuclear fuel cycle operations and those which arise from the use of isotopes for medical and research activities

  7. Derivation of activity limits for the disposal of radioactive waste in near surface disposal facilities

    International Nuclear Information System (INIS)

    2003-12-01

    Radioactive waste must be managed safely, consistent with internationally agreed safety standards. The disposal method chosen for the waste should be commensurate with the hazard and longevity of the waste. Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides and low concentrations of long lived radionuclides. The term 'near surface disposal' encompasses a wide range of design options, including disposal in engineered structures at or just below ground level, disposal in simple earthen trenches a few metres deep, disposal in engineered concrete vaults, and disposal in rock caverns several tens of metres below the surface. The use of a near surface disposal option requires design and operational measures to provide for the protection of human health and the environment, both during operation of the disposal facility and following its closure. To ensure the safety of both workers and the public (both in the short term and the long term), the operator is required to design a comprehensive waste management system for the safe operation and closure of a near surface disposal facility. Part of such a system is to establish criteria for accepting waste for disposal at the facility. The purpose of the criteria is to limit the consequences of events which could lead to radiation exposures and in addition, to prevent or limit hazards, which could arise from non-radiological causes. Waste acceptance criteria include limits on radionuclide content concentration in waste materials, and radionuclide amounts in packages and in the repository as a whole. They also include limits on quantity of free liquids, requirements for exclusion of chelating agents and pyrophoric materials, and specifications of the characteristics of the waste containers. Largely as a result of problems encountered at some disposal facilities operated in the past, in 1985 the IAEA published guidance on generic acceptance

  8. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    International Nuclear Information System (INIS)

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-01-01

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information

  9. Transuranic advanced disposal systems: preliminary 239Pu waste-disposal criteria for Hanford

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

    1982-08-01

    An evaluation of the feasibility and potential application of advanced disposal systems is being conducted for defense transuranic (TRU) wastes at the Hanford Site. The advanced waste disposal options include those developed to provide greater confinement than provided by shallow-land burial. An example systems analysis is discussed with assumed performance objectives and various Hanford-specific disposal conditions, waste forms, site characteristics, and engineered barriers. Preliminary waste disposal criteria for 239 Pu are determined by applying the Allowable Residual Contamination Level (ARCL) method. This method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. A 10,000 year environmental performance period is assumed, and the dose rate limit for human intrusion is assumed to be 500 mrem/y to any exposed individual. Preliminary waste disposal criteria derived by this method for 239 Pu in soils at the Hanford Site are: 0.5 nCi/g in soils between the surface and a depth of 1 m, 2200 nCi/g of soil at a depth of 5 m, and 10,000 nCi/g of soil at depths 10 m and below. These waste disposal criteria are based on exposure scenarios that reflect the dependence of exposure versus burial depth. 2 figures, 5 tables

  10. Disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-11-15

    A discussion on the disposal of radioactive wastes was held in Vienna on 20 September 1960. The three scientists who participated in the discussion were Mr. Harry Brynielsson (Sweden), Head of the Swedish Atomic Energy Company; Mr. H. J. Dunster (United Kingdom), Health Physics Adviser to the United Kingdom Atomic Energy Authority; and Mr. Leslie Silverman (United States), Professor of Harvard University, and Chairman of the US AEC Advisory Committee on Reactor Safeguards, as well as consultant on air cleaning

  11. Subsurface disposal of liquid low-level radioactive wastes at Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Stow, S.H.; Haase, C.S.

    1986-01-01

    At Oak Ridge National Laboratory (ORNL) subsurface injection has been used to dispose of low-level liquid nuclear waste for the last two decades. The process consists of mixing liquid waste with cement and other additives to form a slurry that is injected under pressure through a cased well into a low-permeability shale at a depth of 300 m. The slurry spreads from the injection well along bedding plane fractures and forms solid grout sheets of up to 200 m in radius. Using this process, ORNL has disposed of over 1.5 x 10 6 Ci of activity; the principal nuclides are 90 Sr and 137 Cs. In 1982, a new injection facility was put into operation. Each injection, which lasts some two days, results in the emplacement of approximately 750,000 liters of slurry. Disposal cost per liter is about $0.30, including capital costs of the facility. This subsurface disposal process is fundamentally different from other operations. Wastes are injected into a low-permeability aquitard, and the process is designed to isolate nuclides, preventing dispersion in groundwaters. The porosity into which wastes are injected is created by hydraulically fracturing the host formation along bedding planes. Investigations are under way to determine the long-term hydrologic isolation of the injection zone and the geochemical impact of saline groundwater on nuclide mobility. Injections are monitored by gamma-ray logging of cased observation wells to determine grout sheet orientation after an injection. Recent monitoring work has involved the use of tiltmeters, surface uplift surveys, and seismic arrays. Recent regulatory constraints may cause permanent cessation of the operation. Federal and state statutes, written for other types of injection facilities, impact the ORNL facility. This disposal process, which may have great applicability for disposal of many wastes, including hazardous wastes, may not be developed for future use

  12. Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository

    International Nuclear Information System (INIS)

    1987-02-01

    This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal. These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs

  13. Selection of Computer Codes for Shallow Land Waste Disposal in PPTA Serpong

    International Nuclear Information System (INIS)

    Syahrir

    1996-01-01

    Selection of Computer Codes for Shallow Land Waste Disposal in PPTA Serpong. Models and computer codes have been selected for safety assessment of near surface waste disposal facility. This paper provides a summary and overview of the methodology and codes selected. The methodology allows analyses of dose to individuals from offsite releases under normal conditions as well as on-site doses to inadvertent intruders. A demonstration in the case of shallow land waste disposal in Nuclear Research Establishment are in Serpong has been given for normal release scenario. The assessment includes infiltration of rainfall, source-term, ground water (well) and surface water transport, food-chain and dosimetry. The results show dose history of maximally exposed individuals. The codes used are VS2DT, PAGAN and GENII. The application of 1 m silt loam as a moisture barrier cover decreases flow in the disposal unit by a factor of 27. The selected radionuclides show variety of dose histories according to their chemical and physical characteristics and behavior in the environment

  14. Technical considerations in the design of near surface disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    2001-11-01

    Good design is an important step towards ensuring operational as well as long term safety of low and intermediate level waste (LILW) disposal. The IAEA has produced this report with the objective of outlining the most important technical considerations in the design of near surface disposal facilities and to provide some examples of the design process in different countries. This guidance has been developed in light of experience gained from the design of existing near surface disposal facilities in a range of Member States. In particular the report provide information on design objective, design requirements, and design phases. The report focuses on: near surface disposal facilities accepting solidified LILW; disposal facilities on or just below the ground surface, where the final protective covering is of the order of a few metres thick; and disposal facilities several tens of metres below the ground surface (including rock cavern type facilities)

  15. Waste and Disposal: Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P

    2001-04-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2000 in three topical areas are reported on: performance assessments, waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. An impact assessment was completed for the radium storage facility at Olen (Belgium). Geological data, pumping rates and various hydraulic parameters were collected in support of the development of a new version of the regional hydrogeological model for the Mol site. Research and Development on waste forms and waste packages included both in situ and laboratory tests. Main emphasis in 2000 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to laboratory experiments, several large-scale migration experiments were performed in the HADES Underground Research Laboratory. In 2000, the TRANCOM Project to study the influence of dissolved organic matter on radionuclide migration as well as the RESEAL project to demonstrate shaft sealing were continued.

  16. Waste and Disposal: Research and Development

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.

    2001-01-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2000 in three topical areas are reported on: performance assessments, waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. An impact assessment was completed for the radium storage facility at Olen (Belgium). Geological data, pumping rates and various hydraulic parameters were collected in support of the development of a new version of the regional hydrogeological model for the Mol site. Research and Development on waste forms and waste packages included both in situ and laboratory tests. Main emphasis in 2000 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to laboratory experiments, several large-scale migration experiments were performed in the HADES Underground Research Laboratory. In 2000, the TRANCOM Project to study the influence of dissolved organic matter on radionuclide migration as well as the RESEAL project to demonstrate shaft sealing were continued

  17. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Allan, C.J.

    1993-01-01

    The Canadian concept for nuclear fuel waste disposal is based on disposing of the waste in a vault excavated 500-1000 m deep in intrusive igneous rock of the Canadian Shield. The author believes that, if the concept is accepted following review by a federal environmental assessment panel (probably in 1995), then it is important that implementation should begin without delay. His reasons are listed under the following headings: Environmental leadership and reducing the burden on future generations; Fostering public confidence in nuclear energy; Forestalling inaction by default; Preserving the knowledge base. Although disposal of reprocessing waste is a possible future alternative option, it will still almost certainly include a requirement for geologic disposal

  18. Packaging radioactive wastes for geologic disposal

    International Nuclear Information System (INIS)

    Benton, H.A.

    1996-01-01

    The M ampersand O contractor for the DOE Office of Civilian Radioactive Waste Management is developing designs of waste packages that will contain the spent nuclear fuel assemblies from commercial and Navy reactor plants and various civilian and government research reactor plants, as well as high-level wastes vitrified in glass. The safe and cost effective disposal of the large and growing stockpile of nuclear waste is of national concern and has generated political and technical debate. This paper addresses the technical aspects of disposing of these wastes in large and robust waste packages. The paper discusses the evolution of waste package design and describes the current concepts. In addition, the engineering and regulatory issues that have governed the development are summarized and the expected performance in meeting the requirements are discussed

  19. Geology of high-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Roxburgh, I.S.

    1988-01-01

    The concept of geological disposal is set out by describing the major rock types in terms of their ability to isolate high-level nuclear waste. The advantages and problems posed by particular rock formations are explored and the design and construction of geological repositories is considered, along with the methods used to estimate their safety. It gives special consideration to the use of sea-covered rock and sediment as well as the on-land situation. Throughout the book the various principles and problems inherent in geological disposal are explained and illustrated by reference to a multitude of European and North American case studies, backed up by a large number of tables, figures and an extensive bibliography

  20. New York's response to the national LLRW disposal legislation

    International Nuclear Information System (INIS)

    Orazio, A.F.; Schwarz, W.F.; Feeney, A.X.

    1988-01-01

    The Federal Low Level Radioactive Waste Policy Act (LLRWPA) and its amendments brought about a shift from commercial responsibility to state responsibility for low level radioactive waste (LLRW) disposal. This shift required New York to evaluate various policy options for handling its new LLRW disposal responsibility. After passage of the 1980 Federal Act, New York participated in efforts which resulted in a proposed interstate compact in the Northeast. Following a review of the proposed compact, as well as other options, New York decided to assume by itself full responsibility for disposing of its LLRW. In July 1986, New York enacted the New York State LLRW Management Act. This act provides New York with a detailed plan for establishing a LLWR disposal facility by the 1993 federal deadline. This paper consists of two segments. The first describes the major provisions of the State Act assigning responsibilities to the various agencies involved and reports on their progress. The second segment discusses the current activities of those involved in implementing the State Act with an emphasis on the recent and future activities of the Siting Commission

  1. Novel Emplacement Device for a Very Deep Borehole Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Soo; Choi, Heui-joo; Lee, Jong Yul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    There is a worldwide attempt of HLW disposal into a very deep borehole of around 3-5 km depth with the advancement of an underground excavation technology recently. As it goes into deeper underground, the rock becomes more uniform and flawless. And then the underground water circulation system at 3-5 km depth is almost disconnected with near groundwater circulation system. The canister integrity is less important in this very deep borehole disposal system unlike a general geologic disposal system at 500 m. In the deep borehole disposal procedures, one SNF (Spent Nuclear Fuel) assembly is stored in one disposal canister (D30-40cm, H4.7-5.0m), and approximately 10-40 disposal canisters are connected axially, which parade length can leach to around 200m in maximum. The connected canister parade is lowered through a very deep borehole (D40-50cm) by emplacement devices. Therefore the connections between canisters and canister to lowering joint are very important for the safe operation of it. The well-known connection method between canisters is Threaded Coupled Connection method, in which releasing of the connection is almost impossible after thread fastening in the borehole. The novel joint device suggested in this paper can accommodate a canister emplacement and retrieval in the borehole disposal process. The joint can be lowered by bound to a drilling pipe, or high tension cable along 3-5 km distance. This novel device can cope with an accidental event easily without any joint head change. When canisters are damaged or stuck on the borehole wall during their descending, the canisters in trouble can be retrieved simply by the control of a lifting speed.

  2. Waste-Mixes Study for space disposal

    International Nuclear Information System (INIS)

    McCallum, R.F.; Blair, H.T.; McKee, R.W.; Silviera, D.J.; Swanson, J.L.

    1983-01-01

    The Wastes Mixes Study is a component of Cy-1981 and 1982 research activities to determine if space disposal could be a feasible complement to geologic disposal for certain high-level (HLW) and transuranic wastes (TRU). The objectives of the study are: to determine if removal of radionuclides from HLW and TRU significantly reduces the long-term radiological risks of geologic disposal; to determine if chemical partitioning of the waste for space disposal is technically feasible; to identify acceptable waste forms for space disposal; and to compare improvements in geologic disposal system performance to impacts of additional treatment, storage, and transportation necessary for space disposal. To compare radiological effects, five system alternatives are defined: Reference case - All HLW and TRU to a repository. Alternative A - Iodine to space, the balance to a repository. Alternative B - Technetium to space, the balance to a repository. Alternative C - 95% of cesium and strontium to a repository; the balance of HLW aged first, then to space; plutonium separated from TRU for recycle; the balance of the TRU to a repository. Alternative D - HLW aged first, then to space, plutonium separated from TRU for recycle; the balance of the TRU to a repository. The conclusions of this study are: the incentive for space disposal is that it offers a perception of reduced risks rather than significant reduction. Suitable waste forms for space disposal are cermet for HLW, metallic technetium, and lead iodide. Space disposal of HLW appears to offer insignificant safety enhancements when compared to geologic disposal; the disposal of iodine and technetium wastes in space does not offer risk advantages. Increases in short-term doses for the alternatives are minimal; however, incremental costs of treating, storing and transporting wastes for space disposal are substantial

  3. Treated Effluent Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Treated non-hazardous and non-radioactive liquid wastes are collected and then disposed of through the systems at the Treated Effluent Disposal Facility (TEDF). More...

  4. Disposal facility in Olkiluoto, description of above ground facilities in tunnel transport alternative

    International Nuclear Information System (INIS)

    Kukkola, T.

    2006-11-01

    The above ground facilities of the disposal plant on the Olkiluoto site are described in this report as they will be when the operation of the disposal facility starts in the year 2020. The disposal plant is visualised on the Olkiluoto site. Parallel construction of the deposition tunnels and disposal of the spent fuel canisters constitute the principal design basis of the disposal plant. The annual production of disposal canisters for spent fuel amounts to about 40. Production of 100 disposal canisters has been used as the capacity basis. Fuel from the Olkiluoto plant and from the Loviisa plant will be encapsulated in the same production line. The disposal plant will require an area of about 15 to 20 hectares above ground level. The total building volume of the above ground facilities is about 75000 m 3 . The purpose of the report is to provide the base for detailed design of the encapsulation plant and the repository spaces, as well as for coordination between the disposal plant and ONKALO. The dimensioning bases for the disposal plant are shown in the Tables at the end of the report. The report can also be used as a basis for comparison in deciding whether the fuel canisters are transported to the repository by a lift or a by vehicle along the access tunnel. (orig.)

  5. Disposal facility in olkiluoto, description of above ground facilities in lift transport alternative

    International Nuclear Information System (INIS)

    Kukkola, T.

    2006-11-01

    The above ground facilities of the disposal plant on the Olkiluoto site are described in this report as they will be when the operation of the disposal facility starts in the year 2020. The disposal plant is visualised on the Olkiluoto site. Parallel construction of the deposition tunnels and disposal of the spent fuel canisters constitute the principal design basis of the disposal plant. The annual production of disposal canisters for spent fuel amounts to about 40. Production of 100 disposal canisters has been used as the capacity basis. Fuel from the Olkiluoto plant and from the Loviisa plant will be encapsulated in the same production line. The disposal plant will require an area of about 15 to 20 hectares above ground level. The total building volume of the above ground facilities is about 75000 m 3 . The purpose of the report is to provide the base for detailed design of the encapsulation plant and the repository spaces, as well as for coordination between the disposal plant and ONKALO. The dimensioning bases for the disposal plant are shown in the Tables at the end of the report. The report can also be used as a basis for comparison in deciding whether the fuel canisters are transported to the repository by a lift or by a vehicle along the access tunnel. (orig.)

  6. A data base for low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Daum, M.L.; Moskowitz, P.D.

    1989-07-01

    A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs

  7. Unreviewed Disposal Question Evaluation: Waste Disposal in Engineered Trenches 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hamm, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-12

    Revision 0 of this UDQE addressed the proposal to place Engineered Trench #3 (ET#3) in the footprint designated for Slit Trench #12 (ST#12) and operate using ST#12 disposal limits. Similarly, Revision 1 evaluates whether ET#4 can be located in and operated to Slit Trench #13 (ST#13) disposal limits. Both evaluations conclude that the proposed operations result in an acceptably small risk of exceeding a SOF of 1.0 and approve these actions from a performance assessment (PA) perspective. Because ET#3 will be placed in the location previously designated for ST#12, Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore, new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  8. Geological disposal of nuclear waste

    International Nuclear Information System (INIS)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed

  9. The disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ormai, P.

    2006-01-01

    The first part shows different ways of 'producing' radioactive wastes, defines the wastes of small, medium and high activity and gives estimation on the quantity of the necessary capacities of waste disposal facilities. The modern radioactive waste disposal that is the integrated processing of the form of waste, the package, the technical facility and the embedding geological environment that guarantee the isolation together. Another factor is the lifetime of radioactive waste which means that any waste containing long lifetime waste in higher concentration than 400-4000 kBq/kg should be disposed geologically. Today the centre of debate disposal of radioactive waste is more social than technical. For this reason not only geological conditions and technical preparations, but social discussions and accepting communities are needed in selecting place of facilities. Now, the focus is on long term temporary disposal of high activity wastes, like burnt out heating elements. The final part of the paper summarizes the current Hungarian situation of disposal of radioactive wastes. (T-R.A.)

  10. Marine disposal of radioactive wastes - the debate

    International Nuclear Information System (INIS)

    Blair, I.

    1985-01-01

    The paper defends the case for marine disposal of radioactive wastes. The amount of packaged waste disposed; the site for marine disposal; the method of disposal; the radioactivity arising from the disposal; and safety factors; are all briefly discussed. (U.K.)

  11. CCA-treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal.

    Science.gov (United States)

    Jambeck, Jenna; Weitz, Keith; Solo-Gabriele, Helena; Townsend, Timothy; Thorneloe, Susan

    2007-01-01

    Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. Although some countries have banned the use of the product for some applications, others have not, and the product continues to enter the waste stream from construction, demolition and remodeling projects. CCA-treated wood as a solid waste is managed in various ways throughout the world. In the US, CCA-treated wood is disposed primarily within landfills; however some of the wood is combusted in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, sometimes including CCA-treated wood, is combustion for the production of energy. This paper presents an estimate of the quantity of CCA-treated wood entering the disposal stream in the US, as well as an examination of the trade-offs between landfilling and WTE combustion of CCA-treated wood through a life-cycle assessment and decision support tool (MSW DST). Based upon production statistics, the estimated life span and the phaseout of CCA-treated wood, recent disposal projections estimate the peak US disposal rate to occur in 2008, at 9.7 million m(3). CCA-treated wood, when disposed with construction and demolition (C&D) debris and municipal solid waste (MSW), has been found to increase arsenic and chromium concentrations in leachate. For this reason, and because MSW landfills are lined, MSW landfills have been recommended as a preferred disposal option over unlined C&D debris landfills. Between landfilling and WTE for the same mass of CCA-treated wood, WTE is more expensive (nearly twice the cost), but when operated in accordance with US Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbon emissions. If the wood is managed via WTE, less landfill area is required, which could be an influential trade-off in some countries. Although metals are concentrated

  12. Control and tracking arrangements for solid low-level waste disposals to the UK Drigg disposal site

    International Nuclear Information System (INIS)

    Elgie, K.G.; Grimwood, P.D.

    1993-01-01

    The Drigg disposal site has been the principal disposal site for solid low-level radioactive wastes (LLW) in the United Kingdom since 1959. It is situated on the Cumbrian coast, some six kilometers to the south of the Sellafield nuclear reprocessing site. The Drigg site receives LLW from a wide range of sources including nuclear power generation, nuclear fuel cycle activities, defense activities, isotope manufacture, universities, hospitals, general industry and clean-up of contaminated sites. This LLW has been disposed of in a series of trenches cut into the underlying clay layer of the site, and, since 1988, also into concrete lined vault. The total volume of LLW disposed of at Drigg is at present in the order of 800,000m 3 , with disposals currently approximately 25,000m 3 per year. British Nuclear Fuels plc (BNFL) owns and operates the Drigg disposal site. To meet operational and regulatory requirements, BNFL needs to ensure the acceptability of the disposed waste and be able to track it from its arising point to its specific disposal location. This paper describes the system that has been developed to meet these requirements

  13. Proposal for basic safety requirements regarding the disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    1980-04-01

    A working group commissioned to prepare proposals for basic safety requirements for the storage and transport of radioactive waste prepared its report to the Danish Agency of Environmental Protection. The proposals include: radiation protection requirements, requirements concerning the properties of high-level waste units, the geological conditions of the waste disposal location, the supervision of waste disposal areas. The proposed primary requirements for safety evaluation of the disposal of high-level waste in deep geological formations are of a general nature, not being tied to specific assumptions regarding the waste itself, the geological and other conditions at the place of disposal, and the technical methods of disposal. It was impossible to test the proposals for requirements on a working repository. As no country has, to the knowledge of the working group, actually disposed of hifg-level radioactive waste or approved of plans for such disposal. Methods for evaluating the suitability of geological formations for waste disposal, and background material concerning the preparation of these proposals for basic safety requirements relating to radiation, waste handling and geological conditions are reviewed. Appended to the report is a description of the phases of the fuel cycle that are related to the storage of spent fuel and the disposal of high-level reprocessing waste in a salt formation. It should be noted that the proposals of the working group are not limited to the disposal of reprocessed fuel, but also include the direct disposal of spent fuel as well as disposal in geological formations other than salt. (EG)

  14. Near-surface land disposal

    International Nuclear Information System (INIS)

    Kittel, J.H.

    1989-01-01

    The Radioactive Waste Management Handbook provides a comprehensive, systematic treatment of nuclear waste management. Near-Surface Land Disposal, the first volume, is a primary and secondary reference for the technical community. To those unfamiliar with the field, it provides a bridge to a wealth of technical information, presenting the technology associated with the near-surface disposal of low or intermediate level wastes. Coverage ranges from incipient planning to site closure and subsequent monitoring. The book discusses the importance of a systems approach during the design of new disposal facilities so that performance objectives can be achieved; gives an overview of the radioactive wastes cosigned to near-surface disposal; addresses procedures for screening and selecting sites; and emphasizes the importance of characterizing sites and obtaining reliable geologic and hydrologic data. The planning essential to the development of particular sites (land acquisition, access, layout, surface water management, capital costs, etc.) is considered, and site operations (waste receiving, inspection, emplacement, closure, stabilization, etc.) are reviewed. In addition, the book presents concepts for improved confinement of waste, important aspects of establishing a monitoring program at the disposal facility, and corrective actions available after closure to minimize release. Two analytical techniques for evaluating alternative technologies are presented. Nontechnical issues surrounding disposal, including the difficulties of public acceptance are discussed. A glossary of technical terms is included

  15. Argentine project for the final disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Palacios, E.; Ciallella, N.R.; Petraitis, E.J.

    1989-01-01

    From 1980 Argentina is carrying out a research program on the final disposal of high level radioactive wastes. The quantity of wastes produced will be significant in next century. However, it was decided to start with the studies well in advance in order to demonstrate that the high level wastes could be disposed in a safety way. The option of the direct disposal of irradiated fuel elements was discarded, not only by the energetic value of the plutonium, but also for ecological reasons. In fact, the presence of a total inventory of actinides in the non-processed fuel would imply a more important radiological impact than that caused if the plutonium is recycled to produce energy. The decision to solve the technological aspects connected with the elimination of high-level radioactive wastes well in advance, was made to avoid transfering the problem to future generations. This decision is based not only on technical evaluations but also on ethic premises. (Author)

  16. Some aspects of beryllium disposal in Kazakhstan

    International Nuclear Information System (INIS)

    Shestakov, V.; Chikhray, Y.; Shakhvorostov, Yr.

    2004-01-01

    Historically in Kazakhstan all disposals of used beryllium and beryllium wasted materials were stored and recycled at JSC ''Ulba Metallurgical Plant''. Since Ulba Metallurgical Plant (beside beryllium and tantalum production) is one of the world largest complex producers of fuel for nuclear power plants as well it has possibilities, technologies and experience in processing toxic and radioactive wastes related with those productions. At present time only one operating Kazakhstan research reactors (EWG1M in Kurchatov) contains beryllium made core. The results of current examination of that core allow using it without replacement long time yet (at least for next five-ten years). Nevertheless the problem how to utilize such irradiated beryllium becomes actual issue for Kazakhstan even today. Since Kazakhstan is the member of ITER/DEMO Reactors Projects and is permanently considered as possible provider of huge amount of beryllium for those reactors so that is the reason for starting studies of possibilities of large scale processing/recycling of such disposed irradiated beryllium. It is clear that the Ulba Metallurgical Plant is considered as the best site for it in Kazakhstan. The draft plan how to organize experimental studies of irradiated beryllium disposals in Kazakhstan involving National Nuclear Center, National University (Almaty), JSC ''Ulba Metallurgical Plant'' (Ust-Kamenogorsk) would be presented in this paper as well as proposals to arrange international collaboration in that field through ISTC (International Science Technology Center, Moscow). (author)

  17. Disposal of tritium-exposed metal hydrides

    International Nuclear Information System (INIS)

    Nobile, A.; Motyka, T.

    1991-01-01

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R ampersand D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed

  18. Performance assessment review for DOE LLW disposal facilities

    International Nuclear Information System (INIS)

    Wilhite, Elmer L.

    1992-01-01

    The United States Department of Energy (US DOE) disposes of low-level radioactive waste in near-surface disposal facilities. Safety of the disposal operations is evaluated for operational safety as well as long-term safety. Operational safety is evaluated based on the perceived level of hazard of the operation and may vary from a simple safety assessment to a safety analysis report. Long-term safety of all low-level waste disposal systems is evaluated through the conduct of a radiological performance assessment. The US DOE has established radiological performance objectives for disposal of low-level waste. They are to protect a member of the general public from receiving over 25 mrem/y, and an inadvertent intruder into the waste from receiving over 100 mrem/y continuous exposure or 500 mrem from a single exposure. For a disposal system to be acceptable, a performance assessment must be prepared which must be technically accurate and provide reasonable assurance that these performance objectives are met. Technical quality of the performance assessments is reviewed by a panel of experts. The panel of experts is used in two ways to assure the technical quality of performance assessment. A preliminary (generally 2 day) review by the panel is employed in the late stages of development to provide guidance on finalizing the performance assessment. The comments from this review are communicated to the personnel responsible for the performance assessment for consideration and incorporation. After finalizing the performance assessment, it is submitted for a formal review. The formal review is accomplished by a much more thorough analysis of the performance assessment over a multi-week time period. The panel then formally reports their recommendations to the US DOE waste management senior staff who make the final determination on acceptability of the performance assessment. A number of lessons have been learned from conducting several preliminary reviews of performance

  19. Application of Generic Disposal System Models

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Glenn Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Emily [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    This report describes specific GDSA activities in fiscal year 2015 (FY2015) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code (Hammond et al., 2011) and the Dakota uncertainty sampling and propagation code (Adams et al., 2013). Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through the engineered barriers and natural geologic barriers to a well location in an overlying or underlying aquifer. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.

  20. Disposal of Iodine-129

    International Nuclear Information System (INIS)

    Morgan, M.T.; Moore, J.G.; Devaney, H.E.; Rogers, G.C.; Williams, C.; Newman, E.

    1978-01-01

    One of the problems to be solved in the nuclear waste management field is the disposal of radioactive iodine-129, which is one of the more volatile and long-lived fission products. Studies have shown that fission products can be fixed in concrete for permanent disposal. Current studies have demonstrated that practical cementitious grouts may contain up to 18% iodine as barium iodate. The waste disposal criterion is based on the fact that harmful effects to present or future generations can be avoided by isolation and/or dilution. Long-term isolation is effective in deep, dry repositories; however, since penetration by water is possible, although unlikely, release was calculated based on leach rates into water. Further considerations have indicated that sea disposal on or in the ocean floor may be a more acceptable alternative

  1. The disposal of Canada's nuclear fuel waste: public involvement and social aspects

    International Nuclear Information System (INIS)

    Greber, M.A.; Frech, E.R.; Hillier, J.A.R.

    1994-01-01

    This report describes the activities undertaken to provide information to the public about the Canadian Nuclear Fuel Waste Management Program as well as the opportunities for public involvement in the direction and development of the disposal concept through government inquiries and commissions and specific initiatives undertaken by AECL. Public viewpoints and the major issues identified by the public to be of particular concern and importance in evaluating the acceptability of the concept are described. In addition, how the issues have been addressed during the development of the disposal concept or how they could be addressed during implementation of the disposal concept are presented. There is also discussion of public perspectives of risk, the ethical aspects of nuclear fuel waste disposal, and public involvement in siting a nuclear fuel waste disposal facility. The Canadian Nuclear Fuel Waste Management Program is funded jointly by AECL and Ontario Hydro under the auspices of the CANDU Owners Group. (author)

  2. Confinement and migration of radionuclides in deep geological disposal

    International Nuclear Information System (INIS)

    Poinssot, Ch.

    2007-07-01

    Disposing high level nuclear waste in deep disposal repository requires to understand and to model the evolution of the different repository components as well as radionuclides migration on time-frame which are well beyond the time accessible to experiments. In particular, robust and predictive models are a key element to assess the long term safety and their reliability must rely on a accurate description of the actual processes. Within this framework, this report synthesizes the work performed by Ch. Poinssot and has been prepared for the defense of his HDR (French university degree to Manage Research). These works are focused on two main areas which are (i) the long term evolution of spent nuclear fuel and the development of radionuclide source terms models, and (ii) the migration of radionuclides in natural environment. (author)

  3. Sub-seabed disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sivintsaev, Yu.V.

    1990-01-01

    The first stage of investigations of possibility of sub-seabed disposal of long-living intermediate-level radioactive wastes carried out by NIREX (UK) is described. Advantages and disadvantages of sub-seabed disposal of radioactive wastes are considered; regions suitable for disposal, transport means for marine disposal are described. Three types of sub-seabed burials are characterized

  4. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    International Nuclear Information System (INIS)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

    2011-01-01

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10 5 m 3 of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10 14 Bq total activity) of long-lived radionuclides, principally 99 Tc (t 1/2 = 2.1 x 10 5 ), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

  5. Social dimensions of nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Armin [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Technology Assessment and Systems Analysis

    2015-07-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  6. Phytoextraction crop disposal--an unsolved problem

    International Nuclear Information System (INIS)

    Sas-Nowosielska, A.; Kucharski, R.; Malkowski, E.; Pogrzeba, M.; Kuperberg, J.M.; Krynski, K.

    2004-01-01

    Several methods of contaminated crop disposal after phytoextraction process (composting, compaction, incineration, ashing, pyrolysis, direct disposal, liquid extraction) have been described. Advantages and disadvantages of methods are presented and discussed. Composting, compaction and pyrolysis are the pretreatment steps, since significant amount of contaminated biomass will still exist after each of the process. Four methods of final disposal were distinguished: incineration, direct disposal, ashing and liquid extraction. Among them, incineration (smelting) is proposed as the most feasible, economically acceptable and environmentally sound. - Methods of contaminated crop disposal are described and evaluated

  7. Social dimensions of nuclear waste disposal

    International Nuclear Information System (INIS)

    Grunwald, Armin

    2015-01-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  8. Fire analyses in central and disposal tunnels by APROS

    International Nuclear Information System (INIS)

    Peltokorpi, L.; Kukkola, T.; Nieminen, J.

    2012-12-01

    The central tunnels and the disposal tunnels on the north-east disposal area are the target areas of the fire studies. Target is to maintain under pressure in the fire zone in case of a fire. In the central tunnels a fire of a drilling jumbo with moderate fire propagation is used as heat release rate. In the disposal tunnel the heat release rate of a canister transfer and installation vehicle fire received as a result of the pyrolysis analyze as well as an average heat release rate of a van fire are used. Inlet air is to be conducted to the back end of the fire zone and the exhaust is to be lead out from the beginning of the fire zone. The worst location of the fire is in the beginning of the fire zone just below of the exhaust air clap valve. The size of the fire zone does not have big impact on pressure. In all analyzed cases the fire zone remains too long time over pressurized. Inlet air flow of a 30 m 3 /s is too much. The rotation controlled booster blowers will solve the pressure problems of the fire zone in fire cases. The rotation is controlled by the fire zone pressure. The fire of the canister transfer and installation vehicle in the central tunnel will not cause problems. The disposal tunnel fire door should be kept open, if the canister transfer and installation vehicle or the bentonite blocks transfer and installation vehicle is driven into the disposal tunnel. If a fire is caught in the disposal tunnel then the fire zone in the central tunnel is to be closed and the pressure is controlled by the rotation controlled booster blowers. If a personnel car or a van is driven into the disposal tunnel, then fire door of the disposal is to be kept closed against fires in the central tunnel. (orig.)

  9. State-of-the-art of liquid waste disposal for geothermal energy systems: 1979. Report PNL-2404

    Energy Technology Data Exchange (ETDEWEB)

    Defferding, L.J.

    1980-06-01

    The state-of-the-art of geothermal liquid waste disposal is reviewed and surface and subsurface disposal methods are evaluated with respect to technical, economic, legal, and environmental factors. Three disposal techniques are currently in use at numerous geothermal sites around the world: direct discharge into surface waters; deep-well injection; and ponding for evaporation. The review shows that effluents are directly discharged into surface waters at Wairakei, New Zealand; Larderello, Italy; and Ahuachapan, El Salvador. Ponding for evaporation is employed at Cerro Prieto, Mexico. Deep-well injection is being practiced at Larderello; Ahuachapan; Otake and Hatchobaru, Japan; and at The Geysers in California. All sites except Ahuachapan (which is injecting only 30% of total plant flow) have reported difficulties with their systems. Disposal techniques used in related industries are also reviewed. The oil industry's efforts at disposal of large quantities of liquid effluents have been quite successful as long as the effluents have been treated prior to injection. This study has determined that seven liquid disposal methods - four surface and three subsurface - are viable options for use in the geothermal energy industry. However, additional research and development is needed to reduce the uncertainties and to minimize the adverse environmental impacts of disposal. (MHR)

  10. Unreviewed Disposal Question: A Discipline Process to Manage Change in LLW Disposal

    International Nuclear Information System (INIS)

    Goldston, W.T.

    2000-01-01

    The Department of Energy's waste management Order, DOE O 435.1, requires that low--level waste disposal facilities develop and maintain a radiological performance assessment to ensure that disposal operations are within a performance envelope defined by performance objectives for long-term protection of the public and the environment. The Order also requires that a radiological composite analysis be developed and maintained to ensure that the disposal facility, in combination with other sources of radioactive material that may remain when all DOE activities have ceased, will not compromise future radiological protection of the public and the environment. The Order further requires that a Disposal Authorization Statement (DAS) be obtained from DOE Headquarters and that the disposal facility be operated within the performance assessment, composite analysis, and DAS. Maintenance of the performance assessment and composite analysis includes conducting test, research, and monitoring activities to increase confidence in the results of the analyses. It also includes updating the analyses as changes are proposed in the disposal operations, or other information requiring an update, becomes available. Personnel at the Savannah River Site have developed and implemented an innovative process for reviewing proposed or discovered changes in low-level radioactive waste disposal operations. The process is a graded approach to determine, in a disciplined manner, whether changes are within the existing performance envelope, as defined by the performance assessment, composite analysis, and DAS, or whether additional analysis is required to authorize the change. This process is called the Unreviewed Disposal Question (UDQ) process. It has been developed to be analogous to the Unreviewed Safety Question (UDQ) process that has been in use within DOE for many years. This is the first formalized system implemented in the DOE complex to examine low-level waste disposal changes the way the

  11. Subseabed disposal safety analysis

    International Nuclear Information System (INIS)

    Koplick, C.M.; Kabele, T.J.

    1982-01-01

    This report summarizes the status of work performed by Analytic Sciences Corporation (TASC) in FY'81 on subseabed disposal safety analysis. Safety analysis for subseabed disposal is divided into two phases: pre-emplacement which includes all transportation, handling, and emplacement activities; and long-term (post-emplacement), which is concerned with the potential hazard after waste is safely emplaced. Details of TASC work in these two areas are provided in two technical reports. The work to date, while preliminary, supports the technical and environmental feasibility of subseabed disposal of HLW

  12. Safety and performance assessment of geologic disposal systems for nuclear wastes

    International Nuclear Information System (INIS)

    Peltonen, E.

    1987-01-01

    This thesis presents a methodology for the safety and performance assesment of final disposal of nuclear wastes into crystalline bedrock. The applicability of radiation protection objectives is discussed, as well as the goals of the assessment in the various repository system development phases. Due consideration is given to the description of the pertinent analysis methods and to the comprehensive model system. The methodology has been applied to assess the acceptability of the basic disposal concepts and to study the possibilities for the optimization of protection. Furthermore, performance of different components in the multiple barrier disposal systems is estimated. The waste types dealt with are low- and intermediate-level waste as well as high-level spent nuclear fuel from a nuclear power plant. In addition, an option of high-level vitrified waste from reprocessing of spent fuel is taken into account. On the basis of the various analyses carried out it can be concluded that the disposal of different nuclear wastes in the Finnish bedrock in properly designed repositories meets the radiation protection objectives with good confidence. In addition, the studies indicate that the safety margins are considerable. This is due to the fact that the overall performance of the multiple barrier disposal systems analysed is not sensitive to possible unfavourable changes in barrier properties. From the optimization of protection point of view it can be concluded that there is no need to develop more effective repository designs than those analysed in this thesis. In fact, the results indicate that the most sophisticated designs have already gone beyond an optimal level of safety

  13. Overview of nuclear waste disposal in space

    International Nuclear Information System (INIS)

    Rice, E.E.; Priest, C.C.

