WorldWideScience

Sample records for disposal test project

  1. Project W-049H disposal facility test report

    International Nuclear Information System (INIS)

    Buckles, D.I.

    1995-01-01

    The purpose of this Acceptance Test Report (ATR) for the Project W-049H, Treated Effluent Disposal Facility, is to verify that the equipment installed in the Disposal Facility has been installed in accordance with the design documents and function as required by the project criteria

  2. Acceptance test procedure: RMW Land Disposal Facility Project W-025

    International Nuclear Information System (INIS)

    Roscha, V.

    1994-01-01

    This ATP establishes field testing procedures to demonstrate that the electrical/instrumentation system functions as intended by design for the Radioactive Mixed Waste Land Disposal Facility. Procedures are outlined for the field testing of the following: electrical heat trace system; transducers and meter/controllers; pumps; leachate storage tank; and building power and lighting

  3. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP)

  4. The HAW Project. Test disposal of highly radioactive radiation sources in the Asse salt mine

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Mueller-Lyda, I.; Raynal, M.; Major, J.C.

    1993-01-01

    In order to prove the safe disposal of high-level radioactive waste (HAW) in salt a five years test disposal of thirty highly radioactive canisters is planned in the Asse salt mine in the Federal Republic of Germany. The thirty canisters containing the radionuclides Caesium 137 and Strontium 90 in quantities sufficient to cover the bandwith of heat generation and gamma radiation of real HAW will be emplaced in six boreholes located in two galleries at the 800-m-level. Two electrical heater tests were already started in November 1988 and are continuously surveyed in respect of the thermomechanical and geochemical response of the rock mass. Also the handling system necessary for the emplacement of the radioactive canisters was developed and successfully tested. A laboratory investigation programme on radiation effects in salt is being performed in advance to the radioactive canister emplacement. This programme includes the investigation of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. For gamma dose and dose rate measurements in the test field measuring systems consisting of ionization chambers as well as solid state dosemeters were developed and tested. 70 refs

  5. The HAW-Project. Test disposal of highly radioactive radiation sources in the Asse salt mine. Final report

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Cuevas, C. de las; Donker, H.; Feddersen, H.K.; Garcia-Celma, A.; Gies, H.; Goreychi, M.; Graefe, V.; Heijdra, J.; Hente, B.; Jockwer, N.; LeMeur, R.; Moenig, J.; Mueller, K.; Prij, J.; Regulla, D.; Smailos, E.; Staupendahl, G.; Till, E.; Zankl, M.

    1995-01-01

    In order to improve the final concept for the disposal of high-level radioactive waste (HAW) in boreholes drilled into salt formation plans were developed a couple of years ago for a full scale testing of the complete technical system of an underground repository. To satisfy the test objectives, thirty highly radioactive radiation sources were planned to be emplaced in six boreholes located in two test galleries at the 800-m-level in the Asse salt mine. A duration of testing of approximately five years was envisaged. Because of licensing uncertainties the German Federal Government decided on December 3rd, 1992 to stop all activities for the preparation of the test disposal immediately. In the course of the preparation of the test disposal, however, a system, necessary for handling of the radiation sources was developed and installed in the Asse salt mine and two non-radioactive reference tests with electrical heaters were started in November 1988. These tests served for the investigation of thermal effects in comparison to the planned radioactive tests. An accompanying scientific investigation programme performed in situ and in the laboratory comprises the estimation and observation of the thermal, radiation-induced, and mechanical interaction between the rock salt and the electrical heaters and the radiation sources, respectively. The laboratory investigations are carried out at Braunschweig (FRG), Petten (NL), Saclay (F) and Barcelona (E). As a consequence of the premature termination of the project the working programme was revised. The new programme agreed to by the project partners included a controlled shutdown of the heater tests in 1993 and a continuation of the laboratory activities until the end of 1994. (orig.)

  6. The HAW-Project: Test disposal of highly radioactive radiation sources in the Asse salt mine

    International Nuclear Information System (INIS)

    1992-04-01

    Two electrical heater tests were already started in November 1988 and are continuously surveyed in respect of the thermomechanical and geochemical response of the rock mass. Also the handling system necessary for the emplacement of 30 radioactive canisters (Sr-90 and Cs-137 sources) was developed and succesfully tested. This system consists of six multiple transport and storage casks of the type Castor-GSF-5, two above ground/below ground shuttle transport casks of the type Asse TB1, an above ground transfer station, an underground transport vehicle, a disposal machine, and a borehole slider. A laboratory investigation program on radiation effects in salt is being performed in advance to the radioactive canister emplacement. This program includes the investigation of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. For gamma dose and dose rate measurements in the test field measuring systems consisting of ionisation chambers as well as solid state dosemeters were developed and tested. Thermomechanical computer code validation is performed by calculational predictions and parallel investigation of the stress and displacement fields in the underground test field. (orig./HP)

  7. In situ testing to determination field-saturated hydraulic conductivity of UMTRA Project disposal cell covers, liners, and foundation areas

    International Nuclear Information System (INIS)

    1994-02-01

    This special study was conducted to prepare a guidance document for selecting in situ hydraulic conductivity (K) tests, comparing in situ testing methods, and evaluating the results of such tests. This report may be used as a practical decision-making tool by the Uranium Mill Tailings Remedial Action (UMTRA) Project staff to determine which testing method will most efficiently achieve the field-saturated K results needed for long-term planning. A detailed section on near-surface test methods discusses each method which may be applicable to characterization of UMTRA disposal cell covers, liners and foundation materials. These potentially applicable test methods include the sealed double-ring infiltrometer (SDRI), the air-entry permeameter (AEP), the guelph permeameter, the two-stage borehole technique (TSB), the pressure infiltrometer, and the disk permeameter. Analytical solutions for these methods are provided, and limitations of these solutions are discussed, and a description of testing equipment design and installation are provided

  8. Bentonite engineered barrier building method for radioactive waste on sub-surface disposal test project

    International Nuclear Information System (INIS)

    Mori, Takuo; Takahashi, Shinichi; Takeuchi, Kunifumi; Namiki, Kazuto

    2008-01-01

    The engineering barriers such as clay and concrete materials are planned to use for covering radioactive waste in cavern-type disposal facility. The requirement to clay barrier is very low permeability, which could be satisfied by high density Bentonite, and such a compaction method will be needed. Two methods, compaction and air shot, were tested in engineering scale for constructing a high-density clay barrier. Two types of compaction equipments, 'Teasel plate' and 'Plate compacter', were developed and engineering scale experiments were performed for compacting Bentonite only and Bentonite-sand-aggregate mixture. As a result, the Teasel plate can reach higher density Bentonite in relatively short time in comparison to other equipments. While, regarding air shot method, an air-shot machine in a tunnel construction site was tested by different water adding methods (wet, dry, and half wet). It is concluded that the dry and half wet constructing methods will achieve reasonable workability. As a result, the best construction option can be chosen according to the locations of radioactive waste facility. (author)

  9. Subseabed disposal project experiment

    International Nuclear Information System (INIS)

    Valent, P.J.; Burns, J.T.; Walter, D.J.; Li, H.; Bennett, R.H.

    1990-01-01

    Induced excess pore water pressures resulting from the insertion of piezometer probes of 8-mm (0.31-in.) diameter and a simulated waste canister of 102-mm (4.0-in.) diameter and the dissipation of these excess pressures were measured during deep-ocean component tests of the In Situ Heat Transfer Experiment (ISHTE). The sediment at the Pacific test site 1100 km north of Oahu, Hawaii, is an illitic clay. Insertion-induced excess pore pressures were found to agree well with those predicted by models. Several aspects of the induced excess pressure dissipation were evaluated including the effects of probe and heater diameter, distal excess pore pressure response, and the synergistic excess pore pressure response from multiple insertions. The dissipation of induced excess pressures measured at each piezometer is predicted well by theory. The same analytical models predict the excess pore pressure history measured at the piezometers in response to the waste canister insertion. Present models were evaluated that predict insertion excess pressures and their dissipation rate at the probe surface and distal, far field, points

  10. Quality control of radioactive waste disposal container for borehole project

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Suhairy Sani; Azhar Azmi; Ilham Mukhriz Zainal Abidin

    2014-01-01

    This paper explained quality control of radioactive disposal container for the borehole project. Non-destructive Testing (NDT) is one of the quality tool used for evaluating the product. The disposal container is made of 316L stainless steel. The suitable NDT method for this object is radiography, ultrasonic, penetrant and eddy current testing. This container will be filled with radioactive capsules and cement mortar is grouted to fill the gap. The results of NDT measurements are explained and discussed. (author)

  11. The French geological disposal project CIGEO

    Energy Technology Data Exchange (ETDEWEB)

    Ouzounian, G. [ANDRA, Chatenay-Malabry cedex (France)

    2015-07-01

    This paper discusses the major management options for high level waste in France. Safety of the population and protection of the environment is the first priority. Reprocessing of used fuel and reuse of valuable material is considered. Reversible geological disposal (Cigéo Project) is the reference solution for the high-level waste.

  12. Licensing plan for UMTRA project disposal sites

    International Nuclear Information System (INIS)

    1993-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office developed a plan to define UMTRA Project licensing program objectives and establish a process enabling the DOE to document completion of remedial actions in compliance with 40 CFR 1 92 and the requirements of the NRC general license. This document supersedes the January 1987 Project Licensing Plan (DOE, 1987). The plan summarizes the legislative and regulatory basis for licensing, identifies participating agencies and their roles and responsibilities, defines key activities and milestones in the licensing process, and details the coordination of these activities. This plan provides an overview of the UMTRA Project from the end of remedial actions through the NRC's acceptance of a disposal site under the general license. The licensing process integrates large phases of the UMTRA Project. Other programmatic UMTRA Project documents listed in Section 6.0 provide supporting information

  13. Pilot tests on radioactive waste disposal in underground facilities

    International Nuclear Information System (INIS)

    Haijtink, B.

    1992-01-01

    The report describes the pilot test carried out in the underground facilities in the Asse salt mine (Germany) and in the Boom clay beneath the nuclear site at Mol (Belgium). These tests include test disposal of simulated vitrified high-level waste (HAW project) and of intermediate level waste and spent HTR fuel elements in the Asse salt mine, as well as an active handling experiment with neutron sources, this last test with a view to direct disposal of spent fuel. Moreover, an in situ test on the performance of a long-term sealing system for galleries in rock salt is described. Regarding the tests in the Boom clay, a combined heating and radiation test, geomechanical and thermo-hydro mechanical tests are dealt with. Moreover, the design of a demonstration test for disposal of high-level waste in clay is presented. Finally the situation concerning site selection and characterization in France and the United Kingdom are described

  14. Iraq nuclear facility dismantlement and disposal project

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J R; Danneels, J [Sandia National Laboratories, Albuquerque, NM (United States); Kenagy, W D [U.S. Department of State, Bureau of International Security and Nonproliferation, Office of Nuclear Energy, Safety and Security, Washington, DC (United States); Phillips, C J; Chesser, R K [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX (United States)

    2007-07-01

    The Al Tuwaitha nuclear complex near Baghdad contains a significant number of nuclear facilities from Saddam Hussein's dictatorship. Because of past military operations, lack of upkeep and looting there is now an enormous radioactive waste problem at Al Tuwaitha. Al Tuwaitha contains uncharacterised radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals. The current security situation in Iraq hampers all aspects of radioactive waste management. Further, Iraq has never had a radioactive waste disposal facility, which means that ever increasing quantities of radioactive waste and material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS has funded the International Atomic Energy Agency (IAEA) to provide technical assistance to the GOI via a Technical Cooperation Project. Program coordination will be provided by the DOS, consistent with U.S. and GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and for providing waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for the vast majority of the implementation of the NDs Program. (authors)

  15. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE

  16. Bure CLIS: role, operation, disposal project

    International Nuclear Information System (INIS)

    Jaquet, B.

    2011-01-01

    The Local Information and Oversight Committee (CLIS) is an independent body tasked by law to monitor studies carried out by the French National Radioactive Waste Management Agency (ANDRA) at the Bure laboratory and in the area surrounding Bure, within the framework of research on radioactive waste management and, in particular, on final disposal of such waste in deep geological formations. The role of the CLIS, whose members include representatives of the State, Parliament, local authorities, unions, associations and the medical profession, is to provide all population groups, beginning with the inhabitants of La Meuse and La Haute-Marne departments, with information regarding these studies and their results, as well as the underground repository project and the stakes involved: it is thus the chief contact for the inhabitants of the area. It also encourages discussion of a project that is subject to a long decision-making process, during which the CLIS is called upon to give its opinion at different stages. The objectives of the CLIS' actions are to provide information to as wide a public as possible (through public meetings, a regular newsletter and a web site) using its own data (appraisals and independent assessments), so that the public can effectively contribute to the debates held throughout the process, and also to be an independent player in the process, whenever its involvement is required and even when this is not specifically planned. (author)

  17. The Dutch geologic radioactive waste disposal project

    International Nuclear Information System (INIS)

    Hamstra, J.; Verkerk, B.

    1981-01-01

    The Final Report reviews the work on geologic disposal of radioactive waste performed in the Netherlands over the period 1 January 1978 to 31 December 1979. The attached four topical reports cover detailed subjects of this work. The radionuclide release consequences of an accidental flooding of the underground excavations during the operational period was studied by the institute for Atomic Sciences in Agriculture (Italy). The results of the quantitative examples made for different effective cross-sections of the permeable layer connecting the mine excavations with the boundary of the salt dome, are that under all circumstances the concentration of the waste nuclides in drinking water will remain well within the ICRP maximum permissible concentrations. Further analysis work was done on what minima can be achieved for both the maximum local rock salt temperatures at the disposal borehole walls and the maximum global rock salt temperatures halfway between a square of disposal boreholes. Different multi-layer disposal configurations were analysed and compared. A more detailed description is given of specific design and construction details of a waste repository such as the shaft sinking and construction, the disposal mine development, the mine ventilation and the different plugging and sealing procedures for both the disposal boreholes and the shafts. Thanks to the hospitality of the Gesellschaft fuer Strahlenforschung, an underground working area in the Asse mine became available for performing a dry drilling experiment, which resulted successfully in the drilling of a 300 m deep disposal borehole from a mine room at the -750 m level

  18. Mine subsidence control projects associated with solid waste disposal facilities

    International Nuclear Information System (INIS)

    Wood, R.M.

    1994-01-01

    Pennsylvania environmental regulations require applicant's for solid waste disposal permits to provide information regarding the extent of deep mining under the proposed site, evaluations of the maximum subsidence potential, and designs of measures to mitigate potential subsidence impact on the facility. This paper presents three case histories of deep mine subsidence control projects at solid waste disposal facilities. Each case history presents site specific mine grouting project data summaries which include evaluations of the subsurface conditions from drilling, mine void volume calculations, grout mix designs, grouting procedures and techniques, as well as grout coverage and extent of mine void filling evaluations. The case studies described utilized basic gravity grouting techniques to fill the mine voids and fractured strata over the collapsed portions of the deep mines. Grout mixtures were designed to achieve compressive strengths suitable for preventing future mine subsidence while maintaining high flow characteristics to penetrate fractured strata. Verification drilling and coring was performed in the grouted areas to determine the extent of grout coverage and obtain samples of the in-place grout for compression testing. The case histories presented in this report demonstrate an efficient and cost effective technique for mine subsidence control projects

  19. Safety assessment methodologies for near surface disposal facilities. Results of a co-ordinated research project (ISAM). Volume 1: Review and enhancement of safety assessment approaches and tools. Volume 2: Test cases

    International Nuclear Information System (INIS)

    2004-07-01

    For several decades, countries have made use of near surface facilities for the disposal of low and intermediate level radioactive waste. In line with the internationally agreed principles of radioactive waste management, the safety of these facilities needs to be ensured during all stages of their lifetimes, including the post-closure period. By the mid 1990s, formal methodologies for evaluating the long term safety of such facilities had been developed, but intercomparison of these methodologies had revealed a number of discrepancies between them. Consequently, in 1997, the International Atomic Energy Agency launched a Co-ordinated Research Project (CRP) on Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities (ISAM). The particular objectives of the CRP were to provide a critical evaluation of the approaches and tools used in post-closure safety assessment for proposed and existing near-surface radioactive waste disposal facilities, enhance the approaches and tools used and build confidence in the approaches and tools used. The CRP ran until 2000 and resulted in the development of a harmonized assessment methodology (the ISAM project methodology), which was applied to a number of test cases. Over seventy participants from twenty-two Member States played an active role in the project and it attracted interest from around seven hundred persons involved with safety assessment in seventy-two Member States. The results of the CRP have contributed to the Action Plan on the Safety of Radioactive Waste Management which was approved by the Board of Governors and endorsed by the General Conference in September 2001. Specifically, they contribute to Action 5, which requests the IAEA Secretariat to 'develop a structured and systematic programme to ensure adequate application of the Agency's waste safety standards', by elaborating on the Safety Requirements on 'Near Surface Disposal of Radioactive Waste' (Safety Standards Series No. WS-R-1) and

  20. ILAW Glass Testing for Disposal at IDF: Phase 1 Testing

    Energy Technology Data Exchange (ETDEWEB)

    Papathanassiu, Adonia [The Catholic Univ. of America, Washington, DC (United States). Virteous State Lab.; Muller, Isabelle S. [The Catholic Univ. of America, Washington, DC (United States). Virteous State Lab.; Brandys, Marek [The Catholic Univ. of America, Washington, DC (United States). Virteous State Lab.; Gilbo, Konstantin [The Catholic Univ. of America, Washington, DC (United States). Virteous State Lab.; Barkatt, Aaron [The Catholic Univ. of America, Washington, DC (United States). Virteous State Lab.; Joseph, Innocent [EnergySolutions Federal EPC, Inc., Columbia, MD (United States); The Catholic Univ. of America, Washington, DC (United States). Virteous State Lab.; Pegg, Ian L. [The Catholic Univ. of America, Washington, DC (United States). Virteous State Lab.; Brown, Elvie E. [Washington River Protection Solutions, LLC, Richland, WA (United States); Swanberg, David J. [Washington River Protection Solutions, LLC, Richland, WA (United States)

    2011-04-11

    This document reports the results of the testing of phase 1 ORP LAW (low activity waste) glasses, also identified as enhanced LAW glasses. Testing involved are SPFT (Single Pass Flow Through), VHT (Vapor Hydration Test), and PCT (Product Consistency Test), along with the analytical tests (XRD and SEM-EDS). This report contains the data of the high waste loading ORP LAW glasses that will be used for the performance assessment of the IDF (Integrated Disposal Facility).

  1. ILAW Glass Testing for Disposal at IDF: Phase 1 Testing

    International Nuclear Information System (INIS)

    Papathanassiu, Adonia; Swanberg, David J.

    2011-01-01

    This document reports the results of the testing of phase 1 ORP LAW (low activity waste) glasses, also identified as enhanced LAW glasses. Testing involved are SPFT (Single Pass Flow Through), VHT (Vapor Hydration Test), and PCT (Product Consistency Test), along with the analytical tests (XRD and SEM-EDS). This report contains the data of the high waste loading ORP LAW glasses that will be used for the performance assessment of the IDF (Integrated Disposal Facility).

  2. Remedial Action and Waste Disposal Project Manager's Implementing Instructions

    International Nuclear Information System (INIS)

    Dronen, V.R.

    1998-01-01

    These Project Manager's Implementing Instructions provide the performance standards required of all Environmental Restoration Contractor personnel in their work during operation and administration of the Remedial Action and Waste Disposal Project. The instructions emphasize technical competency, workplace discipline, and personal accountability to ensure a high level of safety and performance during operations activities

  3. Economic analysis of radioactive waste storage and disposal projects

    International Nuclear Information System (INIS)

    Kleinen, P.J.; Starnes, R.B.

    1995-01-01

    Radioactive waste storage and disposal efforts present challenging issues for cost and economic analyses. In particular, legal requirements for states and compact areas to develop radioactive waste disposal sites, combined with closure of some sites, have placed urgency on planning, locating, and constructing storage and disposal sites. Cost analyses of potential projects are important to the decision processes. Principal objectives for cost analyses for projects are to identify all activities, covering the entire project life cycle, and to develop costs for those activities using methods that allow direct comparisons between competing project alternatives. For radioactive waste projects, long project lives ranging from tens of years to 100 or more years must be considered. Alternative, and competing, technologies, designs, and operating plans must be evaluated. Thorough base cost estimates must be made for all project phases: planning, development, licensing/permitting, construction, operations, and maintenance, closure, and post-closure/institutional care. Economic analysis procedures need to accommodate the specific features of each project alternative and facilitate cost comparisons between differing alternatives. Economic analysis assumptions must be developed to address the unusually long project lives involved in radioactive waste projects

  4. Application of organic tracers in characterizing the greater confinement disposal test at the Nevada Test Site

    International Nuclear Information System (INIS)

    Olson, M.C.

    1985-01-01

    The Greater Confinement Disposal Test (GCDT) is a research project investigating the feasibility of augered-shaft disposal of low-level radioactive waste considered unsuitable for shallow land burial. Gaseous diffusion of radionuclides through alluvial sediments is considered the primary contaminant migration process. Volatile halocarbon tracers are released in the subsurface and their migration is monitored to determine media effective diffusion coefficients, tortuosity values, and sorption terms. Design and instrumentation of the emplacement and monitoring shafts of the disposal facility are detailed. Instrumentation includes a three-dimensional array of soil-air sample stations encircling the disposal waste. Recirculation flow lines minimize induced advection in the alluvial matrix due to tracer sample collection. 6 references, 5 figures, 2 tables

  5. Overview of Low-Level Waste Disposal Operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    2007-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future

  6. Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    Price, L.

    1994-09-01

    The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE's Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS

  7. Design and Installation of a Disposal Cell Cover Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.H. [University of Wisconsin–Madison, Madison, Wisconsin; Waugh, W.J. [S.M. Stoller Corporation, Grand Junction, Colorado; Albright, W.H. [Desert Research Institute, Reno, Nevada; Smith, G.M. [Geo-Smith Engineering, Grand Junction, Colorado; Bush, R.P. [U.S. Department of Energy, Grand Junction, Colorado

    2011-02-27

    The U.S. Department of Energy’s Office of Legacy Management (LM) initiated a cover assessment project in September 2007 to evaluate an inexpensive approach to enhancing the hydrological performance of final covers for disposal cells. The objective is to accelerate and enhance natural processes that are transforming existing conventional covers, which rely on low-conductivity earthen barriers, into water balance covers, that store water in soil and release it as soil evaporation and plant transpiration. A low conductivity cover could be modified by deliberately blending the upper layers of the cover profile and planting native shrubs. A test facility was constructed at the Grand Junction, Colorado, Disposal Site to evaluate the proposed methodology. The test cover was constructed in two identical sections, each including a large drainage lysimeter. The test cover was constructed with the same design and using the same materials as the existing disposal cell in order to allow for a direct comparison of performance. One test section will be renovated using the proposed method; the other is a control. LM is using the lysimeters to evaluate the effectiveness of the renovation treatment by monitoring hydrologic conditions within the cover profile as well as all water entering and leaving the system. This paper describes the historical experience of final covers employing earthen barrier layers, the design and operation of the lysimeter test facility, testing conducted to characterize the as-built engineering and edaphic properties of the lysimeter soils, the calibration of instruments installed at the test facility, and monitoring data collected since the lysimeters were constructed.

  8. Remedial action and waste disposal project - ERDF readiness evaluation plan

    International Nuclear Information System (INIS)

    Casbon, M.A.

    1996-06-01

    This Readiness Evaluation Report presents the results of the project readiness evaluation to assess the readiness of the Environmental Restoration and Disposal Facility. The evaluation was conducted at the conclusion of a series of readiness activities that began in January 1996. These activities included completion of the physical plant; preparation, review, and approval of operating procedures; definition and assembly of the necessary project and operational organizations; and activities leading to regulatory approval of the plant and operating plans

  9. UMTRA project disposal cell cover biointrusion sensitivity assessment, Revision 1

    International Nuclear Information System (INIS)

    1995-10-01

    This study provides an analysis of potential changes that may take place in a Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell cover system as a result of plant biointrusion. Potential changes are evaluated by performing a sensitivity analysis of the relative impact of root penetrations on radon flux out of the cell cover and/or water infiltration into the cell cover. Data used in this analysis consist of existing information on vegetation growth on selected cell cover systems and information available from published studies and/or other available project research. Consistent with the scope of this paper, no new site-specific data were collected from UMTRA Project sites. Further, this paper does not focus on the issue of plant transport of radon gas or other contaminants out of the disposal cell cover though it is acknowledged that such transport has the potential to be a significant pathway for contaminants to reach the environment during portions of the design life of a disposal cell where plant growth occurs. Rather, this study was performed to evaluate the effects of physical penetration and soil drying caused by plant roots that have and are expected to continue to grow in UMTRA Project disposal cell covers. An understanding of the biological and related physical processes that take place within the cover systems of the UMTRA Project disposal cells helps the U.S. Department of Energy (DOE) determine if the presence of a plant community on these cells is detrimental, beneficial, or of mixed value in terms of the cover system's designed function. Results of this investigation provide information relevant to the formulation of a vegetation control policy

  10. Swiss projects for the final disposal of radioactive wastes

    International Nuclear Information System (INIS)

    McCombie, C.

    1987-01-01

    At present, the major part of the discussion does not focus on technical assessment methodology and data, but rather on interpretation of the available geologic data for high-level waste disposal planning. Meanwhile, plans for the implementation of repositories have to be developed. Accordingly, the longer-term studies on high-level waste disposal are proceeding at a pace appropriate for their relatively far-future timescales, and intensified efforts are being put into projects for design, siting, safety assessment and construction of the more urgently required repository for low and intermediate level waste. (orig./PW) [de

  11. 200 Area treated effluent disposal facility operational test report

    International Nuclear Information System (INIS)

    Crane, A.F.

    1995-01-01

    This document reports the results of the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These completed operational testing activities demonstrated the functional, operational and design requirements of the 200 Area TEDF have been met

  12. Technical concept for a greater-confinement-disposal test facility

    International Nuclear Information System (INIS)

    Hunter, P.H.

    1982-01-01

    Greater confinement disposal (GCO) has been defined by the National Low-Level Waste Program as the disposal of low-level waste in such a manner as to provide greater containment of radiation, reduce potential for migration or dispersion or radionuclides, and provide greater protection from inadvertent human and biological intrusions in order to protect the public health and safety. This paper discusses: the need for GCD; definition of GCD; advantages and disadvantages of GCD; relative dose impacts of GCD versus shallow land disposal; types of waste compatible with GCD; objectives of GCD borehole demonstration test; engineering and technical issues; and factors affecting performance of the greater confinement disposal facility

  13. Off-site source recovery project case study: disposal of high activity cobalt 60 sources at the Nevada test site 2008

    International Nuclear Information System (INIS)

    Cocina, Frank G.; Stewart, William C.; Wald-Hopkins, Mark; Hageman, John P.

    2009-01-01

    The Off-Site Source Recovery Project has been operating at Los Alamos National Laboratory since 1998 to address the U.S. Department of Energy responsibility for collection and management of orphaned or disused radioactive sealed sources which may represent a risk to public health and national security if not properly managed.

  14. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2010-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  15. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    International Nuclear Information System (INIS)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment

  16. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment.

  17. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    International Nuclear Information System (INIS)

    Duncan, David

    2011-01-01

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  18. Technical concept for a Greater Confinement Disposal test facility

    International Nuclear Information System (INIS)

    Hunter, P.H.

    1982-01-01

    For the past two years, Ford, Bacon and Davis has been performing technical services for the Department of Energy at the Nevada Test Site in specific development of defense low-level waste management concepts for greater confinement disposal concept with particular application to arid sites. The investigations have included the development of Criteria for Greater Confinement Disposal, NVO-234, which was published in May of 1981 and the draft of the technical concept for Greater Confinement Disposal, with the latest draft published in November 1981. The final draft of the technical concept and design specifications are expected to be published imminently. The document is prerequisite to the actual construction and implementation of the demonstration facility this fiscal year. The GCD Criteria Document, NVO-234 is considered to contain information complimentary and compatible with that being developed for the reserved section 10 CFR 61.51b of the NRCs proposed licensing rule for low level waste disposal facilities

  19. Preliminary evaluation of the use of the greater confinement disposal concept for the disposal of Fernald 11e(2) byproduct material at the Nevada Test Site

    International Nuclear Information System (INIS)

    Cochran, J.R.; Brown, T.J.; Stockman, H.W.; Gallegos, D.P.; Conrad, S.H.; Price, L.L.

    1997-09-01

    This report documents a preliminary evaluation of the ability of the greater confinement disposal boreholes at the Nevada Test Site to provide long-term isolation of radionuclides from the disposal of vitrified byproduct material. The byproduct material is essentially concentrated residue from processing uranium ore that contains a complex mixture of radionuclides, many of which are long-lived and present in concentrations greater than 100,000 picoCuries per gram. This material has been stored in three silos at the fernald Environmental Management Project since the early 1950s and will be vitrified into 6,000 yd 3 (4,580 m 3 ) of glass gems prior to disposal. This report documents Sandia National Laboratories' preliminary evaluation for disposal of the byproduct material and includes: the selection of quantitative performance objectives; a conceptual model of the disposal system and the waste; results of the modeling; identified issues, and activities necessary to complete a full performance assessment

  20. The EVEREST project: sensitivity analysis of geological disposal systems

    International Nuclear Information System (INIS)

    Marivoet, Jan; Wemaere, Isabelle; Escalier des Orres, Pierre; Baudoin, Patrick; Certes, Catherine; Levassor, Andre; Prij, Jan; Martens, Karl-Heinz; Roehlig, Klaus

    1997-01-01

    The main objective of the EVEREST project is the evaluation of the sensitivity of the radiological consequences associated with the geological disposal of radioactive waste to the different elements in the performance assessment. Three types of geological host formations are considered: clay, granite and salt. The sensitivity studies that have been carried out can be partitioned into three categories according to the type of uncertainty taken into account: uncertainty in the model parameters, uncertainty in the conceptual models and uncertainty in the considered scenarios. Deterministic as well as stochastic calculational approaches have been applied for the sensitivity analyses. For the analysis of the sensitivity to parameter values, the reference technique, which has been applied in many evaluations, is stochastic and consists of a Monte Carlo simulation followed by a linear regression. For the analysis of conceptual model uncertainty, deterministic and stochastic approaches have been used. For the analysis of uncertainty in the considered scenarios, mainly deterministic approaches have been applied

  1. Environmental monitoring annual report for the Tumulus Disposal Demonstration Project

    International Nuclear Information System (INIS)

    Yager, R.E.; Craig, P.M.

    1989-01-01

    The Fiscal Year 1988 Annual Report is the third in a series of semi-annual Tumulus Development Disposal Project data summary reports. The reporting schedule has been modified to correspond to the fiscal years and the subcontractor contract periods. This data summary spans the time from start of operations in June 1987 through the end of September 1988. The environmental data collected include run-off water quality and quantity, groundwater quality and levels, soil sampling and hydrometeorological data. This data is being used and analyzed here to demonstrate the environmental performance objectives for the TDDP as part of the overall performance assessment for the TDDP. Approximately one year of pre-operational data were collected prior to operations beginning on April 11, 1988. Comparisons are made between pre- and post-operational data. No significant environmental impacts have been found since operations have begun. 10 refs., 21 figs., 22 tabs

  2. Status of disposal techniques for spent fuel in Germany: Results of demonstration tests for direct disposal

    International Nuclear Information System (INIS)

    Engelmann, H.J.; Filbert, W.

    1993-01-01

    According to the Atomic Energy Act (1985) the Federal Government is responsible for establishing facilities to indemnify and dispose radioactive waste. According to Art. 9b of the Atomic Energy Act (1986) the construction and operation of such a repository requires approval of a plan. According to safety criteria applicable for disposing radioactive waste in mines, construction and operation of repository mines require application of acknowledged rules of technology, laws, ordinances and other regulations to protect operating staff and population from radiation damages. Shaft hoisting equipment for the transportation of radioactive waste in a repository mine must satisfy normal operational tasks and meet special safety-requirements. Its failure may result in danger for persons, release of radioactive substances into the plant and environment. That means, shaft hoisting equipment must be designed to satisfy the necessary safety requirements and be state of the art of science and technology. The aim of these demonstration tests is verification of technical feasibility of a shaft hoisting equipment with a payload of 85 t, underground for drift disposal of POLLUX-casks, and essential machine and mine-technical systems and components. The demonstration also includes safe radiation protection during transport and disposal operations. Investigations assume that radioactive waste is transported in containers that satisfy transport requirements for dangerous goods and have a type-B-certificate

  3. Mixed waste disposal facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dickman, P.T.; Kendall, E.W.

    1987-01-01

    In 1984, a law suit brought against DOE resulted in the requirement that DOE be subject to regulation by the state and US Environmental Protection Agency (EPA) for all hazardous wastes, including mixed wastes. Therefore, all DOE facilities generating, storing, treating, or disposing of mixed wastes will be regulated under the Resource Conservation and Recovery Act (RCTA). In FY 1985, DOE Headquarters requested DOE low-level waste (LLW) sites to apply for a RCRA Part B Permit to operate radioactive mixed waste facilities. An application for the Nevada Test Site (NTS) was prepared and submitted to the EPA, Region IX in November 1985 for review and approval. At that time, the state of Nevada had not yet received authorization for hazardous wastes nor had they applied for regulatory authority for mixed wastes. In October 1986, DOE Nevada Operations Office was informed by the Rocky Flats Plant that some past waste shipments to NTS contained trace quantities of hazardous substances. Under Colorado law, these wastes are defined as mixed. A DOE Headquarters task force was convened by the Under Secretary to investigate the situation. The task force concluded that DOE has a high priority need to develop a permitted mixed waste site and that DOE Nevada Operations Office should develop a fast track project to obtain this site and all necessary permits. The status and issues to be resolved on the permit for a mixed waste site are discussed

  4. Underground disposal of hazardous waste - state of the art and R and D projects

    International Nuclear Information System (INIS)

    Pitterich, H.; Brueckner, C.

    1998-01-01

    The project management group Entsorgung (PTE) coordinates R and D activities on deep geological disposal of hazardous waste besides other activities in the field of nuclear disposal. R and D projects aim at the improvement of tools used to predict the long-term behaviour of underground disposal facilities and the threat for man and environment associated with these facilities. The current German situation on deep geological disposal of hazardous waste is described and some results from the fields waste-anaylsis, geochemical modelling and geotechnical barriers for the sealing of waste disposal sites are presented. (orig.)

  5. Integrated Disposal Facility FY 2012 Glass Testing Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kerisit, Sebastien N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krogstad, Eirik J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burton, Sarah D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bjornstad, Bruce N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Freedman, Vicky L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle MV [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crum, Jarrod V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-03-29

    PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Key activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.

  6. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    International Nuclear Information System (INIS)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

    2011-01-01

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10 5 m 3 of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10 14 Bq total activity) of long-lived radionuclides, principally 99 Tc (t 1/2 = 2.1 x 10 5 ), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

  7. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

    2011-09-29

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

  8. HAW project. Demonstrative disposal of high-level radioactive wastes in the Asse salt mine

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Duijves, K.; Stippler, R.

    1988-01-01

    Since 1968 the GSF has been carrying out research and development programs for the final disposal of high-level radioactive waste (HAW) in salt formations. The heat producing waste has been simulated so far by means of electrical heaters and also cobalt-60-sources. In order to improve the final concept for HAW disposal in salt formations the complete technical system of an underground repository is to be tested in an one-to-one scale test facility. To satisfy the test objectives thirty high radioactive canisters containing the radionuclides Cs-137 and Sr-90 will be emplaced in six boreholes located in two test galleries at the 800 m-level in the Asse salt mine. The duration of testing will be approximately five years. For the handling of the radioactive canisters and their emplacement into the boreholes a system consisting of transportation casks, transportation vehicle, disposal machine, and borehole slider will be developed and tested. The actual scientific investigation program is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This program includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. The project is funded by the BMFT and the CEC and carrier out in close co-operation with the Netherlands Energy Research Foundation (ECN)

  9. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Wickline, Alfred

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action

  10. Remedial action and waste disposal project -- 300-FF-1 remedial action readiness assessment report

    International Nuclear Information System (INIS)

    Carson, J.W.; Carlson, R.A.; Greif, A.A.; Johnson, C.R.; Orewiler, R.I.; Perry, D.M.; Remsen, W.E.; Tuttle, B.G.; Wilson, R.C.

    1997-09-01

    This report documents the readiness assessment for initial startup of the 300-FF-1 Remedial Action Task. A readiness assessment verifies and documents that field activities are ready to start (or restart) safely. The 300-FF-1 assessment was initiated in April 1997. Readiness assessment activities included confirming the completion of project-specific procedures and permits, training staff, obtaining support equipment, receipt and approval of subcontractor submittals, and mobilization and construction of site support systems. The scope of the 300-FF-1 Remedial Action Task includes excavation and disposal of contaminated soils at liquid waste disposal facilities and of waste in the 618-4 Burial Ground and the 300-FF-1 landfills. The scope also includes excavation of test pits and test trenches

  11. The IAEA research project on improvement of safety assessment methodologies for near surface disposal facilities

    International Nuclear Information System (INIS)

    Torres-Vidal, C.; Graham, D.; Batandjieva, B.

    2002-01-01

    The International Atomic Energy Agency (IAEA) Research Coordinated Project on Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities (ISAM) was launched in November 1997 and it has been underway for three years. The ISAM project was developed to provide a critical evaluation of the approaches and tools used in long-term safety assessment of near surface repositories. It resulted in the development of a harmonised approach and illustrated its application by way of three test cases - vault, borehole and Radon (a particular range of repository designs developed within the former Soviet Union) type repositories. As a consequence, the ISAM project had over 70 active participants and attracted considerable interest involving around 700 experts from 72 Member States. The methodology developed, the test cases, the main lessons learnt and the conclusions have been documented and will be published in the form of an IAEA TECDOC. This paper presents the work of the IAEA on improvement of safety assessment methodologies for near surface waste disposal facilities and the application of these methodologies for different purposes in the individual stages of the repository development. The paper introduces the main objectives, activities and outcome of the ISAM project and summarizes the work performed by the six working groups within the ISAM programme, i.e. Scenario Generation and Justification, Modelling, Confidence Building, Vault, Radon Type Facility and Borehole test cases. (author)

  12. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  13. Final Design Report for the RH LLW Disposal Facility (RDF) Project, Revision 3

    International Nuclear Information System (INIS)

    Austad, Stephanie Lee

    2015-01-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  14. The HAW-project: Demonstration facility for the disposal of high-level waste in salt

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Duijves, K.A.

    1990-04-01

    The HAW-project plants the testwise emplacement of 30 vitrified highly radioactive canisters containing Cs-137 and Sr-90 at the 800 m level of the Asse salt mine for a testing period of approximately five years. The major objective of this project is the pilot testing and demonstration of safe methods for the final disposal of high-level radioactive waste (HAW) in geological salt formations. During the years 1985 to 1989 the underground test field was excavated, the measuring equipment installed, and two preceedings inactive electrical tests taken into operation. Furthermore, the components of a system for transportation and emplacement of highly radioactive canisters was fabricated, installed, and preliminarily tested. After some delays in the licensing procedure the emplacement of the 30 radioactive canisters is now envisaged for early 1991. For handling of the radioactive canisters and their emplacement into the boreholes a system consisting of a transport cask, a transport vehicle, a disposal machine, and of a borehole slider has been developed and will be tested. The actual scientific investigation programme is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This programme includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. (orig./HP)

  15. The HAW project: demonstration facility for the disposal of high-level waste in salt

    International Nuclear Information System (INIS)

    Rothfuchs, T.

    1991-01-01

    This report is the so-called Synthesis report 1985-1989 of the international HAW project performed in the 800 m level of the ASSE salt mine in the Federal Republic of Germany. The major objective of this project is the pilot testing and demonstration of safe methods for the final disposal of high-level radioactive waste in geological salt-deposits. The HAW-project is carried out by the GSF-Institut fuer Tieflagerung (IFT) in cooperation with the French Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA); the Spanish Empresa Nacional de Residuos Radioactivos S.A (ENRESA) and the Netherlands Energy Research Foundation (ECN). During the years 1985 to 1989 the underground test field was excavated and after some delays in the licensing procedure, the emplacement of 30 vitrified highly radioactive canisters (containers) is now envisaged for early 1991. 32 refs; 76 figs., 11 tabs

  16. West Hackberry Brine Disposal Project pre-discharge characterization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C. (eds.)

    1982-01-01

    The physical, chemical and biological attributes are described for: (1) a coastal marine environment centered about a Department of Energy Strategic Petroleum Reserve (SPR) brine disposal site 11.4 km off the southwest coast of Louisiana; and (2) the lower Calcasieu and Sabine estuarine systems that provide leach waters for the SPR project. A three month sampling effort, February through April 1981, and previous investigations from the study area are integrated to establish baseline information for evaluation of impacts from brine disposal in the nearshore marine waters and from freshwater withdrawal from the coastal marsh of the Chenier Plain. January data are included for some tasks that sampled while testing and mobilizing their instruments prior to the February field effort. The study addresses the areas of physical oceanography, estuarine hydrology and hydrography, water and sediment quality, benthos, nekton, phytoplankton, zooplankton, and data management.

  17. Innovative Disposal Practices at the Nevada Test Site to Meet Its Low-Level Waste Generators' Future Disposal Needs

    International Nuclear Information System (INIS)

    Di Sanza, E.F.; Carilli, J.T.

    2006-01-01

    Low-level radioactive waste (LLW) streams which have a clear, defined pathway to disposal are becoming less common as U.S. Department of Energy accelerated cleanup sites enters their closure phase. These commonly disposed LLW waste streams are rapidly being disposed and the LLW inventory awaiting disposal is dwindling. However, more complex waste streams that have no path for disposal are now requiring attention. The U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NSO) Environmental Management Program is charged with the responsibility of carrying out the disposal of onsite and off-site defense-generated and research-related LLW at the Nevada. Test Site (NTS). The NSO and its generator community are constantly pursuing new LLW disposal techniques while meeting the core mission of safe and cost-effective disposal that protects the worker, the public and the environment. From trenches to present-day super-cells, the NTS disposal techniques must change to meet the LLW generator's disposal needs. One of the many ways the NTS is addressing complex waste streams is by designing waste specific pits and trenches. This ensures unusual waste streams with high-activity or large packaging have a disposal path. Another option the NTS offers is disposal of classified low-level radioactive-contaminated material. In order to perform this function, the NTS has a safety plan in place as well as a secure facility. By doing this, the NTS can accept DOE generated classified low-level radioactive-contaminated material that would be equivalent to U.S. Nuclear Regulatory Commission Class B, C, and Greater than Class C waste. In fiscal year 2006, the NTS will be the only federal disposal facility that will be able to dispose mixed low-level radioactive waste (MLLW) streams. This is an activity that is highly anticipated by waste generators. In order for the NTS to accept MLLW, generators will have to meet the stringent requirements of the NTS

  18. NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD. INTEGRATED DISPOSAL FACILITY (IDF)

    International Nuclear Information System (INIS)

    MCLELLAN, G.W.

    2007-01-01

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is pleased to nominate the Integrated Disposal Facility (IDF) project for the Project Management Institute's consideration as 2007 Project of the Year, Built for the U.S, Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site, the IDF is the site's first Resource Conservation and Recovery Act (RCRA)-compliant disposal facility. The IDF is important to DOE's waste management strategy for the site. Effective management of the IDF project contributed to the project's success. The project was carefully managed to meet three Tri-Party Agreement (TPA) milestones. The completed facility fully satisfied the needs and expectations of the client, regulators and stakeholders. Ultimately, the project, initially estimated to require 48 months and $33.9 million to build, was completed four months ahead of schedule and $11.1 million under budget. DOE directed construction of the IDF to provide additional capacity for disposing of low-level radioactive and mixed (i.e., radioactive and hazardous) solid waste. The facility needed to comply with federal and Washington State environmental laws and meet TPA milestones. The facility had to accommodate over one million cubic yards of the waste material, including immobilized low-activity waste packages from the Waste Treatment Plant (WTP), low-level and mixed low-level waste from WTP failed melters, and alternative immobilized low-activity waste forms, such as bulk-vitrified waste. CH2M HILL designed and constructed a disposal facility with a redundant system of containment barriers and a sophisticated leak-detection system. Built on a 168-area, the facility's construction met all regulatory requirements. The facility's containment system actually exceeds the state's environmental requirements for a hazardous waste landfill. Effective management of the IDF construction project required working through highly political and legal issues as well as challenges with

  19. NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD INTEGRATED DISPOSAL FACILITY (IDF)

    Energy Technology Data Exchange (ETDEWEB)

    MCLELLAN, G.W.

    2007-02-07

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is pleased to nominate the Integrated Disposal Facility (IDF) project for the Project Management Institute's consideration as 2007 Project of the Year, Built for the U.S, Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site, the IDF is the site's first Resource Conservation and Recovery Act (RCRA)-compliant disposal facility. The IDF is important to DOE's waste management strategy for the site. Effective management of the IDF project contributed to the project's success. The project was carefully managed to meet three Tri-Party Agreement (TPA) milestones. The completed facility fully satisfied the needs and expectations of the client, regulators and stakeholders. Ultimately, the project, initially estimated to require 48 months and $33.9 million to build, was completed four months ahead of schedule and $11.1 million under budget. DOE directed construction of the IDF to provide additional capacity for disposing of low-level radioactive and mixed (i.e., radioactive and hazardous) solid waste. The facility needed to comply with federal and Washington State environmental laws and meet TPA milestones. The facility had to accommodate over one million cubic yards of the waste material, including immobilized low-activity waste packages from the Waste Treatment Plant (WTP), low-level and mixed low-level waste from WTP failed melters, and alternative immobilized low-activity waste forms, such as bulk-vitrified waste. CH2M HILL designed and constructed a disposal facility with a redundant system of containment barriers and a sophisticated leak-detection system. Built on a 168-area, the facility's construction met all regulatory requirements. The facility's containment system actually exceeds the state's environmental requirements for a hazardous waste landfill. Effective management of the IDF construction project required working through highly political and legal

  20. Ukraine biosolids incineration project generates electricity while solving disposal problems

    Energy Technology Data Exchange (ETDEWEB)

    Kosanke, J. [Quality Recycling Ltd., Henderson, NC (United States)

    2008-07-15

    This article described an innovative Waste-to-Energy (WtE) system that is currently being installed in the city of Odessa in the Ukraine. The city has a population of 1 million and is a major seaport on the Black Sea. Sewage sludge will be used as a biomass fuel to power an electrical generation plant. The system includes a clean-burning rotary cascading bed combustor (RCBC) linked to a boiler and an electricity-generating steam turbine. The RCBC spins in order to keep fuel cascading for maximum combustion, and is expected to burn over 50,000 tons of dewatered sewage sludge per year while generating 33,507,000 kWh of electricity per individual location. Eleven systems will be installed at major sewage processing modules in the Ukraine. A pilot program is also being conducted to test and monitor the system under United States emissions and operational standards. The RCBC is also being used to combust fuels derived from municipal solid waste (MSW) at a site in Kansas. Other fuels that can be cleanly burned using the RCBC system included high sulfur bituminous coal; anthracite coal waste; carpet and carpet scrap, and tires and rubber wastes. Studies have demonstrated that some toxic wastes can be removed using the RCBC system. It was concluded that burning negative value fuels can allow some power plants to earn revenues from disposal fees. 3 figs.

  1. The HAW project: demonstration facility for the disposal of high-level waste in salt

    International Nuclear Information System (INIS)

    Rothfuchs, T.

    1991-01-01

    This publication is the interim report 1988-89 of the international HAW project performed in the 800 m level of the Asse salt mine in the Federal Republic of Germany. The major objective of this project is the pilot testing and demonstration of safe methods for the final disposal of high-level radioactive waste in geological salt deposits. The HAW-project is carried out by the GSF-Institut fuer Tieflagerung (IFT) in cooperation with the French Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA); the Spanish Empresa Nacional de Residuos Radiactivos S.A. (ENRESA) and the Netherlands Energy Research Foundation (ECN). After some delays in the licensing procedure the emplacement of 30 vitrified highly radioactive canisters (containers) is now envisaged for early 1991. 20 refs.; 92 figs.; 14 tabs

  2. Acceptance test procedure for Project W-049H

    International Nuclear Information System (INIS)

    Buckles, D.I.

    1994-01-01

    The Acceptance Test Procedure (ATP) program for Project W-049H (200 Area Treated Effluent Disposal Facility [TEDF]) covers three activities as follows: (1) Disposal System; (2) Collection System; and (3) Instrumentation and Control System. Each activity has its own ATP. The purpose of the ATPs is to reverify that the systems have been constructed in accordance with the construction documents and to demonstrate that the systems function as required by the Project criteria. The Disposal System ATP covers the testing of the following: disposal line flowmeters, room air temperatures in the Disposal Station Sampling Building, effluent valves and position indicators, disposal pond level monitors, automated sampler, pressure relief valves, and overflow diversion sluice gates. The Collection System ATP covers the testing of the two pump stations and all equipment installed therein. The Instrumentation and Control (I and C) ATP covers the testing of the entire TEDF I and C system. This includes 3 OCS units, modem, and GPLI cabinets in the ETC control room; 2 pump stations; disposal station sampling building; and all LCUs installed in the field

  3. The residuals analysis project: Evaluating disposal options for treated mixed low-level waste

    International Nuclear Information System (INIS)

    Waters, R.D.; Gruebel, M.M.; Case, J.T.; Letourneau, M.J.

    1997-01-01

    For almost four years, the U.S. Department of Energy (DOE) through its Federal Facility Compliance Act Disposal Workgroup has been working with state regulators and governors' offices to develop an acceptable configuration for disposal of its mixed low-level waste (MLLW). These interactions have resulted in screening the universe of potential disposal sites from 49 to 15 and conducting ''performance evaluations'' for those fifteen sites to estimate their technical capabilities for disposal of MLLW. In the residuals analysis project, we estimated the volume of DOE's MLLW that will require disposal after treatment and the concentrations of radionuclides in the treated waste. We then compared the radionuclide concentrations with the disposal limits determined in the performance evaluation project for each of the fifteen sites. The results are a scoping-level estimate of the required volumetric capacity for MLLW disposal and the identification of waste streams that may pose problems for disposal based on current treatment plans. The analysis provides technical information for continued discussions between the DOE and affected States about disposal of MLLW and systematic input to waste treatment developers on disposal issues

  4. The progress and results of a demonstration test of a cavern-type disposal facility

    International Nuclear Information System (INIS)

    Akiyama, Yoshihiro; Terada, Kenji; Oda, Nobuaki; Yada, Tsutomu; Nakajima, Takahiro

    2011-01-01

    The cavern-type disposal facilities for low-level waste (LLW) with relatively high radioactivity levels mainly generated from power reactor decommissioning and for part of transuranic (TRU) waste mainly from spent fuel reprocessing are designed to be constructed in a cavern 50 to 100 meters below ground, and to employ an engineered barrier system (EBS) of a combination of bentonite and cement materials in Japan. In order to advance the feasibility study for these disposal, a government-commissioned research project named Demonstration Test of Cavern-Type Disposal Facility started in fiscal 2005, and since fiscal 2007 a full-scale mock-up test facility has been constructed under actual subsurface environment. The main objective of the test is to establish construction methodology and procedures which ensure the required quality of the EBS on-site. By fiscal 2009 some parts of the facility have been constructed, and the test has demonstrated both practicability of the construction and achievement of the quality. They are respectively taken as low-permeability of less than 5x10 13 m/s and low-diffusivity of less than 1x10 -12 m 2 /s at the time of completion of construction. This paper covers the project outline and the test results obtained by the construction of some parts of a bentonite and cement materials. (author)

  5. Systems Engineering Plan and project record Configuration Management Plan for the Mixed Waste Disposal Initiative

    International Nuclear Information System (INIS)

    Bryan, W.E.; Oakley, L.B.

    1993-04-01

    This document summarizes the systems engineering assessment that was performed for the Mixed Waste Disposal Initiative (MWDI) Project to determine what types of documentation are required for the success of the project. The report also identifies the documents that will make up the MWDI Project Record and describes the Configuration Management Plan describes the responsibilities and process for making changes to project documentation

  6. Integrated Disposal Facility FY2010 Glass Testing Summary Report

    International Nuclear Information System (INIS)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Serne, R. Jeffrey; Mattigod, Shas V.

    2010-01-01

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 A - 105 m 3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 A - 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 A - 105), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by (1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo

  7. Integrated Disposal Facility FY2010 Glass Testing Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Serne, R Jeffrey; Mattigod, Shas V.

    2010-09-30

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 × 105 m3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 × 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 × 105), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by 1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo

  8. Household Hazardous Waste Disposal Project. Summary Report. Metro Toxicant Program Report No. 1A.

    Science.gov (United States)

    Ridgley, Susan M.; Galvin, David V.