    1981-01-01

    One option receiving consideration by the Department of Energy (DOE) is the space disposal of certain high-level nuclear wastes. The National Aeronautics and Space Administration is assessing the space disposal option in support of DOE studies on alternatives for nuclear waste management. The space disposal option is viewed as a complement, since total disposal of fuel rods from commercial power plants is not considered to be economically practical with Space Shuttle technology. The space disposal of certain high-level wastes may, however, provide reduced calculated and perceived risks. The space disposal option in conjunction with terrestrial disposal may offer a more flexible and lower risk overall waste management system. For the space disposal option to be viable, it must be demonstrated that the overall long-term risks associated with this activity, as a complement to the mined geologic repository, would be significantly less than the long-term risk associated with disposing of all the high-level waste. The long-term risk benefit must be achieved within an acceptable short-term and overall program cost. This paper briefly describes space disposal alternatives, the space disposal destination, possible waste mixes and forms, systems and typical operations, and the energy and cost analysis

  14. Decision nearing on final disposal of spent fuel in Finland

    International Nuclear Information System (INIS)

    Vira, J.

    2000-01-01

    The programme for final disposal of spent fuel from Finnish nuclear power plants is entering into important phase: in the year 2000 the Finnish Government is expected to decide whether the proposal made by Posiva Oy on the spent fuel disposal is in line with the overall good of society. Associated with the decision is also Posiva's proposal on siting the disposal facility at Olkiluoto in Eurajoki municipality on the western coast of Finland. An important document underlying Posiva's application for this principle decision is the report of the environmental impact assessment, which was completed in 1999. Safety considerations play an important role in the application. New assessments have, therefore, been made on both the operational and long-term safety as well as on safety of spent fuel transportation. (author)

  15. Study on the background information for the geological disposal concept

    International Nuclear Information System (INIS)

    Matsui, Kazuaki; Murano, Tohru; Hirusawa, Shigenobu; Komoto, Harumi

    2000-03-01

    Japan Nuclear Cycle Development Institute (JNC) has published first R and D report in 1992, in which the fruits of the R and D work were compiled. Since then, JNC, has been promoting the second R and D progress report until before 2000, in which the background information on the geological disposal of high level radioactive waste (HLW) was to be presented as well as the technical basis. Recognizing the importance of the social consensus to the geological disposal, understanding and consensus by the society are essential to the development and realization of the geological disposal of HLW. In this fiscal year, studies were divided into 2 phases, considering the time schedule of the second R and D progress report. 1. Phase 1: Analysis of the background information on the geological disposal concept. Based on the recent informations and the research works of last 2 years, final version of the study was made to contribute to the background informations for the second R and D progress report. (This was published in Nov. 1999 as the intermediate report: JNC TJ 1420 2000-006). 2. Phase 2: Following 2 specific items were selected for the candidate issues which need to be studied, considering the present circumstances around the R and D of geological disposal. (1) Educational materials and strategies related to nuclear energy and nuclear waste. Specific strategies and approaches in the area of nuclear energy and nuclear waste educational outreach and curriculum activities by the nuclear industry, government and other entities in 6 countries were surveyed and summarized. (2) Alternatives to geological disposal of HLW: Past national/international consideration and current status. The alternatives for the disposal of HLW have been discussed in the past and the major waste-producing countries have almost all chosen deep geological disposal as preferred method. Here past histories and recent discussions on the variations to geological disposal were studied. (author)

  16. On the disposal of solid radioactive wastes at hospitals

    International Nuclear Information System (INIS)

    Rogge, B.; Lewe, P.

    1987-01-01

    The disposal of radioactive materials in hospitals represents a considerable problem from the point of view of economics and organisation as well as from the point of view of radiological safety. On the one-hand, groups of people (nursing personal and clean-up crews) are involved in the handling of contaminated materials who can be instructed in special handling procedures only to a limited degree with the result that simple and clear procedures must be developed; on the other hand, such simply structured routes of disposal result in enormous volumes of radioactive waste, which represent a considerable cost factor. At the Offenbach City Hospital a concept has been created which takes these problems into account. It consists of nuclide-specific collection in groups, reduction of volume by breaking up of materials, interim storage, and government approved disposal as special hospital waste materials. (orig.) [de

  17. Geohydrologic reconnaissance of drainage wells in Florida

    Science.gov (United States)

    Kimrey, J.O.; Fayard, L.D.

    1984-01-01

    Drainage wells are used to inject surface waters directly into an aquifer, or shallow ground waters directly into a deeper aquifer, primarily by gravity. Such wells in Florida may be grouped into two broad types: (1) surface-water injection wells, and (2) interaquifer connector wells. Drainage wells of the first type are further categorized as either Floridan aquifer drainage wells or Biscayne aquifer drainage wells. Floridan aquifer drainage wells are commonly used to supplement drainage for urban areas in karst terranes of central and north Florida. Data are available for 25 wells in the Ocala, Live Oak, and Orlando areas that allow comparison of the quality of water samples from these Floridan aquifer drainage wells with allowable contaminant levels. Comparison indicates that maximum contaminant levels for turbidity, color, and iron, manganese, and lead concentrations are equaled or exceeded in some drainage-well samples, and relatively high counts for coliform bacteria are present in most wells. Biscayne aquifer drainage wells are used locally to dispose of stormwater runoff and other surplus water in southeast Florida, where large numbers of these wells have been permitted in Dade and Broward Counties. The majority of these wells are used to dispose of water from swimming pools or to dispose of heated water from air-conditioning units. The use of Biscayne aquifer drainage wells may have minimal effect on aquifer potability so long as injection of runoff and industrial wates is restricted to zones where chloride concentrations exceed 1,500 milligrams per liter. Interaquifer connector wells are used in the phosphate mining areas of Polk and Hillsborough Counties, to drain mines and recharge the Floridan aquifer. Water-quality data available from 13 connector wells indicate that samples from most of these wells exceed standards values for iron concentration and turbidity. One well yielded a highly mineralized water, and samples from 6 of the other 12 wells exceed

  18. Radiaoctive waste packaging for transport and final disposal

    International Nuclear Information System (INIS)

    Suarez, A.A.

    1989-01-01

    Prior and after the conditioning of radioactive wastes is the packaging design of uppermost importance since it will be the first barrier against water and human intrusion. The choice of the proper package according waste category as well criteria utilized for final disposal are shown. (author) [pt

  19. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.

    1998-03-10

    that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could, from technical and legal perspectives, be suitable for disposing of oil-field wastes. On the basis of these findings, ANL subsequently conducted a preliminary risk assessment on the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in salt caverns. The methodology for the risk assessment included the following steps: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing contaminant toxicities; estimating contaminant intakes; and estimating human cancer and noncancer risks. To estimate exposure routes and pathways, four postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (for noncancer health effects) estimates that were well within the EPA target range for acceptable exposure risk levels. These results lead to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  20. Risk assessment of nonhazardous oil-field waste disposal in salt caverns

    International Nuclear Information System (INIS)

    Elcock, D.

    1998-01-01

    that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could, from technical and legal perspectives, be suitable for disposing of oil-field wastes. On the basis of these findings, ANL subsequently conducted a preliminary risk assessment on the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in salt caverns. The methodology for the risk assessment included the following steps: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing contaminant toxicities; estimating contaminant intakes; and estimating human cancer and noncancer risks. To estimate exposure routes and pathways, four postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (for noncancer health effects) estimates that were well within the EPA target range for acceptable exposure risk levels. These results lead to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes

  1. Low-level waste disposal performance assessments - Total source-term analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wilhite, E.L.

    1995-12-31

    Disposal of low-level radioactive waste at Department of Energy (DOE) facilities is regulated by DOE. DOE Order 5820.2A establishes policies, guidelines, and minimum requirements for managing radioactive waste. Requirements for disposal of low-level waste emplaced after September 1988 include providing reasonable assurance of meeting stated performance objectives by completing a radiological performance assessment. Recently, the Defense Nuclear Facilities Safety Board issued Recommendation 94-2, {open_quotes}Conformance with Safety Standards at Department of Energy Low-Level Nuclear Waste and Disposal Sites.{close_quotes} One of the elements of the recommendation is that low-level waste performance assessments do not include the entire source term because low-level waste emplaced prior to September 1988, as well as other DOE sources of radioactivity in the ground, are excluded. DOE has developed and issued guidance for preliminary assessments of the impact of including the total source term in performance assessments. This paper will present issues resulting from the inclusion of all DOE sources of radioactivity in performance assessments of low-level waste disposal facilities.

  2. Engineering geology of waste disposal

    International Nuclear Information System (INIS)

    Bentley, S.P.

    1996-01-01

    This volume covers a wide spectrum of activities in the field of waste disposal. These activities range from design of new landfills and containment properties of natural clays to investigation, hazard assessment and remediation of existing landfills. Consideration is given to design criteria for hard rock quarries when used for waste disposal. In addition, an entire section concerns the geotechnics of underground repositories. This covers such topics as deep drilling, in situ stress measurement, rock mass characterization, groundwater flows and barrier design. Engineering Geology of Waste Disposal examines, in detail, the active role of engineering geologists in the design of waste disposal facilities on UK and international projects. The book provides an authoritative mix of overviews and detailed case histories. The extensive spectrum of papers will be of practical value to those geologists, engineers and environmental scientists who are directly involved with waste disposal. (UK)

  3. Disposal of infective waste: demonstrated information and actions taken by nursing and medical students

    Directory of Open Access Journals (Sweden)

    Adenícia Custodia Silva Souza

    2015-03-01

    Full Text Available The inappropriate disposal of infectious waste generates occupational and environmental risks, representing the main cause of accidents with biological material. The aim of the present study was to verify the knowledge and the practice regarding the disposal of infectious waste among nursing and medical undergraduate students at a public university in the state of Goiás. Data were collected with the application of a questionnaire. The respondent students were observed in their practice and data were recorded in a checklist. Nursing students presented greater knowledge than medical students on the disposal of contaminated gloves (x²; p<0.001, as well as on the disposal of sharp cutting instruments (p=0.001. Contaminated gloves were disposed of into bags for common waste both by the nursing and the medical students. Results evidenced that the knowledge of students on the disposal of infectious waste was poor and insufficient to ensure its application to practice.

  4. Waste Water Disposal Design And Management I

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book gives descriptions of waste water disposal, design and management, which includes design of waterworks and sewerage facility such as preparatory work and building plan, used waste water disposal facilities, waste water disposal plant and industrial waste water disposal facilities, water use of waste water disposal plant and design of pump and pump facilities such as type and characteristic, selection and plan, screening and grit.

  5. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  6. Greater-Than-Class C Low Level Radioactive Waste Characteristics and Disposal Aspects

    International Nuclear Information System (INIS)

    Arlt, Hans D.; Brimfield, Terrence; Grossman, Chris

    2016-01-01

    Conclusions • Due to the way LLRW is defined in the US, there is a category of LLRW (i.e., GTCC waste) that was categorized in the 1980’s and is similar to ILW and not generally acceptable for near-surface disposal. • Three decades later, it cannot be excluded that future NRC analyses may find some GTCC waste type suitable for near-surface disposal, and a proposed rule may be developed for licensing the disposal of such waste. • Current regulations only allow individual proposals for GTCC LLRW disposal to be evaluated on a case-by-case basis to determine the acceptability of land disposal other than in a geologic repository • Based on current regulations, the variability and diversity of FEPs associated with such safety cases is theoretically large: - The range of activity concentrations, half-lives, and volumes of GTCC waste types is large; - The range of physical forms is large: metal pieces to soils and sludges; - The range of potential disposal methods is large: trench, vault, landfill, shaft, borehole; - The range of potential disposal environments is large: arid vs. humid, unsaturated vs. saturated, sediment vs. rock, nearsurface to intermediate; - The stability and past natural history of a specific disposal site must also be adequately known. • Examples of potential site-specific cases designed to demonstrate the acceptability of GTCC LLRW land disposal other than deep geologic: - Proposals for disposal could entail concepts that have been relatively well assessed by NRC staff in the past; e.g., trench disposal of a moderate volume of GTCC Other Waste in an arid, unsaturated, near-surface environment; - Proposals for disposal could also entail concepts that have been less frequently assessed; e.g., borehole disposal of higher activity sealed sources in a humid, saturated, intermediate depth environment. • However, if one potential site and design was under consideration, the variability and diversity of FEPs associated with that site

  7. Subseabed-disposal program: systems-analysis program plan

    International Nuclear Information System (INIS)

    Klett, R.D.

    1981-03-01

    This report contains an overview of the Subseabed Nuclear Waste Disposal Program systems analysis program plan, and includes sensitivity, safety, optimization, and cost/benefit analyses. Details of the primary barrier sensitivity analysis and the data acquisition and modeling cost/benefit studies are given, as well as the schedule through the technical, environmental, and engineering feasibility phases of the program

  8. OPTIMAL ALLOCATION OF LANDFILL DISPOSAL SITE: A FUZZY MULTI-CRITERIA APPROACH

    Directory of Open Access Journals (Sweden)

    Ajit P. Singh, A. K. Vidyarthi

    2008-01-01

    Full Text Available The arbitrary disposal through land-fill sites and also the unscientific management of solid wastes generated by domestic, commercial and industrial activities leading to serious problems of health, sanitation and environmental degradation in India demand an immediate proper solid waste disposal planning otherwise it may cause a serious problem, especially in small and medium-sized cities/towns if proper steps are not initiated now. The present paper aims to develop decision support systems to allocate the best landfill disposal site among the given alternative sites for Vidya Vihar, Pilani, Rajasthan, India. The technique is applied to determine the overall strategy for planning of solid waste disposal and management, while taking into account its environmental impact, as well as economical, technical and sustainable development issues. The model effectively reflects dynamic, interactive, and uncertain characteristics of the solid waste management system and provides decision-makers with a decision tool to make a better decision while choosing a municipal solid waste management strategy.

  9. Efficiency analyses of the CANDU spent fuel repository using modified disposal canisters for a deep geological disposal system design

    International Nuclear Information System (INIS)

    Lee, J.Y.; Cho, D.K.; Lee, M.S.; Kook, D.H.; Choi, H.J.; Choi, J.W.; Wang, L.M.

    2012-01-01

    Highlights: ► A reference disposal concept for spent nuclear fuels in Korea has been reviewed. ► To enhance the disposal efficiency, alternative disposal concepts were developed. ► Thermal analyses for alternative disposal concepts were performed. ► From the result of the analyses, the disposal efficiency of the concepts was reviewed. ► The most effective concept was suggested. - Abstract: Deep geological disposal concept is considered to be the most preferable for isolating high-level radioactive waste (HLW), including nuclear spent fuels, from the biosphere in a safe manner. The purpose of deep geological disposal of HLW is to isolate radioactive waste and to inhibit its release of for a long time, so that its toxicity does not affect the human beings and the biosphere. One of the most important requirements of HLW repository design for a deep geological disposal system is to keep the buffer temperature below 100 °C in order to maintain the integrity of the engineered barrier system. In this study, a reference disposal concept for spent nuclear fuels in Korea has been reviewed, and based on this concept, efficient alternative concepts that consider modified CANDU spent fuels disposal canister, were developed. To meet the thermal requirement of the disposal system, the spacing of the disposal tunnels and that of the disposal pits for each alternative concept, were drawn following heat transfer analyses. From the result of the thermal analyses, the disposal efficiency of the alternative concepts was reviewed and the most effective concept suggested. The results of these analyses can be used for a deep geological repository design and detailed analyses, based on exact site characteristics data, will reduce the uncertainty of the results.

  10. Program for responsible and safe disposal of spent fuel elements and radioactive wastes (National disposal program)

    International Nuclear Information System (INIS)

    2015-01-01

    The contribution covers the following topics: fundamentals of the disposal policy; amount of radioactive wastes and prognosis; disposal of radioactive wastes - spent fuel elements and wastes from waste processing, radioactive wastes with low heat production; legal framework of the nuclear waste disposal in Germany; public participation, cost and financing.

  11. Achievements of research and development of Kajima on radioactive waste disposal

    International Nuclear Information System (INIS)

    Hironaka, Yoshikazu; Morikawa, Seiji; Okutsu, Kazuo; Furuichi, Mitsuaki; Toida, Masaru; Yamamoto, Takuji

    2004-01-01

    Kajima Corporation has been committed to the construction of nuclear power plant for a long time as a construction company. In 1957 Kajima made its first construction of the main building for the JRR-1 (Japan Research Reactor No.1) of JAERI, which was the first and historical one in Japan. Since then the company has been involved in many projects related to nuclear power generation. In addition to the construction, Kajima has been playing an important role in the technology development of decommissioning system as well as radioactive waste waste disposal facilities, both of which are now having an increasing importance. In a sense of technology development, the technology of civil engineering is commonly applicable to the construction of radioactive waste disposal facilities, however, some other technology developments have to be made due to the unique characteristics of radioactive waste disposal. Kajima has promoted many research and development projects related to radioactive waste disposal in order to improve the reliability and the feasibility of the nuclear recycling process. This report introduces some of the achievements as follows made by Kajima: Construction of radioactive waste disposal facilities, Natural barrier, Engineering barrier, Monitoring. (author)

  12. An industry perspective on commercial radioactive waste disposal conditions and trends.

    Science.gov (United States)

    Romano, Stephen A

    2006-11-01

    The United States is presently served by Class-A, -B and -C low-level radioactive waste and naturally-occurring and accelerator-produced radioactive material disposal sites in Washington and South Carolina; a Class-A and mixed waste disposal site in Utah that also accepts naturally-occurring radioactive material; and hazardous and solid waste facilities and uranium mill tailings sites that accept certain radioactive materials on a site-specific basis. The Washington site only accepts low-level radioactive waste from 11 western states due to interstate Compact restrictions on waste importation. The South Carolina site will be subject to geographic service area restrictions beginning 1 July 2008, after which only three states will have continued access. The Utah site dominates the commercial Class-A and mixed waste disposal market due to generally lower state fees than apply in South Carolina. To expand existing commercial services, an existing hazardous waste site in western Texas is seeking a Class-A, -B and -C and mixed waste disposal license. With that exception, no new Compact facilities are proposed. This fluid, uncertain situation has inspired national level rulemaking initiatives and policy studies, as well as alternative disposal practices for certain low-activity materials.

  13. Update on the Federal Facilities Compliance Act disposal workgroup disposal site evaluation - what has worked and what has not

    International Nuclear Information System (INIS)

    Case, J.T.; Waters, R.D.

    1995-01-01

    The Department of Energy (DOE) has been developing a planning process for mixed low-level waste (MLLW) disposal in conjunction with the affected states for over two years and has screened the potential disposal sites from 49 to 15. A radiological performance evaluation was conducted on these fifteen sites to further identify their strengths and weaknesses for disposal of MLLW. Technical analyses are on-going. The disposal evaluation process has sufficiently satisfied the affected states' concerns to the point that disposal has not been a major issue in the consent order process for site treatment plans. Additionally, a large amount of technical and institutional information on several DOE sites has been summarized. The relative technical capabilities of the remaining fifteen sites have been demonstrated, and the benefits of waste form and disposal facility performance have been quantified. However, the final disposal configuration has not yet been determined. Additionally, the MLLW disposal planning efforts will need to integrate more closely with the low-level waste disposal activities before a final MLLW disposal configuration can be determined. Recent Environmental Protection Agency efforts related to the definition of hazardous wastes may also affect the process

  14. Generalized economic model for evaluating disposal costs at a low-level waste disposal facility

    International Nuclear Information System (INIS)

    Baird, R.D.; Rogers, V.C.

    1985-01-01

    An economic model is developed which can be used to evaluate cash flows associated with the development, operations, closure, and long-term maintenance of a proposed Low-Level Radioactive Waste disposal facility and to determine the unit disposal charges and unit surcharges which might result. The model includes the effects of nominal interest rate (rate of return on investment, or cost of capital), inflation rate, waste volume growth rate, site capacity, duration of various phases of the facility history, and the cash flows associated with each phase. The model uses standard discounted cash flow techniques on an after-tax basis to determine that unit disposal charge which is necessary to cover all costs and expenses and to generate an adequate rate of return on investment. It separately considers cash flows associated with post-operational activities to determine the required unit surcharge. The model is applied to three reference facilities to determine the respective unit disposal charges and unit surcharges, with various values of parameters. The sensitivity of the model results are evaluated for the unit disposal charge

  15. Occupational and Public Exposure During Normal Operation of Radioactive Waste Disposal Facilities

    Directory of Open Access Journals (Sweden)

    M. V. Vedernikova

    2017-01-01

    Full Text Available This paper focuses on occupational and public exposure during operation of disposal facilities receiving liquid and solid radioactive waste of various classes and provides a comparative analysis of the relevant doses: actual and calculated at the design stage. Occupational and public exposure study presented in this paper covers normal operations of a radioactive waste disposal facility receiving waste. Results: Analysis of individual and collective occupational doses was performed based on data collected during operation of near-surface disposal facilities for short-lived intermediate-, lowand very low-level waste in France, as well as nearsurface disposal facilities for long-lived waste in Russia. Further analysis of occupational and public doses calculated at the design stage was completed covering a near-surface disposal facility in Belgium and deep disposal facilities in the United Kingdom and the Nizhne-Kansk rock massive (Russia. The results show that engineering and technical solutions enable almost complete elimination of internal occupational exposure, whereas external exposure doses would fall within the range of values typical for a basic nuclear facility. Conclusion: radioactive waste disposal facilities being developed, constructed and operated meet the safety requirements effective in the Russian Federation and consistent with relevant international recommendations. It has been found that individual occupational exposure doses commensurate with those received by personnel of similar facilities abroad. Furthermore, according to the forecasts, mean individual doses for personnel during radioactive waste disposal would be an order of magnitude lower than the dose limit of 20 mSv/year. As for the public exposure, during normal operation, potential impact is virtually impossible by delaminating boundaries of a nuclear facility sanitary protection zone inside which the disposal facility is located and can be solely attributed to the use

  16. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

    2011-09-29

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

  17. radioactive waste disposal standards abroad

    International Nuclear Information System (INIS)

    Lu Yan; Xin Pingping; Wu Jian; Zhang Xue

    2012-01-01

    With the world focus on human health and environmental protection, the problem of radioactive waste disposal has gradually become a global issue, and the focus of attention of public. The safety of radioactive waste disposal, is not only related to human health and environmental safety, but also an important factor of affecting the sustainable development of nuclear energy. In recent years the formulation of the radioactive waste disposal standards has been generally paid attention to at home and abroad, and it has made great progress. In China, radioactive waste management standards are being improved, and there are many new standards need to be developed. The revised task of implement standards is very arduous, and there are many areas for improvement about methods and procedures of the preparation of standards. This paper studies the current situation of radioactive waste disposal standards of the International Atomic Energy Agency, USA, France, Britain, Russia, Japan, and give some corresponding recommendations of our radioactive waste disposal standards. (authors)

  18. The Safety Case and Safety Assessment for the Disposal of Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    This Safety Guide provides guidance and recommendations on meeting the safety requirements in respect of the safety case and supporting safety assessment for the disposal of radioactive waste. The safety case and supporting safety assessment provide the basis for demonstration of safety and for licensing of radioactive waste disposal facilities and assist and guide decisions on siting, design and operations. The safety case is also the main basis on which dialogue with interested parties is conducted and on which confidence in the safety of the disposal facility is developed. This Safety Guide is relevant for operating organizations preparing the safety case as well as for the regulatory body responsible for developing the regulations and regulatory guidance that determine the basis and scope of the safety case. Contents: 1. Introduction; 2. Demonstrating the safety of radioactive waste disposal; 3. Safety principles and safety requirements; 4. The safety case for disposal of radioactive waste; 5. Radiological impact assessment for the period after closure; 6. Specific issues; 7. Documentation and use of the safety case; 8. Regulatory review process.

  19. Addendum to the Composite Analysis for the E-Area Vaults and Saltstone Disposal Facilities

    International Nuclear Information System (INIS)

    Cook, J.R.

    2002-01-01

    Revision 1 of the Composite Analysis (CA) Addendum has been prepared to respond to the U.S. Department of Energy (DOE) Low-Level Waste Disposal Facilities Federal Review Group review of the CA. This addendum to the composite analysis responds to the conditions of approval. The composite analysis was performed on the two active SRS low-level radioactive waste disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of the Savannah River Site and contains all of the waste disposal facilities, the chemical separation facilities and associated high-level waste storage facilities, as well as numerous other sources of radioactive material

  20. Disposal of radioactive waste material

    International Nuclear Information System (INIS)

    Cairns, W.J.; Burton, W.R.

    1984-01-01

    A method of disposal of radioactive waste consists in disposing the waste in trenches dredged in the sea bed beneath shallow coastal waters. Advantageously selection of the sites for the trenches is governed by the ability of the trenches naturally to fill with silt after disposal. Furthermore, this natural filling can be supplemented by physical filling of the trenches with a blend of absorber for radionuclides and natural boulders. (author)

  1. 48 CFR 2845.603 - Disposal methods.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Disposal methods. 2845.603 Section 2845.603 Federal Acquisition Regulations System DEPARTMENT OF JUSTICE Contract Management GOVERNMENT PROPERTY Reporting, Redistribution, and Disposal of Contractor Inventory 2845.603 Disposal methods...

  2. 48 CFR 945.603 - Disposal methods.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Disposal methods. 945.603 Section 945.603 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACT MANAGEMENT GOVERNMENT PROPERTY Reporting, Redistribution, and Disposal of Contractor Inventory 945.603 Disposal methods. ...

  3. Disposal of tritiated effluents

    International Nuclear Information System (INIS)

    Hartmann, K.; Bruecher, H.

    1981-06-01

    After some introductory remarks on the origin of tritium, its properties and its behaviour in a reprocessing plant three alternative methods for the disposal of tritiated effluents produced during reprocessing are described (deep well injection, in-situ solidification, deep-sea dumping) and compared with each other under various aspects. The study is based on the concept of a 1400 t/a reprocessing plant for LWR fuel, which annually produces 3000 m 3 of tritiated waste water with a tritium content of 6.5 x 10 12 Bq/m 3 as well as a residual fission product and actinide content. An assessment of the three methods under the aspects of simplicity, reliability, safety, costs, state of development and materials handling revealed advantages in favour of 'injection', followed by 'dumping' and 'in-situ solidification'. (orig./HP) [de

  4. Safety of direct disposal of spent fuel and of disposal of reprocessing waste

    Energy Technology Data Exchange (ETDEWEB)

    Besnus, F. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Fontenay-aux-Roses (France)

    2006-07-01

    In 2005, the French Agency for Radioactive waste management (ANDRA) established a report on the feasibility of the geological disposal of high level and intermediate level long lived radioactive waste, in a clay formation. The hypothesis of spent fuel direct disposal was also considered. By the end of 2005, IRSN performed a complete technical review of ANDRA's report, aiming at highlighting the salient safety issues that were to be addressed within a process that may possibly lead to the creation of a disposal facility for these wastes. The following publication presents the main conclusions of this technical review. (author)

  5. Safety of direct disposal of spent fuel and of disposal of reprocessing waste

    International Nuclear Information System (INIS)

    Besnus, F.

    2006-01-01

    In 2005, the French Agency for Radioactive waste management (ANDRA) established a report on the feasibility of the geological disposal of high level and intermediate level long lived radioactive waste, in a clay formation. The hypothesis of spent fuel direct disposal was also considered. By the end of 2005, IRSN performed a complete technical review of ANDRA's report, aiming at highlighting the salient safety issues that were to be addressed within a process that may possibly lead to the creation of a disposal facility for these wastes. The following publication presents the main conclusions of this technical review. (author)

  6. Methods of characterization of salt formations in view of spent fuel final disposal

    International Nuclear Information System (INIS)

    Diaconu, Daniela; Balan, Valeriu; Mirion, Ilie

    2002-01-01

    Deep disposal in geological formations of salt, granite and clay seems to be at present the most proper and commonly adopted solution for final disposal of high-level radioactive wastes and spent fuel. Disposing such wastes represents the top-priority issue of the European research community in the field of nuclear power. Although seemingly premature for Romanian power system, the interest for final disposal of spent fuel is justified by the long duration implied by the studies targeting this objective. At the same time these studies represent the Romanian nuclear research contribution in the frame of the efforts of integration within the European research field. Although Romania has not made so far a decision favoring a given geological formation for the final disposal of spent fuel resulting from Cernavoda NPP, the most generally taken into consideration appears the salt formation. The final decision will be made following the evaluation of its performances to spent fuel disposal based on the values of the specific parameters of the geological formation. In order to supply the data required as input parameters in the codes of evaluation of the geological formation performances, the INR Pitesti initiated a package of modern and complex methodologies for such determinations. The studies developed so far followed up the special phenomenon of salt convergence, a phenomenon characteristic for only this kind of rock, as well as the radionuclide migration. These studies allow a better understanding of these processes of upmost importance for disposal's safety. The methods and the experimental installation designed and realized at INR Pitesti aimed at determination of thermal expansion coefficient, thermal conductivity, specific heat, which are all parameters of high specific interest for high level radioactive waste or spent fuel disposal. The paper presents the results of these studies as well as the methodologies, the experimental installations and the findings

  7. Pilot tests on radioactive waste disposal in underground facilities

    International Nuclear Information System (INIS)

    Haijtink, B.

    1992-01-01

    The report describes the pilot test carried out in the underground facilities in the Asse salt mine (Germany) and in the Boom clay beneath the nuclear site at Mol (Belgium). These tests include test disposal of simulated vitrified high-level waste (HAW project) and of intermediate level waste and spent HTR fuel elements in the Asse salt mine, as well as an active handling experiment with neutron sources, this last test with a view to direct disposal of spent fuel. Moreover, an in situ test on the performance of a long-term sealing system for galleries in rock salt is described. Regarding the tests in the Boom clay, a combined heating and radiation test, geomechanical and thermo-hydro mechanical tests are dealt with. Moreover, the design of a demonstration test for disposal of high-level waste in clay is presented. Finally the situation concerning site selection and characterization in France and the United Kingdom are described

  8. Experience in the upgrading of radioactive waste disposal facility 'Ekores'

    International Nuclear Information System (INIS)

    Rozdyalovskaya, L.

    2000-01-01

    The national Belarus radioactive disposal facility 'Ekores' is designed for waste from nuclear applications in industry, medicine and research. Currently 12-20 tons of waste and over 6000 various types spent sources annually come to the 'Ekores'. Total activity in the vaults is evaluated as 352.8 TBq. Approximately 150 000 spent sources disposed of in the vaults and wells have total activity about 1327 TBq. In 1997 the Government initiated a project for the facility reconstruction in order to upgrade radiological safety of the site by creating adequate safety conditions for managing and storage of the waste. The reconstruction project developed by Belarus specialists has been reviewed by IAEA experts. This covers modernising technologies for new coming waste and also that the waste currently disposed in the pits is retrieved, sorted and treated in the same way as the new coming waste

  9. Cost effects of Cu powder and bentonite on the disposal costs of an HLW repository in

    International Nuclear Information System (INIS)

    Kim, Sung Ki; Lee, Min Soo; Lee, Jong Youl; Choi, Heui Joo; Choi, Jong Won

    2008-01-01

    This paper provides the cost effect results of Cu powder and bentonite on the disposal cost for an HLW repository in Korea. In the cost analysis for both of these cost drivers, the price of Cu powder and the bentonite can affect the canister cost and the bentonite cost of the disposal holes as well as backfilling cost of the tunnels, respectively. Finally, we found that the unit cost of Cu and bentonite was the dominant cost drivers for the surface and underground facilities of an HLW repository. Therefore, an optimization of a canister and the layout of a disposal hole and disposal tunnels are essential to decrease the direct disposal cost of spent fuels. The disposal costs can be largely divided into two parts such as a surface facilities' cost and an underground facilities' cost. According to the KRS' cost analysis, the encapsulation material as well as the buffering and backfilling cost were the significant costs. Especially, a canister's cost was approximately estimated to be more than one fourth of the overall disposal costs. So it can be estimated that the unit cost of Cu powder is an important cost diver. Because the outer shell of the canister was made of Cu powder by a cold spray coating method. In addition, the unit cost of bentonite can also affect the buffering and the backfilling costs of the disposal holes and the disposal tunnels. But, these material costs will be highly expensive and unstable due to the modernization of the developing countries. So the studies for a material cost should be continued to identify the actual cost of an HLW repository

  10. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    Science.gov (United States)

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  11. Regional disposal, a feasible solution for Romania

    International Nuclear Information System (INIS)

    Radu, Maria

    2004-01-01

    Almost every country that exploits or builds nuclear power plants is engaged in its own research or international cooperation programs aiming at identification of optimal solutions of closing the fuel cycle and finding feasible technologies for final disposal of spent fuel and high-level wastes resulting from reprocessing. The general trend that manifests in these countries is to manage on their own territories the final disposal while considering the possibility of regional arrangements for common disposal. But this latter alternative has not been definitively analyzed and decided upon. Hence, European Union and IAEA look for solutions of long term (of the order of hundreds years) for the final disposal, particularly within regional facilities. Multinational repositories where disposal of high-level wastes or spent fuel should appear as a paid specialized servicing, where the operation technical conditions would be well established, as secure from nuclear safety and physical point of view, under the provisions of safeguards agreements, are still under consideration. No matter of the option which will be chosen, closing the nuclear cycle and ensuring a final disposal facility for radioactive wastes are compulsory tasks and issues with many aspects in common (establishing a site hosted by stable deep geological formations, protection by engineered barriers to prevent dispersion of radioactive products into the environment, long term analyses, etc). In this circumstances, having in mind that no other variant appears to be achievable before 2020-2050, intermediate term storage appears as compulsory a solution in developing the fuel cycle both world wide and in Romania, As early as in the first half of 2003 at Cernavoda, the Intermediate Storage for Spent Fuel (DICA) was commissioned. This is a facility founded for the first time in Romania aiming at closing the fuel cycle. The paper presents the current issues and the results obtained so far within the frame of

  12. Post-closure safety assessment of near surface disposal facilities for disused sealed radioactive sources

    International Nuclear Information System (INIS)

    Lee, Seunghee; Kim, Juyoul

    2017-01-01

    Highlights: • Post-closure safety assessment of near surface disposal facility for DSRS was performed. • Engineered vault and rock-cavern type were considered for normal and well scenario. • 14 C, 226 Ra, 241 Am were primary nuclides contributing large portion of exposure dose. • Near surface disposal of DSRSs containing 14 C, 226 Ra and 241 Am should be restricted. - Abstract: Great attention has been recently paid to the post-closure safety assessment of low- and intermediate-level radioactive waste (LILW) disposal facility for disused sealed radioactive sources (DSRSs) around the world. Although the amount of volume of DSRSs generated from industry, medicine and research and education organization was relatively small compared with radioactive wastes from commercial nuclear power plants, some DSRSs can pose a significant hazard to human health due to their high activities and long half-lives, if not appropriately managed and disposed. In this study, post-closure safety assessment was carried out for DSRSs generated from 1991 to 2014 in Korea in order to ensure long-term safety of near surface disposal facilities. Two kinds of disposal options were considered, i.e., engineered vault type disposal facility and rock-cavern type disposal facility. Rock-cavern type disposal facility has been under operation in Gyeongju city, republic of Korea since August 2015 and engineered vault type disposal facility will be constructed until December 2020 in the vicinity of rock-cavern disposal facility. Assessment endpoint was individual dose to the member of critical group, which was modeled by GoldSim, which has been widely used as probabilistic risk analysis software based on Monte Carlo simulation in the area of safety assessment of radioactive waste facilities. In normal groundwater scenario, the maximum exposure dose was extremely low, approximately 1 × 10 −7 mSv/yr, for both disposal options and satisfied the regulatory limit of 0.1 mSv/yr. However, in the

  13. Building technical and social confidence in the safety of geological disposal in Japan

    International Nuclear Information System (INIS)

    Tochiyama, Osamu; Masuda, Sumio

    2013-01-01

    Geological disposal has been adopted as the most feasible option for the method of long-term management of high-level radioactive waste (HLW) in every country in the world, regardless of the pros and cons of the nuclear power generation. Building stakeholders’ confidence in safety of geological disposal is indispensable to reach the point where the implementation of geological disposal is accepted by the current generation. The safety case is a key input to build confidence in geological disposal stepwise as the program progresses and regarded to play an important role as a common platform in the communication among stakeholders. The aim of this paper is to review arguments relevant to building technical and social confidence in the progress of Japanese research and development activities as well as international discussions. (author)

  14. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container. type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3). nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.). building concerned. details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting o...

  15. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container; type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3); nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.); building concerned; details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting...

  16. Geological aspects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kobera, P.

    1985-01-01

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  17. Comparison of the waste management aspects of spent fuel disposal and reprocessing: post-disposal radiological impact

    International Nuclear Information System (INIS)

    Mobbs, S.F.; Harvey, M.P.; Martin, J.S.; Mayall, A.; Jones, M.E.