    The Household Hazardous Waste Disposal Project was established as an interagency effort to reduce the level of toxicants entering the environment by developing a control plan for the safe disposal of small quantities of household chemicals. This summary report provides an overview of the aspects of this problem that were examined, and the steps…

  9. The international hydrocoin project. Groundwater hydrology modelling strategies for performance assessment of nuclear waste disposal

    International Nuclear Information System (INIS)

    1990-01-01

    The international co-operation project HYDROCOIN for studying groundwater flow modelling in the context of radioactive waste disposal was initiated in 1984. Thirteen organizations from ten countries and two international organizations have participated in the project which has been managed by the Swedish Nuclear Power Inspectorate, SKI. This report summarizes the results from the second phase of HYDROCOIN, Level 2, which has addressed the issue of validation by testing the capabilities of groundwater flow models to describe five field and laboratory experiments: . Thermal convection and conduction around a field heat transfer experiment in a quarry, . A laboratory experiment with thermal convection as a model for variable density flow, . A small groundwater flow system in fractured monzonitic gneiss, . Three-dimensional regional groundwater flow in low permeability rocks, and . Soil water redistribution near the surface at a field site. The five test cases cover various media of interest for final disposal such as low permeability saturated rock, unsaturated rock, and salt formations. They also represent a variety of spatial and temporal scales. From model simulations on the five test cases conclusions are drawn regarding the applicability of the models to the experimental and field situations and the usefulness of the available data bases. The results are evaluated with regard to the steps in an ideal validation process. The data bases showed certain limitations for validation purposes with respect to independent data sets for calibration and validation. In spite of this, the HYDROCOIN Level 2 efforts have significantly contributed to an increased confidence in the applicability of groundwater flow models to different situations relevant to final disposal. Furthermore, the work has given much insight into the validation process and specific recommendations for further validation efforts are made

  10. Execution techniques and approach for high level radioactive waste disposal in Japan: Demonstration of geological disposal techniques and implementation approach of HLW project

    International Nuclear Information System (INIS)

    Kawanishi, M.; Komada, H.; Kitayama, K.; Akasaka, H.; Tsuchi, H.

    2001-01-01

    In Japan, the high-level radioactive waste (HLW) disposal project is expected to start fully after establishment of the implementing organization, which is planned around the year 2000 and to dispose the wastes in the 2030s to at latest in the middle of 2040s. Considering each step in the implementation of the HLW disposal project in Japan, this paper discusses the execution procedure for HLW disposal project, such as the selection of candidate/planned disposal sites, the construction and operation of the disposal facility, the closure and decommissioning of facilities, and the institutional control and monitoring after the closure of disposal facility, from a technical viewpoint for the rational execution of the project. Furthermore, we investigate and propose some ideas for the concept of the design of geological disposal facility, the validation and demonstration of the reliability on the disposal techniques and performance assessment methods at a candidate/planned site. Based on these investigation results, we made clear a milestone for the execution of the HLW disposal project in Japan. (author)

  11. The international hydrocoin project - Groundwater hydrology modelling strategies for performance assessment of nuclear waste disposal

    International Nuclear Information System (INIS)

    1991-01-01

    The international cooperation project HYDROCOIN for studying groundwater flow modelling in the context of radioactive waste disposal was initiated in 1984. Thirteen organisations from ten countries and two international organisations have participated in the project which has been managed by the Swedish Nuclear Power Inspectorate, SKI. This report summarises the results from the third phase of HYDROCOIN, Level 3, which has addressed the issues of uncertainty and sensitivity analysis of groundwater flow problems and how uncertainties affect the modelling results. Seven test cases were selected for the project, representing a variety of flow situations in different media, as well as variety of temporal and spatial scales. These test cases were tackled by the participating organisations (Project Teams) using a number of different codes. An overview of the methodologies used in uncertainty and sensitivity analysis is given. Results from the various Teams attempting the Test Cases are presented and conclusions are drawn as to the applicability of the results obtained to the test cases being analysed as well as the general applicability of the results. The importance of making uncertainty and sensitivity analysis as part of a performance analysis of the safety of a nuclear waste repository is stressed. The conclusion is drawn that the HYDROCOIN Level 3 study has greatly contributed to the understanding of these issues. 42 refs., 159 figs., 61 tabs

  12. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  13. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2014-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  14. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    Austad, S. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Guillen, L. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKnight, C. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ferguson, D. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  15. Projected transuranic waste loads requiring treatment, storage, and disposal

    International Nuclear Information System (INIS)

    Hong, K.; Kotek, T.

    1996-01-01

    This paper provides information on the volume of TRU waste loads requiring treatment, storage, and disposal at DOE facilities for three siting configurations. Input consisted of updated inventory and generation data from. Waste Isolation Pilot plant Transuranic Waste Baseline Inventory report. Results indicate that WIPP's design capacity is sufficient for the CH TRU waste found throughout the DOE Complex

  16. Project of the century. Nuclear waste disposal; Jahrhundertprojekt Endlagerung

    Energy Technology Data Exchange (ETDEWEB)

    Brunnengraeber, Achim [Freie Univ. Berlin (Germany). Forschungszentrum fuer Umweltpolitik (FFU)

    2017-09-01

    In Germany - as worldwide - no final repository for radioactive wastes from nuclear power plants exists. The interdisciplinary contribution is focused on the question how the new political developments based on the work of the final repository commission will proceed with respect to the site selection. Possible challenges arising on the way to final waste disposal are discussed.

  17. Engineering risk assessment for emergency disposal projects of sudden water pollution incidents.

    Science.gov (United States)

    Shi, Bin; Jiang, Jiping; Liu, Rentao; Khan, Afed Ullah; Wang, Peng

    2017-06-01

    Without an engineering risk assessment for emergency disposal in response to sudden water pollution incidents, responders are prone to be challenged during emergency decision making. To address this gap, the concept and framework of emergency disposal engineering risks are reported in this paper. The proposed risk index system covers three stages consistent with the progress of an emergency disposal project. Fuzzy fault tree analysis (FFTA), a logical and diagrammatic method, was developed to evaluate the potential failure during the process of emergency disposal. The probability of basic events and their combination, which caused the failure of an emergency disposal project, were calculated based on the case of an emergency disposal project of an aniline pollution incident in the Zhuozhang River, Changzhi, China, in 2014. The critical events that can cause the occurrence of a top event (TE) were identified according to their contribution. Finally, advices on how to take measures using limited resources to prevent the failure of a TE are given according to the quantified results of risk magnitude. The proposed approach could be a potential useful safeguard for the implementation of an emergency disposal project during the process of emergency response.

  18. Project Portfolio Management Applications Testing

    OpenAIRE

    Paul POCATILU

    2006-01-01

    Many IT companies are running project simultaneously. In order to achieve the best results, they have to group to the project in portfolios, and to use specific software that helps to manage them. Project portfolio management applications have a high degree of complexity and they are very important for the companies that are using it. This paper focuses on some characteristics of the testing process for project portfolio management applications

  19. Project Portfolio Management Applications Testing

    Directory of Open Access Journals (Sweden)

    Paul POCATILU

    2006-01-01

    Full Text Available Many IT companies are running project simultaneously. In order to achieve the best results, they have to group to the project in portfolios, and to use specific software that helps to manage them. Project portfolio management applications have a high degree of complexity and they are very important for the companies that are using it. This paper focuses on some characteristics of the testing process for project portfolio management applications

  20. Evaluation of dredged material proposed for ocean disposal from Westchester Creek project area, New York

    Energy Technology Data Exchange (ETDEWEB)

    Pinza, M.R.; Gardiner, W.W.; Barrows, E.S.; Borde, A.B.

    1996-11-01

    The objective of the Westchester Creek project was to evaluate proposed dredged material from this area to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Westchester Creek was one of five waterways that the US Army Corps of Engineers- New York District (USACE-NYD) requested the Battelle/Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in May 1995. The evaluation of proposed dredged material from the Westchester Creek project area consisted of bulk sediment chemical analyses, chemical analyses of dredging site water and elutriate, benthic acute and water-column toxicity tests, and bioaccumulation studies. Thirteen individual sediment core samples were collected from this area and analyzed for grain size, moisture content, and total organic carbon (TOC). One composite sediment sample representing the Westchester Creek area to be dredged, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4-dichlorobenzene. Dredging site water and elutriate water, which is prepared from the suspended- particulate phase (SPP) of the Westchester Creek sediment composite, was analyzed for metals, pesticides, and PCBS.

  1. Vegetation growth patterns on six rock-covered UMTRA Project disposal cells

    International Nuclear Information System (INIS)

    1992-02-01

    This study assessed vegetation growth patterns, the potential impacts of vegetation growth on disposal cell cover integrity, and possible measures that could be taken to monitor and/or control plant growth, where necessary, on six Uranium Mill Tailings Remedial Action (UMTRA) Project rock-covered disposal cells. A large-scale invasion of volunteer plants was observed on the Shiprock and Burrell disposal cells. Plant growth at the South Clive, Green River, and Tuba City disposal cells was sparse except for the south rock apron and south slope of the Tuba City disposal cell, where windblown sand had filled up part of the rock cover and plant growth was observed. The rock-covered topslope of the Collins Ranch disposal cell was intentionally covered with topsoil and vegetated. Plant roots growing on the disposal cells are changing the characteristics of the cover by drying out the radon barrier, encouraging the establishment of soil-building processes in the bedding and radon barrier layers, creating channels in the radon barrier, and facilitating ecological succession, which could lead to the establishment of additional deep-rooted plants on the disposal cells. If left unchecked, plant roots would reach the tailings at the Burrell and Collins Ranch disposal cells within a few years, likely resulting in the transport of contaminants out of the cells

  2. Project W-049H Collection System Acceptance Test

    International Nuclear Information System (INIS)

    Buckles, D.I.

    1994-01-01

    The Acceptance Test Procedure (ATP) Program for Project W-049H covers the following activities: Disposal system, Collection system, Instrumentation and control system. Each activity has its own ATP. The purpose of the ATPs is to verify that the systems have been constructed in accordance with the construction documents and to demonstrate that the systems function as required by the Project criteria. This ATP has been prepared to demonstrate that the Collection System Instrumentation functions as required by project criteria

  3. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  4. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2011-03-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  5. Tumulus Disposal Demonstration Project assessment plan for potential worker exposure: Revision 1

    International Nuclear Information System (INIS)

    Styers, D.R.

    1989-03-01

    The purpose of the ''Assessment Plan for Potential Worker Exposure'' is to determine the potential radiological exposures to the workers as they dispose of low-level radioactive wastes (LLW) on the Tumulus Disposal Demonstration Project (TDDP). An evaluation of the work procedures and precautions will be made so as to maintain the exposure levels As Low As Reasonably Achievable (ALARA). 10 refs., 10 figs

  6. Remedial action and waste disposal project -- 300-FF-1 remedial action readiness assessment plan

    International Nuclear Information System (INIS)

    April, J.G.; Carlson, R.A.; Greif, A.A.; Johnson, C.R.; Orewiler, R.I.; Perry, D.M.; Plastino, J.C.; Roeck, F.V.; Tuttle, B.G.

    1997-04-01

    This Readiness Assessment Plan presents the methodology used to assess the readiness of the 300-FF-1 Remedial Action Project. Remediation involves the excavation, treatment if applicable, and final disposal of contaminated soil and debris associated with the waste sites in the 300-FF-1 Operable Unit. The scope of the 300-FF-1 remediation is to excavate, transport, and dispose of contaminated solid from sites identified in the 300-FF-1 Operable Unit

  7. The HADES demonstration and pilot project on radioactive waste disposal in a clay formation

    International Nuclear Information System (INIS)

    Bonne, A.; Beckers, H.; Beaufays, R.; Buyens, M.; Coursier, J.; Bruyn, D. de; Fonteyne, A.; Genicot, J.; Lamy, D.; Meynendonckx, P.; Monsecour, M.; Neerdael, B.; Noynaert, L.; Voet, M.; Volekaert, G.

    1992-01-01

    The overall objective of the HADES programme is the evaluation of the technical feasibility and safety of the disposal of radwaste in a deep clay formation. The pilot phase is aimed at demonstrating the system behaviour for those components of the system and those operations and issues which can be demonstrated directly. The time period considered covers a first phase of the development programme of the pilot project which includes: -The construction of a concrete lined tests drift of about 30 m length with a useful inner diameter of 3.5 m. In the lining, a number of openings or ports are foreseen for emplacing the various tests and sensors for the general auscultation in the host rock; - Mine-by test for the investigation of the response of the surrounding clay on the excavating; - CERBERUS test, a combined heating-irradiation test aiming at evaluating by simulation (electrical heaters and Co-60 radiation source) the impact of a HLW canister on its immediate near field; - Design of a gallery heating test for the demonstration by simulation of the behaviour of a concrete lined gallery structure and of the surrounding clay mass in a temperature field (TEMPPRES code for temperature and pressure evolution simulation). 21 refs

  8. Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project

    International Nuclear Information System (INIS)

    Harvego, Lisa

    2009-01-01

    The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory's recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy's ability to meet obligations with the State of Idaho

  9. Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego

    2009-06-01

    The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

  10. A Study on Site Selecting for National Project including High Level Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kilyoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Many national projects are stopped since sites for the projects are not determined. The sites selections are hold by NIMBY for unpleasant facilities or by PYMFY for preferable facilities among local governments. The followings are the typical ones; NIMBY projects: high level radioactive waste disposal, THAAD, Nuclear power plant(NPP), etc. PIMFY projects: South-east new airport, KTX station, Research center for NPP decommission, etc. The site selection for high level radioactive waste disposal is more difficult problem, and thus government did not decide and postpone to a dead end street. Since it seems that there is no solution for site selection for high level radioactive waste disposal due to NIMBY among local governments, a solution method is proposed in this paper. To decide a high level radioactive waste disposal, the first step is to invite a bid by suggesting a package deal including PIMFY projects such as Research Center for NPP decommission. Maybe potential host local governments are asked to submit sealed bids indicating the minimum compensation sum that they would accept the high level radioactive waste disposal site. If there are more than one local government put in a bid, then decide an adequate site by considering both the accumulated PESS point and technical evaluation results. By considering how fairly preferable national projects and unpleasant national projects are distributed among local government, sites selection for NIMBY or PIMFY facilities is suggested. For NIMBY national projects, risk, cost benefit analysis is useful and required since it generates cost value to be used in the PESS. For many cases, the suggested method may be not adequate. However, similar one should be prepared, and be basis to decide sites for NIMBY or PIMFY national projects.

  11. International intercomparison and harmonization projects for demonstrating the safety of radioactive waste management, decommissioning and radioactive waste disposal

    International Nuclear Information System (INIS)

    Metcalf, Phil; O'Donnell, Patricio; Jova Sed, Luis; Batandjieva, Borislava; Rowat, John; Kinker, Monica

    2008-01-01

    Full text: The Joint Convention on the safety of spent fuel management and the safety of radioactive waste management and the international safety standards on radioactive waste management, decommissioning and radioactive waste disposal call for assessment and demonstration of the safety of facilities and activities; during siting, design and construction prior to operation, periodically during operation and at the end of lifetime or upon closure of a waste disposal facility. In addition, more recent revisions of the international safety standards require the development of a safety case for such facilities and activities, documentation presenting all the arguments supporting the safety of the facilities and activities covering site and engineering features, quantitative safety assessment and management systems. Guidance on meeting these safety requirements also indicates the need for a graded approach to safety assessment, with the extent and complexity of the assessment being proportional to the complexity of the activity or facility, and its propensity for radiation hazard. Safety assessment approaches and methodologies have evolved over several decades and international interest in these developments has been considerable as they can be complex and often subjective, which has led to international projects being established aimed at harmonization. The IAEA has sponsored a number of such initiatives, particularly in the area of disposal facility safety, but more recently in the areas of pre disposal waste management and decommissioning, including projects known as ISAM, ASAM, SADRWMS and DeSa. The projects have a number of common aspects including development of standardized methodological approaches, application on test cases and assessment review; they also have activity and facility specific elements. The paper presents an overview of the projects, the outcomes from the projects to date and their future direction aimed very much at practical application of

  12. Design requirements document for project W-520, immobilized low-activity waste disposal

    International Nuclear Information System (INIS)

    Ashworth, S.C.

    1998-01-01

    This design requirements document (DRD) identifies the functions that must be performed to accept, handle, and dispose of the immobilized low-activity waste (ILAW) produced by the Tank Waste Remediation System (TWRS) private treatment contractors and close the facility. It identifies the requirements that are associated with those functions and that must be met. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized Low-Activity Waste disposal facility project (W-520) and provides traceability from the program-level requirements to the project design activity

  13. Project report for the commercial disposal of mixed low-level waste debris

    International Nuclear Information System (INIS)

    Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

    1994-05-01

    This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project

  14. Project report for the commercial disposal of mixed low-level waste debris

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

    1994-05-01

    This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project.

  15. Design requirements document for project W-520, immobilized low-activity waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, S.C.

    1998-08-06

    This design requirements document (DRD) identifies the functions that must be performed to accept, handle, and dispose of the immobilized low-activity waste (ILAW) produced by the Tank Waste Remediation System (TWRS) private treatment contractors and close the facility. It identifies the requirements that are associated with those functions and that must be met. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized Low-Activity Waste disposal facility project (W-520) and provides traceability from the program-level requirements to the project design activity.

  16. Pilot research projects for underground disposal of radioactive wastes in the United States of America

    International Nuclear Information System (INIS)

    Stein, R.; Collyer, P.L.

    1984-01-01

    Disposal of commercial radioactive waste in the United States of America in a deep underground formation will ensure permanent isolation from the biosphere with minimal post-closure surveillance and maintenance. The siting, design and development, performance assessment, operation, licensing, certification and decommissioning of an underground repository have stimulated the development of several pilot research projects throughout the country. These pilot tests and projects, along with their resulting data base, are viewed as important steps in the overall location and construction of a repository. Beginning in the 1960s, research at pilot facilities has progressed from underground spent fuel tests in an abandoned salt mine to the production of vitrified nuclear waste in complex borosilicate glass logs. Simulated underground repository experiments have been performed in the dense basalts of Washington State, the volcanic tuffaceous rock of Nevada and both domal and bedded salts of Louisiana and Kansas. In addition to underground pilot in situ tests, other facilities have been constructed or modified to monitor the performance of spent fuel in dry storage wells and self-shielded concrete casks. As the National Waste Terminal Storage (NWTS) programme advances to the next stage of underground site characterization for each of three different geological sites, additional pilot facilities are under consideration. These include a Test and Evaluation Facility (TEF) for site verification and equipment performance and testing, as well as a salt testing facility for verification of in situ simulation equipment. Although not associated with the NWTS programme, the construction of the Waste Isolation Pilot Plant (WIPP) in the bedded salts of New Mexico is well under way for deep testing and experimentation with the defence programme's transuranic nuclear waste. (author)

  17. Project W-049H collection system Acceptance Test Procedure

    International Nuclear Information System (INIS)

    Carrigan, M.C.

    1994-01-01

    The purpose of this Acceptance Test Procedure (ATP) for the Project W-049H, Treated Effluent Disposal Facility, is to verify that the collection system equipment installed as Pump Station No. 1 (225-W) and Pump Station No. 2 (225-E) have been installed in accordance with the design documents and function as required by the project criteria. This will be a wet test with potable water being introduced into the pump pits to test for leakage. Potable water will also be employed in the testing of the pumps and related mechanical equipment. All Instrument and Control equipment related to the pump stations will be checked electronically with simulated inputs/outputs when actual input/output signals are unavailable. Water from Pump Station 1 will be moved through the TEDF piping system and discharged into the disposal ponds. This will check the proper function of the air/vac valves not tested during construction, and the automated samplers

  18. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting

  19. The international STRIPA project. Experimental research on the underground disposal of radioactive waste

    International Nuclear Information System (INIS)

    1983-03-01

    The International Stripa Project is a joint undertaking by a number of countries, carried out under the sponsorship of the OECD Nuclear Energy Agency. It concerns research into the feasibility and safety of disposal of highly radioactive wastes from nuclear power generation, deep underground in crystalline rock. The Project is managed by the Division KBS of the Swedish Nuclear Fuel Supply Company (SKBF), under the direction of representatives from each participating country. This report summarizes the objectives and preliminary results of experimental work performed within the framework of the Stripa Project and that undertaken prior to the establishment of the Project at the Stripa Mine in Sweden. It also describes the part played by the Project in the development of national policies for the safe disposal of radioactive wastes

  20. Modelling sequential Biosphere systems under Climate change for radioactive waste disposal. Project BIOCLIM

    International Nuclear Information System (INIS)

    Texier, D.; Degnan, P.; Loutre, M.F.; Lemaitre, G.; Paillard, D.; Thorne, M.

    2000-01-01

    The BIOCLIM project (Modelling Sequential Biosphere systems under Climate change for Radioactive Waste Disposal) is part of the EURATOM fifth European framework programme. The project was launched in October 2000 for a three-year period. It is coordinated by ANDRA, the French national radioactive waste management agency. The project brings together a number of European radioactive waste management organisations that have national responsibilities for the safe disposal of radioactive wastes, and several highly experienced climate research teams. Waste management organisations involved are: NIREX (UK), GRS (Germany), ENRESA (Spain), NRI (Czech Republic) and ANDRA (France). Climate research teams involved are: LSCE (CEA/CNRS, France), CIEMAT (Spain), UPMETSIMM (Spain), UCL/ASTR (Belgium) and CRU (UEA, UK). The Environmental Agency for England and Wales provides a regulatory perspective. The consulting company Enviros Consulting (UK) assists ANDRA by contributing to both the administrative and scientific aspects of the project. This paper describes the project and progress to date. (authors)

  1. Accounting for socio-economic effects in nuclear waste disposal projects

    International Nuclear Information System (INIS)

    Van Hove, E.

    1996-01-01

    The disposal of nuclear waste has become highly controversial. This paper presents the approach taken by NIRAS, the Belgian agency for the disposal of nuclear waste, to come to a decision on the establishment of a site for the permanent disposal of low level nuclear waste. A formal model is elaborated to take social effects of such a project into account, allowing for a balanced discussion of positive and negative effects at the local level. It is too early to tell it the model described in detail in this paper con solve the problems encountered by disposal agencies. The approach discussed, does however, respond to need experienced on a international scale. The paper emphasises the need for openness in the fact of assertive and articulate citizens who no longer accept the paternalistic approach. The public must not feel that there is any lack of clarity about waste projects or they will quickly voice their opinions and any opposition they feel. As far as siting is concerned, most of the controversies are fuelled ba a basic notion of 'unfairness'. Somehow the burdens seem to be imposed on parties other than those who reap the benefits. An approach to decision making through local negotiation on all aspects of a disposal projects should allow the problem of fairness to be treated in a more constructive way. (author)

  2. Managing Uncertainties Associated With Radioactive Waste Disposal: Task Group 4 Of The IAEA PRISM Project

    International Nuclear Information System (INIS)

    Seitz, R.

    2011-01-01

    It is widely recognized that the results of safety assessment calculations provide an important contribution to the safety arguments for a disposal facility, but cannot in themselves adequately demonstrate the safety of the disposal system. The safety assessment and a broader range of arguments and activities need to be considered holistically to justify radioactive waste disposal at any particular site. Many programs are therefore moving towards the production of what has become known as a Safety Case, which includes all of the different activities that are conducted to demonstrate the safety of a disposal concept. Recognizing the growing interest in the concept of a Safety Case, the International Atomic Energy Agency (IAEA) is undertaking an intercomparison and harmonization project called PRISM (Practical Illustration and use of the Safety Case Concept in the Management of Near-surface Disposal). The PRISM project is organized into four Task Groups that address key aspects of the Safety Case concept: Task Group 1 - Understanding the Safety Case; Task Group 2 - Disposal facility design; Task Group 3 - Managing waste acceptance; and Task Group 4 - Managing uncertainty. This paper addresses the work of Task Group 4, which is investigating approaches for managing the uncertainties associated with near-surface disposal of radioactive waste and their consideration in the context of the Safety Case. Emphasis is placed on identifying a wide variety of approaches that can and have been used to manage different types of uncertainties, especially non-quantitative approaches that have not received as much attention in previous IAEA projects. This paper includes discussions of the current results of work on the task on managing uncertainty, including: the different circumstances being considered, the sources/types of uncertainties being addressed and some initial proposals for approaches that can be used to manage different types of uncertainties.

  3. Accelerated aging tests of liners for uranium mill tailings disposal

    International Nuclear Information System (INIS)

    Barnes, S.M.; Buelt, J.L.; Hale, V.Q.

    1981-11-01

    This document describes the results of accelerated aging tests to determine the long-term effectiveness of selected impoundment liner materials in a uranium mill tailings environment. The study was sponsored by the US Department of Energy under the Uranium Mill Tailings Remedial Action Project. The study was designed to evaluate the need for, and the performance of, several candidate liners for isolating mill tailings leachate in conformance with proposed Environmental Protection Agency and Nuclear Regulatory Commission requirements. The liners were subjected to conditions known to accelerate the degradation mechanisms of the various liners. Also, a test environment was maintained that modeled the expected conditions at a mill tailings impoundment, including ground subsidence and the weight loading of tailings on the liners. A comparison of installation costs was also performed for the candidate liners. The laboratory testing and cost information prompted the selection of a catalytic airblown asphalt membrane and a sodium bentonite-amended soil for fiscal year 1981 field testing

  4. The opalinus clay project - disposal of medium and highly-active nuclear wastes

    International Nuclear Information System (INIS)

    Mueller, U.

    2003-01-01

    This article describes the project to demonstrate the feasibility of disposing of long-living medium-active and highly-radioactive nuclear wastes in sedimentary rock in Switzerland. The disposal tasks to be carried out are reviewed and the solutions proposed are described, including short-term handling, intermediate storage and final disposal of low, medium and highly-active wastes. The present state of affairs is described and, in particular, the feasibility of implementing a final storage facility in the opalinus clay beds to be found in northern Switzerland. The project for such a facility in the wine-growing area of the canton of Zurich is described in detail, including the storage concept, the technology to be used and operational aspects as well as questions of safety

  5. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  6. The TIMODAZ project: Thermal impact on the damaged zone around a radioactive waste disposal in clay host rocks

    International Nuclear Information System (INIS)

    XiangLing, L.

    2009-01-01

    The management of spent nuclear fuel and other long-lived radio active waste is an important environmental issue today. Disposal in deep clay geological formations is one of the promising options to dispose of these wastes. In this context, the related research activities in the Euratom Framework Programme of European Commission are continually taking on an enhanced significance. The TIMODAZ is one of the STREP projects (Specific Targeted Research Project) in the Sixth EURATOM Framework Programme and contributes to the research related to the geological disposal of radioactive waste. The consortium is composed of a strong multidisciplinary team involving both European radioactive waste management organizations and nuclear research institutes, universities, industrial partners as well as consultancy companies (SME's). Totally, 15 partners coming from 8 countries are involved with a total budget of about 4000k EURO. Being the coordinator (through the EURIDICE expertise group), SCK-CEN plays the leading role in the project. Meanwhile, SCK-CEN participates the research in different work packages covering the laboratory tests, in-situ tests as well as the integration of TIMODAZ results within the safety case. An important item for the long-term safety of underground disposal is the proper evaluation of the DZ (damaged zone) in the clay host rock. The DZ is defined here as the zone of host rock that experiences THMC (Thermo-Hydro-Mechanical-Chemical) modifications induced by the repository, with potential major changes in the transport properties for radionuclides. The DZ is first initiated during the repository construction. Its behaviour is dynamic, dependent on changing conditions that vary from the open-drift period, to initial closure period and to the entire heating-cooling cycle of the decaying waste. The early THMC disturbances created by the excavation, the operational phase and the thermal load might be the most severe transient that the repository will undergo

  7. The performance assessment impacts of disposal of high-moisture, low-level radioactive waste at the Nevada Test Site

    International Nuclear Information System (INIS)

    Crowe, B.M.; Hansen, W.; Hechnova, A.; Voss, C.; Waters, R.; Sully, M.; Levitt, D.

    1999-01-01

    A panel of independent scientists was convened by the Department of Energy to assess the performance impacts of disposal of low-level radioactive waste from the Fernald Environmental Management Project. This waste stream was involved in a transportation incident in December 1997. A resulting outgrowth of investigations of the transportation incident was the recognition that the waste was transported and disposed in stress-fractured metal boxes and some of the waste contained excess moisture (high volumetric water contents). The panel was charged with determining whether disposal of this waste in the Area 5 radioactive waste management site on the Nevada Test Site has impacted the conclusions of the completed performance assessment. Three questions were developed by the panel to assess performance impacts: (1) the performance impacts of reduced container integrity, (2) the impact of reduced container integrity on subsidence of waste in the disposal pits and (3) the performance impacts of excess moisture. No performance or subsidence impacts were noted from disposal of the Fernald waste. The impacts of excess moisture were assessed through simulation modeling of the movement of moisture in the vadose zone assuming high water contents (wet waste) for different percentages of the waste inventory. No performance impacts were noted for either the base-case scenario (ambient conditions) or a scenario involving subsidence and flooding of the waste cells. The absence of performance impacts results form the extreme conservatism used in the Area 5-performance assessment and the robust nature of the disposal site

  8. Remedial action and waste disposal project: 100-DR-1 remedial action readiness evaluation plan

    International Nuclear Information System (INIS)

    April, J.G.; Bryant, D.L.; Calverley, C.

    1996-08-01

    This plan presents the method used to assess the readiness of the 100- DR-1 Remedial Action Project. Remediation of the 100-D sites (located on the Hanford Site) involves the excavation (treatment if applicable) and final disposal of contaminated soil and debris associated with the high-priority waste sites in the 100 Areas

  9. Spent fuel waste disposal: analyses of model uncertainty in the MICADO project

    International Nuclear Information System (INIS)

    Grambow, B.; Ferry, C.; Casas, I.; Bruno, J.; Quinones, J.; Johnson, L.

    2010-01-01

    The objective was to find out whether international research has now provided sufficiently reliable models to assess the corrosion behavior of spent fuel in groundwater and by this to contribute to answering the question whether the highly radioactive used fuel from nuclear reactors can be disposed of safely in a geological repository. Principal project results are described in the paper

  10. Library Website Usability Test Project

    KAUST Repository

    Ramli, Rindra M.; Bukhari, Duaa

    2013-01-01

    This usability testing project was conducted to elicit an understanding of our community use of the library website. The researchers wanted to know how our users are interacting with the library website and the ease of obtaining relevant information from the website. The methodology deployed was computer user testing where participants are made to answer several questions and executing the actions on the library website. Their actions are recorded via Techsmith Camtasia software for later analysis by the researchers.

  11. Library Website Usability Test Project

    KAUST Repository

    Ramli, Rindra M.

    2013-06-01

    This usability testing project was conducted to elicit an understanding of our community use of the library website. The researchers wanted to know how our users are interacting with the library website and the ease of obtaining relevant information from the website. The methodology deployed was computer user testing where participants are made to answer several questions and executing the actions on the library website. Their actions are recorded via Techsmith Camtasia software for later analysis by the researchers.

  12. Radiological impact of a spent fuel disposal in a deep geological granite formation - results of the european spa project

    International Nuclear Information System (INIS)

    Baudoin, P.; Gay, D.; Certes, C.; Serres, C.

    2000-01-01

    The SPA project (Spent fuel disposal Performance Assessment) is the latest of four integrated performance assessment exercises on nuclear waste disposal in geological formations, carried out in the framework of the European Community 'Nuclear Fission' Research Programmes. The SPA project, which was undertaken by ENRESA, GRS, IPSN, NRG, SCK.CEN and VTT between May 1996 and April 1999, was devoted to the study of disposal of spent fuel in various host rock formations (clay, crystalline rocks and salt formation). This project is a direct continuation of the efforts made by the European Community since 1982 to build a common understanding of the methods applicable to deep disposal performance assessment. (authors)

  13. River Protection Project (RPP) Immobilized Low- Ativity Waste (ILAW) Disposal Plan

    International Nuclear Information System (INIS)

    BRIGGS, M.G.

    2000-01-01

    This document replaces HNF-1517, Rev 2 which is deleted. It incorporates updates to reflect changes in programmatic direction associated with the vitrification plant contract change and associated DOE/ORP guidance. In addition it incorporates the cancellation of Project W-465, Grout Facility, and the associated modifications to Project W-520, Immobilized High-Level Waste Disposal Facility. It also includes document format changes and section number modifications consistent with CH2M HILL Hanford Group, Inc. procedures

  14. In situ gaseous tracer diffusion experiments and predictive modeling at the Greater Confinement Disposal Test

    International Nuclear Information System (INIS)

    Olson, M.C.

    1985-07-01

    The Greater Confinement Disposal Test (GCDT) at the Nevada Test Site is a research project investigating the feasibility of augered shaft disposal of low-level radioactive waste considered unsuitable for shallow land burial. The GCDT contains environmentally mobile and high-specific-activity sources. Research is focused on providing a set of analytically derived hydrogeologic parameters and an empirical database for application in a multiphase, two-dimensional, transient, predictive performance model. Potential contaminant transport processes at the GCDT are identified and their level of significance is detailed. Nonisothermal gaseous diffusion through alluvial sediments is considered the primary waste migration process. Volatile organic tracers are released in the subsurface and their migration is monitored in situ to determine media effective diffusion coefficients, tortuosity, and sorption-corrected porosity terms. The theoretical basis for volatile tracer experiments is presented. Treatment of thermal and liquid flow components is discussed, as is the basis for eliminating several negligible transport processes. Interpretive techniques include correlation, power spectra, and least squares analysis, a graphical analytical solution, and inverse numerical modeling. Model design and application to the GCDT are discussed. GCDT structural, analytical, and computer facilities are detailed. The status of the current research program is reviewed, and temperature and soil moisture profiles are presented along with results of operational tests on the analytical system. 72 refs., 39 figs., 2 tabs

  15. The AGP-Project conceptual design for a Spanish HLW final disposal facility

    International Nuclear Information System (INIS)

    Biurrun, E.; Engelmann, H.-J.; Huertas, F.; Ulibarri, A.

    1992-01-01

    Within the framework of the AGP Project a Conceptual Design for a HLW Final Disposal Facility to be eventually built in an underground salt formation in Spain has been developed. The AGP Project has the character of a system analysis. In the current project phase I several alternatives has been considered for different subsystems and/or components of the repository. The system variants, developed to such extent as to allow a comparison of their advantages and disadvantages, will allow the selection of a reference concept, which will be further developed to technical maturity in subsequent project phases. (author)

  16. Execution techniques for high-level radioactive waste disposal. 2. Fundamental concept of geological disposal and implementing approach of disposal project

    International Nuclear Information System (INIS)

    Kawanishi, Motoi; Komada, Hiroya; Tsuchino, Susumu; Shiozaki, Isao; Kitayama, Kazumi; Akasaka, Hidenari; Inagaki, Yusuke; Kawamura, Hideki

    1999-01-01

    The making high activity of the high-level radioactive waste disposal business shall be fully started after establishing of the implementing organization which is planned around 2000. Considering each step of disposal business, in this study, the implementation procedure for a series of disposal business such as the selection of the disposal site, the construction and operation of the disposal facility, the closure and decommissioning of the disposal facility and the management after closure, which are carried forward by the implementation body is discussed in detail from the technical viewpoint and an example of the master schedule is proposed. Furthermore, we investigate and propose the concept of the geological disposal which becomes important in carrying forward to making of the business of the disposal, such as the present site selection smoothly, the fundamental idea of the safe securing for disposal, the basic idea to get trust to the disposal technique and the geological environmental condition which is the basic condition of this whole study for the disposal business making. (author)

  17. Demonstration test of underground cavern-type disposal facilities, fiscal 2010 status - 59180

    International Nuclear Information System (INIS)

    Akiyama, Yoshihiro; Terada, Kenji; Oda, Nobuaki; Yada, Tsutomu; Nakajima, Takahiro

    2012-01-01

    A test to demonstrate practical construction technology for underground cavern-type disposal facilities is currently underway. Cavern-type disposal facilities are a radioactive waste repository excavated to a depth of 50 to 100 m below ground and constructed with an engineered barrier system (EBS) that is a combination of low-permeable bentonite material and low-diffusive cementitious material. The disposed materials are low-level radioactive waste with relatively high radioactivity, mainly generated from power reactor decommissioning, and certain transuranic wastes that are mainly generated from spent fuel reprocessing. The project started in fiscal 2005*, and since fiscal 2007 a full-scale mock-up of a disposal facility has been constructed in an actual sub-surface environment. The main objective of the demonstration test is to establish construction procedures and methods which ensure the required quality of an EBS on-site. Certain component parts of the facility had been constructed in an underground cavern by fiscal 2010, and tests so far have demonstrated both the practicability of the construction and the achievement of the required quality. This paper covers the project outline and the test results obtained by the construction of certain EBS components. The following results were obtained from the construction test of EBS in the test cavern: 1) The dry density of bentonite buffer at the lower layer constructed by vibratory compaction shows that 95% of core samples have densities within the target range. 2) The specified mix for the low-diffusion layer has uniform density and crack-control properties, and meets the requirements for diffusion performance. 3) The specified mix of the concrete pit has sufficient passing ability through congested reinforcement and meets the requirements of strength performance. 4) The dry density of the bentonite buffer at the lateral layer constructed by the spraying method shows that 65% of the core samples are within the

  18. Final disposal of radioactive wastes in Switzerland: concept and overview of Project Guarantee 1985

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The validity of the operational licences of the existing Swiss nuclear power plants (NPP) Beznau I and II, Muehleberg, Goesgen and Leibstadt after 31st. December 1985 is, because of official requirements, dependent on the demonstration of permanent, safe management and final disposal of radioactive waste. For this purpose, the NPP companies have to prepare a so-called guarantee project and present this to the Bundesrat for review. The appropriate investigations and research have been carried out by Nagra (National Cooperative for the Storage of Radioactive Waste). The 1985 Project Gewaehr (Guarantee) is described in an eight volume report NGB 85-01 to 85-08 and individual research projects are reported on in separate NTB-series reference reports. The present volume NGB 85-01 takes the form of a self-contained project overview in which the concepts for nuclear waste management are described, the contents of the remaining volumes NGB 85-02 to 85-08 are summarized and Project conclusions are drawn from Project Gewaehr 1985. Project Gewaehr 1985 covers two repository types: Type C repository for high-level and certain alpha-containing intermediate-level waste, and Type B repository for all remaining intermediate- and low-level waste. The Project shows in detail that technical feasibility of final disposal can be assumed given presently available methods, that the technical safety barriers show a high level of efficiency and that suitable geological options are available to ensure long-term safety in Switzerland as the concept is defined by official requirements. The Project safety analyses show that the chosen disposal concepts assure the protection of mankind and the environment under all realistically anticipated conditions

  19. Lessons learned in demonstration projects regarding operational safety during final disposal of vitrified waste and spent fuel

    International Nuclear Information System (INIS)

    Filbert, Wolfgang; Herold, Philipp

    2015-01-01

    The paper summarizes the lessons learned in demonstration projects regarding operational safety during the final disposal of vitrified waste and spent fuel. The three demonstration projects for the direct disposal of vitrified waste and spent fuel are described. The first two demonstration projects concern the shaft transport of heavy payloads of up to 85 t and the emplacement operations in the mine. The third demonstration project concerns the borehole emplacement operation. Finally, open issues for the next steps up to licensing of the emplacement and disposal systems are summarized.

  20. Lessons Learned from the On-Site Disposal Facility at Fernald Closure Project

    International Nuclear Information System (INIS)

    Kumthekar, U.A.; Chiou, J.D.

    2006-01-01

    The On-Site Disposal Facility (OSDF) at the U.S. Department of Energy's (DOE) Fernald Closure Project near Cincinnati, Ohio is an engineered above-grade waste disposal facility being constructed to permanently store low level radioactive waste (LLRW) and treated mixed LLRW generated during Decommissioning and Demolition (D and D) and soil remediation performed in order to achieve the final land use goal at the site. The OSDF is engineered to store 2.93 million cubic yards of waste derived from the remediation activities. The OSDF is intended to isolate its LLRW from the environment for at least 200 years and for up to 1,000 years to the extent practicable and achievable. Construction of the OSDF started in 1997 and waste placement activities will complete by the middle of April 2006 with the final cover (cap) placement over the last open cell by the end of Spring 2006. An on-site disposal alternative is considered critical to the success of many large-scale DOE remediation projects throughout the United States. However, for various reasons this cost effective alternative is not readily available in many cases. Over the last ten years Fluor Fernald Inc. has cumulated many valuable lessons learned through the complex engineering, construction, operation, and closure processes of the OSDF. Also in the last several years representatives from other DOE sites, State agencies, as well as foreign government agencies have visited the Fernald site to look for proven experiences and practices, which may be adapted for their sites. This paper present a summary of the major issues and lessons leaned at the Fernald site related to engineering, construction, operation, and closure processes for the disposal of remediation waste. The purpose of this paper is to share lessons learned and to benefit other projects considering or operating similar on-site disposal facilities from our successful experiences. (authors)

  1. On the sea disposal test of radioactive wastes into the Pacific: national situation

    International Nuclear Information System (INIS)

    Emura, Satoru

    1979-01-01

    In association with the revision of the laws on the regulation of reactors, etc. and on radiation injury protection in July 1978, the technology standard on the sea disposal of low-level radioactive solid wastes was greatly improved. This led to a large step forward in the test sea disposal of such wastes. Studies in this field are being made strenously in various organizations. First, review is made on the background and the studies made since about 1960 by the Atomic Energy Commission of Japan concerning the sea disposal of low-level radioactive wastes. The descriptions are made on the courses of the technology development and safety evaluation on sea-disposal packages started almost simultaneously. The results on cement packages intended for test sea disposal, in particular, are given as follows: the physical integrity of cement solid packages, the leachability of radionuclides from cement packages, etc. Finally, the technology standard is explained. (J.P.N.)

  2. Yucca Mountain project prototype testing

    International Nuclear Information System (INIS)

    Hughes, W.T.; Girdley, W.A.

    1990-01-01

    The U.S. DOE is responsible for characterizing the Yucca Mountain site in Nevada to determine its suitability for development as a geologic repository to isolate high-level nuclear waste for at least 10,000 years. This unprecedented task relies in part on measurements made with relatively new methods or applications, such as dry coring and overcoring for studies to be conducted from the land surface and in an underground facility. The Yucca Mountain Project has, since 1988, implemented a program of equipment development and methods development for a broad spectrum of hydrologic, geologic, rock mechanics, and thermomechanical tests planned for use in an Exploratory Shaft during site characterization at the Yucca Mountain site. A second major program was fielded beginning in April 1989 to develop and test methods and equipment for surface drilling to obtain core samples from depth using only air as a circulating medium. The third major area of prototype testing has been during the ongoing development of the Instrumentation/ Data Acquisition System (IDAS), designed to collect and monitor data from down-hole instrumentation in the unsaturated zone, and store and transmit the data to a central archiving computer. Future prototype work is planned for several programs including the application of vertical seismic profiling methods and flume design to characterizing the geology at Yucca Mountain. The major objectives of this prototype testing are to assure that planned Site Characterization testing can be carried out effectively at Yucca Mountain, both in the Exploratory Shaft Facility (ESF), and from the surface, and to avoid potential major failures or delays that could result from the need to re-design testing concepts or equipment. This paper will describe the scope of the Yucca Mountain Project prototype testing programs and summarize results to date. 3 figs

  3. The International Intraval project: to study validation of geosphere transport models for performance assessment of nuclear waste disposal. Phase 1, summary report

    International Nuclear Information System (INIS)

    1993-12-01

    Intraval is an international project that addresses the validation of models of transport of radionuclides through groundwater in the geosphere. Such models are used in assessment of the long-term safety of nuclear waste disposal systems. The present report summarises the results for the test cases and presents some additional remarks

  4. Second performance assessment iteration of the Greater Confinement Disposal facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Baer, T.A.; Emery, J.N.; Price, L.L.; Olague, N.E.

    1994-04-01

    The Greater Confinement Disposal (GCD) facility was established in Area 5 at the Nevada Test Site for containment of waste inappropriate for shallow land burial. Some transuranic (TRU) waste has been disposed of at the GCD facility, and compliance of this disposal system with EPA regulation 40 CFR 191 must be evaluated. We have adopted an iterative approach in which performance assessment results guide site data collection, which in turn influences the parameters and models used in performance assessment. The first iteration was based upon readily available data, and indicated that the GCD facility would likely comply with 40 CFR 191 and that the downward flux of water through the vadose zone (recharge) had a major influence on the results. Very large recharge rates, such as might occur under a cooler, wetter climate, could result in noncompliance. A project was initiated to study recharge in Area 5 by use of three environmental tracers. The recharge rate is so small that the nearest groundwater aquifer will not be contaminated in less than 10,000 years. Thus upward liquid diffusion of radionuclides remained as the sole release pathway. This second assessment iteration refined the upward pathway models and updated the parameter distributions based upon new site information. A new plant uptake model was introduced to the upward diffusion pathway; adsorption and erosion were also incorporated into the model. Several modifications were also made to the gas phase radon transport model. Plutonium solubility and sorption coefficient distributions were changed based upon new information, and on-site measurements were used to update the moisture content distributions. The results of the assessment using these models indicate that the GCD facility is likely to comply with all sections of 40 CFR 191 under undisturbed conditions

  5. Second performance assessment iteration of the Greater Confinement Disposal facility at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Baer, T.A.; Emery, J.N. [GRAM, Inc., Albuquerque, NM (United States); Price, L.L. [Science Applications International Corp., Albuquerque, NM (United States); Olague, N.E. [Sandia National Labs., Albuquerque, NM (United States)

    1994-04-01

    The Greater Confinement Disposal (GCD) facility was established in Area 5 at the Nevada Test Site for containment of waste inappropriate for shallow land burial. Some transuranic (TRU) waste has been disposed of at the GCD facility, and compliance of this disposal system with EPA regulation 40 CFR 191 must be evaluated. We have adopted an iterative approach in which performance assessment results guide site data collection, which in turn influences the parameters and models used in performance assessment. The first iteration was based upon readily available data, and indicated that the GCD facility would likely comply with 40 CFR 191 and that the downward flux of water through the vadose zone (recharge) had a major influence on the results. Very large recharge rates, such as might occur under a cooler, wetter climate, could result in noncompliance. A project was initiated to study recharge in Area 5 by use of three environmental tracers. The recharge rate is so small that the nearest groundwater aquifer will not be contaminated in less than 10,000 years. Thus upward liquid diffusion of radionuclides remained as the sole release pathway. This second assessment iteration refined the upward pathway models and updated the parameter distributions based upon new site information. A new plant uptake model was introduced to the upward diffusion pathway; adsorption and erosion were also incorporated into the model. Several modifications were also made to the gas phase radon transport model. Plutonium solubility and sorption coefficient distributions were changed based upon new information, and on-site measurements were used to update the moisture content distributions. The results of the assessment using these models indicate that the GCD facility is likely to comply with all sections of 40 CFR 191 under undisturbed conditions.

  6. Action Memorandum for the Engineering Test Reactor under the Idaho Cleanup Project

    Energy Technology Data Exchange (ETDEWEB)

    A. B. Culp

    2007-01-26

    This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared adn released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessol. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface.

  7. Action Memorandum for Decommissioning the Engineering Test Reactor Complex under the Idaho Cleanup Project

    International Nuclear Information System (INIS)

    A. B. Culp

    2007-01-01

    This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared and released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessel. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface

  8. In situ radiological characterization to support a test excavation at a liquid waste disposal site

    International Nuclear Information System (INIS)

    Keele, B.D.; Bauer, R.G.; Blewett, G.R.; Troyer, G.L.

    1994-05-01

    An in situ radiological detection system was developed to support a small test excavation at a liquid waste disposal site at the Hanford Site in Richland, Washington. Instrumentation, calibration and comparisons to samples are discussed

  9. Grimsel test site. Research on safe geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2010-07-01

    The Grimsel Test Site is located at an altitude of 1730 meters in the granitic formations of the Aare Massif. Some 300 million years ago, magmas solidified to form granitic rocks in the Grimsel area. New molten masses flowed into fissures of the cooling rock and formed dyke rocks. During the alpine orogeny around 40 million years ago, the rocks of the Aare Massif were passed over by the northwards-moving alpine layers and subsided by around 12 kilometres. The rocks were then overprinted under high temperature and pressure conditions and shear zones and fracture systems were formed. Uplift (0.5 to 0.8 mm/a) and erosion processes, which are still continuing today, brought the rocks of the Aare Massif to the surface once more. The mineral fractures for which the Grimsel area is famous, formed around 14 million years ago. Deep in the rock, the range of geological conditions found in the laboratory present ideal boundary conditions for investigating the functioning of both the geological and engineered barriers of deep repositories. Projects that look at the disposal concepts on a large scale are also an important aspect of the work at the Test Site. A radiation controlled zone allows radionuclides to be used under monitored conditions, giving a direct insight into the transport of radioactive substances in the rock. Around 25 partner organisations from various countries are involved in the projects at the Test Site. The European Union and the Swiss State Secretariat for Education and Research provide financial support to several experiments. In Switzerland, deep geological disposal is required by law for all types of radioactive waste. Field investigations for determining the suitability of potential disposal sites are an important component of a waste management programme. The field work is complemented by laboratory studies, investigations of relevant natural processes and research projects in underground rock laboratories; these provide a better understanding of the

  10. Grimsel test site. Research on safe geological disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    The Grimsel Test Site is located at an altitude of 1730 meters in the granitic formations of the Aare Massif. Some 300 million years ago, magmas solidified to form granitic rocks in the Grimsel area. New molten masses flowed into fissures of the cooling rock and formed dyke rocks. During the alpine orogeny around 40 million years ago, the rocks of the Aare Massif were passed over by the northwards-moving alpine layers and subsided by around 12 kilometres. The rocks were then overprinted under high temperature and pressure conditions and shear zones and fracture systems were formed. Uplift (0.5 to 0.8 mm/a) and erosion processes, which are still continuing today, brought the rocks of the Aare Massif to the surface once more. The mineral fractures for which the Grimsel area is famous, formed around 14 million years ago. Deep in the rock, the range of geological conditions found in the laboratory present ideal boundary conditions for investigating the functioning of both the geological and engineered barriers of deep repositories. Projects that look at the disposal concepts on a large scale are also an important aspect of the work at the Test Site. A radiation controlled zone allows radionuclides to be used under monitored conditions, giving a direct insight into the transport of radioactive substances in the rock. Around 25 partner organisations from various countries are involved in the projects at the Test Site. The European Union and the Swiss State Secretariat for Education and Research provide financial support to several experiments. In Switzerland, deep geological disposal is required by law for all types of radioactive waste. Field investigations for determining the suitability of potential disposal sites are an important component of a waste management programme. The field work is complemented by laboratory studies, investigations of relevant natural processes and research projects in underground rock laboratories; these provide a better understanding of the

  11. Nordic nuclear safety research 1994-1997. Project on disposal of radioactive waste

    International Nuclear Information System (INIS)

    Broden, Karin

    1999-01-01

    This presentation describes the Nordic Nuclear Safety Research (NKS) programme, which is a scientific co-operation programme in nuclear safety, radiation protection and emergence preparedness. The purpose of the programme is to carry out cost-effective Nordic projects, thus producing research results, exercises, information, manuals, recommendations, and other types of background material. This material is to serve decision-makers and other concerned staff members at authorities, research establishments and enterprises in the nuclear field. Three waste disposal projects under NKS are briefly described: (1) Waste characterisation, (2) Performance analysis of the engineered barrier system of the repositories for low- and intermediate-level waste, (3) Environmental impact assessment

  12. 25 CFR 171.420 - Can I dispose of sewage, trash, or other refuse on a BIA irrigation project?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Can I dispose of sewage, trash, or other refuse on a BIA... AND WATER IRRIGATION OPERATION AND MAINTENANCE Irrigation Facilities § 171.420 Can I dispose of sewage, trash, or other refuse on a BIA irrigation project? No. Sewage, trash, or other refuse are considered...

  13. Environmental safety evaluation in test sea disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    1979-01-01

    The study results on the environmental safety in the test sea disposal of low-level wastes by Subcommittee on Radioactive Waste Safety Technology in Nuclear Safety Commission are given in connection with the test disposal of radioactive wastes into sea reported by the Nuclear Safety Bureau. The Subcommittee concludes that the effect of the test disposal of radioactive wastes into sea on the environment is extremely small. The contents are as follows. The full text of the report; attached data, (1) prediction of the concentrations of radioactive nuclides in sea, (2) calculation of the concentrations of radioactive nuclides in marine life with biological paths, and (3) estimation of exposure dose in general people; references (1) radiation exposure of the personnel engaged in sea disposal, (2) the effect of a sea disaster during ocean transport. (J.P.N.)

  14. Savannah River Site waste vitrification projects initiated throughout the United States: Disposal and recycle options

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    2000-01-01

    A vitrification process was developed and successfully implemented by the US Department of Energy's (DOE) Savannah River Site (SRS) and at the West Valley Nuclear Services (WVNS) to convert high-level liquid nuclear wastes (HLLW) to a solid borosilicate glass for safe long term geologic disposal. Over the last decade, SRS has successfully completed two additional vitrification projects to safely dispose of mixed low level wastes (MLLW) (radioactive and hazardous) at the SRS and at the Oak Ridge Reservation (ORR). The SRS, in conjunction with other laboratories, has also demonstrated that vitrification can be used to dispose of a wide variety of MLLW and low-level wastes (LLW) at the SRS, at ORR, at the Los Alamos National Laboratory (LANL), at Rocky Flats (RF), at the Fernald Environmental Management Project (FEMP), and at the Hanford Waste Vitrification Project (HWVP). The SRS, in conjunction with the Electric Power Research Institute and the National Atomic Energy Commission of Argentina (CNEA), have demonstrated that vitrification can also be used to safely dispose of ion-exchange (IEX) resins and sludges from commercial nuclear reactors. In addition, the SRS has successfully demonstrated that numerous wastes declared hazardous by the US Environmental Protection Agency (EPA) can be vitrified, e.g. mining industry wastes, contaminated harbor sludges, asbestos containing material (ACM), Pb-paint on army tanks and bridges. Once these EPA hazardous wastes are vitrified, the waste glass is rendered non-hazardous allowing these materials to be recycled as glassphalt (glass impregnated asphalt for roads and runways), roofing shingles, glasscrete (glass used as aggregate in concrete), or other uses. Glass is also being used as a medium to transport SRS americium (Am) and curium (Cm) to the Oak Ridge Reservation (ORR) for recycle in the ORR medical source program and use in smoke detectors at an estimated value of $1.5 billion to the general public

  15. 200 Area Treated Effluent Disposal Facility operational test specification. Revision 2

    International Nuclear Information System (INIS)

    Crane, A.F.

    1995-01-01

    This document identifies the test specification and test requirements for the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These operational testing activities, when completed, demonstrate the functional, operational and design requirements of the 200 Area TEDF have been met. The technical requirements for operational testing of the 200 Area TEDF are defined by the test requirements presented in Appendix A. These test requirements demonstrate the following: pump station No.1 and associated support equipment operate both automatically and manually; pump station No. 2 and associated support equipment operate both automatically and manually; water is transported through the collection and transfer lines to the disposal ponds with no detectable leakage; the disposal ponds accept flow from the transfer lines with all support equipment operating as designed; and the control systems operate and status the 200 Area TEDF including monitoring of appropriate generator discharge parameters

  16. The HAW project. Demonstrative disposal of high-level radioactive wastes in the Asse salt mine

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Duijves, K.

    1988-04-01

    Since 1968 the GSF has been carrying out research and development programs for the final disposal of high-level radioactive waste (HAW) in salt formations. The heat producing waste has been simulated so far by means of electrical heaters and also cobalt-60-sources. In order to improve the final concept for HAW disposal in salt formations the complete technical system of an underground repository is to be tested in a one-to-one scale test facility. To satisfy the test objectives thirty high radioactive canisters containing the radionuclides Cs-137 and Sr-90 will be emplaced in six boreholes located in two test galleries at the 800 m-level in the Asse salt mine. The duration of testing will be approximately five years. For the handling of the radioactive canisters and their emplacement into the boreholes a system consisting of transportation casks, transportation vehicle, disposal machine, and borehole slider will be developed and tested. The actual scientific investigation program is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This program includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. (orig./HP)

  17. Synopsis of in situ testing for mined geologic disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Gnirk, P.F.

    1980-01-01

    The concept of mined geologic disposal of radioactive wastes was proposed about 25 years ago. Until the mid-1970's, research and development activities were directed essentially to the evaluation of the disposal concept fot salt formations. During the past 5 years, the waste disposal technology programs in the USA and other countries have been expanded substantially in effort and scope for evaluation of a broader range of geologic media beyond salt, including basalt, granite, shale, and tuff. From the outset, in situ testing has been an integral part of these programs, and has included activities concerned with rock mass characterization, the phenomenological response of rock to waste or simulated waste emplacement, model development and verification, and repository design. This paper provides a synopsis of in situ tests that have been or are being performed in geologic media in support of the waste disposal programs in the USA, the United Kingdom, Sweden, and the Federal Republic of Germany

  18. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-04-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  19. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-03-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  20. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2010-06-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  1. 2008 State-of-the-Art : High Level Radioactive Waste Disposal Facilities and Project Review of Proceding Countries

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Choi, Jong Won; Lee, Jong Youl; Jung, Jong Tae; Kim, Sung Ki; Lee, Min Soo; Cho, Dong Keun; Kook, Dong Hak

    2008-11-15

    High level radioactive waste disposal system project for advanced nuclear fuel cycle produced this report which are dealing with the repository status of proceding countries as of 2008. This report has brief review on disposal facilities which are operating and will be operating and on future plan of those nations. The other report 'Development of the Geological Disposal System for High Level Waste' which was produced like this report time and this report would help the readers grasp the current repository status. Because our country is a latecomer in the HLW disposal world, it is strongly recommended to catch up with advanced disposal system and concepts of developed nations and this report is expected to make it possible. There are several nations which were the main survey target; Finland, USA, Sweden, Germany, France, Switzerland, and Japan. Recent information was applied to this report and our project team will produce annual state-of-the-art report with continuous updates.

  2. Offsite source recovery project - ten years of sealed source recovery and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Whitworth, Julia Rose [Los Alamos National Laboratory; Pearson, Mike [Los Alamos National Laboratory; Witkowski, Ioana [Los Alamos National Laboratory; Wald - Hopkins, Mark [Los Alamos National Laboratory; Cuthbertson, A [NNSA

    2010-01-01

    The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted radioactive sealed sources for ten years. In January 2009, GTRI announced that the project had recovered 20,000 sealed radioactive sources (this number has since increased to more than 23,000). This project grew out of early efforts at Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 (Pu-239) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program. Decades later, these sources began to exceed their special form certifications or fall out of regular use. As OSRP has collected and stored sealed sources, initially using 'No Path Forward' waste exemptions for storage within the Department of Energy (DOE) complex, it has consistently worked to create disposal pathways for the material it has recovered. The project was initially restricted to recovering sealed sources that would meet the definition of Greater-than-Class-C (GTCC) low-level radioactive waste, assisting DOE in meeting its obligations under the Low-level Radioactive Waste Policy Act Amendments (PL 99-240) to provide disposal for this type of waste. After being transferred from DOE-Environmental Management (EM) to the U.S. National Nuclear Security Administration (NNSA) to be part of GTRI, OSRP's mission was expanded to include not only material that would be classified as GTCC when it became waste, but also any other materials that might constitute a 'national security consideration.' It was recognized at the time that the GTCC category was a waste designation having to do with environmental consequence, rather than the threat posed by deliberate or accidental misuse. The project faces barriers to recovery in many areas, but disposal continues to be one of the more difficult to overcome. This paper discusses OSRP's disposal efforts over its 10-year history. For sources

  3. Evaluation of dredged material proposed for ocean disposal from Red Hook/Bay Ridge project areas, New York

    Energy Technology Data Exchange (ETDEWEB)

    Pinza, M.R.; Barrows, E.S.; Borde, A.B. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1996-09-01

    The objective of the Red HookIBay Ridge project was to evaluate proposed dredged material from these two areas to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Sediment samples were collected from the Red Hook/Bay Ridge project areas. Tests and analyses were conducted. The evaluation of proposed dredged material from the Red Hook/Bay Ridge project areas consisted of bulk sediment chemical analyses, chemical analyses of dredging site water and elutriate, water-column and benthic acute toxicity tests. Twenty-four individual sediment core samples were collected from these two areas and analyzed for grain size, moisture content, and total organic carbon (TOC). Three composite sediment samples, representing Red Hook Channel and the two Bay Ridge Reaches to be dredged, were analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene. Dredging site water and elutriate water, which is prepared from the suspended-particulate phase (SPP) of the three Red Hook Bay Ridge sediment composites, were analyzed for metals, pesticides, and PCBS. Benthic acute toxicity tests were performed. Water-column or SPP toxicity tests were performed. Bioaccumulation tests were also conducted.

  4. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was

  5. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed

  6. Recent progress of the waste processing and disposal projects within the Underground Storage Tank-Integrated Demonstration

    International Nuclear Information System (INIS)

    Hunt, R.D.; McGinnis, C.P.; Cruse, J.M.

    1994-01-01

    The US Department of Energy (DOE) Office of Environmental Restoration and Waste Remediation has created the Office of Technology Development (OTD) to provide new and improved remediation technologies for the 1 x 10 8 gal of radioactive waste in the underground storage tanks (USTs) at five DOE sites. The OTD established and the Underground Storage Tank-Integrated Demonstration (UST-ID) to perform demonstrations, tests, and evaluations on these new technologies before these processes are transferred to the tank sites for use in full-scale remediation of the USTs. The UST-ID projects are performed by the Characterization and Waste Retrieval Program or the Waste Processing and Disposal Program (WPDP). During FY 1994, the WPDP is funding 12 projects in the areas of supernate processing, sludge processing, nitrate destruction, and final waste forms. The supernate projects are primarily concerned with cesium removal. A mobile evaporator and concentrator for cesium-free supernate is also being demonstrated. The sludge projects are emphasizing sludge dissolution and the evaluation of the TRUEX and diamide solvent extraction processes for transuranic waste streams. One WPDP project is examining both supernate and sludge processes in an effort to develop a system-level plan for handling all UST waste. The other WPDP studies are concerned with nitrate and organic destruction as well as subsequent waste forms. The current status of these WPDP projects is presented

  7. Compas project stress analysis of HLW containers: behaviour under realistic disposal conditions

    International Nuclear Information System (INIS)

    Ove Arup and Partners, London

    1990-01-01

    The Compas project is concerned with the structural performance of metal overpacks which may be used to encapsulate vitrified high-level waste (HLW) forms before disposal in deep geological repositories. In this final stage of the project, analysis of an HLW overpack of realistic design is performed to predict its behaviour when subjected to likely repository loads. This analysis work is undertaken with the benefit of experience gained in previous phases of the project in which the ability to accurately predict overpack behaviour, when subjected to a uniform external pressure, was demonstrated. Burial in clay, granite and salt environments has been considered and two distinct loading arrangements identified, in an attempt to represent the worst conditions that could be imposed by such media. The analysis successfully demonstrates the ability of the containers to withstand extreme, yet credible, repository loads

  8. EC MoDeRn Project: In-situ Demonstration of Innovative Monitoring Technologies for Geological Disposal - 12053

    Energy Technology Data Exchange (ETDEWEB)

    Breen, B.J. [NDA, Herdus House, Westlakes Science and Technology Park, Moor Row, Cumbria, CA24 3HU (United Kingdom); Garcia-Sineriz, J.L. [AITEMIN, c/Margarita Salas 14-Parque Leganes Tecnologico-Leganes, ES-28918, Madrid (Spain); Maurer, H. [ETH Zurich, ETH Honggerberg, CH-8093, Zurich (Switzerland); Mayer, S. [ANDRA, 1-7 rue Jean-Monnet, F-92298 Chatenay-Malabry cedex (France); Schroeder, T.J. [NRG, P.O. Box 25, NL-1755 ZG Petten (Netherlands); Verstricht, J. [EURIDICE EIG, c/o SCK.CEN, Boeretang 200, BE-2400 Mol (Belgium)

    2012-07-01

    Monitoring to provide information on the evolution of geological disposal presents several challenges. The 4-year, euros M 5, EC MoDeRn Project (http://www.modern-fp7.eu/), which commenced in 2009, addresses monitoring processes, state-of-the-art technology and innovative research and development of monitoring techniques. This paper discusses some of the key drivers for the development of innovative monitoring techniques and provides outlines of the demonstration programmes being conducted within MoDeRn. The aim is to develop these innovative monitoring techniques and to demonstrate them under realistic conditions present in underground laboratories. These demonstration projects, applying a range of different monitoring techniques, are being carried out at underground research facilities in different geological environments at HADES URL in Belgium (plastic clay), Bure in France (indurated clay) and at Grimsel Test Site (granite) in Switzerland. These are either built upon existing infrastructure (EC ESDRED Low pH shotcrete and TEM experiments at Grimsel; and PRACLAY experiment and underground galleries in HADES) or will be attached to infrastructure that is being developed and financed by resources outside of this project (mock-up disposal cell in Bure). At Grimsel Test Site, cross-hole and hole-to-tunnel seismic methods are being employed as a means to monitor induced changes in an artificially saturated bentonite wall confined behind a shotcrete plug. Recognising the limitations for travel-time tomography for monitoring a disposal cell, full waveform inversion techniques are being employed to enhance the capacity to monitor remote from the excavation. At the same Grimsel location, an investigation will be conducted of the potential for using a high frequency wireless (HFW) sensor network embedded within the barrier system; this will include the possibility of providing energy remotely to isolated sensors. At the HADES URL, the monitoring programme will utilise

  9. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    International Nuclear Information System (INIS)

    Carilli, J.T.; Krenzien, S.K.; Geisinger, R.G.; Gordon, S.J.; Quinn, B.

    2009-01-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams

  10. Low-level radioactive waste in the northeast: disposal volume projections

    International Nuclear Information System (INIS)

    1982-10-01

    The northeastern states, with support of the Coalition of Northeastern Governors (CONEG), are developing compact(s) for the disposal and management of low-level radioactive waste (LLRW) generated in the eleven northeastern states (Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont). The Technical Subcommittee has made a projection of future low-level radioactive waste to the year 2000 based on existing waste volume data and anticipated growth in the Northeast states. Aware of the difficulties involved with any long range projection - unforeseen events can drastically change projections based on current assumptions - the Technical Subcommittee believes that waste volume projections should be reviewed annually as updated information becomes available. The Technical Subcommittee made the following findings based upon a conservative projection methodology: volumes of low-level waste produced annually in the eleven states individually and collectively are expected to grow continually through the year 2000 with the rate of increase varying by state; by the year 2000, the Northeast is projected to generate 58,000 m 3 of low-level waste annually, about 1.9 times the current average; and based on current estimates, 47% of the total projected waste volume in the year 2000 will be produced by nuclear power plants, compared to the current average of 54%. Non-reactor wastes will equal 53% of the total in the year 2000 compared to the current 46%

  11. The project for national disposal facility for low and intermediate level radioactive waste in Bulgaria

    International Nuclear Information System (INIS)

    Alexandrov, A.; Boyanov, S.; Christoskova, M.; Ivanov, A.

    2006-01-01

    The State Enterprise Radioactive Waste is the responsible organisation in Bulgaria for the radioactive waste management and, in particular, for the establishment of the national disposal facility (NDF) for low and intermediate level short-lived radioactive waste (LIL RAW SL). According to the national strategy for the safe management of spent fuel and radioactive waste the NDF should be commissioned in 2015. NDF will accept two main waste streams - for disposal and for storage if the waste is not disposable. The major part of disposable waste is generated by Kozloduy NPP. The disposal facility will be a near surface module type engineered facility. Consecutive erection of new modules will be available in order to increase the capacity of the facility. The corrective measures are previewed to be applied if needed - upgrading of engineered barriers and/or retrieval of the waste. The active control after the facility is closed should be not more than 300 years. The safety of the facility is supposed to be based on the passive measures based on defense in deep consisting of physical barriers and administrative measures. A multi barrier approach will be applied. Presently the NDF project is at the first stage of the facility life cycle - the site selection. The siting process itself consists of four stages - elaboration of a concept for waste disposal and site selection planning, data collection and region analyses, characterization of the preferred sites-candidates and site confirmation. Up till now the work on the first two stages of the siting process had been done by the SE RAW. Geological site investigations have been carried out for more than two decades all over the territory of the country. The results of the investigations have been summarized and analysed thoroughly. More than 40 potential sites have been considered, after the preselection 12 sites have been selected as favourable and among them 5 are pointed out as acceptable. The ultimate decision for a site

  12. Integrated disposal Facility Sagebrush Habitat Mitigation Project: FY2007 Compensation Area Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Durham, Robin E.; Sackschewsky, Michael R.

    2007-09-01

    This report summarizes the first year survival of sagebrush seedlings planted as compensatory mitigation for the Integrated Disposal Facility Project. Approximately 42,600 bare root seedlings and 26,000 pluglings were planted at a mitigation site along Army Loop Road in February 2007. Initial baseline monitoring occurred in March 2007, and first summer survival was assessed in September 2007. Overall survival was 19%, with bare root survival being marginally better than pluglings (21% versus 14%). Likely major factors contributing to low survival were late season planting and insufficient soil moisture during seedling establishment.

  13. NNWSI waste form test method for unsaturated disposal conditions

    International Nuclear Information System (INIS)

    Bates, J.K.; Gerding, T.J.

    1985-03-01

    A test method has been developed to measure the release of radionuclides from the waste package under simulated NNWSI repository conditions, and to provide information concerning materials interactions that may occur in the repository. Data are presented from Unsaturated testing of simulated Savannah River Laboratory 165 glass completed through 26 weeks. The relationship between these results and those from parametric and analog testing are described. The data indicate that the waste form test is capable of producing consistent, reproducible results that will be useful in evaluating the role of the waste package in the long-term performance of the repository. 6 refs., 7 figs., 5 tabs

  14. Dredged Material Testing and Evaluation for Ocean Disposal

    Science.gov (United States)

    Evaluation and testing of dredged material proposed for ocean dumping is conducted to help protect human health and the marine environment. National guidance is provided by the Green Book. Regional Implementation Manuals are provided.

  15. Study on quality assurance for high-level radioactive waste disposal project

    International Nuclear Information System (INIS)

    Takada, Susumu

    2005-01-01

    The U.S. Department of Energy (DOE) has developed comparatively detailed quality assurance requirements for the high-level radioactive waste disposal systems. Quality assurance is recognized as a key issue for confidence building and smooth implementation of the HLW program in Japan, and Japan is at an initial phase of repository development. Then the quality assurance requirements at site research and site selection, site characterization, and site suitability analysis used in the Yucca Mountain project were examined in detail and comprehensive descriptions were developed using flow charts. Additionally, the applicability to the Japan high-level radioactive waste disposal project was studied. The examination and study were performed for the following QA requirements: The requirements that have the relative importance at site research and site selection, site characterization, and site suitability analysis (such as planning and performing scientific investigations, sample control, data control, model development and use, technical report review, software control, and control of the electric management of data). The requirements that have the relative importance at the whole repository phases (such as quality assurance program, document control, and control of quality assurance records). (author)

  16. Evaluation of Dredged Material Proposed for Ocean Disposal from Federal Projects in New York and New Jersey and the Military Ocean Terminal (MOTBY)

    Energy Technology Data Exchange (ETDEWEB)

    Barrows, E.S.; Antrim, L.D.; Pinza, M.R.; Gardiner, W.W.; Kohn, N.P.; Gruendell, B.D.; Mayhew, H.L.; Word, J.Q.; Rosman, L.B. [Battelle Marine Sciences Laboratory, Sequim, Washington (United States)

    1996-08-01

    The U.S. Army Corps of Engineers (USACE) is authorized by Section 103 of the Marine Protection, Research, and Sanctuaries Act of 1972 (MPRSA), Public Law 92-532, and by the Clean Water Act of 1972 (CWA) and Amendments of 1977 to permit, evaluate, and regulate the disposal of dredged material in ocean waters to minimize adverse environmental effects. Compliance with the regulations of the MPRSA calls for physical and biological testing of sediment proposed for dredging prior to its disposal in ocean waters. The testing required by the MPRSA criteria is conducted under a testing manual developed by the USACE and the U.S. Environmental Protection Agency (EPA), Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual), commonly referred to as the `Green Book.` Testing protocols in the Green Book include bulk sediment analysis, grain size analysis, elutriate testing, and biological testing. The biological testing includes bioassays for acute toxicity as well as analysis to determine bioaccumulation of certain contaminants by marine organisms. The objective of the USACE-NYD Federal Projects Program was to evaluate sediment proposed for dredging and unconfined ocean disposal at the Mud Dump Site. The results of analytical measurements and bioassays performed on the test sediments were compared with analyses of sediment from the Mud Dump Reference Site to determine whether the test sediments were acutely toxic to marine organisms or resulted in statistically significantly greater bioaccumulation of contaminants in marine organisms, relative to the reference sediment. Testing for the federal project areas was performed according to the requirements.

  17. Couplex1 test case nuclear - Waste disposal far field simulation

    International Nuclear Information System (INIS)

    2001-01-01

    This first COUPLEX test case is to compute a simplified Far Field model used in nuclear waste management simulation. From the mathematical point of view the problem is of convection diffusion type but the parameters are highly varying from one layer to another. Another particularity is the very concentrated nature of the source, both in space and in time. (author)

  18. Performance of engineered barrier materials in near surface disposal facilities for radioactive waste. Results of a co-ordinated research project

    International Nuclear Information System (INIS)

    2001-11-01

    The primary objectives of the CRP were to: promote the sharing of experiences of the Member States in their application of engineered barrier materials for near surface disposal facilities; help enhance their use of engineered barriers by improving techniques and methods for selecting, planning and testing performance of various types of barrier materials for near surface disposal facilities. The objective of this publication is to provide and overview of technical issues related to the engineered barrier systems and a summary of the major findings of each individual research project that was carried out within the framework of the CRP. This publication deals with a general overview of engineered barriers in near surface disposal facilities, key technical information obtained within the CRP and overall conclusions and recommendations for future research and development activities. Appendices presenting individual research accomplishments are also provided. Each of the 13 appendices was indexed separately

  19. Direct ultimate disposal of spent fuel elements. Mechanical equipment tests

    International Nuclear Information System (INIS)

    Filbert, W.; Schrimpf, C.

    1990-02-01

    Simulation of the shaft transport of waste forms is described. Proceeding from a concept of a shaft hoist with a payload of 85 t, the applicability of the state of the art of essential components, such as hoisting machine, cage and hoisting cables, to such payloads is described. For these components a test stand has been planned which meets safety-related regulations. (DG) [de

  20. Processing of Irradiated Graphite to Meet Acceptance Criteria for Waste Disposal. Results of a Coordinated Research Project

    International Nuclear Information System (INIS)

    2016-05-01

    Graphite is widely used in the nuclear industry and in research facilities and this has led to increasing amounts of irradiated graphite residing in temporary storage facilities pending disposal. This publication arises from a coordinated research project (CRP) on the processing of irradiated graphite to meet acceptance criteria for waste disposal. It presents the findings of the CRP, the general conclusions and recommendations. The topics covered include, graphite management issues, characterization of irradiated graphite, processing and treatment, immobilization and disposal. Included on the attached CD-ROM are formal reports from the participants

  1. Major results and lessons learned for performance assessments of spent fuel geological disposal: the SPA project

    International Nuclear Information System (INIS)

    Baudoin, P.; Serres, C.; Certes, C.; Gay, D.

    2001-01-01

    This paper presents a summary of the results obtained in the framework of the SPA (spent fuel disposal performance assessment) project. The project was undertaken by ENRESA, E; GRS, D; IPSN, F; NRG, NL; SCK.CEN, B and VTT, FIN between May 1996 and April 1999. Devoted to the study of spent fuel disposal in various host rock formations (clay, crystalline rocks and salt formation), it notably had the objective to evaluate the long-term performance of different repository systems and to identify the most influential elements. The variety of concepts, sites and scenarios considered in the framework of this project provides a wide range of information from which some general conclusions can be drawn. Focusing on the work done in the case of granite host rock formations, this paper describes the various approaches adopted and states the main sources of differences. It particularly stresses the differences related to the geosphere and biosphere modelling. For the geosphere modelling, ENRESA, GRS and VTT use one dimensional discrete approaches to model the migration of contaminants through the geosphere taking into account for matrix diffusion, whereas IPSN uses a three dimensional continuum approach based on a single porosity model. The comparison of the biosphere conversion factors shows the high influence on the calculated radionuclide dose contributions that can results from biosphere modelling assumptions. It notably points out the differences existing between a simplified ''water drinking'' approach as implemented by VTT and a more classical one in which a wider range of exposure pathways are taken into account. (orig.)

  2. Safety in the Chemical Laboratory: Tested Disposal Methods for Chemical Wastes from Academic Laboratories.

    Science.gov (United States)

    Armour, M. A.; And Others

    1985-01-01

    Describes procedures for disposing of dichromate cleaning solution, picric acid, organic azides, oxalic acid, chemical spills, and hydroperoxides in ethers and alkenes. These methods have been tested under laboratory conditions and are specific for individual chemicals rather than for groups of chemicals. (JN)

  3. Site characterization quality assurance for the California LLRW Disposal Site Project

    International Nuclear Information System (INIS)

    Hanrahan, T.P.; Ench, J.E.; Serlin, C.L.; Bennett, C.B.

    1988-01-01

    In December of 1985 US Ecology was chosen as the license designee for the State of California's low-level radioactive waste disposal facility. In early 1987, three candidate sites were selected for characterization studies in preparation for identifying the preferred site. The geotechnical characterization activities along with studies of the ecological and archaeological attributes, as well as assessments of the socio-economic impacts and cultural resources all provide input towards selection of the proposed site. These technical studies in conjunction with comments from local citizen committees and other interested parties are used as a basis for determining the proposed site for which full site characterization as required by California licensing requirements are undertaken. The purpose of this paper is to present an overview of the program for Quality Assurance and Quality Control for the site characterization activities on the California LLRW Disposal Site Project. The focus is on three major perspectives: The composite QA Program and two of the primary characterization activities, the geotechnical and the meteorological investigations

  4. Subseabed Disposal Project chemical response studies. Annual report, October 1982-September 1983

    International Nuclear Information System (INIS)

    Brush, L.H.

    1985-10-01

    Studies of the chemical response of deep-sea sediments to a subseabed repository for high-level radioactive waste continued during Fiscal Year 1983. Chemical Response Studies comprise Waste Package, Near-Field, and Far-Field Studies. This year, as in the past, investigators in the US Subseabed Disposal Project (SDP) carried out most of these chemical response experiments with red clay from the MPG 1 study location 1500 km north of Hawaii. The results of all studies carried out to date imply that oxidized red clay would form a highly effective barrier to radionuclides that form cationic species, but that anionic radionuclides would begin to escape from the sediment to the overlying water column on the order of thousands of years after emplacement. In Fiscal Year 1984, investigators in the US SDP will initiate chemical response studies with mildly reduced Atlantic clay- and carbonate-rich sediments in cooperation with the Sediment Barrier Task Group of the Organization for Economic Cooperation and Development - Nuclear Energy Agency Coordinated Program on the Assessment of the Subseabed Disposal of Radioactive Waste (Seabed Working Group). The objective of these US studies will be to quantify the chemical response of Atlantic sediments to a subseabed repository with a level of confidence similar to that for Pacific red clay

  5. The final disposal of radioactive wastes as social, political and scientific project - an introduction

    International Nuclear Information System (INIS)

    Brunnengraeber, Achim

    2015-01-01

    The nuclear power production that was productive for two generations produces radioactive wastes that will be a hazardous and financial burden for many future generations. Science, politics, industry and the society are responsible to find a successful solution for the project of final disposal of radioactive wastes. With the fast development of renewable energies with the perspectives of sustainability and other advantages nuclear power will not have a remarkable future. The search for a final repository site is a tremendous governmental, economic and public challenge but can also be seen as a social chance. Democracy could be enforced by this process, public commitment, transparency, co-determination, confidence in political processes are indispensible premises.

  6. Environmental monitoring six month report for the Tumulus Disposal Demonstration Project

    International Nuclear Information System (INIS)

    Yager, R.E.; Furnari, J.A.; Craig, P.M.

    1989-05-01

    The Fiscal Year 1989 Six Month Report is the fourth in a series of semi-annual Tumulus Disposal Demonstration Project (TDDP) data summary reports. This data summary spans the time from start of operations in June 1987 through the end of March 1989 with particular emphasis on the last six months: October 1988 through March 1989. The environmental data collected include run-off water quality and quantity, groundwater quality and levels, soil sampling and hydrometeorological data. These data are being used and analyzed here to demonstrate the environmental performance objectives for the TDDP as part of the overall performance assessment. Comparisons are made between pre- and post-operational data and data collected during size month period ending March 31, 1989. No significant environmental impacts have been found since operations have begun. 13 refs., 28 figs., 12 tabs

  7. COMPLETION OF THE TRANSURANIC GREATER CONFINEMENT DISPOSAL BOREHOLE PERFORMANCE ASSESSMENT FOR THE NEVADA TEST SITE

    International Nuclear Information System (INIS)

    Colarusso, Angela; Crowe, Bruce; Cochran, John R.

    2003-01-01

    Classified transuranic material that cannot be shipped to the Waste Isolation Pilot Plant in New Mexico is stored in Greater Confinement Disposal boreholes in the Area 5 Radioactive Waste Management Site on the Nevada Test Site. A performance assessment was completed for the transuranic inventory in the boreholes and submitted to the Transuranic Waste Disposal Federal Review Group. The performance assessment was prepared by Sandia National Laboratories on behalf of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office using an iterative methodology that assessed radiological releases from the intermediate depth disposal configuration against the regulatory requirements of the 1985 version of 40 CFR 191 of the U.S. Environmental Protection Agency. The transuranic materials are stored at 21 to 37 m depth (70 to 120 ft) in large diameter boreholes constructed in the unsaturated alluvial deposits of Frenchman Flat. Hydrologic processes that affect long- term isolation of the radionuclides are dominated by extremely slow upward rates of liquid/vapor advection and diffusion; there is no downward pathway under current climatic conditions and there is no recharge to groundwater under future ''glacial'' climatic conditions. A Federal Review Team appointed by the Transuranic Waste Disposal Federal Review Group reviewed the Greater Confinement Disposal performance assessment and found that the site met the majority of the regulatory criteria of the 1985 and portions of the 1993 versions of 40 CFR 191. A number of technical and procedural issues required development of supplemental information that was incorporated into a final revision of the performance assessment. These issues include inclusion of radiological releases into the complementary cumulative distribution function for the containment requirements associated with drill cuttings from inadvertent human intrusion, verification of mathematical models used in the performance

  8. The role equilibrium leach testing in understanding the behaviour of nuclear wastes under disposal conditions

    International Nuclear Information System (INIS)

    Biddle, P.; Rees, J.H.

    1988-01-01

    Results from the equilibrium leach testing of a range of intermediate level nuclear wastes have been modelled successfully using sorption and solubility data obtained in experiments with individual radionuclides. The wastes involved included fuel cladding (after removal of irradiated fuel for reprocessing), combustible plutonium-contaminated materials and ferric/aluminium hydroxide flocs. The test has an important role in validating nearfield models, and helps to build confidence in disposal assessments. (orig.)

  9. The role of equilibrium leach testing in understanding the behaviour of nuclear wastes under disposal conditions

    International Nuclear Information System (INIS)

    Biddle, P.; Rees, J.H.

    1988-01-01

    Results from the equilibrium leach testing of a range of intermediate level nuclear wastes have been modelled using sorption and solubility data obtained in experiments with individual radionuclides. The wastes involved were AGR hulls, Magnox cladding wastes, combustible plutonium-contaminated materials and ferric/aluminium hydroxide flocs. The test has an important role in validating near-field models, and helps to build confidence in disposal assessments. (author)

  10. Tokamak Fusion Test Reactor Project

    International Nuclear Information System (INIS)

    1983-01-01

    Where the project's major contracts for buildings and equipment have experienced significant increases in cost, even though the contracts were for fixed prices, IG concluded that a major reason for the increases was the failure to adequately specify requirements prior to awarding the contracts. IG recommended that the Department should develop guidelines on what constitutes an adequate specification for a fixed-price contract and what controls should be placed over change orders. The Assistant Secretary for Management and Administration indicated in his comments to the draft report that an upcoming revision of the Accounting Practices and Procedures Handbook would establish controls over reallocations of construction funds to operating funds. Recommendations also propose that particular attention be given to ensuring that an agreed-upon plan and budget for completing the project is established, that a performance measurement system be implemented by the Princeton Plasma Physics Laboratory, and that improvements be made in the laboratory's Cost/Schedule Performance Report. Improvements are also needed in the quality assurance and safety programs of the Princeton Plasma Physics Laboratory. A number of recommendations from previous quality-assurance and safety reviews, performed by personnel from the Princeton Plasma Physics Laboratory and the Department of Energy, have not been implemented. Comments to the draft report also address these outstanding issues

  11. Buffer Construction Methodology in Demonstration Test For Cavern Type Disposal Facility

    International Nuclear Information System (INIS)

    Yoshihiro, Akiyama; Takahiro, Nakajima; Katsuhide, Matsumura; Kenji, Terada; Takao, Tsuboya; Kazuhiro, Onuma; Tadafumi, Fujiwara

    2009-01-01

    A number of studies concerning a cavern type disposal facility have been carried out for disposal of low level radioactive waste mainly generated by power plant decommissioning in Japan. The disposal facility is composed of an engineered barrier system with concrete pit and bentonite buffer, and planed to be constructed in sub-surface 50 - 100 meters depth. Though the previous studies have mainly used laboratory and mock-up tests, we conducted a demonstration test in a full-size cavern. The main objectives of the test were to study the construction methodology and to confirm the quality of the engineered barrier system. The demonstration test was planned as the construction of full scale mock-up. It was focused on a buffer construction test to evaluate the construction methodology and quality control in this paper. Bentonite material was compacted to 1.6 Mg/m 3 in-site by large vibrating roller in this test. Through the construction of the buffer part, a 1.6 Mg/m 3 of the density was accomplished, and the data of workability and quality is collected. (authors)

  12. Stress analysis of HLW containers advanced test work Compas project

    International Nuclear Information System (INIS)

    Ove Arup and Partners

    1990-01-01

    The Compas project is concerned with the structural performance of metal overpacks which may be used to encapsulate vitrified high-level waste forms before disposal in deep geological repositories. This document describes the activities performed between June and August 1989 forming the advanced test work phase of this project. This is the culmination of two years' analysis and test work to demonstrate whether the analytical ability exists to model containers subjected to realistic loads. Three mild steel containers were designed and manufactured to be one-third scale models of a realistic HLW container, modified to represent the effect of anisotropic loading and to facilitate testing. The containers were tested under a uniform external pressure and all failed by buckling in the mid-body region. The outer surface of each container was comprehensively strain-gauged to provide strain history data at all positions of interest. In parallel with the test work, Compas project partners, from five different European countries, independently modelled the behaviour of each of the containers using their computer codes to predict the failure pressure and produce strain history data at a number of specified locations. The first axisymmetric container was well modelled but predictions for the remaining two non-axisymmetric containers were much more varied, with differences of up to 50% occurring between failure predictions and test data

  13. Characteristics of special-case wastes potentially destined for disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    Price, L.L.; Duran, F.A.

    1994-09-01

    The U.S. Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. It may be possible to dispose of some of the DOE's special-case waste using greater confinement disposal techniques at the Nevada Test Site (NTS). The DOE asked Sandia National Laboratories to investigate this possibility by performing system configuration analyses. The first step in performing system configuration analyses is to estimate the characteristics of special-case waste that might be destined for disposal at the NTS. The objective of this report is to characterize this special-case waste based upon information available in the literature. No waste was sampled and analyzed specifically for this report. The waste compositions given are not highly detailed, consisting of grains and curies of specific radionuclides per cubic meter. However, such vague waste characterization is adequate for the purposes of the system configuration task. In some previous work done on this subject, Kudera et al. [1990] identified nine categories of special-case radioactive waste and estimated volumes and activities for these categories. It would have been difficult to develop waste compositions based on the categories proposed by Kudera et al. [1990], so we created five groups of waste on which to base the waste compositions. These groups are (1) transuranic waste, (2) fission product waste, (3) activation product waste, (4) mobile/volatile waste, and (5) sealed sources. The radionuclides within a given group share common characteristics (e.g., alpha-emitters, heat generators), and we believe that these groups adequately represent the DOE's special-case waste potentially destined for greater confinement disposal at the NTS

  14. Responding to change - The evolution of operator training for the PFR liquid metals disposal project

    International Nuclear Information System (INIS)

    Cashmore, Stephen

    2006-01-01

    environmental management practice, UKAEA decided to add a Caesium Removal Plant (CRP) on to the SDP. Neutralized effluent from the SDP would now be pumped through an ion exchange column prior to discharge to the site effluent treatment plant. In conclusion, commissioning and operating the PFR Liquid Metals Disposal Plant was a challenging task. Training and qualifying the operators was part of that challenge. Though lengthy and time intensive, the LMD training process had several positive benefits: 1. The process demonstrated that persons from a semi-skilled background with little or no previous experience, could be trained to operate a relatively complex process plant safely and efficiently; 2. The formally documented progress of each stage of training provided a clearly auditable record that was acceptable to all parties, including the regulators; 3. The cost of implementing the training was more than compensated for by the saving made in not having to employ shift engineers for the LMD project; 4. Once proved, the training methodology lent itself to adaptation for use with similar projects at Dounreay; 5. The range of skills and knowledge, acquired by the operators during their training, together with their experience of formal learning, should assist them with any similar role they may wish to apply themselves to in the future. To date (November 2005) the LMD plant has successfully processed over 1000 te of PFR's liquid metal inventory, improving safety by reducing a major potential hazard. It has also enabled UKAEA to meet the targets set by the Dounreay Near Term Work Plan for decommissioning the site. The operator team has had their SQEP status formally reviewed by the UKAEA ATO Holder, and extended for a further year, demonstrating the ongoing value of the rigorous training programme they undertook initially

  15. The HAW-project: Demonstration facility for the disposal of high-level waste in salt

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Duijves, K.A.; Mueller-Lyda, I.

    1990-04-01

    To satisfy the test objectives thirty highly radioactive canisters containing the radionuclides Cs-137 and Sr-90 will be emplaced in six boreholes located in two test galleries at the 800 m-level in the Asse salt mine. For handling of the radioactive canisters and their emplacement into the boreholes a system consisting of a transport cask, a transport vehicle, a disposal machine, and of a borehole slider has been developed. The actual scientific investigation programme is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This programme includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. (orig./DG)

  16. The Yucca Mountain Project Prototype Testing Program

    International Nuclear Information System (INIS)

    1989-10-01

    The Yucca Mountain Project is conducting a Prototype Testing Program to ensure that the Exploratory Shaft Facility (ESF) tests can be completed in the time available and to develop instruments, equipment, and procedures so the ESF tests can collect reliable and representative site characterization data. This report summarizes the prototype tests and their status and location and emphasizes prototype ESF and surface tests, which are required in the early stages of the ESF site characterization tests. 14 figs

  17. Current status of the Demonstration Test of Underground Cavern-Type Disposal Facilities

    International Nuclear Information System (INIS)

    Akiyama, Yoshihiro; Terada, Kenji; Oda, Nobuaki; Yada, Tsutomu; Nakajima, Takahiro

    2011-01-01

    In Japan, the underground cavern-type disposal facilities for low-level waste (LLW) with relatively high radioactivity, mainly generated from power reactor decommissioning, and for certain transuranic (TRU) waste, mainly from spent fuel reprocessing, are designed to be constructed in a cavern 50-100 m underground and to employ an engineered barrier system (EBS) made of bentonite and cement materials. To advance a disposal feasibility study, the Japanese government commissioned the Demonstration Test of Underground Cavern-Type Disposal Facilities in fiscal year (FY) 2005. Construction of a full-scale mock-up test facility in an actual subsurface environment started in FY 2007. The main test objective is to establish the construction methodology and procedures that ensure the required quality of the EBS on-site. A portion of the facility was constructed by 2010, and the test has demonstrated both the practicability of the construction and the achievement of quality standards: low permeability of less than 5x10 -13 m/s and low-diffusion of less than 1x10 -12 m 2 /s at the completion of construction. This paper covers the test results from the construction of certain parts using bentonite and cement materials. (author)

  18. The Behaviours of Cementitious Materials in Long Term Storage and Disposal of Radioactive Waste. Results of a Coordinated Research Project

    International Nuclear Information System (INIS)

    2013-09-01

    Radioactive waste with widely varying characteristics is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. This waste must be treated and conditioned, as necessary, to provide waste forms acceptable for safe storage and disposal. Many countries use cementitious materials (concrete, mortar, etc.) as a containment matrix for immobilization, as well as for engineered structures of disposal facilities. Radionuclide release is dependent on the physicochemical properties of the waste forms and packages, and on environmental conditions. In the use of cement, the diffusion process and metallic corrosion can induce radionuclide release. The advantage of cementitious materials is the added stability and mechanical support during storage and disposal of waste. Long interim storage is becoming an important issue in countries where it is difficult to implement low level waste and intermediate level waste disposal facilities, and in countries where cement is used in the packaging of waste that is not suitable for shallow land disposal. This coordinated research project (CRP), involving 24 research organizations from 21 Member States, investigated the behaviour and performance of cementitious materials used in an overall waste conditioning system based on the use of cement - including waste packaging (containers), waste immobilization (waste form) and waste backfilling - during long term storage and disposal. It also considered the interactions and interdependencies of these individual elements (containers, waste, form, backfill) to understand the processes that may result in degradation of their physical and chemical properties. The main research outcomes of the CRP are summarized in this report under four topical sections: (i) conventional cementitious systems; (ii) novel cementitious materials and technologies; (iii) testing and waste acceptance criteria; and (iv) modelling long

  19. The Behaviours of Cementitious Materials in Long Term Storage and Disposal of Radioactive Waste. Results of a Coordinated Research Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-15

    Radioactive waste with widely varying characteristics is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. This waste must be treated and conditioned, as necessary, to provide waste forms acceptable for safe storage and disposal. Many countries use cementitious materials (concrete, mortar, etc.) as a containment matrix for immobilization, as well as for engineered structures of disposal facilities. Radionuclide release is dependent on the physicochemical properties of the waste forms and packages, and on environmental conditions. In the use of cement, the diffusion process and metallic corrosion can induce radionuclide release. The advantage of cementitious materials is the added stability and mechanical support during storage and disposal of waste. Long interim storage is becoming an important issue in countries where it is difficult to implement low level waste and intermediate level waste disposal facilities, and in countries where cement is used in the packaging of waste that is not suitable for shallow land disposal. This coordinated research project (CRP), involving 24 research organizations from 21 Member States, investigated the behaviour and performance of cementitious materials used in an overall waste conditioning system based on the use of cement - including waste packaging (containers), waste immobilization (waste form) and waste backfilling - during long term storage and disposal. It also considered the interactions and interdependencies of these individual elements (containers, waste, form, backfill) to understand the processes that may result in degradation of their physical and chemical properties. The main research outcomes of the CRP are summarized in this report under four topical sections: (i) conventional cementitious systems; (ii) novel cementitious materials and technologies; (iii) testing and waste acceptance criteria; and (iv) modelling long

  20. A review of software project testing

    Directory of Open Access Journals (Sweden)

    Jose Calvo-Manzano Villalón

    2016-03-01

    Full Text Available In this article a review of software projects based on a taxonomy project is established, allowing the development team or testing personnel to identify the tests to which the project must be subjected for validation. The taxonomy is focused on identifying software projects according to their technology. To establish the taxonomy, a development method comprised of 5 phases was applied. The developed taxonomy is comprised of 10 categories and 35 subcategories and was validated by a group of information technology (IT managers and professionals in the field of IT through the use of a survey. The results obtained from the survey are subjected to the Mann-Whitney U test, which indicates that the taxonomy is validated. The taxonomy can be implemented in development organizations with or without a testing team that provides a classification for technology projects.

  1. The HILW-LL (high- and intermediate-level waste, long-lived) disposal project: working toward building the Cigeo Industrial Centre for Geological Disposal

    International Nuclear Information System (INIS)

    Labalette, Th.

    2011-01-01

    The French Act of 28 June 2006 identifies reversible disposal in deep geological facilities as the benchmark solution for long-term management of high-level waste (HLW) and for intermediate-level long-lived waste (ILW-LL). The Act tasks ANDRA (national agency for the management of radioactive wastes) with the pursuit of studies and research on the choice of a site and the design of the repository, with a view to examining the licence application in 2015 and, provided that the licence is granted, to make the facility operational by 2025. At the end of 2009, ANDRA submitted to the Government its proposals regarding the site and the design of the Industrial Centre for Geological Disposal, known as CIGEO. With the definition of a possible area for the construction of underground disposal facilities, one of the key stages in the project has been achieved. The choice of a surface site will be validated following the public consultation scheduled for the end of 2012. The project is now on the point of entering the definition stage (preliminary design). CIGEO will be a nuclear facility unlike any other. It will be built and operated for a period of over 100 years. For it to be successful, the project must meet certain requirements related to its integration in the local area, industrial planning, safety and reversibility, while also controlling costs. Reversibility is a very important concept that will be defined by law. It is ANDRA's responsibility to ensure that a reasonable balance is found between these different concerns. (author)

  2. Disposal of high active nuclear fuel waste. A critical review of the Nuclear Fuel Safety (KBS) project on final disposal of vitrified high active nuclear fuel waste

    International Nuclear Information System (INIS)

    1978-01-01

    This report has been prepared by the Swedish Energy Commission's working group for Safety and Environment. The main contributions are by profs. Jan Rydberg of Chalmers University of Technology, Sweden and John W Winchester of Florida State University, USA. The aim of the report is to discuss weather the KBS-project fullfills the Swedish ''Stipulations Act'', that a absolutely safe way of disposing of the nuclear waste must have been demonstrated before any new reactors are allowed to be taken inot use. Rydberg and Winchester do not arrive at similar conclusions. (L.E.)

  3. Yeager Airport Hydrogen Vehicle Test Project

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Williams [West Virginia University Research Corporation, Morgantown, WV (United States)

    2015-10-01

    The scope of this project was changed during the course of the project. Phase I of the project was designed to have the National Alternative Fuels Training Consortium (NAFTC), together with its partners, manage the Hydrogen Vehicle Test Project at the Yeager Airport in conjunction with the Central West Virginia Regional Airport Authority (CWVRAA) in coordination with the United States Department of Energy National Energy Technology Laboratory (U.S. DOE NETL). This program would allow testing and evaluation of the use of hydrogen vehicles in the state of West Virginia utilizing the hydrogen fueling station at Yeager Airport. The NAFTC and CWVRAA to raise awareness and foster a greater understanding of hydrogen fuel and hydrogen-powered vehicles through a targeted utilization and outreach and education effort. After initial implementation of the project, the project added, determine the source(s) of supply for hydrogen powered vehicles that could be used for the testing. After completion of this, testing was begun at Yeager Airport. During the course of the project, the station at Yeager Airport was closed and moved to Morgantown and the West Virginia University Research Corporation. The vehicles were then moved to Morgantown and a vehicle owned by the CWVRAA was purchased to complete the project at the new location. Because of a number of issues detailed in the report for DE-FE0002994 and in this report, this project did not get to evaluate the effectiveness of the vehicles as planned.

  4. The UK contribution to the CEC PACOMA Project: far-field modelling of radioactive waste disposal in clay

    International Nuclear Information System (INIS)

    Winters, K.H.; Jackson, C.P.; Clark, C.M.

    1990-06-01

    This document describes a study of groundwater flow and radionuclide migration in the far field of a hypothetical repository located in the clay beneath Harwell Laboratory. The work forms part of the assessment of the radiological impact of disposal in a clay formation, carried out as the UK contribution to the CEC PACOMA project. (Author)

  5. Construction and operational experiences of engineered barrier test facility for near surface disposal of LILW

    International Nuclear Information System (INIS)

    Park, Jin Beak; Park, Se Moon; Kim, Chang Lak

    2003-01-01

    Engineered barrier test facility is specially designed to demonstrate the performance of engineered barrier system for the near-surface disposal facility under the domestic environmental conditions. Comprehensive measurement systems are installed within each test cell. Long-and short-term monitoring of the multi-layered cover system can be implemented according to different rainfall scenarios with artificial rainfall system. Monitoring data on the water content, temperature, matric potential, lateral drainage and percolation of cover-layer system can be systematically managed by automatic data acquisition system. The periodic measurement data are collected and will be analyzed by a dedicated database management system, and provide a basis for performance verification of the disposal cover design

  6. Solid secondary waste testing for maintenance of the Hanford Integrated Disposal Facility Performance Assessment - FY 2017

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Ralph L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Seitz, Roger R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, Kenneth L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-01

    The Waste Treatment and Immobilization Plant (WTP) at Hanford is being constructed to treat 56 million gallons of radioactive waste currently stored in underground tanks at the Hanford site. Operation of the WTP will generate several solid secondary waste (SSW) streams including used process equipment, contaminated tools and instruments, decontamination wastes, high-efficiency particulate air filters (HEPA), carbon adsorption beds, silver mordenite iodine sorbent beds, and spent ion exchange resins (IXr) all of which are to be disposed in the Integrated Disposal Facility (IDF). An applied research and development program was developed using a phased approach to incrementally develop the information necessary to support the IDF PA with each phase of the testing building on results from the previous set of tests and considering new information from the IDF PA calculations. This report contains the results from the exploratory phase, Phase 1 and preliminary results from Phase 2. Phase 3 is expected to begin in the fourth quarter of FY17.

  7. Fabrication and closure development of nuclear waste disposal containers for the Yucca Mountain Project: Status report

    International Nuclear Information System (INIS)

    Domian, H.A.; Robitz, E.S.; Conrardy, C.C.; LaCount, D.F.; McAninch, M.D.; Fish, R.L.; Russell, E.W.

    1991-09-01

    In GFY 89, a project was underway to determine and demonstrate a suitable method for fabricating thin-walled monolithic waste containers for service within the potential repository at Yucca Mountain. A concurrent project was underway to determine and demonstrate a suitable closure process for these containers after they have been filled with high-level nuclear waste. Phase 1 for both the fabrication and closure projects was a screening phase in which candidate processes were selected for further laboratory testing in Phase 2. This report describes the final results of the Phase 1 efforts. It also describes the preliminary results of Phase 2 efforts

  8. Experiments on container materials for Swiss high-level waste disposal projects. Part 2

    International Nuclear Information System (INIS)

    Simpson, J.P.

    1984-12-01

    The present concept for final disposal of high-level waste in Switzerland consists of a repository at a depth of 1000 to 1500 m in the crystalline bedrock of northern Switzerland. The waste will be placed in a container which is required to function as a high integrity barrier for at least 1000 years. This report is the second of a set of two dealing with the evaluation of potential materials for such containers. Four materials were identified for further evaluation in the first of these reports; they were cast steel, nodular cast iron, copper and Ti-Code 12. It was concluded that some testing was needed, in particular with respect to corrosion, in order to confirm these materials as candidate container materials. The experimental programme included: 1) corrosion tests on copper under gamma radiation; 2) immersion corrosion tests on the four candidate materials including welded specimens; 3) corrosion testing of the four materials in saturated bentonite; 4) constant strain rate testing of Ti-Code 12 and copper at 80 degrees C; 5) the behaviour of copper, Ti-Code 12 and Zircaloy-2 when immersed in liquid lead; 6) corrosion potential and galvanic current measurements on several material pairs. The standard test medium was natural mineral water from the Bad Saeckingen source. This water has a total dissolved solids content of approx. 3200 mg/l, about 1600 mg/l as chloride. The oxygen level was defined as 0.1 μg/g. In certain cases this medium was modified in order to test under more severe conditions. The results of the corrosion tests confirm in general the evaluation in the first part of the report. All of the materials are suitable for high-level waste containers: cast steel, nodular cast iron and copper as single layer containers, and Ti-Code 12 as an outer corrosion resistant layer. Copper could also be used under an outer steel layer, where it could arrest local penetration

  9. Tests for evaluating sites for disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    Lutton, R.J.; Butler, D.K.; Meade, R.B.; Patrick, D.M.; Strong, A.B.; Taylor, H.M. Jr.

    1982-12-01

    This report, the second of a series, identifies the tests and other means of evaluating or documenting the important characteristics of sites for disposal of low-level radioactive waste. The specific parameters were identified and explained in regard to their importance in characterizing disposal facilities in the previous report. More than half of the tests and procedures are standard methods recognized and used nationwide, most conspicuously the numerous chemical tests. Other tests are commonly used methods recognized widely as state of the art, e.g., geological and geophysical methods. The basis for choosing these state-of-the-art methods is discussed, and the concepts and procedures themselves are reviewed in the absence of standards for ready reference. Besides standards and state-of-the-art practices a third category of methods involves the use of existing data sources or recognized correlations in place of new testing or documentation. It is particularly important that mapping, logging, sampling, testing, interpretation, and analysis be conducted by technically qualified and professionally motivated personnel using appropriate equipment and facilities, and general guidance is provided in this direction. There will be cases where site-specific testing and measurement are indicated to be unnecessary on a technical basis. This report calls attention to the usual subordinate role of such parameters and their only infrequent need for testing

  10. Safety Assessment Methodologies and Their Application in Development of Near Surface Waste Disposal Facilities--ASAM Project

    International Nuclear Information System (INIS)

    Batandjieva, B.; Metcalf, P.

    2003-01-01

    Safety of near surface disposal facilities is a primary focus and objective of stakeholders involved in radioactive waste management of low and intermediate level waste and safety assessment is an important tool contributing to the evaluation and demonstration of the overall safety of these facilities. It plays significant role in different stages of development of these facilities (site characterization, design, operation, closure) and especially for those facilities for which safety assessment has not been performed or safety has not been demonstrated yet and the future has not been decided. Safety assessments also create the basis for the safety arguments presented to nuclear regulators, public and other interested parties in respect of the safety of existing facilities, the measures to upgrade existing facilities and development of new facilities. The International Atomic Energy Agency (IAEA) has initiated a number of research coordinated projects in the field of development and improvement of approaches to safety assessment and methodologies for safety assessment of near surface disposal facilities, such as NSARS (Near Surface Radioactive Waste Disposal Safety Assessment Reliability Study) and ISAM (Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities) projects. These projects were very successful and showed that there is a need to promote the consistent application of the safety assessment methodologies and to explore approaches to regulatory review of safety assessments and safety cases in order to make safety related decisions. These objectives have been the basis of the IAEA follow up coordinated research project--ASAM (Application of Safety Assessment Methodologies for Near Surface Disposal Facilities), which will commence in November 2002 and continue for a period of three years

  11. The International hydrocoin project. Groundwater hydrology modelling strategies for performance assessment of nuclear waste disposal. Summary report

    International Nuclear Information System (INIS)

    1992-01-01

    In 1984 the Swedish Nuclear Power Inspectorate, SKI, initiated the international cooperation project HYDROCOIN for the study of groundwater flow modelling in the context of radioactive waste disposal. The objective of HYDROCOIN was to improve knowledge of the influence of various strategies for groundwater flow modelling for the safety assessment of final repositories for radioactive wastes. The study comprised: the impact on the groundwater flow calculations of different solution algorithms, the capabilities of different models to describe field tests and bench-scale experiments, and the impact on the groundwater flow calculations of incorporating various physical phenomena. The work was conducted at three levels addressing code verification (Level 1), model validation (Level 2), and sensitivity and uncertainty analysis of groundwater flow calculations (Level 3). This report gives an overview and summary of test cases of HYDROCOIN Level 1, the issue of validation groundwater flow models (HYDROCOIN Level 2), the methodologies used in uncertainty and sensitivity analysis (HYDROCOIN Level 3). 108 figs., 24 tabs., 2 appendices

  12. Compilation of selected deep-sea biological data for the US subseabed disposal project

    International Nuclear Information System (INIS)

    Gomez, L.S.; Marietta, M.G.; Jackson, D.W.