    1991-01-01

    A joint project involving contractors from France, Germany and the UK was set up by the Commission of the European Communities to assess the implications of two waste management options: the direct disposal of spent fuel and reprocessing of that fuel. This report describes the calculation of the radiological impact on the public of the management and disposal of the wastes associated with these two options. Six waste streams were considered: discharge of liquid reprocessing effluents, discharge of gaseous reprocessing effluents, disposal of low-level solid wastes arising from reprocessing, disposal of intermediate-level solid wastes arising from reprocessing, disposal of vitrified high-level reprocessing wastes, and direct disposal of spent fuel. The results of the calculations are in the form of maximum annual doses and risks to individual members of the public, and collective doses to four population groups, integrated over six time periods. These results were designed for input into a computer model developed by another contractor, Yard Ltd, which combines costs and impacts in a multi-attribute hierarchy to give an overall measure of the impact of a given option

  18. Data Validation Package - July 2016 Groundwater Sampling at the Gunnison, Colorado, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Campbell, Sam [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2016-10-25

    Groundwater sampling at the Gunnison, Colorado, Disposal Site is conducted every 5 years to monitor disposal cell performance. During this event, samples were collected from eight monitoring wells as specified in the 1997 Long-Term Surveillance Plan for the Gunnison, Colorado, Disposal Site. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and­ analysis-plan-us-department-energy-office-legacy-management-sites). Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. A duplicate sample was collected from location 0723. Water levels were measured at all monitoring wells that were sampled and seven additional wells. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. No issues were identified during the data validation process that require additional action or follow-up.

  19. Low-level waste disposal site performance assessment with the RQ/PQ methodology. Final report

    International Nuclear Information System (INIS)

    Rogers, V.C.; Grant, M.W.; Sutherland, A.A.

    1982-12-01

    A methodology called RQ/PQ (retention quotient/performance quotient) has been developed for relating the potential hazard of radioactive waste to the natural and man-made barriers provided by a disposal facility. The methodology utilizes a systems approach to quantify the safety of low-level waste disposed in a near-surface facility. The main advantages of the RQ/PQ methodology are its simplicity of analysis and clarity of presentation while still allowing a comprehensive set of nuclides and pathways to be treated. Site performance and facility designs for low-level waste disposal can be easily investigated with relatively few parameters needed to define the problem. Application of the methodology has revealed that the key factor affecting the safety of low-level waste disposal in near surface facilities is the potential for intrusion events. Food, inhalation and well water pathways dominate in the analysis of such events. While the food and inhalation pathways are not strongly site-dependent, the well water pathway is. Finally, burial at depths of 5 m or more was shown to reduce the impacts from intrusion events

  20. 36 CFR 228.57 - Types of disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Types of disposal. 228.57... Disposal of Mineral Materials Types and Methods of Disposal § 228.57 Types of disposal. Except as provided... qualified bidder after formal advertising and other appropriate public notice; (b) Sale by negotiated...

  1. 7 CFR 2902.21 - Disposable containers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Disposable containers. 2902.21 Section 2902.21... Items § 2902.21 Disposable containers. (a) Definition. Products designed to be used for temporary... paragraph (d): Disposable containers can include boxes and packaging made from paper. Under the Resource...

  2. Solid waste disposal into salt mines

    International Nuclear Information System (INIS)

    Repke, W.

    1981-01-01

    The subject is discussed as follows: general introduction to disposal of radioactive waste; handling of solid nuclear waste; technology of final disposal, with specific reference to salt domes; conditioning of radioactive waste; safety barriers for radioactive waste; practice of final disposal in other countries. (U.K.)

  3. Environmental monitoring of subsurface low-level waste disposal facilities at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ashwood, T.L.; Hicks, D.S.

    1992-01-01

    Oak Ridge National Laboratory (ORNL) generates low-level waste (LLW) as part of its research and isotope production activities. This waste is managed in accordance with US Department of Energy (DOE) Order 5820.2A. Solid LLW management includes disposal in above-ground, tumulus-type facilities as well as in various types of subsurface facilities. Since 1986, subsurface disposal has been conducted using various designs employing greater-confinement-disposal (GCD) techniques. The purpose of this paper is to present monitoring results that document the short-term performance of these GCD facilities

  4. Thermal loading effects on geological disposal

    International Nuclear Information System (INIS)

    Come, B.; Venet, P.

    1984-01-01

    A joint study on the thermal loading effects on geological disposal was carried out within the European Community Programme on Management and Storage of Radioactive Waste by several laboratories in Belgium, France and the Federal Republic of Germany. The purpose of the work was to review the thermal effects induced by the geological disposal of high-level wastes and to assess their consequences on the 'admissible thermal loading' and on waste management in general. Three parallel studies dealt separately with the three geological media being considered for HLW disposal within the CEC programme: granite (leadership: Commissariat a l'energie atomique (CEA), France), salt (leadership: Gesellschaft fuer Strahlen- und Umweltforschung (GSF), Federal Republic of Germany), and clay (leadership: Centre d'etude de l'energie nucleaire (CEN/SCK), Belgium). The studies were based on the following items: only vitrified high-level radioactive waste was considered; the multi-barrier confinement concept was assumed (waste glass, container (with or without overpack), buffer material, rock formation); the disposal was foreseen in a deep mined repository, in an 'in-land' geological formation; only normal situations and processes were covered, no 'accident' scenario being taken into account. Although reasonably representative of a wide variety of situations, the data collected and the results obtained are generic for granite, formation-specific for salt (i.e. related to the north German Zechstein salt formation), and site-specific for clay (i.e. concentrated on the Boom clay layer at the Mol site, Belgium). For each rock type, realistic temperature limits were set, taking into account heat propagation, thermo-mechanical effects inside the rock formations, induced or modified groundwater or brine movement, effects on the buffer material as well as effects on the waste glass and canister, and finally, nuclide transport

  5. Classification and disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1990-01-01

    This paper reviews the historical development in the U.S. of definitions and requirements for permanent disposal of different classes of radioactive waste. We first consider the descriptions of different waste classes that were developed prior to definitions in laws and regulations. These descriptions usually were not based on requirements for permanent disposal but, rather, on the source of the waste and requirements for safe handling and storage. We then discuss existing laws and regulations for disposal of different waste classes. Current definitions of waste classes are largely qualitative, and thus somewhat ambiguous, and are based primarily on the source of the waste rather than the properties of its radioactive constituents. Furthermore, even though permanent disposal is clearly recognized as the ultimate goal of radioactive water management, current laws and regulations do not associated the definitions of different waste classes with requirement for particular disposal systems. Thus, requirements for waste disposal essentially are unaffected by ambiguities in the present waste classification system

  6. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1979-01-01

    Radioactive waste management and disposal requirements options available are discussed. The possibility of beneficial utilization of radioactive wastes is covered. Methods of interim storage of transuranium wastes are listed. Methods of shipment of low-level and high-level radioactive wastes are presented. Various methods of radioactive waste disposal are discussed

  7. New safety concept for geological disposal in Japan - -16339

    International Nuclear Information System (INIS)

    Kitayama, Kazumi

    2009-01-01

    This paper describes a new safety concept for the Japanese geological disposal program, which is a development of the conventional multi-barrier system concept. The Japanese government established the 'Nuclear Waste Management Organization of Japan' (NUMO) as an implementation body in 2000 based on the 'Final disposal act' following the publication of the 'H-12 Report', which confirmed the scientific and engineering feasibility of HLW geological disposal in Japan. Since then, NUMO has undertaken further technical developments aimed at achieving safe and efficient implementation of final disposal. The safety concept developed in the 'H-12 Report' provides sufficient safety on the basis of site-generic considerations. However, it is considered to be over-conservative and therefore does not represent the most probable performance of the engineered or natural barriers. Recently, concrete measures have been proposed requiring the safety case to be presented in terms of a realistic assessment of the most probable performance. This approach takes into account the safety functions of both engineered and natural barriers as well as the long-term static geochemical equilibrium. In particular, the evolution of the safety performance of engineered and natural barriers can be efficiently augmented by the realistic long-term geochemical equilibrium. (author)

  8. Feasibility of underground storage/disposal of noble gas fission products

    International Nuclear Information System (INIS)

    Winar, R.M.; Trevorrow, L.E.; Steindler, M.J.

    1979-08-01

    The quantities of 85 Kr that can be released to the environment from nuclear energy production are to be limited after 1983 by Federal regulations. Although procedures for collecting the 85 Kr released in the nuclear fuel cycle have been developed to the point that they are commercially available, procedures for terminal disposal of the collected gas are still being examined for their feasibility. In this work, the possibilities of underground disposal of 85 Kr by several techniques were evaluated. It was concluded that (1) disposal of 85 Kr as a solution in water or other solvents in deep wells would have the major disadvantages of liquid migration and the requirement of extremely large volumes of solvent; (2) disposal as bubbles entrained in cement grout injected underground presents the uncertainty of gaseous migration through permeable solid grout; (3) disposal by injection into abandoned oil fields would be favored by solubility of krypton in residual hydrocarbons, but has the disadvantages that such fields contain numerous shafts offering avenues of escape and also that the fields may be reworked in the future for their hydrocarbon residues; (4) underground retention of 85 Kr injected as a gas may be promising, given the right lithology, through entrapment in interstices between fine sand grains held together by the interfacial tension of wetted surfaces. 9 figures, 5 tables

  9. Geological factors of disposal site selection for low-and intermediate-level solid radwastes in China

    International Nuclear Information System (INIS)

    Chen Zhangru

    1993-01-01

    For disposal of low- and intermediate-level solid radioactive wastes, shallow-ground disposal can provide adequate isolation of waste from human for a fairly long period of time. The objective of disposal site selection is to ensure that the natural properties of the site together with the engineered barrier site shall provide adequate isolation of radionuclides from the human beings and environment, so the whole disposal system can keep the radiological impact within an acceptable level. Since the early 1980's, complying with the national standards and the expert's conception as well as the related IAEA Criteria, geological selection of disposal sites for low-and intermediate-level solid radwastes has been carried out in East China, South China, Northwest China and Southwest China separately. Finally, 5 candidate sites were recommended to the CNNC

  10. Radioactive waste disposal in W.A

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1983-01-01

    Radioactive waste in Western Australia arises primarily from medical diagnosis and treatment and from scientific research mainly with a medical orientation. Waste is classified before disposal depending on its level and type of radioactivity and then disposed of either to municipal land fill sites, to the sewerage system or by incineration. The amounts of radioactive materials which may be disposed of to the sewers and air are set by the Radiation Safety Act (1975) Regulations, and the land fill operations are controlled to ensure isolation of the material. Other waste such as unwanted sources used in industrial applications are stored for future disposal. Discussions are being held between officers of the State and Australian Governments aimed at providing suitable disposal methods for sources of this kind

  11. Comparison of monitoring technologies for CO2 storage and radioactive waste disposal

    International Nuclear Information System (INIS)

    Ryu, Jihun; Koh, Yongkwon; Choi, Jongwon; Lee, Jongyoul

    2013-01-01

    The monitoring techniques used in radioactive waste disposal have fundamentals of geology, hydrogeology, geochemistry etc, which could be applied to CO 2 sequestration. Large and diverse tools are available to monitoring methods for radioactive waste and CO 2 storage. They have fundamentals on geophysical and geochemical principles. Many techniques are well established while others are both novel and at an early stage of development. Reliable and cost-effective monitoring will be an important part of making geologic sequestration a safe, effective and acceptable method for radioactive waste disposal and CO 2 storage. In study, we discuss the monitoring techniques and the role of these techniques in providing insight in the risks of radioactive waste disposal and CO 2 sequestration

  12. Information on commercial disposal facilities that may have received offshore drilling wastes.

    Energy Technology Data Exchange (ETDEWEB)

    Gasper, J. R.; Veil, J. A.; Ayers, R. C., Jr.

    2000-08-25

    The U.S. Environmental Protection Agency (EPA) is developing regulations that would establish requirements for discharging synthetic-based drill cuttings from offshore wells into the ocean. Justification for allowing discharges of these cuttings is that the environmental impacts from discharging drilling wastes into the ocean may be less harmful than the impacts from hauling them to shore for disposal. In the past, some onshore commercial facilities that disposed of these cuttings were improperly managed and operated and left behind environmental problems. This report provides background information on commercial waste disposal facilities in Texas, Louisiana, California, and Alaska that received or may have received offshore drilling wastes in the past and are now undergoing cleanup.

  13. Implementation of the Borehole Disposal Concept for Sealed Radioactive Sources in Ghana

    International Nuclear Information System (INIS)

    Glover, Eric T.

    2016-01-01

    Results from BDC Scoping Tool: • The capsule fails after 49300 years. • The plume arrives at a well 100m away from the disposal borehole after 49621 years with peak dose of 4E-4 Sv/y. • The scoping tool considers groundwater pathway as an advective transport with no sorption. • This implies that, the peak dose that a receptor will receive via ingestion of contaminated water or inhalation of gas for all cases is below the dose constraint of 0.3mSv/y. • The results from the scoping tool suggest that the capsule and the disposal container will provide enough containment for the disposal system being considered at the proposed site.

  14. Acceptability criteria for final underground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1984-01-01

    Specialists now generally agree that the underground disposal of suitably immobilized radioactive waste offers a means of attaining the basic objective of ensuring the immediate and long-term protection of man and the environment throughout the requisite period of time and in all foreseeable circumstances. Criteria of a more general as well as a more specific nature are practical means through which this basic protection objective can be reached. These criteria, which need not necessarily be quantified, enable the authorities to gauge the acceptability of a given project and provide those responsible for waste management with a basis for making decisions. In short, these principles constitute the framework of a suitably safety-oriented waste management policy. The more general criteria correspond to the protection objectives established by the national authorities on the basis of principles and recommendations formulated by international organizations, in particular the ICRP and the IAEA. They apply to any underground disposal system considered as a whole. The more specific criteria provide a means of evaluating the degree to which the various components of the disposal system meet the general criteria. They must also take account of the interaction between these components. As the ultimate aim is the overall safety of the disposal system, individual components can be adjusted to compensate for the performance of others with respect to the criteria. This is the approach adopted by the international bodies and national authorities in developing acceptability criteria for the final underground radioactive disposal systems to be used during the operational and post-operational phases respectively. The main criteria are reviewed and an attempt is made to assess the importance of the specific criteria according to the different types of disposal systems. (author)

  15. 36 CFR 13.1118 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  16. 36 CFR 13.1008 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  17. 36 CFR 13.1912 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located...

  18. 36 CFR 13.1604 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...

  19. Analysis of scenarios for the direct disposal of spent nuclear fuel disposal conditions as expected in Germany

    International Nuclear Information System (INIS)

    Ashton, P.; Mehling, O.; Mohn, R.; Wingender, H.J.

    1990-01-01

    This report contains an investigation of aspects of the waste management of spent light water reactor fuel by direct disposal in a deep geological formation on land. The areas covered are: interim dry storage of spent fuel with three options of pre-conditioning; conditioning of spent fuel for final disposal in a salt dome repository; disposal of spent fuel (heat-generating waste) in a salt dome repository; disposal of medium and low-level radioactive wastes in the Konrad mine. Dose commitments, effluent discharges and potential incidents were not found to vary significantly for the various conditioning options/salt dome repository types. Due to uncertainty in the cost estimates, in particular the disposal cost estimates, the variation between the three conditioning options examined is not considered as being significant. The specific total costs for the direct disposal strategy are estimated to lie in the range ECU 600 to 700 per kg hm (basis 1988)

  20. Basic reasons and the practice of using deep water-bearing levels for liquid radioactive waste disposal

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Pimenov, M.K.; Balukova, V.D.; Leontichuk, A.S.; Kokorin, I.N.; Yudin, F.P.; Rakov, N.A.

    1978-01-01

    Speculations are presented on the development and organization of liquid radioactive waste underground disposal in deep water-bearing levels completely isolated from other levels and the surface. Major requirements are formulated that are laid down to low-, moderate-and high-radioactive wastes subject to the disposal. Geological and hydrological conditions as well as the scheme and design features of pilot field facilities are described, where works on high-active waste disposal were started in 1972. In 1972 and 1973 450 and 1050 m 3 of the wastes (7.5 and 53 MCi) respecrespectively were disposed. The first results of the pilot disposal and the 3-year surveillance over the plate-collector condition and the performance of the facilities have reaffirmed the feasibility, medical and radiation safety and economic attractiveness of the disposal of wastes with up to 10-25 Ci/l specific activity

  1. Nuclear fuel waste disposal. Canada's consultative approach

    International Nuclear Information System (INIS)

    Hillier, J.A.R.; Dixon, R.S.

    1993-01-01

    Over the past two decades, society has increasingly demanded more public participation and public input into decision-making by governments. Development of the Canadian concept for deep geological disposal of used nuclear fuel has proceeded in a manner that has taken account of the requirements for social acceptability as well as technical excellence. As the agency responsible for development of the disposal concept, Atomic Energy of Canada Limited (AECL) has devoted considerable effort to consultation with the various publics that have an interest in the concept. This evolutionary interactive and consultative process, which has been underway for some 14 years, has attempted to keep the public informed of the technical development of the concept and to invite feedback. This paper describes the major elements of this evolutionary process, which will continue throughout the concept assessment and review process currently in progress. (author)

  2. Nuclear fuel waste disposal. Canada's consultative approach

    Energy Technology Data Exchange (ETDEWEB)

    Hillier, J A.R.; Dixon, R S [AECL (Canada)

    1993-07-01

    Over the past two decades, society has increasingly demanded more public participation and public input into decision-making by governments. Development of the Canadian concept for deep geological disposal of used nuclear fuel has proceeded in a manner that has taken account of the requirements for social acceptability as well as technical excellence. As the agency responsible for development of the disposal concept, Atomic Energy of Canada Limited (AECL) has devoted considerable effort to consultation with the various publics that have an interest in the concept. This evolutionary interactive and consultative process, which has been underway for some 14 years, has attempted to keep the public informed of the technical development of the concept and to invite feedback. This paper describes the major elements of this evolutionary process, which will continue throughout the concept assessment and review process currently in progress. (author)

  3. Site evaluation for disposal facilities in salt

    International Nuclear Information System (INIS)

    Brewitz, W.

    1982-01-01

    Although the various geoscientific investigations are not finished yet, the results so far show that the Konrad mine has some outstanding geological features as required for a safe disposal of radioactive wastes. The iron ore formation is extremely dry. Seepage water is no threat to the waste disposal operation and the repository itself. The construction of stable underground storage rooms which are sufficiently seized in volume is possible. Galleries containing wastes in drums or contaminated components can be refilled and sealed efficiently as well as the rest of the mine including the two shafts. Thereafter the geological containment with its favourable structure and ideal petrology will be an effective barrier against the contamination of the biosphere. As investigated this applies in particular to the low-active wastes with their specific nuclide inventory and the short decay time. (orig.)

  4. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Part 2. Engineering technology for geological disposal

    International Nuclear Information System (INIS)

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the deep geological disposal concept for high-level radioactive wastes (HLW) in Japan. The present document, part 2 of the progress report, concerns engineering aspect with reference to Japanese geological disposal plan, according to which the vitrified HLW will be disposed of into a deep, stable rock mass with thick containers and surrounding buffer materials at the depth of several hundred meters. It discusses on multi-barrier systems consisting of a series of engineered and natural barriers that will isolate radioactive nuclides effectively and retard their migrations to the biosphere environment. Performance of repository components, including specifications of containers for vitrified HLW and their overpacks under design as well as buffer material such as Japanese bentonite to be placed in between are described referring also to such possible problems as corrosion arising from the supposed system. It also presents plans and designs for underground disposal facilities, and the presumed management of the underground facilities. (Ohno, S.)

  5. Retrievable disposal - opposing views on ethics

    International Nuclear Information System (INIS)

    Selling, H.A.

    2000-01-01

    In the previous decades many research programmes on the disposal of radioactive waste have been completed in the Netherlands. The experts involved have reconfirmed their view that deep underground disposal in suitable geological formations would ensure a safe and prolonged isolation of the waste from the biosphere. Both rock salt and clay formations are considered to qualify as a suitable host rock. In 1993 the government in a position paper stated that such a repository should be designed in a way that the waste can be retrieved from it, should the need arise. In an attempt to involve stakeholders in the decision-making process, a research contract was awarded to an environmental group to study the ethical aspects related to retrievable disposal of radioactive waste. In their report which was published in its final form in January 2000 the authors concluded that retrievable disposal is acceptable from an ethical point of view. However, this conclusion was reached in the understanding that this situation of retrievability would be permanent. From the concept of equity between generations, each successive generation should be offered equal opportunities to decide for itself how to dispose of the radioactive waste. Consequently, the preferred disposal option is retrievable disposal (or long term storage) in a surface facility. Although this view is not in conformity with the ''official'' position on radioactive waste disposal, there is a benefit of having established a dialogue between interested parties in a broad sense. (author)

  6. 41 CFR 102-75.415 - What happens after the disposal agency receives the FAA's recommendation for disposal of the...

    Science.gov (United States)

    2010-07-01

    ... disposal agency receives the FAA's recommendation for disposal of the property for a public airport? 102-75... receives the FAA's recommendation for disposal of the property for a public airport? The head of the disposal agency, or his or her designee, may convey property approved by the FAA for use as a public...

  7. The Hazardous Waste/Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    Bailey, L.L.

    1991-01-01

    The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996

  8. Galileo disposal strategy: stability, chaos and predictability

    Science.gov (United States)

    Rosengren, Aaron J.; Daquin, Jérôme; Tsiganis, Kleomenis; Alessi, Elisa Maria; Deleflie, Florent; Rossi, Alessandro; Valsecchi, Giovanni B.

    2017-02-01

    Recent studies have shown that the medium-Earth orbit (MEO) region of the global navigation satellite systems is permeated by a devious network of lunisolar secular resonances, which can interact to produce chaotic and diffusive motions. The precarious state of the four navigation constellations, perched on the threshold of instability, makes it understandable why all past efforts to define stable graveyard orbits, especially in the case of Galileo, were bound to fail; the region is far too complex to allow for an adoption of the simple geosynchronous disposal strategy. We retrace one such recent attempt, funded by ESA's General Studies Programme in the frame of the GreenOPS initiative, that uses a systematic parametric approach and the straightforward maximum-eccentricity method to identify long-term-stable regions, suitable for graveyards, as well as large-scale excursions in eccentricity, which can be used for post-mission deorbiting of constellation satellites. We then apply our new results on the stunningly rich dynamical structure of the MEO region towards the analysis of these disposal strategies for Galileo, and discuss the practical implications of resonances and chaos in this regime. We outline how the identification of the hyperbolic and elliptic fixed points of the resonances near Galileo can lead to explicit criteria for defining optimal disposal strategies.

  9. Spent nuclear fuel disposal liability insurance

    International Nuclear Information System (INIS)

    Martin, D.W.

    1984-01-01

    This thesis examines the social efficiency of nuclear power when the risks of accidental releases of spent fuel radionuclides from a spent fuel disposal facility are considered. The analysis consists of two major parts. First, a theoretical economic model of the use of nuclear power including the risks associated with releases of radionuclides from a disposal facility is developed. Second, the costs of nuclear power, including the risks associated with a radionuclide release, are empirically compared to the costs of fossil fuel-fired generation of electricity. Under the provisions of the Nuclear Waste Policy Act of 1982, the federally owned and operated spent nuclear fuel disposal facility is not required to maintain a reserve fund to cover damages from an accidental radionuclide release. Thus, the risks of a harmful radionuclide release are not included in the spent nuclear fuel disposal fee charged to the electric utilities. Since the electric utilities do not pay the full, social costs of spent fuel disposal, they use nuclear fuel in excess of the social optimum. An insurance mechanism is proposed to internalize the risks associated with spent fueled disposal. Under this proposal, the Federal government is required to insure the disposal facility against any liabilities arising from accidental releases of spent fuel radionuclides

  10. System for the hydrogeologic analysis of uranium mill waste disposal sites

    International Nuclear Information System (INIS)

    Osiensky, J.L.

    1983-01-01

    Most of the uranium mill wastes generated before 1977 are stored in unlined tailings ponds. Seepage from some of these ponds has been of sufficient severity that the US Nuclear Regulatory Commission (NRC) has required the installation of withdrawal wells to remove the contaminated groundwater. Uranium mill waste disposal facilities typically are located in complex hydrogeologic environments. This research was initiated in 1980 to analyze hydrogeologic data collected at seven disposal sites in the US that have experienced problems with groundwater contamination. The characteristics of seepage migration are site specific and are controlled by the hydrogeologic environment in the vicinity of each tailings pond. Careful monitoring of most seepage plumes was not initiated until approximately 1977. These efforts were accelerated as a consequence of the uranium Mill Tailings Act of 1979. Some of the data collected at uranium mill waste disposal sites in the past are incomplete and some were collected by methods that are outdated. Data frequently were collected in sequences which disrupted the continuity of the hydrogeologic analysis and decreased the effectiveness of the data collection programs. Evaluation of data collection programs for seven uranium mill waste disposal sites in the US has led to the development and presentation herein of a system for the hydrogeologic analysis of disposal sites

  11. Disposal phase experimental program plan

    International Nuclear Information System (INIS)

    1997-01-01

    The Waste Isolation Pilot Plant (WIPP) facility comprises surface and subsurface facilities, including a repository mined in a bedded salt formation at a depth of 2,150 feet. It has been developed to safely and permanently isolate transuranic (TRU) radioactive wastes in a deep geological disposal site. On April 12, 1996, the DOE submitted a revised Resource Conservation and Recovery Act (RCRA) Part B permit application to the New Mexico Environment Department (NMED). The DOE anticipates receiving an operating permit from the NMED; this permit is required prior to the start of disposal operations. On October 29, 1996, the DOE submitted a Compliance Certification Application (CCA) to the US Environmental Protection Agency (EPA) in accordance with the WIPP land Withdrawal Act (LWA) of 1992 (Public Law 102-579) as amended, and the requirements of Title 40 of the Code of Federal Regulations (40 CFR) Parts 191 and 194. The DOE plans to begin disposal operations at the WIPP in November 1997 following receipt of certification by the EPA. The disposal phase is expected to last for 35 years, and will include recertification activities no less than once every five years. This Disposal Phase Experimental Program (DPEP) Plan outlines the experimental program to be conducted during the first 5-year recertification period. It also forms the basis for longer-term activities to be carried out throughout the 35-year disposal phase. Once the WIPP has been shown to be in compliance with regulatory requirements, the disposal phase gives an opportunity to affirm the compliance status of the WIPP, enhance the operations of the WIPP and the national TRU system, and contribute to the resolution of national and international nuclear waste management technical needs. The WIPP is the first facility of its kind in the world. As such, it provides a unique opportunity to advance the technical state of the art for permanent disposal of long-lived radioactive wastes

  12. Disposal of radioactive waste. An overview of the principles involved

    International Nuclear Information System (INIS)

    1982-01-01

    Radioactive waste management strategies and practices have been reviewed in many publications. By and large these documents are technical in nature and they do not normally discuss the motives that determine which course of action should be taken. The present document concentrates on these less well defined aspects and is intended to provide a review of the philosophy underlying the current technical approach to the disposal of radioactive waste. Disposal is the final step in waste management and may be simply defined as a method of dealing with wastes for which there is no intention of retrieval

  13. Inadvertent Intruder Analysis For The Portsmouth On-Site Waste Disposal Facility (OSWDF)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Frank G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Phifer, Mark A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-22

    The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. For the purposes of this analysis, we assume that the waste disposal in the OSWDF occurs at time zero, the site is under institutional control for the next 100 years, and inadvertent intrusion can occur over the following 1,000 year time period. Disposal of low-level radioactive waste in the OSWDF must meet a requirement to assess impacts on such individuals, and demonstrate that the effective dose equivalent to an intruder would not likely exceed 100 mrem per year for scenarios involving continuous exposure (i.e. chronic) or 500 mrem for scenarios involving a single acute exposure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr. Disposal inventory

  14. Single well techniques

    International Nuclear Information System (INIS)

    Drost, W.

    1983-01-01

    The single well technique method includes measurement of parameters of groundwater flow in saturated rock. For determination of filtration velocity the dilution of radioactive tracer is measured, for direction logging the collimeter is rotated in the probe linked with the compass. The limiting factor for measurement of high filtration velocities is the occurrence of turbulent flow. The single well technique is used in civil engineering projects, water works and subsurface drainage of liquid waste from disposal sites. The radioactive tracer method for logging the vertical fluid movement in bore-holes is broadly used in groundwater survey and exploitation. (author)

  15. Non-radioactive disposal facility-bioremediation horizontal well installation project

    International Nuclear Information System (INIS)

    Kupar, J.; Hasek, M.

    1998-01-01

    The Sanitary Landfill Corrective Action Plan proposes a two pronged approach to remediation. The first part of the total remediation strategy is the placement of a RCRA style closure cap to provide source control of contaminants into the groundwater. The second part of the proposed remediation package is a phased approach primarily using an in situ bioremediation system for groundwater clean up of the Constituents of Concern (COCs) that exceed their proposed Alternate Concentration Limits (ACL). The phased in approach of groundwater clean up will involve operation of the in situ bioremediation system, followed by evaluation of the Phase 1 system and, if necessary, additional phased remediation strategies. This document presents pertinent information on operations, well locations, anticipated capture zones, monitoring strategies, observation wells and other information which will allow a decision on the acceptability of the remedial strategy as an interim corrective action prior to permit application approval. The proposed interim phase of the remediation program will position two horizontal bioremediation wells such that the respective zones of influence will intersect the migration path for the highest concentrations of each plume

  16. Impact of eccentricity build-up and graveyard disposal Strategies on MEO navigation constellations

    Science.gov (United States)

    Radtke, Jonas; Domínguez-González, Raúl; Flegel, Sven K.; Sánchez-Ortiz, Noelia; Merz, Klaus

    2015-12-01

    With currently two constellations being in or close to the build-up phase, in a few years the Medium Earth Orbit (MEO) region will be populated with four complete navigation systems in relatively close orbital altitudes: The American GPS, Russian GLONASS, European Galileo, and Chinese BeiDou. To guarantee an appropriate visibility of constellation satellites from Earth, these constellations rely on certain defined orbits. For this, both the repeat pattern, which is basically defined by the semimajor axis and inclination, as well as the orbital planes, which are defined by the right ascension of ascending node, are determining values. To avoid an overcrowding of the region of interest, the disposal of satellites after their end-of-life is recommended. However, for the MEO region, no internationally agreed mitigation guidelines exist. Because of their distances to Earth, ordinary disposal manoeuvres leading to a direct or delayed re-entry due to atmospheric drag are not feasible: The needed fuel masses for such manoeuvres are by far above the reasonable limits and available fuel budgets. Thus, additional approaches have to be applied. For this, in general two options exist: disposal to graveyard orbits or the disposal to eccentricity build-up orbits. In the study performed, the key criterion for the graveyard strategy is that the disposed spacecraft must keep a safe minimum distance to the altitude of the active constellation on a long-term time scale of up to 200 years. This constraint imposes stringent requirements on the stability of the graveyard orbit. Similar disposals are also performed for high LEO satellites and disposed GEO payloads. The eccentricity build-up strategy on the other hand uses resonant effects between the Earth's geopotential, the Sun and the Moon. Depending on the initial conditions, these can cause a large eccentricity build-up, which finally can lead to a re-entry of the satellite. In this paper, the effects of applying either the first or

  17. Greater-confinement disposal

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Schubert, J.P.

    1989-01-01

    Greater-confinement disposal (GCD) is a general term for low-level waste (LLW) disposal technologies that employ natural and/or engineered barriers and provide a degree of confinement greater than that of shallow-land burial (SLB) but possibly less than that of a geologic repository. Thus GCD is associated with lower risk/hazard ratios than SLB. Although any number of disposal technologies might satisfy the definition of GCD, eight have been selected for consideration in this discussion. These technologies include: (1) earth-covered tumuli, (2) concrete structures, both above and below grade, (3) deep trenches, (4) augered shafts, (5) rock cavities, (6) abandoned mines, (7) high-integrity containers, and (8) hydrofracture. Each of these technologies employ several operations that are mature,however, some are at more advanced stages of development and demonstration than others. Each is defined and further described by information on design, advantages and disadvantages, special equipment requirements, and characteristic operations such as construction, waste emplacement, and closure

  18. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Bohm, H.; Closs, K.D.; Kuhn, K.

    1981-01-01

    The solutions to the technical problem of the disposal of radioactive waste are limited by a) the state of knowledge of reprocessing possibilites, b) public acceptance of the use of those techniques which are known, c) legislative procedures linking licensing of new nuclear power plants to the solution of waste problems, and d) other political constraints. Wastes are generated in the mining and enriching of radioactive elements, and in the operation of nuclear power plants as well as in all fields where radioactive substances may be used. Waste management will depend on the stability and concentration of radioactive materials which must be stored, and a resolution of the tension between numerous small storage sites and a few large ones, which again face problems of public acceptability

  19. Dismantling and disposal of the Chisobox experimental irradiator

    International Nuclear Information System (INIS)

    Kriz, R.

    2005-01-01

    The Chisobox experimental irradiator was installed at the Faculty of Medicine in Hradec Kralove, Radioisotope Laboratories and Vivarium, for the purposes of the scientific research of ionizing radiation effects on the living organisms. The irradiator was put into operation in 1977. After 1989, its use has been - significantly reduced and it was only employed for the sterilization of medical materials and aids as well as for the radiation treatment of antique and museum things having wood-worm. In January 2001, its next operation was determined by the SUJB decision (i.e. The State Office for Nuclear Safety) in which the constancy tests for all individual ionizing radiation sources being part of the system were required. As the f constancy tests were not performed at that time, the Faculty Management decided for the -- decommissioning of the irradiator in June 2001. In 2003, the Faculty of Medicine announced a tender for the category III workplace disposal. Primarily, the VF, a.s. in cooperation with the SURAO Prague (i.e. the Radioactive Waste Repository Authority) were to have disposed this workplace, and a hot cell designed to be built in Litomerice by the SURAO was to have been used for this project. However, the Faculty of Medicine got a grant for the irradiator disposal in 2004 providing that the disposal had to be finished in the same year. For this reason, the complete project has been assigned to the VF, a.s. Company, which put its hot cell into operation in 2004. The VF, a.s. Company finished the disposal of the irradiator in October/November 2004. After the agreement with the SURAO in April 2005, the sealed sources placed in the storage baskets were put into a newly manufactured container -a non-standard storage unit -and transported to be stored in the URAO Richard in Litomerice. (authors)

  20. Waste disposal options report. Volume 1

    International Nuclear Information System (INIS)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    This report summarizes the potential options for the processing and disposal of mixed waste generated by reprocessing spent nuclear fuel at the Idaho Chemical Processing Plant. It compares the proposed waste-immobilization processes, quantifies and characterizes the resulting waste forms, identifies potential disposal sites and their primary acceptance criteria, and addresses disposal issues for hazardous waste

  1. Disposal of radioactive wastes. Chapter 11

    International Nuclear Information System (INIS)

    Skitt, J.

    1979-01-01

    An account is given of the history and present position of legislation in the United Kingdom on the disposal of radioactive wastes. The sections are headed: introduction and definitions; history; the Radioactive Substances Act 1960; disposal of solid radioactive wastes through Local Authority services; function of Local Authorities; exemptions; national radioactive waste disposal service; incidents involving radioactivity. (U.K.)

  2. Oil statistics 1976: supply and disposal

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Summary tables are included for the period 1960 to 1976. The detailed tables for 1976 cover production, supply and disposal; supply and disposal by product; imports by sources; imports from member countries; exports by destination; exports to member countries; consumption by end-use sectors; and supply and disposal of finished products by country (1975 and 1976). (DLC)

  3. Recycling And Disposal Of Waste

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ui So

    1987-01-15

    This book introduces sewage disposal sludge including properties of sludge and production amount, stabilization of sludge by anaerobic digestion stabilization of sludge by aerobic digestion, stabilization of sludge by chemical method, and dewatering, water process sludge, human waste and waste fluid of septic tank such as disposal of waste fluid and injection into the land, urban waste like definition of urban waste, collection of urban waste, recycling, properties and generation amount, and disposal method and possibility of injection of industrial waste into the ground.

  4. 1994 Characterization report for the state approved land disposal site

    International Nuclear Information System (INIS)

    Swanson, L.C.

    1994-01-01

    This report summarizes the results of characterization activities at the proposed state-approved land disposal site (SALDS); it updates the original characterization report with studies completed since the first characterization report. The initial characterization report discusses studies from two characterization boreholes, 699-48-77A and 699-48-77B. This revision includes data from implementation of the Groundwater Monitoring Plan and the Aquifer Test Plan. The primary sources of data are two down-gradient groundwater monitoring wells, 699-48-77C and 699-48-77D, and aquifer testing of three zones in well 699-48-77C. The SALDS is located on the Hanford Site, approximately 183 m north of the 200 West Area on the north side of the 200 Areas Plateau. The SALDS is an infiltration basin proposed for disposal of treated effluents from the 200 Areas of Hanford

  5. Post-closure safety assessment of near surface disposal facilities for disused sealed radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seunghee; Kim, Juyoul, E-mail: gracemi@fnctech.com

    2017-03-15

    Highlights: • Post-closure safety assessment of near surface disposal facility for DSRS was performed. • Engineered vault and rock-cavern type were considered for normal and well scenario. • {sup 14}C, {sup 226}Ra, {sup 241}Am were primary nuclides contributing large portion of exposure dose. • Near surface disposal of DSRSs containing {sup 14}C, {sup 226}Ra and {sup 241}Am should be restricted. - Abstract: Great attention has been recently paid to the post-closure safety assessment of low- and intermediate-level radioactive waste (LILW) disposal facility for disused sealed radioactive sources (DSRSs) around the world. Although the amount of volume of DSRSs generated from industry, medicine and research and education organization was relatively small compared with radioactive wastes from commercial nuclear power plants, some DSRSs can pose a significant hazard to human health due to their high activities and long half-lives, if not appropriately managed and disposed. In this study, post-closure safety assessment was carried out for DSRSs generated from 1991 to 2014 in Korea in order to ensure long-term safety of near surface disposal facilities. Two kinds of disposal options were considered, i.e., engineered vault type disposal facility and rock-cavern type disposal facility. Rock-cavern type disposal facility has been under operation in Gyeongju city, republic of Korea since August 2015 and engineered vault type disposal facility will be constructed until December 2020 in the vicinity of rock-cavern disposal facility. Assessment endpoint was individual dose to the member of critical group, which was modeled by GoldSim, which has been widely used as probabilistic risk analysis software based on Monte Carlo simulation in the area of safety assessment of radioactive waste facilities. In normal groundwater scenario, the maximum exposure dose was extremely low, approximately 1 × 10{sup −7} mSv/yr, for both disposal options and satisfied the regulatory limit

  6. Geohydrology of industrial waste disposal site

    International Nuclear Information System (INIS)

    Gaynor, R.K.

    1984-01-01

    An existing desert site for hazardous chemical and low-level radioactive waste disposal is evaluated for suitability. This site is characterized using geologic, geohydrologic, geochemical, and other considerations. Design and operation of the disposal facility is considered. Site characteristics are also evaluated with respect to new and proposed regulatory requirements under the Resource Conservation and Recovery Act (1976) regulations, 40 CFR Part 264, and the ''Licensing Requirements for Landfill Disposal of Radioactive Waste,'' 10 CRF Part 61. The advantages and disadvantages of siting new disposal facilities in similar desert areas are reviewed and contrasted to siting in humid locations

  7. ICRP guidance on radioactive waste disposal

    International Nuclear Information System (INIS)

    Cooper, J.R.

    2002-01-01

    The International Commission on Radiological Protection (ICRP) issued recommendations for a system of radiological protection in 1991 as the 1990 Recommendations. Guidance on the application of these recommendations in the general area of waste disposal was issued in 1997 as Publication 77 and guidance specific to disposal of solid long-lived radioactive waste was issued as Publication 81. This paper summarises ICRP guidance in radiological protection requirements for waste disposal concentrating on the ones of relevance to the geological disposal of solid radioactive waste. Suggestions are made for areas where further work is required to apply the ICRP guidance. (author)

  8. Performance objectives of the tank waste remediation system low-level waste disposal program

    International Nuclear Information System (INIS)

    1994-01-01

    Before low-level waste may be disposed of, a performance assessment must be written and then approved by the U.S. Department of Energy. The performance assessment is to determine whether open-quotes reasonable assuranceclose quotes exists that the performance objectives of the disposal facility will be met. The DOE requirements for waste disposal require: the protection of public health and safety; and the protection of the environment. Although quantitative limits are sometimes stated (for example, the all exposure pathways exposure limit is 25 mrem/year), usually the requirements are stated in a general nature. Quantitative limits were established by: investigating all potentially applicable regulations as well as interpretations of the Peer Review Panel which DOE has established to review performance assessments, interacting with program management to establish their needs, and interacting with the public (i.e., the Hanford Advisory Board members; as well as affected Indian tribes) to understand the values of residents in the Pacific Northwest

  9. Power plant waste disposals in open-cast mines

    Energy Technology Data Exchange (ETDEWEB)

    Herstus, J.; Stastny, J. [AGE s.r.o. - Aplikovana Geotechnika a Ekologie, Thamova (Czechoslovakia)

    1995-12-01

    High population density in Czech Republic has led, as well as in other countries, to strong NIMBY syndrome influencing the waste disposal location. The largest thermal power plants are situated in neighborhood of extensive open-cast brown coal mines with huge area covered by tipped clayey spoil. Such spoil areas, technically almost useless, are potential space for power giant waste disposal position. There are several limitations, based on specific structural features of tipped clayey spoil, influencing decision to use such area as site for waste disposal. Low shear strength and extremely high compressibility belong to the geotechnical limitations. High permeability of upper ten or more meters of tipped spoil and its changes with applied stress level belongs to transitional features between geotechnical and environmental limitations. The problems of ash and FGD products stabilized interaction with such subgrade represent environmental limitation. The paper reports about the testing procedure developed for thickness and permeability estimation of upper soil layer and gives brief review of laboratory and site investigation results on potential sites from point of view of above mentioned limitations. Also gives an outline how to eliminate the influence of unfavorable conditions.

  10. Optimal Earth's reentry disposal of the Galileo constellation

    Science.gov (United States)

    Armellin, Roberto; San-Juan, Juan F.

    2018-02-01

    Nowadays there is international consensus that space activities must be managed to minimize debris generation and risk. The paper presents a method for the end-of-life (EoL) disposal of spacecraft in Medium Earth Orbit (MEO). The problem is formulated as a multiobjective optimisation one, which is solved with an evolutionary algorithm. An impulsive manoeuvre is optimised to reenter the spacecraft in Earth's atmosphere within 100 years. Pareto optimal solutions are obtained using the manoeuvre Δv and the time-to-reentry as objective functions to be minimised. To explore at the best the search space a semi-analytical orbit propagator, which can propagate an orbit for 100 years in few seconds, is adopted. An in-depth analysis of the results is carried out to understand the conditions leading to a fast reentry with minimum propellant. For this aim a new way of representing the disposal solutions is introduced. With a single 2D plot we are able to fully describe the time evolution of all the relevant orbital parameters as well as identify the conditions that enables the eccentricity build-up. The EoL disposal of the Galileo constellation is used as test case.

  11. User's guide to the 'DISPOSALS' model

    International Nuclear Information System (INIS)

    Groom, M.S.; James, A.R.; Laundy, R.S.

    1984-03-01

    This report provides a User's Guide to the 'DISPOSALS' computer model and includes instructions on how to set up and run a specific problem together with details of the scope, theoretical basis, data requirements and capabilities of the model. The function of the 'DISPOSALS' model is to make assignments of nuclear waste material in an optimum manner to a number of disposal sites each subject to a number of constraints such as limits on the volume and activity. The user is able to vary the number of disposal sites, the range and limits of the constraints to be applied to each disposal site and the objective function for optimisation. The model is based on the Linear Programming technique and uses CAP Scientific's LAMPS and MAGIC packages. Currently the model has been implemented on CAP Scientific's VAX 11/750 minicomputer. (author)

  12. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    1982-01-01

    This film for a general audience deals with nuclear fuel waste management in Canada, where research is concentrating on land based geologic disposal of wastes rather than on reprocessing of fuel. The waste management programme is based on cooperation of the AECL, various universities and Ontario Hydro. Findings of research institutes in other countries are taken into account as well. The long-term effects of buried radioactive wastes on humans (ground water, food chain etc.) are carefully studied with the help of computer models. Animated sequences illustrate the behaviour of radionuclides and explain the idea of a multiple barrier system to minimize the danger of radiation hazards

  13. Disposal of Radioactive Waste. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    This publication establishes requirements applicable to all types of radioactive waste disposal facility. It is linked to the fundamental safety principles for each disposal option and establishes a set of strategic requirements that must be in place before facilities are developed. Consideration is also given to the safety of existing facilities developed prior to the establishment of present day standards. The requirements will be complemented by Safety Guides that will provide guidance on good practice for meeting the requirements for different types of waste disposal facility. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Safety requirements for planning for the disposal of radioactive waste; 4. Requirements for the development, operation and closure of a disposal facility; 5. Assurance of safety; 6. Existing disposal facilities; Appendices.

  14. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy''s (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE''s Environmental Management Program

  15. The opalinus clay project - disposal of medium and highly-active nuclear wastes

    International Nuclear Information System (INIS)

    Mueller, U.

    2003-01-01

    This article describes the project to demonstrate the feasibility of disposing of long-living medium-active and highly-radioactive nuclear wastes in sedimentary rock in Switzerland. The disposal tasks to be carried out are reviewed and the solutions proposed are described, including short-term handling, intermediate storage and final disposal of low, medium and highly-active wastes. The present state of affairs is described and, in particular, the feasibility of implementing a final storage facility in the opalinus clay beds to be found in northern Switzerland. The project for such a facility in the wine-growing area of the canton of Zurich is described in detail, including the storage concept, the technology to be used and operational aspects as well as questions of safety

  16. Disposal Site Information Management System

    International Nuclear Information System (INIS)

    Larson, R.A.; Jouse, C.A.; Esparza, V.

    1986-01-01

    An information management system for low-level waste shipped for disposal has been developed for the Nuclear Regulatory Commission (NRC). The Disposal Site Information Management System (DSIMS) was developed to provide a user friendly computerized system, accessible through NRC on a nationwide network, for persons needing information to facilitate management decisions. This system has been developed on NOMAD VP/CSS, and the data obtained from the operators of commercial disposal sites are transferred to DSIMS semiannually. Capabilities are provided in DSIMS to allow the user to select and sort data for use in analysis and reporting low-level waste. The system also provides means for describing sources and quantities of low-level waste exceeding the limits of NRC 10 CFR Part 61 Class C. Information contained in DSIMS is intended to aid in future waste projections and economic analysis for new disposal sites

  17. 40 CFR 146.5 - Classification of injection wells.

    Science.gov (United States)

    2010-07-01

    ... establishment septic tank. The UIC requirements do not apply to single family residential septic system wells, nor to non-residential septic system wells which are used solely for the disposal of sanitary waste... whether what is injected is a radioactive waste or not. (9) Septic system wells used to inject the waste...

  18. [Analysis on relationship between regional economic development and sewage disposal].

    Science.gov (United States)

    Wang, La-Chun; Huo, Yu; Zhu, Ji-Ye; Li, Sheng-Feng; Gao, Chao

    2008-03-01

    Based on the relationship between district GDP and sewage disposal, the water environment protection effect in 3 cities, Suzhou, Nanjing and Xuzhou, with different economic development degrees in Jiangsu Province was dynamically analyzed. The economy in Suzhou was well developed, where the foreign capital proportion was in a high level. Its GDP per capita was 53,800 yuan in 2005 and the sewage disposal grew linearly when its GDP increased in the study time period. Nanjing was less developed than Suzhou, and the state-owned enterprises in large and medium sizes were in a high percentage. Its GDP per capita was 37,100 yuan in 2005, while the sewage disposal reduced linearly when its GDP increased in the study time period. The economy in Xuzhou is under-developed, where coal-based heavy industry was the most important one. The GDP per capita in this city was 13,200 yuan in 2005 and the sewage disposal fluctuated when its GDP increased in the study time period. According to the relationship between economic development and sewage disposal in different cities, we suggested that the water environment protection in Suzhou should focus on the control of both water pollutant total emission and emission concentration, the major work in Nanjing should focus on adjusting the industrial structure and meanwhile controlling the total emission of water pollutants, while in Xuzhou the water pollutant emission concentration should be firstly controlled.

  19. Cost and ways of financing of the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Venet, P.; Baetsle, L.H.; Barthoux, A.; Engelmann, H.J.

    1986-01-01

    In the paper, the costs of geological disposal of radioactive waste are initially evaluated for a certain number of representative cases of present tendencies in the European Community. These expenses comprise research, development and site validation costs, transport and interim storage costs and finally expenditure relating to various investment and exploitation phases of the disposal site as well as its closure. The possible ways of financing are subsequently reviewed and the financial charges which resulted are calculated for each considered scenario. (author)

  20. Nuclear waste disposal in space

    Science.gov (United States)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  1. Tritium waste disposal technology in the US

    International Nuclear Information System (INIS)

    Albenesius, E.L.; Towler, O.A.

    1983-01-01

    Tritium waste disposal methods in the US range from disposal of low specific activity waste along with other low-level waste in shallow land burial facilities, to disposal of kilocurie amounts in specially designed triple containers in 65' deep augered holes located in an aird region of the US. Total estimated curies disposed of are 500,000 in commercial burial sites and 10 million curies in defense related sites. At three disposal sites in humid areas, tritium has migrated into the ground water, and at one arid site tritium vapor has been detected emerging from the soil above the disposal area. Leaching tests on tritium containing waste show that tritium in the form of HTO leaches readily from most waste forms, but that leaching rates of tritiated water into polymer impregnated concrete are reduced by as much as a factor of ten. Tests on improved tritium containment are ongoing. Disposal costs for tritium waste are 7 to 10 dollars per cubic foot for shallow land burial of low specific activity tritium waste, and 10 to 20 dollars per cubic foot for disposal of high specific activity waste. The cost of packaging the high specific activity waste is 150 to 300 dollars per cubic foot. 18 references

  2. Radioactive waste (disposal)

    International Nuclear Information System (INIS)

    Jenkin, P.

    1985-01-01

    The disposal of low- and intermediate-level radioactive wastes was discussed. The following aspects were covered: public consultation on the principles for assessing disposal facilities; procedures for dealing with the possible sites which the Nuclear Industry Radioactive Waste Executive (NIREX) had originally identified; geological investigations to be carried out by NIREX to search for alternative sites; announcement that proposal for a site at Billingham is not to proceed further; NIREX membership; storage of radioactive wastes; public inquiries; social and environmental aspects; safety aspects; interest groups; public relations; government policies. (U.K.)

  3. Geological disposal of radioactive waste. Safety requirements

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Requirements publication is concerned with providing protection to people and the environment from the hazards associated with waste management activities related to disposal, i.e. hazards that could arise during the operating period and following closure. It sets out the protection objectives and criteria for geological disposal and establishes the requirements that must be met to ensure the safety of this disposal option, consistent with the established principles of safety for radioactive waste management. It is intended for use by those involved in radioactive waste management and in making decisions in relation to the development, operation and closure of geological disposal facilities, especially those concerned with the related regulatory aspects. This publication contains 1. Introduction; 2. Protection of human health and the environment; 3. The safety requirements for geological disposal; 4. Requirements for the development, operation and closure of geological disposal facilities; Appendix: Assurance of compliance with the safety objective and criteria; Annex I: Geological disposal and the principles of radioactive waste management; Annex II: Principles of radioactive waste management

  4. Alternatives for definse waste-salt disposal

    International Nuclear Information System (INIS)

    Benjamin, R.W.; McDonell, W.R.

    1983-01-01

    Alternatives for disposal of decontaminated high-level waste salt at Savannah River were reviewed to estimate costs and potential environmental impact for several processes. In this review, the reference process utilizing intermediate-depth burial of salt-concrete (saltcrete) monoliths was compared with alternatives including land application of the decontaminated salt as fertilizer for SRP pine stands, ocean disposal with and without containment, and terminal storage as saltcake in existing SRP waste tanks. Discounted total costs for the reference process and its modifications were in the same range as those for most of the alternative processes; uncontained ocean disposal with truck transport to Savannah River barges and storage as saltcake in SRP tanks had lower costs, but presented other difficulties. Environmental impacts could generally be maintained within acceptable limits for all processes except retention of saltcake in waste tanks, which could result in chemical contamination of surrounding areas on tank collapse. Land application would require additional salt decontamination to meet radioactive waste disposal standards, and ocean disposal without containment is not permitted in existing US practice. The reference process was judged to be the only salt disposal option studied which would meet all current requirements at an acceptable cost

  5. Geological disposal concept hearings

    International Nuclear Information System (INIS)

    1996-01-01

    The article outlines the progress to date on AECL spent-nuclear fuel geological disposal concept. Hearings for discussion, organised by the federal Environmental Assessment Review Panel, of issues related to this type of disposal method occur in three phases, phase I focuses on broad societal issues related to long term management of nuclear fuel waste; phase II will focus on the technical aspects of this method of disposal; and phase III will consist of community visits in New Brunswick, Quebec, Ontario, Manitoba and Saskatchewan. This article provides the events surrounding the first two weeks of phase I hearings (extracted from UNECAN NEWS). In the first week of hearings, where submissions on general societal issues was the focus, there were 50 presentations including those by Natural Resources Canada, Energy Probe, Ontario Hydro, AECL, Canadian Nuclear Society, Aboriginal groups, environmental activist organizations (Northwatch, Saskatchewan Environmental Society, the Inter-Church Uranium Committee, and the Canadian Coalition for Nuclear responsibility). In the second week of hearings there was 33 presentations in which issues related to siting and implementation of a disposal facility was the focus. Phase II hearings dates are June 10-14, 17-21 and 27-28 in Toronto

  6. Waste management, final waste disposal, fuel cycle

    International Nuclear Information System (INIS)

    Rengeling, H.W.

    1991-01-01

    Out of the legal poblems that are currently at issue, individual questions from four areas are dealt with: privatization of ultimate waste disposal; distribution of responsibilities for tasks in the field of waste disposal; harmonization and systematization of regulations; waste disposal - principles for making provisions for waste disposal - proof of having made provisions for waste disposal; financing and fees. A distinction has to be made between that which is legally and in particular constitutionally imperative or, as the case may be, permissible, and issues where there is room for political decision-making. Ultimately, the deliberations on the amendment are completely confined to the sphere of politics. (orig./HSCH) [de

  7. Confidence improvement of disosal safety bydevelopement of a safety case for high-level radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Min Hoon; Ko, Nak Youl; Jeong, Jong Tae; Kim, Kyung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    Many countries have developed a safety case suitable to their own countries in order to improve the confidence of disposal safety in deep geological disposal of high-level radioactive waste as well as to develop a disposal program and obtain its license. This study introduces and summarizes the meaning, necessity, and development process of the safety case for radioactive waste disposal. The disposal safety is also discussed in various aspects of the safety case. In addition, the status of safety case development in the foreign countries is briefly introduced for Switzerland, Japan, the United States of America, Sweden, and Finland. The strategy for the safety case development that is being developed by KAERI is also briefly introduced. Based on the safety case, we analyze the efforts necessary to improve confidence in disposal safety for high-level radioactive waste. Considering domestic situations, we propose and discuss some implementing methods for the improvement of disposal safety, such as construction of a reliable information database, understanding of processes related to safety, reduction of uncertainties in safety assessment, communication with stakeholders, and ensuring justice and transparency. This study will contribute to the understanding of the safety case for deep geological disposal and to improving confidence in disposal safety through the development of the safety case in Korea for the disposal of high-level radioactive waste.

  8. Estimating the cost of disposal for Canada's nuclear fuel waste

    International Nuclear Information System (INIS)

    Ates, Y.

    1996-07-01

    Atomic Energy of Canada Ltd (AECL) prepared an Environmental Impact Statement and nine supporting Primary Reference Documents on the concept for disposal of Canada's nuclear fuel waste. This report summarizes the basis of the cost estimate which is provided in the primary reference document on engineering for a disposal facility. The scope of the cost estimate is explained by describing the key features of the disposal facility design, by noting the major assumptions made in preparing the estimates, and by listing the included and excluded cost components. An activity-based project planning and control method is explained whereby the project schedule, costs, and personnel requirements are interlinked; forming an integrated perspective on the total project life cycle. The summary and distribution of costs in each project stage by major facility or activity are presented. The results of studies which reviewed the overall cost estimate are also described. These studies indicate that, within the scope, the estimate is reasonable and compares well with similar international studies. (author)

  9. Disposable products in the hospital waste stream.

    OpenAIRE

    Gilden, D. J.; Scissors, K. N.; Reuler, J. B.

    1992-01-01

    Use of disposable products in hospitals continues to increase despite limited landfill space and dwindling natural resources. We analyzed the use and disposal patterns of disposable hospital products to identify means of reducing noninfectious, nonhazardous hospital waste. In a 385-bed private teaching hospital, the 20 disposable products of which the greatest amounts (by weight) were purchased, were identified, and total hospital waste was tabulated. Samples of trash from three areas were so...

  10. Disposal alternatives and recommendations for waste salt management for repository excavation in the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    1987-01-01

    This report documents an evaluation of five alternatives for the disposal of waste salt that would be generated by the construction of a repository for radioactive waste in underground salt deposits at either of two sites in the Palo Duro Basin, Texas. The alternatives include commercial disposal, offsite deep-well injection, disposal in abandoned mines, ocean disposal, and land surface disposal on or off the site. For each alternative a reference case was rated - positive, neutral, or negative - in terms of environmental and dependability factors developed specifically for Texas sites. The factors constituting the environmental checklist relate to water quality impact, water- and land-use conflicts, ecological compatibility, conformity with air quality standards, and aesthetic impact. Factors on the dependability check-list relate to public acceptance, the adequacy of site characterization, permit and licensing requirements, technological requirements, and operational availability. A comparison of the ratings yielded the following viable alternatives, in order of preference: (1) land surface disposal, specifically disposal on tailings piles associated with abandoned potash mines; (2) disposal in abandoned mines, specifically potash mines; and (3) commercial disposal. Approaches to the further study of these three salt management techniques are recommended

  11. Shallow land disposal of radioactive waste

    International Nuclear Information System (INIS)

    1987-01-01

    The application of basic radiation protection concepts and objectives to the disposal of radioactive wastes requires the development of specific reference levels or criteria for the radiological acceptance of each type of waste in each disposal option. This report suggests a methodology for the establishment of acceptance criteria for the disposal of low-level radioactive waste containing long-lived radionuclides in shallow land burial facilities

  12. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    Pettit, N. E.

    2001-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms [IPWF]) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. US Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as co-disposal. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister inserted in the center and/or one or more DOE SNF canisters displacing a HLW canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by

  13. Chemical Waste Management and Disposal.

    Science.gov (United States)

    Armour, Margaret-Ann

    1988-01-01

    Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)

  14. 50 CFR 12.33 - Disposal.

    Science.gov (United States)

    2010-10-01

    ... other equipment), except wildlife or plants, in accordance with current Federal Property Management..., TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS SEIZURE AND FORFEITURE PROCEDURES Disposal of Forfeited or Abandoned Property § 12.33 Disposal. (a) The Director shall...

  15. Assessment of Radionuclides Release from Inshas LILW Disposal Facility Under Normal and Unusual Operational Conditions

    International Nuclear Information System (INIS)

    Zaki, A.A.

    2008-01-01

    Disposing of low and intermediate radioactive waste (LILW) is a big concern for Egypt due to the accumulated waste as a result of past fifty years of peaceful nuclear applications. Assessment of radionuclides release from Inshas LILW disposal facility under normal and unusual operational conditions is very important in order to apply for operation license of the facility. Aqueous release of radionuclides from this disposal facility is controlled by water flow, access of the water to the wasteform, release of the radionuclides from the wasteform, and transport to the disposal facility boundary. In this work, the release of 137 Cs , 6C o, and 90 Sr radionuclides from the Inshas disposal facility was studied under the change of operational conditions. The release of these radio contaminants from the source term to the unsaturated and saturated zones , to groundwater were studied. It was found that the concentration of radionuclides in a groundwater well located 150 m away from the Inshas disposal facility is less than the maximum permissible concentration in groundwater in both cases

  16. A quantitative analysis of municipal solid waste disposal charges in China.

    Science.gov (United States)

    Wu, Jian; Zhang, Weiqian; Xu, Jiaxuan; Che, Yue

    2015-03-01

    Rapid industrialization and economic development have caused a tremendous increase in municipal solid waste (MSW) generation in China. China began implementing a policy of MSW disposal fees for household waste management at the end of last century. Three charging methods were implemented throughout the country: a fixed disposal fee, a potable water-based disposal fee, and a plastic bag-based disposal fee. To date, there has been little qualitative or quantitative analysis on the effectiveness of this relatively new policy. This paper provides a general overview of MSW fee policy in China, attempts to verify whether the policy is successful in reducing general waste collected, and proposes an improved charging system to address current problems. The paper presents an empirical statistical analysis of policy effectiveness derived from an environmental Kuznets curve (EKC) test on panel data of China. EKC tests on different kinds of MSW charge systems were then examined for individual provinces or cities. A comparison of existing charging systems was conducted using environmental and economic criteria. The results indicate the following: (1) the MSW policies implemented over the study period were effective in the reduction of waste generation, (2) the household waste discharge fee policy did not act as a strong driver in terms of waste prevention and reduction, and (3) the plastic bag-based disposal fee appeared to be performing well according to qualitative and quantitative analysis. Based on current situation of waste discharging management in China, a three-stage transitional charging scheme is proposed and both advantages and drawbacks discussed. Evidence suggests that a transition from a fixed disposal fee to a plastic bag-based disposal fee involving various stakeholders should be the next objective of waste reduction efforts.

  17. Development of technical information database for high level waste disposal

    International Nuclear Information System (INIS)

    Kudo, Koji; Takada, Susumu; Kawanishi, Motoi

    2005-01-01

    A concept design of the high level waste disposal information database and the disposal technologies information database are explained. The high level waste disposal information database contains information on technologies, waste, management and rules, R and D, each step of disposal site selection, characteristics of sites, demonstration of disposal technology, design of disposal site, application for disposal permit, construction of disposal site, operation and closing. Construction of the disposal technologies information system and the geological disposal technologies information system is described. The screen image of the geological disposal technologies information system is shown. User is able to search the full text retrieval and attribute retrieval in the image. (S.Y. )

  18. Legal system of nuclear waste disposal. Das System der atomaren Entsorgungsregelung

    Energy Technology Data Exchange (ETDEWEB)

    Dauk, W

    1983-01-01

    This doctoral thesis presents solutions to some of the legal problems encountered in the interpretation of the various laws and regulations governing nuclear waste disposal, and reveals the legal system supporting the variety of individual regulations. Proposals are made relating to modifications of problematic or not well defined provisions, in order to contribute to improved juridical security, or inambiguity in terms of law. The author also discusses the question of the constitutionality of the laws for nuclear waste disposal. Apart from the responsibility of private enterprise to contribute to safe treatment or recycling, within the framework of the integrated waste management concept, and apart from the Government's responsibility for interim or final storage of radioactive waste, there is a third possibility included in the legal system for waste management, namely voluntary measures taken by private enterprise for radioactive waste disposal. The licence to be applied for in accordance with section 3, sub-section (1) of the Radiation Protection Ordinance is interpreted to pertain to all measures of radioactive waste disposal, thus including final storage of radioactive waste by private companies. Although the terminology and systematic concept of nuclear waste disposal are difficult to understand, there is a functionable system of legal provisions contained therein. This system fits into the overall concept of laws governing technical safety and safety engineering.

  19. Public acceptability of risk of radioactive waste disposal

    International Nuclear Information System (INIS)

    Millerd, W.H.

    1977-01-01

    A ''public interest'' viewpoint is presented on the disposal of radioactive wastes. Criteria for the development of disposal methods are needed. The current program to develop disposal sites and methods has become an experiment. The advantages and disadvantages of radwaste disposal as an ongoing experiment are discussed briefly

  20. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    Science.gov (United States)

    Kassotis, Christopher D.; Iwanowicz, Luke R.; Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam; Orem, William H.; Nagel, Susan C.

    2016-01-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby.

  1. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site.

    Science.gov (United States)

    Kassotis, Christopher D; Iwanowicz, Luke R; Akob, Denise M; Cozzarelli, Isabelle M; Mumford, Adam C; Orem, William H; Nagel, Susan C

    2016-07-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Alternatives for future land disposal of radioactive waste

    International Nuclear Information System (INIS)

    Mallory, C.W.

    1982-01-01

    Shallow land burial incorporating improvements to facilitate stabilization and decommissioning will continue to be the primary method of disposing of low level waste in areas where conditions are suitable for this type of disposal. The existing disposal sites should be closely monitored to assure that continued acceptance of this method of disposal. Plans for the decommissioning of the existing sites should be closely reviewed to assure that the planning is adequate and that adequate resources will be available to implement the decommissioning plan. For these areas where geological conditions are not suitable for shallow land burial and in situations where a higher degree of containment is desired, alternative disposal methods should be considered. Technology exists or is readily attainable to provide engineered disposal facilities which provide a higher degree of containment and can be readily decommissioned. The cost of disposal using these methods can be competitive with shallow land burial when the cost of environmental and hydrogeologic investigations and decommissioning are included. Disposal of radioactive waste having low activity in secure sanitary landfills could significantly reduce the transportation and disposal requirements for low level waste

  3. FFTF disposable solid waste cask

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, J. D.; Goetsch, S. D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper.

  4. FFTF disposable solid waste cask

    International Nuclear Information System (INIS)

    Thomson, J.D.; Goetsch, S.D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper

  5. Concepts and Technologies for Radioactive Waste Disposal in Rock Salt

    Directory of Open Access Journals (Sweden)

    Wernt Brewitz

    2007-01-01

    Full Text Available In Germany, rock salt was selected to host a repository for radioactive waste because of its excellent mechanical properties. During 12 years of practical disposal operation in the Asse mine and 25 years of disposal in the disused former salt mine Morsleben, it was demonstrated that low-level wastes (LLW and intermediate-level wastes (ILW can be safely handled and economically disposed of in salt repositories without a great technical effort. LLW drums were stacked in old mining chambers by loading vehicles or emplaced by means of the dumping technique. Generally, the remaining voids were backfilled by crushed salt or brown coal filter ash. ILW were lowered into inaccessible chambers through a borehole from a loading station above using a remote control.Additionally, an in-situ solidification of liquid LLW was applied in the Morsleben mine. Concepts and techniques for the disposal of heat generating high-level waste (HLW are advanced as well. The feasibility of both borehole and drift disposal concepts have been proved by about 30 years of testing in the Asse mine. Since 1980s, several full-scale in-situ tests were conducted for simulating the borehole emplacement of vitrified HLW canisters and the drift emplacement of spent fuel in Pollux casks. Since 1979, the Gorleben salt dome has been investigated to prove its suitability to host the national final repository for all types of radioactive waste. The “Concept Repository Gorleben” disposal concepts and techniques for LLW and ILW are widely based on the successful test operations performed at Asse. Full-scale experiments including the development and testing of adequate transport and emplacement systems for HLW, however, are still pending. General discussions on the retrievability and the reversibility are going on.

  6. Performance evaluation testing of wells in the gradient control system at a federally operated Confined Disposal Facility using single well aquifer tests, East Chicago, Indiana

    Science.gov (United States)

    Lampe, David C.; Unthank, Michael D.

    2016-12-08

    The U.S. Geological Survey (USGS) performed tests to evaluate the hydrologic connection between the open interval of the well and the surrounding Calumet aquifer in response to fouling of extraction well pumps onsite. Two rounds of air slug testing were performed on seven monitoring wells and step drawdown and subsequent recovery tests on three extraction wells on a U.S. Army Corps of Engineers Confined Disposal Facility (CDF) in East Chicago, Indiana. The wells were tested in 2014 and again in 2015. The extraction and monitoring wells are part of the gradient control system that establishes an inward gradient around the perimeter of the facility. The testing established a set of protocols that site personnel can use to evaluate onsite well integrity and develop a maintenance procedure to evaluate future well performance.The results of the slug test analysis data indicate that the hydraulic connection of the well screen to the surrounding aquifer material in monitoring wells on the CDF and the reliability of hydraulic conductivity estimates of the surrounding geologic media could be increased by implementing well development maintenance. Repeated air slug tests showed increasing hydraulic conductivity until, in the case of the monitoring wells located outside of the groundwater cutoff wall (MW–4B, MW–11B, MW–14B), the difference in hydraulic conductivity from test to test decreased, indicating the results were approaching the optimal hydraulic connection between the aquifer and the well screen. Hydraulic conductivity values derived from successive tests in monitoring well D40, approximately 0.25 mile south of the CDF, were substantially higher than those derived from wells on the CDF property. Also, values did not vary from test to test like those measured in monitoring wells located on the CDF property, which indicated that a process may be affecting the connectivity of the wells on the CDF property to the Calumet aquifer. Derived hydraulic conductivity

  7. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.

    1998-03-05

    In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  8. Risk assessment of nonhazardous oil-field waste disposal in salt caverns

    International Nuclear Information System (INIS)

    Elcock, D.

    1998-01-01

    In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes

  9. On-site disposal as a decommissioning strategy

    International Nuclear Information System (INIS)

    1999-11-01

    On-site disposal is not a novel decommissioning strategy in the history of the nuclear industry. Several projects based on this strategy have been implemented. Moreover, a number of studies and proposals have explored variations within the strategy, ranging from in situ disposal of entire facilities or portions thereof to disposal within the site boundary of major components such as the reactor pressure vessel or steam generators. Regardless of these initiatives, and despite a significant potential for dose, radioactive waste and cost reduction, on-site disposal has often been disregarded as a viable decommissioning strategy, generally as the result of environmental and other public concerns. Little attention has been given to on-site disposal in previous IAEA publications in the field of decommissioning. The objective of this report is to establish an awareness of technical factors that may or may not favour the adoption of on-site disposal as a decommissioning strategy. In addition, this report presents an overview of relevant national experiences, studies and proposals. The expected end result is to show that, subject to safety and environmental protection assessment, on-site disposal can be a viable decommissioning option and should be taken into consideration in decision making

  10. Review of the nuclear waste disposal problem

    International Nuclear Information System (INIS)

    Poch, L.A.; Wolsko, T.D.

    1979-10-01

    Regardless of future nuclear policy, a nuclear waste disposal problem does exist and must be dealt with. Even a moratorium on new nuclear plants leaves us with the wastes already in existence and wastes yet to be generated by reactors in operation. Thus, technologies to effectively dispose of our current waste problem must be researched and identified and, then, disposal facilities built. The magnitude of the waste disposal problem is a function of future nuclear policy. There are some waste disposal technologies that are suitable for both forms of HLW (spent fuel and reprocessing wastes), whereas others can be used with only reprocessed wastes. Therefore, the sooner a decision on the future of nuclear power is made the more accurately the magnitude of the waste problem will be known, thereby identifying those technologies that deserve more attention and funding. It is shown that there are risks associated with every disposal technology. One technology may afford a higher isolation potential at the expense of increased transportation risks in comparison to a second technology. Establishing the types of risks we are willing to live with must be resolved before any waste disposal technology can be instituted for widespread commercial use

  11. Institutional aspects of siting nuclear waste disposal facilities in the United States

    International Nuclear Information System (INIS)

    Stewart, J.C.; Prichard, W.C.

    1987-01-01

    This paper has dealt with the institutional issues associated with disposal of nuclear waste in the US. The authors believe that these institutional problems must be resolved, no matter how technologically well suited a site may be for disposal, before site selection may take place. The authors have also pointed out that the geography of the US, with its large arid regions of very low population density, contributes to the institutional acceptability of nuclear waste disposal. Economic factors, especially in sparsely populated areas where the uranium mining and milling industry has caused operation, also weigh on the acceptability of nuclear waste to local communities. This acceptability will be highest where there are existing nuclear facilities and/or facilities which are closed - thus creating unemployment especially where alternative economic opportunities are few

  12. Waste disposal technologies: designs and evaluations

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1987-01-01

    Many states and compacts are presently in the throes of considering what technology to select for their low level waste disposal site. Both the technical and economic aspects of disposal technology are important considerations in these decisions. It is also important that they be considered in the context of the entire system. In the case of a nuclear power plant, that system encompasses the various individual waste streams that contain radioactivity, the processing equipment which reduces the volume and/or alters the form in which the radioisotopes are contained, the packaging of the processed wastes in shipment, and finally its disposal. One further part of this is the monitoring that takes place in all stages of this operation. This paper discusses the results of some research that has been sponsored by EPRI with the principal contractor being Rogers and Associates Engineering Corporation. Included is a description of the distinguishing features found in disposal technologies developed in a generic framework, designs for a selected set of these disposal technologies and the costs which have been derived from these designs. In addition, a description of the early efforts towards defining the performance of these various disposal technologies is described. 5 figures, 1 table

  13. 48 CFR 45.604-1 - Disposal methods.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Disposal methods. 45.604-1 Section 45.604-1 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT GOVERNMENT PROPERTY Reporting, Reutilization, and Disposal 45.604-1 Disposal methods. (a) Except as provided...

  14. Warranty obligations for the management and underground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Jauho, P.; Silvennoinen, P.

    1980-01-01

    The need for financial assurances and institutional arrangements for waste management and disposal is discussed from the viewpoint of public interest. The basic principles stated in the paper include the requirement of accumulating funds for future contingencies during the active lifetime of the reactors and the fuel cycle facilities. A governmental role is seen as indispensable in assuming responsibility over at least the surveillance of underground repositories. The stage at which the operational responsibility is transferred from the plant operator to the government is determined in general by the status of the waste conditioning and disposal technology. A brief survey is presented of the current situation and technical issues.The need for special funds is discussed as well. For the part of waste management and disposal that will be taken over by the government an escrow fund should be established. Parallel to this public fund the plant operator would be obliged to reserve funds and provide guarantees within the company to cover liabilities for the remaining part of waste management and disposal obligations. A case study is presented in the paper covering the estimation of the escrow charges for spent fuel or high-level waste. (author)

  15. The role of geology in the evaluation of waste disposal sites

    International Nuclear Information System (INIS)

    Ogunsanwo, O.; Mands, E.

    1999-01-01

    The construction of waste disposal sites demonstrates the awareness of the need to protect the environment against pollution. The site are constructed on foundations of soils and rocks. Photo geological studies, geophysical investigations and geological field mapping are indispensable in the selection of suitable sites. Most of the construction materials (in the case of landfills) are of geologic origin and their suitability can only be ascertained after some geological assessments. Furthermore, the hydrogeological conditions within the adjoining terrains and the flow of leachates from and within the wastes must be monitored so as to prevent pollution (radiation, in the case of radioactive wastes, can be monitored with the aid of geochemistry). Several models/systems are available for the hydrogeological/geochemical evaluation of waste disposal sites. The selection of the site and the construction materials as well as the hydrogeological/ /geochemical studies are very critical as the performance of the disposal site depends solely on these aspects. These aspects are basically within the realms of geology. It is thus obvious that geology plays a leading role in the evaluation of waste disposal sites right from the site selection stage until the site is done with

  16. Final disposal of decommissioning wastes in the Federal Republic of Germany

    Energy Technology Data Exchange (ETDEWEB)

    Brewitz, W; Stippler, R

    1981-01-01

    The waste disposal concept of the Federal Republic of Germany for nuclear power plants provides for the final disposal of radioactive waste in deep geological formations and mines. The radiological safety of such a repository depends on a system of multiple barriers of which the geological barrier is the most important one. The isolation concept must guarantee the waste to decay below the limiting values of the German Radiation Protection Regulation within the repository. The expected total decommissioning waste masses from 12 nuclear power plants operating in the Federal Republic of Germany amounts to approxiametly 85000 Mg. For the final disposal of these wastes there are, under present aspects, two mines being considered as repositories. The pilot repository in the Asse II salt mine is in the state of licensing. The adandoned iron ore mine Konrad is being investigated for its feasibility and licensing will probably be initiated in 1982. Capacity and efficiency calculations have proved that both mines have got the technical requirements needed for the disposal of decommissioning and operating wastes from existent as well as from future built nuclear power plants.