    1987-03-01

    The US Subseabed Disposal Project (SDP) has compiled an extensive deep-sea biological data base to be used in calculating biological parameters of state and rate included in mathematical models of oceanographic transport of radionuclides. The data base is organized around a model deep-sea ecosystem which includes the following components: zooplankton, fish and other nekton, invertebrate benthic megafauna, benthic macrofauna, benthic meiofauna, heterotrophic microbiota, as well as suspended and sediment particulate organic carbon. Measurements of abundance and activity rates (e.g., respiration, production, sedimentation, etc.) reported in the international oceanographic literature are summarized in 23 tables. Included in these tables are the latitudinal position of the studies, as well as information describing sampling techniques and any special notes needed to better assess the data presented. This report has been prepared primarily as a resource document to be used in calculating parameter values for various modeling applications, and for preparing historical data reviews for other SDP reports. Depending on the intended use, these data will require further reduction and unit conversion

  13. Red-impact project: First results of the evaluations of the impact of P and T on geological disposal

    International Nuclear Information System (INIS)

    Marivoet, Jan; Vokal, Antonin; Gudowski, Waclaw

    2006-01-01

    The Red-Impact project (Impact of partitioning, transmutation and waste reduction technologies on the final nuclear waste disposal) is a research project in the 6. Framework Programme of the European Commission. The main objective of the project is to assess the impact of partitioning and transmutation (P and T) on geological disposal and waste management. The project started with the identification of a number of representative fuel cycle scenarios. Five basis scenarios are considered for the evaluations: 2 industrial scenarios and 3 innovative scenarios. Mass flow schemes have been prepared for each basis fuel cycle scenario and the corresponding neutronic calculations have been made. A first list of performance indicators that will be calculated or estimated in the project has been prepared. As a first step the impact of 2 fuel cycle scenarios, the reference 'open cycle' scenario and of the innovative 'fast neutron Gen IV' scenario, on geological repositories in granite and clay formations have been evaluated. The results obtained show that the introduction of innovative fuel cycle scenarios can result in a considerable reduction of the needed size of the geological repository. However, the impact on the radiological consequences is rather limited. Indeed, the maximum dose, which is expected to occur a few tens of thousands year after the disposal of the waste, is essentially due to fission products and their amount is about proportional to the heat generated by nuclear fissions. (authors)

  14. Crop - a project for comparative description of national concepts for disposal of radioactive waste

    International Nuclear Information System (INIS)

    Pusch, R.; Svemar, Ch.

    2003-01-01

    Nine partners representing Sweden (SKB), Belgium (SCK-CEN). Finland (POSIVA). France (Andra). Germany (GRS), Switzerland (NAGRA), Spain (ENRESA). Canada (OPG), and the US (DOECBFO) participate in the EC-supported project CROP, which is the synonym for Cluster Repository Project and aims at describing the various repository concepts for identifying similarities and differences. The ambition is to assist designers and modelers in the development of the respective concepts. Design, construction and instrumentation of underground laboratories (URLs) and forthcoming repositories as well as modeling the engineered performance of national repository concepts in crystalline rock, salt and clay are defined and compared. The depth of location of the repositories is different - 250 to 1000 m- and also the design: the multi-barrier philosophy is proposed for disposal in all types of rock but for salt the geological medium is considered to be the major barrier. The minimum time for effective isolation of the waste differs among national programs (E4 to E6 years) and so is the effort of modeling physical and chemical degradation of the engineered barrier system (EBS), which consists of canisters, embedding buffer and backfill, and plugs. CROP is focusing on the buffer and backfill and shaft, tunnel and borehole seals including plugs. The temperature in the near-field is a most important factor for the repository performance. It will be in the interval 90-110 deg C for crystalline rock and clay, and up to 200 deg C for salt in the close vicinity of the waste according to the concepts, attenuating with increased distance from it. The heat and temperature gradient affects the groundwater flow and rock strain and thereby the evolution of the EBS in the first few hundred years and they are determinants of the chemical stability and hence required dimensions of the engineered barriers. Both the short- and long-term performance of the EBS are significantly affected by the groundwater

  15. Acceptance test procedure for Project W-280

    International Nuclear Information System (INIS)

    Stites, C.G.

    1994-01-01

    This Document is the Acceptance Test Procedure for 200 Area C and SY Tank Farm Lighting Upgrade. This Acceptance Test Procedure has been prepared to demonstrate that the Tank Farm Lighting Systems function correctly as required by project criteria and as intended by design

  16. An assessment of plant biointrusion at the Uranium Mill Tailings Remedial Action Project rock-covered disposal cells

    International Nuclear Information System (INIS)

    1990-10-01

    This study is one of a number of special studies that have been conducted regarding various aspects of the Uranium Mill Tailings Remedial Action (UMTRA) Project. This special study was proposed following routine surveillance and maintenance surveys and observations reported in a special study of vegetative covers (DOE, 1988), in which plants were observed growing up through the rock erosion layer at recently completed disposal cells. Some of the plants observed were deep-rooted woody species, and questions concerning root intrusion into disposal cells and the need to control plant growth were raised. The special study discussed in this report was designed to address some of the ramifications of plant growth on disposal cells that have rock covers. The NRC has chosen rock covers over vegetative covers in the arid western United States because licenses cannot substantiate that the vegetative covers ''will be significantly greater than 30 percent and preferably 70 percent,'' which is the amount of ''vegetation required to reduce flow to a point of stability.'' The potential impacts of vegetation growing in rock covers are not addressed by the NRC (1990). The objectives, then, of this study were to determine the species of plants growing on two rock-covered disposal cells, study the rooting pattern of plants on these cells, and identify possible impacts of plant root penetration on these and other UMTRA Project rock-covered cells

  17. Horonobe Underground Research Laboratory project. Synthesis of phase 1 investigation 2001-2005, Volume 'geological disposal research'

    International Nuclear Information System (INIS)

    Fujita, Tomoo; Taniguchi, Naoki; Maekawa, Keisuke; Sawada, Atsushi; Makino, Hitoshi; Sasamoto, Hiroshi; Yoshikawa, Hideki; Shibata, Masahiro; Ota, Kunio; Miyahara, Kaname; Naito, Morimasa; Yui, Mikazu; Matsui, Hiroya; Hama, Katsuhiro; Kunimaru, Takanori; Takeuchi, Ryuji; Tanai, Kenji; Kurikami, Hiroshi; Wakasugi, Keiichiro; Ishii, Eiichi

    2011-03-01

    This report summarizes the progress of research and development on geological disposal during the surface-based investigation phase (2001-2005) in the Horonobe Underground Research Laboratory project, of which aims are to apply the design methods of geological disposal and mass transport analysis to actual geological conditions obtained from the project as an example of actual geological environment. For the first aim, the design methods for the geological disposal facility proposed in 'H12 report (the second progress report)' was reviewed and then improved based on the recent knowledge. The applicability of design for engineered barrier system, backfill of disposal tunnel, underground facility was illustrated. For the second aim, the conceptual structure from site investigation and evaluation to mass transport analysis was developed as a work flow at first. Then following this work flow a series of procedures for mass transport analysis was applied to the actual geological conditions to illustrate the practical workability of the work flow and the applicability of this methodology. Consequently, based on the results, future subjects were derived. (author)

  18. The Changing Adventures of Mixed Low-Level Waste Disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    2007-01-01

    After a 15-year hiatus, the United States Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO) began accepting DOE off-site generated mixed low-level radioactive waste (MLLW) for disposal at the Nevada Test Site (NTS) in December 2005. This action was predicated on the acceptance by the Nevada Division of Environmental Protection (NDEP) of a waste analysis plan (WAP). The NNSA/NSO agreed to limit mixed waste disposal to 20,000 cubic meters (approximately 706,000 cubic feet) and close the facility by December 2010 or sooner, if the volume limit is reached. The WAP and implementing procedures were developed based on Hanford?s system of verification to the extent possible so the two regional disposal sites could have similar processes. Since the NNSA/NSO does not have a breaching facility to allow the opening of boxes at the site, verification of the waste occurs by visual inspection at the generator/treatment facility or by Real-Time-Radiography (RTR) at the NTS. This system allows the NTS to effectively, efficiently, and compliantly accept MLLW for disposal. The WAP, NTS Waste Acceptance Criteria, and procedures have been revised based on learning experiences. These changes include: RTR expectations; visual inspection techniques; tamper-indicating device selection; void space requirements; and chemical screening concerns. The NNSA/NSO, NDEP, and the generators have been working together throughout the debugging of the verification processes. Additionally, the NNSA/NSO will continue to refine the MLLW acceptance processes and strive for continual improvement of the program

  19. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

  20. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report

  1. Test program for closure activities at a mixed waste disposal site at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.; Harley, J.P. Jr.

    1988-01-01

    A 58-acre site at the Savannah River Plant which was used for disposal of low-level radioactive waste and quantities of the hazardous materials lead, cadmium, scintillation fluid, and oil will be the first large waste site at the Savannah River Plant to be permanently closed. The actions leading to closure of the facility will include surface stabilization and capping of the site. Test programs have been conducted to evaluate the effectiveness of dynamic compaction as a stabilization technique and the feasibility of using locally derived clay as a capping material

  2. MEGAPIE-TEST: A European Project on Spallation Target Testing

    International Nuclear Information System (INIS)

    Knebel, Joachim U.; Klein, Jean-Christophe; Gorse, Dominique; Agostini, Pietro; Groeschel, Friedrich; Kupschus, Peter; Kirchner, Thomas; Vogt, Jean-Bernard

    2002-01-01

    Within the Euratom 5. Framework Programme (5FP) the European Commission is funding the MEGAPIE-TEST Project (Megawatt Pilot Experiment - Testing) over a period of three years, starting in September 2001. The project is combining the efforts of 8 main associations. MEGAPIE is a liquid metal spallation target of 1 MW of beam power. The main results of the MEGAPIE-TEST project will be: Development and comprehensive testing of a liquid metal spallation target both under beam-off and beam-on conditions, and the set up of a handbook on the design of a neutron spallation source in general. The operation of MEGAPIE within the accelerator complex SINQ at Paul Scherrer Institute (PSI), Switzerland, is envisaged in 2004. MEGAPIE is a first decisive step to realize a liquid metal spallation target in Europe. This report is giving an overview of the MEGAPIE-TEST Project, the overall work plan, and preliminary results from the design support and validation, which form an important basis for the project. (authors)

  3. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    2010-01-01

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles (mi)) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan

  4. Perspectives on past and Present Waste Disposal Practices: A community-Based Participatory Research Project in Three Saskatchewan First Nations Communities

    OpenAIRE

    Rebecca Zagozewski; Ian Judd-Henrey; Suzie Nilson; Lalita Bharadwaj

    2011-01-01

    The impact of current and historical waste disposal practices on the environment and human health of Indigenous people in First Nations communities has yet to be adequately addressed. Solid waste disposal has been identified as a major environmental threat to First Nations Communities. A community-based participatory research project (CBPR) was initiated by the Saskatoon Tribal Council Health and Family Services Incorporated to investigate concerns related to waste disposal in three Saskatche...

  5. Perspectives on Past and Present Waste Disposal Practices: A Community-Based Participatory Research Project in Three Saskatchewan First Nations Communities

    OpenAIRE

    Rebecca Zagozewski; Ian Judd-Henrey; Suzie Nilson; Lalita Bharadwaj

    2011-01-01

    The impact of current and historical waste disposal practices on the environment and human health of Indigenous people in First Nations communities has yet to be adequately addressed. Solid waste disposal has been identified as a major environmental threat to First Nations Communities. A community-based participatory research project (CBPR) was initiated by the Saskatoon Tribal Council Health and Family Services Incorporated to investigate concerns related to waste disposal in three Saskatche...

  6. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Grant Evenson

    2006-01-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139

  7. Project Physics Tests 1, Concepts of Motion.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 1 are presented in this booklet, consisting of 70 multiple-choice and 20 problem-and-essay questions. Concepts of motion are examined with respect to velocities, acceleration, forces, vectors, Newton's laws, and circular motion. Suggestions are made for time consumption in answering some items. Besides…

  8. Project Physics Tests 4, Light and Electromagnetism.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 4 are presented in this booklet. Included are 70 multiple-choice and 22 problem-and-essay questions. Concepts of light and electromagnetism are examined on charges, reflection, electrostatic forces, electric potential, speed of light, electromagnetic waves and radiations, Oersted's and Faraday's work,…

  9. Organizational Challenge of Posiva’s Final Disposal Programme: From an R&D Organization to a Project Organization, and Further Towards an Operational Organization

    International Nuclear Information System (INIS)

    Mokka, J.

    2016-01-01

    Full text: Posiva Oy is an expert organization established in 1995 and responsible for the final disposal of the spent nuclear fuel of its owners. Posiva currently employs around 100 people and has a turnover of some 63 million (2015). The company headquarters are located in Olkiluoto in the municipality of Eurajoki, Finland. Posiva is owned by two Finnish NPP operators Teollisuuden Voima Oyj (60%) (TVO) and Fortum Power & Heat Oy (40%), both of which are responsible for their costs of nuclear waste management. The Finnish final disposal programme has a long history. When NPP unit Olkiluoto 1 renewed its operating licence for the first time in 1983, TVO presented a programme showing final disposal to commence in the 2020s. In the 1980s and 1990s, the programme concentrated on concept development and site selection activities. After 2003, when Posiva received the decision in principle from the Finnish Government, a new phase began in the programme. Since 2004, Posiva Oy has constructed an underground rock characterization facility on the repository site in Olkiluoto, in western Finland. This facility, called ONKALO, has provided an opportunity to carry out further site investigations, develop construction techniques, and test and demonstrate the engineered barrier system in an actual repository environment. As a result of these investigations and development efforts, the application for a licence to construct the encapsulation plant and the geological repository was submitted in 2012. The Radiation and Nuclear Safety Authority in Finland (STUK) first gave a positive review on the safety of the facility, and consequently the Finnish Government granted the construction licence in November 2015. After receiving the construction licence as the first disposal programme in the world, the next phase in the program will be the construction project of the final disposal facilities required for the disposal operations. A significant first-of-a-kind construction project like

  10. Horonobe Underground Research Laboratory project synthesis of phase I investigation 2001-2005. Volume 'Geological disposal research'

    International Nuclear Information System (INIS)

    Fujita, Tomoo; Taniguchi, Naoki; Tanai, Kenji; Nishimura, Mayuka; Kobayashi, Yasushi; Hiramoto, Masayuki; Maekawa, Keisuke; Sawada, Atsushi; Makino, Hitoshi; Sasamoto, Hiroshi; Yoshikawa, Hideki; Shibata, Masahiro; Wakasugi, Keiichiro; Nakano, Katsushi; Seo, Toshihiro; Miyahara, Kaname; Naito, Morimasa; Yui, Mikazu; Matsui, Hiroya; Kurikami, Hiroshi; Kunimaru, Takanori; Ishii, Eiichi; Ota, Kunio; Hama, Katsuhiro; Takeuchi, Ryuji

    2007-03-01

    This report summarizes the progress of research and development on geological disposal during the surface-based investigation phase (2001-2005) in the Horonobe Underground Research Laboratory project (HOR), of which aims are to apply the design methods of geological disposal and mass transport analysis to actual geological conditions obtained from the surface-based investigations in HOR as an example of actual geological environment. For the first aim, the design methods for the geological disposal facility proposed in 'H12 report (the second progress report)' was reviewed and then improved based on the recent knowledge. The applicability of design for engineered barrier system, backfill of disposal tunnel, underground facility was illustrated. For the second aim, the conceptual structure from site investigation and evaluation to mass transport analysis was developed as a work flow at first. Then following this work flow a series of procedures for mass transport analysis was applied to the actual geological conditions to illustrate the practical workability of the work flow and the applicability of this methodology. Consequently, based on the results, future subjects were derived. (author)

  11. The international intraval project to study validation of geosphere transport models for performance assessment of nuclear waste disposal

    International Nuclear Information System (INIS)

    1990-01-01

    INTRAVAL is an international project concerned with the use of mathematical models for predicting the potential transport of radioactive substances in the geosphere. Such models are used to help assess the longterm safety of radioactive waste disposal systems. The INTRAVAL project was established to evaluate the validity of these models. Results from a set of selected laboratory and field experiments as well as studies of occurrences of radioactive substances in nature (natural analogues) are compared in a systematic way with model predictions. Discrepancies between observations and predictions are discussed and analyzed

  12. Explosives disposal demonstration projects. Progress report, April 12, 1995--June 30, 1995

    International Nuclear Information System (INIS)

    Charbeneau, R.

    1995-01-01

    This report contains quarterly reports on two projects. The first is undertaking the environmental restoration at the Pantex Plant. Research objectives are organized under four general tasks: field testing and produced water treatment, bioremediation of contaminated groundwater and soils, vadose zone remediation, and chromium remediation. The other project goal is to demonstrate generation of diamond by explosive compression of Carbon 60 and Carbon 70 and mixtures of these fullerenes. The intent is to exploit expertise developed by Pantex and other DOE Laboratories in the area of understanding and modeling of explosive compression for initiation of nuclear fission reactions to explosively compress carbon in the form of fullerenes with the goal of transforming the material into the diamond phase

  13. Experiments on container materials for Swiss high-level waste disposal projects. Part IV

    International Nuclear Information System (INIS)

    Simpson, J.P.

    1989-12-01

    One concept for final disposal of high-level waste in switzerland consists of a repository at a depth of 1000 to 1500 m in the crystalline bedrock of Northern Switzerland. The waste will be placed in a container which will be required to function as a high integrity barrier for at least 100 years. This report is the fourth and last in the current series dealing with the evaluation of potential materials for such containers. Four materials were identified for further evaluation in the first of these reports: cast steel, nodular cast iron, copper and Ti-Code 12. This report deals with the problem of demonstrating that cast steel containers will not fail by stress corrosion cracking and with the problem of hydrogen produced by the reduction of water. The experimental results on pre-cracked specimens revealed no susceptibility of cast steel to stress corrosion cracking under model repository conditions. No crack growth was detected on compact DCB specimens exposed in aerobic and anaerobic groundwaters at 80 and 140 o C for 16-24 months. Cast steel remains a candidate material for high-level waste containers. As expected from thermodynamic considerations no hydrogen could be detected from copper immersed in model groundwaters at 50 o C. Hydrogen is evolved from corroding steel under anaerobic conditions. Hydrogen evolution due to corrosion of iron or steel in waste repositories has to be considered in any safety analysis; the amounts produced can be significant. Evidence todate suggests that both cast steel and copper are suitable container materials. Because the corrosion behaviour of both materials is sensitive to service conditions, in particular length of the aerobic phase, groundwater chemistry and temperature, further testing should be undertaken when a specific site has been identified. (author) 9 tabs., 11 figs., 25 refs

  14. Tests for manufacturing technology of disposal canisters for nuclear spent fuel

    International Nuclear Information System (INIS)

    Raiko, H.; Salonen, T.; Meuronen, I.; Lehto, K.

    1999-06-01

    The summary and status of the results of the manufacturing technology programmes concerning the disposal canister for spent nuclear fuel conducted by Posiva Oy are given in this report. Posiva has maintained a draft plan for a disposal canister design and an assessment of potential manufacturing technologies for about ten years in Finland. Now, during the year 1999, the first full scale demonstration canister is manufactured in Finland. The technology used for manufacturing of this prototype is developed by Posiva Oy mainly in co-operation with domestic industry. The main partner in developing the manufacturing technology for the copper shell has been Outokumpu Poricopper Oy, Pori, Finland, and the main partner in developing the technology for the iron insert of the canister has been Valmet Oyj Rautpohja Foundry, Jyvaeskylae, Finland. In both areas many subcontractors have been used, predominantly domestic engineering workshops, but also some foreign subcontractors, e.g. for EB-welding, who have had large enough welding equipment. This report describes the developing programmes for canister manufacturing, evaluates the results and presents some alternative methods, and tries to evaluate the pros and contras of them. In addition, the adequacy of the achieved technological know-how is assessed in respect of the required quality of the disposal canister. The following manufacturing technologies have been the concrete topics of the development programme: Electron beam welding technology development for thick-walled copper, Casting of massive copper billets, Hot rolling of thick-walled copper plates, Hot pressing and forging in lid manufacture, Extrusion and drawing of copper tubes, Bending of copper plates by roller or press, Machining of copper, Residual stress removal by heat treatment, Non-destructive testing, Long-term strength of EB-welds, Casting and machining of the iron insert of the canister The specialists from all the main developing partner companies have

  15. Argentine project for the final disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Palacios, E.; Ciallella, N.R.; Petraitis, E.J.

    1989-01-01

    From 1980 Argentina is carrying out a research program on the final disposal of high level radioactive wastes. The quantity of wastes produced will be significant in next century. However, it was decided to start with the studies well in advance in order to demonstrate that the high level wastes could be disposed in a safety way. The option of the direct disposal of irradiated fuel elements was discarded, not only by the energetic value of the plutonium, but also for ecological reasons. In fact, the presence of a total inventory of actinides in the non-processed fuel would imply a more important radiological impact than that caused if the plutonium is recycled to produce energy. The decision to solve the technological aspects connected with the elimination of high-level radioactive wastes well in advance, was made to avoid transfering the problem to future generations. This decision is based not only on technical evaluations but also on ethic premises. (Author)

  16. Safety assessment methodologies and their application in development of near surface waste disposal facilities - the ASAM project

    International Nuclear Information System (INIS)

    Metcalf, P.

    2003-01-01

    The scope of ASAM project covers near surface disposal facilities for all types of low and intermediate level wastes with emphasis of the post-closure safety assessment.The objectives are to explore practical application to a range of disposal facilities for a number of purposes e.g. development of design concepts, safety re-assessment, upgrading safety and to develop practical approaches to assist regulators, operators and other experts in review of safety assessment. The task of the Co-ordination Group are: reassessment of existing facilities - use of safety assessment in decision making on selection of options (volunteer site Hungary); disused sealed sources - evaluation of disposability of disused sealed sources in near surface facilities (volunteer site Saratov, Russia); mining and minerals processing waste - evaluation of long-term safety (volunteer site pmc S. Africa). An agreement on the scope and objectives of the project are reached and the further consideration, such as human intrusion/institutional control/security; waste from oil/gas industry; very low level waste; categorization of sealed sources coordinated with other IAEA activities are outlined

  17. The International Stripa Project: Technology transfer from cooperation in scientific and technological research on nuclear waste disposal

    International Nuclear Information System (INIS)

    Levich, R.A.; Ferrigan, P.M.; Wilkey, P.L.

    1990-01-01

    The Nuclear Energy Agency of the organization for Economic Cooperation and Development (OECD/NEA) sponsors the International Stripa Project. The objectives of the Stripa Project are to develop techniques for characterizing sites located deep in rock formations that are potentially suitable for the geologic disposal of high-level radioactive wastes and to evaluate particular engineering design considerations that could enhance the long-term safety of a high-level radioactive waste repository in a geologic medium. The purpose of this paper is to briefly summarize the research conducted at Stripa and discuss the ways in which the technology developed for the Stripa Project has been and will be transfered to the United States Civilian Radioactive Waste Management Program's Yucca Mountain Project. 3 refs., 2 figs

  18. Integrated development and testing plan for the plutonium immobilization project

    International Nuclear Information System (INIS)

    Kan, T.

    1998-01-01

    This integrated plan for the DOE Office of Fissile Materials Disposition (MD) describes the technology development and major project activities necessary to support the deployment of the immobilization approach for disposition of surplus weapons-usable plutonium. The plan describes details of the development and testing (D and T) tasks needed to provide technical data for design and operation of a plutonium immobilization plant based on the ceramic can-in-canister technology (''Immobilization Fissile Material Disposition Program Final Immobilization Form Assessment and Recommendation'', UCRL-ID-128705, October 3, 1997). The plan also presents tasks for characterization and performance testing of the immobilization form to support a repository licensing application and to develop the basis for repository acceptance of the plutonium form. Essential elements of the plant project (design, construction, facility activation, etc.) are described, but not developed in detail, to indicate how the D and T results tie into the overall plant project. Given the importance of repository acceptance, specific activities to be conducted by the Office of Civilian Radioactive Waste Management (RW) to incorporate the plutonium form in the repository licensing application are provided in this document, together with a summary of how immobilization D and T activities provide input to the license activity. The ultimate goal of the Immobilization Project is to develop, construct, and operate facilities that will immobilize from about 18 to 50 tonnes (MT) of U.S. surplus weapons usable plutonium materials in a manner that meets the ''spent fuel'' standard (Fissile Materials Storage and Disposition Programmatic Environmental Impact Statement Record of Decision, ''Storage and Disposition Final PEIS'', issued January 14, 1997, 62 Federal Register 3014) and is acceptable for disposal in a geologic repository. In the can-in-canister technology, this is accomplished by encapsulating the

  19. Evaluation of salt and mine rock disposal. Project No. 76-283

    International Nuclear Information System (INIS)

    1976-11-01

    Studies are being performed on the isolation of nuclear waste in geological formations; this would entail constructing an underground mine in selected rock strata for waste storage. Rocks removed from the mine during construction must be either disposed of permanently or temporarily stored for later backfill into the mine. Several methods of storing or disposing of the mined rock are discussed in this report. The technical feasibility, cost, advantages and disadvantages of each method are presented and the ranking of methods based on currently available data is discussed. Salt, shale, granite, and limestone are covered

  20. Corrective Action Investigation Plan for Corrective Action Unit 542: Disposal Holes, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Laura Pastor

    2006-01-01

    Corrective Action Unit (CAU) 542 is located in Areas 3, 8, 9, and 20 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 542 is comprised of eight corrective action sites (CASs): (1) 03-20-07, ''UD-3a Disposal Hole''; (2) 03-20-09, ''UD-3b Disposal Hole''; (3) 03-20-10, ''UD-3c Disposal Hole''; (4) 03-20-11, ''UD-3d Disposal Hole''; (5) 06-20-03, ''UD-6 and UD-6s Disposal Holes''; (6) 08-20-01, ''U-8d PS No.1A Injection Well Surface Release''; (7) 09-20-03, ''U-9itsy30 PS No.1A Injection Well Surface Release''; and (8) 20-20-02, ''U-20av PS No.1A Injection Well Surface Release''. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 30, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 542. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 542 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Conduct geophysical surveys to

  1. Application for Permit to Operate a Class II Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-03-31

    The Nevada Test Site (NTS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NTS and National Security Technologies LLC (NSTec) is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The site will be used for the disposal of refuse, rubbish, garbage, sewage sludge, pathological waste, Asbestos-Containing Material (ACM), industrial solid waste, hydrocarbon-burdened soil, hydrocarbon-burdened demolition and construction waste, and other inert waste (hereafter called permissible waste). Waste containing free liquids or regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA) will not be accepted for disposal at the site. Waste regulated under the Toxic Substance Control Act (TSCA), excluding Polychlorinated Biphenyl [PCB], Bulk Product Waste (see Section 6.2.5) and ACM (see Section 6.2.2.2) will not be accepted for disposal at the site. The disposal site will be used as the sole depository of permissible waste which is: (1) Generated by entities covered under the U.S. Environmental Protection Agency (EPA) Hazardous Waste Generator Identification Number for the NTS; (2) Generated at sites identified in the Federal Facilities Agreement and Consent Order (FFACO); (3) Sensitive records and media, including documents, vugraphs, computer disks, typewriter ribbons, magnetic tapes, etc., generated by NNSA/NSO or its contractors; (4) ACM generated by NNSA/NSO or its contractors according to Section 6.2.2.2, as necessary; (5) Hydrocarbon-burdened soil and solid waste from areas covered under the EPA Hazardous Waste Generator Identification Number for the NTS; (6) Other waste on a case-by-case concurrence by

  2. The characterization and testing of candidate immobilization forms for the disposal of plutonium

    International Nuclear Information System (INIS)

    Bakel, A. J.; Buck, E. C.; Chamberlain, D. B.; Ebbinghaus, B. B.; Fortner, J. A.; Marra, J. C.; Mcgrail, B. P.; Mertz, C. J.; Peeler, D. K.; Shaw, H. F.; Strachan, D. M.; Van Konynenburg, R. A.; Vienna, J. D.; Wolf, S. F.

    1997-01-01

    Candidate immobilization forms for the disposal of surplus weapons-useable are being tested and characterized. The goal of the testing program was to provide sufficient data that, by August 1997, an informed selection of a single immobilization form could be made so that the form development and production R and D could be more narrowly focused. Two forms have been under consideration for the past two years: glass and ceramic. In August, 1997, the Department of Energy (DOE) selected ceramic for plutonium disposition, halting further work on the glass material. In this paper, we will briefly describe these two waste forms, then describe our characterization techniques and testing methods. The analytical methods used to characterize altered and unaltered samples are the same. A full suite of microscopic techniques is used. Techniques used include optical, scanning electron, and transmission electron microscopies. For both candidate immobilization forms, the analyses are used to characterize the material for the presence of crystalline phases and amorphous material. Crystalline materials, either in the untested immobilization form or in the alteration products from testing, are characterized with respect to morphology, crystal structure, and composition. The goal of these analyses is to provide data on critical issues such as Pu and neutron absorber volubility in the immobilization form, thermal stability, potential separation of absorber and Pu, and the long-term behavior of the materials. Results from these analyses will be discussed in the presentation. Testing methods include MCC-1 tests, product consistency tests (methods A and B), unsaturated ''drip'' tests, vapor hydration tests, single-pass flow-through tests, and pressurized unsaturated flow tests. Both candidate immobilization forms have very low dissolution rates; examples of typical test results will be reported

  3. Closure Report for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-01-01

    This Closure Report (CR) documents closure activities for Corrective Action Unit (CAU) 543, Liquid Disposal Units, according to the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Corrective Action Plan (CAP) for CAU 543 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2007). CAU 543 is located at the Nevada Test Site (NTS), Nevada (Figure 1), and consists of the following seven Corrective Action Sites (CASs): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; CAS 15-23-03, Contaminated Sump, Piping; and CAS 06-07-01 is located at the Decontamination Facility in Area 6, adjacent to Yucca Lake. The remaining CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm in Area 15. The purpose of this CR is to provide a summary of the completed closure activities, to document waste disposal, and to present analytical data confirming that the remediation goals were met. The closure alternatives consisted of closure in place for two of the CASs, and no further action with implementation of best management practices (BMPs) for the remaining five CASs.

  4. Toxicants in Consumer Products. Household Hazardous Waste Disposal Project. Metro Toxicant Program No. 1B.

    Science.gov (United States)

    Ridgley, Susan M.

    Four general product classes (pesticides, paint products, household cleaners, and automotive products) are reviewed in this document. Each product class is described, and several aspects of the problem associated with product use or disposal are examined, including estimates of volumes used and environmental impacts. Technical data on the specific…

  5. Corrective Action Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 543: Liquid Disposal Units is listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO) which was agreed to by the state of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). CAU 543 sites are located in Areas 6 and 15 of the Nevada Test Site (NTS), which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 543 consists of the following seven Corrective Action Sites (CASs) (Figure 1): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; and CAS 15-23-03, Contaminated Sump, Piping. All Area 15 CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm, which operated from 1963 to 1981 and was used to support animal experiments involving the uptake of radionuclides. Each of the Area 15 CASs, except CAS 15-23-01, is associated with the disposal of waste effluent from Building 15-06, which was the primary location of the various tests and experiments conducted onsite. Waste effluent disposal from Building 15-06 involved piping, sumps, outfalls, a septic tank with leachfield, underground storage tanks, and an aboveground storage tank (AST). CAS 15-23-01 was associated with decontamination activities of farm equipment potentially contaminated with radiological constituents, pesticides, and herbicides. While the building structures were removed before the investigation took place, all the original tanks, sumps, piping, and concrete building pads remain in place. The Area 6 CAS is located at the Decontamination Facility in Area 6, a facility which operated from 1971 to 2001 and was used to decontaminate vehicles, equipment, clothing, and other materials that had become contaminated during nuclear testing activities. The CAS includes the effluent collection and distribution systems for Buildings

  6. The Cigeo project, Meuse/Haute-Marne reversible geological disposal facility for radioactive waste. Project Owner File, Public debate of 15 May to 15 October 2013

    International Nuclear Information System (INIS)

    Dupuis, Marie-Claude; Gonnot, Francois-Michel

    2013-07-01

    Andra is exploring several options for the disposal of low-level long-lived waste (LLW-LL). With the French Government's approval, in June 2008 Andra began looking around France for a site to build an LLW-LL repository. In late 2008 it provided the Government with a report analysing the geological, environmental and socio-economic aspects of the forty odd municipalities that expressed an interest in the project. After the withdrawal of the two municipalities chosen in 2009 to conduct geological investigations, the government asked Andra to re-explore the various management options for graphite and radium-bearing waste, focusing in particular on ways to manage these types of waste separately. The High Committee for Transparency and Information on Nuclear Safety (HCTISN) created a working group to provide feedback on the search for a site for LLW-LL. Andra submitted a report to the Government in late 2012. This report contains proposals for continuing the search and draw in particular on the HCTISN's recommendations. Contents: 1 - Radioactive waste (Sources, Types, Management, Waste to be disposed of at Cigeo, Cigeo's estimated disposal capacities, Where IS HLW and ILW-LL being stored until Cigeo is commissioned? 2 - Why deep geological disposal? (A 15-year research programme, Presentation and assessment of the research results, The public debate of 2005-2006, Deep geological disposal ratified by the 2006 Planning Act, The 2006 Planning Act: other areas of research complementary to deep geological disposal, The situation in other countries); 3 - Why the Meuse/Haute-Marne site? (Selection of the Meuse and Haute-Marne site to host an underground research laboratory, The geological formation in the Meuse and Haute-Marne site, Callovo-Oxfordian clay, Siting of Cigeo's installations); 4 - How will Cigeo operate? (The installations at Cigeo, Construction of Cigeo, Transport of waste packages, Operation of Cigeo, Closure of Cigeo); 5 - Safety at Cigeo

  7. Disposal of tritium-exposed metal hydrides

    International Nuclear Information System (INIS)

    Nobile, A.; Motyka, T.

    1991-01-01

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R ampersand D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed

  8. Evaluation of the WIPP Project`s compliance with the EPA radiation protection standards for disposal of transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Neill, R.H.; Chaturvedi, L.; Rucker, D.F.; Silva, M.K.; Walker, B.A.; Channell, J.K.; Clemo, T.M. [Environmental Evaluation Group, Albuquerque, NM (United States)]|[Environmental Evaluation Group, Carlsbad, NM (United States)

    1998-03-01

    The US Environmental Protection Agency`s (EPA) proposed rule to certify that the Waste Isolation Pilot Plant (WIPP) meets compliance with the long-term radiation protection standards for geologic repositories (40CFR191 Subparts B and C), is one of the most significant milestones to date for the WIPP project in particular, and for the nuclear waste issue in general. The Environmental Evaluation Group (EEG) has provided an independent technical oversight for the WIPP project since 1978, and is responsible for many improvements in the location, design, and testing of various aspects of the project, including participation in the development of the EPA standards since the early 1980s. The EEG reviewed the development of documentation for assessing the WIPP`s compliance by the Sandia National Laboratories following the 1985 promulgation by EPA, and provided many written and verbal comments on various aspects of this effort, culminating in the overall review of the 1992 performance assessment. For the US Department of Energy`s (DOE) compliance certification application (CCA), the EEG provided detailed comments on the draft CCA in March, 1996, and additional comments through unpublished letters in 1997 (included as Appendices 8.1 and 8.2 in this report). Since the October 30, 1997, publication of the EPA`s proposed rule to certify WIPP, the EEG gave presentations on important issues to the EPA on December 10, 1997, and sent a December 31, 1997 letter with attachments to clarify those issues (Appendix 8.3). The EEG has raised a number of questions that may have an impact on compliance. In spite of the best efforts by the EEG, the EPA reaction to reviews and suggestions has been slow and apparently driven by legal considerations. This report discusses in detail the questions that have been raised about containment requirements. Also discussed are assurance requirements, groundwater protection, individual protection, and an evaluation of EPA`s responses to EEG`s comments.

  9. Instrumented measurements on radioactive waste disposal containers during experimental drop testing - 59142

    International Nuclear Information System (INIS)

    Quercetti, Thomas; Musolff, Andre; Mueller, Karsten

    2012-01-01

    In context with disposal container safety assessment of containers for radioactive waste the German Federal Institute for Materials Research and Testing (BAM) performed numerous drop tests in the last years. The tests were accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The instrumentation of a specimen is an important tool to evaluate its mechanical behavior during impact. Test results as deceleration-time and strain-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of calculations based on finite-element methods. Strain gauges are useful to determine the time dependent magnitude of any deformation and the associated stresses. Accelerometers are widely used for the measuring of motion i.e. speed or the displacement of the rigid cask body, vibration and shock events. In addition high-speed video technique can be used to visualize and analyze the kinematical impact scenario by motion analysis. The paper describes some selected aspects on instrumented measurements and motion analysis in context with low level radioactive waste (LLW) container drop testing. (authors)

  10. Disposable glucose test strip for whole blood with integrated sensing/diffusion-limiting layer

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhencheng [Department of Biomedical Engineering, School of Info-Physics and Geomatics Engineering, Central South University, Changsha 410083 (China); Fang Cheng, E-mail: fangpingchuan@163.co [Department of Biomedical Engineering, School of Info-Physics and Geomatics Engineering, Central South University, Changsha 410083 (China); Wang Hongyan; He Jishan [Department of Biomedical Engineering, School of Info-Physics and Geomatics Engineering, Central South University, Changsha 410083 (China)

    2009-12-30

    A disposable glucose test strip with an integrated sensing/diffusion-limiting layer was developed. A formulation containing filler, glucose oxidase and electronic mediator was screen-printed over two carbon electrodes to form an integrated sensing/diffusion-limiting layer. On rehydration, the integrated layer does not break up, but swells to form a gelled and three-dimensional meshy reaction zone on the surface of the underlying conductive elements in which reactants and mediator move freely, but interfering species such as red blood cells containing oxygenated hemoglobin are excluded. On the same time, the integrated layer maintains a rate of permeation of the analyte through it with a variation of less than 10% at temperatures ranging from 15 deg. C to 42 deg. C. This biosensor is substantially insensitive to interferents and essentially independent to relevant temperature, which provides a more reliable reading of actual blood glucose value in human whole blood.

  11. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    International Nuclear Information System (INIS)

    Shank, D.R.

    1994-01-01

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  12. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    Energy Technology Data Exchange (ETDEWEB)

    Shank, D.R.

    1994-12-29

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  13. Evaluation of long-term interaction between cement and bentonite for geological disposal (1) - Project Overview

    International Nuclear Information System (INIS)

    Owada, Hitoshi; Hayashi, Daisuke; Yahagi, Ryoji; Ishii, Tomoko

    2012-01-01

    Document available in extended abstract form only. Bentonitic and cementitious materials are both planned for use as engineered barrier materials in the geological disposal of high level vitrified waste and TRU (transuranic) waste in Japan. As shown in Figure 1, bentonitic material will be placed around the waste packages as buffer material and a large amount of cementitious material is specified for use as filler, structure, support and grout. Cementitious material supplies an alkaline solution with high calcium concentration through reaction with groundwater. However, the alkaline solution will cause chemical and physical alteration of the bentonitic material. Since many important functions of an engineered barrier system (EBS), such as watertightness, chemical buffering, and sorption of radioactive nuclides, will be maintained by the properties of the buffer material, evaluation of long-term chemical or mechanical alteration of the buffer material is necessary to demonstrate the robustness of the EBS. Although many researches on chemical and mechanical alteration of bentonitic material, there was large uncertainty because the chemical alteration of bentonitic material is very slow and the altered region is very limited. In this project, the dissolution rate of montmorillonite under compaction and the spatial distribution of secondary C-S-H precipitation were obtained and mechanical and hydrological changes caused by the mineralogical change of bentonite material were modeled to reduce the uncertainty in the safety assessment of EBS performance. To improve the accuracy of the long term evaluation of the EBS performance, coupled analyses between hydraulic/mechanical calculations and geochemical-mass transport coupled calculations were performed. Alteration of mechanical properties caused by chemical degradation should be modeled for the coupled calculations. Because the mechanical properties of bentonitic material depend strongly on the montmorillonite content and

  14. Thermodynamic sorption modelling in support of radioactive waste disposal safety cases - NEA sorption project phase III

    International Nuclear Information System (INIS)

    2012-01-01

    A central safety function of radioactive waste disposal repositories is the prevention or sufficient retardation of radionuclide migration to the biosphere. Performance assessment exercises in various countries, and for a range of disposal scenarios, have demonstrated that one of the most important processes providing this safety function is the sorption of radionuclides along potential migration paths beyond the engineered barriers. Thermodynamic sorption models (TSMs) are key for improving confidence in assumptions made about such radionuclide sorption when preparing a repository's safety case. This report presents guidelines for TSM development as well as their application in repository performance assessments. They will be of particular interest to the sorption modelling community and radionuclide migration modellers in developing safety cases for radioactive waste disposal Contents: 1 - Thermodynamic sorption models and radionuclide migration: Sorption and radionuclide migration; Applications of TSMs in radioactive waste disposal studies; Requirements for a scientifically defensible, calibrated TSM applicable to radioactive waste disposal; Current status of TSMs in radioactive waste management; 2 - Theoretical basis of TSMs and options in model development: Conceptual building blocks of TSMs and integration with aqueous chemistry; The TSM representation of sorption and relationship with Kd values; Theoretical basis of TSMs; Example of TSM for uranyl sorption; Options in TSM development; Illustration of TSM development and effects of modelling choices; Summary: TSMs for constraining Kd values - impact of modelling choices; 3 - Determination of parameters for TSMs: Overview of experimental determination of TSM parameters; Theoretical estimation methods of selected model parameters; Case study: sorption modelling of trivalent lanthanides/actinides on illite; Indicative values for certain TSM parameters; Parameter uncertainty; Illustration of parameter sensitivity

  15. Marviken test-data interpretation, second project

    International Nuclear Information System (INIS)

    Collen, J.; Johansson, A.

    1978-12-01

    A brief description is given of the investigations carried out and the corclusions drawn within the MARTIN-II project, which involved the evaluation and interpretation of the data from the full scale containment response tests at the Marviken Power Station. The data from the tests, which were completed in 1976, provide information about the periodic pressure oscillations and rapid pressure spikes induced in the pressure-suppression containment during study comprise the following items: - Influence of test parameters on pressure oscillations and pressure spikes - Pressure spikes in the wetwell pool - High frequency oscillations - Comparisons between single-pipe and multi-pipe data The study was carried out by Studsvik Energiteknik AB with consulting efforts from AB ASEA-ATOM. It was financed by the Swedish Nuclear Power Inspectorate. (Auth.)

  16. Application of biosphere models in the Biomosa project: a comparative assessment of five European radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Kowe, R.; Mobbs, S.; Proehl, G.; Bergstrom, U.; Kanyar, B.; Olyslaegers, G.; Zeevaert, T.; Simon, I.

    2004-01-01

    The BIOMOSA (Biosphere Models for Safety Assessment of Radioactive Waste Disposal) project is a part of the EC fifth framework research programme. The main goal of this project is the improvement of the scientific basis for the application of biosphere models in the framework of long-term safety studies of radioactive waste disposal facilities. Furthermore, the outcome of the project will provide operators and regulatory bodies with guidelines for performance assessments of repository systems. The study focuses on the development and application of site-specific models and a generic biosphere tool BIOGEM (Biosphere Generic Model), using the experience from the national programmes and the IAEA BIOMASS reference biosphere methodology. The models were applied to 5 typical locations in the EU, resulting in estimates of the annual individual doses to the critical groups and the ranking of the importance of the pathways for each of the sites. The results of the site-specific and generic models were then compared. In all cases the doses calculated by the generic model were less than the doses obtained from the site-specific models. Uncertainty in the results was estimated by means of stochastic calculations which allow a comparison of the overall model uncertainty with the variability across the different sites considered. (author)

  17. Study on quality assurance for high-level radioactive waste disposal project (2). Quality assurance system for the site characterization phase in the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Takada, Susumu

    2006-01-01

    The objective of this report is to assist related organizations in the development of quality assurance systems for a high-level radioactive waste disposal system. This report presents detail information with which related organizations can begin the development of quality assurance systems at an initial phase of repository development for a high-level radioactive waste disposal program, including data qualification, model validation, systems and facilities for quality assurance (e.g., technical data management system, sample management facility, etc.), and QA program applicability (items and activities). These descriptions are based on information in QA program for the Yucca Mountain Project (YMP), such as the U.S. Department of Energy (DOE) Quality Assurance Requirements and Description (QARD), DOE/RW-0333P, quality implementing procedures, and reports implemented by the procedures. Additionally, this report includes some brief recommendations for developing of quality assurance systems, such as establishment of quality assurance requirements, measures for establishment of QA system. (author)

  18. Considerations Related To Human Intrusion In The Context Of Disposal Of Radioactive Waste-The IAEA HIDRA Project

    International Nuclear Information System (INIS)

    Seitz, Roger; Kumano, Yumiko; Bailey, Lucy; Markley, Chris; Andersson, Eva; Beuth, Thomas

    2014-01-01

    The principal approaches for management of radioactive waste are commonly termed ''delay and decay'', ''concentrate and contain'' and ''dilute and disperse''. Containing the waste and isolating it from the human environment, by burying it, is considered to increase safety and is generally accepted as the preferred approach for managing radioactive waste. However, this approach results in concentrated sources of radioactive waste contained in one location, which can pose hazards should the facility be disrupted by human action in the future. The International Commission on Radiological Protection (ICRP), International Atomic Energy Agency (IAEA), and Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) agree that some form of inadvertent human intrusion (HI) needs to be considered to address the potential consequences in the case of loss of institutional control and loss of memory of the disposal facility. Requirements are reflected in national regulations governing radioactive waste disposal. However, in practice, these requirements are often different from country to country, which is then reflected in the actual implementation of HI as part of a safety case. The IAEA project on HI in the context of Disposal of RadioActive waste (HIDRA) has been started to identify potential areas for improved consistency in consideration of HI. The expected outcome is to provide recommendations on how to address human actions in the safety case in the future, and how the safety case may be used to demonstrate robustness and optimize siting, design and waste acceptance criteria within the context of a safety case

  19. GEOSAF Part II. Demonstration of the operational and long-term safety of geological disposal facilities for radioactive waste. IAEA international intercomparison and harmonization project

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Yumiko; Bruno, Gerard [International Atomic Energy Agency, Vienna (Austria). Vienna International Centre; Tichauer, Michael [IRSN, Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Hedberg, Bengt [Swedish Radiation Safety Authority, Stockholm (Sweden)

    2015-07-01

    International intercomparison and harmonization projects are one of the mechanisms developed by the IAEA for examining the application and use of safety standards, with a view to ensuring their effectiveness and working towards harmonization of approaches to the safety of radioactive waste management. The IAEA has organized a number of international projects on the safety of radioactive waste management; in particular on the issues related to safety demonstration for radioactive waste management facilities. In 2008, GEOSAF, Demonstration of The Operational and Long-Term Safety of Geological Disposal Facilities for Radioactive Waste, project was initiated. This project was completed in 2011 by delivering a project report focusing on the safety case for geological disposal facilities, a concept that has gained in recent years considerable prominence in the waste management area and is addressed in several international safety standards. During the course of the project, it was recognized that little work was undertaken internationally to develop a common view on the safety approach related to the operational phase of a geological disposal although long-term safety of disposal facility has been discussed for several decades. Upon completion of the first part of the GEOSAF project, it was decided to commence a follow-up project aiming at harmonizing approaches on the safety of geological disposal facilities for radioactive waste through the development of an integrated safety case covering both operational and long-term safety. The new project was named as GEOSAF Part II, which was initiated in 2012 initially as 2-year project, involving regulators and operators. GEOSAF Part II provides a forum to exchange ideas and experience on the development and review of an integrated operational and post-closure safety case for geological disposal facilities. It also aims at providing a platform for knowledge transfer. The project is of particular interest to regulatory

  20. Guidance for implementing the long-term surveillance program for UMTRA Project Title I Disposal Sites

    International Nuclear Information System (INIS)

    1996-02-01

    This guidance document has two purposes: it provides guidance for writing site-specific long-term surveillance plans (LTSP) and it describes site surveillance, monitoring, and long-term care techniques for Title I disposal sites of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.). Long-term care includes monitoring, maintenance, and emergency measures needed to protect public health and safety and the environment after remedial action is completed. This document applies to the UMTRCA-designated Title I disposal sites. The requirements for long-term care of the Title I sites and the contents of the LTSPs are provided in U.S. Nuclear Regulatory Commission (NRC) regulations (10 CFR Section 40.27) provided in Attachment 1

  1. Destruction and waste treatment methods used in a chemical agent disposal project. Memorandum report

    Energy Technology Data Exchange (ETDEWEB)

    McAndless, J.; Fedor, V.; Kinderwater, T.

    1992-10-01

    This report describes the equipment and methods used to thermally decontaminate scrap metal and destroy stockpiles of nerve agents, mustard and lewisite chemical warfare agents. Mustard was destroyed by direct incineration whereas the nerve agents and lewisite were chemically neutralized. The arsenic waste from the lewisite neutralization process was chemically-fixated in concrete for final disposal by landfilling. The scrap metal was incinerated and rendered suitable for recycling into metal feedstock.

  2. DOE's performance evaluation project for mixed low-level waste disposal

    International Nuclear Information System (INIS)

    Waters, R.D.; Chu, M.S.Y.; Gruebel, M.M.; Lee, D.W.

    1995-01-01

    A performance evaluation (PE) is an analysis that estimates radionuclide concentration limits for 16 potential Department of Energy (DOE) mixed low-level waste (ULLW) disposal sites based on the analysis of two environmental exposure pathways (air and water) to an off-site individual and an inadvertent-intruder exposure pathway. Sites are analyzed for their ability to attenuate concentrations of specific radionuclides that could be released from wastes in a hypothetical ULLW disposal facility. Site-specific data and knowledge are used within a generic framework that is consistent across all sites being evaluated. After estimates of waste concentrations for the three pathways are calculated, the minimum of the waste concentration values is selected as the permissible waste concentration for each radionuclide. The PE results will be used as input to the process for DOE's ULLW disposal configuration. Preliminary comparisons of results from the PE and site-specific performance assessments indicate that the simple PE results generally agree with results of the performance assessments, even when site conditions are complex. This agreement with performance-assessment results increases confidence that similar results can be obtained at other sites that have good characterization data. In addition, the simple analyses contained in the PE illustrate a potential method to satisfy the needs of many regulators and the general public for a simple, conservative, defensible, and easily understandable analysis that provides results similar to those of more complex analyses

  3. Medication monitoring and drug testing ethics project.

    Science.gov (United States)

    Payne, Richard; Moe, Jeffrey L; Sevier, Catherine Harvey; Sevier, David; Waitzkin, Michael

    2015-01-01

    In 2012, Duke University initiated a research project, funded by an unrestricted research grant from Millennium Laboratories, a drug testing company. The project focused on assessing the frequency and nature of questionable, unethical, and illegal business practices in the clinical drug testing industry and assessing the potential for establishing a business code of ethics. Laboratory leaders, clinicians, industry attorneys, ethicists, and consultants participated in the survey, were interviewed, and attended two face-to-face meetings to discuss a way forward. The study demonstrated broad acknowledgment of variations in the legal and regulatory environment, resulting in inconsistent enforcement of industry practices. Study participants expressed agreement that overtly illegal practices sometimes exist, particularly when laboratory representatives and clinicians discuss reimbursement, extent of testing, and potential business incentives with medical practitioners. Most respondents reported directly observing probable violations involving marketing materials, contracts, or, in the case of some individuals, directly soliciting people with offers of clinical supplies and other "freebies." While many study respondents were skeptical that voluntary standards alone would eliminate questionable business practices, most viewed ethics codes and credentialing as an important first step that could potentially mitigate uneven enforcement, while improving quality of care and facilitating preferred payment options for credentialed parties. Many were willing to participate in future discussions and industry-wide initiatives to improve the environment.

  4. Greater confinement disposal of high activity and special case wastes at the Nevada Test Site: A unified migration assessment approach

    International Nuclear Information System (INIS)

    Davis, P.A.; Olague, N.E.; Johnson, V.L.; Dickman, P.T.; O'Neill, L.J.