  17. The chemistry of nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Wiles, D.R.

    2002-01-01

    About one-fifth of the world's supply of energy is derived from nuclear fission. While this important source of power avoids the environmental and resource problems of most other fuels, and although nuclear accident statistics are much less alarming, no other peacetime technology has evoked such public disquiet and impassioned feeling. Central to dealing with these fears is the management and disposal of radioactive waste. An expert Canadian panel in 1977 recommended permanent disposal of wastes in deep geological formations, providing a basis for subsequent policies and research. In 1988, the Federal Environmental Assessment Review Office (FEARO) appointed a panel to assess the proposed disposal concepts and to recommend government policy. The panel in turn appointed a Scientific Review Group to examine the underlying science. Behind all these issues lay one central question: How well is the chemistry understood? This became the principal concern of Professor Donald Wiles, the senior nuclear chemist of the Scientific Review Group. In this book, Dr. Wiles carefully describes the nature of radioactivity and of nuclear power and discusses in detail the management of radioactive waste by the multi-barrier system, but also takes an unusual approach to assessing the risks. Using knowledge of the chemical properties of the various radionuclides in spent fuel, this book follows each of the important radionuclides as it travels through the many barriers placed in its path. It turns out that only two radionuclides are able to reach the biosphere, and they arrive at the earth's surface only after many thousands of years. A careful analysis of the critical points of the disposal plan emphasizes site rejection criteria and other stages at which particular care must be taken, demonstrating how dangers can be anticipated and putting to rest the fear of nuclear fuel waste and its geological burial

  18. Low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Balaz, J.; Chren, O.

    2015-01-01

    The Mochovce National Radwaste Repository is a near surface multi-barrier disposal facility for disposal of processed low and very low level radioactive wastes (radwastes) resulting from the operation and decommissioning of nuclear facilities situated in the territory of the Slovak Republic and from research institutes, laboratories, hospitals and other institutions (institutional RAW) which are in compliance with the acceptance criteria. The basic safety requirement of the Repository is to avoid a radioactive release to the environment during its operation and institutional inspection. This commitment is covered by the protection barrier system. The method of solution designed and implemented at the Repository construction complies with the latest knowledge and practice of the repository developments all over the world and meets requirements for the safe radwaste disposal with minimum environmental consequences. All wastes are solidified and have to meet the acceptance criteria before disposal into the Repository. They are processed and treated at the Bohunice RAW Treatment Centre and Liquid RAW Final Treatment Facility at Mochovce. The disposal facility for low level radwastes consists of two double-rows of reinforced concrete vaults with total capacity 7 200 fibre reinforced concrete containers (FCCs) with RAW. One double-row contains 40 The operation of the Repository was started in year 2001 and after ten years, in 2011 was conducted the periodic assessment of nuclear safety with positive results. Till the end of year 2014 was disposed to the Repository 11 514 m 3 RAW. The analysis of total RAW production from operation and decommissioning of all nuclear installation in SR, which has been carried out in frame of the BIDSF project C9.1, has showed that the total volume estimation of conditioned waste is 108 thousand m 3 of which 45.5 % are low level waste (LLW) and 54,5 % very low level waste (VLLW). On the base of this fact there is the need to build 7

  19. Pathway analysis for alternate low-level waste disposal methods

    International Nuclear Information System (INIS)

    Rao, R.R.; Kozak, M.W.; McCord, J.T.; Olague, N.E.

    1992-01-01

    The purpose of this paper is to evaluate a complete set of environmental pathways for disposal options and conditions that the Nuclear Regulatory Commission (NRC) may analyze for a low-level radioactive waste (LLW) license application. The regulations pertaining In the past, shallow-land burial has been used for the disposal of low-level radioactive waste. However, with the advent of the State Compact system of LLW disposal, many alternative technologies may be used. The alternative LLW disposal facilities include below- ground vault, tumulus, above-ground vault, shaft, and mine disposal This paper will form the foundation of an update of the previously developed Sandia National Laboratories (SNL)/NRC LLW performance assessment methodology. Based on the pathway assessment for alternative disposal methods, a determination will be made about whether the current methodology can satisfactorily analyze the pathways and phenomena likely to be important for the full range of potential disposal options. We have attempted to be conservative in keeping pathways in the lists that may usually be of marginal importance. In this way we can build confidence that we have spanned the range of cases likely to be encountered at a real site. Results of the pathway assessment indicate that disposal methods can be categorized in groupings based on their depth of disposal. For the deep disposal options of shaft and mine disposal, the key pathways are identical. The shallow disposal options, such as tumulus, shallow-land, and below-ground vault disposal also may be grouped together from a pathway analysis perspective. Above-ground vault disposal cannot be grouped with any of the other disposal options. The pathway analysis shows a definite trend concerning depth of disposal. The above-ground option has the largest number of significant pathways. As the waste becomes more isolated, the number of significant pathways is reduced. Similar to shallow-land burial, it was found that for all

  20. Institutional storage and disposal of radioactive materials

    International Nuclear Information System (INIS)

    St Germain, J.

    1986-01-01

    Storage and disposal of radioactive materials from nuclear medicine operations must be considered in the overall program design. The storage of materials from daily operation, materials in transit, and long-term storage represent sources of exposure. The design of storage facilities must include consideration of available space, choice of material, occupancy of surrounding areas, and amount of radioactivity anticipated. Neglect of any of these factors will lead to exposure problems. The ultimate product of any manipulation of radioactive material will be some form of radioactive waste. This waste may be discharged into the environment or placed within a storage area for packaging and transfer to a broker for ultimate disposal. Personnel must be keenly aware of packaging regulations of the burial site as well as applicable federal and local codes. Fire codes should be reviewed if there is to be storage of flammable materials in any area. Radiation protection personnel should be aware of community attitudes when considering the design of the waste program

  1. Developing a LLW disposal facility in California

    International Nuclear Information System (INIS)

    Romano, S.A.; Gaynor, R.K.; Hanrahan, T.P.

    1988-01-01

    US Ecology has been designated by the State of California to site and operate a low-level radioactive waste disposal facility. The firm identified three sites for detailed characterization work in February, 1987. Ecological and archaeological studies and related environmental assessments were undertaken to obtain land use permits from the Bureau of Land Management, which holds title to the sites. Geophysics investigations, exploratory borings, well drilling and weather station installation followed. Local Committees were established for each site to assist US Ecology in evaluating socio-economic impacts, and Native Americans were consulted regarding cultural resources. The project's Citizens Advisory Committee assisted in evaluating the three candidate sites. US Ecology systematically integrated citizen involvement into the technical studies leading to selection of the two site finalists. This approach furthered two objectives. Community leaders and the public received accurate information on the nature of low-level radioactive waste and the environmental conditions appropriate for its disposal

  2. Disposal of radioactive and other hazardous wastes

    International Nuclear Information System (INIS)

    Boge, R.; Bergman, C.; Bergvall, S.; Gyllander, C.

    1989-01-01

    The purpose of the workshop was discuss legal, scientific and practical aspects of disposal of low- and intermediate-level radioactive waste and other types of hazardous waste. During the workshop the non-radioactive wastes discussed were mainly wastes from energy production, but also industrial, chemical and household wastes. The workshop gave the participants the opportunity to exchange information on policies, national strategies and other important matters. A number of invited papers were presented and the participants brought background papers, describing the national situation, that were used in the working groups. One of the main aims of the workshop was to discuss if the same basic philosophy as that used in radiation protection could be used in the assessment of disposal of non-radioactive waste, as well as to come up with identifications of areas for future work and to propose fields for research and international cooperation. The main text of the report consists of a summary of the discussions and the conclusions reached by the workshop

  3. Comparison and analysis of release scenarios for ground disposal of various nations

    International Nuclear Information System (INIS)

    Sakata, Sadahiro; Nakai, Kunihiro

    1985-01-01

    This report is aimed at comparing and analyzing the concept and evaluation methods of varuous foreign countries concerning their release scenarios for ground disposal of low- and high-level radioactive wastes in order to provide helpful information to be used in developing release scenarios for Japan. The groundwater release scenario and human intrusion scenario should particularly be well examined in considering shallow ground disposal of low-level wastes. Assessment of the leaching rate is important for a groundwater release scenario. Experimental data and verification tests are required to support the simplified model to be used for safety assessment. Evaluation of the radioactive nucleide inventory is also important for ground disposal of low-level wastes. An evaluation system should be established as soon as possible. For ground disposal of high-level radioactive wastes, on the other hand, it will become increasingly important to establish performance assessment models for practical evaluation of the rate of release from the engineered barrier and to collect test and verification data for suporting them. (Nogami, K.)

  4. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    2000-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials

  5. DEVELOPMENT, QUALIFICATION, AND DISPOSAL OF AN ALTERNATIVE IMMOBILIZED LOW-ACTIVITY WASTE FORM AT THE HANFORD SITE

    International Nuclear Information System (INIS)

    Sams, T.L.; Edge, J.A.; Swanberg, D.J.; Robbins, R.A.

    2011-01-01

    Demonstrating that a waste form produced by a given immobilization process is chemically and physically durable as well as compliant with disposal facility acceptance criteria is critical to the success of a waste treatment program, and must be pursued in conjunction with the maturation of the waste processing technology. Testing of waste forms produced using differing scales of processing units and classes of feeds (simulants versus actual waste) is the crux of the waste form qualification process. Testing is typically focused on leachability of constituents of concern (COCs), as well as chemical and physical durability of the waste form. A principal challenge regarding testing immobilized low-activity waste (ILAW) forms is the absence of a standard test suite or set of mandatory parameters against which waste forms may be tested, compared, and qualified for acceptance in existing and proposed nuclear waste disposal sites at Hanford and across the Department of Energy (DOE) complex. A coherent and widely applicable compliance strategy to support characterization and disposal of new waste forms is essential to enhance and accelerate the remediation of DOE tank waste. This paper provides a background summary of important entities, regulations, and considerations for nuclear waste form qualification and disposal. Against this backdrop, this paper describes a strategy for meeting and demonstrating compliance with disposal requirements emphasizing the River Protection Project (RPP) Integrated Disposal Facility (IDF) at the Hanford Site and the fluidized bed steam reforming (FBSR) mineralized low-activity waste (LAW) product stream.

  6. Manufacture of disposal canisters

    International Nuclear Information System (INIS)

    Nolvi, L.

    2009-12-01

    The report summarizes the development work carried out in the manufacturing of disposal canister components, and present status, in readiness for manufacturing, of the components for use in assembly of spent nuclear fuel disposal canister. The disposal canister consist of two major components: the nodular graphite cast iron insert and overpack of oxygen-free copper. The manufacturing process for copper components begins with a cylindrical cast copper billet. Three different manufacturing processes i.e. pierce and draw, extrusion and forging are being developed, which produce a seamless copper tube or a tube with an integrated bottom. The pierce and draw process, Posiva's reference method, makes an integrated bottom possible and only the lid requires welding. Inserts for BWR-element are cast with 12 square channels and inserts for VVER 440-element with 12 round channels. Inserts for EPR-elements have four square channels. Casting of BWR insert type has been studied so far. Experience of casting inserts for PWR, which is similar to the EPR-type, has been got in co-operation with SKB. The report describes the processes being developed for manufacture of disposal canister components and some results of the manufacturing experiments are presented. Quality assurance and quality control in manufacture of canister component is described. (orig.)

  7. 21 CFR 880.6060 - Medical disposable bedding.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical disposable bedding. 880.6060 Section 880.6060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.6060 Medical disposable bedding. (a) Identification. Medical disposable bedding is a device...

  8. 23 CFR 710.409 - Disposals.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Disposals. 710.409 Section 710.409 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RIGHT-OF-WAY AND ENVIRONMENT RIGHT-OF-WAY AND REAL ESTATE Real Property Management § 710.409 Disposals. (a) Real property interests determined to be excess...

  9. Recent activity on disposal of uranium waste

    International Nuclear Information System (INIS)

    Fujiwara, Noboru

    1999-01-01

    The concept on the disposal of uranium waste has not been discussed in the Atomic Energy Commission of Japan, but the research and development of it are carried out in the company and agency which are related to uranium waste. In this paper, the present condition and problems on disposal of uranium waste were shown in aspect of the nuclear fuel manufacturing companies' activity. As main contents, the past circumstances on the disposal of uranium waste, the past activity of nuclear fuel manufacturing companies, outline and properties of uranium waste were shown, and ideas of nuclear fuel manufacturing companies on the disposal of uranium waste were reported with disposal idea in the long-term program for development and utilization of nuclear energy. (author)

  10. Geologic disposal as optimal solution of managing the spent nuclear fuel and high-level radioactive waste

    International Nuclear Information System (INIS)

    Ilie, P.; Didita, L.; Ionescu, A.; Deaconu, V.

    2002-01-01

    To date there exist three alternatives for the concept of geological disposal: 1. storing the high-level waste (HLW) and spent nuclear fuel (SNF) on ground repositories; 2. solutions implying advanced separation processes including partitioning and transmutation (P and T) and eventual disposal in outer space; 3. geological disposal in repositories excavated in rocks. Ground storing seems to be advantageous as it ensures a secure sustainable storing system over many centuries (about 300 years). On the other hand ground storing would be only a postponement in decision making and will be eventually followed by geological disposal. Research in the P and T field is expected to entail a significant reduction of the amount of long-lived radioactive waste although the long term geological disposal will be not eliminated. Having in view the high cost, as well as the diversity of conditions in the countries owning power reactors it appears as a reasonable regional solution of HLW disposal that of sharing a common geological disposal. In Romania legislation concerning of radioactive waste is based on the Law concerning Spent Nuclear Fuel and Radioactive Waste Management in View of Final Disposal. One admits at present that for Romania geological disposal is not yet a stressing issue and hence intermediate ground storing of SNF will allow time for finding a better final solution

  11. 41 CFR 102-75.280 - What information concerning a proposed disposal must a disposal agency provide to the Attorney...

    Science.gov (United States)

    2010-07-01

    ... applicability of antitrust laws? 102-75.280 Section 102-75.280 Public Contracts and Property Management Federal... PROPERTY DISPOSAL Surplus Real Property Disposal Applicability of Antitrust Laws § 102-75.280 What... the applicability of antitrust laws? The disposal agency must promptly provide the Attorney General...

  12. Should the U.S. proceed to consider licensing deep geological disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Curtiss, J.R.

    1993-01-01

    The United States, as well as other countries facing the question of how to handle high-level nuclear waste, has decided that the most appropriate means of disposal is in a deep geologic repository. In recent years, the Radioactive Waste Management Committee of the Nuclear Energy Agency has developed several position papers on the technical achievability of deep geologic disposal, thus demonstrating the serious consideration of deep geologic disposal in the international community. The Committee has not, as yet, formally endorsed disposal in a deep geologic repository as the preferred method of handling high-level nuclear waste. The United States, on the other hand, has studied the various methods of disposing of high-level nuclear waste, and has determined that deep geologic disposal is the method that should be developed. The purpose of this paper is to present a review of the United States' decision on selecting deep geologic disposal as the preferred method of addressing the high-level waste problem. It presents a short history of the steps taken by the U.S. in determining what method to use, discusses the NRC's waste Confidence Decision, and provides information on other issues in the U.S. program such as reconsideration of the final disposal standard and the growing inventory of spent fuel in storage

  13. Radwaste characteristics and Disposal Facility Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    Sung, Suk Hyun; Jeong, Yi Yeong; Kim, Ki Hong

    2008-01-01

    The purpose of Radioactive Waste Acceptance Criteria (WAC) is to verify a radioactive waste compliance with radioactive disposal facility requirements in order to maintain a disposal facility's performance objectives and to ensure its safety. To develop WAC which is conformable with domestic disposal site conditions, we furthermore analysed the WAC of foreign disposal sites similar to the Kyung-Ju disposal site and the characteristics of various wastes which are being generated from Korea nuclear facilities. Radioactive WAC was developed in the technical cooperation with the Korea Atomic Energy Research Institute in consideration of characteristics of the wastes which are being generated from various facilities, waste generators' opinions and other conditions. The established criteria was also discussed and verified at an advisory committee which was comprised of some experts from universities, institutes and the industry. So radioactive WAC was developed to accept all wastes which are being generated from various nuclear facilities as much as possible, ensuring the safety of a disposal facility. But this developed waste acceptance criteria is not a criteria to accept all the present wastes generated from various nuclear facilities, so waste generators must seek an alternative treatment method for wastes which were not worth disposing of, and then they must treat the wastes more to be acceptable at a disposal site. The radioactive disposal facility WAC will continuously complement certain criteria related to a disposal concentration limit for individual radionuclide in order to ensure a long-term safety.

  14. Disposal Of Waste Matter

    International Nuclear Information System (INIS)

    Kim, Jeong Hyeon; Lee, Seung Mu

    1989-02-01

    This book deals with disposal of waste matter management of soiled waste matter in city with introduction, definition of waste matter, meaning of management of waste matter, management system of waste matter, current condition in the country, collect and transportation of waste matter disposal liquid waste matter, industrial waste matter like plastic, waste gas sludge, pulp and sulfuric acid, recycling technology of waste matter such as recycling system of Black clawson, Monroe and Rome.

  15. Principal prerequisites and practice for using deep aquifers for disposal of liquid radioactive wastes

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Pimenov, M.K.; Balukova, V.D.; Leontichuk, A.S.; Kokorin, I.N.; Yudin, F.P.; Rakov, N.A.

    1977-01-01

    One of the most promising methods of safe disposal of liquid radioactive wastes in the USSR is the creation of storage places in deep aquifers in zones of stagnant regime or the slow exchange of underground water. The results of investigations and disposal practices testify to the safety and efficiency of such a method of final waste disposal which fulfils the main requirements for protecting the environment. Geological formations and stratum-collectors may be studied and selected to secure localization of liquid radioactive wastes injected into them for many tens and even hundreds of thousand years. The main requirements and criteria which must be met by geological structures and stratum-collectors to ensure safe disposal of wastes are formulated. Waste disposal is realized only after a thorough scientific appreciation of health and safety of present and future generations with regard to the regime of disposal and physico-chemical processes depending on the compatibility of the wastes with rocks and stratal waters as well as on the period of time of waste exposure up to the maximum permissible concentrations. Positive and negative factors of the method are analysed. Methods of preparing waste for disposal and chemical methods of restoring the response of the holes, ways of effective remote control of disposal and environment, etc., are briefly discussed. The results of 10-12 years experimental and industrial exploitation of storage places for liquid radioactive wastes of low- and medium-level activity are presented. The results of enlarged field tests on disposal of high-level activity liquid wastes are described. Preliminary prediction calculations are shown to be confirmed with sufficient accuracy by the data on exploitation. (author)

  16. Waste disposal options report. Volume 2

    International Nuclear Information System (INIS)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k eff for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes

  17. Waste disposal options report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k{sub eff} for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes.

  18. Specified radioactive waste final disposal act

    International Nuclear Information System (INIS)

    Yasui, Masaya

    2001-01-01

    Radioactive wastes must be finally and safely disposed far from human activities. Disposal act is a long-range task and needs to be understood and accepted by public for site selection. This paper explains basic policy of Japanese Government for final disposal act of specified radioactive wastes, examination for site selection guidelines to promote residential understanding, general concept of multi-barrier system for isolating the specific radioactive wastes, and research and technical development for radioactive waste management. (S. Ohno)

  19. Radioactive wastes storage and disposal. Chapter 8

    International Nuclear Information System (INIS)

    2002-01-01

    The Chapter 8 is essentially dedicated to radioactive waste management - storage and disposal. The management safety is being provided due to packages and facilities of waste disposal and storage. It is noted that at selection of sites for waste disposal it is necessary account rock properties and ways of the wastes delivery pathways

  20. Nuclear waste management: storage and disposal aspects

    International Nuclear Information System (INIS)

    Patterson, B.D.; Dave, S.A.; O'Connell, W.J.

    1980-01-01

    Long-term disposal of nuclear wastes must resolve difficulties arising chiefly from the potential for contamination of the environment and the risk of misuse. Alternatives available for storage and disposal of wastes are examined in this overview paper. Guidelines and criteria which may govern in the development of methods of disposal are discussed

  1. Operational technology for greater confinement disposal

    International Nuclear Information System (INIS)

    Dickman, P.T.; Vollmer, A.T.; Hunter, P.H.

    1984-12-01

    Procedures and methods for the design and operation of a greater confinement disposal facility using large-diameter boreholes are discussed. It is assumed that the facility would be located at an operating low-level waste disposal site and that only a small portion of the wastes received at the site would require greater confinement disposal. The document is organized into sections addressing: facility planning process; facility construction; waste loading and handling; radiological safety planning; operations procedures; and engineering cost studies. While primarily written for low-level waste management site operators and managers, a detailed economic assessment section is included that should assist planners in performing cost analyses. Economic assessments for both commercial and US government greater confinement disposal facilities are included. The estimated disposal costs range from $27 to $104 per cubic foot for a commercial facility and from $17 to $60 per cubic foot for a government facility. These costs are based on average site preparation, construction, and waste loading costs for both contact- and remote-handled wastes. 14 figures, 22 tables

  2. Execution techniques and approach for high level radioactive waste disposal in Japan: Demonstration of geological disposal techniques and implementation approach of HLW project

    International Nuclear Information System (INIS)

    Kawanishi, M.; Komada, H.; Kitayama, K.; Akasaka, H.; Tsuchi, H.

    2001-01-01

    In Japan, the high-level radioactive waste (HLW) disposal project is expected to start fully after establishment of the implementing organization, which is planned around the year 2000 and to dispose the wastes in the 2030s to at latest in the middle of 2040s. Considering each step in the implementation of the HLW disposal project in Japan, this paper discusses the execution procedure for HLW disposal project, such as the selection of candidate/planned disposal sites, the construction and operation of the disposal facility, the closure and decommissioning of facilities, and the institutional control and monitoring after the closure of disposal facility, from a technical viewpoint for the rational execution of the project. Furthermore, we investigate and propose some ideas for the concept of the design of geological disposal facility, the validation and demonstration of the reliability on the disposal techniques and performance assessment methods at a candidate/planned site. Based on these investigation results, we made clear a milestone for the execution of the HLW disposal project in Japan. (author)

  3. Modeling Approach for Estimating Co-Produced Water Volumes and Saltwater Disposal Volumes in Oklahoma

    Science.gov (United States)

    Murray, K. E.

    2016-12-01

    Management of produced fluids has become an important issue in Oklahoma because large volumes of saltwater are co-produced with oil and gas, and disposed into saltwater disposal wells at high rates. Petroleum production increased from 2009-2015, especially in central and north-central Oklahoma where the Mississippian and Hunton zones were redeveloped using horizontal wells and dewatering techniques that have led to a disproportional increase in produced water volumes. Improved management of co-produced water, including desalination for beneficial reuse and decreased saltwater disposal volumes, is only possible if spatial and temporal trends can be defined and related to the producing zones. It is challenging to quantify the volumes of co-produced water by region or production zone because co-produced water volumes are generally not reported. Therefore, the goal of this research is to estimate co-produced water volumes for 2008-present with an approach that can be replicated as petroleum production shifts to other regions. Oil and gas production rates from subsurface zones were multiplied by ratios of H2O:oil and H2O:gas for the respective zones. Initial H2O:oil and H2O:gas ratios were adjusted/calibrated, by zone, to maximize correlation of county-scale produced H2O estimates versus saltwater disposal volumes from 2013-2015. These calibrated ratios were then used to compute saltwater disposal volumes from 2008-2012 because of apparent data gaps in reported saltwater disposal volumes during that timeframe. This research can be used to identify regions that have the greatest need for produced water treatment systems. The next step in management of produced fluids is to explore optimal energy-efficient strategies that reduce deleterious effects.

  4. The disposal of radioactive waste on land

    Energy Technology Data Exchange (ETDEWEB)

    None

    1957-09-01

    A committee of geologists and geophysicists was established by the National Academy of Sciences-National Research Council at the request of the Atomic Energy Commission to consider the possibilities of disposing of high level radioactive wastes in quantity within the continental limits of the United States. The group was charged with assembling the existing geologic information pertinent to disposal, delineating the unanswered problems associated with the disposal schemes proposed, and point out areas of research and development meriting first attention; the committee is to serve as continuing adviser on the geological and geophysical aspects of disposal and the research and development program. The Committee with the cooperation of the Johns Hopkins University organized a conference at Princeton in September 1955. After the Princeton Conference members of the committee inspected disposal installations and made individual studies. Two years consideration of the disposal problems leads to-certain general conclusions. Wastes may be disposed of safely at many sites in the United States but, conversely, there are many large areas in which it is unlikely that disposal sites can be found, for example, the Atlantic Seaboard. Disposal in cavities mined in salt beds and salt domes is suggested as the possibility promising the most practical immediate solution of the problem. In the future the injection of large volumes of dilute liquid waste into porous rock strata at depths in excess of 5,000 feet may become feasible but means of rendering, the waste solutions compatible with the mineral and fluid components of the rock must first be developed. The main difficulties, to the injection method recognized at present are to prevent clogging of pore space as the solutions are pumped into the rock and the prediction or control of the rate and direction of movement.

  5. Subsurface disposal of liquid low-level radioactive wastes at Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Stow, S.H.; Haase, C.S.

    1986-01-01

    At Oak Ridge National Laboratory (ORNL) subsurface injection has been used to dispose of low-level liquid nuclear waste for the last two decades. The process consists of mixing liquid waste with cement and other additives to form a slurry that is injected under pressure through a cased well into a low-permeability shale at a depth of 300 m (1000 ft). The slurry spreads from the injection well along bedding plane fractures and forms solid grout sheets of up to 200 m (660 ft) in radius. Using this process, ORNL has disposed of over 1.5 x 10 6 Ci of activity; the principal nuclides are 90 Sr and 137 Cs. In 1982, a new injection facility was put into operation. Each injection, which lasts some two days, results in the emplacement of approximately 750,000 l (180,000 gal) of slurry. Disposal cost per liter is approximately $0.30, including capital costs of the facility. This subsurface disposal process is fundamentally different from other operations. Wastes are injected into a low-permeability aquitard, and the process is designed to isolate nuclides, preventing dispersion in groundwaters. The porosity into which wastes are injected is created by hydraulically fracturing the host formation along bedding planes. The site is in the structurally complex Valley and Ridge Province. The stratigraphy consists of lower Paleozoic rocks. Investigations are under way to determine the long-term hydrologic isolation of the injection zone and the geochemical impact of saline groundwater on nuclide mobility. Injections are monitored by gamma-ray logging of cased observation wells to determine grout sheet orientation after an injection. Recent monitoring work has involved the use of tiltmeters, surface uplift surveys, and seismic arrays. 26 refs., 7 figs

  6. Hanford grout disposal program - an environmentally sound alternative

    International Nuclear Information System (INIS)

    Bergman, T.B.; Allison, J.M.

    1987-01-01

    The Hanford Grout Disposal Program (HGDP) is a comprehensive, integrated program to develop technology and facilities for the disposal of ∼ 3.0 x 10 5 m 3 (80 million gal) of the low-level fraction of liquid radioactive tank wastes at the Hanford site in southeastern Washington state. Environmentally sound disposal via long-term protection of the public and the environment is the principal goal of the HGDP. To accomplish this goal, several criteria have been established that guide technology and facility development activities. The key criteria are discussed. To meet the challenges posed by disposal of these wastes, the HGDP is developing a waste form using grout-forming materials, such as blast furnace slag, fly ash, clays, and Portland cement for solidification and immobilization of both the radioactive and hazardous chemical constituents. In addition to development of a final waste form, the HGDP is also developing a unique disposal system to assure long-term protection of the public and the environment. Disposal of a low-level nonhazardous waste will be initiated, as a demonstration of the disposal system concept, in June 1988. Disposal of higher activity hazardous wastes is scheduled to begin in October 1989

  7. Offshore disposal of oil-based drilling fluid waste

    International Nuclear Information System (INIS)

    Malachosky, E.; Shannon, B.E.; Jackson, J.E.

    1991-01-01

    Offshore drilling operations in the Gulf of Mexico may use oil-based drilling fluids to mitigate drilling problems. The result is the generation of a significant quantity of oily cuttings and mud. The transportation of this waste for onshore disposal is a concern from a standpoint of both personnel safety and potential environmental impact. A process for preparing a slurry of this waste and the subsequent disposal of the slurry through annular pumping has been put into use by ARCO Oil and Gas Company. The disposal technique has been approved by the Minerals Management Service (MMS). The slurried waste is displaced down a casing annulus into a permeable zone at a depth below the surface casing setting depth. The annular disposal includes all cuttings and waste oil mud generated during drilling with oil-based fluids. This disposal technique negates the need for cuttings storage on the platform, transportation to shore, and the environmental effects of onshore surface disposal. The paper describes the environmental and safety concerns with onshore disposal, the benefits of annular disposal, and the equipment and process used for the preparation and pumping of the slurry

  8. Radioactive waste disposal and political aspects

    International Nuclear Information System (INIS)

    Blanc, M.

    1992-01-01

    The difficulties presented by the current atomic energy law for the nuclear waste disposal in Switzerland are shown. It is emphasised how important scientific information is in the political solutions for nuclear disposal

  9. Methods of Disposing Of High-Level Radioactive Waste: A Review

    International Nuclear Information System (INIS)

    Abumurade, K.

    2002-01-01

    High level nuclear waste from both commercial reactors and defense industry presents a difficult problem to the scientific community as well as the public. The solutions to this problem is still debatable both technically and ethically. There are few methods proposed for disposing of high level waste. Each method has its own advantages and disadvantages. However, the very deep underground geologic repository is the best choice for disposing of high-level radioactive wastes. The cost benefit equation of nuclear power production and its waste is discussed. However, the public should be educated about this matter to minimize the gap between them and the nuclear power community including scientists industry, and governments. (Author) 15 refs., 4 tabs., 1 fig

  10. Concept for Underground Disposal of Nuclear Waste

    Science.gov (United States)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  11. Disposal facility data for the interim performance

    International Nuclear Information System (INIS)

    Eiholzer, C.R.

    1995-01-01

    The purpose of this report is to identify and provide information on the waste package and disposal facility concepts to be used for the low-level waste tank interim performance assessment. Current concepts for the low-level waste form, canister, and the disposal facility will be used for the interim performance assessment. The concept for the waste form consists of vitrified glass cullet in a sulfur polymer cement matrix material. The waste form will be contained in a 2 x 2 x 8 meter carbon steel container. Two disposal facility concepts will be used for the interim performance assessment. These facility concepts are based on a preliminary disposal facility concept developed for estimating costs for a disposal options configuration study. These disposal concepts are based on vault type structures. None of the concepts given in this report have been approved by a Tank Waste Remediation Systems (TWRS) decision board. These concepts will only be used in th interim performance assessment. Future performance assessments will be based on approved designs

  12. Shallow land disposal technology

    Energy Technology Data Exchange (ETDEWEB)

    Pillette-Cousin, L. [Nuclear Environment Technology Insitute, Taejon (Korea, Republic of Korea )

    1997-12-31

    This paper covers the radioactive waste management policy and regulatory framework, the characteristics of low and intermediate level radioactive waste, the characteristics of waste package, the waste acceptance criteria, the waste acceptance and related activities, the design of the disposal system, the organization of waste transportation, the operation feature, the safety assessment of the Centre de L`Aube, the post closure measures, the closure of the Centre de la Mache disposal facility, the licensing issues. 3 tabs., 7 figs.

  13. Shallow land disposal technology

    International Nuclear Information System (INIS)

    Pillette-Cousin, L.

    1997-01-01

    This paper covers the radioactive waste management policy and regulatory framework, the characteristics of low and intermediate level radioactive waste, the characteristics of waste package, the waste acceptance criteria, the waste acceptance and related activities, the design of the disposal system, the organization of waste transportation, the operation feature, the safety assessment of the Centre de L'Aube, the post closure measures, the closure of the Centre de la Mache disposal facility, the licensing issues. 3 tabs., 7 figs

  14. Application of GIS in site selection for nuclear waste disposal facility

    International Nuclear Information System (INIS)

    Sheng, G.; Luginaah, I.N.; Sorrell, J.

    1996-01-01

    Whether designing a new facility or investigating, potential contaminant migration at an existing site, proper characterization of the subsurface conditions and their interaction with surface features is critical to the process. The Atomic Energy Control Board, states in its regulatory document R-104 that, open-quotes For the long-term management of radioactive wastes, the preferred approach is disposal, a permanent method of management in which there is no intention of retrieval and which, ideally uses techniques and designs that do not rely for their success on long-term institutional control beyond a reasonable period of timeclose quotes. Thus although storage is safe, eventually disposal is necessary to avoid long-term reliance on continuing care and attention, such as monitoring and maintenance. In Canada, the concept being proposed by Atomic Energy of Canada Limited (AECL) involves disposal in deep underground repositories in intrusive igneous rock. The aim of this concept as a disposal method is to build multiple barriers that would protect humans and the natural environment from contaminants in the radioactive waste. The multiple barriers include the geosphere, which consists of the rock, any sediments overlying the rock, and the groundwater. Nevertheless, immediate, as well as long-term, consequences, including, risk involved with technological systems and the inherent uncertainty of any forecast, make the prediction and analysis tasks of increasing importance. This uncertainty in the area of nuclear waste disposal is leading to growing concerns about nuclear waste site selection

  15. Techno-economical Analysis of High Level Waste Storage and Disposal Options

    International Nuclear Information System (INIS)

    Bace, M.; Trontl, K.; Vrankic, K.

    2002-01-01

    Global warming and instability of gas and oil prices are redefining the role of nuclear energy in electrical energy production. A production of high-level radioactive waste (HLW), during the nuclear power plant operation and a danger of high level waste mitigation to the environment are considered by the public as a main obstacle of accepting the nuclear option. As economical and technical aspects of the back end of fuel cycle will affect the nuclear energy acceptance the techno-economical analysis of different methods for high level waste storage and disposal has to be performed. The aim of this paper is to present technical and economical characteristics of different HLW storage and disposal technologies. The final choice of a particular HLW management method is closely connected to the selection of a fuel cycle type: open or closed. Wet and dry temporary storage has been analyzed including different types of spent fuel pool capacity increase methods, different pool location (at reactor site and away from reactor site) as well as casks and vault system of dry storage. Since deep geological deposition is the only disposal method with a realistic potential, we focused our attention on that disposal technology. Special attention has been given to the new idea of international and regional disposal location. The analysis showed that a coexistence of different storage methods and deep geological deposition is expected in the future, regardless of the fuel cycle type. (author)

  16. General criteria for radioactive waste disposal

    International Nuclear Information System (INIS)

    Maxey, M.N.; Musgrave, B.C.; Watkins, G.B.

    1979-01-01

    Techniques are being developed for conversion of radioactive wastes to solids and their placement into repositories. Criteria for such disposal are needed to assure protection of the biosphere. The ALARA (as low as reasonably achievable) principle should be applicable at all times during the disposal period. Radioactive wastes can be categorized into three classes, depending on the activity. Three approaches were developed for judging the adequacy of disposal concepts: acceptable risk, ore body comparison, and three-stage ore body comparison

  17. Commercial mixed waste treatment and disposal

    International Nuclear Information System (INIS)

    Vance, J.K.

    1994-01-01

    At the South Clive, Utah, site, Envirocare of Utah, Inc., (Envirocare), currently operates a commercial low-activity, low-level radioactive waste facility, a mixed waste RCRA Part B storage and disposal facility, and an 11e.(2) disposal facility. Envirocare is also in the process of constructing a Mixed Waste Treatment Facility. As the nation's first and only commercial treatment and disposal facility for such waste, the information presented in this segment will provide insight into their current and prospective operations

  18. 'DIRECT DISPOSAL'. Comparative study of the radiological risk of the spent fuel and vitrified waste disposals in granite deep geological formation; 'STOCKAGE DIRECT'. Etude comparative du risque radiologique des stockages de combustibles uses et de dechets vitrifies en formation geologique profonde de type granitique

    Energy Technology Data Exchange (ETDEWEB)

    Baudoin, Patrick; Gay, Didier [Departement d' evaluation de surete, Inst. de Protection et de Surete Nucleaire, CEA Centre d' Etudes de Fontenay-aux-Roses, 92 (France)

    1996-09-01

    In order to study the implications of a possibly 'direct disposal' of the spent fuel a working group has been created in 1991. This report gives an evaluation of the radiological impact as well as of the technical and economical characteristics of a generic disposal scenario for untreated spent fuel. The basic scheme implies a temporary storage and, then after an adequate preparation, the disposal in a deep geological formation. This document concerning the evaluation of the radiological impact associated to the geological disposal of the spent fuel constitutes the IPSN's contribution to the report of working group. The solution, as defined by the group, specifies the disposal of multifunctional TSD containers ensuring the Transport, Storage and final Disposal in mine drifts of granite formation. Two values for amounts to be stored were taken into account: one corresponds to 43,500 fuel assemblies of PWR UOX type irradiated at 33,000 MWd.t{sup -1}, while the other, corresponds to 20,400 assemblies of the same type. The radiological risk was evaluated for two distinct evolution scenarios, one supposing the preservation of initial characteristics of the disposal site, the other supposing alterations like those induced by drilling deep water wells in the disposal's vicinity. The individual effective dose were computed for each of these scenarios. Also, a comparison is made between the case of direct disposal of spent fuels and the case of disposal of reprocessed fuels of the same type.

  19. Reversible deep disposal

    International Nuclear Information System (INIS)

    2009-10-01

    This presentation, given by the national agency of radioactive waste management (ANDRA) at the meeting of October 8, 2009 of the high committee for the nuclear safety transparency and information (HCTISN), describes the concept of deep reversible disposal for high level/long living radioactive wastes, as considered by the ANDRA in the framework of the program law of June 28, 2006 about the sustainable management of radioactive materials and wastes. The document presents the social and political reasons of reversibility, the technical means considered (containers, disposal cavities, monitoring system, test facilities and industrial prototypes), the decisional process (progressive development and blocked off of the facility, public information and debate). (J.S.)

  20. Hydrogeological investigation for sitting disposal repository for high level radioactive waste

    International Nuclear Information System (INIS)

    Guo Yonghai; Liu Shufen; Lv Chuanhe

    2005-01-01

    Based on the research experiences of our country and some developed countries in the world, the purpose, process and methods, as well as the function of hydrogeological investigation for sitting disposal repository for high radioactive waste are discussed. Meanwhile, the topic related to the acquisition of hydrogeological parameters is described as well, aiming at providing reference for the future study. (authors)

  1. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    International Nuclear Information System (INIS)

    Kassotis, Christopher D.; Iwanowicz, Luke R.; Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam C.; Orem, William H.; Nagel, Susan C.

    2016-01-01

    Currently, > 95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. - Highlights: • Oil and gas wastewater disposal may increase endocrine disrupting activity in water. • Tested EDC activity in surface water near oil and gas wastewater injection site. • Water downstream had significantly

  2. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Kassotis, Christopher D., E-mail: christopher.kassotis@duke.edu [Nicholas School of the Environment, Duke University, Durham, NC 27708 (United States); Iwanowicz, Luke R. [U.S. Geological Survey, Leetown Science Center, Fish Health Branch, 11649 Leetown Road, Kearneysville, WV 25430 (United States); Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam C. [U.S. Geological Survey, National Research Program, 12201 Sunrise Valley Drive, MS 430, Reston, VA 20192 (United States); Orem, William H. [U.S. Geological Survey, Eastern Energy Resources Science Center, 12201 Sunrise Valley Drive, MS 956, Reston, VA 20192 (United States); Nagel, Susan C., E-mail: nagels@health.missouri.edu [Department of Obstetrics, Gynecology and Women' s Health, University of Missouri, Columbia, MO 65211 (United States)

    2016-07-01

    Currently, > 95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. - Highlights: • Oil and gas wastewater disposal may increase endocrine disrupting activity in water. • Tested EDC activity in surface water near oil and gas wastewater injection site. • Water downstream had significantly

  3. 2005 dossier: granite. Tome: architecture and management of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the geologic disposal of high-level and long-lived radioactive wastes in granite formations. Content: 1 - Approach of the study: main steps since the December 30, 1991 law, ANDRA's research program on disposal in granitic formations; 2 - high-level and long-lived (HLLL) wastes: production scenarios, waste categories, inventory model; 3 - disposal facility design in granitic environment: definition of the geologic disposal functions, the granitic material, general facility design options; 4 - general architecture of a disposal facility in granitic environment: surface facilities, underground facilities, disposal process, operational safety; 5 - B-type wastes disposal area: primary containers of B-type wastes, safety options, concrete containers, disposal alveoles, architecture of the B-type wastes disposal area, disposal process and feasibility aspects, functions of disposal components with time; 6 - C-type wastes disposal area: C-type wastes primary containers, safety options, super-containers, disposal alveoles, architecture of the C-type wastes disposal area, disposal process in a reversibility logics, functions of disposal components with time; 7 - spent fuels disposal area: spent fuel assemblies, safety options, spent fuel containers, disposal alveoles, architecture of the spent fuel disposal area, disposal process in a reversibility logics, functions of disposal components with time; 8 - conclusions: suitability of the architecture with various types of French granites, strong design, reversibility taken into consideration. (J.S.)

  4. 48 CFR 245.603 - Disposal methods.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Disposal methods. 245.603 Section 245.603 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT... Contractor Inventory 245.603 Disposal methods. ...

  5. Waste Disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; B-Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    This contribution describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 1997 in three topical areas are reported on: performance assessments, waste forms/packages and near-and far field studies

  6. Waste disposal into the ground

    Energy Technology Data Exchange (ETDEWEB)

    Mawson, C A

    1955-07-01

    The establishment of an atomic energy project is soon followed by the production of a variety of radioactive wastes which must be disposed of safely, quickly and cheaply. Experience has shown that much more thought has been devoted to the design of plant and laboratories than to the apparently dull problem of what to do with the wastes, but the nature of the wastes which will arise from nuclear power production calls for a change in this situation. We shall not be concerned here with power pile wastes, but disposal problems which have occurred in operation of experimental reactors have been serious enough to show that waste disposal should be considered during the early planning stages. (author)

  7. Underground radioactive waste disposal concept

    International Nuclear Information System (INIS)

    Frgic, L.; Tor, K.; Hudec, M.

    2002-01-01

    The paper presents some solutions for radioactive waste disposal. An underground disposal of radioactive waste is proposed in deep boreholes of greater diameter, fitted with containers. In northern part of Croatia, the geological data are available on numerous boreholes. The boreholes were drilled during investigations and prospecting of petroleum and gas fields. The available data may prove useful in defining safe deep layers suitable for waste repositories. The paper describes a Russian disposal design, execution and verification procedure. The aim of the paper is to discuss some earlier proposed solutions, and present a solution that has not yet been considered - lowering of containers with high level radioactive waste (HLW) to at least 500 m under the ground surface.(author)

  8. Chemical Stockpile Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Krummel, J.R.; Policastro, A.J.; Olshansky, S.J.; McGinnis, L.D.

    1990-10-01

    As part of the Chemical Stockpile Disposal Program mandated by Public Law 99--145 (Department of Defense Authorization Act), an independent review is presented of the US Army Phase I environmental report for the disposal program at the Umatilla Depot Activity (UMDA) in Hermiston, Oregon. The Phase I report addressed new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). Those concerns were addressed by examining site-specific data for the Umatilla Depot Activity and by recommending the scope and content of a more detailed site-specific study. This independent review evaluates whether the new site-specific data presented in the Phase I report would alter the decision in favor of on-site disposal that was reached in the FPEIS, and whether the recommendations for the scope and content of the site-specific study are adequate. Based on the methods and assumptions presented in the FPEIS, the inclusion of more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at UMDA). It is recommended that alternative assumptions about meteorological conditions be considered and that site-specific data on water, ecological, socioeconomic, and cultural resources; seismicity; and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process. 7 refs., 1 fig.

  9. Does Dual Ownership of Waste Imply a Regional Disposal Approach?

    International Nuclear Information System (INIS)

    Mele, I.

    2006-01-01

    The construction of the Nuclear Power Plant Krsko, being located in Slovenia near the Slovenian-Croatian border, was a joint investment by Slovenia and Croatia, two republics of the former Yugoslavia. The plant was completed in 1981 and the commercial operation started early in 1983. The obligations and rights of both investors during the construction and operation were specified in two bilateral contracts signed in 1974 and 1982. These contracts were fairly detailed on construction, operation and exploitation of the nuclear power plant (NPP), but they said very little about future nuclear liabilities. The electricity production was equally shared between the two countries and both parties participated in management of the NPP. In 1991, after Slovenia and Croatia became two independent countries, the agreement on the ownership and exploitation of the NPP Krsko was re-negotiated and a new contract signed in 2003. By the new contract the decommissioning and the disposal of spent fuel (SF) as well as low and intermediate level waste (LILW) is the responsibility of both parties, and the financial resources for covering these liabilities should be equally provided. Regardless of shared ownership of waste, the agreement opts for a single disposal solution for LILW as well as for SF, but the details are left open. More clear elaboration of these responsibilities is given in the programme of the decommissioning and disposal of radioactive waste from the NPP which was jointly prepared by the Slovenian and Croatian waste management organisations in 2004. The programme is clearly opting for only one repository for LILW and one repository for spent fuel, which can be located either in Slovenia or Croatia. Irrespective of the country where such a repository will be sited, dual ownership of waste opens up another dimension of such a solution: will such a repository be regarded as a national facility or as a regional or multinational facility? Both options-national and regional

  10. Revised user's guide to the 'DISPOSALS' model

    International Nuclear Information System (INIS)

    Laundy, R.S.; James, A.R.; Groom, M.S.; LeJeune, S.R.

    1985-04-01

    This report provides a User's Guide to the 'DISPOSALS' computer model and includes instructions on how to set up and run a specific problem together with details of the scope, theoretical basis, data requirements and capabilities of the model. The function of the 'DISPOSALS' model is to make assignments of nuclear waste material in an optimum manner to a number of disposal sites each subject to a number of constraints such as limits on the volume and activity. The user is able to vary the number of disposal sites, the range and limits of the constraints to be applied to each disposal site and the objective function for optimisation. The model is based on the Linear Programming technique and uses CAP Scientific's LAMPS and MAGIC packages. Currently the model has been implemented on CAP Scientific's VAX 11/750 minicomputer. (author)

  11. Preoperational baseline and site characterization report for the Environmental Restoration Disposal Facility

    International Nuclear Information System (INIS)

    Weekes, D.C.; Ford, B.H.; Jaeger, G.K.

    1996-09-01

    This document Volume 2 in a two-volume series that comprise the site characterization report for the Environmental Restoration Disposal Facility. Volume 1 contains data interpretation and information supporting the conclusions in the main text. This document presents original data in support of Volume 1 of the report. The following types of data are presented: well construction reports; borehole logs; borehole geophysical data; well development and pump installation; survey reports; and preoperational baseline chemical data and aquifer test data. This does not represent the entire body of data available. Other types of information are archived at BHI Document Control. Five ground water monitoring wells were drilled at the Environmental Restoration Disposal Facility site to directly investigate site- specific hydrogeologic conditions. Well and borehole activity summaries are presented in Volume 1. Field borehole logs and geophysical data from the drilling are presented in this document. Well development and pump installation sheets are presented for the groundwater monitoring wells. Other data presented in this document include borehole geophysical logs from existing wells; chemical data from the sampling of soil, vegetation, and mammals from the ERDF to support the preoperational baseline; ERDF surface radiation surveys;a nd aquifer testing data for well 699-32-72B

  12. Melter Disposal Strategic Planning Document

    Energy Technology Data Exchange (ETDEWEB)

    BURBANK, D.A.

    2000-09-25

    This document describes the proposed strategy for disposal of spent and failed melters from the tank waste treatment plant to be built by the Office of River Protection at the Hanford site in Washington. It describes program management activities, disposal and transportation systems, leachate management, permitting, and safety authorization basis approvals needed to execute the strategy.

  13. Safe disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Hooker, P.; Metcalfe, R.; Milodowski, T.; Holliday, D.

    1997-01-01

    A high degree of international cooperation has characterized the two studies reported here which aim to address whether radioactive waste can be disposed of safely. Using hydrogeochemical and mineralogical surveying techniques earth scientists from the British Geological Survey have sought to identify and characterise suitable disposal sites. Aspects of the studies are explored emphasising their cooperative nature. (UK)

  14. Radionuclide migration pathways analysis for the Oak Ridge Central Waste Disposal Facility on the West Chestnut Ridge site

    International Nuclear Information System (INIS)

    Pin, F.G.; Witherspoon, J.P.; Lee, D.W.; Cannon, J.B.; Ketelle, R.H.

    1984-10-01

    A dose-to-man pathways analysis is performed for disposal of low-level radioactive waste at the Central Waste Disposal Facility on the West Chestnut Ridge Site. Both shallow land burial (trench) and aboveground (tumulus) disposal methods are considered. The waste volumes, characteristics, and radionuclide concentrations are those of waste streams anticipated from the Oak Ridge National Laboratory, the Y-12 Plant, and the Oak Ridge Gaseous Diffusion Plant. The site capacity for the waste streams is determined on the basis of the pathways analysis. The exposure pathways examined include (1) migration and transport of leachate from the waste disposal units to the Clinch River (via the groundwater medium for trench disposal and Ish Creek for tumulus disposal) and (2) those potentially associated with inadvertent intrusion following a 100-year period of institutional control: an individual resides on the site, inhales suspended particles of contaminated dust, ingests vegetables grown on the plot, consumes contaminated water from either an on-site well or from a nearby surface stream, and receives direct exposure from the contaminated soil. It is found that either disposal method would provide effective containment and isolation for the anticipated waste inventory. However, the proposed trench disposal method would provide more effective containment than tumuli because of sorption of some radionuclides in the soil. Persons outside the site boundary would receive radiation doses well below regulatory limits if they were to ingest water from the Clinch River. An inadvertent intruder could receive doses that approach regulatory limits; however, the likelihood of such intrusions and subsequent exposures is remote. 33 references, 31 figures, 28 tables

  15. The AMES Laboratory chemical disposal site removal action: Source removal, processing, and disposal

    International Nuclear Information System (INIS)

    Shirley, R.S.

    1996-01-01

    The Ames Laboratory has historically supported the U.S. Department of Energy (USDOE) and its predecessor agencies by providing research into the purification and manufacturing of high purity uranium, thorium, and yttrium metals. Much of this work was accomplished in the late 1950s and early 1960s prior to the legislation of strict rules and regulations covering the disposal of radioactive and chemical wastes. As a result, approximately 800 cubic meters of low-level radioactive wastes, chemical wastes, and contaminated debris were disposed in nine near surface cells located in a 0.75 hectare plot of land owned by Iowa State University in Ames, Iowa. Under a national contract with the U.S. Army Corps of Engineers (USACE), OHM Remediation Services Corp (OHM) was tasked with providing turnkey environmental services to remove, process, package, transport, and coordinate the disposal of the waste materials and contaminated environmental media

  16. The Ames Laboratory Chemical Disposal Site removal action: Source removal, processing, and disposal

    International Nuclear Information System (INIS)

    Shirley, R.S.

    1995-01-01

    The Ames Laboratory has historically supported the US Department of Energy (USDOE) and its predecessor agencies by providing research into the purification and manufacturing of high purity uranium, thorium, and yttrium metals. Much of this work was accomplished in the late 1950s and early 1960s prior to the legislation of strict rules and regulations covering the disposal of radioactive and chemical wastes. As a result, approximately 800 cubic meters of low-level radioactive wastes, mixed wastes, and contaminated debris were disposed in nine near surface cells located in a 0.75 hectare plot of land owned by Iowa State University in Ames, Iowa. Under a national contract with the US Army Corps of Engineers (USACE), OHM Remediation Services Corp. (OHM) was tasked with providing turnkey environmental services to remove, process, package, transport, and coordinate the disposal of the waste materials and contaminated environmental media

  17. Safety considerations of disposal of disused sealed sources in Puspokszilagy Repository, Hungary

    International Nuclear Information System (INIS)

    2003-01-01

    The report presents the management of radioactive waste in Hungary Puspokszilagy Repository (RWTDF) including waste acceptance criteria, safety assessments, Action Plan for the safety improvement and present projects. The Puspokszilagy Repository is a typical near-surface repository, sink into the ground 6 m depth. The facility is a shallow land disposal type, appropriated for disposal of short and medium lived LILW, acceptable for temporary storage of long lived LILW. It consists of vaults containing cells for solidified drummed waste, wells for spent sealed sources, work building for treatment and interim storage and office building for environmental measurements. Two safety assessments have been performed in 2000 and 2002. The new safety assessment confirms the main statements of SA 2000, according to which several waste types can cause serious problems in the distant future: Until the finish of passive control the safety of the environment is guaranteed. After that time it is possible to arise events leading to exceeding of dose restricts (more then 10 mSv/yr but less then 100 mSv/yr), because of disposal of long lived radionuclides (mainly C-14,Tc-99, Ra-226, Th-232, U-234) and significant activities of Cs-137 sources.There are uncertainties in radionuclide amounts and distributions, as well as in the physical and chemical characteristics of the wastes that determine radionuclide mobility and toxicity. The recommendations to improve the safety include: Long lived SSRS in the 'B' and 'D' wells should be removed before the closure of repository. Large Cs-137 sources and long lived sources in the 'A' vaults should be recovered (if its feasible); All vaults should be backfilled to provide chemical conditioning; The waste packaged in plastic bags should be repackaged and compacted into drums or containers; The inventory should be revise. Waste acceptance requirements in the future are: The disposal of long lived radionuclides is no permitted. The long lived waste

  18. The final disposal facility of spent nuclear fuel

    International Nuclear Information System (INIS)

    Prvakova, S.; Necas, V.

    2001-01-01

    Today the most serious problem in the area of nuclear power engineering is the management of spent nuclear fuel. Due to its very high radioactivity the nuclear waste must be isolated from the environment. The perspective solution of nuclear fuel cycle is the final disposal into geological formations. Today there is no disposal facility all over the world. There are only underground research laboratories in the well developed countries like the USA, France, Japan, Germany, Sweden, Switzerland and Belgium. From the economical point of view the most suitable appears to build a few international repositories. According to the political and social aspect each of the country prepare his own project of the deep repository. The status of those programmes in different countries is described. The development of methods for the long-term management of radioactive waste is necessity in all countries that have had nuclear programmes. (authors)

  19. Impact of Unconventional Shale Gas Waste Water Disposal on Surficial Streams

    Science.gov (United States)

    Cozzarelli, I.; Akob, D.; Mumford, A. C.

    2014-12-01

    The development of unconventional natural gas resources has been rapidly increasing in recent years, however, the environmental impacts and risks are not yet well understood. A single well can generate up to 5 million L of produced water (PW) consisting of a blend of the injected fluid and brine from a shale formation. With thousands of wells completed in the past decade, the scope of the challenge posed in the management of this wastewater becomes apparent. The USGS Toxic Substances Hydrology Program is studying both intentional and unintentional releases of PW and waste solids. One method for the disposal of PW is underground injection; we are assessing the potential risks of this method through an intensive, interdisciplinary study at an injection disposal facility in the Wolf Creek watershed in WV. Disposal of PW via injection begun in 2002, with over 5.5 mil. L of PW injected to date. The facility consists of the injection well, a tank farm, and two former holding ponds (remediated in early 2014) and is bordered by two small tributaries of Wolf Creek. Water and sediments were acquired from these streams in June 2014, including sites upstream, within, and downstream from the facility. We are analyzing aqueous and solid phase geochemistry, mineralogy, hydrocarbon content, microbial community composition, and potential toxicity. Field measurements indicated that conductivity downstream (416 μS/cm) was elevated in comparison to upstream (74 μS/cm) waters. Preliminary data indicated elevated Cl- (115 mg/L) and Br- (0.88 mg/L) concentrations downstream, compared to 0.88 mg/L Cl- and impacting nearby streams. In addition, total Fe concentrations downstream were 8.1 mg/L, far in excess of the 0.13 mg/L found upstream from the facility, suggesting the potential for microbial Fe cycling. We are conducting a broad suite of experiments to assess the potential for microbial metabolism of the organic components of PW, and to determine the effects of this metabolism on the

  20. Nuclear waste disposal technology for Pacific Basin countries

    International Nuclear Information System (INIS)

    Langley, R.A. Jr.; Brothers, G.W.

    1981-01-01

    Safe long-term disposal of nuclear wastes is technically feasible. Further technological development offers the promise of reduced costs through elimination of unnecessary conservatism and redundance in waste disposal systems. The principal deterrents to waste disposal are social and political. The issues of nuclear waste storage and disposal are being confronted by many nuclear power countries including some of the Pacific Basin nuclear countries. Both mined geologic and subseabed disposal schemes are being developed actively. The countries of the Pacific Basin, because of their geographic proximity, could benefit by jointly planning their waste disposal activities. A single repository, of a design currently being considered, could hold all the estimated reprocessing waste from all the Pacific Basin countries past the year 2010. As a start, multinational review of alterntive disposal schemes would be beneficial. This review should include the subseabed disposal of radwastes. A multinational review of radwaste packaging is also suggested. Packages destined for a common repository, even though they may come from several countries, should be standardized to maximize repository efficiency and minimize operator exposure. Since package designs may be developed before finalization of a repository scheme and design, the packages should not have characteristics that would preclude or adversely affect operation of desirable repository options. The sociopolitical problems of waste disposal are a major deterrent to a multinational approach to waste disposal. The elected representatives of a given political entity have generally been reluctant to accept the waste from another political entity. Initial studies would, nevertheless, be beneficial either to a common solution to the problem, or to aid in separate solutions

  1. Contributions to safety assessment of the radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Ilie, Petre; Didita, Liana; Ionescu, Alice; Deaconu, Viorel

    2003-01-01

    The paper presents the progress in the frame of the safety assessments related to the potential near-surface Romanian National Repository, as well as to the geological repository in salt rock for CANDU spent fuel. The safety assessment of the near-surface repository follows the ISAM methodology. The repository design consists of a vault, in which the wastes resulted from the operation and decommissioning of the CANDU reactor from Cernavoda Nuclear Power Plant (CNPP) are disposed off. The repository is located nearby the CNPP. A layered unsaturated zone overlying a variable thickness confined aquifer, which consists of barremian limestones, characterizes the site. The interface with biosphere is considered to be the Danube-Black Sea Channel. The paper summarizes the results of the post-closure safety assessment for the design scenario and the prediction of the radionuclide release in the liquid phase. As to the final disposal of the CANDU spent fuel from the CNPP, we assumed that the repository is built in a salt dome. Romania has important salt formations, some of them being potentially suitable for hosting a repository. Up to now there are no detailed characterization studies of such formations in Romania, from the point of view of the suitability as a repository site. Therefore, generic data for hydrogeological characterization of the site have been used, coming from the Gorleben site in Germany. The spent fuel containers are disposed off in galleries, somewhere 500 m bellow the cap rock of the salt dome. The temporal loading scheme of the repository is based on a sequential filing of the disposal fields, with a delay of 10 years between filling of two neighbouring disposal areas. The disposal fields are accessed via a shaft. After filling of a disposal gallery, the remaining space is backfilled with salt powder and the gallery is sealed with compacted salt bricks. The access galleries are also backfilled and sealed. Only the reference scenario is considered, in

  2. Status on disposal of greater-than-Class C

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, T.L.

    1995-12-31

    The Department of Energy (DOE) has developed a plan for the management and disposal of commercially generated greater-than-Class C (GTCC) low-level radioactive waste. The Low-Level Radioactive Waste Policy Amendments Act of 1985 made DOE responsible for disposal of GTCC waste. The act requires that GTCC waste be disposed in a Nuclear Regulatory Commission (NRC)-licensed facility. The NRC has amended 10 CFR 61 to express a preference for geologic disposal of GTCC waste. Based on reassessment studies, legislative guidance, and stakeholder involvement, a revised plan has been formulated to provide for total management of GTCC waste. The plan has four major thrusts: (1) plan for GTCC waste storage at the generator site until disposal is available, (2) establish storage for GTCC sealed sources posing health and safety risk to the public, (3) facilitate storage for other GTCC waste posing health and safety risk to the public, and (4) plan for co-disposal of GTCC waste in a geologic disposal site with similar waste types. The revised plan focuses on applying available resources to near- and long-term needs.

  3. Criteria for high-level waste disposal

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1981-01-01

    Disposal of radioactive wastes is storage without the intention of retrieval. But in such storage, it may be useful and in some cases necessary to have the possibility of retrieval at least for a certain period of time. In order to propose some criteria for HLW disposal, one has to examine how this basic concept is to be applied. HLW is waste separated as a raffinate in the first cycle of solvent extraction in reprocessing. Such waste contains the bulk of fission products which have long half lives, therefore the safety of a disposal site, at least after a certain period of time, must be intrinsic, i.e. not based on human intervention. There is a consensus that such a disposal is feasible in a suitable geological formation in which the integrity of the container will be reinforced by several additional barriers. Criteria for disposal can be proposed for all aspects of the question. The author discusses the aims of the safety analysis, particularly the length of time for this analysis, and the acceptable dose commitments resulting from the release of radionuclides, the number and role of each barrier, and a holistic analysis of safety external factors. (Auth.)

  4. DSEM, Radioactive Waste Disposal Site Economic Model

    International Nuclear Information System (INIS)

    Smith, P.R.

    2005-01-01

    1 - Description of program or function: The Disposal Site Economic Model calculates the average generator price, or average price per cubic foot charged by a disposal facility to a waste generator, one measure of comparing the economic attractiveness of different waste disposal site and disposal technology combinations. The generator price is calculated to recover all costs necessary to develop, construct, operate, close, and care for a site through the end of the institutional care period and to provide the necessary financial returns to the site developer and lender (when used). Six alternative disposal technologies, based on either private or public financing, can be considered - shallow land disposal, intermediate depth disposal, above or below ground vaults, modular concrete canister disposal, and earth mounded concrete bunkers - based on either private or public development. 2 - Method of solution: The economic models incorporate default cost data from the Conceptual Design Report (DOE/LLW-60T, June 1987), a study by Rodgers Associates Engineering Corporation. Because all costs are in constant 1986 dollars, the figures must be modified to account for inflation. Interest during construction is either capitalized for the private developer or rolled into the loan for the public developer. All capital costs during construction are depreciated over the operation life of the site using straight-line depreciation for the private sector. 3 - Restrictions on the complexity of the problem: Maxima of - 100 years post-operating period, 30 years operating period, 15 years pre-operating period. The model should be used with caution outside the range of 1.8 to 10.5 million cubic feet of total volume. Depreciation is not recognized with public development

  5. Operation for Rokkasho Low Level Radioactive Waste Disposal Center

    International Nuclear Information System (INIS)

    Kamizono, Hideki

    2008-01-01

    The Rokkasho Low Level Radioactive Waste (LLW) Disposal Center is located in Oishitai, Rokkasho-mura, Kamikitagun, of Aomori Prefecture. This district is situated in the southern part of Shimohita Peninsula in the northeastern corner of the prefecture, which lies at the northern tip of Honshu, Japan's main island. The Rokkasho LLW Disposal Center deals with only LLW generated by operating of nuclear power plants. The No.1 and No.2 disposal facility are now in operation. The disposal facilities in operation have a total dispose capacity of 80,000m 3 (equivalent to 400,000 drums). Our final business scope is to dispose of radioactive waste corresponding to 600,000 m 3 (equivalent to 3000,000 drums). For No.1 disposal facility, we have been disposing of homogeneous waste, including condensed liquid waste, spent resin, solidified with cement and asphalt, etc. For No.2 disposal facility, we can bury a solid waste solidified with mortar, such as activated metals and plastics, etc. Using an improved construction technology for an artificial barrier, the concrete pits in No.2 disposal facility could be constructed more economical and spacious than that of No.1. Both No.1 and No.2 facility will be able to bury about 200,000 waste packages (drums) each corresponding to 40,000 m 3 . As of March 17, 2008, Approximately 200,00 waste drums summing up No.1 and No.2 disposal facility have been received from Nuclear power plants and buried. (author)

  6. Stability of disposal rooms during waste retrieval

    International Nuclear Information System (INIS)

    Brandshaug, T.

    1989-03-01

    This report presents the results of a numerical analysis to determine the stability of waste disposal rooms for vertical and horizontal emplacement during the period of waste retrieval. It is assumed that waste retrieval starts 50 years after the initial emplacement of the waste, and that access to and retrieval of the waste containers take place through the disposal rooms. It is further assumed that the disposal rooms are not back-filled. Convective cooling of the disposal rooms in preparation for waste retrieval is included in the analysis. Conditions and parameters used were taken from the Nevada Nuclear Waste Storage Investigation (NNWSI) Project Site Characterization Plan Conceptual Design Report (MacDougall et al., 1987). Thermal results are presented which illustrate the heat transfer response of the rock adjacent to the disposal rooms. Mechanical results are presented which illustrate the predicted distribution of stress, joint slip, and room deformations for the period of time investigated. Under the assumption that the host rock can be classified as ''fair to good'' using the Geomechanics Classification System (Bieniawski, 1974), only light ground support would appear to be necessary for the disposal rooms to remain stable. 23 refs., 28 figs., 2 tabs

  7. Cost effective disposal of whey

    Energy Technology Data Exchange (ETDEWEB)

    Zall, R R

    1980-01-01

    Means of reducing the problem of whey disposal are dealt with, covering inter alia the pre-treatment of cheese milk e.g., by ultrafiltration to lower the whey output, utilization of whey constituents, use of liquid whey for feeding, fermenting whey to produce methane and alcohol, and disposal of whey by irrigation of land or by purification in sewage treatment plants.

  8. Argentina's radioactive waste disposal policy

    International Nuclear Information System (INIS)

    Palacios, E.

    1986-01-01

    The Argentina policy for radioactive waste disposal from nuclear facilities is presented. The radioactive wastes are treated and disposed in confinement systems which ensure the isolation of the radionucles for an appropriate period. The safety criteria adopted by Argentina Authorities in case of the release of radioactive materials under normal conditions and in case of accidents are analysed. (M.C.K.) [pt

  9. NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147

    Energy Technology Data Exchange (ETDEWEB)

    Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D. [U.S. Nuclear Regulatory Commission (United States)

    2013-07-01

    As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in

  10. NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147

    International Nuclear Information System (INIS)

    Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D.

    2013-01-01

    As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in coordination with South

  11. Depleted uranium disposal options evaluation

    International Nuclear Information System (INIS)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ''waste,'' but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity

  12. Landfill disposal of very low level waste

    International Nuclear Information System (INIS)

    Luo Shanggeng

    2009-01-01

    The radioactivities of very low level wastes are very low. VLLW can be disposed by simple and economic burial process. This paper describes the significance of segregation of very low level waste (VLLW), the VLLW-definition and its limit value, and presents an introduction of VLLW-disposing approaches operated world wide. The disposal of VLLW in China is also briefly discussed and suggested here. (author)

  13. Verification and validation for waste disposal models

    International Nuclear Information System (INIS)

    1987-07-01

    A set of evaluation criteria has been developed to assess the suitability of current verification and validation techniques for waste disposal methods. A survey of current practices and techniques was undertaken and evaluated using these criteria with the items most relevant to waste disposal models being identified. Recommendations regarding the most suitable verification and validation practices for nuclear waste disposal modelling software have been made

  14. A new procedure for deep sea mining tailings disposal

    OpenAIRE

    Ma, W.; Schott, D.L.; Lodewijks, G.

    2017-01-01

    Deep sea mining tailings disposal is a new environmental challenge related to water pollution, mineral crust waste handling, and ocean biology. The objective of this paper is to propose a new tailings disposal procedure for the deep sea mining industry. Through comparisons of the tailings disposal methods which exist in on-land mining and the coastal mining fields, a new tailings disposal procedure, i.e., the submarine–backfill–dam–reuse (SBDR) tailings disposal procedure, is proposed. It com...

  15. An eco friendly solution to the food waste disposal

    Science.gov (United States)

    Babu, G. Reddy; Kumar, G. Madhav

    2017-07-01

    In recent years, waste disposal at workmen camp is one of the major problems being faced by many nations across the world. In the workmen colony at Chittapur, a series of kitchens were built for cooking purpose and a number of small canteens are also functioning. Considerable quantity of food waste is collected daily from these eateries and disposed at a faraway place. Food waste is highly degradable in nature, if not disposed properly it causes problems related to environmental pollution. Hence, it is very important to identify an environment friendly process rather than opt for land filling or any disposal method. We worked together to find a suitable eco-friendly solution for the food waste disposal at Chittapur site and suggested that biogas production through anaerobic digestion is a solution for the disposal and utilization of food waste for better purpose. This resulted in setting up a 500 kg per day food waste treatment biogas plant at Chittapur. This establishment is the first time in the construction industry at workmen camp in India. Anaerobic Digestion has been recognized as one of the best options that is available for treating food waste, as it generates two valuable end products, biogas and compost. Biogas is a mixture of CH4 and CO2 about (55:45). Biogas generated can be used for thermal applications such as cooking or for generating electricity. The digested slurry is a well stabilized organic manure and can be used as soil fertilizer. Plant design is to handle 500 kg of food waste /day. 27 kg LPG is obtained from 500kg of kitchen waste. The Value of 27 kg of LPG is Rs.2700/day. Daily 1000 litres of digested effluent was obtained. It is good organic manure with plant micro nutrients and macro nutrients. This can be used for growing plants and in agriculture. The value of manure per day is Rs.250/-. The annual revenue is Rs.10.62 lakhs and the annual expenditure is 1.8 lakhs. The net benefit is 8.82 lakhs. Payback period is 2.1 years. This process

  16. Panel session: Disposal of HLW - ready for implementation

    International Nuclear Information System (INIS)

    Heremans, R.; Come, B.; Barbreau, A.; Girardi, F.

    1986-01-01

    The paper is a report of a panel session at the European Community conference on radioactive waste management and disposal, Luxembourg 1985, concerning the safe and long-term disposal of high-activity and long-lived waste. The subjects discussed include: geological barriers including deep sea-bed sediments, engineered barriers, technological problems (repository construction, waste emplacement, backfilling and sealing), safety analysis, performance assessment of disposal system components, and finally institutional, legal and financial aspects of geological disposal. (U.K.)

  17. Daily disposable contact lens prescribing around the world.

    Science.gov (United States)

    Efron, Nathan; Morgan, Philip B; Helland, Magne; Itoi, Motozumi; Jones, Deborah; Nichols, Jason J; van der Worp, Eef; Woods, Craig A

    2010-10-01

    Daily disposable contact lenses were introduced into the market 16 years ago. Data that we have gathered from annual contact lens fitting surveys conducted in Australia, Canada, Japan, The Netherlands, Norway, the UK and the USA between 2000 and 2008 indicates an overall increase in daily disposable lens fitting during this period. Daily disposable lenses are especially popular in Japan, Norway and the UK. There is a trend for these lenses to be fitted on a part-time basis. Males are over-represented in daily disposable lens fitting-a trend that is especially evident in Canada. Daily disposable lens wearers are about two years younger than wearers of reusable lenses in Japan and The Netherlands. The convenience and health benefits of daily disposable lenses are expected to fuel continued growth in this sector. Copyright (c) 2010 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  18. The industrial facility for Grouping, Storage and Disposal

    International Nuclear Information System (INIS)

    Torres, Patrice

    2013-07-01

    The industrial facility for grouping, storage and disposal (called Cires in French), in the Aube district, is run by Andra. The facility is licensed to dispose of very-low-level waste, to collect non-nuclear-power radioactive waste and to provide storage for some of the waste for which a final management solution has not yet been found. The Cires facility is located a few kilometers from the Aube disposal facility (CSA), another of Andra's waste disposal facilities, currently dealing with low- and intermediate-level, short-lived waste. Contents: Andra in the Aube district, an exemplary industrial operator - The industrial facility for grouping, storage and disposal (Cires); Disposal of very-low-level waste (VLLW); The journey taken by VLL waste; Grouping of non-nuclear-power waste; Storage of non-nuclear-power waste; The journey taken by non-nuclear-power waste; Protecting present and future generations

  19. Development of high integrity, maximum durability concrete structures for LLW disposal facilities

    International Nuclear Information System (INIS)

    Taylor, W.P.

    1992-01-01

    A number of disposal facilities for Low-Level Radioactive Wastes have been planned for the Savannah River Site. Design has been completed for disposal vaults for several waste classifications and construction is nearly complete or well underway on some facilities. Specific design criteria varies somewhat for each waste classification. All disposal units have been designed as below-grade concrete vaults, although the majority will be above ground for many years before being encapsulated with earth at final closure. Some classes of vaults have a minimum required service life of 100 years. All vaults utilize a unique blend of cement, blast furnace slag and pozzolan. The design synthesizes the properties of the concrete mix with carefully planned design details and construction methodologies to (1) eliminate uncontrolled cracking; (2) minimize leakage potential; and (3) maximize durability. The first of these vaults will become operational in 1992. 9 refs

  20. Waste Disposal: Long-term Performance Studies for Radioactive Waste Disposal and Hydrogeological Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Marivoet, J

    2000-07-01

    The main objectives of SCK-CEN's R and D programme on long-term performance studies are: (1) to develop a methodology and associated tools for assessing the long-term safety of geological disposal of all types of radioactive waste in clay formations and of the shallow-land burial of low-level waste; (2) to assess the performance and to identify the most influential elements of integrated repository systems for the disposal of radioactive waste; (3) to collect geological, piezometric and hydraulic data required for studying the hydrogeological system in north-eastern Belgium; (4) to develop a regional aquifer model for north-easter Belgium and to apply it in the performance assessments for the Mol site; (5) to test, verify and improve computer codes used in the performance assessment calculations of waste disposal concepts and contaminated sites (the computer codes simulate water flow and transport of radionuclides in engineered barriers, aquifers and contaminated sites). The scientific programme and achievements in 1999 are described.

  1. Determining how much mixed waste will require disposal

    International Nuclear Information System (INIS)

    Kirner, N.P.