    1993-01-01

    The Department of Energy's Nevada Field Office has disposed of a small quantity of high activity and special case wastes using Greater Confinement Disposal facilities in Area 5 of the Nevada Test Site. Because some of these wastes are transuranic radioactive wastes, the Environmental Protection Agency standards for their disposal under 40 CFR Part 191 which requires a compliance assessment. In conducting the 40 CFR Part 191 compliance assessment, review of the Greater Confinement Disposal inventory revealed potentially land disposal restricted hazardous wastes. The regulatory options for disposing of land disposal restricted wastes consist of (1) treatment and monitoring, or (2) developing a no-migration petition. Given that the waste is already buried without treatment, a no-migration petition becomes the primary option. Based on a desire to minimize costs associated with site characterization and performance assessment, a single approach has been developed for assessing compliance with 40 CFR Part 191, DOE Order 5820.2A (which regulates low-level radioactive wastes contained in Greater Confinement Disposal facilities) and developing a no-migration petition. The approach consists of common points of compliance, common time frame for analysis, and common treatment of uncertainty. The procedure calls for conservative bias of modeling assumptions, including model input parameter distributions and adverse processes and events that can occur over the regulatory time frame, coupled with a quantitative treatment of data and parameter uncertainty. This approach provides a basis for a defensible regulatory decision. In addition, the process is iterative between modeling and site characterization activities, where the need for site characterization activities is based on a quantitative definition of the most important and uncertain parameters or assumptions

  5. International Socio-Technical Challenges for Geological Disposal (InSOTEC): Project Aims and Preliminary Results - 12236

    Energy Technology Data Exchange (ETDEWEB)

    Bergmans, Anne; Schroeder, Jantine [University of Antwerp, Faculty of Political and Social Sciences, 2000 Antwerp (Belgium); Simmons, Peter [University of East Anglia, School of Environmental Sciences, NR4 7TJ Norwich (United Kingdom); Barthe, Yannick; Meyer, Morgan [CNRS, Ecole des Mines, 75272 Paris (France); Sundqvist, Goeran [Universitetet i Oslo, Centre for Studies of Technology, Innovation and Culture, 0851 Oslo (Norway); Martell, Merixell [MERIENCE Strategic Thinking, 08734 Olerdola (Spain); Kallenbach-Herbert, Beate [Oeko Institut, 64295 Darmstadt (Germany)

    2012-07-01

    InSOTEC is a social sciences research project which aims to generate a better understanding of the complex interplay between the technical and the social in radioactive waste management and, in particular, in the design and implementation of geological disposal. It currently investigates and analyses the most striking socio-technical challenges to implementing geological disposal of radioactive waste in 14 national programs. A focus is put on situations and issues where the relationship between the technical and social components is still unstable, ambiguous and controversial, and where negotiations are taking place in terms of problem definitions and preferred solutions. Such negotiations can vary from relatively minor contestation, over mild commotion, to strong and open conflicts. Concrete examples of socio-technical challenges are: the question of siting, introducing the notion of reversibility / retrievability into the concept of geological disposal, or monitoring for confidence building. In a second stage the InSOTEC partners aim to develop a fine-grained understanding of how the technical and the social influence, shape, build upon each other in the case of radioactive waste management and the design and implementation of geological disposal. How are socio-technical combinations in this field translated and materialized into the solutions finally adopted? With what kinds of tools and instruments are they being integrated? Complementary to providing better theoretical insight into these socio-technical challenges/combinations, InSOTEC aims to provide concrete suggestions on how to address these within national and international contexts. To this end, InSOTEC will deliver insights into how mechanisms for interaction between the technical community and a broad range of socio-political actors could be developed. (authors)

  6. Project report: Tritiated oil repackaging highlighting the ISMS process. Historical radioactive and mixed waste disposal request validation and waste disposal project (HDRV)

    International Nuclear Information System (INIS)

    Schriner, J.A.

    1998-08-01

    The Integrated Safety Management System (ISMS) was established to define a framework for the essential functions of managing work safely. There are five Safety Management Functions in the model of the ISMS process: (1) work planning, (2) hazards analysis, (3) hazards control, (4) work performance, and (5) feedback and improve. Recent activities at the Radioactive and Mixed Waste Management Facility underscored the importance and effectiveness of integrating the ISMS process to safely manage high-hazard work with a minimum of personnel in a timely and efficient manner. This report describes how project personnel followed the framework of the ISMS process to successfully repackage tritium-contaminated oils. The main objective was to open the boxes without allowing the gaseous tritium oxide, which had built up inside the boxes, to release into the sorting room. The boxes would be vented out the building stack until tritium concentration levels were acceptable. The carboys would be repackaged into 30-gallon drums and caulked shut. Sealing the drums would decrease the tritium off-gassing into the RMWMF

  7. Project report: Tritiated oil repackaging highlighting the ISMS process. Historical radioactive and mixed waste disposal request validation and waste disposal project

    Energy Technology Data Exchange (ETDEWEB)

    Schriner, J.A. [Automated Solutions of Albuquerque, Inc., NM (United States)

    1998-08-01

    The Integrated Safety Management System (ISMS) was established to define a framework for the essential functions of managing work safely. There are five Safety Management Functions in the model of the ISMS process: (1) work planning, (2) hazards analysis, (3) hazards control, (4) work performance, and (5) feedback and improve. Recent activities at the Radioactive and Mixed Waste Management Facility underscored the importance and effectiveness of integrating the ISMS process to safely manage high-hazard work with a minimum of personnel in a timely and efficient manner. This report describes how project personnel followed the framework of the ISMS process to successfully repackage tritium-contaminated oils. The main objective was to open the boxes without allowing the gaseous tritium oxide, which had built up inside the boxes, to release into the sorting room. The boxes would be vented out the building stack until tritium concentration levels were acceptable. The carboys would be repackaged into 30-gallon drums and caulked shut. Sealing the drums would decrease the tritium off-gassing into the RMWMF.

  8. Testing of Disposable Protective Garments Against Isocyanate Permeation From Spray Polyurethane Foam Insulation.

    Science.gov (United States)

    Mellette, Michael P; Bello, Dhimiter; Xue, Yalong; Yost, Michael; Bello, Anila; Woskie, Susan

    2018-05-12

    Diisocyanates (isocyanates), including methylene diphenyl diisocyanate (MDI), are the primary reactive components of spray polyurethane foam (SPF) insulation. They are potent immune sensitizers and a leading cause of occupational asthma. Skin exposure to isocyanates may lead to both irritant and allergic contact dermatitis and possibly contribute to systemic sensitization. More than sufficient evidence exists to justify the use of protective garments to minimize skin contact with aerosolized and raw isocyanate containing materials during SPF applications. Studies evaluating the permeation of protective garments following exposure to SPF insulation do not currently exist. To conduct permeation testing under controlled conditions to assess the effectiveness of common protective gloves and coveralls during SPF applications using realistic SPF product formulations. Five common disposable garment materials [disposable latex gloves (0.07 mm thickness), nitrile gloves (0.07 mm), vinyl gloves (0.07 mm), polypropylene coveralls (0.13 mm) and Tyvek coveralls (0.13 mm)] were selected for testing. These materials were cut into small pieces and assembled into a permeation test cell system and coated with a two-part slow-rise spray polyurethane foam insulation. Glass fiber filters (GFF) pretreated with 1-(9-anthracenylmethyl)piperazine) (MAP) were used underneath the garment to collect permeating isocyanates. GFF filters were collected at predetermined test intervals between 0.75 and 20.00 min and subsequently analyzed using liquid chromatography-tandem mass spectrometry. For each garment material, we assessed (i) the cumulative concentration of total isocyanate, including phenyl isocyanate and three MDI isomers, that effectively permeated the material over the test time; (ii) estimated breakthrough detection time, average permeation rate, and standardized breakthrough time; from which (iii) recommendations were developed for the use of similar protective garments following

  9. Environmental Assessment -- Test Area North pool stabilization project update

    International Nuclear Information System (INIS)

    1997-08-01

    The purpose of this Environmental Assessment (EA) is to update the ''Test Area North Pool Stabilization Project'' EA (DOE/EA-1050) and finding of no significant impact (FONSI) issued May 6, 1996. This update analyzes the environmental and health impacts of a drying process for the Three Mile Island (TMI) nuclear reactor core debris canisters now stored underwater in a facility on the Idaho National Engineering and Environmental Laboratory (INEEL). A drying process was analyzed in the predecision versions of the EA released in 1995 but that particular process was determined to be ineffective and dropped from the EA/FONSI issued May 6, 1996. A new drying process was subsequently developed and is analyzed in Section 2.1.2 of this document. As did the 1996 EA, this update analyzes the environmental and health impacts of removing various radioactive materials from underwater storage, dewatering these materials, constructing a new interim dry storage facility, and transporting and placing the materials into the new facility. Also, as did the 1996 EA, this EA analyzes the removal, treatment and disposal of water from the pool, and placement of the facility into a safe, standby condition. The entire action would take place within the boundaries of the INEEL. The materials are currently stored underwater in the Test Area North (TAN) building 607 pool, the new interim dry storage facility would be constructed at the Idaho Chemical Processing Plant (ICPP) which is about 25 miles south of TAN

  10. Draft environmental assessment -- Test Area North pool stabilization project update

    International Nuclear Information System (INIS)

    1997-06-01

    The purpose of this Environmental Assessment (EA) is to update the ''Test Area North Pool Stabilization Project'' EA (DOE/EA-1050) and finding of no significant impact (FONSI) issued May 6, 1996. This update analyzes the environmental and health impacts of a drying process for the Three Mile Island (TMI) nuclear reactor core debris canisters now stored underwater in a facility on the Idaho National Engineering and Environmental Laboratory (INEEL). A drying process was analyzed in the predecision versions of the EA released in 1995 but that particular process was determined to be ineffective and dropped form the Ea/FONSI issued May 6, 1996. The origin and nature of the TMI core debris and the proposed drying process are described and analyzed in detail in this EA. As did the 1996 EA, this update analyzes the environmental and health impacts of removing various radioactive materials from underwater storage, dewatering these materials, constructing a new interim dry storage facility, and transporting and placing the materials into the new facility. Also, as did the 1996 EA, this EA analyzes the removal, treatment and disposal of water from the pool, and placement of the facility into a safe, standby condition. The entire action would take place within the boundaries of the INEEL. The materials are currently stored underwater in the Test Area North (TAN) building 607 pool, the new interim dry storage facility would be constructed at the Idaho Chemical Processing Plant (ICPP) which is about 25 miles south of TAN

  11. Strip reduction testing of lubricants developed during ENFORM project

    DEFF Research Database (Denmark)

    Gazvoda, S.; Andreasen, Jan Lasson; Olsson, David Dam

    Strip reduction testing of lubricants developed during ENFORM project. Experiments were conducted with the strip reduction test [1] in order to classify experimental lubricants, developed during concerned project. One reference lubricant was used during testing....

  12. Presentation of the project Thermal processes with energy recovery for sludge and special or hazardous waste disposal

    International Nuclear Information System (INIS)

    Mininni, G.; Passino, R.

    2001-01-01

    Main results obtained in the framework of the project Thermal processes with energy recovery for sludge and special waste (also hazardous) disposal granted for 2.16 M Euro by the Italian Ministry of Education through Structural Funds are reported. This project is subdivided into the following four main sub projects: combustion of hazardous sludges on a demonstrative plant; combustion of sludges in fluidized bed reactors on pilot and laboratory scale; set up of a flue gas sampling device at high temperature; fluid dynamic modelling of combustion. Original and interesting results were produced mainly connected with the following aspects: combined incineration of sewage and hazardous sludges appeared to be reliable considering that gaseous emissions did not show any deterioration following the addition of chlorinated hydrocarbons to sewage sludge. Gaseous emissions were found to be not conform with the standards only in very few cases generally not linked with critical conditions: polynuclear aromatic hydrocarbons (PAHs) were found to be a reliable parameter for emissions monitoring considering that they are produced in abundance following up set conditions due to a temperature decline or an insufficient oxygen supply; the very stringent limit at the emissions of 0.1 ng/m 3 for dioxins and furans (TE) can be respected in the most of the cases but this monitoring is very complex, time consuming and expensive. Sampling and extraction errors might considerably impact the measured value, which is much more dependent on the conditions inside the recovery boiler rather than on the combustion efficiency; metals are enriched onto the fly ashes produced in the tests carried out by rotating drum furnace more than in the tests by fluidized bed furnace; after burning chamber mode of operation did not display a direct influence on the emissions; incineration tests carried out on reduced pilot scale have shown a total absence of fragmentation during volatilisation while particulate

  13. The FP7 collaborative project RECOSY - a comprehensive information management system for european disposal R and D (INMAN): a proposal for the next European framework program - 59397

    International Nuclear Information System (INIS)

    Buckau, Gunnar; ); Delos, Anne; Montoya, Vanessa

    2012-01-01

    Document available in abstract form only. Full text of publication follows: The Collaborative Project Redox phenomena Controlling Systems (RECOSY) started in 2008 falls within the EURATOM program and is implemented within the 7. Framework Program. The main objective of ReCosy is the sound understanding of redox phenomena controlling the long-term release/retention of radionuclides in nuclear waste disposal providing tools to apply the results to Performance Assessment/Safety Case. Although redox is not a new issue, different questions are still not resolved, such as, redox processes in the long-term dissolution/ chemical transformation of the radioactive waste, waste packages and engineered barriers, and migration in the far-field, including which species are formed and their respective various retention mechanisms. In order to solve this questions, the project includes i) development of advanced analytical tools, ii) investigations of processes responsible for redox control (thermodynamically and kinetically controlled processes, surface reactions and microbial processes), iii) provision of required data on redox controlling processes, and iv) response to internal/external disturbances in disposal systems to internal/external disturbances. The work program of the project is structured along six Research and Technological Development work-packages. Specific Work-packages on knowledge management, education and training (WP7) and administrative management issues (WP8) are also included in the project. In WP1, the scientific state-of-the-art and its application to Performance Assessment/Safety Case is documented and regularly up-dated, based on the safety case of the ANDRA B2 cell. WP2 deals with the development and testing of redox determination methods using different type of electrodes

  14. Interim Control Strategy for the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond - Two-year Update

    International Nuclear Information System (INIS)

    L. V. Street

    2007-01-01

    The Idaho Cleanup Project has prepared this interim control strategy for the U.S. Department of Energy Idaho Operations Office pursuant to DOE Order 5400.5, Chapter 11.3e (1) to support continued discharges to the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond. In compliance with DOE Order 5400.5, a 2-year review of the Interim Control Strategy document has been completed. This submittal documents the required review of the April 2005 Interim Control Strategy. The Idaho Cleanup Project's recommendation is unchanged from the original recommendation. The Interim Control Strategy evaluates three alternatives: (1) re-route the discharge outlet to an uncontaminated area of the TSF-07; (2) construct a new discharge pond; or (3) no action based on justification for continued use. Evaluation of Alternatives 1 and 2 are based on the estimated cost and implementation timeframe weighed against either alternative's minimal increase in protection of workers, the public, and the environment. Evaluation of Alternative 3, continued use of the TSF-07 Disposal Pond under current effluent controls, is based on an analysis of four points: - Record of Decision controls will protect workers and the public - Risk of increased contamination is low - Discharge water will be eliminated in the foreseeable future - Risk of contamination spread is acceptable. The Idaho Cleanup Project recommends Alternative 3, no action other than continued implementation of existing controls and continued deactivation, decontamination, and dismantlement efforts at the Test Area North/Technical Support Facility

  15. Disposal project for LLW and VLLW generated from research facilities in Japan: A feasibility study for the near surface disposal of VLLW that includes uranium

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Hasegawa, M.; Sakamoto, Y.; Nakatani, T.

    2016-01-01

    Conclusion and future work: • JAEA plans trench disposal of U-bearing waste with less than 100 Bq/g. • Two safety measures of trench disposal of U-bearing waste have been discussed taking into account increasing radioactivity over a long period of time. 1. First is to carry out dose assessment of site use scenario by using a conservatively stylized condition. 2. Second is to control the average concentration of U in the trench facilities based on the concept of the existing exposure situation. • We are continuously developing the method for safety measures of near surface disposal of VLLW including U-bearing waste.

  16. Status of the WAND (Waste Assay for Nonradioactive Disposal) project as of July 1997

    International Nuclear Information System (INIS)

    Arnone, G.J.; Foster, L.A.; Foxx, C.L.; Hagan, R.C.; Martin, E.R.; Myers, S.C.; Parker, J.L.

    1998-03-01

    The WAND (Waste Assay for Nonradioactive Disposal) system can scan thought-to-be-clean, low-density waste (mostly paper and plastics) to determine whether the levels of any contaminant radioactivity are low enough to justify their disposal in normal public landfills or similar facilities. Such a screening would allow probably at least half of the large volume of low-density waste now buried at high cost in LANL's Rad Waste Landfill (Area G at Technical Area 54) to be disposed of elsewhere at a much lower cost. The WAND System consists of a well-shielded bank of six 5-in.-diam. phoswich scintillation detectors; a mechanical conveyor system that carries a 12-in.-wide layer of either shredded material or packets of paper sheets beneath the bank of detectors; the electronics needed to process the outputs of the detectors; and a small computer to control the whole system and to perform the data analysis. WAND system minimum detectable activities (MDAs) for point sources range from ∼20 dps for 241 Am to approximately 10 times that value for 239 Pu, with most other nuclides of interest being between those values, depending upon the emission probabilities of the radiations emitted (usually gamma rays and/or x-rays). The system can also detect beta particles that have energies ≥100 keV, but it is not easy to define an MDA based on beta radiation detection because of the greater absorption of beta particles relative to photons in low Z-materials. The only radioactive nuclides not detectable by the WAND system are pure alpha emitters and very-low-energy beta emitters. At this time, operating procedures and quality assurance procedures are in place and training materials are available to operators. The system is ready to perform useful work; however, it would be both possible and desirable to upgrade the electronic components and the analysis algorithms

  17. Navy explosive ordnance disposal project: Optical ordnance system development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Merson, J.A.; Salas, F.J.; Helsel, F.M.

    1996-03-01

    An optical ordnance firing system consisting of a portable hand held solid state rod laser and an optically ignited detonator has been developed for use in explosive ordnance disposal (EOD) activities. Solid state rod laser systems designed to have an output of 150 mJ in a 500 microsecond pulse have been produced and evaluated. A laser ignited detonator containing no primary explosives has been designed and fabricated. The detonator has the same functional output as an electrically fired blasting cap. The optical ordnance firing system has demonstrated the ability to reliably detonate Comp C-4 through 1000 meters of optical fiber.

  18. SLEUTH (Strategies and Lessons to Eliminate Unused Toxicants: Help!). Educational Activities on the Disposal of Household Hazardous Waste. Household Hazardous Waste Disposal Project. Metro Toxicant Program Report No. 1D.

    Science.gov (United States)

    Dyckman, Claire; And Others

    This teaching unit is part of the final report of the Household Hazardous Waste Disposal Project. It consists of activities presented in an introduction and three sections. The introduction contains an activity for students in grades 4-12 which defines terms and concepts for understanding household hazardous wastes. Section I provides activities…

  19. Final Environmental Assessment for solid waste disposal, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1995-08-01

    New solid waste regulations require that the existing Nevada Test Site (NTS) municipal landfills, which receive less than 20 tons of waste per day, be permitted or closed by October 9, 1995. In order to be permitted, the existing landfills must meet specific location, groundwater monitoring, design, operation, and closure requirements. The issuance of these regulations has resulted in the need of the Department of Energy (DOE) to provide a practical, cost-effective, environmentally sound means of solid waste disposal at the NTS that is in compliance with all applicable federal, state, and local regulations. The current landfills in Areas 9 and 23 on the Nevada Test Site do not meet design requirements specified in new state and federal regulations. The DOE Nevada Operations Office prepared an environmental assessment (EA) to evaluate the potential impacts of the proposal to modify the Area 23 landfill to comply with the new regulations and to close the Area 9 landfill and reopen it as Construction and Demolition debris landfill. Based on information and analyses presented in the EA, DOE has determined that the proposed action would not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act. Therefore, an environmental impact statement (EIS) is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI)

  20. Perspectives on past and Present Waste Disposal Practices: A community-Based Participatory Research Project in Three Saskatchewan First Nations Communities

    Directory of Open Access Journals (Sweden)

    Rebecca Zagozewski

    2011-01-01

    Full Text Available The impact of current and historical waste disposal practices on the environment and human health of Indigenous people in First Nations communities has yet to be adequately addressed. Solid waste disposal has been identified as a major environmental threat to First Nations Communities. A community-based participatory research project (CBPR was initiated by the Saskatoon Tribal Council Health and Family Services Incorporated to investigate concerns related to waste disposal in three Saskatchewan First Nations Communities. Utilizing a qualitative approach, we aimed to gain an understanding of past and present waste disposal practices and to identify any human and environmental health concerns related to these practices. One to one interviews and sharing circles were conducted with Elders. Elders were asked to share their perspectives on past and present waste disposal practices and to comment on the possible impacts these practices may have on the environment and community health. Historically waste disposal practices were similar among communities. The homeowner generated small volumes of waste, was exclusively responsible for disposal and utilized a backyard pit. Overtime waste disposal evolved to weekly pick-up of un-segregated garbage with waste disposal and open trash burning in a community dump site. Dump site locations and open trash burning were identified as significant health issues related to waste disposal practices in these communities. This research raises issues of inequity in the management of waste in First Nations Communities. It highlights the need for long-term sustainable funding to support community-based waste disposal and management strategies and the development of First Nations centered and delivered educational programs to encourage the adoption and implementation of waste reduction, reutilization and recycling activities in these communities.

  1. Perspectives on past and present waste disposal practices: a community-based participatory research project in three Saskatchewan first nations communities.

    Science.gov (United States)

    Zagozewski, Rebecca; Judd-Henrey, Ian; Nilson, Suzie; Bharadwaj, Lalita

    2011-04-28

    The impact of current and historical waste disposal practices on the environment and human health of Indigenous people in First Nations communities has yet to be adequately addressed. Solid waste disposal has been identified as a major environmental threat to First Nations Communities. A community-based participatory research project (CBPR) was initiated by the Saskatoon Tribal Council Health and Family Services Incorporated to investigate concerns related to waste disposal in three Saskatchewan First Nations Communities. Utilizing a qualitative approach, we aimed to gain an understanding of past and present waste disposal practices and to identify any human and environmental health concerns related to these practices. One to one interviews and sharing circles were conducted with Elders. Elders were asked to share their perspectives on past and present waste disposal practices and to comment on the possible impacts these practices may have on the environment and community health. Historically waste disposal practices were similar among communities. The homeowner generated small volumes of waste, was exclusively responsible for disposal and utilized a backyard pit. Overtime waste disposal evolved to weekly pick-up of un-segregated garbage with waste disposal and open trash burning in a community dump site. Dump site locations and open trash burning were identified as significant health issues related to waste disposal practices in these communities. This research raises issues of inequity in the management of waste in First Nations Communities. It highlights the need for long-term sustainable funding to support community-based waste disposal and management strategies and the development of First Nations centered and delivered educational programs to encourage the adoption and implementation of waste reduction, reutilization and recycling activities in these communities.

  2. Chemical hazard evaluation of material disposal area (MDA) B closure project

    Energy Technology Data Exchange (ETDEWEB)

    Laul, Jagdish C [Los Alamos National Laboratory

    2010-04-19

    TA-21, MDA-B (NES) is the 'contaminated dump,' landfill with radionuclides and chemicals from process waste disposed in 1940s. This paper focuses on chemical hazard categorization and hazard evaluation of chemicals of concern (e.g., peroxide, beryllium). About 170 chemicals were disposed in the landfill. Chemicals included products, unused and residual chemicals, spent, waste chemicals, non-flammable oils, mineral oil, etc. MDA-B was considered a High hazard site. However, based on historical records and best engineering judgment, the chemical contents are probably at best 5% of the chemical inventory. Many chemicals probably have oxidized, degraded or evaporated for volatile elements due to some fire and limited shelf-life over 60 yrs, which made it possible to downgrade from High to Low chemical hazard site. Knowing the site history and physical and chemical properties are very important in characterizing a NES site. Public site boundary is only 20 m, which is a major concern. Chemicals of concern during remediation are peroxide that can cause potential explosion and beryllium exposure due to chronic beryllium disease (CBD). These can be prevented or mitigated using engineering control (EC) and safety management program (SMP) to protect the involved workers and public.

  3. Processing of Irradiated Graphite to Meet Acceptance Criteria for Waste Disposal. Results of a Coordinated Research Project. Companion CD-ROM

    International Nuclear Information System (INIS)

    2016-05-01

    Graphite is widely used in the nuclear industry and in research facilities and this has led to increasing amounts of irradiated graphite residing in temporary storage facilities pending disposal. This publication arises from a coordinated research project (CRP) on the processing of irradiated graphite to meet acceptance criteria for waste disposal. It presents the findings of the CRP, the general conclusions and recommendations. The topics covered include, graphite management issues, characterization of irradiated graphite, processing and treatment, immobilization and disposal. Included on the attached CD-ROM are formal reports from the participants

  4. Safety cases for the co-ordinated research project on improvement of safety assessment methodologies for near surface radioactive waste disposal facilities (ISAM)

    International Nuclear Information System (INIS)

    Kozak, M.W.; Torres-Vidal, C.; Kelly, E.; Guskov, A.; Blerk, J. van

    2002-01-01

    A Co-ordinated Research Project (CRP) has recently been completed on the Improvement of Safety Assessment Methodologies for Near-Surface Radioactive Waste Disposal Facilities (ISAM). A major aspect of the project was the use of safety cases for the practical application of safety assessment. An overview of the ISAM safety cases is given in this paper. (author)

  5. Closure Report for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. B. Campbell

    2003-03-01

    Corrective Action Unit (CAU) 425 is located on the Tonopah Test Range, approximately 386 kilometers (240 miles) northwest of Las Vegas, Nevada. CAU 425 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and is comprised of one Corrective Action Site (CAS). CAS 09-08-001-TA09 consisted of a large pile of concrete rubble from the original Hard Target and construction debris associated with the Tornado Rocket Sled Tests. CAU 425 was closed in accordance with the FFACO and the Nevada Division of Environmental Protection-approved Streamlined Approach for Environmental Restoration Plan for CAU 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada (U.S. Department of Energy, Nevada Operations Office, 2002). CAU 425 was closed by implementing the following corrective actions: The approved corrective action for this unit was clean closure. Closure activities included: (1) Removal of all the debris from the site. (2) Weighing each load of debris leaving the job site. (3) Transporting the debris to the U.S. Air Force Construction Landfill for disposal. (4) Placing the radioactive material in a U.S. Department of Transportation approved container for proper transport and disposal. (5) Transporting the radioactive material to the Nevada Test Site for disposal. (6) Regrading the job site to its approximate original contours/elevation.

  6. Waste disposal

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste, as a unavoidable remnant from the use of radioactive substances and nuclear technology. It is potentially hazardous to health and must therefore be managed to protect humans and the environment. The main bulk of radioactive waste must be permanently disposed in engineered repositories. Appropriate safety standards for repository design and construction are required along with the development and implementation of appropriate technologies for the design, construction, operation and closure of the waste disposal systems. As backend of the fuel cycle, resolving the issue of waste disposal is often considered as a prerequisite to the (further) development of nuclear energy programmes. Waste disposal is therefore an essential part of the waste management strategy that contributes largely to build confidence and helps decision-making when appropriately managed. The International Atomic Energy Agency provides assistance to Member States to enable safe and secure disposal of RW related to the development of national RWM strategies, including planning and long-term project management, the organisation of international peer-reviews for research and demonstration programmes, the improvement of the long-term safety of existing Near Surface Disposal facilities including capacity extension, the selection of potential candidate sites for different waste types and disposal options, the characterisation of potential host formations for waste facilities and the conduct of preliminary safety assessment, the establishment and transfer of suitable technologies for the management of RW, the development of technological solutions for some specific waste, the building of confidence through training courses, scientific visits and fellowships, the provision of training, expertise, software or hardware, and laboratory equipment, and the assessment of waste management costs and the provision of advice on cost minimisation aspects

  7. Prediction of pressure of bentonite buffer in model test of disposal pit for high-level radioactive waste

    International Nuclear Information System (INIS)

    Komine, Hideo; Osada, Toru; Takao, Hajime; Ueda, Hiroyoshi

    2013-01-01

    Bentonite-based buffer materials for high-level radioactive waste (HLW) disposal are expected to fill up the space between buffer and a wall of the disposal pit, and/or between buffer and an waste-container called as overpack by its swelling deformation. That is called as self-sealing ability. This study performs the model tests simulated the relationship between buffer and space mentioned above. It also investigates the validity of the theoretical equations for evaluating the swelling characteristics of bentonite-based buffer and backfill material, which were proposed in Komine and Ogata (2003, 2004), by comparing the calculations and the experimental results. (author)

  8. Remedial action and waste disposal project -- 100-DR-1 remedial action readiness assessment report

    International Nuclear Information System (INIS)

    April, J.G.; Ard, J.A.; Corpuz, F.M.; DeMers, S.K.; Donahoe, R.L.; Frank, J.M.; Hobbs, B.J.; Roeck, F.V.

    1997-02-01

    This readiness assessment report presents the results of the project readiness assessment for the 100-DR-1 source sites remediation. The assessment was conducted at the conclusion of a series of project activities that began in August 1996. These activities included confirming the completion of project-specific procedures, training of staff, obtaining support equipment, receipt of subcontractor submittals, and mobilization and construction of site support systems

  9. Functional design criteria for project W-252, phase II liquid effluent treatment and disposal. Revision 2

    International Nuclear Information System (INIS)

    Hatch, C.E.

    1995-05-01

    This document is the Functional Design Criteria for Project W-252. Project W-252 provides the scope to provide BAT/AKART (best available technology...) to 200 Liquid Effluent Phase II streams (B-Plant). This revision (Rev. 2) incorporates a major descoping of the project. The descoping was done to reflect a combination of budget cutting measures allowed by a less stringent regulatory posture toward the Phase II streams

  10. Closure Report for Corrective Action Unit 110: Areas 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Smith

    2001-08-01

    This Closure Report (CR) has been prepared for the Area 3 Radioactive Waste Management Site (RWMS) U-3ax/bl Disposal Unit Corrective Action Unit (CAU) 110 in accordance with the reissued (November 2000) Resource Conservation and Recovery Act (RCRA) Part B operational permit NEV HW009 (Nevada Division of Environmental Protection [NDEP], 2000) and the Federal Facility and Consent Order (FFACO) (NDEP et al., 1996). CAU 110 consists of one Corrective Action Site 03-23-04, described as the U-3ax/bl Subsidence Crater. Certifications of closure are located in Appendix A. The U-3ax/bl is a historic disposal unit within the Area 3 RWMS located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit was closed under the RCRA, as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (m{sup 3}) (8.12 x 10{sup 6} cubic feet [ft{sup 3}]) of waste. NTS atmospheric nuclear device testing generated approximately 95% of the total waste volume disposed of in U-3ax/bl; 80% of the total volume was generated from the Waste Consolidation Project. Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is normally in a state of moisture deficit.

  11. Pilot-scale fluidized-bed combustor testing cofiring animal-tissue biomass with coal as a carcass disposal option

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Elizabeth M. Fedorowicz; David W. Harlan; Linda A. Detwiler; Michelle L. Rossman [Pennsylvania State University, University Park, PA (United States). Energy Institute

    2006-10-15

    This study was performed to demonstrate the technical viability of cofiring animal-tissue biomass (ATB) in a coal-fired fluidized-bed combustor (FBC) as an option for disposing of specified risk materials (SRMs) and carcasses. The purpose of this study was to assess the technical issues of feeding/combusting ATB and not to investigate prion deactivation/pathogen destruction. Overall, the project successfully demonstrated that carcasses and SRMs can be cofired with coal in a bubbling FBC. Feeding ATB into the FBC did, however, present several challenges. Specifically, handling/feeding issues resulting from the small scale of the equipment and the extremely heterogeneous nature of the ATB were encountered during the testing. Feeder modifications and an overbed firing system were necessary. Through statistical analysis, it was shown that the ATB feed location had a greater effect on CO emissions, which were used as an indication of combustion performance, than the fuel type due to the feeding difficulties. Baseline coal tests and tests cofiring ATB into the bed were statistically indistinguishable. Fuel feeding issues would not be expected at the full scale since full-scale units routinely handle low-quality fuels. In a full-scale unit, the disproportionate ratio of feed line size to unit diameter would be eliminated thereby eliminating feed slugging. Also, the ATB would either be injected into the bed, thereby ensuring uniform mixing and complete combustion, or be injected directly above the bed with overfire air ports used to ensure complete combustion. Therefore, it is anticipated that a demonstration at the full scale, which is the next activity in demonstrating this concept, should be successful. As the statistical analysis shows, emissions cofiring ATB with coal would be expected to be similar to that when firing coal only. 14 refs., 5 figs., 6 tabs.

  12. Lessons Learned Report for the radioactive mixed waste land disposal facility (Trench 31, Project W-025)

    International Nuclear Information System (INIS)

    Irons, L.G.

    1995-01-01

    This report presents the lessons learned from a project that involved modification to the existing burial grounds at the Hanford Reservation. This project has been focused on the development and operation of a Resource Conservation and Recovery Act compliant landfill which will accept low-level radioactive wastes that have been placed in proper containers

  13. Considerations Related To Human Intrusion In The Context Of Disposal Of Radioactive Waste-The IAEA HIDRA Project

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Roger; Kumano, Yumiko; Bailey, Lucy; Markley, Chris; Andersson, Eva; Beuth, Thomas

    2014-01-09

    The principal approaches for management of radioactive waste are commonly termed ‘delay and decay’, ‘concentrate and contain’ and ‘dilute and disperse’. Containing the waste and isolating it from the human environment, by burying it, is considered to increase safety and is generally accepted as the preferred approach for managing radioactive waste. However, this approach results in concentrated sources of radioactive waste contained in one location, which can pose hazards should the facility be disrupted by human action in the future. The International Commission on Radiological Protection (ICRP), International Atomic Energy Agency (IAEA), and Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) agree that some form of inadvertent human intrusion (HI) needs to be considered to address the potential consequences in the case of loss of institutional control and loss of memory of the disposal facility. Requirements are reflected in national regulations governing radioactive waste disposal. However, in practice, these requirements are often different from country to country, which is then reflected in the actual implementation of HI as part of a safety case. The IAEA project on HI in the context of Disposal of RadioActive waste (HIDRA) has been started to identify potential areas for improved consistency in consideration of HI. The expected outcome is to provide recommendations on how to address human actions in the safety case in the future, and how the safety case may be used to demonstrate robustness and optimize siting, design and waste acceptance criteria within the context of a safety case.

  14. The consequences of disposal of low-level radioactive waste from the Fernald Environmental Management Project: Report of the DOE/Nevada Independent Panel

    International Nuclear Information System (INIS)

    Crowe, B.; Hansen, W.; Waters, R.; Sully, M.; Levitt, D.

    1998-04-01

    The Department of Energy (DOE) convened a panel of independent scientists to assess the performance impact of shallow burial of low-level radioactive waste from the Fernald Environmental Management Project, in light of a transportation incident in December 1997 involving this waste stream. The Fernald waste has been transported to the Nevada Test Site and disposed in the Area 5 Radioactive Waste Management Site (RWMS) since 1993. A separate DOE investigation of the incident established that the waste has been buried in stress-fractured metal boxes, and some of the waste contained excess moisture (high-volumetric water contents). The Independent Panel was charged with determining whether disposition of this waste in the Area 5 RWMS has impacted the conclusions of a previously completed performance assessment in which the site was judged to meet required performance objectives. To assess the performance impact on Area 5, the panel members developed a series of questions. The three areas addressed in these questions were (1) reduced container integrity, (2) the impact of reduced container integrity on subsidence of waste in the disposal pits and (3) excess moisture in the waste. The panel has concluded that there is no performance impact from reduced container integrity--no performance is allocated to the container in the conservative assumptions used in performance assessment. Similarly, the process controlling post-closure subsidence results primarily from void space within and between containers, and the container is assumed to degrade and collapse within 100 years

  15. Corrective Action Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2006-01-01

    Corrective Action Unit (CAU) 543, Liquid Disposal Units, is listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996. CAU 543 consists of seven Corrective Action Sites (CASs) located in Areas 6 and 15 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 543 consists of the following seven CASs: (sm b ullet) CAS 06-07-01, Decon Pad (sm b ullet) CAS 15-01-03, Aboveground Storage Tank (sm b ullet) CAS 15-04-01, Septic Tank (sm b ullet) CAS 15-05-01, Leachfield (sm b ullet) CAS 15-08-01, Liquid Manure Tank (sm b ullet) CAS 15-23-01, Underground Radioactive Material Area (sm b ullet) CAS 15-23-03, Contaminated Sump, Piping From January 24, 2005 through April 14, 2005, CAU 543 site characterization activities were conducted, and are reported in Appendix A of the CAU 543 Corrective Action Decision Document (CADD) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2005). The recommended corrective action as stated in the approved CADD is No Further Action for five of the CAU 543 CASs, and Closure In Place for the remaining two CASs

  16. Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site

    International Nuclear Information System (INIS)

    Brown, Theresa J.; Wirth, Sharon

    1999-01-01

    This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model presented here

  17. Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,THERESA J.; WIRTH,SHARON

    1999-09-01

    This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model

  18. Subseabed Disposal Project annual report, FY85 to termination of project: Physical Oceanography and Water Column Geochemistry Studies, October 1984 through May 1986

    Energy Technology Data Exchange (ETDEWEB)

    Kupferman, S.L. (ed.)

    1987-05-01

    This report covers the work of the Physical Oceanography and Water Column Geochemistry (POWCG) Studies Group of the Subseabed Disposal Project (SDP) from October 1984 to termination of the project in May 1986. The overview of the work includes an introduction, general descriptions of the activities, and a summary. Detailed discussions are included as appendices. During the period of this report the POWCG Studies Group held a meeting to develop a long-term research plan for the Nares Abyssal Plain, which was recently designated as a study area for the Environmental Study Group of the SDP. The POWCG Studies Group has also planned and participated in two interdisciplinary oceanographic missions to the Nares which have resulted in the acquisition of data and samples which can be used to begin to understand the workings of the ecosystem at the site, and for developing a preliminary site assessment. The papers in the appendices have been processed for inclusion in the Energy Data Base.

  19. Subseabed Disposal Project annual report, FY85 to termination of project: Physical Oceanography and Water Column Geochemistry Studies, October 1984 through May 1986

    International Nuclear Information System (INIS)

    Kupferman, S.L.

    1987-05-01

    This report covers the work of the Physical Oceanography and Water Column Geochemistry (POWCG) Studies Group of the Subseabed Disposal Project (SDP) from October 1984 to termination of the project in May 1986. The overview of the work includes an introduction, general descriptions of the activities, and a summary. Detailed discussions are included as appendices. During the period of this report the POWCG Studies Group held a meeting to develop a long-term research plan for the Nares Abyssal Plain, which was recently designated as a study area for the Environmental Study Group of the SDP. The POWCG Studies Group has also planned and participated in two interdisciplinary oceanographic missions to the Nares which have resulted in the acquisition of data and samples which can be used to begin to understand the workings of the ecosystem at the site, and for developing a preliminary site assessment. The papers in the appendices have been processed for inclusion in the Energy Data Base

  20. Long-Term Performance of Transuranic Waste Inadvertently Disposed in a Shallow Land Burial Trench at the Nevada Test Site

    International Nuclear Information System (INIS)

    Shott, Gregory J.; Yucel, Vefa

    2009-01-01

    In 1986, 21 m3 of transuranic (TRU) waste was inadvertently disposed in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site. U.S. Department of Energy (DOE) TRU waste must be disposed in accordance with Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes. The Waste Isolation Pilot Plant is the only facility meeting these requirements. The National Research Council, however, has found that exhumation of buried TRU waste for disposal in a deep geologic repository may not be warranted when the effort, exposures, and expense of retrieval are not commensurate with the risk reduction achieved. The long-term risks of leaving the TRU waste in-place are evaluated in two probabilistic performance assessments. A composite analysis, assessing the dose from all disposed waste and interacting sources of residual contamination, estimates an annual total effective dose equivalent (TEDE) of 0.01 mSv, or 3 percent of the dose constraint. A 40 CFR 191 performance assessment also indicates there is reasonable assurance of meeting all requirements. The 40 CFR 191.15 annual mean TEDE for a member of the public is estimated to reach a maximum of 0.055 mSv at 10,000 years, or approximately 37 percent of the 0.15 mSv individual protection requirement. In both assessments greater than 99 percent of the dose is from co-disposed low-level waste. The simulated probability of the 40 CFR 191.13 cumulative release exceeding 1 and 10 times the release limit is estimated to be 0.0093 and less than 0.0001, respectively. Site characterization data and hydrologic process modeling support a conclusion of no groundwater pathway within 10,000 years. Monte Carlo uncertainty analysis indicates that there is reasonable assurance of meeting all regulatory requirements. Sensitivity analysis indicates that the results

  1. Safety evaluation of geological disposal concepts for low and medium-level wastes in rock-salt (Pacoma project)

    International Nuclear Information System (INIS)

    Prij, J.; Van Dalen, A.; Roodbergen, H.A.; Slagter, W.; Van Weers, A.W.; Zanstra, D.A.; Glasbergen, P.; Koester, H.W.; Lembrechts, J.F.; Nijhof-Pan, I.; Slot, A.F.M.

    1991-01-01

    In the framework of the Performance Assessment of Confinements for MLW and Alpha Waste (PACOMA) the disposal options dealing with rock-salt are studied by GSF and ECN (with subcontract to RIVM). The overall objectives of these studies are to develop and demonstrate procedures for the radiological safety assessment of a deep repository in salt formations. An essential objective is to show how far appropriate choices of the repository design parameters can improve the performances of the whole system. The research covers two waste inventories (the Dutch OPLA and the PACOMA reference inventory), two disposal techniques (conventional and solution mining) and three types of formations (salt dome, pillow and bedded salt). An important part of the research has been carried out in the socalled VEOS project within the framework of the Dutch OPLA study. The methodology used in the consequence analysis is a deterministic one. The models and calculation tools used to perform the consequence analysis are the codes: EMOS, METROPOL and BIOS. The results are expressed in terms of dose rates and doses to individuals as well as to groups. Detailed information with respect to the input data and the results obtained with the three codes is given in three annexes to this final report

  2. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    Science.gov (United States)

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  3. Fast flux test facility, transition project plan

    International Nuclear Information System (INIS)

    Guttenberg, S.

    1994-01-01

    The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition

  4. Fast flux test facility, transition project plan

    Energy Technology Data Exchange (ETDEWEB)

    Guttenberg, S.

    1994-11-15

    The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  5. Remedial action and waste disposal project: 100-B/C remedial action readiness evaluation plan

    International Nuclear Information System (INIS)

    April, J.G.; Bryant, D.L.; Cislo, G.B.

    1996-06-01

    The Readiness Evaluation Plan presents the methodology used to assess the readiness of the 100-B/C Remedial Action Project. The 100 Areas Remedial Action Project will remediate the 100 Areas liquid waste site identified in the Interim Action Record of Decision for the 100- BC-1, 100-DR-1, and 100-HR-1 Operable Units. These sites are located in the 100 Area of the Hanford Site in Richland, Washington

  6. Pilot-scale treatability testing -- Recycle, reuse, and disposal of materials from decontamination and decommissioning activities: Soda blasting demonstration

    International Nuclear Information System (INIS)

    1995-08-01

    The US Department of Energy (DOE) is in the process of defining the nature and magnitude of decontamination and decommissioning (D and D) obligations at its sites. With disposal costs rising and available storage facilities decreasing, DOE is exploring and implementing new waste minimizing D and D techniques. Technology demonstrations are being conducted by LMES at a DOE gaseous diffusion processing plant, the K-25 Site, in Oak Ridge, Tennessee. The gaseous diffusion process employed at Oak Ridge separated uranium-235 from uranium ore for use in atomic weapons and commercial reactors. These activities contaminated concrete and other surfaces within the plant with uranium, technetium, and other constituents. The objective of current K-25 D and D research is to make available cost-effective and energy-efficient techniques to advance remediation and waste management methods at the K-25 Site and other DOE sites. To support this objective, O'Brien and Gere tested a decontamination system on K-25 Site concrete and steel surfaces contaminated with radioactive and hazardous waste. A scouring system has been developed that removes fixed hazardous and radioactive surface contamination and minimizes residual waste. This system utilizes an abrasive sodium bicarbonate medium that is projected at contaminated surfaces. It mechanically removes surface contamination while leaving the surface intact. Blasting residuals are captured and dissolved in water and treated using physical/chemical processes. Pilot-scale testing of this soda blasting system and bench and pilot-scale treatment of the generated residuals were conducted from December 1993 to September 1994

  7. Decision Support System For Management Of Low-Level Radioactive Waste Disposal At The Nevada Test Site

    International Nuclear Information System (INIS)

    Shott, G.; Yucel, V.; Desotell, L.; Carilli, J.T.

    2006-01-01

    The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment -- a systematic analysis that compares estimated risks to the public and the environment with performance objectives contained in DOE Manual 435.1-1, Radioactive Waste Management Manual. Before site operations, facilities design features such as final inventory, waste form characteristics, and closure cover design may be uncertain. Site operators need a modeling tool that can be used throughout the operational life of the disposal site to guide decisions regarding the acceptance of problematic waste streams, new disposal cell design, environmental monitoring program design, and final site closure. In response to these needs the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) has developed a decision support system for the Area 5 Radioactive Waste Management Site in Frenchman Flat on the Nevada Test Site. The core of the system is a probabilistic inventory and performance assessment model implemented in the GoldSim R simulation platform. The modeling platform supports multiple graphic capabilities that allow clear documentation of the model data sources, conceptual model, mathematical implementation, and results. The combined models have the capability to estimate disposal site inventory, contaminant concentrations in environmental media, and radiological doses to members of the public engaged in various activities at multiple locations. The model allows rapid assessment and documentation of the consequences of waste management decisions using the most current site characterization information, radionuclide inventory, and conceptual model. The model is routinely used to provide annual updates of site performance, evaluate the consequences of disposal of new waste streams, develop waste concentration limits, optimize the design of new disposal cells, and assess the adequacy of environmental

  8. Safety studies of HLW-disposal in the Mors salt dome - Support to the salt option of the Pagis project

    International Nuclear Information System (INIS)

    Lindstroem Jensen, K.E.

    1987-01-01

    The study, which is a support to the Pagis project, covers three tasks concerning the evaluation of the Danish salt dome Mors (variant disposal site): evaluation of the human intrusion scenario where a cavern is excavated near the HLW-repository by solution mining technique. The waste is supposed to be leached during the operation period until the abandoned cavern is closed by convergence and the contaminated brine is pressed up into the overburden. Evaluation of the brine intrusion scenario, where the HLW-repository is inadvertently located close to a major brine pocket which subsequently releases its brine content through defects in the repository to the discharge stream for the catchment area. Collection and description of hydrological data of surface and deep layers (down to circa 700 metres) in the repository region. The data will be used by GSF to calculate the radionuclide migration in the geosphere

  9. Role of National Academies in radioactive waste disposal projects. Implications from the comparison of the science council of Japan with the U.S. National Academies

    International Nuclear Information System (INIS)

    Yamashita, Yuji; Tanaka, Satoru

    2012-01-01

    We made a descriptive inference about the role of the U.S. National Academies in the U.S. radioactive waste disposal projects on the basis of literature-based information and compared the U.S. National Academies with the Science Council of Japan to determine their implications on the progress of social acceptability of radioactive waste disposal projects in Japan. The descriptive inference was made as follows. We described the organizational characteristics of the U.S. National Academies and the U.S. federal governments related to the projects. We outlined the related bills and demonstrated chronologically the activities related to the projects by the U.S. National Academies and the U.S. Government. As a consequence, we identified some specific roles that the U.S. National Academies played in the U.S. radioactive waste disposal projects. The U.S. National Academies have acted not only as a scientific and engineering adviser for the governments but also as an anchor for some political decision making or judicial actions. Furthermore, we analyzed the credibility of the Science Council of Japan and the U.S. National Academies from the viewpoint that a reliable third party must exhibit fairness, expertise and continuity. From the results of the comparison, it was found that the Science Council of Japan has the possibility to become a reliable third party that can help the radioactive waste disposal projects in Japan. (author)

  10. Ultimate disposal of radioactive waste in the FRG - current progress of projects and perspectives

    International Nuclear Information System (INIS)

    Roesel, H.

    1989-01-01

    In the Federal Republic of Germany, the state is responsible for providing for the ultimate disposal of radioactive waste, whereas the cost is borne by the waste producing establishments. The Federal Ministry for the Environment, Nature Conservation and Reactor Safety, (BMU), as the competent state authority has delegated its responsibilities in this matter to the Physikalisch-Technische Bundesanstalt (PTB). The PTB is allowed to have work done by third parties. For this purpose, the Deutsche Gesellschaft zum Bau und Betrieb von Endlagern fuer Abfallstoffe mbH (DBE) has been founded, which since 1979 is investigating the Gorleben salt dome for suitability to serve as a repository for all type of solid, radioactive waste. The final decisions on site approval can be taken after completion of the underground exploration work, which according to current schedules is expected to be achieved at the end of the 1990s. The other candidate site, the Konrad mine, has been investigated by the GSF in the years 1976 to 1982, and on August 31, 1982 the PTB has filed an application to institute the plan approval procedure for the Konrad mine to be prepared to serve as a waste repository. The plan is expected to be laid open in the first half of 1989, and hearings possibly be held in the second half. In case of plan approval, the site preparation will probably take 3 years, so that the Konrad mine will be ready to receive radioactive waste by the year 1993. (orig.) [de

  11. Corrective Action Investigation Plan for Corrective Action Unit 410: Waste Disposal Trenches, Tonopah Test Range, Nevada, Revision No.:0

    International Nuclear Information System (INIS)

    2002-01-01

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 410 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 410 is located on the Tonopah Test Range (TTR), which is included in the Nevada Test and Training Range (formerly the Nellis Air Force Range) approximately 140 miles northwest of Las Vegas, Nevada. This CAU is comprised of five Corrective Action Sites (CASs): TA-19-002-TAB2, Debris Mound; TA-21-003-TANL, Disposal Trench; TA-21-002-TAAL, Disposal Trench; 09-21-001-TA09, Disposal Trenches; 03-19-001, Waste Disposal Site. This CAU is being investigated because contaminants may be present in concentrations that could potentially pose a threat to human health and/or the environment, and waste may have been disposed of with out appropriate controls. Four out of five of these CASs are the result of weapons testing and disposal activities at the TTR, and they are grouped together for site closure based on the similarity of the sites (waste disposal sites and trenches). The fifth CAS, CAS 03-19-001, is a hydrocarbon spill related to activities in the area. This site is grouped with this CAU because of the location (TTR). Based on historical documentation and process know-ledge, vertical and lateral migration routes are possible for all CASs. Migration of contaminants may have occurred through transport by infiltration of precipitation through surface soil which serves as a driving force for downward migration of contaminants. Land-use scenarios limit future use of these CASs to industrial activities. The suspected contaminants of potential concern which have been identified are volatile organic compounds; semivolatile organic compounds; high explosives; radiological constituents including depleted uranium

  12. Remedial action and waste disposal project: 100-B/C remedial action readiness report

    International Nuclear Information System (INIS)

    April, J.G.; Bryant, D.L.; Cislo, G.B.

    1996-07-01

    This Readiness Evaluation Report presents the results of the project readiness evaluation to assess the readiness of the 100-B/C source sites remediation. The 100-B/C Area is located at the Hanford Site in Richland, Washington. The evaluation was conducted at the conclusion of a series of readiness activities that began in May 1996. These activities included confirming the completion of project specific procedures, training of staff, obtaining support equipment, receipt of subcontractor submittals, approval of subcontractor submittals, and mobilization and construction of site support systems

  13. The Rorschach: projective technique or psychometric test?

    Science.gov (United States)

    Aronow, E; Reznikoff, M; Moreland, K L

    1995-04-01

    Various approaches to the Rorschach Technique are described in terms of the idiographic-nomothetic axis and the perceptual-content axis. It is suggested that it is most productive to view the Rorschach as a projective tool, with perceptual scoring a secondary factor. Current efforts at objectification of the Rorschach are not seen as useful as efforts to enhance its projective qualities. Some possible ways are discussed in which the projective value of the instrument can be maximized.

  14. Corrective action plan for CAU No. 404: Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Roller Coaster Sewage Lagoons and North Disposal Trench Corrective Action Unit (CAU) No. 404. The site is located on the Tonopah Test Range. CAU 404 consists of two Corrective Action Sites (CAS): the Roller Coaster Lagoons (CAS No TA-03-001-TA-RC) and the North Disposal Trench (CAS No TA-21-001-TA-RC). A site map of the lagoons and trench is provided. The Roller Coaster Sewage Lagoons are comprised of two unlined lagoons that received liquid sanitary waste in 1963 from the Operation Roller Coaster Man Camp and debris from subsequent construction and range cleanup activities. The North Disposal Trench was excavated in approximately 1963 and received solid waste and debris from the man camp and subsequent construction and range cleanup activities. A small hydrocarbon spill occurred during the 1995 Voluntary Corrective Action (VCA) activities in an area associated with the North Disposal Trench CAS.

  15. Corrective action plan for CAU No. 404: Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range

    International Nuclear Information System (INIS)

    1997-07-01

    This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Roller Coaster Sewage Lagoons and North Disposal Trench Corrective Action Unit (CAU) No. 404. The site is located on the Tonopah Test Range. CAU 404 consists of two Corrective Action Sites (CAS): the Roller Coaster Lagoons (CAS No TA-03-001-TA-RC) and the North Disposal Trench (CAS No TA-21-001-TA-RC). A site map of the lagoons and trench is provided. The Roller Coaster Sewage Lagoons are comprised of two unlined lagoons that received liquid sanitary waste in 1963 from the Operation Roller Coaster Man Camp and debris from subsequent construction and range cleanup activities. The North Disposal Trench was excavated in approximately 1963 and received solid waste and debris from the man camp and subsequent construction and range cleanup activities. A small hydrocarbon spill occurred during the 1995 Voluntary Corrective Action (VCA) activities in an area associated with the North Disposal Trench CAS

  16. Advanced conceptual design report. Phase II. Liquid effluent treatment and disposal Project W-252

    International Nuclear Information System (INIS)

    1995-01-01

    This Advanced Conceptual Design Report (ACDR) provides a documented review and analysis of the Conceptual Design Report (CDR), WHC-SD-W252-CDR-001, June 30, 1993. The ACDR provides further design evaluation of the major design approaches and uncertainties identified in the original CDR. The ACDR will provide a firmer basis for the both the design approach and the associated planning for the performance of the Definitive Design phase of the project

  17. Closure Plan for Corrective Action Unit 110: Area 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Fitzmaurice, T. M.