    1990-01-01

    Estimating needed mixed-waste disposal capacity to 1995 and beyond is an essential element in the safe management of low-level radioactive waste disposal capacity. Information on the types and quantities of mixed waste generated is needed by industry to allow development of treatment facilities and by states and others responsible for disposal and storage of this type of low-level radioactive waste. The design of a mixed waste disposal facility hinges on a detailed assessment of the types and quantities of mixed waste that will ultimately require land disposal. Although traditional liquid scintillation counting fluids using toluene and xylene are clearly recognized as mixed waste, characterization of other types of mixed waste has, however, been difficult. Liquid scintillation counting fluids comprise most of the mixed waste generated and this type of mixed waste is generally incinerated under the supplemental fuel provisions of the Resource Conservation and Recovery Act (RCRA) Because there are no Currently operating mixed waste land disposal facilities, it is impossible to make projections of waste requiring land disposal based on a continuation of current waste disposal practices. Evidence indicates the volume of mixed waste requiring land disposal is not large, since generators are apparently storing these wastes. Surveys conducted to date confirm that relatively small volumes of commercially generated mixed waste volume have relied heavily oil generators' knowledge of their wastes. Evidence exists that many generators are confused by the differences between the Atomic Energy Act and the Resource Conservation and Recovery Act (RCRA) on the issue of when a material becomes a waste. In spite of uncertainties, estimates of waste volumes requiring disposal can be made. This paper proposes an eight-step process for such estimates

  2. FUNDING ALTERNATIVES FOR LOW-LEVEL WASTE DISPOSAL

    International Nuclear Information System (INIS)

    Becker, Bruce D.; Carilli, Jhon

    2003-01-01

    For 13 years, low-level waste (LLW) generator fees and disposal volumes for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Radioactive Waste Management Sites (RWMSs) had been on a veritable roller coaster ride. As forecast volumes and disposal volumes fluctuated wildly, generator fees were difficult to determine and implement. Fiscal Year (FY) 2000 forecast projections were so low, the very existence of disposal operations at the Nevada Test Site (NTS) were threatened. Providing the DOE Complex with a viable, cost-effective disposal option, while assuring the disposal site a stable source of funding, became the driving force behind the development of the Waste Generator Access Fee at the NTS. On September 26, 2000, NNSA/NV (after seeking input from DOE/Headquarters [HQ]), granted permission to Bechtel Nevada (BN) to implement the Access Fee for FY 2001 as a two-year Pilot Program. In FY 2001 (the first year the Access Fee was implemented), the NTS Disposal Operations experienced a 90 percent increase in waste receipts from the previous year and a 33 percent reduction in disposal fee charged to the waste generators. Waste receipts for FY 2002 were projected to be 63 percent higher than FY 2001 and 15 percent lower in cost. Forecast data for the outyears are just as promising. This paper describes the development, implementation, and ultimate success of this fee strategy

  3. Remedial site evaluation report for the waste area grouping 10 wells associated with the new hydrofracture facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2: Field activities and well summaries

    International Nuclear Information System (INIS)

    1996-08-01

    Four hydrofracture sites at the Oak Ridge National Laboratory (ORNL) were used for development, demonstration, and disposal from 1959 to 1984. More than 10 million gal of waste grout mix was disposed of via hydrofracture. Various types of wells were installed to monitor the hydrofracture operations. The primary goal of this remedial investigation was to gather information about the wells in order to recommend the type and best method of final disposition for the wells. Evaluations were performed to determine the integrity of well castings, confirm construction details for each well, evaluate the extent of contamination, assist in planning for future activities, and determine the suitability of the wells for future temporary site monitoring

  4. Geothermal Well Site Restoration and Plug and Abandonment of Wells

    Energy Technology Data Exchange (ETDEWEB)

    Rinehart, Ben N.

    1994-08-01

    A report is presented on the final phase of an energy research program conducted by the U.S. Department of Energy (DOE) involving two geothermal well sites in the State of Louisiana-the Gladys McCall site and the Willis Hulin site. The research program was intended to improve geothermal technology and to determine the efficacy of producing electricity commercially from geopressured resource sites. The final phase of the program consisted of plug and abandonment (P&A) of the wells and restoration of the well sites. Restoration involved (a) initial soil and water sampling and analysis; (b) removal and disposal of well pads, concrete, utility poles, and trash; (c) plugging of monitor and freshwater wells; and (d) site leveling and general cleanup. Restoration of the McCall site required removal of naturally occurring radioactive material (NORM), which was costly and time-consuming. Exhibits are included that provide copies of work permits and authorizations, P&A reports and procedures, daily workover and current conditions report, and cost and salvage reports. Site locations, grid maps, and photographs are provided.

  5. Zero air emission and zero drilling waste landfill leachate collection well installation method

    International Nuclear Information System (INIS)

    Miller, M.S.; Hornsby, R.G.

    1992-01-01

    Landfilling of industrial wastes is an extensively used means of disposal throughout the US. Prior to RCRA, many landfills were little more than excavated trenches. During the construction and filling of such trenches, the long-term environmental impact was seldom considered. Water (leachate) management for these early landfills was not part of engineering or operating considerations. Today, waste management facilities succeed or fail on the quality of their leachate management efforts, as judged by groundwater quality around the landfill. The CECOS International Inc. facility near Livingston, Louisiana has three pre-RCRA disposal units (landfills) that were designed, constructed, and closed by a previous owner. These disposal units were constructed without any type of leachate removal system. During 1984-1985, samples from two nearby monitor wells revealed evidence of groundwater contamination in the area, principally in the shallow (30-foot) zone. A one-year, state-approved groundwater assessment revealed the nature and extent of groundwater contamination. Later, the Louisiana Department of Environmental Quality (LDEQ) approved a remedial action plan (RAP) for this area that included: Installation of an engineered slurry wall surrounding the disposal units to isolate the shallow groundwater regime. Placement of an engineered cap over the units to prevent rainwater infiltration. Installation of several recovery wells inside the units to facilitate removal of leachate. While efforts are now underway to provide for removal of impacted groundwater in the vicinity of these old wells, the long-term solution is to reduce or, to the greatest extent possible, eliminate the liquid volume inside the cells. This paper deals with the installation of 16 leachate recovery wells inside the pre-RCRA disposal units

  6. Safe disposal of surplus plutonium

    Science.gov (United States)

    Gong, W. L.; Naz, S.; Lutze, W.; Busch, R.; Prinja, A.; Stoll, W.

    2001-06-01

    About 150 tons of weapons grade and weapons usable plutonium (metal, oxide, and in residues) have been declared surplus in the USA and Russia. Both countries plan to convert the metal and oxide into mixed oxide fuel for nuclear power reactors. Russia has not yet decided what to do with the residues. The US will convert residues into a ceramic, which will then be over-poured with highly radioactive borosilicate glass. The radioactive glass is meant to provide a deterrent to recovery of plutonium, as required by a US standard. Here we show a waste form for plutonium residues, zirconia/boron carbide (ZrO 2/B 4C), with an unprecedented combination of properties: a single, radiation-resistant, and chemically durable phase contains the residues; billion-year-old natural analogs are available; and criticality safety is given under all conceivable disposal conditions. ZrO 2/B 4C can be disposed of directly, without further processing, making it attractive to all countries facing the task of plutonium disposal. The US standard for protection against recovery can be met by disposal of the waste form together with used reactor fuel.

  7. Use of Multimedia for Enhancing Transparency in Radioactive Waste Disposal. Evaluations

    International Nuclear Information System (INIS)

    McNeish, Jerry; Avis, John; Freeze, Geoff; Miller, Debbie; Long, Lori

    2001-01-01

    The U.S. Department of Energy and its contractors are currently evaluating a site in Nevada (Yucca Mountain) for disposal of high-level radioactive waste. The project is technically and politically complex, has multiple stakeholders, as well as schedule constraints. All of these factors contribute to a difficult environment in which to provide a transparent (clear and understandable) documentation of the analyses of the site. This paper describes the development and use of multimedia to present a summary of the results of the recent Total System Performance Assessment of the repository system in a transparent fashion, accessible to a variety of audiences. Transparency includes imparting a high level of understanding to the stakeholders, many of whom are not technically sophisticated in the nuances of radioactive waste disposal. The technical complexity of radioactive waste requires evaluation of uncertainties in the processes and rates that will occur in the disposal system in the future. Forecasting the performance of the system with models attempts to establish the limits of the possible performance outcomes of the disposal system. The forecasting is limited by available data and our current ability to assess what might happen to the disposal system through time. Coupled processes add uncertainty to the behavior of the system through time. The overall approach to developing the multimedia summary of the recent TSPA involved coordination of technical specialists, graphic specialists, multimedia experts, and technical editors. The ultimate product is contained on a single CD, with a single entry point, that allows the user full control in navigating through the information

  8. Use of Multimedia for Enhancing Transparency in Radioactive Waste Disposal. Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    McNeish, Jerry; Avis, John; Freeze, Geoff; Miller, Debbie [Duke Engineering and Services, Inc., Las Vegas, NV (United States); Long, Lori [Sean Lemons TRW, Inc, Albuquerque, NM (United States)

    2001-07-01

    The U.S. Department of Energy and its contractors are currently evaluating a site in Nevada (Yucca Mountain) for disposal of high-level radioactive waste. The project is technically and politically complex, has multiple stakeholders, as well as schedule constraints. All of these factors contribute to a difficult environment in which to provide a transparent (clear and understandable) documentation of the analyses of the site. This paper describes the development and use of multimedia to present a summary of the results of the recent Total System Performance Assessment of the repository system in a transparent fashion, accessible to a variety of audiences. Transparency includes imparting a high level of understanding to the stakeholders, many of whom are not technically sophisticated in the nuances of radioactive waste disposal. The technical complexity of radioactive waste requires evaluation of uncertainties in the processes and rates that will occur in the disposal system in the future. Forecasting the performance of the system with models attempts to establish the limits of the possible performance outcomes of the disposal system. The forecasting is limited by available data and our current ability to assess what might happen to the disposal system through time. Coupled processes add uncertainty to the behavior of the system through time. The overall approach to developing the multimedia summary of the recent TSPA involved coordination of technical specialists, graphic specialists, multimedia experts, and technical editors. The ultimate product is contained on a single CD, with a single entry point, that allows the user full control in navigating through the information.

  9. Interim report on reference biospheres for radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Dorp, F. van [NAGRA (Switzerland)] [and others

    1994-10-01

    Primary criteria for repository safety are commonly expressed in terms of risk or dose, and a biosphere model is required to evaluate the corresponding assessment endpoints. Even when other indicators are used to express the safety goals, a biosphere model is still needed in order to justify those indicators. In safety or performance assessments of a repository, the uncertainties in space and time for the different components of the repository system have to be considered. For the biosphere component, prediction of future human habits, in particular, is extremely uncertain. This is especially important in the assessment of deep geological disposal, which involves very long timescales, particularly for wastes containing very long lived radionuclides. Thus, the results of biosphere modelling should not be seen as predictions, but as illustrations of the consequences that may occur, should the postulated release occur today or under other conditions implied by the underlying biosphere model assumptions. Differences in biosphere modelling approaches arise because of differences in regulations, the nature of the wastes to be disposed of, disposal site characteristics, disposal concepts and purposes of the assessment. Differences in treatment of uncertainties can also arise. For example, if doses or risks are anticipated to be far below regulatory limits, assessments may be based upon simplified and, necessarily, conservative biosphere models. At present biosphere models used to assess radioactive waste disposal show significant differences in the features, events and processes (FEPs) included or excluded. In general, the reasons for these differences have not been well documented or explained. Developments in radioecology have implications for biosphere modelling for radioactive waste disposal. In particular, after the Chernobyl accident, radioecological research has been significantly increased. Results of this research are already having and will continue to have a

  10. Interim report on reference biospheres for radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Dorp, F van [NAGRA (Switzerland); and others

    1994-10-01

    Primary criteria for repository safety are commonly expressed in terms of risk or dose, and a biosphere model is required to evaluate the corresponding assessment endpoints. Even when other indicators are used to express the safety goals, a biosphere model is still needed in order to justify those indicators. In safety or performance assessments of a repository, the uncertainties in space and time for the different components of the repository system have to be considered. For the biosphere component, prediction of future human habits, in particular, is extremely uncertain. This is especially important in the assessment of deep geological disposal, which involves very long timescales, particularly for wastes containing very long lived radionuclides. Thus, the results of biosphere modelling should not be seen as predictions, but as illustrations of the consequences that may occur, should the postulated release occur today or under other conditions implied by the underlying biosphere model assumptions. Differences in biosphere modelling approaches arise because of differences in regulations, the nature of the wastes to be disposed of, disposal site characteristics, disposal concepts and purposes of the assessment. Differences in treatment of uncertainties can also arise. For example, if doses or risks are anticipated to be far below regulatory limits, assessments may be based upon simplified and, necessarily, conservative biosphere models. At present biosphere models used to assess radioactive waste disposal show significant differences in the features, events and processes (FEPs) included or excluded. In general, the reasons for these differences have not been well documented or explained. Developments in radioecology have implications for biosphere modelling for radioactive waste disposal. In particular, after the Chernobyl accident, radioecological research has been significantly increased. Results of this research are already having and will continue to have a

  11. Psychological impact of colostomy pouch change and disposal.

    Science.gov (United States)

    McKenzie, Frances; White, Craig A; Kendall, Sally; Finlayson, Aileen; Urquhart, Mary; Williams, Isabel

    This article presents some of the findings from a multicentre cross-sectional correlational study to evaluate the relationship between colostomy pouch change and disposal practices and the patient's psychological wellbeing. Five questionnaires were used in a one-off interview with 86 patients. Patients were assessed at between one and four months postoperatively. Results from the Pouch Change and Disposal questionnaire showed that only 25% of patients found disposal of used appliances the most difficult part of their pouch change and disposal routine. Half felt that their body was out of their control and 33% reported avoiding social and leisure activities due to what was involved in their pouch change and disposal routine. Patients cited several factors, such as minimizing odour and having an appliance that could flush away, as factors which would help them to stop avoiding these activities. Stoma care nurses have a unique opportunity to improve the psychological wellbeing of their patients by considering the aspects of pouch change and disposal that pose the greatest challenge to individuals. Use of a modified version of the Pouch Change and Disposal questionnaire may be a useful tool in identifying those at risk of impaired quality of life.

  12. Geological disposal: security and R and D. Security of 'second draft for R and D of geological disposal'

    International Nuclear Information System (INIS)

    Shiotsuki, Masao; Miyahara, Kaname

    2003-01-01

    The second draft for R and D of geological disposal (second draft) was arranged in 1999. The idea of security of geological disposal in the second draft is explained. The evaluation results of the uncertainty analysis and an example of evaluation of the effect of separation nuclear transmutation on the geological disposal are shown. The construction of strong engineered barrier is a basic idea of geological disposal system. Three processes such as isolation, engineering countermeasures and safety evaluation are carried out for the security of geological disposal. The security of geological environment for a long time of 12 sites in Japan was studied by data. Provability of production and enforcement of engineered barrier were confirmed by trial of over pack, tests and the present and future technologies developed. By using the conditions of reference case in the second draft, the evaluation results of dose effects in the two cases: 1) 90 to 99% Cs and Sr removed from HLW (High Level radioactive Waste) and 2) high stripping ratio of actinium series are explained. (S.Y.)

  13. Preoperational baseline and site characterization report for the Environmental Restoration Disposal Facility. Volume 2, Revision 2

    International Nuclear Information System (INIS)

    Weekes, D.C.; Lindsey, K.A.; Ford, B.H.; Jaeger, G.K.

    1996-12-01

    This document is Volume 2 in a two-volume series that comprise the site characterization report, the Preoperational Baseline and Site Characterization Report for the Environmental Restoration Disposal Facility. Volume 1 contains data interpretation and information supporting the conclusions in the main text. This document presents original data in support of Volume 1 of the report. The following types of data are presented: well construction reports; borehole logs; borehole geophysical data; well development and pump installation; survey reports; preoperational baseline chemical data and aquifer test data. Five groundwater monitoring wells, six deep characterization boreholes, and two shallow characterization boreholes were drilled at the Environmental Restoration Disposal Facility (ERDF) site to directly investigate site-specific hydrogeologic conditions

  14. Crushing leads to waste disposal savings for FUSRAP

    Energy Technology Data Exchange (ETDEWEB)

    Darby, J. [Department of Energy, Oak Ridge, TN (United States)

    1997-02-01

    In this article the author discusses the application of a rock crusher as a means of implementing cost savings in the remediation of FUSRAP sites. Transportation and offsite disposal costs are at present the biggest cost items in the remediation of FUSRAP sites. If these debris disposal problems can be handled in different manners, then remediation savings are available. Crushing can result in the ability to handle some wastes as soil disposal problems, which have different disposal regulations, thereby permitting cost savings.

  15. A Comparison of Distillery Stillage Disposal Methods

    OpenAIRE

    V. Sajbrt; M. Rosol; P. Ditl

    2010-01-01

    This paper compares the main stillage disposal methods from the point of view of technology, economics and energetics. Attention is paid to the disposal of both solid and liquid phase. Specifically, the following methods are considered: a) livestock feeding, b) combustion of granulated stillages, c) fertilizer production, d) anaerobic digestion with biogas production and e) chemical pretreatment and subsequent secondary treatment. Other disposal techniques mentioned in the literature (electro...

  16. Low-level waste disposal site selection demonstration

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1984-01-01

    This paper discusses the results of recent studies undertaken at EPRI related to low-level waste disposal technology. The initial work provided an overview of the state of the art including an assessment of its influence upon transportation costs and waste form requirements. The paper discusses work done on the overall system design aspects and computer modeling of disposal site performance characteristics. The results of this analysis are presented and provide a relative ranking of the importance of disposal parameters. This allows trade-off evaluations to be made of factors important in the design of a shallow land burial facility. To help minimize the impact of a shortage of low-level radioactive waste disposal sites, EPRI is closely observing the development of bellweather projects for developing new sites. The purpose of this activity is to provide information about lessons learned in those projects in order to expedite the development of additional disposal facilities. This paper describes most of the major stems in selecting a low-level radioactive waste disposal site in Texas. It shows how the Texas Low-Level Radioactive Waste Disposal Authority started with a wide range of potential siting areas in Texas and narrowed its attention down to a few preferred sites. The parameters used to discriminate between large areas of Texas and, eventually, 50 candidate disposal sites are described, along with the steps in the process. The Texas process is compared to those described in DOE and EPRI handbooks on site selection and to pertinent NRC requirements. The paper also describes how an inventory of low-level waste specific to Texas was developed and applied in preliminary performance assessments of two candidate sites. Finally, generic closure requirements and closure operations for low-level waste facilities in arid regions are given

  17. Community syringe collection and disposal policies in 16 states.

    Science.gov (United States)

    Turnberg, Wayne L; Jones, T Stephen

    2002-01-01

    To review laws, regulations, and guidelines that affect the collection and disposal of hypodermic needles, syringes, and lancets used outside of professional health care settings (hereafter referred to as "community syringes"). Law and policy analysis. Alabama, California, Florida, Georgia, Hawaii, Massachusetts, Michigan, Minnesota, New Jersey, New York, Ohio, Oregon, Rhode Island, South Carolina, Washington, and Wisconsin. Information on syringe collection and disposal in the community was gathered from federal and state records and state agency personnel. Legally permissible means of syringe collection and disposal available to persons in the community injecting medical treatments and injection drug users. Laws, regulations, or guidelines in 13 states allowed community syringes to be legally discarded in household trash; guidelines for in-trash disposal varied among the states. Only 6 states had laws or regulations that specifically addressed community syringe collection. In 10 states, infectious waste laws and regulations that apply to medical facilities such as clinics would also apply to community syringe collection sites. In the 16 states studied, laws, regulations, and guidelines relating to community syringe collection and disposal were somewhat inconsistent and confusing and presented potential barriers to safe disposal. States should consider amending laws, regulations, and guidelines to promote community syringe collection programs. A national effort is needed to achieve consistent community syringe collection and disposal laws and guidelines for all states. Pharmacists can aid in safe syringe disposal by counseling their patients about safe disposal, providing or selling sharps containers, and accepting used syringes for safe disposal. Pharmacists can join other interested groups in advocating clarification of disposal laws and regulations that favor community programs designed to keep syringes out of the trash so that they can be disposed of as

  18. Status and advice of the low and intermediate level radioactive waste disposal sites in China

    International Nuclear Information System (INIS)

    Teng Keyan; Lu Caixia

    2012-01-01

    With the rapid development of nuclear power industry in China, as well as the decommissioning of the nuclear facilities, and the process of radioactive waste management, a mount of the low and intermediate level radioactive solid wastes will increase rapidly. How to dispose the low and intermediate level radioactive solid wastes, that not only related to Chinese nuclear energy and nuclear technology with sustainable development, but also related to the public health, environment safety. According to Chinese « long-term development plan of nuclear power (2005- 2020) », when construct the nuclear power, should simultaneous consider the sites that dispose the low and intermediate level radioactive waste, In order to adapt to the needs that dispose the increasing low and intermediate level radioactive waste with development of nuclear power. In the future, all countries are facing the enormous challenge of nuclear waste disposal. (authors)

  19. Waste disposal into the sea

    International Nuclear Information System (INIS)

    Ehlers, P.; Kunig, P.

    1987-01-01

    The waste disposal at sea is regulated for the most part by national administrative law, which mainly is based on international law rules supplemented by EC-law. The dumping of low-level radioactive waste into the sea is more and more called into question. The disposal of high-level radioactive waste into the subsoil of the sea does not correspond to the London Convention. (WG) [de

  20. Disposability Assessment: Aluminum-Based Spent Nuclear Fuel Forms

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, D.W.

    1998-11-06

    This report provides a technical assessment of the Melt-Dilute and Direct Al-SNF forms in disposable canisters with respect to meeting the requirements for disposal in the Mined Geologic Disposal System (MGDS) and for interim dry storage in the Treatment and Storage Facility (TSF) at SRS.

  1. Technical and socio-political issues in radioactive waste disposal 1986. Vol. 2

    International Nuclear Information System (INIS)

    Parker, F.L.; Kasperson, R.E.; Andersson, T.L.; Parker, S.A.

    1987-11-01

    Subseabed disposal of high level radioactive waste and spent fuel, in contrast to land based mined geologic repositories, has not yet been judged by any nation or international bodies to be technologically acceptable, but it is presently considered to be the only available alternative to land based geologic disposal. The work under the scientific program for subseabed disposal the most truly international of all the radioactive waste program, was proceeding along a well defined route to proof or rejection of concept. This date will certainly be delayed because of the withdrawal of the USA from the program. The work under the aegis of the NEA will result in a report in 1987 that will be a status report. To date no scientific information has emerged that would negate the advantages of the subseabed disposal method. Validation of some of the models has not been completed. The option, if possible, would be very attractive for many reasons including no easy direct exposure to man, no contamination of potential drinking water supplies, no near neighbors, an international solution rather than a parochial solution, and location in a formation with highly desirable attributes (stability, exchange capacity, etc.) that may not be available in every nation with a nuclear energy program. Even if the scientific feasibility were proven, then there still remain enormous institutional obstacles to be overcome including the determined opposition of many countries on ecological and philosophical grounds, the existence of international treaties that appear to prohibit such disposal and the fact that it is not the first choice for disposal of spent nuclear fuel or high level radioactive waste. (orig./HP)

  2. Nuclear fuel waste disposal in Canada

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Gillespie, P.A.

    1990-05-01

    Atomic Energy of Canada Limited (AECL) has developed a concept for disposing of Canada's nuclear fuel waste and is submitting it for review under Federal Environmental Assessment and Review Process. During this review, AECL intends to show that careful, controlled burial 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield is a safe and feasible way to dispose of Canada's nuclear fuel waste. The concept has been assessed without identifying or evaluating any particular site for disposal. AECL is now preparing a comprehensive report based on more than 10 years of research and development

  3. Nuclear fuel waste disposal in Canada

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Gillespie, P.A.

    1990-05-01

    Atomic Energy of Canada Limited (AECL) has developed a concept for disposing of Canada's nuclear fuel waste and is submitting it for review under the Federal Environmental Assessment and Review Process. During this review, AECL intends to show that careful, controlled burial 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield is a safe and feasible way to dispose of Canada's nuclear fuel waste. The concept has been assessed without identifying or evaluating any particular site for disposal. AECL is now preparing a comprehensive report based on more than 10 years of research and development

  4. Shallow land disposal, the french system

    International Nuclear Information System (INIS)

    Barthoux, A.; Marque, Y.

    1986-01-01

    Since 1969, low and medium activity waste are disposed of in France at the Centre Manche. The management system set up covers the whole of the operations, from the sorting of the wastes and their conditioning to the final disposal. Safety standards and technical issues were found satisfactory by the National Safety Authority and they are the basis of the program for the realization of two new disposal sites which should take over from the Centre Manche loaded towards 1990. ANDRA, a National Agency, is responsible for the long term management of radioactive waste, in France [fr

  5. From non-disposable to disposable, treatment of pyrophoric or gas forming waste forms for disposal - Thermal treatment of pyrophoric or gas-forming metals

    International Nuclear Information System (INIS)

    Oesterberg, Carl; Lindberg, Maria

    2014-01-01

    In order to dispose of waste in either a deep geological disposal or in a shallower repository there are several demands that the waste and its package must fulfil, one is that it is not to react with oxygen or the waste package or backfill in the repository, i.e. concrete or grout. The waste forms that do not fulfil this particular criterion must be treated in some way to render the waste non-reactive. One of these waste are metallic uranium. Metallic uranium is not only an issue originating from the nuclear industry, as old types of fuel, it is also present in, for example, transport flasks and as samples used in schools, which all has to be disposed of sooner or later. Another waste that arise is magnesium doped with thorium, originating from the aviation, aerospace and missile industry. These alloys are now being replaced with others without thorium so they are in need of handling and possibly treatment before disposal. Magnesium metal is also pyrophoric, in particular in molten or powder form. In order to evaluate thermally treating these metals in a very controlled environment, such as a pyrolysis vessel, experimental work has been performed. The aim of the thermal treatment is to oxidise the metals and obtain an oxide with low leachability. Inactive trials were performed, first using small amount of magnesium tape followed by using Cerium instead of uranium, to check the ability of controlling the process. After the process had been deemed safe the next step was to test the process first with metallic uranium and thereafter with magnesium thorium alloy. The first results show that the oxidation process can be totally controlled and safe. The results show that the metals are oxidised and no longer reactive and can in principle be disposed of. The test will continue and further results will be reported. (authors)

  6. 20 CFR 209.16 - Disposal of payroll records.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Disposal of payroll records. 209.16 Section... RAILROAD EMPLOYERS' REPORTS AND RESPONSIBILITIES § 209.16 Disposal of payroll records. Employers may dispose of payroll records for periods subsequent to 1936, provided that the payroll records are more than...

  7. 12 CFR 571.83 - Disposal of consumer information.

    Science.gov (United States)

    2010-01-01

    ... REPORTING Duties of Users of Consumer Reports Regarding Address Discrepancies and Records Disposal § 571.83 Disposal of consumer information. (a) Scope. This section applies to savings associations whose deposits... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Disposal of consumer information. 571.83...

  8. 12 CFR 334.83 - Disposal of consumer information.

    Science.gov (United States)

    2010-01-01

    ... GENERAL POLICY FAIR CREDIT REPORTING Duties of Users of Consumer Reports Regarding Address Discrepancies and Records Disposal § 334.83 Disposal of consumer information. (a) In general. You must properly... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Disposal of consumer information. 334.83...

  9. 12 CFR 615.5143 - Disposal of ineligible investments.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Disposal of ineligible investments. 615.5143... AFFAIRS, LOAN POLICIES AND OPERATIONS, AND FUNDING OPERATIONS Investment Management § 615.5143 Disposal of ineligible investments. You must dispose of an ineligible investment within 6 months unless we approve, in...

  10. Constraints to waste utilization and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Steadman, E.N.; Sondreal, E.A.; Hassett, D.J.; Eylands, K.E.; Dockter, B.A. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    The value of coal combustion by-products for various applications is well established by research and commercial practice worldwide. As engineering construction materials, these products can add value and enhance strength and durability while simultaneously reducing cost and providing the environmental benefit of reduced solid waste disposal. In agricultural applications, gypsum-rich products can provide plant nutrients and improve the tilth of depleted soils over large areas of the country. In waste stabilization, the cementitious and pozzolanic properties of these products can immobilize hazardous nuclear, organic, and metal wastes for safe and effective environmental disposal. Although the value of coal combustion by-products for various applications is well established, the full utilization of coal combustion by-products has not been realized in most countries. The reasons for the under utilization of these materials include attitudes that make people reluctant to use waste materials, lack of engineering standards for high-volume uses beyond eminent replacement, and uncertainty about the environmental safety of coal ash utilization. More research and education are needed to increase the utilization of these materials. Standardization of technical specifications should be pursued through established standards organizations. Adoption of uniform specifications by government agencies and user trade associations should be encouraged. Specifications should address real-world application properties, such as air entrainment in concrete, rather than empirical parameters (e.g., loss on ignition). The extensive environmental assessment data already demonstrating the environmental safety of coal ash by-products in many applications should be more widely used, and data should be developed to include new applications.

  11. Crystalline and Crystalline International Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-21

    This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.

  12. 2005 dossier: granite. Tome: phenomenological evolution of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the phenomenological aspects of the geologic disposal of high-level and long-lived radioactive wastes (HLLL) in granite formations. Content: 1 - introduction: ANDRA's research program on disposal in granitic formation; 2 - the granitic environment: geologic history, French granites; 3 - HLLL wastes and disposal design concepts; 4 - identification, characterization and modeling of a granitic site: approach, geologic modeling, hydrologic and hydro-geochemical modeling, geomechanical and thermal modeling, long-term geologic evolution of a site; 5 - phenomenological evolution of a disposal: main aspects of the evolution of a repository with time, disposal infrastructures, B-type wastes disposal area, C-type wastes disposal area; spent fuels disposal area, radionuclides transfer and retention in the granitic environment; 6 - conclusions: available knowledge, methods and tools for the understanding and modeling of the phenomenological evolution of a granitic disposal site. (J.S.)

  13. Why consider subseabed disposal of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Heath, G.R.; Hollister, C.D.; Anderson, D.R.; Leinen, M.

    1983-01-01

    There exist large areas of the deep seabed that warrant assessment as potential disposal sites for high-level radioactive wastes because (1) they are far from seismically and tectonically active lithospheric plate boundaries; (2) they are far from active or young volcanoes; (3) they contain thick layers of very uniform fine-grained clays; (4) they are devoid of natural resources likely to be exploited in the foreseeable future; (5) the geologic and oceanographic processes governing the deposition of sediments in such areas are well understood, and have been remarkably insensitive to past oceanic and climatic changes; and (6) sedimentary records of tens of millions of years of slow, uninterrupted deposition of fine-grained clay support predictions of the future stability of such sites. Data accumulated to date on the permeability, ion-retardation properties, and mechanical strength of pelagic clayey sediments indicate that they can act as a primary barrier to the escape of buried radionuclides. Work in progress should determine within the current decade whether subseabed disposal is environmentally acceptable and technically feasible, as well as address the legal, political, and social issues raised by this new concept

  14. Why consider subseabed disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Heath, G.R.; Hollister, C.D.; Anderson, D.R.; Leinen, M.

    1980-01-01

    Large areas of the deep seabed warrant assessment as potential disposal sites for high-level radioactive waste because: (1) they are far from seismically and tectonically active lithospheric plate boundaries; (2) they are far from active or young volcanos; (3) they contain thick layers of very uniform fine-grained clays; (4) they are devoid of natural resources likely to be exploited in the forseeable future; (5) the geologic and oceanographic processes governing the deposition of sediments in such areas are well understood, and are remarkably insensitive to past oceanographic and climatic changes; and (6) sedmentary records of tens of millions of years of slow, uninterrupted deposition of fine grained clay support predictions of the future stability of such sites. Data accumulated to date on the permeability, ion-retardation properties, and mechanical strength of pelagic clay sediments indicate that they can act as a primary barrier to the escape of buried nuclides. Work in progress should determine within the current decade whether subseabed disposal is environmentally acceptable and technically feasible, as well as address the legal, political and social issues raised by this new concept

  15. Environmental monitoring considerations for low-level waste disposal sites

    International Nuclear Information System (INIS)

    Sedlet, J.

    1982-01-01

    All waste disposal sites are required to monitor the environment. The proposed NRC licensing rule, 10 CFR Part 61, requires that such monitoring be conducted before, during, and after a site is operated. An adequate monitoring program consists of measuring concentrations of radionuclides, chemically-toxic substances, and leachate indicators in environmental media and of evaluating specific physical properties of the site. In addition, the composition of the buried waste must be known. Methods for obtaining this information are discussed and monitoring programs are presented for the preoperational, operational, and postclosure phases of a disposal site. Environmental monitoring is considered in a broad context, since it includes monitoring burial trenches onsite, as well as surveillance in the offsite environment. Postclosure monitoring programs will be strongly influenced by the operational monitoring results. In some respects, this phase will be easier since the migration pathways should be well known and the number of radionuclides of concern reduced by radioactive decay. The results of the environmental monitoring program will be vital to successful site operation. These results should be used to determine if operational changes are needed and to predict future environmental impacts

  16. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China.

    Science.gov (United States)

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-11-01

    Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the

  17. 12 CFR 41.83 - Disposal of consumer information.

    Science.gov (United States)

    2010-01-01

    ... Duties of Users of Consumer Reports Regarding Address Discrepancies and Records Disposal § 41.83 Disposal of consumer information. (a) Definitions as used in this section. (1) Bank means national banks... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Disposal of consumer information. 41.83 Section...

  18. Waste-acceptance criteria for greater confinement disposal

    International Nuclear Information System (INIS)

    Gilbert, T.L.; Meshkov, N.K.

    1987-01-01

    A methodology for establishing waste-acceptance criteria based on quantitative performance factors that characterize the confinement capabilities of a waste disposal site and facility has been developed. The methodology starts from the basic objective of protecting public health and safety by providing assurance that disposal of the waste will not result in a radiation dose to any member of the general public, in either the short or long term, in excess of an established basic dose limit. The method is based on an explicit, straight-forward, and quantitative relationship among individual risk, confinement capabilities, and waste characteristics. A key aspect of the methodology is introduction of a confinement factor that characterizes the overall confinement capability of a particular facility and can be used for quantitative assessments of the performance of different disposal sites and facilities, as well as for establishing site-specific waste acceptance criteria. Confinement factors are derived by means of site-specific pathway analyses. They make possible a direct and simple conversion of a basic dose limit into waste-acceptance criteria, specified as concentration limits on radionuclides in the waste streams and expressed in quantitative form as a function of parameters that characterize the site, facility design, waste containers, and waste form. Waste acceptance criteria can be represented visually as activity/time plots for various waste streams. These plots show the concentrations of radionuclides in a waste stream as a function of time and permit a visual, quantitative assessment of long-term performance, relative risks from different radionuclides in the waste stream, and contributions from ingrowth. 13 references, 7 figures

  19. Radiological Operational Safety Verification for LILW Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Youl [FNC Technology, SNU, Seoul (Korea, Republic of); Jeong, Seung Young; Kim, Byung Soo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2011-10-15

    The successful implementation of radioactive waste repository program depends on scientific and technical aspects of excellent safety strategy as well as on societal aspects such as stakeholder acceptance and confidence. Monitoring is considered as key element in serving both ends. It covers all stages of the disposal process from site selection to institutional monitoring after the repository is closed. Basically, the purpose of the monitoring of radioactive waste disposal facility is not to reveal any increase of radioactivity due to the repository, but to provide reassurance and confirmation that the repository is fulfilling its passive safety purpose as an initial disposal concept and that long-term safety driven by regulatory requirements is ensured throughout the entire lifetime of disposal facility including post-closure phase. Five principal objectives of monitoring of geological disposal are summarized by IAEA-TECDOC-1208 as follows 1) Supporting management decisions in a staged programme of repository development: 2) Strengthening understanding of system behavior: 3) Societal decision making: 4) Accumulating an environmental database: 5) Nuclear safeguards (if repository contains fissile material, i.e., spent fuel or plutonium-rich waste) Based on the results of detailed studies of the above objectives and related phenomena, 6 categories of potential monitoring parameters are determined as follows: (1) degradation of repository structures, (2) behavior of the waste package and its associated buffer material, (3) near field chemical interactions between introduced materials, groundwater and host rock, (4) chemical and physical changes to the surrounding geosphere, (5) provision of an environmental database, and (6) nuclear safeguards. Typical monitoring parameters include temperature (heat), water level, pore-water and moisture content (groundwater), rock pressure, fractures, displacement and deformation (stress), water quality chemistry and dissolved

  20. Borehole disposal of spent radiation sources: 1. Principles

    International Nuclear Information System (INIS)

    Blerk, J.J. van; Kozak, M.W.

    2000-01-01

    Large numbers of spent radiation sources from the medical and other technical professions exist in many countries, even countries that do not possess facilities related to the nuclear fuel cycle, that have to be disposed. This is particularly the case in Africa, South America and some members of the Russian Federation. Since these sources need to be handled separately from the other types of radioactive waste, mainly because of their activity to volume ratio, countries (even those with access to operational repositories) find it difficult to manage and dispose this waste. This has led to the use of boreholes as disposal units for these spent sources by some members of the Russian Federation and in South Africa. However, the relatively shallow boreholes used by these countries are not suitable for the disposal of isotopes with long half-lifes, such as 226 Ra and 241 Am. With this in mind the Atomic Energy Corporation of South Africa initiated the development of the BOSS disposal concept - an acronym for Borehole disposal Of Spent Sources - as part of an International Atomic Energy Agency (IAEA) AFRA I-14 Technical Corporation (TC) project. In this paper, the principles of this disposal concept, which is still under development, will be discussed. (author)

  1. Economics of low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Schafer, J.; Jennrich, E.

    1983-01-01

    Regardless of who develops new low-level radioactive waste disposal sites or when, economics will play a role. To assist in this area the Department of Energy's Low-Level Radioactive Waste Management Program has developed a computer program, LLWECON, and data base for projecting disposal site costs. This program and its non-site specific data base can currently be used to compare the costs associated with various disposal site development, financing, and operating scenarios. As site specific costs and requirements are refined LLWECON will be able to calculate exact life cycle costs for each facility. While designed around shallow land burial, as practiced today, LLWECON is flexible and the input parameters discrete enough to be applicable to other disposal options. What the program can do is illustrated

  2. Concept development for HLW disposal research tunnel

    International Nuclear Information System (INIS)

    Queon, S. K.; Kim, K. S.; Park, J. H.; Jeo, W. J.; Han, P. S.

    2003-01-01

    In order to dispose high-level radioactive waste in a geological formation, it is necessary to assess the safety of a disposal concept by excavating a research tunnel in the same geological formation as the host rock mass. The design concept of a research tunnel depends on the actual disposal concept, repository geometry, experiments to be carried at the tunnel, and geological conditions. In this study, analysis of the characteristics of the disposal research tunnel, which is planned to be constructed at KAERI site, calculation of the influence of basting impact on neighbor facilities, and computer simuation for mechanical stability analysis using a three-dimensional code, FLAC3D, had been carried out to develop the design concept of the research tunnel

  3. UK surplus source disposal programme - 16097

    International Nuclear Information System (INIS)

    John, Gordon H.; Reeves, Nigel; Nisbet, Amy C.; Garnett, Andrew; Williams, Clive R.

    2009-01-01

    The UK Surplus Source Disposal Programme (SSDP), managed by the Environment Agency, was designed to remove redundant radioactive sources from the public domain. The UK Government Department for Environment, Food and Rural Affairs (Defra) was concerned that disused sources were being retained by hospitals, universities and businesses, posing a risk to public health and the environment. AMEC provided a range of technical and administrative services to support the SSDP. A questionnaire was issued to registered source holders and the submitted returns compiled to assess the scale of the project. A member of AMEC staff was seconded to the Environment Agency to provide technical support and liaise directly with source holders during funding applications, which would cover disposal costs. Funding for disposal of different sources was partially based on a sliding scale of risk as determined by the IAEA hazard categorisation system. This funding was also sector dependent. The SSDP was subsequently expanded to include the disposal of luminised aircraft instruments from aviation museums across the UK. These museums often hold significant radiological inventories, with many items being unused and in a poor state of repair. These instruments were fully characterised on site by assessing surface dose rate, dimensions, source integrity and potential contamination issues. Calculations using the Microshield computer code allowed gamma radiation measurements to be converted into total activity estimates for each source. More than 11,000 sources were disposed of under the programme from across the medical, industrial, museum and academic sectors. The total activity disposed of was more than 8.5 E+14 Bq, and the project was delivered under budget. (authors)

  4. The surface disposal concept for LIL/SL waste

    International Nuclear Information System (INIS)

    2011-01-01

    Most low-level and intermediate-level short-lived (LIL/SL) waste result from the nuclear-power industry. Their specific activity level is sufficiently high to justify a protective conditioning and to ensure proper confinement until that level has decreased to harmless levels for human beings and the environment (a few centuries considering the half lives of the radionuclides contained in LIL/SL waste). The disposal concept for such residues relies on a multi-barrier protective system, each barrier being designed to fulfil different or redundant functions in order to delay or mitigate radionuclide transfers first into the environment and onwards to human beings. The originality of the concept pertains to its flexibility, since: it is adaptable to various geological environments and its overall performance may be guaranteed by modulating that of the engineered barriers, and it is suitable for the disposal of different types and sizes of waste packages, as long as their characteristics are consistent with acceptance criteria, which are de facto specific to each case. To provide its wide-ranging competences in the field of waste management and disposal, ANDRA offers multiple solutions, from consultancy and documents reviewing, to technology transfer and turnkey projects. The safety of the disposal facility is guaranteed by the combination of the package, the concrete structures, the filling materials between packages and the watertight clay cap that will be installed at the end of the operating lifetime of the facility. That layout also takes all natural risks into account. Lastly, all disposal structures are built away from any potential flood zones and from the highest possible level of the groundwater table. Concrete and metal packages are disposed of in slightly different structures. Once a structure is full, concrete packages are immobilised with gravel, whereas metal packages are blocked in place by pouring concrete between them. Once a disposal structure is

  5. The surface disposal concept for LIL/SL waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Most low-level and intermediate-level short-lived (LIL/SL) waste result from the nuclear-power industry. Their specific activity level is sufficiently high to justify a protective conditioning and to ensure proper confinement until that level has decreased to harmless levels for human beings and the environment (a few centuries considering the half lives of the radionuclides contained in LIL/SL waste). The disposal concept for such residues relies on a multi-barrier protective system, each barrier being designed to fulfil different or redundant functions in order to delay or mitigate radionuclide transfers first into the environment and onwards to human beings. The originality of the concept pertains to its flexibility, since: it is adaptable to various geological environments and its overall performance may be guaranteed by modulating that of the engineered barriers, and it is suitable for the disposal of different types and sizes of waste packages, as long as their characteristics are consistent with acceptance criteria, which are de facto specific to each case. To provide its wide-ranging competences in the field of waste management and disposal, ANDRA offers multiple solutions, from consultancy and documents reviewing, to technology transfer and turnkey projects. The safety of the disposal facility is guaranteed by the combination of the package, the concrete structures, the filling materials between packages and the watertight clay cap that will be installed at the end of the operating lifetime of the facility. That layout also takes all natural risks into account. Lastly, all disposal structures are built away from any potential flood zones and from the highest possible level of the groundwater table. Concrete and metal packages are disposed of in slightly different structures. Once a structure is full, concrete packages are immobilised with gravel, whereas metal packages are blocked in place by pouring concrete between them. Once a disposal structure is

  6. Advances in Geologic Disposal System Modeling and Shale Reference Cases

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Emily R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Frederick, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Glenn Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-22

    The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media (e.g., salt, granite, shale, and deep borehole disposal).

  7. Extending Spent Fuel Storage until Transport for Reprocessing or Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, Brett; Chiguer, Mustapha; Grahn, Per; Sampson, Michele; Wolff, Dietmar; Bevilaqua, Arturo; Wasinger, Karl; Saegusa, Toshiari; Seelev, Igor

    2016-09-01

    Spent fuel (SF) must be stored until an end point such as reprocessing or geologic disposal is imple-mented. Selection and implementation of an end point for SF depends upon future funding, legisla-tion, licensing and other factors that cannot be predicted with certainty. Past presumptions related to the availability of an end point have often been wrong and resulted in missed opportunities for properly informing spent fuel management policies and strategies. For example, dry cask storage systems were originally conceived to free up needed space in reactor spent fuel pools and also to provide SFS of up to 20 years until reprocessing and/or deep geological disposal became available. Hundreds of dry cask storage systems are now employed throughout the world and will be relied upon well beyond the originally envisioned design life. Given present and projected rates for the use of nuclear power coupled with projections for SF repro-cessing and disposal capacities, one concludes that SF storage will be prolonged, potentially for several decades. The US Nuclear Regulatory Commission has recently considered 300 years of storage to be appropriate for the characterization and prediction of ageing effects and ageing management issues associated with extending SF storage and subsequent transport. This paper encourages addressing the uncertainty associated with the duration of SF storage by de-sign – rather than by default. It suggests ways that this uncertainty may be considered in design, li-censing, policy, and strategy decisions and proposes a framework for safely extending spent fuel storage until SF can be transported for reprocessing or disposal – regardless of how long that may be. The paper however is not intended to either encourage or facilitate needlessly extending spent fuel storage durations. Its intent is to ensure a design and safety basis with sufficient margin to accommodate the full range of potential future scenarios. Although the focus is primarily on

  8. Whither nuclear waste disposal?

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, T A [JK Research Associates, Silver Spring, MD (United States)

    1990-07-01

    With respect to the argument that geologic disposal has failed, I do not believe that the evidence is yet sufficient to support that conclusion. It is certainly true that the repository program is not progressing as hoped when the Nuclear Waste Policy Act of 1982 established a 1998 deadline for initial operation of the first repository. The Department of Energy (DOE) now expects the repository to be available by 2010, and tat date depends upon a finding that the Yucca Mountain site - the only site that DOE is allowed by law to evaluate - is in fact suitable for use. Furthermore, scientific evaluation of the site to determine its suitability is stopped pending resolution of two lawsuits. However, I believe it is premature to conclude that the legal obstacles are insuperable, since DOE just won the first of the two lawsuits, and chances are good it will win the second. The concept of geologic disposal is still broadly supported. A recent report by the Board on Radioactive Waste Management of the National Research Council noted that 'There is a worldwide scientific consensus that deep geological disposal, the approach being followed in the United States, is the best option for disposing of high-level radioactive waste'. The U.S. Nuclear Regulatory Commission (USNRC) recently implicitly endorsed this view in adopting an updated Waste Confidence position that found confidence that a repository could be available in the first quarter of the next century - sufficient time to allow for rejection of Yucca Mountain and evaluation of a new site.

  9. Whither nuclear waste disposal?

    International Nuclear Information System (INIS)

    Cotton, T.A.

    1990-01-01

    With respect to the argument that geologic disposal has failed, I do not believe that the evidence is yet sufficient to support that conclusion. It is certainly true that the repository program is not progressing as hoped when the Nuclear Waste Policy Act of 1982 established a 1998 deadline for initial operation of the first repository. The Department of Energy (DOE) now expects the repository to be available by 2010, and tat date depends upon a finding that the Yucca Mountain site - the only site that DOE is allowed by law to evaluate - is in fact suitable for use. Furthermore, scientific evaluation of the site to determine its suitability is stopped pending resolution of two lawsuits. However, I believe it is premature to conclude that the legal obstacles are insuperable, since DOE just won the first of the two lawsuits, and chances are good it will win the second. The concept of geologic disposal is still broadly supported. A recent report by the Board on Radioactive Waste Management of the National Research Council noted that 'There is a worldwide scientific consensus that deep geological disposal, the approach being followed in the United States, is the best option for disposing of high-level radioactive waste'. The U.S. Nuclear Regulatory Commission (USNRC) recently implicitly endorsed this view in adopting an updated Waste Confidence position that found confidence that a repository could be available in the first quarter of the next century - sufficient time to allow for rejection of Yucca Mountain and evaluation of a new site

  10. Disposal of high level radioactive waste consideration of some basic criteria

    International Nuclear Information System (INIS)

    1993-01-01

    The series of Nordic documents on radiation protection principles present the joint views of the Nordic authorities on radiation protection issues. These views are to be regarded as recommendations to the same Nordic authorities to be considered in their work on national regulations and applications. This document deals with the principles of disposal of high level radioactive waste, including spent fuels, and is therefore intended for authorities in nuclear safety as well as radiation protection. The emphasis is on radiation protection criteria, and the document is primarily directed to the authorities but can also be of interest to the nuclear power industry in its planning of disposal facilities. It can also be used as a source of information on the problems associated with high level waste and on the principles by which these problems would be solved. The main emphasis has been placed on the long-term aspects. The recommendations given by ICRP and the ideas and discussions presented by NEA and IAEA in various publications were the main documents taken into account. The discussions concentrate on the deep geological repository which is the main disposal concept currently being considered in the Nordic countries. The plans in Finland and Sweden include the selection of a disposal site around the year 2000 and a construction period in the early part of the next century. 32 refs, 3 figs

  11. Final disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1995-10-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK).

  12. Final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK)

  13. A preliminary evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste

    International Nuclear Information System (INIS)

    Smith, T.H.; Roesener, W.S.; Jorgenson-Waters, M.J.

    1993-07-01

    The Mixed and Low-Level Waste Disposal Facility (MLLWDF) project was established in 1992 by the US Department of Energy Idaho Operations Office to provide enhanced disposal capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This Preliminary Evaluation of Alternatives for Disposal of INEL Low-Level Waste and Low-Level Mixed Waste identifies and evaluates-on a preliminary, overview basis-the alternatives for disposal of that waste. Five disposal alternatives, ranging from of no-action'' to constructing and operating the MLLWDF, are identified and evaluated. Several subalternatives are formulated within the MLLWDF alternative. The subalternatives involve various disposal technologies as well as various scenarios related to the waste volumes and waste forms to be received for disposal. The evaluations include qualitative comparisons of the projected isolation performance for each alternative, and facility, health and safety, environmental, institutional, schedule, and rough order-of-magnitude life-cycle cost comparisons. The performance of each alternative is evaluated against lists of ''musts'' and ''wants.'' Also included is a discussion of other key considerations for decisionmaking. The analysis of results indicated further study is necessary to obtain the best estimate of long-term future waste volume and characteristics from the INEL Environmental Restoration activities and the expanded INEL Decontamination and Decommissioning Program

  14. Cost considerations in remediation and disposal

    International Nuclear Information System (INIS)

    Dance, J.T.; Huddleston, R.D.

    1999-01-01

    Opportunities for assessing the costs associated with the reclamation and remediation of sites contaminated by oilfield wastes are discussed. The savings can be maximized by paying close attention to five different aspects of the overall site remediation and disposal process. These are: (1) highly focused site assessment, (2) cost control of treatment and disposal options, (3) value added cost benefits, (4) opportunities to control outside influences during the remedial process, and (5) opportunities for managing long-term liabilities and residual risk remaining after the remedial program is completed. It is claimed that addressing these aspects of the process will ultimately lower the overall cost of site remediation and waste disposal

  15. Radioactive waste management and disposal in Australia

    International Nuclear Information System (INIS)

    Harries, J.R.

    1997-01-01

    A national near-surface repository at a remote and arid location is proposed for the disposal of solid low-level and short-lived intermediate-level radioactive wastes in Australia. The repository will be designed to isolate the radioactive waste from the human environment under controlled conditions and for a period long enough for the radioactivity to decay to low levels. Compared to countries that have nuclear power programs, the amount of waste in Australia is relatively small. Nevertheless, the need for a national disposal facility for solid low-level radioactive and short-lived intermediate-level radioactive wastes is widely recognised and the Federal Government is in the process of selecting a site for a national near-surface disposal facility for low and short-lived intermediate level wastes. Some near surface disposal facilities already exist in Australia, including tailings dams at uranium mines and the Mt Walton East Intractable Waste Disposal Facility in Western Australia which includes a near surface repository for low level wastes originating in Western Australia. 7 refs, 1 fig., 2 tabs

  16. Method of ground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Harashina, Heihachi.

    1991-01-01

    Rock bases are drilled to form a disposal hole, an overhanging hole and a burying hole each as a shaft. An appropriate number of canisters prepared by vitrification of high level radioactive wastes are charged in the disposal hole with a gap to the inner wall of the hole. Shock absorbers each made of bentonite are filled between each of the canisters and between the canister and the inner wall of the disposal hole, and the canisters are entirely covered with the layer of the shock absorbers. Further, plucking materials having water sealing property such as cement mortar are filled thereover. With such a constitution, in a case if water should intrude into the overhung portion, since the disposal hole is covered with the large flange portion in addition to the water sealing performance of the plucking, the shock absorbers and the canisters undergo no undesirable effects. Further, in a case if water should intrude to the disposal hole, the shock absorber layers are swollen by water absorption, to suppress the intrusion of water. (T.M.)

  17. Important issues in disposal of L/ILW

    International Nuclear Information System (INIS)

    McCombie, C.

    1987-01-01

    Today waste disposal is a challenging technical and political issue. In many countries the acceptance of nuclear power has been tied formally or informally to the convincing demonstration that we can dispose of all radioactive wastes with a very high degree of safety exceeding the expected for other toxic or hazardous wastes. The importance of the public acceptance aspects and the more obviously striking characteristics of high-level wastes (HLW) - in particular their high initial radiation, their heat emission and their long decay times - led to an early concentration of effort on planning and analyzing HLW disposal. On the other hand, the problems of disposing of low- and inter-mediate-level wastes (L/ILW) are in many ways more immediate. These wastes are arising today in quantities which can make continued storge troublesome; accordingly increased effort is being expended in many countries on organizing the safe, final disposal of L/ILW. Some of the technical issues of importance which arise in the corresponding planning and analysis of repository projects for L/ILW are discussed in this paper

  18. LLNL Input to SNL L2 MS: Report on the Basis for Selection of Disposal Options

    International Nuclear Information System (INIS)

    Sutton, M.; Blink, J.A.; Halsey, W.G.

    2011-01-01

    This mid-year deliverable has two parts. The first part is a synopsis of J. Blink's interview of the former Nevada Attorney General, Frankie Sue Del Papa, which was done in preparation for the May 18-19, 2010 Legal and Regulatory Framework Workshop held in Albuquerque. The second part is a series of sections written as input for the SNL L2 Milestone M21UF033701, due March 31, 2011. Disposal of high-level radioactive waste is categorized in this review into several categories. Section II discusses alternatives to geologic disposal: space, ice-sheets, and an engineered mountain or mausoleum. Section III discusses alternative locations for mined geologic disposal: islands, coastlines, mid-continent, and saturated versus unsaturated zone. Section IV discusses geologic disposal alternatives other than emplacement in a mine: well injection, rock melt, sub-seabed, and deep boreholes in igneous or metamorphic basement rock. Finally, Secton V discusses alternative media for mined geologic disposal: basalt, tuff, granite and other igneous/metamorphic rock, alluvium, sandstone, carbonates and chalk, shale and clay, and salt.

  19. LLNL Input to SNL L2 MS: Report on the Basis for Selection of Disposal Options

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, M; Blink, J A; Halsey, W G

    2011-03-02

    This mid-year deliverable has two parts. The first part is a synopsis of J. Blink's interview of the former Nevada Attorney General, Frankie Sue Del Papa, which was done in preparation for the May 18-19, 2010 Legal and Regulatory Framework Workshop held in Albuquerque. The second part is a series of sections written as input for the SNL L2 Milestone M21UF033701, due March 31, 2011. Disposal of high-level radioactive waste is categorized in this review into several categories. Section II discusses alternatives to geologic disposal: space, ice-sheets, and an engineered mountain or mausoleum. Section III discusses alternative locations for mined geologic disposal: islands, coastlines, mid-continent, and saturated versus unsaturated zone. Section IV discusses geologic disposal alternatives other than emplacement in a mine: well injection, rock melt, sub-seabed, and deep boreholes in igneous or metamorphic basement rock. Finally, Secton V discusses alternative media for mined geologic disposal: basalt, tuff, granite and other igneous/metamorphic rock, alluvium, sandstone, carbonates and chalk, shale and clay, and salt.

  20. Integrated Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the center of the 586-square-mile Hanford Site is the Integrated Disposal Facility, also known as the IDF.This facility is a landfill similar in concept...

  1. Geotechnical engineering for ocean waste disposal. An introduction

    Science.gov (United States)

    Lee, Homa J.; Demars, Kenneth R.; Chaney, Ronald C.; ,

    1990-01-01

    As members of multidisciplinary teams, geotechnical engineers apply quantitative knowledge about the behavior of earth materials toward designing systems for disposing of wastes in the oceans and monitoring waste disposal sites. In dredge material disposal, geotechnical engineers assist in selecting disposal equipment, predict stable characteristics of dredge mounds, design mound caps, and predict erodibility of the material. In canister disposal, geotechnical engineers assist in specifying canister configurations, predict penetration depths into the seafloor, and predict and monitor canister performance following emplacement. With sewage outfalls, geotechnical engineers design foundation and anchor elements, estimate scour potential around the outfalls, and determine the stability of deposits made up of discharged material. With landfills, geotechnical engineers evaluate the stability and erodibility of margins and estimate settlement and cracking of the landfill mass. Geotechnical engineers also consider the influence that pollutants have on the engineering behavior of marine sediment and the extent to which changes in behavior affect the performance of structures founded on the sediment. In each of these roles, careful application of geotechnical engineering principles can contribute toward more efficient and environmentally safe waste disposal operations.

  2. Production and disposal of waste materials from gas and oil extraction from the Marcellus Shale Play in Pennsylvania

    Science.gov (United States)

    Maloney, Kelly O.; Yoxtheimer, David A.

    2012-01-01

    The increasing world demand for energy has led to an increase in the exploration and extraction of natural gas, condensate, and oil from unconventional organic-rich shale plays. However, little is known about the quantity, transport, and disposal method of wastes produced during the extraction process. We examined the quantity of waste produced by gas extraction activities from the Marcellus Shale play in Pennsylvania for 2011. The main types of wastes included drilling cuttings and fluids from vertical and horizontal drilling and fluids generated from hydraulic fracturing [i.e., flowback and brine (formation) water]. Most reported drill cuttings (98.4%) were disposed of in landfills, and there was a high amount of interstate (49.2%) and interbasin (36.7%) transport. Drilling fluids were largely reused (70.7%), with little interstate (8.5%) and interbasin (5.8%) transport. Reported flowback water was mostly reused (89.8%) or disposed of in brine or industrial waste treatment plants (8.0%) and largely remained within Pennsylvania (interstate transport was 3.1%) with little interbasin transport (2.9%). Brine water was most often reused (55.7%), followed by disposal in injection wells (26.6%), and then disposed of in brine or industrial waste treatment plants (13.8%). Of the major types of fluid waste, brine water was most often transported to other states (28.2%) and to other basins (9.8%). In 2011, 71.5% of the reported brine water, drilling fluids, and flowback was recycled: 73.1% in the first half and 69.7% in the second half of 2011. Disposal of waste to municipal sewage treatment plants decreased nearly 100% from the first half to second half of 2011. When standardized against the total amount of gas produced, all reported wastes, except flowback sands, were less in the second half than the first half of 2011. Disposal of wastes into injection disposal wells increased 129.2% from the first half to the second half of 2011; other disposal methods decreased. Some

  3. Disposal of hazardous wastes

    International Nuclear Information System (INIS)

    Barnhart, B.J.

    1978-01-01

    The Fifth Life Sciences Symposium entitled Hazardous Solid Wastes and Their Disposal on October 12 through 14, 1977 was summarized. The topic was the passage of the National Resources Conservation and Recovery Act of 1976 will force some type of action on all hazardous solid wastes. Some major points covered were: the formulation of a definition of a hazardous solid waste, assessment of long-term risk, list of specific materials or general criteria to specify the wastes of concern, Bioethics, sources of hazardous waste, industrial and agricultural wastes, coal wastes, radioactive wastes, and disposal of wastes

  4. Disposal of Radioactive Waste. Specific Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  5. Sorption/ desorption studies of some radionuclides between disposal soil fractions and ground water. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    El-Reefy, S A; Ali, A [Hot Lab. Centre, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The radioactive waste management program in egypt includes shallow land disposal area for waste package disposal. The proposed site is located to the east of the Hot laboratory centre at Inchas. Assessment of the efficiency of the different sediments and rocks found in this area as a barrier against release of radioactive nuclide to the environment is of major importance. This study is related to evaluate the migration of Cs, Co, and Am within the environment of this site. In this concern, seven soil fractions were taken from a digging well from the proposed disposal site at different depths down to the basalt sheets. A column was constructed containing the soil fractions representing the stratigraphic successions taken from the site. The radionuclides; Cs-137, Co-60, and Am-241 were in this investigation representatives for mono, di- and tri-valent elements and also represented the radionuclides which are mostly associated with radioactive wastes. The sorption/ desorption studies of these radionuclides with the different soil fractions and ground water from the proposed disposal site were carried out. The results obtained were used to predict the migration pathways of these radionuclides within the disposal environment. 2 figs., 1 tab.

  6. Sorption/ desorption studies of some radionuclides between disposal soil fractions and ground water. Vol. 3

    International Nuclear Information System (INIS)

    El-Reefy, S.A.; Ali, A.

    1996-01-01

    The radioactive waste management program in egypt includes shallow land disposal area for waste package disposal. The proposed site is located to the east of the Hot laboratory centre at Inchas. Assessment of the efficiency of the different sediments and rocks found in this area as a barrier against release of radioactive nuclide to the environment is of major importance. This study is related to evaluate the migration of Cs, Co, and Am within the environment of this site. In this concern, seven soil fractions were taken from a digging well from the proposed disposal site at different depths down to the basalt sheets. A column was constructed containing the soil fractions representing the stratigraphic successions taken from the site. The radionuclides; Cs-137, Co-60, and Am-241 were in this investigation representatives for mono, di- and tri-valent elements and also represented the radionuclides which are mostly associated with radioactive wastes. The sorption/ desorption studies of these radionuclides with the different soil fractions and ground water from the proposed disposal site were carried out. The results obtained were used to predict the migration pathways of these radionuclides within the disposal environment. 2 figs., 1 tab

  7. Development of an integrated software system (Digital Geological Disposal System) for design and evaluation of HLW disposal system

    International Nuclear Information System (INIS)

    Fusaeda, Shigeki; Yanagisawa, Ichiro; Imamura, Naoko

    2000-02-01

    In this study, a design study on 'Digital Geological Disposal System' has been carried out in order to define the developmental goal for the first phase (- FY2002) system and to demonstrate the feasibility of the system development. The key conclusions are summarized as follows: (1) As the result of the basic design of the Integrated Analysis Platform (IAP), the representation method for PLAN (Process Linkage Analysis Network), the PLAN objects configuration and definition and the execution control mechanism of PLAN are newly proposed in order to enhance the flexibility of IAP. (2) A prototyping study concerning an optimization problem that includes cavity stability analysis and thermal analysis, showed that the design of IAP is practical one and also has enough flexibility to solve complex problems expected in the repository design processes. (3) The development plan for the Digital Geological Disposal System' has been investigated based on the discussions about the system usage by the potential users such as the regulators, the implementation body and the research institutes, as well as the technical discussions. As a result, short-term (for the first phase) and long-term development plans have been proposed. (author)

  8. The disposal of Canada's nuclear fuel waste: postclosure assessment of a reference system

    International Nuclear Information System (INIS)

    Goodwin, B.W.; McConnell, D.B.; Andres, T.H.

    1994-01-01

    The concept for disposal of Canada's nuclear fuel waste is based on a vault located deep in plutonic rock of the Canadian Shield. We document in this report a method to assess the long-term impacts of a disposal facility for nuclear fuel waste. The assessment integrates relevant information from engineering design studies, site investigations, laboratory studies, expert judgment and detailed mathematical analyses to evaluate system performance in terms of safety criteria, guidelines and standards. The method includes the use of quantitative tools such as the Systems Variability Analysis computer Code (SYVAC) to deal with parameter uncertainty and the use of reasoned arguments based on well-established scientific principles. We also document the utility of the method by describing its application to a hypothetical implementation of the concept called the reference disposal system. The reference disposal system generally conforms to the overall characteristics of the concept, except we have made some specific site and design choices so that the assessment would be more realistic. To make the reference system more representative of a real system, we have used the geological observations of the AECL's Whiteshell Research Area located near Lac du Bonnet, Manitoba, to define the characteristics of the geosphere and the groundwater flow system. This research area has been subject to more than a decade of geological and hydrological studies. The analysis of the reference disposal system provides estimates of radiological and chemical toxicity impacts on members of a critical group and estimates of possible impacts on the environment. The latter impacts include estimates of radiation dose to nonhuman organisms. Other quantitative analyses examine the use of derived constraints to improve the margin of safety, the effectiveness of engineered and natural barriers, and the sensitivity of the results to influential features, events, and processes of the reference disposal

  9. Subseabed Disposal Program Plan. Volume I. Overview

    International Nuclear Information System (INIS)

    1981-07-01

    The primary objective of the Subseabed Disposal Program (SDP) is to assess the scientific, environmental, and engineering feasibility of disposing of processed and packaged high-level nuclear waste in geologic formations beneath the world's oceans. High-level waste (HLW) is considered the most difficult of radioactive wastes to dispose of in oceanic geologic formations because of its heat and radiation output. From a scientific standpoint, the understanding developed for the disposal of such HLW can be used for other nuclear wastes (e.g., transuranic - TRU - or low-level) and materials from decommissioned facilities, since any set of barriers competent to contain the heat and radiation outputs of high-level waste will also contain such outputs from low-level waste. If subseabed disposal is found to be feasible for HLW, then other factors such as cost will become more important in considering subseabed emplacement for other nuclear wastes. A secondary objective of the SDP is to develop and maintain a capability to assess and cooperate with the seabed nuclear waste disposal programs of other nations. There are, of course, a number of nations with nuclear programs, and not all of these nations have convenient access to land-based repositories for nuclear waste. Many are attempting to develop legislative and scientific programs that will avoid potential hazards to man, threats to other ocean uses, and marine pollution, and they work together to such purpose in meetings of the international NEA/Seabed Working Group. The US SDP, as the first and most highly developed R and D program in the area, strongly influences the development of subseabed-disposal-related policy in such nations

  10. Disposal of Radioactive Wastes. Vol. II. Proceedings of the Scientific Conference on the Disposal of Radioactive Wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-07-01

    Almost every human activity creates some kind of waste. Whether it is harmful, inconvenient, neutral or even positively useful in some other activity depends largely on its nature, which can often be changed by some fairly simple chemical process so as to neutralize harmful wastes, render inconvenient wastes useful, and so on. Radioactive ''waste'' can be extremely harmful or useful, again depending on its form and the way it is handled; but its essential nature cannot be changed or destroyed by any means at present under the control of man. Furthermore, the harmful waste of today may well become the useful raw material of tomorrow. As more and more countries embark on programs of nuclear research and nuclear power, the quantities of radioactive material to be disposed of are rapidly increasing and the problems of safeguarding humanity on the one hand and of storing possibly useful material on the other are assuming great importance. It was for these reasons that the International Atomic Energy Agency and the United Nations Educational, Scientific and Cultural Organization combined their forces in sponsoring and organizing, with the co-operation of the Food and Agricultural Organization of the United Nations, a large scientific conference devoted to the subject of the disposal of radioactive wastes. The Conference was held from 16 to 21 November 1959 at the Oceanographic Museum in Monaco, in deference to the leading position of this institution in the field of oceanography, which is an extremely important discipline in relation to the disposal of wastes into the sea. A total of 283 scientists attended, representing 31 countries and 11 international organizations. It is with the consciousness of offering scientific information of great value to the future progress of an extremely important field of knowledge that I now commend these Proceedings to the earnest attention of all workers in that field.

  11. Disposal of Radioactive Wastes. Vol. I. Proceedings of the Scientific Conference on the Disposal of Radioactive Wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-07-01

    Almost every human activity creates some kind of waste. Whether it is harmful, inconvenient, neutral or even positively useful in some other activity depends largely on its nature, which can often be changed by some fairly simple chemical process so as to neutralize harmful wastes, render inconvenient wastes useful, and so on. Radioactive ''waste'' can be extremely harmful or useful, again depending on its form and the way it is handled; but its essential nature cannot be changed or destroyed by any means at present under the control of man. Furthermore, the harmful waste of today may well become the useful raw material of tomorrow. As more and more countries embark on programs of nuclear research and nuclear power, the quantities of radioactive material to be disposed of are rapidly increasing and the problems of safeguarding humanity on the one hand and of storing possibly useful material on the other are assuming great importance. It was for these reasons that the International Atomic Energy Agency and the United Nations Educational, Scientific and Cultural Organization combined their forces in sponsoring and organizing, with the co-operation of the Food and Agricultural Organization of the United Nations, a large scientific conference devoted to the subject of the disposal of radioactive wastes. The Conference was held from 16 to 21 November 1959 at the Oceanographic Museum in Monaco, in deference to the leading position of this institution in the field of oceanography, which is an extremely important discipline in relation to the disposal of wastes into the sea. A total of 283 scientists attended, representing 31 countries and 11 international organizations. It is with the consciousness of offering scientific information of great value to the future progress of an extremely important field of knowledge that I now commend these Proceedings to the earnest attention of all workers in that field.

  12. Disposal of Radioactive Wastes. Vol. I. Proceedings of the Scientific Conference on the Disposal of Radioactive Wastes

    International Nuclear Information System (INIS)

    1960-01-01

    Almost every human activity creates some kind of waste. Whether it is harmful, inconvenient, neutral or even positively useful in some other activity depends largely on its nature, which can often be changed by some fairly simple chemical process so as to neutralize harmful wastes, render inconvenient wastes useful, and so on. Radioactive ''waste'' can be extremely harmful or useful, again depending on its form and the way it is handled; but its essential nature cannot be changed or destroyed by any means at present under the control of man. Furthermore, the harmful waste of today may well become the useful raw material of tomorrow. As more and more countries embark on programs of nuclear research and nuclear power, the quantities of radioactive material to be disposed of are rapidly increasing and the problems of safeguarding humanity on the one hand and of storing possibly useful material on the other are assuming great importance. It was for these reasons that the International Atomic Energy Agency and the United Nations Educational, Scientific and Cultural Organization combined their forces in sponsoring and organizing, with the co-operation of the Food and Agricultural Organization of the United Nations, a large scientific conference devoted to the subject of the disposal of radioactive wastes. The Conference was held from 16 to 21 November 1959 at the Oceanographic Museum in Monaco, in deference to the leading position of this institution in the field of oceanography, which is an extremely important discipline in relation to the disposal of wastes into the sea. A total of 283 scientists attended, representing 31 countries and 11 international organizations. It is with the consciousness of offering scientific information of great value to the future progress of an extremely important field of knowledge that I now commend these Proceedings to the earnest attention of all workers in that field

  13. Estimating waste disposal quantities from raw waste samples

    International Nuclear Information System (INIS)

    Negin, C.A.; Urland, C.S.; Hitz, C.G.; GPU Nuclear Corp., Middletown, PA)

    1985-01-01

    Estimating the disposal quantity of waste resulting from stabilization of radioactive sludge is complex because of the many factors relating to sample analysis results, radioactive decay, allowable disposal concentrations, and options for disposal containers. To facilitate this estimation, a microcomputer spread sheet template was created. The spread sheet has saved considerable engineering hours. 1 fig., 3 tabs

  14. Pathways for Disposal of Commercially-Generated Tritiated Waste

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Nancy V. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Environmental Sciences and Biotechnology

    2016-09-26

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  15. Pathways for Disposal of Commercially-Generated Tritiated Waste

    International Nuclear Information System (INIS)

    Halverson, Nancy V.

    2016-01-01

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  16. Disposal leachates treatment

    Energy Technology Data Exchange (ETDEWEB)

    Coulomb, I.; Renaud, P. (SITA, 75 - Paris (France)); Courant, P. (FD Conseil, 78 - Gargenville (France)); Manem, J.; Mandra, V.; Trouve, E. (Lyonnaise des Eaux-Dumez, 78 - Le Pecq (France))

    1993-12-01

    Disposal leachates are complex and variable effluents. The use of a bioreactor with membranes, coupled with a reverse osmosis unit, gives a new solution to the technical burying centers. Two examples are explained here.

  17. Management and disposal of radioactive waste from clean-up operations

    International Nuclear Information System (INIS)

    Lehto, J.

    1997-01-01

    Clean-up of large contaminated areas may create enormous amounts of radioactive waste which need to be safely disposed of. Disposal of the waste may include pre-treatment and transportation to a final repository. There is much experience of the removal and disposal of large amounts of radioactive contaminated material from uranium mill tailings sites. For example, in Salt Lake City, USA, two million tons of radium-containing waste was transported 140 km by rail to a disposal site. In Port Hope, Canada, 70,000 cubic meters of similar waste were moved by road to a disposal site 350 km away. The disposal of the uranium mill tailings can be pre-planned, but an accident situation is quite different. In an emergency, decisions on how to deal with the waste from the clean-up may have to be made rapidly and disposal options may be limited. After the Chernobyl accident, large amounts of contaminated material (mainly soil and trees) were disposed of in shallow pits and surface mounds. Overall, approximately 4x10 6 m 3 of waste were distributed between about 800 disposal sites. Because the amounts of waste after a major nuclear accident could be large, their final disposal may require large human and capital resources. Depending on the scale it is possible that the wastes will have to be placed in several final disposal sites. These are likely to be pits or surface mounds. Such repositories may need clay or concrete liners to prevent migration of the radionuclides from the disposal sites. (EG)

  18. Disposal of high level and long lived radioactive waste in deep geological formation

    International Nuclear Information System (INIS)

    Niezborala, J.M.; Hoorelbeke, J.M.

    2000-01-01

    The status of ANDRA's research program on high level and long lived waste corresponds to the start of construction of the Meuse/Haute-Marne Underground Research Laboratory in an argillite layer, as well as to the selection in 1999 of preliminary disposal concepts corresponding to this layer. The paper describes the preliminary concepts dealing with transuranic waste, high level vitrified waste and potentially disposed spent fuel. Provision is made for a high level of flexibility, in particular with regard to options of reversibility of the disposal process, and to potential evolutions of the waste inventory. These concepts were selected for research purpose to assess by the year 2006 the feasibility of a potential repository, with.respect in particular to safety rules. The paper mentions the research targets of the program aiming at answering major scientific and technological questions raised by the concepts. The program includes the fitting and validation of the modelling, on the basis in particular of the experimental work to be carried out in the Underground Research Laboratory, making it possible to dimension the disposal concepts and to assess their safety. (authors)

  19. Licensing and Operations of the Clive, Utah Low-Level Containerized Radioactive Waste Disposal Facility- A Continuation of Excellence

    International Nuclear Information System (INIS)

    Ledoux, M. R.; Cade, M. S.

    2002-01-01

    Envirocare's Containerized Waste Facility (CWF) is the first commercial low-level radioactive waste disposal facility to be licensed in the 21st century and the first new site to be opened and operated since the late 1970's. The licensing of this facility has been the culmination of over a decade's effort by Envirocare of Utah at their Clive, Utah site. With the authorization to receive and dispose of higher activity containerized Class A low-level radioactive waste (LLRW), this facility has provided critical access to disposal for the nuclear power industry, as well as the related research and medical communities. This paper chronicles the licensing history and operational efforts designed to address the disposal of containerized LLRW in accordance with state and federal regulations

  20. Development of LLW and VLLW disposal business cost estimation system

    International Nuclear Information System (INIS)

    Koibuchi, Hiroko; Ishiguro, Hideharu; Matsuda, Kenji

    2004-01-01

    In order to undertake the LLW and VLLW disposal business, various examinations are carried out in RANDEC. Since it is important in undertaking this business to secure funds, a disposal cost must be calculated by way of trial. However, at present, there are many unknown factors such as the amount of wastes, a disposal schedule, the location of a disposal site, and so on, and the cost cannot be determined. Meanwhile, the cost depends on complicated relations among these factors. Then, a 'LLW and VLLW disposal business cost estimation system' has been developed to calculate the disposal cost easily. This system can calculate an annual balance of payments by using a construction and operation cost of disposal facilities, considering economic parameters of tax, inflation rate, interest rate and so on. And the system can calculate internal reserves to assign to next-stage upkeep of the disposal facilities after the disposal operation. A model of disposal site was designed based on assumption of some preconditions and a study was carried out to make a trial calculation by using the system. Moreover, it will be required to reduce construction cost by rationalizing the facility and to make flat an annual business spending by examining the business schedule. (author)