    2000-01-01

    This Closure Plan has been prepared for the Area 3 RWMS U-3ax/bl Disposal Unit Corrective Action Unit 110 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). The U-3ax/bl is a historic disposal unit within the Area 3 Radioactive Waste Management Site located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit is scheduled for permanent closure under the Resource Conservation and Recovery Act as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10 5 cubic meters (8.12 x 10 6 cubic feet) of waste. NTS nuclear device testing generated approximately 95 percent of the total volume disposed of in U-3ax/bl, the majority of which came from the Waste Consolidation Project (80 percent of the total volume) (Elletson and Johnejack, 1995). Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is continuously in a state of moisture deficit. The U-3ax/bl Disposal Unit will be closed in place by installing a Resource Conservation and Recovery Act equivalent cover. Following cover construction a fence will be installed around the cover to prevent accidental damage to the cover. Post-closure monitoring will consist of site inspections to determine the condition of the engineered cover and cover performance monitoring using Time-Domain Reflectometry arrays to monitor moisture migration in the cover. Any identified maintenance and repair

  18. Closure Plan for Corrective Action Unit 110: Area 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Fitzmaurice

    2000-08-01

    This Closure Plan has been prepared for the Area 3 RWMS U-3ax/bl Disposal Unit Corrective Action Unit 110 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). The U-3ax/bl is a historic disposal unit within the Area 3 Radioactive Waste Management Site located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit is scheduled for permanent closure under the Resource Conservation and Recovery Act as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (8.12 x 10{sup 6} cubic feet) of waste. NTS nuclear device testing generated approximately 95 percent of the total volume disposed of in U-3ax/bl, the majority of which came from the Waste Consolidation Project (80 percent of the total volume) (Elletson and Johnejack, 1995). Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is continuously in a state of moisture deficit. The U-3ax/bl Disposal Unit will be closed in place by installing a Resource Conservation and Recovery Act equivalent cover. Following cover construction a fence will be installed around the cover to prevent accidental damage to the cover. Post-closure monitoring will consist of site inspections to determine the condition of the engineered cover and cover performance monitoring using Time-Domain Reflectometry arrays to monitor moisture migration in the cover. Any identified maintenance and

  19. Projected tritium releases from F ampersand H Area Seepage Basins and the Solid Waste Disposal Facilities to Fourmile Branch

    International Nuclear Information System (INIS)

    Looney, B.B.; Haselow, J.S.; Lewis, C.M.; Harris, M.K.; Wyatt, D.E.; Hetrick, C.S.

    1993-01-01

    A large percentage of the radioactivity released to the environment by operations at the Savannah River Site (SRS) is due to tritium. Because of the relative importance of the releases of tritium from SRS facilities through the groundwater to the environment, periodic evaluation and documentation of the facility operational status, proposed corrective actions, and projected changes/reductions in tritium releases are justified. Past, current, and projected tritium releases from the F and H Area Seepage Basins and the Solid Waste Disposal Facilities (SWDF) to Fourmile Branch are described. Each section provides a brief operational history along with the current status and proposed corrective actions. A conceptual model and quantitative estimates of tritium release from the facilities into the groundwater and the environment are developed. Tritium releases from the F and H Area Seepage Basins are declining and will be further reduced by the implementation of a groundwater corrective action required by the Resource Conservation and Recovery Act (RCRA). Tritium releases from the SWDF have been relatively stable over the past 10 years. It is anticipated that SWDF tritium releases to Fourmile Branch will remain approximately at current levels for at least 10--20 years. Specific characterization activities are recommended to allow an improved projection of tritium flux and to assist in developing plans for plume mitigation. SRS and the South Carolina Department of Health and Environmental Control are developing groundwater corrective action plans for the SWDF. Portions of the SWDF are also regulated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Reduction of tritium flux is one of the factors considered in the development of the RCRA/CERCLA groundwater corrective action. The final section of the document presents the sum of the projected tritium fluxes from these facilities to Fourmile Branch

  20. Development and testing of a new disposable sterile device for labelling white blood cells

    NARCIS (Netherlands)

    Signore, A.; Glaudemans, A. W. J. M.; Malviya, G.; Lazzeri, E.; Prandini, N.; Viglietti, A. L.; De Vries, E. F. J.; Dierckx, R. A. J. O.

    Aim. White blood cell (WBC) labelling requires isolation of cells from patient's blood under sterile conditions using sterile materials, buffers and disposables under good manufacturing practice (GMP) conditions. Till now, this limited the use of white blood cell scintigraphy (WBC-S) only to well

  1. 40 CFR 268.7 - Testing, tracking, and recordkeeping requirements for generators, treaters, and disposal facilities.

    Science.gov (United States)

    2010-07-01

    ....6, or a national capacity variance or case-by-case capacity variance under subpart C of this part... characteristic hazardous wastes managed in wastewater treatment systems subject to the Clean Water Act (CWA) as... last sent to on-site or off-site treatment, storage, or disposal. The three year record retention...

  2. Fast Flux Test Facility project plan. Revision 2

    International Nuclear Information System (INIS)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition

  3. Fast Flux Test Facility project plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  4. Review to give the public clear information on near surface disposal project of low-level radioactive wastes generated from research, industrial and medical facilities

    International Nuclear Information System (INIS)

    Shobu, Nobuhiro; Amazawa, Hiroya; Koibuchi, Hiroto; Nakata, Hisakazu; Kato, Masatoshi; Takao, Tomoe; Terashima, Daisuke; Tanaka, Yoshie; Shirasu, Hisanori

    2013-12-01

    Japan Atomic Energy Agency (hereafter abbreviated as “JAEA”) has promoted near surface disposal project for low-level radioactive wastes generated from research, industrial and medical facilities after receiving project approval from the government in November 2009. JAEA has carried out public information about low-level radioactive wastes disposal project on the web site. When some town meetings are held toward mutual understanding with the public, more detailed and clear explanations for safety management of near surface disposal are needed especially. Therefore, the information provision method to make the public understand should be reviewed. Moreover, a web-based survey should be carried out in order to get a sense of what the public knows, what it values and where it stands on nuclear energy and radiation issues, because the social environment surrounding nuclear energy and radiation issues has drastically changed as a result of the accident at the Fukushima Daiichi Nuclear Power Station on March 11, 2011. This review clarified the points to keep in mind about public information on near surface disposal project for low-level radioactive wastes generated from research, industrial and medical facilities, and that public awareness and understanding toward nuclear energy and radiation was changed before and after the accident at Fukushima Daiichi Nuclear Power Plant. (author)

  5. Interim Control Strategy for the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond - Two-year Update

    Energy Technology Data Exchange (ETDEWEB)

    L. V. Street

    2007-04-01

    The Idaho Cleanup Project has prepared this interim control strategy for the U.S. Department of Energy Idaho Operations Office pursuant to DOE Order 5400.5, Chapter 11.3e (1) to support continued discharges to the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond. In compliance with DOE Order 5400.5, a 2-year review of the Interim Control Strategy document has been completed. This submittal documents the required review of the April 2005 Interim Control Strategy. The Idaho Cleanup Project's recommendation is unchanged from the original recommendation. The Interim Control Strategy evaluates three alternatives: (1) re-route the discharge outlet to an uncontaminated area of the TSF-07; (2) construct a new discharge pond; or (3) no action based on justification for continued use. Evaluation of Alternatives 1 and 2 are based on the estimated cost and implementation timeframe weighed against either alternative's minimal increase in protection of workers, the public, and the environment. Evaluation of Alternative 3, continued use of the TSF-07 Disposal Pond under current effluent controls, is based on an analysis of four points: - Record of Decision controls will protect workers and the public - Risk of increased contamination is low - Discharge water will be eliminated in the foreseeable future - Risk of contamination spread is acceptable. The Idaho Cleanup Project recommends Alternative 3, no action other than continued implementation of existing controls and continued deactivation, decontamination, and dismantlement efforts at the Test Area North/Technical Support Facility.

  6. Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2002-01-01

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 356, Mud Pits and Disposal Sites, in accordance with the Federal Facility Agreement and Consent Order. This CAU is located in Areas 3 and 20 of the Nevada Test Site (NTS) approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 356 consists of seven Corrective Action Sites (CASs): 03-04-01, Area 3 Change House Septic System; 03-09-01, Mud Pit Spill Over; 03-09-03, Mud Pit; 03-09-04, Mud Pit; 03-09-05, Mud Pit; 20-16-01, Landfill; and 20-22-21, Drums. This CR identifies and rationalizes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's (NNSA/NV's) recommendation that no further corrective action and closure in place is deemed necessary for CAU 356. This recommendation is based on the results of field investigation/closure activities conducted November 20, 2001, through January 3, 2002, and March 11 to 14, 2002. These activities were conducted in accordance with the Streamlined Approach for Environmental Restoration Plan (SAFER) for CAU 356. For CASs 03-09-01, 03-09-03, 20-16-01, and 22-20-21, analytes detected in soil during the corrective action investigation were evaluated against Preliminary Action Levels (PALs) and it was determined that no Contaminants of Concern (COCs) were present. Therefore, no further action is necessary for the soil at these CASs. For CASs 03-04-01, 03-09-04, and 03-09-05, analytes detected in soil during the corrective action investigation were evaluated against PALs and identifies total petroleum hydrocarbons (TPHs) and radionuclides (i.e., americium-241 and/or plutonium 239/240) as COCs. The nature, extent, and concentration of the TPH and radionuclide COCs were bounded by sampling and shown to be relatively immobile. Therefore, closure in place is recommended for these CASs in CAU 356. Further, use restrictions are not required at this CAU beyond the NTS use restrictions identified in

  7. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2002-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 425, Area 9 Main Lake Construction Debris Disposal Area. This CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). This site will be cleaned up under the SAFER process since the volume of waste exceeds the 23 cubic meters (m(sup 3)) (30 cubic yards[yd(sup 3)]) limit established for housekeeping sites. CAU 425 is located on the Tonopah Test Range (TTR) and consists of one Corrective Action Site (CAS) 09-08-001-TA09, Construction Debris Disposal Area (Figure 1). CAS 09-08-001-TA09 is an area that was used to collect debris from various projects in and around Area 9. The site is located approximately 81 meters (m) (265 feet[ft]) north of Edwards Freeway northeast of Main Lake on the TTR. The site is composed of concrete slabs with metal infrastructure, metal rebar, wooden telephone poles, and concrete rubble from the Hard Target and early Tornado Rocket sled tests. Other items such as wood scraps, plastic pipes, soil, and miscellaneous nonhazardous items have also been identified in the debris pile. It is estimated that this site contains approximately 2280 m(sup 3) (3000 yd(sup 3)) of construction-related debris

  8. Corrosion of several components of the in-situ test performed in a deep geological granite disposal site

    International Nuclear Information System (INIS)

    Madina, Virginia; Azkarate, Inaki; Insausti, Mikel

    2004-01-01

    The corrosion damage experienced by different components in a deep geological disposal in a granite formation has been analysed. This in-situ test is part of the Full-scale Engineered Barriers EXperiment project (FEBEX) carried out in Grimsel (Switzerland). Two heaters, simulating the canister and the heat generated, were installed horizontally inside the guide tubes or liners and surrounded by highly compacted bentonite blocks. Coupons of several candidate metals for manufacturing HLW containers were introduced in these bentonite blocks, as well as sensors in order to monitor different physicochemical parameters during the test. The in- situ test began in July 1996 and in June 2002 one of the heaters, a section of the liner, several corrosion coupons and four sensors were extracted. The studied heater is a carbon steel cylinder with welded lids, with a wall thickness of 100 mm and 4.54 m long. The liner consists of a perforated carbon steel tube, 970 mm in diameter and 15 mm thick. Corrosion coupons were made of carbon steel, stainless steel, titanium, copper and cupronickel alloys. Two extensometer type sensors with an outer protection tube made of austenitic stainless steel were also analysed. Visual inspection of the above mentioned components, optical and scanning electron microscope study, together with EDS and XRD analyses of corrosion products, have been performed in order to analyse the corrosion suffered by these components. This has been complemented with the chemical and microbiological characterisation of bentonite samples. Results obtained in the study indicate a slight generalised corrosion for the heater, liner and corrosion coupons. The low humidity content of the bentonite surrounding the liner and the corrosion coupons, is the responsible of this practical absence of corrosion. The sensors studied show, however, an important corrosion damage. The sulphur rich corrosion products, the presence of Sulphate Reducing Bacteria (SRB) in the bentonite

  9. Integrated project 'Supply and disposal of pure chemicals and gases'. Vol. 11

    International Nuclear Information System (INIS)

    Dorner, J.; Herz, R.; Klumpp, B.; Schmidt, H.P.; Trompler, H.; Mueller, B.; Ernst, C.

    1990-01-01

    A gas filter test rig was designed and built up, in which the contamintion behaviour of point-of-use filters can be examined. After checking and improving individual components, particle measurements were carried out on three point-of-use filters to determine the particle emission with static and dynamic loading of the test filter. The filters had a poly-dispersed NaCl aerosol applied to them for this purpose. The particle release in the delivered state was also determined on a filter taken from the original packing. The results of the particle application test show that an appreciable particle flow occurs for pressure surges. However, with steady state flow, no particle flow was found. The measurements were carried out according to a fixed and even course of the experiment. (orig.) [de

  10. Project quality assurance plan for research and development services provided by Oak Ridge National Laboratory in support of the Hanford Grout Disposal Program

    International Nuclear Information System (INIS)

    Spence, R.D.; Gilliam, T.M.

    1991-11-01

    This Project Quality Assurance Plan (PQAP) is being published to provide the sponsor with referenceable documentation for work conducted in support of the Hanford WHC Grout Disposal Program. This plan, which meets NQA-1 requirements, is being applied to work performed at Oak Ridge National Laboratory (ORNL) during FY 1991 in support of this program. It should also be noted that with minor revisions, this plan should be applicable to other projects involving research and development that must comply with NQA-1 requirements

  11. Project quality assurance plan for research and development services provided by Oak Ridge National Laboratory in support of the Hanford Grout Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Spence, R.D.; Gilliam, T.M.

    1991-11-01

    This Project Quality Assurance Plan (PQAP) is being published to provide the sponsor with referenceable documentation for work conducted in support of the Hanford WHC Grout Disposal Program. This plan, which meets NQA-1 requirements, is being applied to work performed at Oak Ridge National Laboratory (ORNL) during FY 1991 in support of this program. It should also be noted that with minor revisions, this plan should be applicable to other projects involving research and development that must comply with NQA-1 requirements.

  12. Survey of foreign risk analyses with plans and projects concerning final disposal

    International Nuclear Information System (INIS)

    Hultgren, Aa.

    1977-08-01

    Risk analysis of the back end of the fuel cycle is now being given increasing efforts in several nuclear power countries. A review of the major programmes abroad in this field, especially for terminal storage of high level nuclear waste, is given in the first part of this report. The second part of the report reviews major projects and plans for terminal storage in America and in Western Europe, with a brief reference to co-operation in international fora. The most comprehensive programme is in progress in the United States. For Sweden it seems that also the programmes in Canada and France are of particular interest due to their concentration on terminal storage in crystalline rocks. (author)

  13. How plural interests, values and knowledge could be translated into a concrete rad waste disposal project design: an artist's vision

    International Nuclear Information System (INIS)

    Massart, C.

    2004-01-01

    Professor and Artist, has been focusing on issues associated with the management of radioactive wastes for some period of time. She operates from the understanding that a proper role for art in such projects can help change the view of waste disposal by stakeholders and the broader public. She has investigated both the artistic aspects of waste management facilities themselves as well as artistic visions of themes associated with radioactive waste. For the past ten years, Professor Massart has been working on a project titled, ''An archived site for alpha, beta, gamma.'' Working with computer graphics, Professor Massart has been obtaining access to appropriate radioactive waste sites, making photo and video reports and leaving copies of documents and exhibit projects with those in charge of the sites she visits. Professor Massart explored three separate topics in which using art as a vehicle for communication offers an alternative and perhaps improved method for communicating over the more ''traditional'' verbal and written communications almost always favoured by technical and programmatic individuals. The first was to portray radioactive decay not by measurements or comparisons to other risks, but to use the gradual lightening of colours to depict the gradual and natural decay of radioactivity with time in an artistic piece. Second, she demonstrated the possibilities for art to help maintain archives for the future, a key knowledge preservation activity for a programme that will span generations. Third, she showed the possibilities for art to influence markers that would ultimately be placed at waste management sites, preserving the continuity of knowledge regarding such sites. Finally, Professor Massart showed examples of how art can influence the look and feel of waste management facilities, helping to reflect and then realize the vision of the local population. (author)

  14. Operational safety assessment of underground test facilities for mined geologic waste disposal

    International Nuclear Information System (INIS)

    Elder, H.K.

    1993-01-01

    This paper describes the operational safety assessment for the underground facilities for the exploratory studies facility (ESF) at the Yucca Mountain Project. The systematic identification and evaluation of hazards related to the ESF is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach based on the analysis of potential accidents was used since radiological safety analysis was not required. The risk assessment summarized credible accident scenarios and the design provides mitigation of the risks to a level that the facility can be constructed and operated with an adequate level of safety. The risk assessment also provides reasonable assurance that all identifiable major accident scenarios have been reviewed and design mitigation features provided to ensure an adequate level of safety

  15. Bibliography of reports by US Geological Survey personnel pertaining to underground nuclear testing and radioactive waste disposal at the Nevada Test Site, and radioactive waste disposal at the WIPP Site, New Mexico, January 1, 1979-December 31, 1979

    International Nuclear Information System (INIS)

    Glanzman, V.M.

    1980-01-01

    This bibliography presents reports released to the public between January 1, 1979, and December 31, 1979, by personnel of the US Geological Survey. Reports include information on underground nuclear testing and waste management projects at the NTS (Nevada Test Site) and radioactive waste projects at the WIPP (Waste Isolation Pilot Plant) site, New Mexico. Reports on Project Dribble, Tatum Dome, Mississippi, previously prepared as administrative reports and released to the public as 474-series reports during 1979 are also included in this bibliography

  16. Durability test of geomembrane liners presumed to avail near surface disposal facilities for low-level waste generated from research, industrial and medical facilities

    International Nuclear Information System (INIS)

    Nakata, Hisakazu; Amazawa, Hiroya; Sakai, Akihiro; Kurosawa, Ryohei; Sakamoto, Yoshiaki; Kanno, Naohiro; Kashima, Takahiro

    2014-02-01

    The Low-level Radioactive Waste Disposal Project Center will construct near surface disposal facilities for radioactive wastes from research, industrial and medical facilities. The disposal facilities consist of “concrete pit type” for low-level radioactive wastes and “trench type” for very low level radioactive wastes. As for the trench type disposal facility, two kinds of facility designs are on projects – one for a normal trench type disposal facility without any of engineered barriers and the other for a trench type disposal facility with geomembrane liners that could prevent from causing environmental effects of non radioactive toxic materials contained in the waste packages. The disposal facility should be designed taking basic properties of durability on geomembrane liners into account, for it is exposed to natural environment on a long-term basis. This study examined mechanical strength and permeability properties to assess the durability on the basis of an indoor accelerated exposure experiment targeting the liner materials presumed to avail the conceptual design so far. Its results will be used for the basic and detailed design henceforth by confirming the empirical degradation characteristic with the progress of the exposure time. (author)

  17. Testing Software Development Project Productivity Model

    Science.gov (United States)

    Lipkin, Ilya

    Software development is an increasingly influential factor in today's business environment, and a major issue affecting software development is how an organization estimates projects. If the organization underestimates cost, schedule, and quality requirements, the end results will not meet customer needs. On the other hand, if the organization overestimates these criteria, resources that could have been used more profitably will be wasted. There is no accurate model or measure available that can guide an organization in a quest for software development, with existing estimation models often underestimating software development efforts as much as 500 to 600 percent. To address this issue, existing models usually are calibrated using local data with a small sample size, with resulting estimates not offering improved cost analysis. This study presents a conceptual model for accurately estimating software development, based on an extensive literature review and theoretical analysis based on Sociotechnical Systems (STS) theory. The conceptual model serves as a solution to bridge organizational and technological factors and is validated using an empirical dataset provided by the DoD. Practical implications of this study allow for practitioners to concentrate on specific constructs of interest that provide the best value for the least amount of time. This study outlines key contributing constructs that are unique for Software Size E-SLOC, Man-hours Spent, and Quality of the Product, those constructs having the largest contribution to project productivity. This study discusses customer characteristics and provides a framework for a simplified project analysis for source selection evaluation and audit task reviews for the customers and suppliers. Theoretical contributions of this study provide an initial theory-based hypothesized project productivity model that can be used as a generic overall model across several application domains such as IT, Command and Control

  18. Project NEO Specific Impulse Testing Solutions

    Science.gov (United States)

    Baffa, Bill

    2018-01-01

    The Neo test stand is currently configured to fire a horizontally mounted rocket motor with up to 6500 lbf thrust. Currently, the Neo test stand can measure flow of liquid propellant and oxidizer, pressures residing in the closed system up to the combustion chamber. The current configuration does not have the ability to provide all data needed to compute specific impulse. This presents three methods to outfit the NEO test fixture with instrumentation allowing for calculation of specific impulse.

  19. Application for Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-08-05

    The NTS is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. NNSA/NSO is the federal lands management authority for the NTS and NSTec is the Management & Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The U10C Disposal Site is located in the northwest corner of Area 9 at the NTS (Figure 1) and is located in a subsidence crater created by two underground nuclear events, one in October 1962 and another in April 1964. The disposal site opened in 1971 for the disposal of rubbish, refuse, pathological waste, asbestos-containing material, and industrial solid waste. A Notice of Intent form to operate the disposal site as a Class II site was submitted to the state of Nevada on January 26, 1994, and was acknowledged in a letter to the DOE on February 8, 1994. It operated as a state of Nevada Class II Solid Waste Disposal Site (SWDS) until it closed on October 5, 1995, for retrofit as a Class III SWDS. The retrofit consisted of the installation of a minimum four-foot compacted soil layer to segregate the different waste types and function as a liner to inhibit leachate and water flow into the lower waste zone. Five neutron monitoring tubes were installed in this layer to monitor possible leachate production and water activity. Upon acceptance of the installed barrier and approval of an Operating Plan by NDEP/BFF, the site reopened in January 1996 as a Class III SWDS for the disposal of industrial solid waste and other inert waste.

  20. Project W-151 checkout-testing report

    Energy Technology Data Exchange (ETDEWEB)

    Nordquist, E.M.

    1997-01-31

    This document contains the completed checkout testing plan along with the exception log documenting exceptions which occurred during the test and their closure. This document also contains several minor open exceptions which will be closed upon installation of the radiation-sensitive equipment.

  1. Projects on filter testing in Sweden

    International Nuclear Information System (INIS)

    Normann, B.; Wiktorsson, C.

    1985-01-01

    The Swedish nuclear power program comprises twelve light water reactors. Nine are boiling water reactors of ASEA-ATOM design and three are pressurized water reactors of Westinghouse design. Of these, ten are in operation and two are under construction and planned to go into operation during late 1984 and early 1985, respectively. Frequent tests on the penetration of particles through HEPA filters, regular tests on the adsorption of methyl iodide in the stand-by carbon filter units by laboratory testing are discussed. The proposed new regulations are based on many years of experience of filter system operation and of tests in-situ and in the laboratory. Moisture and water are factors that affect the functioning of filters. In addition, high loading of dust can give rise to increased penetration through HEPA filters, however pinholes could have less influence on the total penetration. Laboratory tests show that DOP particles retain 30-40% in 90 mm carbon filters (8-12 mesh). However no effect on the ability of carbon to adsorb methyl iodide after DOP contamination in combined carbon/HEPA filters has been observed. Leakage from ventilation ducts can cause radioactive contamination problems during filter testing with radioiodine. In-situ testing of control-room filters has been performed using inactive methyl iodide. A type of carbon bed not previously used in Sweden has been introduced. Testing of this filter type is discussed

  2. Developing groundwater flow and transport models for radioactive waste disposal - six years of experience from the INTRAVAL project

    International Nuclear Information System (INIS)

    Chapman, N.; Andersson, J.; Bogorinski, P.; Carrera, J.; Hadermann, J.; Hodgkinson, D.; Jackson, P.; Neretnieks, I.; Neuman, S.; Skagius, K.; Nicholson, T.; Chin-Fu Tsang; Voss, C.

    1995-01-01

    The validity of informations and the models used to make predictions is central to the credibility of a performance assessment for a radioactive waste repository. The INTRAVAL project has been set up to bring together users of models and regulatory agencies from many countries to share experience, to carry out comparison exercises, and to build an internationally accepted approach to develop and apply both the models and the approach to prediction. This paper outlines the methodology adopted to evaluate the 18 different test cases of phases 1 and 2 of the project and which concern hard fractured rocks, plastic clays, mixed sedimentary and unsaturated geological environments at many scales, with observations and interpretations on a very wide range of space and time scales. Modelling has been tested by multiple groups against real data and the project integrated exercise,s both in the field and at the laboratory, for various spatial scales. (J.S.). 7 refs., 1 tab

  3. The UK contribution to the CEC PACOMA Project: far-field modelling of radioactive waste disposal in clay

    International Nuclear Information System (INIS)

    Winters, K.H.; Jackson, C.P.; Clark, C.M.

    1990-06-01

    PACOMA (Performance Assessment of Confinement for Medium-active and Alpha-bearing wastes) is a multinational project supported as part of the Commission of the European Community's R and D programme on radioactive waste management and storage. The aim of the project is to assess the radiological impact of deep geological disposal of intermediate level waste in three different types of geological formation: clay, granite and salt. The contribution of AEA Technology is a study of the groundwater flow and radionuclide migration in the far field. This report describes the far-field modelling. The three-stratum model used in previous hydrogeological studies of the Harwell region is used as a basis for the far-field two-dimensional section through the chalk, clay and Corallian strata underlying Harwell. Each of the three layers is represented as a continuous porous medium with an assumed best-estimate value of permeability, and the groundwater flow is predicted by solving the Darcy equations over the complete section using the NAMMU finite-element code. Two-dimensional transport equations describing the migration of radionuclides in the groundwater are solved, also using NAMMU. The fluxes of radionuclides normal to the surface of the water table are calculated as a function of space and time. The most significant result of the calculations of radionuclide transport through the geosphere is the prediction of multiple pathways for radionuclide movement in the geological strata, and hence multiple release points into the biosphere. Particular attention is paid in the study to the performance and appropriation of the numerical methods and the physical models used for the far-field calculations. (author)

  4. Institutional factors in resource recovery co-disposal demonstration project, Middlesex County, New Jersey, Spring 1980 - Summer 1981

    Science.gov (United States)

    McCarthy, R. M.

    1982-02-01

    A proposal to provide 1200 tons per day of solid waste disposal combined with 200 tons per day of sludge disposal was presented. The prospects for codisposal in Middlesex County were analyzed. Technically, codisposal was possible, however, it lacked a proven track record. Proposal for a resource recovery plant to be designed, built, and operated was acknowledged as consistent with County planning.

  5. ORNL results for Test Case 1 of the International Atomic Energy Agency's research program on the safety assessment of Near-Surface Radioactive Waste Disposal Facilities

    International Nuclear Information System (INIS)

    Thorne, D.J.; McDowell-Boyer, L.M.; Kocher, D.C.; Little, C.A.; Roemer, E.K.

    1993-01-01

    The International Atomic Energy Agency (IAEA) started the Coordinated Research Program entitled '''The Safety Assessment of Near-Surface Radioactive Waste Disposal Facilities.'' The program is aimed at improving the confidence in the modeling results for safety assessments of waste disposal facilities. The program has been given the acronym NSARS (Near-Surface Radioactive Waste Disposal Safety Assessment Reliability Study) for ease of reference. The purpose of this report is to present the ORNL modeling results for the first test case (i.e., Test Case 1) of the IAEA NSARS program. Test Case 1 is based on near-surface disposal of radionuclides that are subsequently leached to a saturated-sand aquifer. Exposure to radionuclides results from use of a well screened in the aquifer and from intrusion into the repository. Two repository concepts were defined in Test Case 1: a simple earth trench and an engineered vault

  6. Integrated Performance Testing for Nonproliferation Support Project

    Energy Technology Data Exchange (ETDEWEB)

    Johns, Russell; Bultz, Garl Alan; Byers, Kenneth R.; Yaegle, William

    2013-08-20

    The objective of this workshop is to provide participants with training in testing techniques and methodologies for assessment of the performance of: Physical Protection system elements; Material Control and Accounting (MC&A) system elements.

  7. Safety cases for radioactive waste disposal facilities: guidance on confidence building and regulatory review IAEA-ASAM co-ordinated research project

    International Nuclear Information System (INIS)

    Ben Belfadhel, M.; Bennett, D.G.; Metcalf, P.; Nys, V.; Goldammer, W.

    2008-01-01

    The IAEA has been conducting two co-ordinated research programmes (CRPs) projects to develop and apply improved safety assessment methodologies for near-surface radioactive waste disposal facilities. The more recent of these projects, ASAM (application of safety assessment methodologies), included a Regulatory Review Working Group (RRWG) which has been working to develop guidance on how to gain confidence in safety assessments and safety cases, and on how to conduct regulatory reviews of safety assessments. This paper provides an overview of the ASAM project, focusing on the safety case and regulatory review. (authors)

  8. Thermal Protection Test Bed Pathfinder Development Project

    Science.gov (United States)

    Snapp, Cooper

    2015-01-01

    In order to increase thermal protection capabilities for future reentry vehicles, a method to obtain relevant test data is required. Although arc jet testing can be used to obtain some data on materials, the best method to obtain these data is to actually expose them to an atmospheric reentry. The overprediction of the Orion EFT-1 flight data is an example of how the ground test to flight traceability is not fully understood. The RED-Data small reentry capsule developed by Terminal Velocity Aerospace is critical to understanding this traceability. In order to begin to utilize this technology, ES3 needs to be ready to build and integrate heat shields onto the RED-Data vehicle. Using a heritage Shuttle tile material for the heat shield will both allow valuable insight into the environment that the RED-Data vehicle can provide and give ES3 the knowledge and capability to build and integrate future heat shields for this vehicle.

  9. Underground Test Area Project Waste Management Plan (Rev. No. 2, April 2002)

    International Nuclear Information System (INIS)

    IT Corporation, Las Vegas

    2002-01-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) initiated the UGTA Project to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the Nevada Test Site (NTS). The UGTA Project investigation sites have been grouped into Corrective Action Units (CAUs) in accordance with the most recent version of the Federal Facility Agreement and Consent Order. The primary UGTA objective is to gather data to characterize the groundwater aquifers beneath the NTS and adjacent lands. The investigations proposed under the UGTA program may involve the drilling and sampling of new wells; recompletion, monitoring, and sampling of existing wells; well development and hydrologic/ aquifer testing; geophysical surveys; and subsidence crater recharge evaluation. Those wastes generated as a result of these activities will be managed in accordance with existing federal and state regulations, DOE Orders, and NNSA/NV waste minimization and pollution prevention objectives. This Waste Management Plan provides a general framework for all Underground Test Area (UGTA) Project participants to follow for the characterization, storage/accumulation, treatment, and disposal of wastes generated by UGTA Project activities. The objective of this waste management plan is to provide guidelines to minimize waste generation and to properly manage wastes that are produced. Attachment 1 to this plan is the Fluid Management Plan and details specific strategies for management of fluids produced under UGTA operations

  10. The use of borehole geophysical logs and hydrologic tests to characterize plutonic rock for nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Davison, C.C.

    1984-05-01

    The selection of an igneous rock body for the disposal of nuclear fuel waste will likely require the drilling and testing of a number of deep investigative boreholes in the rock body. Although coring of at least one hole at each Research Area will be essential, methods for making in situ geophysical and hydrological measurements can substitute for widespread coring and result in significant savings in time and money. A number of borehole methods have been applied to the investigation of plutonic rocks at Whiteshell Nuclear Research Establishment and Chalk River Nuclear Laboratories in Canada

  11. The HILW-LL (high- and intermediate-level waste, long-lived) disposal project: working toward building the Cigeo Industrial Centre for Geological Disposal; Le projet HA-MAVL: vers la realisation du centre industriel de stockage geologique Cigeo

    Energy Technology Data Exchange (ETDEWEB)

    Labalette, Th. [Agence Nationale pour la Gestion des Dechets Radioactifs - ANDRA, Dir. des Projets, 92 - Chatenay Malabry (France)

    2011-02-15

    The French Act of 28 June 2006 identifies reversible disposal in deep geological facilities as the benchmark solution for long-term management of high-level waste (HLW) and for intermediate-level long-lived waste (ILW-LL). The Act tasks ANDRA (national agency for the management of radioactive wastes) with the pursuit of studies and research on the choice of a site and the design of the repository, with a view to examining the licence application in 2015 and, provided that the licence is granted, to make the facility operational by 2025. At the end of 2009, ANDRA submitted to the Government its proposals regarding the site and the design of the Industrial Centre for Geological Disposal, known as CIGEO. With the definition of a possible area for the construction of underground disposal facilities, one of the key stages in the project has been achieved. The choice of a surface site will be validated following the public consultation scheduled for the end of 2012. The project is now on the point of entering the definition stage (preliminary design). CIGEO will be a nuclear facility unlike any other. It will be built and operated for a period of over 100 years. For it to be successful, the project must meet certain requirements related to its integration in the local area, industrial planning, safety and reversibility, while also controlling costs. Reversibility is a very important concept that will be defined by law. It is ANDRA's responsibility to ensure that a reasonable balance is found between these different concerns. (author)

  12. Development, construction and testing of a transportable experimental plant for the disposal of problematic sewage with the goal of environmental protection. Final report. Entwicklung, Bau und Erprobung einer transportablen Versuchsanlage zur Entsorgung von Problemabwaessern mit dem Ziel der Umweltentlastung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, N.; Richter, J.

    1991-01-01

    The objective of stage I of the project was the development of a complete disposal chain for problematic sewage, separating it into pure utility water, emitable gases and concentrated waste sludge. In stage II of the project, for which NUKEM GmbH was responsible, the central goal was calcination of the waste materials, i.e. thermal treatment of the organic and heavy-metal compounds and solidification and containment of the waste substances in solid bodies of any desired form that undergo minimal or no elution. Because of its complex organic/inorganic load and the difficulties inherent in its disposal, garbage water from waste disposal sites was selected as an example of problematic sewage. The scientific goal of stage I was achieved with the development and laboratory testing of a hybrid separation process based on a series of reverse-osmosis and evaporation steps and sludge centrifugation. The construction and field testing of an experimental plant was not carried out. As a result of the premature termination of stage II it was no longer possible to achieve the goal of a complete disposal chain. The funding of the project was not sufficient to cover the increased development costs of stage I required to meet the project goal. An assessment of the expected investment costs and operating costs associated with the technique on a practical scale revealed a poor cost-benefit ratio, so that these appear to be no short-term prospects of commercial exploitation. (orig.) With 43 refs., 2 tabs., 17 figs.

  13. Commercial disposal of high integrity containers (HICs) containing EPICOR-II prefilters from Three Mile Island: Reflections and projections

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Schmitt, R.C.

    1986-09-01

    The processes of loading, transporting, and commerically disposing of 46 EPICOR-II prefilters, each contained in a High Integrity Container (HIC), are described. Also described are participation of the regulatory agencies and industrial organizations in combining their efforts to accomplish this task. The significant aspect of the task was that the commerical disposal involved the first-of-a-kind production use of a reinforced concrete HIC at the US Ecology, Inc., facility in the State of Washington. The same type of container probably can be used in below- or above-ground disposal of other types of high specific activity, low-level nuclear wastes. 14 refs., 4 figs

  14. The final focus test beam project

    International Nuclear Information System (INIS)

    Burke, D.

    1991-05-01

    An overview is given of the Final Focus Test Beam (FFTB) that is being constructed as a prototype final focus system for a future electron-positron linear collider. This beam line will use as input the 50 GeV electron beam from the SLC linac, and is designed to reduce the transverse dimensions of the beam spot at the focal point to 1 μm. 5 refs., 2 figs., 1 tab

  15. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2006-04-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

  16. Decontamination and decommissioning of the EBR-I complex. Topical report No. 3. NAK disposal pilot plant test

    International Nuclear Information System (INIS)

    Commander, J.C.; Lewis, L.; Hammer, R.

    1975-06-01

    Decontamination and decommissioning of the Experimental Breeder Reactor No. 1 (EBR-I) requires processing of the primary coolant, an eutectic solution of sodium and potassium (NaK), remaining in the EBR-I primary and secondary coolant systems. While developing design criteria for the NaK processing system, reasonable justification was provided for the development of a pilot test plant for field testing some of the process concepts and proposed hardware. The objective of this activity was to prove the process concept on a low-cost, small-scale test bed. The pilot test plant criteria provided a general description of the test including: the purpose, location, description of test equipment available, waste disposal requirements, and a flow diagram and conceptual equipment layout. The pilot plant test operations procedure provided a detailed step-by-step procedure for operation of the pilot plant to obtain the desired test data and operational experience. It also spelled out the safety precautions to be used by operating personnel, including the requirement for alkali metals training certification, use of protective clothing, availability of fire protection equipment, and caustic handling procedures. The pilot plant test was performed on May 16, 1974. During the test, 32.5 gallons or 240 lb of NaK was successfully converted to caustic by reaction with water in a caustic solution. (auth)

  17. Centrifuge and laboratory tests, modelling the penetrator concept for the disposal of HGW in deep ocean sediments

    International Nuclear Information System (INIS)

    Savvidou, C.; Schofield, A.N.

    1986-12-01

    The report is a summary of the work carried out at Cambridge University Engineering Department to investigate the geotechnical aspects of the subseabed disposal of heat generating waste. The problem of heat transfer and coupled consolidation around a heat source was studied both experimentally and numerically. Calculations of the temperature and pore pressure changes in the soil around a cylindrical heat source were made and verified by both laboratory tests and by centrifuge modelling at 100 times earth's gravity. It was shown that conduction was the major heat transfer process. The high velocity penetration of soil by projectiles was modelled on the Cambridge Geotechnical Centrifuge and this was followed by centrifuge tests in which there was subsequent heating of the projectile after firing. These dynamic tests showed that the projectile produced high pore pressures within the soil, which were quickly dissipated. (author)

  18. Computer software design description for the Treated Effluent Disposal Facility (TEDF), Project L-045H, Operator Training Station (OTS)

    International Nuclear Information System (INIS)

    Carter, R.L. Jr.

    1994-01-01

    The Treated Effluent Disposal Facility (TEDF) Operator Training Station (OTS) is a computer-based training tool designed to aid plant operations and engineering staff in familiarizing themselves with the TEDF Central Control System (CCS)

  19. Proposal for the establishment of an international project to analyse the safety of radioactive waste disposal into geological formations

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The discussion of the basic principles underlying waste disposal and the analysis of associated long-term risks appears to be areas where international co-operation offers great promise and meets with almost universal interest. An authoritative analysis and the development of an internationally agreed philosophy about waste disposal might even go a long way towards easing the apprehension expressed by part of the public in regard to nuclear energy

  20. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    International Nuclear Information System (INIS)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01

    EG ampersand G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory's (INEL's) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG ampersand G Idaho is responsible concerning the INEL WETP. Even though EG ampersand G Idaho has no responsibility for the work that ANL-W is performing, EG ampersand G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and

  1. Long-term reactive transport modelling of stabilized/solidified waste: from dynamic leaching tests to disposal scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Windt, Laurent de [Ecole des Mines de Paris, CG-Hydrodynamics and Reaction Group, 35 R. St-Honore, 77300 Fontainebleau (France)]. E-mail: laurent.dewindt@ensmp.fr; Badreddine, Rabia [INERIS, Direction des Risques Chroniques, Unite Dechets et Sites Pollues, Parc Technologique Alata BP 2, 60550 Verneuil-en-Halatte (France); Lagneau, Vincent [Ecole des Mines de Paris, CG-Hydrodynamics and Reaction Group, 35 R. St-Honore, 77300 Fontainebleau (France)

    2007-01-31

    Environmental impact assessment of hazardous waste disposal relies, among others, on standardized leaching tests characterized by a strong coupling between diffusion and chemical processes. In that respect, this study shows that reactive transport modelling is a useful tool to extrapolate laboratory results to site conditions characterized by lower solution/solid (L/S) ratios, site specific geometry, infiltration, etc. A cement solidified/stabilized (S/S) waste containing lead is investigated as a typical example. The reactive transport model developed in a previous study to simulate the initial state of the waste as well as laboratory batch and dynamic tests is first summarized. Using the same numerical code (HYTEC), this model is then integrated to a simplified waste disposal scenario assuming a defective cover and rain water infiltration. The coupled evolution of the S/S waste chemistry and the pollutant plume migration are modelled assessing the importance of the cracking state of the monolithic waste. The studied configurations correspond to an undamaged and fully sealed system, a few main fractures between undamaged monoliths and, finally, a dense crack-network in the monoliths. The model considers the potential effects of cracking, first the increase of rain water and carbon dioxide infiltration and, secondly, the increase of L/S ratio and reactive surfaces, using either explicit fracture representation or dual porosity approaches.

  2. Project W320 52-inch diameter equipment container load test: Test report

    International Nuclear Information System (INIS)

    Bellomy, J.R.

    1995-01-01

    This test report summarizes testing activities and documents the results of the load tests performed on-site and off-site to structural qualify the 52-inch equipment containers designed and fabricated under Project W-320

  3. NUMO-RMS: a practical requirements management system for the long-term management of the deep geological disposal project - 16304

    International Nuclear Information System (INIS)

    Ueda, Hiroyoshi; Suzuki, Satoru; Ishiguro, Katsuhiko; Oyamada, Kiyoshi; Yashio, Shoko; White, Matt; Wilmot, Roger

    2009-01-01

    NUMO (Nuclear Waste Management Organization of Japan) has the responsibility for implementing deep geological disposal of high-level (HLW) and transuranic (TRU) radioactive waste from the Japanese nuclear programme. A formal Requirements Management System (RMS) is planned to efficiently and effectively support the computerised implementation of the management strategy and the methodology required to drive the step-wise siting processes, and the following repository operational phase,. The RMS will help in the comprehensive management of the decision-making processes in the geological disposal project, in change management as the disposal system is optimised, in driving projects such as the R and D programme efficiently, and in maintaining structured records regarding past decisions, all of which lead to soundness of the project in terms of long-term continuity. The system is planned to have information handling and management functions using a database that includes the decisions/requirements in the programme under consideration, the way in which these are structured in terms of the decision-making process and other associated information. A two-year development programme is underway to develop and enhance an existing trial RMS to a practical system. Functions for change management, history management and association with the external timeline management system are being implemented in the system development work. The database format is being improved to accommodate the requirements management data relating to the facility design and to safety assessment of the deep geological repository. This paper will present an outline of the development work with examples to demonstrate the system's practicality. In parallel with the system/database developments, a case research of the use of requirements management in radioactive waste disposal projects was undertaken to identify key issues in the development of an RMS for radioactive waste disposal and specify a number of

  4. Definitive design report: Design report project W-025, Radioactive Mixed Waste (RMW) Land Disposal Facility NON-DRAG-OFF. Revision 1, Volume 1 and 2

    International Nuclear Information System (INIS)

    Roscha, V.

    1994-01-01

    The purpose of this report is to describe the definitive design of the Radioactive Mixed Waste (RMW) Non-Drag-Off disposal facility, Project W-025. This report presents a n of the major landfill design features and a discussion of how each of the criteria is addressed in the design. The appendices include laboratory test results, design drawings, and individual analyses that were conducted in support of the design. Revision 1 of this document incorporates design changes resulting from an increase in the required operating life of the W-025 landfill from 2 to 20 years. The rationale for these design changes is described in Golder Associates Inc. 1991a. These changes include (1) adding a 1.5-foot-thick layer of compacted admix directory-under the primary FML on the floor of the landfill to mitigate the effects of possible stress cracking in the primary flexible membrane liner (FML), and (2) increasing the operations layer thickness from two to three feet over the entire landfill area, to provide additional protection for the secondary admix layer against mechanical damage and the effects of freezing and desiccation. The design of the W-025 Landfill has also been modified in response to the results of the EPA Method 9090 chemical compatibility testing program (Golder Associates Inc. 1991b and 1991c), which was completed after the original design was prepared. This program consisted of testing geosynthetic materials and soil/bentonite admix with synthetic leachate having the composition expected during the life of the W-025 Landfill., The results of this program indicated that the polyester geotextile originally specified for the landfill might be susceptible to deterioration. On this basis, polypropylene geotextiles were substituted as a more chemically-resistant alternative. In addition, the percentage of bentonite in the admix was increased to provide sufficiently low permeability to the expected leachate

  5. Test Design Project: Studies in Test Adequacy. Annual Report.

    Science.gov (United States)

    Wilcox, Rand R.

    These studies in test adequacy focus on two problems: procedures for estimating reliability, and techniques for identifying ineffective distractors. Fourteen papers are presented on recent advances in measuring achievement (a response to Molenaar); "an extension of the Dirichlet-multinomial model that allows true score and guessing to be…

  6. Enhanced Cover Assessment Project:Soil Manipulation and Revegetation Tests

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, W. Joseph [Navarro Research and Engineering, Inc.; Albright, Dr. Bill [Desert Research Inst. (DRI), Reno, NV (United States); Benson, Dr. Craig [University of Wisconsin-Madison

    2014-02-01

    The U.S. Department of Energy Office of Legacy Management is evaluating methods to enhance natural changes that are essentially converting conventional disposal cell covers for uranium mill tailings into water balance covers. Conventional covers rely on a layer of compacted clayey soil to limit exhalation of radon gas and percolation of rainwater. Water balance covers rely on a less compacted soil “sponge” to store rainwater, and on soil evaporation and plant transpiration (evapotranspiration) to remove stored water and thereby limit percolation. Over time, natural soil-forming and ecological processes are changing conventional covers by increasing hydraulic conductivity, loosening compaction, and increasing evapotranspiration. The rock armor on conventional covers creates a favorable habitat for vegetation by slowing soil evaporation, increasing soil water storage, and trapping dust and organic matter, thereby providing the water and nutrients needed for plant germination, survival, and sustainable transpiration. Goals and Objectives Our overall goal is to determine if allowing or enhancing these natural changes could improve cover performance and reduce maintenance costs over the long term. This test pad study focuses on cover soil hydrology and ecology. Companion studies are evaluating effects of natural and enhanced changes in covers on radon attenuation, erosion, and biointrusion. We constructed a test cover at the Grand Junction disposal site to evaluate soil manipulation and revegetation methods. The engineering design, construction, and properties of the test cover match the upper three layers of the nearby disposal cell cover: a 1-foot armoring of rock riprap, a 6-inch bedding layer of coarse sand and gravel, and a 2-foot protection layer of compacted fine soil. The test cover does not have a radon barrier—cover enhancement tests leave the radon barrier intact. We tested furrowing and ripping as means for creating depressions parallel to the slope

  7. Information on Coordinated Research Project: Behaviours of Cementitious Materials in Multipurpose Packaging for Transportation, Long Term Storage and Disposal

    International Nuclear Information System (INIS)

    Meyer, W.

    2013-01-01

    The durability of concrete is an important issue and the imaging thereof plays a major part in the understanding of the characteristics of concrete. The ability of concrete to withstand the penetration of liquid and oxygen contribute to the durability of concrete. The durability of concrete, can in turn, be quantified by certain characteristics such as the porosity, sorptivity and permeability. For non-destructive analytical quantification of these parameters, neutron radiography was developed and validated against conventional measurements. Results indicated that because the neutron attenuation of the concrete and water differs to a significant degree, the movement of water in concrete (sorptivity) could be visualized. The neutron radiography results were validated against conventional measurements and excellent correlation was found. To improve the characteristics of current grout/cement matrixes used for the encapsulation of radioactive waste, different cement mixtures Cem 1 (96% OPC) and Cem 5 (mixture of 20% fly ash, 20% blast furnace slag and 60% cement powder) with the addition of different admixtures, inert fibre material and plasticizers were investigated. With no formal guidance from the WAC of the disposal site, it was decided that the following matrix requirements have to be met in order to qualify a possible matrix for radioactive waste immobilisation research: -Total porosity less than 10% (Implies a compression strength higher than 50 MPa) and -Sorptivity rate lower than 2.5 g/h (Implies pore structure not interlinked). Results with radioactive waste (excluding organic waste) indicated an admixture of bitumen or asphalt in CEM 1 (96% OPC cement) has the best characteristics and comply with the specified requirement. Treatment of contaminated organic waste which is a non standard waste stream proved to be difficult and direct disposal is also not an option because many organic liquids are immiscible. Cementation is generally not an option as the

  8. The Healy Clean Coal Project: Design verification tests

    International Nuclear Information System (INIS)

    Guidetti, R.H.; Sheppard, D.B.; Ubhayakar, S.K.; Weede, J.J.; McCrohan, D.V.; Rosendahl, S.M.

    1993-01-01

    As part of the Healy Clean Coal Project, TRW Inc., the supplier of the advanced slagging coal combustors, has successfully completed design verification tests on the major components of the combustion system at its Southern California test facility. These tests, which included the firing of a full-scale precombustor with a new non-storage direct coal feed system, supported the design of the Healy combustion system and its auxiliaries performed under Phase 1 of the project. Two 350 million BTU/hr combustion systems have been designed and are now ready for fabrication and erection, as part of Phase 2 of the project. These systems, along with a back-end Spray Dryer Absorber system, designed and supplied by Joy Technologies, will be integrated with a Foster Wheeler boiler for the 50 MWe power plant at Healy, Alaska. This paper describes the design verification tests and the current status of the project

  9. New Bedford Harbor Superfund Project, Acushnet River Estuary Engineering Feasibility Study of Dredging and Dredged Material Disposal Alternatives. Report 4. Surface Runoff Quality Evaluation for Confined Disposal

    Science.gov (United States)

    1988-01-01

    infiltration studies ( Westerdahl and Skogerboe 1982). Exten- sive field verification studies have been conducted with the WES Rainfall Simulator...Lysimeter System on a wide range of USACE project sites ( Westerdahl and Skogerboe 1982, Lee and Skogerboe 1984, Skogerboe et al. 1987). The WES Rainfall...Criteria for Water 1986,"’ Criteria and Standards Division, Washington, DC. Westerdahl , H. E., and Skogerboe, J. G. 1982. "Realistic Rainfall and Water

  10. RADON-type disposal facility safety case for the co-ordinated research project on improvement of safety assessment methodologies for near surface radioactive waste disposal facilities (ISAM)

    International Nuclear Information System (INIS)

    Guskov, A.; Batanjieva, B.; Kozak, M.W.; Torres-Vidal, C.

    2002-01-01

    The ISAM safety assessment methodology was applied to RADON-type facilities. The assessments conducted through the ISAM project were among the first conducted for these kinds of facilities. These assessments are anticipated to lead to significantly improved levels of safety in countries with such facilities. Experience gained though this RADON-type Safety Case was already used in Russia while developing national regulatory documents. (author)

  11. Feasibility study for the preparation of a twin-hole disposal configuration test at the Mont Terri URL - MACH-2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jobmann, M.; Wolf, J.

    2009-08-15

    without sufficient information, this feasibility study was carried out to establish a solid basis for the planning and implementation of the project. Detailed design calculation were a major part of this study which allowed the development of a suitable experiment configuration and measurement concept. Based on this information, potential subcontractors that are able and qualified to perform the work were identified, and corresponding quotations necessary for the budget planning were obtained. As a result, the feasibility of the ''Twin hole disposal configuration test'' (TwisT) was shown and a realistic time, work, and budget estimate was given. (orig.)

  12. Psychometry and Pescatori projective test in coloproctological patients.

    Science.gov (United States)

    Caetano, Ana Célia; Oliveira, Dinis; Gomes, Zaida; Mesquita, Edgar; Rolanda, Carla

    2017-01-01

    Psychological assessment is not commonly performed nor easily accepted by coloproctological patients. Our aim was to evaluate the psychological component of coloproctological disorders using uncommon tools. The 21-Item Depression Anxiety and Stress Scale and the Pescatori projective test were applied to coloproctological outpatients of the Gastroenterology Department of our hospital as well as to healthy volunteers. Seventy patients (median age 47 years, 22 male) divided in 4 groups (functional constipation, constipated irritable bowel syndrome, benign anorectal disease and perianal Crohn's disease) and 52 healthy volunteers (age 45 years, 18 male) completed the tests. Proctological patients showed higher scores of depression (Pprojective test (P=0.012). A weak association between the projective test and the depression subscale was found (P=0.05). Proctological patients had higher scores of depression, anxiety and stress and lower scores in the Pescatori projective test compared to healthy controls.

  13. Investigation on waste disposal in big boreholes. Project 'Second phase of the assessment of the repository at Novaya Zemlya'. Final report - short version

    International Nuclear Information System (INIS)

    2003-12-01

    This report contains the independent view of experts from SKB (Sweden), DBE TECHNOLOGY (Germany) and Institute for Energy Technology (Norway) and is the result of a project performed under a contract funded by the Norwegian Royal Ministry of Foreign Affairs, Swedish International Projects, the Project Unit for radioactive waste disposal of the German Federal Ministry of Economics and Employment and the German Federal Ministry of Ecology, Nature Preservation and Reactor Safety. The work has been carried out in cooperation with VNIPI PT (Russian Federation). The authors of this report accept no liability that arises from the use of material in this report, relating either to nuclear or civil issues. Any publishing or copying of the report in whole or in part requires the explicit approval of the mentioned funding parties. This report has been approved for issue according to the requirements of the project QA procedure. (orig.)

  14. Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada: Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-05-03

    The general purpose of this Corrective Action Investigation Plan is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective action alternatives (CAAs) for Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. Located in Areas 6 and 15 on the NTS, CAU 543 is comprised of a total of seven corrective action sites (CASs), one in Area 6 and six in Area 15. The CAS in Area 6 consists of a Decontamination Facility and its components which are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency Farm and are related to waste disposal activities at the farm. Sources of possible contamination at Area 6 include potentially contaminated process waste effluent discharged through a process waste system, a sanitary waste stream generated within buildings of the Decon Facility, and radiologically contaminated materials stored within a portion of the facility yard. At Area 15, sources of potential contamination are associated with the dairy operations and the animal tests and experiments involving radionuclide uptake. Identified contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, petroleum hydrocarbons, pesticides, herbicides, polychlorinated biphenyls, metals, and radionuclides. Three corrective action closure alternatives - No Further Action, Close in Place, or Clean Closure - will be recommended for CAU 543 based on an evaluation of all the data quality objective-related data. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document.

  15. Testing and Commissioning of Lillgrund Wind Farm. Lillgrund Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Poul Erik; Larsson, Aake; Jeppsson, Joakim; Toernkvist, Mattias (ed.) (Vattenfall Vindkraft AB, Stockholm (Sweden))

    2009-04-15

    This report gives an overview of the tests carried out in the Lillgrund project. The report covers factory tests, site tests and the performance tests, which can be carried out during the defects liability period. The report describes tests relevant for the wind turbine generators, the electrical system and the foundations. On the whole, the Lillgrund test results have been satisfactory. One of the more problematic issues experienced were when the foundation interface verification showed that the bolts were not meeting the height requirements. Since this shortcoming was detected relatively early in the project life, it was possible to correct the misalignment and keep the additional costs to a minimum. From a management point of view, this highlighted the importance of clear and unambiguous interface specifications and to make sure that the project has a proper interface management function. According to the Contract, Vattenfall has the right to verify a number of performance parameters during the 5-year defect liability period. The performance tests include availability, power curve, electrical system losses and acoustic noise levels. The contract specifies the test criteria, the test methods and procedures and the penalty if the tests result in undesirable levels. In some cases, there is a financial incentive for the supplier if the tests show that the wind farm is performing better than stipulated in the contract. Lillgrund has performed very well thus far and Vattenfall has determined that the contractual performance requirements are being met. Vattenfall has, therefore, not requested to carry out any of these elective Performance Tests

  16. An analysis of the intent of environmental standards in the U.S. that apply to waste disposed at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hechanova, A.E.; Mattingly, B.T.; Gitnacht, D.

    2001-01-01

    This paper contains a discussion on the application of U.S. regulatory standards for transuranic waste disposed at the Nevada Test Site. Application of current compliance requirements and regulatory guidance defined for a generic disposal system, although satisfying the 'letter of the law,' is shown to be incompatible with the 'intent of the law' based on a thorough review of the preamble and background documents supporting the regulation. Specifically, the standards that apply to transuranic waste disposal were derived assuming deep geologic disposal and much larger and more hazardous waste forms: irradiated nuclear reactor fuel and high-level radioactive waste. Therefore, key assumptions that underpin the analyses used to justify the standards (e.g., the ground water pathway being considered the only major release mechanism) are inconsistent with the nature of the radionuclide inventory and the intermediate depth of waste emplacement in Greater Confinement Disposal boreholes at the Nevada Test Site. The authors recommend that site specific performance metrics be determined to foster an analysis which is transparent and consistent with U.S. Environmental Protection Agency intent in developing the standards for a generic disposal system. (authors)

  17. Standard test method for static leaching of monolithic waste forms for disposal of radioactive waste

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method provides a measure of the chemical durability of a simulated or radioactive monolithic waste form, such as a glass, ceramic, cement (grout), or cermet, in a test solution at temperatures <100°C under low specimen surface- area-to-leachant volume (S/V) ratio conditions. 1.2 This test method can be used to characterize the dissolution or leaching behaviors of various simulated or radioactive waste forms in various leachants under the specific conditions of the test based on analysis of the test solution. Data from this test are used to calculate normalized elemental mass loss values from specimens exposed to aqueous solutions at temperatures <100°C. 1.3 The test is conducted under static conditions in a constant solution volume and at a constant temperature. The reactivity of the test specimen is determined from the amounts of components released and accumulated in the solution over the test duration. A wide range of test conditions can be used to study material behavior, includin...

  18. Waste Disposal: The PRACLAY Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Bruyn, D

    2000-07-01

    Principal achievements in 2000 with regard to the PRACLAY programme are presented. The PRACLAY project has been conceived: (1) to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation; (2) to improve knowledge on deep excavations in clay through modelling and monitoring; (3) to design, install and operate a complementary mock-up test (OPHELIE) on the surface. In 1999, efforts were focussed on the operation of the OPHELIE mock-up and the CLIPEX project to monitor the evolution of hydro-mechanical parameters of the Boom Clay Formation near the face of a gallery during excavation.

  19. Waste Disposal: The PRACLAY Programme

    International Nuclear Information System (INIS)

    De Bruyn, D.

    2000-01-01

    Principal achievements in 2000 with regard to the PRACLAY programme are presented. The PRACLAY project has been conceived: (1) to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation; (2) to improve knowledge on deep excavations in clay through modelling and monitoring; (3) to design, install and operate a complementary mock-up test (OPHELIE) on the surface. In 1999, efforts were focussed on the operation of the OPHELIE mock-up and the CLIPEX project to monitor the evolution of hydro-mechanical parameters of the Boom Clay Formation near the face of a gallery during excavation

  20. Fabrication, inspection, and test plan for the Advanced Test Reactor (ATR) Mixed-Oxide (MOX) fuel irradiation project

    International Nuclear Information System (INIS)

    Wachs, G.W.

    1997-11-01

    The Department of Energy (DOE) Fissile Materials Disposition Materials Disposition Program (FMDP) has announced that reactor irradiation of MOX fuel is one of the preferred alternatives for disposal of surplus weapons-usable plutonium (Pu). MOX fuel has been utilized domestically in test reactors and on an experimental basis in a number of Commercial Light Water Reactors (CLWRs). Most of this experience has been with Pu derived from spent low enriched uranium (LEU) fuel, known as reactor grade (RG) Pu. The MOX fuel test will be irradiated in the ATR to provide preliminary data to demonstrate that the unique properties of surplus weapons-derived or weapons-grade (WG) plutonium (Pu) do not compromise the applicability of this MOX experience base. In addition, the test will contribute experience with irradiation of gallium-containing fuel to the data base required for resolution of generic CLWR fuel design issues (ORNL/MD/LTR-76). This Fabrication, Inspection, and Test Plan (FITP) is a level 2 document as defined in the FMDP LWR MOX Fuel Irradiation Test Project Plan (ORNL/MD/LTR-78)

  1. New Options for Usability Testing Projects in Business Communication Courses

    Science.gov (United States)

    Jameson, Daphne A.

    2013-01-01

    The increasing availability of recording technologies makes it easier to include usability testing projects in business communication courses. Usability testing is a method of discovering whether people can navigate, read, and understand a print or electronic communication well enough to achieve a particular purpose in a reasonable time frame.…

  2. Cross-Cultural Validation of TEMAS, a Minority Projective Test.

    Science.gov (United States)

    Costantino, Giuseppe; And Others

    The theoretical framework and cross-cultural validation of Tell-Me-A-Story (TEMAS), a projective test developed to measure personality development in ethnic minority children, is presented. The TEMAS test consists of 23 chromatic pictures which incorporate the following characteristics: (1) representation of antithetical concepts which the…

  3. Gas reactor in-pile safety test project (GRIST-2)

    International Nuclear Information System (INIS)

    Kelley, A.P. Jr.; Arbtin, E.; St Pierre, R.

    1979-01-01

    Although out-of-pile tests may be expected to confirm individual phenomena models in core disruptive accident analysis codes, only in-pile tests are capable of verifying the extremely complex integrated model effects within the appropriate time phase for these accidents. For this reason, the GRIST-2 project, the purpose of which is to design and construct an in-pile helium loop capable of transient safety testing in the TREAT facility in Idaho, forms a cornerstone of the US GCFR safety program. The project organization, experiment program, facility, helium system design, and schedule which have been selected to meet the objectives are described

  4. Test and evaluation plan for Project W-314 tank farm restoration and safe operations

    International Nuclear Information System (INIS)

    Hays, W.H.

    1998-01-01

    The ''Tank Farm Restoration and Safe Operations'' (TFRSO), Project W-314 will restore and/or upgrade existing Hanford Tank Farm facilities and systems to ensure that the Tank Farm infrastructure will be able to support near term TWRS Privatization's waste feed delivery and disposal system and continue safe management of tank waste. The capital improvements provided by this project will increase the margin of safety for Tank Farms operations, and will aid in aligning affected Tank Farm systems with compliance requirements from applicable state, Federal, and local regulations. Secondary benefits will be realized subsequent to project completion in the form of reduced equipment down-time, reduced health and safety risks to workers, reduced operating and maintenance costs, and minimization of radioactive and/or hazardous material releases to the environment. The original regulatory (e.g., Executive Orders, WACS, CFRS, permit requirements, required engineering standards, etc.) and institutional (e.g., DOE Orders, Hanford procedures, etc.) requirements for Project W-314 were extracted from the TWRS S/RIDs during the development of the Functions and Requirements (F and Rs). The entire family of requirements were then validated for TWRS and Project W-314. This information was contained in the RDD-100 database and used to establish the original CDR. The Project Hanford Management Contract (PHMC) team recognizes that safety, quality, and cost effectiveness in the Test and Evaluation (T and E) program is achieved through a planned systematic approach to T and E activities. It is to this end that the Test and Evaluation Plan (TEP) is created. The TEP for the TFRSO Project, was developed based on the guidance in HNF-IP-0842, and the Good Practice Guide GPG-FM-005, ''Test and Evaluation,'' which is derived from DOE Order 430.1, ''Life Cycle Asset Management.'' It describes the Test and Evaluation program for the TFRSO project starting with the definitive design phase and ending

  5. Engineering testing and technology projects FY 1996 Site Support Program Plan, WBS 6.3.3 and 6.3.8. Revision 1

    International Nuclear Information System (INIS)

    Brown, L.C.

    1995-10-01

    The engineering laboratory services for development, assembly, testing, and evaluation to support the resolution of WHC, Hanford, and DOE complex wide engineering issues for 1996 are presented. Primary customers are: TWRS, spent nuclear fuels, transition projects, liquid effluent program, and other Hanford contractors and programs. Products and services provided include: fabrication and assembly facilities for prototype and test equipment, development testing, proof of principle testing, instrumentation testing, nondestructive examination application development and testing, prototype equipment design and assembly, chemical engineering unit operations testing, engineering test system disposal, and safety issue resolution

  6. Coupled Thermal-Hydrologic-Chemical Coupled Model for In-Drift Disposal Test

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zyvoloski, George Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weaver, Douglas James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Otto, Shawn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-06

    The simulation work presented in this report supports DOE-NE Used Fuel Disposition Campaign (UFDC) goals related to the development of drift scale in-situ field testing of heat-generating nuclear waste (HGNW) in salt formations. Numerical code verification and validation is an important part of the lead-up to field testing, allowing exploration of potential heater emplacement designs, monitoring locations, and perhaps most importantly the ability to predict heat and mass transfer around an evolving test. Such predictions are crucial for the design and location of sampling and monitoring that can be used to validate our understanding of a drift scale test that is likely to span several years.

  7. Coupled Thermal-Hydrologic-Chemical Coupled Model for In-Drift Disposal Test

    International Nuclear Information System (INIS)

    Jordan, Amy B.; Zyvoloski, George Anthony; Weaver, Douglas James; Otto, Shawn; Stauffer, Philip H.

    2016-01-01

    The simulation work presented in this report supports DOE-NE Used Fuel Disposition Campaign (UFDC) goals related to the development of drift scale in-situ field testing of heat-generating nuclear waste (HGNW) in salt formations. Numerical code verification and validation is an important part of the lead-up to field testing, allowing exploration of potential heater emplacement designs, monitoring locations, and perhaps most importantly the ability to predict heat and mass transfer around an evolving test. Such predictions are crucial for the design and location of sampling and monitoring that can be used to validate our understanding of a drift scale test that is likely to span several years.

  8. Handling and disposal of SP-100 ground test nuclear fuel and equipment

    International Nuclear Information System (INIS)

    Wilson, C.E.; Potter, J.D.; Hodgson, R.D.

    1990-05-01

    The post SP-100 reactor testing period will focus on defueling the reactor, packaging the various radioactive waste forms, and shipping this material to the appropriate locations. Remote-handling techniques will be developed to defuel the reactor. Packaging the spent fuel and activated reactor components is a challenge in itself. This paper presents an overview of the strategy, methods, and equipment that will be used during the closeout phase of nuclear testing

  9. Handling and disposal of SP-100 ground test nuclear fuel and equipment

    International Nuclear Information System (INIS)

    Wilson, C.E.; Potter, J.D.; Hodgson, R.D.

    1991-01-01

    The post SP-100 reactor testing period will focus on defueling the reactor, packaging the various radiactive waste forms, and shipping this material to the appropriate locations. Remote-handling techniques will be developed to defuel the reactor. Packaging the spent fuel and activated reactor components is a challenge in itself. This paper presents an overview of the strategy, methods, and equipment that will be used during the closeout phase of nuclear testing

  10. Tests for determining impact resistance and strength of glass used for nuclear waste disposal

    International Nuclear Information System (INIS)

    Bunnell, L.R.

    1979-05-01

    Tests are described for determining the impact resistance (Section A) and static tensile strength (Section B) of glasses containing simulated or actual nuclear wastes. This report describes the development and use of these tests to rank different glasses, to assess effects of devitrification, and to examine the effect of impact energy on resulting surface area. For clarity this report is divided into two sections, Impact Resistance and Tensile Strength

  11. Crawler Acquisition and Testing Demonstration Project Management Plan

    International Nuclear Information System (INIS)

    DEFIGH-PRICE, C.

    2000-01-01

    If the crawler based retrieval system is selected, this project management plan identifies the path forward for acquiring a crawler/track pump waste retrieval system, and completing sufficient testing to support deploying the crawler for as part of a retrieval technology demonstration for Tank 241-C-104. In the balance of the document, these activities will be referred to as the Crawler Acquisition and Testing Demonstration. During recent Tri-Party Agreement negotiations, TPA milestones were proposed for a sludge/hard heel waste retrieval demonstration in tank C-104. Specifically one of the proposed milestones requires completion of a cold demonstration of sufficient scale to support final design and testing of the equipment (M-45-03G) by 6/30/2004. A crawler-based retrieval system was one of the two options evaluated during the pre-conceptual engineering for C-104 retrieval (RPP-6843 Rev. 0). The alternative technology procurement initiated by the Hanford Tanks Initiative (HTI) project, combined with the pre-conceptual engineering for C-104 retrieval provide an opportunity to achieve compliance with the proposed TPA milestone M-45-03H. This Crawler Acquisition and Testing Demonstration project management plan identifies the plans, organizational interfaces and responsibilities, management control systems, reporting systems, timeline and requirements for the acquisition and testing of the crawler based retrieval system. This project management plan is complimentary to and supportive of the Project Management Plan for Retrieval of C-104 (RPP-6557). This project management plan focuses on utilizing and completing the efforts initiated under the Hanford Tanks Initiative (HTI) to acquire and cold test a commercial crawler based retrieval system. The crawler-based retrieval system will be purchased on a schedule to support design of the waste retrieval from tank C-104 (project W-523) and to meet the requirement of proposed TPA milestone M-45-03H. This Crawler

  12. Sensitivity analysis for near-surface disposal in argillaceous media using NAMMU-HYROCOIN Level 3-Test case 1

    International Nuclear Information System (INIS)

    Miller, D.R.; Paige, R.W.

    1988-07-01

    HYDROCOIN is an international project for comparing groundwater flow models and modelling strategies. Level 3 of the project concerns the application of groundwater flow models to repository performance assessment with emphasis on the treatment of sensitivity and uncertainty in models and data. Level 3, test case 1 concerns sensitivity analysis of the groundwater flow around a radioactive waste repository situated in a near surface argillaceous formation. Work on this test case has been carried out by Harwell and will be reported in full in the near future. This report presents the results obtained using the computer program NAMMU. (author)

  13. Human-Robot Collaboration Dynamic Impact Testing and Calibration Instrument for Disposable Robot Safety Artifacts.

    Science.gov (United States)

    Dagalakis, Nicholas G; Yoo, Jae Myung; Oeste, Thomas

    2016-01-01

    The Dynamic Impact Testing and Calibration Instrument (DITCI) is a simple instrument with a significant data collection and analysis capability that is used for the testing and calibration of biosimulant human tissue artifacts. These artifacts may be used to measure the severity of injuries caused in the case of a robot impact with a human. In this paper we describe the DITCI adjustable impact and flexible foundation mechanism, which allows the selection of a variety of impact force levels and foundation stiffness. The instrument can accommodate arrays of a variety of sensors and impact tools, simulating both real manufacturing tools and the testing requirements of standards setting organizations. A computer data acquisition system may collect a variety of impact motion, force, and torque data, which are used to develop a variety of mathematical model representations of the artifacts. Finally, we describe the fabrication and testing of human abdomen soft tissue artifacts, used to display the magnitude of impact tissue deformation. Impact tests were performed at various maximum impact force and average pressure levels.

  14. Queer signs: The women of the British projective test movement.

    Science.gov (United States)

    Hubbard, Katherine

    2017-07-01

    As queer history is often hidden, historians must look for "signs" that hint at queer lives and experiences. When psychologists use projective tests, the search for queer signs has historically been more literal, and this was especially true in the homophobic practices of Psychology in the mid-twentieth century. In this paper, I respond to Elizabeth Scarborough's call for more analytic history about the lesser known women in Psychology's history. By focusing on British projective research conducted by lesbian psychologist June Hopkins, I shift perspective and consider, not those who were tested (which has been historically more common), but those who did the testing, and position them as potential queer subjects. After briefly outlining why the projective test movement is ripe for such analysis and the kinds of queer signs that were identified using the Rorschach ink blot test in the mid-twentieth century, I then present June Hopkins' (1969, 1970) research on the "lesbian personality." This work forms a framework upon which I then consider the lives of Margaret Lowenfeld, Ann Kaldegg, and Effie Lillian Hutton, all of whom were involved in the British projective test movement a generation prior to Hopkins. By adopting Hopkins' research to frame their lives, I present the possibility of this ambiguous history being distinctly queer. © 2017 Wiley Periodicals, Inc.

  15. Evaluation of the WIPP Project's compliance with the EPA radiation protection standards for disposal of transuranic waste

    International Nuclear Information System (INIS)

    Neill, R.H.; Chaturvedi, L.; Rucker, D.F.; Silva, M.K.; Walker, B.A.; Channell, J.K.; Clemo, T.M.

    1998-03-01

    The US Environmental Protection Agency's (EPA) proposed rule to certify that the Waste Isolation Pilot Plant (WIPP) meets compliance with the long-term radiation protection standards for geologic repositories (40CFR191 Subparts B and C), is one of the most significant milestones to date for the WIPP project in particular, and for the nuclear waste issue in general. The Environmental Evaluation Group (EEG) has provided an independent technical oversight for the WIPP project since 1978, and is responsible for many improvements in the location, design, and testing of various aspects of the project, including participation in the development of the EPA standards since the early 1980s. The EEG reviewed the development of documentation for assessing the WIPP's compliance by the Sandia National Laboratories following the 1985 promulgation by EPA, and provided many written and verbal comments on various aspects of this effort, culminating in the overall review of the 1992 performance assessment. For the US Department of Energy's (DOE) compliance certification application (CCA), the EEG provided detailed comments on the draft CCA in March, 1996, and additional comments through unpublished letters in 1997 (included as Appendices 8.1 and 8.2 in this report). Since the October 30, 1997, publication of the EPA's proposed rule to certify WIPP, the EEG gave presentations on important issues to the EPA on December 10, 1997, and sent a December 31, 1997 letter with attachments to clarify those issues (Appendix 8.3). The EEG has raised a number of questions that may have an impact on compliance. In spite of the best efforts by the EEG, the EPA reaction to reviews and suggestions has been slow and apparently driven by legal considerations. This report discusses in detail the questions that have been raised about containment requirements. Also discussed are assurance requirements, groundwater protection, individual protection, and an evaluation of EPA's responses to EEG's comments

  16. A West Valley Demonstration Project Milestone - Achieving Certification to Ship Waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    Jackson, J. P.; Pastor, R. S.

    2002-01-01

    The West Valley Demonstration Project (WVDP) has successfully pretreated and vitrified nearly all of the 600,000 gallons of liquid high-level radioactive waste that was generated at the site of the only commercial nuclear fuel reprocessing plant to have operated in the United States. Low-level waste (LLW) generated during the course of the cleanup effort now requires disposal. Currently the WVDP only ships Class A LLW for off-site disposal. It has been shipping Class A wastes to Envirocare of Utah, Inc. since 1997. However, the WVDP may also have a future need to ship Class B and Class C waste, which Envirocare is not currently authorized to accept. The Nevada Test Site (NTS), a U.S. Department of Energy (DOE) facility, can accept all three waste classifications. The WVDP set a goal to receive certification to begin shipping Class A wastes to NTS by 2001. Formal certification/approval was granted by the DOE Nevada Operations Office on July 12, 2001. This paper discusses how the WVDP contractor, West Valley Nuclear Services Company (WVNSCO), completed the activities required to achieve NTS certification in 2001 to ship waste to its facility. The information and lessons learned provided are significant because the WVDP is the only new generator receiving certification based on an NTS audit in January 2001 that resulted in no findings and only two observations--a rating that is unparalleled in the DOE Complex

  17. Solutions for Dioctyl Phthalate (DOP) tested high efficiency particulate air (HEPA) filters destined for disposal at Hanford, Washington

    International Nuclear Information System (INIS)

    Gablin, K.A.

    1992-11-01

    In January 1992, Argonne National Laboratory East, Environmental and Waste Management Program, learned that a chemical material used for testing of all HEPA filters at the primary source, Flanders Filter, Inc. in Washington, NC, was considered a hazardous chemical by Washington State Dangerous Waste Regulations. These regulations are under the jurisdiction of the Washington Administration Code, Chapter 173-303, and therefore directly under impact the Hanford Site Solid Waste Acceptance Criteria. Dioctyl Phthalate, ''DOP'' as it is referred to in chemical abbreviation form, is added in small test quantities at the factory, at three Department of Energy (DOE) operated HEPA filter test facilities, and in the installed duct work at various operating laboratories or production facilities. When small amounts of radioactivity are added to the filter media in operation, the result is a mixed waste. This definition would normally only develop in the state of Washington since their acceptance criteria is ten times more stringent then the US Environmental Protection Agencys' (US EPA). Methods of Processing will be discussed, which will include detoxification, physical separation, heat and vacuum separation, and compaction. The economic impact of a mixed waste definition in the State of Washington, and an Low Level Waste (LLW) definition in other locations, may lend this product to be a prime candidate for commercial disposal in the future, or a possible de-listing by the State of Washington

  18. Sites and projects for the disposal of radioactive waste and repositories in Russia and other states of the former USSR

    International Nuclear Information System (INIS)

    Schneider, L.; Herzog, C.

    2000-01-01

    The nuclear industry in Russia and other states of the former USSR contents the whole nuclear fuel cycle - Uranium mining, fuel element production, nuclear power and research reactors, nuclear powered ships and reprocessing of nuclear fuel. High amounts of radioactive waste are already disposed at the sites of these industrial centers and further radioactive waste is arising in production, reprocessing and decommissioning processes. Spent fuel elements are reprocessed or stored onsite. Solid and liquid wastes are disposed near surface at the sites of nuclear power plants, radiochemical plants, 'Radon'- and other sites. High volumes of high-, medium- and low-level liquid waste with high radioactivity has been injected into deep geologic formations at the sites of radiochemical plants. In Russia perspective all spent fuel elements shall be reprocessed and dry storage facilities are planned for long term storage until reprocessing. Repositories for solid waste are foreseen in deep geological formations (e.g. salt, granite) at several sites. (author)

  19. Environmental impact statements: Nuclear-industry waste-disposal and isotope-separation projects. (Latest citations from the NTIS data base). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The bibliography contains citations concerning draft and final impact statements relating to environmental radiation hazards. Prepared by the Department of Energy (DOE), Nuclear Regulatory Commission, Oak Ridge National Laboratory, and others, these reports examine environmental data affecting DOE decisions on proposed construction and decommissioning of nuclear power plants, radioactive waste disposal facilities and sites, and isotope separation projects. The effects of Federal guidelines and atomic facility location on community awareness is briefly mentioned. (Contains a minimum of 120 citations and includes a subject term index and title list.)

  20. Projection of Environmental Pollutant Emissions From Different Final Waste Disposal Methods Based on Life Cycle Assessment Studies in Qazvin City

    Directory of Open Access Journals (Sweden)

    Javad Torkashvand

    2015-12-01

    Full Text Available In the current study, the life cycle assessment (LCA method was used to expect the emissions of different environmental pollutants through qualitative and quantitative analyses of solid wastes of Qazvin city in different final disposal methods. Therefore, four scenarios with the following properties considering physical analysis of Qazvin’s solid wastes, the current status of solid waste management in Iran, as well as the future of solid waste management of Qazvin were described. In order to detect the quantity of the solid wastes, the volume-weighted analysis was used and random sampling method was used for physical analysis. Of course, regarding the method of LCA, it contains all stages from solid wastes generation to its disposal. However, since the main aim of this study was final disposal stage, the emissions of pollutants of these stages were ignored. Next, considering the mixture of the solid waste, the amount of pollution stemming from each of final disposal methods from other cities having similar conditions was estimated. The findings of the study showed that weight combination of Qazvin solid wastes is entirely similar to that of other cities. Thus, the results of this study can be applied by decision makers around the country. In scenarios 1 and 2, emission of leachate containing high amounts of COD and BOD is high and also the highest content of nitrate, which can contaminate water and soil resulting in high costs for their management. In scenarios 3 and 4, the amounts of gaseous pollutants, particularly CO2, as well as nitrogen oxides are very high. In conclusion, the LCA methods can effectively contribute to the management of municipal solid wastes (MSW to control environmental pollutants with least expenses.

  1. Climax Granite, Nevada Test Site, as a host for a rock mechanics test facility related to the geologic disposal of high level nuclear wastes

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-02-01

    This document discusses the potential of the Climax pluton, at the Nevada Test Site, as the host for a granite mechanics test facility related to the geologic disposal of high-level nuclear waste. The Climax granitic pluton has been the site of three nuclear weapons effects tests: Hard Hat, Tiny Tot, and Piledriver. Geologic exploration and mapping of the granite body were performed at the occasion of these tests. Currently, it is the site Spent Fuel Test (SFT-C) conducted in the vicinity of and at the same depth as that of the Piledriver drifts. Significant exploration, mapping, and rock mechanics work have been performed and continue at this Piledriver level - the 1400 (ft) level - in the context of SFT-C. Based on our technical discussions, and on the review of the significant geological and rock mechanics work already achieved in the Climax pluton, based also on the ongoing work and the existing access and support, it is concluded that the Climax site offers great opportunities for a rock mechanics test facility. It is not claimed, however, that Climax is the only possible site or the best possible site, since no case has been made for another granite test facility in the United States. 12 figures, 3 tables

  2. Development, testing, and demonstration of geotechnical and cement-based encapsulant materials for the stabilization of radioactive and hazardous waste disposal structures

    International Nuclear Information System (INIS)

    Phillips, S.J.; Cammann, J.W.; Benny, H.L.; Serne, R.J.; Martin, P.F.; Ames, L.L.

    1991-09-01

    A zeolite fluidized-bed treatment system is being developed and tested for the treatment of radioactive and hazardous waste-contaminated subsurface disposal structures. Formulations of cement, fly ash, and slag slurries and sequestering agents also are being tested and evaluated. Leach resistance of radionuclides, heavy metals, and hazardous inorganic compounds in the solidified cement-based encapsulant has been determined. These results simulate the resistance to water leaching of the solidified product after it has been injected an open and interstitial void volume in and proximal to liquid waste disposal structures. Micro- and macro-encapsulation of contaminants within and geologic media surrounding subsurface disposal structures is being demonstrated as an alternative technology for waste site remediation. 5 refs., 1 fig., 1 tab

  3. Concept and Idea-Project for Yugoslav Low and Intermediate level Radioactive Waste Materials Final Disposal Facility

    International Nuclear Information System (INIS)

    Peric, A.

    1997-01-01

    Encapsulation of rad waste in a mortar matrix and displacement of such solidified waste forms into the shallow land burial system, engineered trench system type is suggested concept for the final disposal of low and intermediate level rad waste. The mortar-rad waste mixtures are cured in containers of either concrete or metal for an appropriate period of time, after which solidified rad waste-mortar monoliths are then placed in the engineered trench system, parallelepiped honeycomb structure. Trench consists of vertical barrier-walls, bottom barrier-floors, surface barrier-caps and permeable-reactive walls. Surroundings of the trench consists of buffer barrier materials, mainly clay. Each segment of the trench is equipped with the independent drainage system, as a part of the main drainage. Encapsulation of each filled trench honeycomb segment is performed with concrete cap. Completed trench is covered with impermeable plastic foil and soil leaner, preferably clay. Paper presents an overview of the final disposal facility engineered trench system type. Advantages in comparison with other types of final disposal system are given. (author)

  4. Accelerated Test Method for Corrosion Protective Coatings Project

    Science.gov (United States)

    Falker, John; Zeitlin, Nancy; Calle, Luz

    2015-01-01

    This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.

  5. Project accent: graphite irradiated creep in a materials test reactor

    International Nuclear Information System (INIS)

    Brooking, M.

    2014-01-01

    Atkins manages a pioneering programme of irradiation experiments for EDF Energy. One of these projects is Project ACCENT, designed to obtain evidence of a beneficial physical property of the graphite, which may extend the life of the Advanced Gas-cooled Reactors (AGRs). The project team combines the in-house experience of EDF Energy with two supplier organisations (providing the material test reactors and testing facilities) and supporting consultancies (Atkins and an independent technical expert). This paper describes: - Brief summary of the Project; - Discussion of the challenges faced by the Project; and - Conclusion elaborating on the aims of the Project. These challenging experiments use bespoke technology and both un-irradiated (virgin) and irradiated AGR graphite. The results will help to better understand graphite irradiation-induced creep (or stress modified dimensional change) properties and therefore more accurately determine lifetime and safe operating envelopes of the AGRs. The first round of irradiation has been completed, with a second round about to commence. This is a key step to realising the full lifetime ambition for AGRs, demonstrating the relaxation of stresses within the graphite bricks. (authors)

  6. Impacts of transportation on a test and evaluation facility for nuclear waste disposal: a systems analysis

    International Nuclear Information System (INIS)

    Varadarajan, R.V.; Peterson, R.W.; Joy, D.S.; Gibson, S.M.

    1983-01-01

    An essential element of the Test and Evaluation Facility (TEF) is a waste packaging facility capable of producing a small number Test and Evaluation Facility of packages consisting of several different waste forms. The study envisions three scenarios for such a packaging facility: (1) modify an existing hot cell facility such as the Engine Maintenance Assembly and Disassembly (EMAD) facility at the Nevada Test Site so that it can serve as a packaging facility for the TEF. This scenario is referred to as the EMAD Option. (2) Build a new generic packaging facility (GPF) at the site of the TEF. In other words, colocate the GPF and the TEF. This scenario is referred to as the GPF Option, and (3) utilize the EMAD facility in conjunction with a colocated GPF (of minimal size and scope) at the TEF. This scenario is referred to as the Split Option. The results of the system study clearly bring out the fact that transportation has a significant impact on the selection and siting of the waste packaging facility. Preliminary conclusions, subject to the assumptions of the study, include the following: (1) regardless of the waste form, the GPF option is preferable to the other two in minimizing both transportation costs and logistical problems, (2) for any given scenario and choice of waste forms, there exists a candidate TEF location for which the transportation costs are at a minimum compared to the other locations, (3) in spite of the increased transportation costs and logistical complexity, the study shows that the overall system costs favor modification of an existing hot cell facility for the particular case considered

  7. Preliminary project of installation for separation tubes tests-ITTS

    International Nuclear Information System (INIS)

    Rocha, Z.

    1984-01-01

    A consolidation of actual ideas about installation, entitled ''Installation to separation tubes tests-ITTS'', expected to CDTN is presented. The project bases, the testing to be realized, the procedures to be obeyed during the operation, the components and the space required by installation and auxiliary equipments, the presumable origin of components (nacional and international), including a preliminary list of building and operation costs are described. (author) [pt

  8. Project B610 process control configuration acceptance test report

    International Nuclear Information System (INIS)

    Silvan, G.R.

    1995-01-01

    The purpose of this test is to verify the Westinghouse configuration of the MICON A/S Distributed Control System for project B610. The following will be verified: (1) proper assignment and operation of all field inputs to and outputs from the MICON Termination panels; (2) proper operation of all display data on the operators' console; (3) proper operation of all required alarms; and (4) proper operation of all required interlocks. This test only verifies the proper operation of the Westinghouse control configuration (or program). It will not be responsible for verifying proper operation of the MICON hardware or operating software. Neither does it test any of the B610 instrument. The MICON hardware and software has been tested as part of the equipment procurement. Instrumentation and wiring installed under project B620 will be tested under a separate functional test. In some cases, precise transmitter ranges, alarm setpoints, and controller tuning parameters are not available at this time. Therefore, approximate values are used during the test. This should not affect the proper operation of the configuration or the validity of this test. Final values will be assigned during operability testing

  9. Progress of the Hanford Bulk Vitrification Project ICVTM Testing Program

    International Nuclear Information System (INIS)

    Witwer, K.S.; Woolery, D.W.; Dysland, E.J.

    2006-01-01

    In June 2004, the Bulk Vitrification Project was initiated with the intent to engineer, construct and operate a full-scale bulk vitrification pilot-plant to treat low-activity tank waste from Hanford tank 241-S-109. The project, managed by CH2M HILL Hanford Group, Inc., and performed by AMEC Earth and Environmental, Inc. (AMEC), will develop and operate a full-scale demonstration facility to exhibit the effectiveness of the bulk vitrification process under actual operating conditions. Since project initiation, testing has been undertaken using crucible-scale, 1/6 linear (engineering) scale, and full-scale vitrification equipment. Crucible-scale testing, coupled with engineering-scale testing, helps establish process limitations of selected glass formulations. Full-scale testing provides critical design verification of the In Container Vitrification (ICV) TM process both prior to and during operation of the demonstration facility. Beginning in late 2004, several full-scale tests have been performed at AMEC's test site, located adjacent to the U.S. Department of Energy's Hanford Site, in Richland, WA. Early testing involved verification of melt startup methodology, followed by subsequent full-melt testing to validate critical design parameters and demonstrate the 'Bottom-Up, Feed While Melt' process. As testing has progressed, design improvements have been identified and incorporated into each successive test. Full scale testing at AMEC's test site is currently scheduled to complete in 2006, with continued full-scale operational testing at the demonstration facility on the Hanford Site starting in 2007. Additional engineering scale testing will validate recommended glass formulations that have been provided by the Pacific Northwest National Laboratory (PNNL). This testing is expected to continue through 2006. This paper discusses the progress of the full-scale and engineering scale testing performed to date. Crucible-scale testing, a critical step in developing

  10. Project Physics Tests 2, Motion in the Heavens.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 2 are presented in this booklet. Included are 70 multiple-choice and 22 problem-and-essay questions. Concepts of motion in the heavens are examined for planetary motions, heliocentric theory, forces exerted on the planets, Kepler's laws, gravitational force, Galileo's work, satellite orbits, Jupiter's…

  11. Project Physics Tests 3, The Triumph of Mechanics.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 3 are presented in this booklet. Included are 70 multiple-choice and 20 problem-and-essay questions. Concepts of mechanics are examined on energy, momentum, kinetic theory of gases, pulse analyses, "heat death," water waves, power, conservation laws, normal distribution, thermodynamic laws, and…

  12. Medical microbiological analysis of Apollo-Soyuz test project crewmembers

    Science.gov (United States)

    Taylor, G. R.; Zaloguev, S. N.

    1976-01-01

    The procedures and results of the Microbial Exchange Experiment (AR-002) of the Apollo-Soyuz Test Project are described. Included in the discussion of procedural aspects are methods and materials, in-flight microbial specimen collection, and preliminary analysis of microbial specimens. Medically important microorganisms recovered from both Apollo and Soyuz crewmen are evaluated.

  13. A "Projective" Test of the Golden Section Hypothesis.

    Science.gov (United States)

    Lee, Chris; Adams-Webber, Jack

    1987-01-01

    In a projective test of the golden section hypothesis, 24 high school students rated themselves and 10 comic strip characters on basis of 12 bipolar constructs. Overall proportion of cartoon figures which subjects assigned to positive poles of constructs was very close to golden section. (Author/NB)

  14. Official emblem of the Apollo Soyuz Test Project

    Science.gov (United States)

    1974-01-01

    This is the Official emblem of the Apollo Soyuz Test Project (ASTP) chosen by NASA and the Soviet Academy of Sciences. Of circular design, the emblem has the words Apollo in English and Soyuz in Russian around a center disc which depicts the two spacecraft docked together in Earth orbit. The Russian word 'soyuz' means 'union' in English.

  15. Survey of in situ testing at underground laboratories with application to geologic disposal of spent fuel waste in crystalline rock

    International Nuclear Information System (INIS)

    Hardin, E.

    1992-04-01

    This report is intended for use in designing testing programs, or as backup material for the review of 'R and D 92' which will be the next three-year plan for spent fuel repository siting and characterization activities in Sweden. There are eight major topics, each of which is addressed in a chapter of around 2000 to 10000 words. The major topics are defined to capture the reasons for testing, in a way that limits overlap between chapters. Other goals of this report are to provide current information on recent or ongoing tests in crystalline rock, and to describe insights which are important but not obvious from the literature. No data are presented, but the conclusions of testing programs are summarized. The principal sources were reports (in English) produced by the laboratory projects particularly the Stripa Project (SKB), the Underground Research Laboratory in Canada (AECL), and the Grimsel Test Site in Switzerland (Nagra). Articles from refereed journals have been used in lieu of project literature where possible and appropriate. (au)

  16. The disposal of orphan wastes using the greater confinement disposal concept

    International Nuclear Information System (INIS)

    Bonano, E.J.; Chu, M.S.Y.; Price, L.L.; Conrad, S.H.; Dickman, P.T.

    1991-01-01

    In the United States, radioactive wastes are conventionally classified as high-level wastes, transuranic wastes, or low-level wastes. Each of these types of wastes, by law, has a ''home'' for their final disposal; i.e., high-level wastes are destined for disposal at the proposed repository at Yucca Mountain, transuranic waste for the proposed Waste Isolation Pilot Plant, and low-level waste for shallow-land disposal sites. However, there are some radioactive wastes within the United States Department of Energy (DOE) complex that do not meet the criteria established for disposal of either high-level waste, transuranic waste, or low-level waste. The former are called ''special-case'' or ''orphan'' wastes. This paper describes an ongoing project sponsored by the DOE's Nevada Operations Office for the disposal of orphan wastes at the Radioactive Waste Management Site at Area 5 of the Nevada Test Site using the greater confinement disposal (GCD) concept. The objectives of the GCD project are to evaluate the safety of the site for disposal of orphan wastes by assessing compliance with pertinent regulations through performance assessment, and to examine the feasibility of this disposal concept as a cost-effective, safe alternative for management of orphan wastes within the DOE complex. Decisions on the use of GCD or other alternate disposal concepts for orphan wastes be expected to be addressed in a Programmatic Environmental Impact Statement being prepared by DOE. The ultimate decision to use GCD will require a Record of Decision through the National Environmental Policy Act (NEPA) process. 20 refs., 3 figs., 2 tabs

  17. Pore pressure measurement plan of near field rock used on three dimensional groundwater flow analysis in demonstration test of cavern type disposal facility

    International Nuclear Information System (INIS)

    Onuma, Kazuhiro; Terada, Kenji; Matsumura, Katsuhide; Koyama, Toshihiro; Yajima, Kazuaki

    2008-01-01

    Demonstration test of underground cavern type disposal facilities is planed though carrying out construction of full scale engineering barrier system which simulated in the underground space in full scale and under actual environment. This test consists of three part, these are construction test, performance test and measurement test. Behavior of near field rock mass is measured about hydrological behavior under and after construction to evaluate effect at test facility. To make plan of pore pressure measurement, three dimensional groundwater flow analysis has been carried out. Based on comparison of analysis before and after test, detail plan has been studied. (author)

  18. Disposal safety

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    International consensus does not seem to be necessary or appropriate for many of the issues concerned with the safety of nuclear waste disposal. International interaction on the technical aspects of disposal has been extensive, and this interaction has contributed greatly to development of a consensus technical infrastructure for disposal. This infrastructure provides a common and firm base for regulatory, political, and social actions in each nation

  19. Waste disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure

  20. Mechanical modeling of nuclear waste disposal in argillite at the Nevada Test Site

    International Nuclear Information System (INIS)

    Thomas, R.K.; Lappin, A.R.

    1979-01-01

    Numerical calculations for a near surface heater experiment in argillite conducted at the Nevada Test Site were performed using the finite element code ADINA assuming a two-dimensional axisymmetric geometry. The existence and extent of the region of tensional opening of joints surrounding the heater, predicted by the mechanical model, were confirmed by posttest borehole inspection, permeability measurements, and drillback. Exrapolation of near surface heater model to repository depths reveals the necessity for prior knowledge of the mechanical properties and state of stress in-situ. The extent of the joint opening zone, for example, is not altered by changes in the elastic modulus at the near surface, but is significantly decreased beyond certain depths depending upon the in-situ elastic modulus. Results of these calculations are presented. To further define the behavior at depth, and place bounds on the joint opening zone, far-field calculations were performed for a generic repository in argillite. Both spent fuel and high level waste heat sources were considered at different burial densities and depths. Results of a parametric study are presented in which the mechanical properties, in-situ stresses, and waste heat sources were varied

  1. [Using projective tests in forensic psychiatry may lead to wrong conclusions. Only empirically tested tests should be used].

    Science.gov (United States)

    Trygg, L; Dåderman, A M; Wiklund, N; Meurling, A W; Lindgren, M; Lidberg, L; Levander, S

    2001-06-27

    The use of projective and psychometric psychological tests at the Department of Forensic Psychiatry in Stockholm (Huddinge), Sweden, was studied for a population of 60 men, including many patients with neuropsychological disabilities and multiple psychiatric disorders. The results showed that the use of projective tests like Rorschach, Object Relations Test, and House-Tree-Person was more frequent than the use of objective psychometric tests. Neuropsychological test batteries like the Halstead-Reitan Neuropsychological Test Battery or Luria-Nebraska Neuropsychological Battery were not used. The majority of patients were, however, assessed by intelligence scales like the WAIS-R. The questionable reliability and validity of the projective tests, and the risk of subjective interpretations, raise a problem when used in a forensic setting, since the courts' decisions about a sentence to prison or psychiatric care is based on the forensic psychiatric assessment. The use of objective psychometric neuropsychological tests and personality tests is recommended.

  2. Test Area North Pool Stabilization Project: Environmental assessment

    International Nuclear Information System (INIS)

    1996-05-01

    The Test Area North (TAN) Pool is located within the fenced TAN facility boundaries on the Idaho National Engineering Laboratory (INEL). The TAN pool stores 344 canisters of core debris from the March, 1979, Three Mile Island (TMI) Unit 2 reactor accident; fuel assemblies from Loss-of-Fluid Tests (LOFT); and Government-owned commercial fuel rods and assemblies. The LOFT and government owned commercial fuel rods and assemblies are hereafter referred to collectively as open-quotes commercial fuelsclose quotes except where distinction between the two is important to the analysis. DOE proposes to remove the canisters of TMI core debris and commercial fuels from the TAN Pool and transfer them to the Idaho Chemical Processing Plant (ICPP) for interim dry storage until an alternate storage location other than at the INEL, or a permanent federal spent nuclear fuel (SNF) repository is available. The TAN Pool would be drained and placed in an industrially and radiologically safe condition for refurbishment or eventual decommissioning. This environmental assessment (EA) identifies and evaluates environmental impacts associated with (1) constructing an Interim Storage System (ISS) at ICPP; (2) removing the TMI and commercial fuels from the pool and transporting them to ICPP for placement in an ISS, and (3) draining and stabilizing the TAN Pool. Miscellaneous hardware would be removed and decontaminated or disposed of in the INEL Radioactive Waste Management Complex (RWMC). This EA also describes the environmental consequences of the no action alternative

  3. Mont Terri Project - Engineered barrier emplacement experiment in Opalinus Clay for the disposal of radioactive waste in underground repositories

    International Nuclear Information System (INIS)

    Mayor, J. C.; Garcia-Sineriz, J.; Alonso, E.; Alheid, H.-J.; Bluemling, P.

    2007-01-01

    hydration system removes the reality of this as a true demonstration site but without it, the work could not be conducted in a reasonable experimental time period, so that the suggested technical approach seems a good compromise. The combination of the hydro-mechanical data obtained in this project and the knowledge gained from other projects under a variety of conditions (natural/artificial saturation) have brought very useful information for assessing the performance of this barrier system. The backfilling methodology developed in the project is a promising solution, which is certainly worth considering in the future although some improvements could be made in order to increase the dry density of the GBM and to get a more homogeneous buffer. On the other hand, geoelectric and seismic measurements have proven to be a good complement of the hydraulic testing methodology of the Excavation Disturbed Zone (EDZ) evolution during saturation. The investigations on the time dependent evolution of the EDZ strongly support the hypothesis of EDZ self-sealing in Opalinus Clay, and is thus an excellent completion of the work done in the SELFRAC experiment under contract with the European Commission, as well. Mathematical model calculations have been compared with field measurements. A good estimation of the rock EDZ is derived from calculations. Buffer response was compared with measurements at the position of the monitoring points. A reasonably good agreement was found for suction evolution and swelling pressure development. However, field measurements indicate a marked heterogeneous behaviour which cannot be reproduced by the model. The heterogeneous transient response of the buffer is explained by the irregular hydration of the buffer which is a consequence of the emplacement conditions and the nature of the evolving permeability of the GBM. From December 2003 on, the EB experiment is in a latent monitoring phase and close to a full saturation situation, that is the time when the

  4. Mont Terri Project - Engineered barrier emplacement experiment in Opalinus Clay for the disposal of radioactive waste in underground repositories

    Energy Technology Data Exchange (ETDEWEB)

    Mayor, J. C. [Empresa Nacional de Residuos Radioactivos SA (ENRESA), Madrid (Spain); Garcia-Sineriz, J. [Asociacion para la Investigacion y Desarollo Industrial de los Recursos Naturales (AITEMIN), Madrid (Spain); Alonso, E. [Centre Internacional de Metodos Numerics en Ingenyeria (CIMNE), Barcelona (Spain); Alheid, H.-J. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Bluemling, P. [National Cooperative for the Disposal of Radioactive Waste (Nagra), Wettingen (Switzerland)

    2007-07-01

    artificial hydration system removes the reality of this as a true demonstration site but without it, the work could not be conducted in a reasonable experimental time period, so that the suggested technical approach seems a good compromise. The combination of the hydro-mechanical data obtained in this project and the knowledge gained from other projects under a variety of conditions (natural/artificial saturation) have brought very useful information for assessing the performance of this barrier system. The backfilling methodology developed in the project is a promising solution, which is certainly worth considering in the future although some improvements could be made in order to increase the dry density of the GBM and to get a more homogeneous buffer. On the other hand, geoelectric and seismic measurements have proven to be a good complement of the hydraulic testing methodology of the Excavation Disturbed Zone (EDZ) evolution during saturation. The investigations on the time dependent evolution of the EDZ strongly support the hypothesis of EDZ self-sealing in Opalinus Clay, and is thus an excellent completion of the work done in the SELFRAC experiment under contract with the European Commission, as well. Mathematical model calculations have been compared with field measurements. A good estimation of the rock EDZ is derived from calculations. Buffer response was compared with measurements at the position of the monitoring points. A reasonably good agreement was found for suction evolution and swelling pressure development. However, field measurements indicate a marked heterogeneous behaviour which cannot be reproduced by the model. The heterogeneous transient response of the buffer is explained by the irregular hydration of the buffer which is a consequence of the emplacement conditions and the nature of the evolving permeability of the GBM. From December 2003 on, the EB experiment is in a latent monitoring phase and close to a full saturation situation, that is the time

  5. An analysis of the intent of environmental standards in the united states that apply to waste disposed at the Nevada test site

    International Nuclear Information System (INIS)

    Hechanova, A.E.; Mattingly, B.T.

    2000-01-01

    This paper addresses the disposal of transuranic waste at the Nevada Test Site (NTS), the intention of the environmental standards under which the disposal is completed, and some lingering controversy surrounding the U.S. nuclear weapons complex remediation effort. A goal of this paper besides the informational value is to provide points of discussion regarding this very costly and large-scale program in the U.S. and provide a platform for the exchange of ideas regarding remediation activities in other countries. (authors)

  6. Construction of effective disposable biosensors for point of care testing of nitrite.

    Science.gov (United States)

    Monteiro, Tiago; Rodrigues, Patrícia R; Gonçalves, Ana Luisa; Moura, José J G; Jubete, Elena; Añorga, Larraitz; Piknova, Barbora; Schechter, Alan N; Silveira, Célia M; Almeida, M Gabriela

    2015-09-01

    In this paper we aim to demonstrate, as a proof-of-concept, the feasibility of the mass production of effective point of care tests for nitrite quantification in environmental, food and clinical samples. Following our previous work on the development of third generation electrochemical biosensors based on the ammonia forming nitrite reductase (ccNiR), herein we reduced the size of the electrodes' system to a miniaturized format, solved the problem of oxygen interference and performed simple quantification assays in real samples. In particular, carbon paste screen printed electrodes (SPE) were coated with a ccNiR/carbon ink composite homogenized in organic solvents and cured at low temperatures. The biocompatibility of these chemical and thermal treatments was evaluated by cyclic voltammetry showing that the catalytic performance was higher with the combination acetone and a 40°C curing temperature. The successful incorporation of the protein in the carbon ink/solvent composite, while remaining catalytically competent, attests for ccNiR's robustness and suitability for application in screen printed based biosensors. Because the direct electrochemical reduction of molecular oxygen occurs when electroanalytical measurements are performed at the negative potentials required to activate ccNiR (ca.-0.4V vs Ag/AgCl), an oxygen scavenging system based on the coupling of glucose oxidase and catalase activities was successfully used. This enabled the quantification of nitrite in different samples (milk, water, plasma and urine) in a straightforward way and with small error (1-6%). The sensitivity of the biosensor towards nitrite reduction under optimized conditions was 0.55 A M(-1) cm(-2) with a linear response range 0.7-370 μM. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Project study for the final disposal of intermediate toxicity radioactive wastes (low- and intermediate-level radioactive wastes) in geological formations

    International Nuclear Information System (INIS)

    1980-08-01

    The present report aimed to show variations in the construction- and operation-technical feasibility of a final repository for low- and intermediate-level radioactive wastes. This report represents the summary of a project study given under contract by Nagra with a view to informing a broader public of the technical conception of a final repository. Particular stress was laid on the treatment of the individual system elements of a repository concept during the construction, operation and sealing phases. The essential basis for the project study is the origin, composition and quantity of the wastes to be disposed. The final repository described in this report is foreseen for the reception of the following low- and intermediate-level solid radioactive wastes: wastes from the nuclear power plant operation; secondary wastes from the reprocessing of nuclear fuels; wastes from the decommissioning of nuclear power plants; wastes from research, medicine and industry

  8. A review of Studsvik's international power ramp test projects

    International Nuclear Information System (INIS)

    Mogard, H.; Kjaer-Pedersen, N.

    1985-11-01

    Since 1975 a series of internationally sponsored fuel irradiation research projects have been and are being conducted at Studsvik, Sweden, under the management of Studsvik Energiteknik AB. The sponsoring parties comprise fuel vendors, nuclear power utilities, national research organizations and, in some cases, safety authorities. Geographically the parties represent organizations in Europe, Japan, and the USA. The main research topic of the Studsvik projects is the Pellet Clad Interaction (PCI) induced Stress Corrosion Cracking (SCC) failure occurrence in LWR fuel under power ramping conditions. The research is conducted in the 50 MW R2 test reactor and the associated hot cell laboratory. Prior to the experiments the test fuel is base irradiated, normally in commercially operated light water reactors. Results have been published for the INTER-RAMP, OVER-RAMP, DEMO-RAMP I, DEMO-RAMP II and SUPER-RAMP projects. The release of the TRANS-RAMP I results is imminent. There are two ongoing projects, i.e. SUPER-RAMP EXTENSION and TRANS-RAMP II. The paper presents an overview of the objectives and main results of the various projects. An attempt is made to summarize the more important observations on PCI failure performance in the perspective of design parameters, fuel burnup levels, power histories, power ramp rates, etc. With 14 refs. (Author)

  9. Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units Nevada Test Site, Nevada, Rev. No.: 0 with ROTC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    David A. Strand

    2004-05-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S Department of Defense (DoD). Corrective Action Unit 543 is located in Area 6 and Area 15 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Seven corrective action sites (CASs) comprise CAU 543 and are listed below: (1) 06-07-01, Decon Pad; (2) 15-01-03, Aboveground Storage Tank; (3) 15-04-01, Septic Tank; (4) 15-05-01, Leachfield; (5) 15-08-01, Liquid Manure Tank; (6) 15-23-01, Underground Radioactive Material Area; and (7) 15-23-03, Contaminated Sump, Piping. Corrective Action Site 06-07-01, Decon Pad, is located in Area 6 and consists of the Area 6 Decontamination Facility and its components that are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency (EPA) Farm and are related to waste disposal activities at the EPA Farm. The EPA Farm was a fully-functional dairy associated with animal experiments conducted at the on-site laboratory. The corrective action investigation (CAI) will include field inspections, video-mole surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions. The CASs within CAU 543 are being investigated because hazardous and/or radioactive constituents may be present at concentrations that could potentially pose a threat to human health and the environment. The seven CASs in CAU 543

  10. The SSM/PMAD automated test bed project

    Science.gov (United States)

    Lollar, Louis F.

    1991-01-01

    The Space Station Module/Power Management and Distribution (SSM/PMAD) autonomous subsystem project was initiated in 1984. The project's goal has been to design and develop an autonomous, user-supportive PMAD test bed simulating the SSF Hab/Lab module(s). An eighteen kilowatt SSM/PMAD test bed model with a high degree of automated operation has been developed. This advanced automation test bed contains three expert/knowledge based systems that interact with one another and with other more conventional software residing in up to eight distributed 386-based microcomputers to perform the necessary tasks of real-time and near real-time load scheduling, dynamic load prioritizing, and fault detection, isolation, and recovery (FDIR).

  11. Photovoltaic test and demonstration project. [residential energy program

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The considered project consists of three subprojects related to applications, device performance and diagnostics, and endurance testing. The objectives of the applications subproject include the determination of the operating characteristics for a variety of photovoltaic conversion systems. A system test facility is being constructed in this connection and a prototype residence experiment is to be conducted. Market demand for solar cells is to be stimulated by demonstrating suitability of solar cells for specific near-term applications. Activities conducted in connection with device performance studies and diagnostics are also discussed along with developments in the area of endurance testing.

  12. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  13. Project W-314 Polyurea Special Protective Coating (SPC) Test Report Chemical Compatibility and Physical Characteristics Testing

    International Nuclear Information System (INIS)

    MAUSER, R.W.

    2001-01-01

    This Engineering Test report outlines the results obtained from testing polyurea on its decon factor, tank waste compatibility, and adhesion strength when subjected to a high level of gamma radiation. This report is used in conjunction with RPP-7187 Project W-314 Pit Coatings Repair Requirements Analysis, to document the fact polyurea meets the project W-314 requirements contained in HNF-SD-W314-PDS-005 and is therefore an acceptable SPC for use in W-314 pit refurbishments

  14. Ultrasonic testing of a sealing construction made of salt concrete in an underground disposal facility for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Martin; Effner, Ute Antonie; Milmann, Boris; Voelker, Christoph; Wiggenhauser, Herbert [Federal Institute for Materials Research and Testing (BAM), Berlin (Germany); Mauke, Ralf [The Federal Office for Radiation Protection, Salzgitter (Germany)

    2015-07-01

    For the closure of radioactive waste disposal facilities engineered barriers- so called ''drift seals'' are used. The purpose of these barriers is to constrain the possible infiltration of brine and to prevent the migration of radionuclides into the biosphere. In a rock salt mine a large scale in-situ experiment of a sealing construction made of salt concrete was set up to prove the technical feasibility and operability of such barriers. In order to investigate the integrity of this structure, non-destructive ultrasonic measurements were carried out. Therefore two different methods were applied at the front side of the test-barrier: 1 Reflection measurements from boreholes 2 Ultrasonic imaging by means of scanning ultrasonic echo methods This extended abstract is a short version of an article to be published in a special edition of ASCE Journal that will briefly describe the sealing construction, the application of the non-destructive ultrasonic measurement methods and their adaptation to the onsite conditions -as well as parts of the obtained results. From this a concept for the systematic investigation of possible contribution of ultrasonic methods for quality assurance of sealing structures may be deduced.

  15. Corrective Action Investigation Plan for Corrective Action Unit 561: Waste Disposal Areas, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Grant Evenson

    2008-01-01

    Corrective Action Unit (CAU) 561 is located in Areas 1, 2, 3, 5, 12, 22, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 561 is comprised of the 10 corrective action sites (CASs) listed below: (1) 01-19-01, Waste Dump; (2) 02-08-02, Waste Dump and Burn Area; (3) 03-19-02, Debris Pile; (4) 05-62-01, Radioactive Gravel Pile; (5) 12-23-09, Radioactive Waste Dump; (6) 22-19-06, Buried Waste Disposal Site; (7) 23-21-04, Waste Disposal Trenches; (8) 25-08-02, Waste Dump; (9) 25-23-21, Radioactive Waste Dump; and (10) 25-25-19, Hydrocarbon Stains and Trench. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 561. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the Corrective Action Investigation for CAU 561 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct

  16. Establishment of new disposal capacity for the Savannah River Plant

    International Nuclear Information System (INIS)

    Albenesius, E.L.; Wilhite, E.L.

    1987-01-01

    Two new low-level waste (LLW) disposal sites for decontaminated salt solidified with cement and fly ash (saltstone) and for conventional solid LLW are planned for SRP in the next several years. An above-ground vault disposal system for saltstone was designed to minimize impact on the environment by controlling permeability and diffusivity of the waste form and concrete liner. The experimental program leading to the engineered disposal system included formulation studies, multiple approaches to measurement of permeability and diffusivity, extensive mathematical modeling, and large-scale lysimeter tests to validate model projections. The overall study is an example of the systems approach to disposal site design to achieve a predetermined performance objective. The same systems approach is being used to develop alternative designs for disposal of conventional LLW at the Savannah River Plant. 14 figures

  17. Decree of the Czechoslovak Atomic Energy Commission No. 8 as of 25 June 1981 on the testing of equipment for radioactive waste transport, storage and disposal

    International Nuclear Information System (INIS)

    1995-01-01

    The Decree stipulates that manufacturers and users of equipment for radioactive waste transportation, storage and disposal are obliged to have the equipment tested. This duty concerns radioactive waste transport casks, shielding containers, etc., except for nuclear fuel transporting facilities. Authorization to act as the national testing body was granted to the Institute for Research, Production and Application of Radioisotopes. The Decree entered into force on 1 July 1981. (J.B.)

  18. BENCHPAR PROJECT. How to Incorporate ThermaI-Hydro-Mechanical Coupled Processes into Performance Assessments and Design Studies for Radioactive Waste Disposal in Geological Formations. Guidance Document

    International Nuclear Information System (INIS)

    Stephansson, O.; Andersson, Johan

    2005-02-01

    The objective of this Guidance Document is to provide advice on how to incorporate thermo-hydro-mechanical (THM) coupled processes into Performance Assessments (PAS) and design studies for radioactive waste disposal in geological formations to be experienced in a European context. The document has been generated by the EU research project BENCHPAR: Benchmark Tests and Guidance on Coupled Processes for Performance Assessment of Nuclear Waste Repositories. The document starts in Section 1 with an explanation of why numerical analyses incorporating THM mechanisms are required for radioactive waste studies and provides background material on the subject. Then, the THM processes and their interactions are explained in Section 2. Three case examples of THM numerical analysis are presented in Section 3 to illustrate the type of work that can be conducted to study the near-field, upscaling, and the far-field. For the three cases, there is discussion on the main findings, the relevance to a safety case, the relative importance of the different couplings, and the uncertainties involved. The importance and priority of the THM couplings are then summarized in Section 4. It is especially important to be able to technically audit the numerical analyses in order to establish that all the relevant variables, parameters and mechanisms have been included in the modelling and hence that the numerical model adequately represents the rock and engineering reality. Accordingly, recommended soft and hard auditing procedures are presented in Section 5. In this Guidance Document, we emphasize especially that the most important step in numerical modelling is not executing the calculations per se, but the earlier conceptualization of the problem regarding the dominant processes, the material properties and parameters, the engineering perturbations, and their mathematical presentations. The associated modelling component of addressing the uncertainties and estimating their influence on the

  19. Project Entsorgungsnachweis, 'Demonstration of disposal feasibility for SF/HLW/ILW in the Opalinus Clay of the Zuercher Weinland', Background, Objectives and Overview

    International Nuclear Information System (INIS)

    Schneider, Juerg; Zuidema, P.

    2004-01-01

    Juerg Schneider (Nagra, Switzerland) described the project on the Opalinus Clay (Project Entsorgungsnachweis, demonstration of disposal feasibility for SF/HLW/ILW in the Opalinus Clay of the Zuercher Weinland) for which the main objective is to demonstrate disposal feasibility and to provide input to the decision how to proceed. The report structure was described, the focus of the presentation being the report that aimed to provide a comprehensive assessment of long-term safety. The current situation was described in the presentation as follows: - The key need is to provide arguments for having proposed a good system for which there is sufficient understanding to allow a credible safety evaluation. - Alternative options exist, on which attention is maintained by a task-force. However, Nagra is confident in its results on Project Entsorgungsnachweis, given the knowledge base that currently exists, and has put forward a proposal, for consideration by the Swiss Government, to focus future work on the Opalinus Clay (OPA) of the Zuercher Weinland. - Making the safety case requires a proper integration of science, engineering and safety assessment. - Three key issues were identified in making a safety case: completeness, sufficient safety, and robustness to diminish the importance of uncertainties. - A safety case needs to be adequate to support a decision to proceed to the next stage in the programme, with multiple arguments including the existence of reserve FEP's. - The interacting functions of the relevant teams were viewed as a key component of the process of preparing a safety case: management; science; safety assessment; bias audit. During the discussion, the role of the bias team was recognised as being helpful to ensure completeness, as well as using the NEA FEP database as a check list. When speaking about sufficient safety, it should not imply predictive capability but rather that there is enough confidence in the current level of understanding to

  20. Test report for run-in acceptance testing of Project W-151 300 HP mixing pumps

    International Nuclear Information System (INIS)

    Berglin, B.G.

    1998-01-01

    This report documents the results of a performance demonstration and operational checkout of three 300 HP mixer pumps in accordance with WHC-SD-WI51-TS-001 ''Mixer Pump Test Specification for Project W-151'' and Statement of Work 8K520-EMN-95-004 ''Mixer Pump Performance Demonstration at MASF'' in the 400 Area Maintenance and Storage Facility (MASF) building. Testing of the pumps was performed by Fast Flux Test Facility (FFTF) Engineering and funded by the Tank Waste Remediation System (TWRS) Project W-151. Testing began with the first pump on 04-01-95 and ended with the third pump on 11-01-96. Prior to testing, the MASF was modified and prepared to meet the pump testing requirements set forth by the Test Specification and the Statement of Work

  1. Psychometry and Pescatori projective test in coloproctological patients

    OpenAIRE

    dos Santos, Ana Célia Caetano Catarino; Oliveira, Dinis; Gomes, Zaida; Mesquita, Edgar; Gonçalves, Carla Rolanda Rocha

    2017-01-01

    Background Psychological assessment is not commonly performed nor easily accepted by coloproctological patients. Our aim was to evaluate the psychological component of coloproctological disorders using uncommon tools. Methods The 21-Item Depression Anxiety and Stress Scale and the Pescatori projective test were applied to coloproctological outpatients of the Gastroenterology Department of our hospital as well as to healthy volunteers. Results Seventy patients (median age 47 years, 2...

  2. Groundwater screening evaluation/monitoring plan: 200 Area Treated Effluent Disposal Facility (Project W-049H). Revision 1

    International Nuclear Information System (INIS)

    Barnett, D.B.; Davis, J.D.; Collard, L.B.; Freeman, P.B.; Chou, C.J.

    1995-05-01

    This report consists of the groundwater screening evaluation required by Section S.8 of the State Waste Discharge Permit for the 200 Area TEDF. Chapter 1.0 describes the purpose of the groundwater monitoring plan. The information in Chapter 2.0 establishes a water quality baseline for the facility and is the groundwater screening evaluation. The following information is included in Chapter 2.0: Facility description;Well locations, construction, and development data; Geologic and hydrologic description of the site and affected area; Ambient groundwater quality and current use; Water balance information; Hydrologic parameters; Potentiometric map, hydraulic gradients, and flow velocities; Results of infiltration and hydraulic tests; Groundwater and soils chemistry sampling and analysis data; Statistical evaluation of groundwater background data; and Projected effects of facility operation on groundwater flow and water quality. Chapter 3.0 defines, based on the information in Chapter 2.0, how effects of the TEDF on the environment will be evaluated and how compliance with groundwater quality standards will be documented in accordance with the terms and conditions of the permit. Chapter 3.0 contains the following information: Media to be monitored; Wells proposed as the point of compliance in the uppermost aquifer; Basis for monitoring well network and evidence of monitoring adequacy; Contingency planning approach for vadose zone monitoring wells; Which field parameters will be measured and how measurements will be made; Specification of constituents to be sampled and analyzed; and Specification of the sampling and analysis procedures that will be used. Chapter 4.0 provides information on how the monitoring results will be reported and the proposed frequency of monitoring and reporting. Chapter 5.0 lists all the references cited in this monitoring plan. These references should be consulted for additional or more detailed information

  3. UMTRA Project remedial action planning and disposal cell design to comply with the proposed EPA [Environmental Protection Agency] standards (40 CFR Part 192)

    International Nuclear Information System (INIS)

    1989-01-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project involves stabilizing 24 inactive uranium mill tailings piles in 10 states. Remedial work must meet standards established by the US Environmental Protection Agency (EPA). Remedial action must be designed and constructed to prevent dispersion of the tailings and other contaminated materials, and must prevent the inadvertent use of the tailings by man. This report is prepared primarily for distribution to parties involved in the UMTRA Project, including the US Nuclear Regulatory Commission (NRC), and states and tribes. It is intended to record the work done by the DOE since publication of the proposed EPA groundwater protection standards, and to show how the DOE has attempted to respond and react in a positive way to the new requirements that result from the proposed standards. This report discusses the groundwater compliance strategies now being defined and implemented by the DOE, and details the changes in disposal cell designs that result from studies to evaluate ways to facilitate compliance with the proposed EPA groundwater protection standards. This report also serves to record the technical advances, planning, and progress made on the UMTRA Project since the appearance of the proposed EPA groundwater protection standards. The report serves to establish, document, and disseminate technical approaches and engineering and groundwater information to people who may be interested or involved in similar or related projects. 24 refs., 27 figs., 8 tabs

  4. Project W-314 performance mock-up test procedure

    International Nuclear Information System (INIS)

    CARRATT, R.T.

    1999-01-01

    The purpose of this Procedure is to assist construction in the pre-operational fabrication and testing of the pit leak detection system and the low point drain assembly by: (1) Control system testing of the pit leak detection system will be accomplished by actuating control switches and verifying that the control signal is initiated, liquid testing and overall operational requirements stated in HNF-SD-W314-PDS-003, ''Project Development Specification for Pit Leak Detection''. (2) Testing of the low point floor drain assembly by opening and closing the drain to and from the ''retracted'' and ''sealed'' positions. Successful operation of this drain will be to verify that the seal does not leak on the ''sealed'' position, the assembly holds liquid until the leak detector actuates and the assembly will operate from on top of the mock-up cover block

  5. Optimised Environmental Test Approaches in the GOCE Project

    Science.gov (United States)

    Ancona, V.; Giordano, P.; Casagrande, C.

    2004-08-01

    The Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) is dedicated to measuring the Earth's gravity field and modelling the geoid with extremely high accuracy and spatial resolution. It is the first Earth Explorer Core mission to be developed as part of ESA's Living Planet Programme and is scheduled for launch in 2006. The program is managed by a consortium of European companies: Alenia Spazio, the prime contractor, Astrium GmbH, the platform responsible, Alcatel Space Industries and Laben, suppliers of the main payloads, respectively the Electrostatic Gravity Gradiometer (EGG) and the Satellite to Satellite Tracking Instrument (SSTI), actually a precise GPS receiver. The GOCE Assembly Integration and Verification (AIV) approach is established and implemented in order to demonstrate to the customer that the satellite design meets the applicable requirements and to qualify and accept from lower level up to system level. The driving keywords of "low cost" and "short schedule" program, call for minimizing the development effort by utilizing off-the-shelf equipment combined with a model philosophy lowering the number of models to be used. The paper will deal on the peculiarities of the optimized environmental test approach in the GOCE project. In particular it introduces the logic of the AIV approach and describe the foreseen tests at system level within the SM environmental test campaign, outlining the Quasi Static test performed in the frame of the SM sine vibration tests, and the PFM environmental test campaign pinpointing the deletion of the Sine Vibration test on PFM model. Furthermore the paper highlights how the Model and Test Effectiveness Database (MATD) can be utilized for the prediction of the new space projects like GOCE Satellite.

  6. Operational safety of geological disposal: IRSN project 'EXREV' for developing a safety assessment strategy for the operation and reversibility of a geological repository

    International Nuclear Information System (INIS)

    Tichauer, M.; Pellegrini, D.; Serres, C.; Besnus, F.

    2014-01-01

    A high-level waste geological disposal facility is envisioned by the legislator in the French Planning Act no. 2006-739 of 28 June 2006. This act sets major milestones for the operator (Andra) in 2013 (public debate), 2015 (licensing) and 2025 (operation). In the framework of the regulatory review process, IRSN's mission is to conduct an assessment of the safety case provided by Andra at every stage of the process for the French regulator, namely the Nuclear Safety Authority (ASN). In 2005, IRSN gathered more than twenty years of research and expertise in order to provide a comprehensive appraisal of the 'Dossier 2005' prepared by Andra, related to the feasibility of a geological disposal in the Callovo-Oxfordian clay formation. At this time, the description of the operational phase was only at a preliminary stage, but this step paved the way for developing an assessment strategy of the operational phase. In this perspective, IRSN set up the EXREV project in 2008 in order to build up a doctrine and to identify key safety issues to be dealt with. (authors)

  7. Test Specification of A1-1 Test for OECD-ATLAS Project

    International Nuclear Information System (INIS)

    Kang, Kyoung-Ho; Moon, Sang-Ki; Lee, Seung-Wook; Choi, Ki-Yong; Song, Chul-Hwa

    2014-01-01

    In the OECD-ATLAS project, design extension conditions (DECs) such as a station blackout (SBO) and a total loss of feed water (TLOFW) will be experimentally investigated to meet the international interests in the multiple high-risk DECs raised after the Fukushima accident. The proposed test matrix for the OECD-ATLAS project is summarized in Table 1.. In this study, detailed specification of the first test named as A1-1 in the OECD-ATLAS project was described. The target scenario of the A1-1 test is a prolonged SBO with delayed supply of turbine-driven auxiliary feedwater to only SG number 2 (SG-2). A SBO is one of the most important DECs in that without any proper operator actions, a total loss of heat sink leads to core uncover, to core damage, and ultimately a core melt-down scenario under high pressure. Due to this safety importance, a SBO is considered to be a base test item of the OECD-ATLAS project. A detailed specification of the first test named as A1-1 in the OECD-ATLAS project was described. The target scenario of the A1-1 test is a prolonged SBO with delayed supply of turbine-driven auxiliary feedwater to only SG-2 in order to consider an accident mitigation measure. The pre-test analysis using MARS code was performed with an aim of setting up the detailed test procedures for A1-1 test and also gaining the physical insights for a prolonged SBO transient. In the A1-1 test, a prolonged SBO transient will be simulated with two temporal phases: Phase (I) for conservative SBO transient without supply of turbine-driven auxiliary feedwater and Phase (II) for asymmetric cooling via single trained supply of turbine-driven auxiliary feedwater

  8. Corrective Action Investigation Plan for Corrective Action Unit 410: Waste Disposal Trenches, Tonopah Test Range, Nevada, Revision 0 (includes ROTCs 1, 2, and 3)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NV

    2002-07-16

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 410 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 410 is located on the Tonopah Test Range (TTR), which is included in the Nevada Test and Training Range (formerly the Nellis Air Force Range) approximately 140 miles northwest of Las Vegas, Nevada. This CAU is comprised of five Corrective Action Sites (CASs): TA-19-002-TAB2, Debris Mound; TA-21-003-TANL, Disposal Trench; TA-21-002-TAAL, Disposal Trench; 09-21-001-TA09, Disposal Trenches; 03-19-001, Waste Disposal Site. This CAU is being investigated because contaminants may be present in concentrations that could potentially pose a threat to human health and/or the environment, and waste may have been disposed of with out appropriate controls. Four out of five of these CASs are the result of weapons testing and disposal activities at the TTR, and they are grouped together for site closure based on the similarity of the sites (waste disposal sites and trenches). The fifth CAS, CAS 03-19-001, is a hydrocarbon spill related to activities in the area. This site is grouped with this CAU because of the location (TTR). Based on historical documentation and process know-ledge, vertical and lateral migration routes are possible for all CASs. Migration of contaminants may have occurred through transport by infiltration of precipitation through surface soil which serves as a driving force for downward migration of contaminants. Land-use scenarios limit future use of these CASs to industrial activities. The suspected contaminants of potential concern which have been identified are volatile organic compounds; semivolatile organic compounds; high explosives; radiological constituents including depleted

  9. Conceptual design statement of work for the immobilized low-activity waste disposal facility, project W-520

    International Nuclear Information System (INIS)

    Pickett, W.W.

    1998-01-01

    This Statement of Work outlines the deliverables and schedule for preparation of the Project W-520 Conceptual Design Report, including, work plans, site development plan, preliminary safety evaluation, and conceptual design

  10. CERTS Microgrid Laboratory Test Bed - PIER Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Eto, Joseph H.; Lasseter, Robert; Schenkman, Ben; Klapp, Dave; Linton, Ed; Hurtado, Hector; Roy, Jean; Lewis, Nancy Jo; Stevens, John; Volkommer, Harry

    2008-07-25

    The objective of the CERTS Microgrid Laboratory Test Bed project was to enhance the ease of integrating small energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of small generating sources. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation; 2) an approach to electrical protection within the microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications. The techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers 1547 and power quality requirements. The electrical protections system was able to distinguish between normal and faulted operation. The controls were found to be robust and under all conditions, including difficult motor starts. The results from these test are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or mroe of the CERTS Microgrid concepts.

  11. K Basin Sludge Conditioning Process Testing Project. Results from Test 4, ''Acid Digestion of Mixed-Bed Ion Exchange Resin''

    International Nuclear Information System (INIS)

    Pool, K.H.; Delegard, C.H.; Schmidt, A.J.; Thornton, B.M.; Silvers, K.L.

    1998-06-01

    Approximately 73 m 3 of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). The Hanford Spent Nuclear Fuel (HSNF) project has conducted a number of evaluations to examine technology and processing alternatives to pretreat K Basin sludge to meet storage and disposal requirements. From these evaluations, chemical pretreatment has been selected to address criticality issues, reactivity, and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Chemical pretreatment, referred to as the K Basin sludge conditioning process, includes nitric acid dissolution of the sludge (with removal of acid insoluble solids), neutrons absorber addition, neutralization, and reprecipitation. Laboratory testing is being conducted by the Pacific Northwest National Laboratory (PNNL) to provide data necessary to develop the sludge conditioning process

  12. Reedsport PB150 Deployment and Ocean Test Project

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Phil [Ocean Power Technologies Inc., Pennington, NJ (United States)

    2016-06-03

    As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport (OR) was planned to consist of 10 PowerBuoys (Phase II)1, located 2.5 miles off the coast. U.S. Department of Energy (DOE) funding under a prior DOE Grant (DE-FG36-08GO88017) along with funding from PNGC Power, an Oregon-based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. The design and fabrication of the first PowerBuoy and factory testing of the power take-off subsystem were completed, and the power take-off subsystem was successfully integrated into the spar at the fabricator’s facility in Oregon. The objectives of this follow-on grant were: advance PB150B design from TRL 5/6 to TRL 7/8; deploy a single PB150 and operate autonomously for 2 years; establish O&M costs; collect environmental information; and establish manufacturing methodologies.

  13. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TRANSURANIC (TRU) TANK WASTE IDENTIFICATION and PLANNING FOR REVRIEVAL TREATMENT and EVENTUAL DISPOSAL AT WIPP

    International Nuclear Information System (INIS)

    KRISTOFZSKI, J.G.; TEDESCHI, R.; JOHNSON, M.E.; JENNINGS, M

    2006-01-01

    The CH2M HILL Manford Group, Inc. (CHG) conducts business to achieve the goals of the Office of River Protection (ORP) at Hanford. As an employee owned company, CHG employees have a strong motivation to develop innovative solutions to enhance project and company performance while ensuring protection of human health and the environment. CHG is responsible to manage and perform work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of legacy mixed radioactive waste currently at the Hanford Site tank farms. Safety and environmental awareness is integrated into all activities and work is accomplished in a manner that achieves high levels of quality while protecting the environment and the safety and health of workers and the public. This paper focuses on the innovative strategy to identify, retrieve, treat, and dispose of Hanford Transuranic (TRU) tank waste at the Waste Isolation Pilot Plant (WIPP)

  14. Repository-relevant testing applied to the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Bates, J.K.; Gerding, T.J.; Veleckis, E.

    1989-04-01

    A repository environment poses a challenge to developing a testing program because of the diverse nature of conditions that may exist at a given time during the life of the repository. A starting point is to identify whether any potential waste-water contact modes are particularly deleterious to the waste form performance, and whether any interactions between materials present in the waste package environment need to be accounted for during modeling the waste form reaction. The Unsaturated Test method in one approach that has been developed by the Yucca Mountain Project (YMP) to investigate the above issues, and a description of results that have been obtained during the testing of glass and unirradiated UO 2 are the subject of this report. 10 refs., 7 figs., 4 tabs

  15. Final project report: High energy rotor development, test and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Under the auspices of the {open_quotes}Government/Industry Wind Technology Applications Project{close_quotes} [{open_quotes}Letter of Interest{close_quotes} (LOI) Number RC-1-11101], Flo Wind Corp. has successfully developed, tested, and delivered a high-energy rotor upgrade candidate for their 19-meter Vertical Axis Wind Turbine. The project included the demonstration of the innovative extended height-to-diameter ratio concept, the development of a continuous span single-piece composite blade, the demonstration of a continuous blade manufacturing technique, the utilization of the Sandia National Laboratories developed SNLA 2150 natural laminar flow airfoil and the reuse of existing wind turbine and wind power plant infrastructure.

  16. Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Alfred Wickline

    2007-01-01

    Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval

  17. Project W-320, operational test procedure OTP-320-003 test report

    International Nuclear Information System (INIS)

    Bevins, R.R.

    1998-01-01

    This report documents and summarizes the results of OTP-320-003 Project W-320 Operational Testing of the WRSS Supernate Transfer System. Project W-320 Operational Test OTP-320-003 was performed to verify components of the Waste Retrieval Sluicing System (WRSS) supernate transfer system functioned as designed following construction completion and turnover to operations. All equipment operation was performed by Tank Farms Operations personnel following the operational test procedure and referenced operating procedures. Supernate Transfer line Flushing System Testing was completed over the course of approximately 4 weeks as tank farm conditions and configuration, equipment availability, and operations resources allowed. All testing was performed with the 702-AZ ventilation system and the 296-P-16 ventilation systems in operation. Test procedure OTP-320-003 required two revisions during testing to incorporate Procedure Changes Authorizations (PCAs) necessary to facilitate testing. Various sections of testing are documented on each procedure revision. The completed test procedure is included as Attachment A. Exception Reports generated during the course of testing are included as Attachment B

  18. The experimental testing of the long-term behaviour of cemented radioactive waste from nuclear research reactors in the geological disposal conditions of the boom clay

    International Nuclear Information System (INIS)

    Sneyers, A.; Marivoet, J.; Iseghem, P. van

    1998-01-01

    Liquid wastes, resulting from the reprocessing of spent nuclear fuel from the BR-2 Materials Testing Reactor, will be conditioned in a cement matrix at the dedicated cementation facility of UKAEA at Dounreay. In Belgium, the Boom clay formation is studied as a potential host rock for the final geological disposal of cemented research reactor waste. In view of evaluating the safety of disposal, laboratory leach experiments and in situ tests have been performed. Leach experiments in synthetic clay water indicate that the leach rates of calcium and silicium are relatively low compared to those of sodium and potassium. In situ experiments on inactive samples are performed in order to obtain information on the microchemical and mineralogical changes of the cemented waste in contact with the Boom clay. Finally, results from a preliminary performance assessment calculation suggest a non-negligible maximum dose rate of 5 10 -9 Sv/a for 129 I. (author)

  19. The experimental testing of the long-term behaviour of cemented radioactive waste from nuclear research reactors in the geological disposal conditions of the boom clay

    Energy Technology Data Exchange (ETDEWEB)

    Sneyers, A.; Marivoet, J.; Iseghem, P. van [SCK-CEN, B-2400 Mol (Belgium)

    1998-07-01

    Liquid wastes, resulting from the reprocessing of spent nuclear fuel from the BR-2 Materials Testing Reactor, will be conditioned in a cement matrix at the dedicated cementation facility of UKAEA at Dounreay. In Belgium, the Boom clay formation is studied as a potential host rock for the final geological disposal of cemented research reactor waste. In view of evaluating the safety of disposal, laboratory leach experiments and in situ tests have been performed. Leach experiments in synthetic clay water indicate that the leach rates of calcium and silicium are relatively low compared to those of sodium and potassium. In situ experiments on inactive samples are performed in order to obtain information on the microchemical and mineralogical changes of the cemented waste in contact with the Boom clay. Finally, results from a preliminary performance assessment calculation suggest a non-negligible maximum dose rate of 5 10{sup -9} Sv/a for {sup 129}I. (author)

  20. West Valley Demonstration Project vitrification process equipment Functional and Checkout Testing of Systems (FACTS)

    International Nuclear Information System (INIS)

    Carl, D.E.; Paul, J.; Foran, J.M.; Brooks, R.

    1990-01-01

    The Vitrification Facility (VF) at the West Valley Demonstration Project was designed to convert stored radioactive waste into a stable glass for disposal in a federal repository. The Functional and Checkout Testing of Systems (FACTS) program was conducted from 1984 to 1989. During this time new equipment and processes were developed, installed, and implemented. Thirty-seven FACTS tests were conducted, and approximately 150,000 kg of glass were made by using nonradioactive materials to simulate the radioactive waste. By contrast, the planned radioactive operation is expected to produce approximately 500,000 kg of glass. The FACTS program demonstrated the effectiveness of equipment and procedures in the vitrification system, and the ability of the VF to produce quality glass on schedule. FACTS testing also provided data to validate the WVNS waste glass qualification method and verify that the product glass would meet federal repository acceptance requirements. The system was built and performed to standards which would have enabled it to be used in radioactive service. As a result, much of the VF tested, such as the civil construction, feed mixing and holding vessels, and the off-gas scrubber, will be converted for radioactive operation. The melter was still in good condition after being at temperature for fifty-eight of the sixty months of FACTS. However, the melter exceeded its recommended design life and will be replaced with a similar melter. Components that were not designed for remote operation and maintenance will be replaced with remote-use items. The FACTS testing was accomplished with no significant worker injury or environmental releases. During the last FACTS run, the VF processes approximated the remote-handling system that will be used in radioactive operations. Following this run the VF was disassembled for conversion to a radioactive process. Functional and checkout testing of new components will be performed prior to radioactive operation

  1. FUNDING ALTERNATIVES FOR LOW-LEVEL WASTE DISPOSAL

    International Nuclear Information System (INIS)

    Becker, Bruce D.; Carilli, Jhon

    2003-01-01

    For 13 years, low-level waste (LLW) generator fees and disposal volumes for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Radioactive Waste Management Sites (RWMSs) had been on a veritable roller coaster ride. As forecast volumes and disposal volumes fluctuated wildly, generator fees were difficult to determine and implement. Fiscal Year (FY) 2000 forecast projections were so low, the very existence of disposal operations at the Nevada Test Site (NTS) were threatened. Providing the DOE Complex with a viable, cost-effective disposal option, while assuring the disposal site a stable source of funding, became the driving force behind the development of the Waste Generator Access Fee at the NTS. On September 26, 2000, NNSA/NV (after seeking input from DOE/Headquarters [HQ]), granted permission to Bechtel Nevada (BN) to implement the Access Fee for FY 2001 as a two-year Pilot Program. In FY 2001 (the first year the Access Fee was implemented), the NTS Disposal Operations experienced a 90 percent increase in waste receipts from the previous year and a 33 percent reduction in disposal fee charged to the waste generators. Waste receipts for FY 2002 were projected to be 63 percent higher than FY 2001 and 15 percent lower in cost. Forecast data for the outyears are just as promising. This paper describes the development, implementation, and ultimate success of this fee strategy

  2. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: Planning, site selection, site characterization and in situ tests

    Directory of Open Access Journals (Sweden)

    Ju Wang

    2018-06-01

    Full Text Available With the rapid development of nuclear power in China, the disposal of high-level radioactive waste (HLW has become an important issue for nuclear safety and environmental protection. Deep geological disposal is internationally accepted as a feasible and safe way to dispose of HLW, and underground research laboratories (URLs play an important and multi-faceted role in the development of HLW repositories. This paper introduces the overall planning and the latest progress for China's URL. On the basis of the proposed strategy to build an area-specific URL in combination with a comprehensive evaluation of the site selection results obtained during the last 33 years, the Xinchang site in the Beishan area, located in Gansu Province of northwestern China, has been selected as the final site for China's first URL built in granite. In the process of characterizing the Xinchang URL site, a series of investigations, including borehole drilling, geological mapping, geophysical surveying, hydraulic testing and in situ stress measurements, has been conducted. The investigation results indicate that the geological, hydrogeological, engineering geological and geochemical conditions of the Xinchang site are very suitable for URL construction. Meanwhile, to validate and develop construction technologies for the Beishan URL, the Beishan exploration tunnel (BET, which is a 50-m-deep facility in the Jiujing sub-area, has been constructed and several in situ tests, such as drill-and-blast tests, characterization of the excavation damaged zone (EDZ, and long-term deformation monitoring of surrounding rocks, have been performed in the BET. The methodologies and technologies established in the BET will serve for URL construction. According to the achievements of the characterization of the URL site, a preliminary design of the URL with a maximum depth of 560 m is proposed and necessary in situ tests in the URL are planned. Keywords: Beishan, Xinchang site, Granite

  3. Alternate performance standard project: Interpreting the post-construction test

    International Nuclear Information System (INIS)

    Williamson, A.D.; McDonough, S.E.

    1993-01-01

    The paper describes the results of a project commissioned by the State of Florida, in cooperation with the US Environmental Protection Agency, as one portion of the Florida Radon Research Program (FRRP). The purpose of the FRRP is to provide technical support for a statewide Building Standard for Radon-Resistant Construction currently in the rulemaking process. In this case the information provides technical background for a post-construction radon test specified as a performance element of the code which accompanies the prescriptive alternative that does not incorporate active radon reduction systems

  4. Performance evaluation testing of wells in the gradient control system at a federally operated Confined Disposal Facility using single well aquifer tests, East Chicago, Indiana

    Science.gov (United States)

    Lampe, David C.; Unthank, Michael D.

    2016-12-08

    The U.S. Geological Survey (USGS) performed tests to evaluate the hydrologic connection between the open interval of the well and the surrounding Calumet aquifer in response to fouling of extraction well pumps onsite. Two rounds of air slug testing were performed on seven monitoring wells and step drawdown and subsequent recovery tests on three extraction wells on a U.S. Army Corps of Engineers Confined Disposal Facility (CDF) in East Chicago, Indiana. The wells were tested in 2014 and again in 2015. The extraction and monitoring wells are part of the gradient control system that establishes an inward gradient around the perimeter of the facility. The testing established a set of protocols that site personnel can use to evaluate onsite well integrity and develop a maintenance procedure to evaluate future well performance.The results of the slug test analysis data indicate that the hydraulic connection of the well screen to the surrounding aquifer material in monitoring wells on the CDF and the reliability of hydraulic conductivity estimates of the surrounding geologic media could be increased by implementing well development maintenance. Repeated air slug tests showed increasing hydraulic conductivity until, in the case of the monitoring wells located outside of the groundwater cutoff wall (MW–4B, MW–11B, MW–14B), the difference in hydraulic conductivity from test to test decreased, indicating the results were approaching the optimal hydraulic connection between the aquifer and the well screen. Hydraulic conductivity values derived from successive tests in monitoring well D40, approximately 0.25 mile south of the CDF, were substantially higher than those derived from wells on the CDF property. Also, values did not vary from test to test like those measured in monitoring wells located on the CDF property, which indicated that a process may be affecting the connectivity of the wells on the CDF property to the Calumet aquifer. Derived hydraulic conductivity

  5. The International intraval project. Phase 1 test cases

    International Nuclear Information System (INIS)

    1992-01-01

    This report contains a description of the test cases adopted in Phase 1 of the international cooperation project INTRAVAL. Seventeen test cases based on bench-scale experiments in laboratory, field tests and natural analogue studies, have been included in the study. The test cases are described in terms of experimental design and types of available data. In addition, some quantitative examples of available data are given as well as references to more extensive documentation of the experiments on which the test cases are based. Fithteen test cases examples are given: 1 Mass transfer through clay by diffusion and advection. 2 Uranium migration in crystalline bore cores, small scale pressure infiltration experiments. 3 Radionuclide migration in single natural fractures in granite. 4 Tracer tests in a deep basalt flow top. 5 Flow and tracer experiment in crystalline rock based on the Stripa 3-D experiment. 6 Tracer experiment in a fracture zone at the Finnsjon research area. 7 Synthetic data base, based on single fracture migration experiments in Grimsel rock laboratory. 8 Natural analogue studies at Pocos de Caldas, Minais Gerais, Brazil. Redox-front and radionuclide movement in an open pit uranium mine. 9 Natural analogue studies at the Koongarra site in the Alligator Rivers area of the Northern Territory, Australia. 10 Large block migration experiments in a block of crystalline rock. 11 Unsaturated flow and transport experiments performed at Las Cruces, New Mexico. 12 Flow and transport experiment in unsaturated fractured rock performed at the Apache Leap Tuff site, Arizona. 13 Experiments in partially saturated tuffaceous rocks performed in the G-tunnel underground facility at the Nevada Test site, USA. 14 Experimental study of brine transport in porous media. 15 Groundwater flow in the vicinity of the Gorleben Salt Dome, Federal Republic of Germany

  6. Examination of the information yield of testing criteria for evaluation of metallic coatings of systems and containers to be used for radwaste disposal

    International Nuclear Information System (INIS)

    Dittrich, V.; Thiele, B.; Kunze, S.; Pietsch, S.

    1995-01-01

    The paper describes the tests performed for evaluation of the effects of ionizing radiation, mechanical loads, corrosive attacks, chemicals, including those used for decontamination, and dry heat and hot water vapor. The results are listed and discussed with reference to the various coatings examined, and are taken as a basis for recommendations given for testing loads and methods exceeding the conditions given in DIN 55991, part 1, in order to obtain more information from the testing criteria defined for the disposal of radioactive wastes. (DG) [de

  7. Offsite testing in support of the Salt Repository Project

    International Nuclear Information System (INIS)

    Kalia, H.N.

    1987-04-01

    This report presents a rationale and recommendation to perform an offsite testing program in support of the Salt Repository Project. The investigation to be performed primarily consists of qualifying test methods and procedures, qualifying personnel-training procedures, evaluating test instruments and selected equipment, and obtaining mining and production equipment performance-related information. The key objective of these activities is to develop capabilities to be used at the exploratory shaft facility (ESF). The ESF is to be excavated at the Deaf Smith County site to characterize the salt site for the construction of a repository used to isolate radioactive waste from the biosphere. The bulk of the offsite testing work will be performed at Avery Island Salt Mine at New Iberia, Lousiana. Additional knowledge will be obtained by exchanging technical information either as participants or as observers at the Waste Isolation Pilot Plant (WIPP) site and the Asse Mine in the Federal Republic of Germany (FRG). It is estimated that the offsite testing program will cost approximately $9.3 million over 4 fiscal years. 14 refs., 1 fig., 8 tabs

  8. Recent progress of the NEA Stripa project on in situ experiments in granite associated with the disposal of radioactive waste

    International Nuclear Information System (INIS)

    Carlyle, S.G.; Carlsson, H.S.

    1987-01-01

    The NEA Stripa project has devoted considerable effort to the measurement and assessment of the hydrogeology, hydrogeochemistry and migration phenomena of the stripa granite and to the simulation of conditions likely to be found within an engineered repository in granitic rock. These include refining existing, and developing new, geophysical and hydraulic techniques for the mapping and characterization of fractures in crystalline rocks; conducting field experiments to assess the migration of tracers in single-and multiple-fracture systems; and studying the behaviour of bentonite clay as the back-filling and sealing material in a granitic environment. This paper summarizes the most important findings and outlines the main aims of possible future research under any phase 3 of the project. The latter may include making mathematical predictions of the hydrogeological behavior of the Stripa granite and their subsequent validation by field measurements

  9. Plutonium immobilization project development and testing technical project office quality assurance program description

    International Nuclear Information System (INIS)

    Gould, T.H.; MacLean, L.M.; Ziemba, J.M.

    1999-01-01

    The Plutonium Immobilization Project (PIP) is one of several fissile materials disposition projects managed by the Department of Energy (DOE) Office of Fissile Materials Disposition (OFMD). The PIP is expected to evolve from the current Development and Testing (D and T) effort, to design, to construction, and finally to operations. Overall management and technical management of the D and T effort resides at the Lead Laboratory, Lawrence Livermore National Laboratory (LLNL), through the LLNL Manager, Fissile Materials Disposition Program (FMDP). Day to day project activities are managed by the D and T Technical Project Office (TPO), which reports to the LLNL Manager, FMDP. The D and T TPO consists of the Technical Manager, the TPO Quality Assurance (QA) Program Manager, and TPO Planning and Support Staff. This Quality Assurance Program Description (QAPD) defines the QA policies and controls that will be implemented by these TPO personnel in their management of D and T activities. This QAPD is consistent with and responsive to the Department of Energy Fissile Materials Disposition Program Quality Assurance Requirements Document (FMDP QARD). As the Project and upper level requirement's documents evolve, this QAPD will be updated as necessary to accurately define and describe the QA Program and Management of the PIP. The TPO has a policy that all development and testing activities be planned, performed and assessed in accordance with its customer's requirements, needs and expectations, and with a commitment to excellence and continuous improvement. The TPO QAPD describes implementation requirements which, when completed, will ensure that the project development and testing activities conform to the appropriate QA requirements. For the program to be effective, the TPO QA Program Manager will ensure that each site participating in D and T activities has developed a QAPD, which meets the customer's requirements, and has a designated quality leader in place. These customer

  10. Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites, Nevada Test Site, Nevada with Errata Sheet

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NV

    2002-11-12

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 356, Mud Pits and Disposal Sites, in accordance with the Federal Facility Agreement and Consent Order. This CAU is located in Areas 3 and 20 of the Nevada Test Site (NTS) approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 356 consists of seven Corrective Action Sites (CASs): 03-04-01, Area 3 Change House Septic System; 03-09-01, Mud Pit Spill Over; 03-09-03, Mud Pit; 03-09-04, Mud Pit; 03-09-05, Mud Pit; 20-16-01, Landfill; and 20-22-21, Drums. This CR identifies and rationalizes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's (NNSA/NV's) recommendation that no further corrective action and closure in place is deemed necessary for CAU 356. This recommendation is based on the results of field investigation/closure activities conducted November 20, 2001, through January 3, 2002, and March 11 to 14, 2002. These activities were conducted in accordance with the Streamlined Approach for Environmental Restoration Plan (SAFER) for CAU 356. For CASs 03-09-01, 03-09-03, 20-16-01, and 22-20-21, analytes detected in soil during the corrective action investigation were evaluated against Preliminary Action Levels (PALs) and it was determined that no Contaminants of Concern (COCs) were present. Therefore, no further action is necessary for the soil at these CASs. For CASs 03-04-01, 03-09-04, and 03-09-05, analytes detected in soil during the corrective action investigation were evaluated against PALs and identifies total petroleum hydrocarbons (TPHs) and radionuclides (i.e., americium-241 and/or plutonium 239/240) as COCs. The nature, extent, and concentration of the TPH and radionuclide COCs were bounded by sampling and shown to be relatively immobile. Therefore, closure in place is recommended for these CASs in CAU 356. Further, use restrictions are not required at this CAU beyond the NTS use restrictions

  11. Packages for radiactive waste disposal

    International Nuclear Information System (INIS)

    Oliveira, R. de.

    1983-01-01

    The development of multi-stage type package for sea disposal of compactable nuclear wastes, is presented. The basic requirements for the project followed the NEA and IAEA recommendations and observations of the solutions adopted by others countries. The packages of preliminary design was analysed, by computer, under several conditions arising out of its nature, as well as their conditions descent, dumping and durability in the deep of sea. The designed pressure equalization mechanic and the effect compacting on the package, by prototypes and specific tests, were studied. These prototypes were also submitted to the transport tests of the 'Regulament for the Safe Transport of Radioactive Materials'. Based on results of the testes and the re-evaluation of the preliminary design, final indications and specifications for excuting the package design, are presented. (M.C.K.) [pt

  12. Performance assessment of the Greater Confinement Disposal facility on the Nevada Test Site: Comparing the performance of two conceptual site models

    International Nuclear Information System (INIS)

    Baer, T.A.; Price, L.L.; Gallegos, D.P.

    1993-01-01

    A small amount of transuranic (TRU) waste has been disposed of at the Greater Confinement Disposal (GCD) site located on the Nevada Test Site's (NTS) Radioactive Waste Management Site (RWMS). The waste has been buried in several deep (37 m) boreholes dug into the floor of an alluvial basin. For the waste to remain in its current configuration, the DOE must demonstrate compliance of the site with the TRU disposal requirements, 40 CFR 191. Sandia's approach to process modelling in performance assessment is to use demonstrably conservative models of the site. Choosing the most conservative model, however, can be uncertain. As an example, diffusion of contaminants upward from the buried waste in the vadose zone water is the primary mechanism of release. This process can be modelled as straight upward planar diffusion or as spherical diffusion in all directions. The former has high fluxes but low release areas, the latter has lower fluxes but is spread over a greater area. We have developed analytic solutions to a simple test problem for both models and compared the total integrated discharges. The spherical diffusion conceptual model results in at least five times greater release to the accessible environment than the planar model at all diffusivities. Modifying the planar model to allow for a larger release, however, compensated for the smaller original planar discharge and resulted in a new planar model that was more conservative that the spherical model except at low diffusivities

  13. A comprehensive inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the INEL RWMC during the years 1984-2003, Volume 2

    International Nuclear Information System (INIS)

    1995-05-01

    This is the second volume of this comprehensive report of the inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the Idaho National Engineering Laboratory. Appendix B contains a complete printout of contaminant inventory and other information from the CIDRA Database and is presented in volumes 2 and 3 of the report

  14. The Dose Assessment in the Vault Test Case of Near-Surface Disposal Facility for Drinking Water Scenario

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hyoung; Choi, Byung Seon; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Jae Woo [Jeju National University, Jeju (Korea, Republic of)

    2012-05-15

    It is generally accepted that the radionuclides contained in the radioactive wastes will be eventually released and these will be transported to the accessible environment (near-field, far-field, biosphere). Therefore, the long-term safety assessment of near-surface radioactive waste disposal should be required by modeling the expected release of radionuclides from the repository, far-field area, and biosphere. Finally, the effective dose rate should be estimated through the released radionuclides. In this study, the radiological dose was evaluated for the reference near-surface radioactive waste disposal facility in Vaalputs, South Africa, which has been selected as a part of IAEA coordinated research program on improvement of safety assessment methodologies(ISAM). The assessment of radiological dose was performed for drinking water scenario from a well. The release and transport of radionuclides in disposal system were simulated by GoldSim. This approach suggested the time variation of effective dose over long-term period. And the results from this approach were compared with another approach method for the same facility and scenario

  15. The Dose Assessment in the Vault Test Case of Near-Surface Disposal Facility for Drinking Water Scenario

    International Nuclear Information System (INIS)

    Kim, Tae Hyoung; Choi, Byung Seon; Moon, Jei Kwon; Park, Jae Woo

    2012-01-01

    It is generally accepted that the radionuclides contained in the radioactive wastes will be eventually released and these will be transported to the accessible environment (near-field, far-field, biosphere). Therefore, the long-term safety assessment of near-surface radioactive waste disposal should be required by modeling the expected release of radionuclides from the repository, far-field area, and biosphere. Finally, the effective dose rate should be estimated through the released radionuclides. In this study, the radiological dose was evaluated for the reference near-surface radioactive waste disposal facility in Vaalputs, South Africa, which has been selected as a part of IAEA coordinated research program on improvement of safety assessment methodologies(ISAM). The assessment of radiological dose was performed for drinking water scenario from a well. The release and transport of radionuclides in disposal system were simulated by GoldSim. This approach suggested the time variation of effective dose over long-term period. And the results from this approach were compared with another approach method for the same facility and scenario

  16. Test Plan for Hydrogen Getters Project - Phase II

    International Nuclear Information System (INIS)

    Mroz, G.

    1999-01-01

    Hydrogen levels in many transuranic (TRU) waste drums are above the compliance threshold, therefore deeming the drums non-shippable to the Waste Isolation Pilot Plant (WIPP). Hydrogen getters (alkynes and dialkynes) are known to react irreversibly with hydrogen in the presence of certain catalysts. The primary purpose of this investigation is to ascertain the effectiveness of a hydrogen getter in an environment that contains gaseous compounds commonly found in the headspace of drums containing TRU waste. It is not known whether the volatile organic compounds (VOCs) commonly found in the headspace of TRU waste drums will inhibit (''poison'') the effectiveness of the hydrogen getter. The result of this study will be used to assess the feasibility of a hydrogen-getter system, which is capable of removing hydrogen from the payload containers or the Transuranic Package Transporter-II (TRUPACT-II) inner containment vessel to increase the quantity of TRU waste that can be shipped to the WIPP. Phase II for the Hydrogen Getters Project will focus on four primary objectives: Conduct measurements of the relative permeability of hydrogen and chlorinated VOCs through Tedlar (and possibly other candidate packaging materials) Test alternative getter systems as alternatives to semi-permeable packaging materials. Candidates include DEB/Pd/Al2O3 and DEB/Cu-Pd/C. Develop, test, and deploy kinetic optimization model Perform drum-scale test experiments to demonstrate getter effectiveness

  17. Operational test report - Project W-320 cathodic protection systems

    International Nuclear Information System (INIS)

    Bowman, T.J.

    1998-01-01

    Washington Administrative Code (WAC) 173-303-640 specifies that corrosion protection must be designed into tank systems that treat or store dangerous wastes. Project W-320, Waste Retrieval Sluicing System (WRSS), utilizes underground encased waste transfer piping between tanks 241-C-106 and 241-AY-102. Corrosion protection is afforded to the encasements of the WRSS waste transfer piping through the application of earthen ionic currents onto the surface of the piping encasements. Cathodic protection is used in conjunction with the protective coatings that are applied upon the WRSS encasement piping. WRSS installed two new two rectifier systems (46 and 47) and modified one rectifier system (31). WAC 173-303-640 specifies that the proper operation of cathodic protection systems must be confirmed within six months after initial installation. The WRSS cathodic protection systems were energized to begin continuous operation on 5/5/98. Sixteen days after the initial steady-state start-up of the WRSS rectifier systems, the operational testing was accomplished with procedure OTP-320-006 Rev/Mod A-0. This operational test report documents the OTP-320-006 results and documents the results of configuration testing of integrated piping and rectifier systems associated with the W-320 cathodic protection systems

  18. Database requirements for the Advanced Test Accelerator project

    International Nuclear Information System (INIS)

    Chambers, F.W.

    1984-01-01

    The database requirements for the Advanced Test Accelerator (ATA) project are outlined. ATA is a state-of-the-art electron accelerator capable of producing energetic (50 million electron volt), high current (10,000 ampere), short pulse (70 billionths of a second) beams of electrons for a wide variety of applications. Databasing is required for two applications. First, the description of the configuration of facility itself requires an extended database. Second, experimental data gathered from the facility must be organized and managed to insure its full utilization. The two applications are intimately related since the acquisition and analysis of experimental data requires knowledge of the system configuration. This report reviews the needs of the ATA program and current implementation, intentions, and desires. These database applications have several unique aspects which are of interest and will be highlighted. The features desired in an ultimate database system are outlined. 3 references, 5 figures

  19. Deployment of an Alternative Closure Cover and Monitoring System at the Mixed Waste Disposal Unit U-3ax/bl at the Nevada Test Site

    International Nuclear Information System (INIS)

    Levitt, D.G.; Fitzmaurice, T.M.

    2001-01-01

    In October 2000, final closure was initiated of U-3ax/bl, a mixed waste disposal unit at the Nevada Test Site (NTS). The application of approximately 30 cm of topsoil, composed of compacted native alluvium onto an operational cover, seeding of the topsoil, installation of soil water content sensors within the cover, and deployment of a drainage lysimeter facility immediately adjacent to the disposal unit initiated closure. This closure is unique in that it required the involvement of several U.S. Department of Energy (DOE) Environmental Management (EM) groups: Waste Management (WM), Environmental Restoration (ER), and Technology Development (TD). Initial site characterization of the disposal unit was conducted by WM. Regulatory approval for closure of the disposal unit was obtained by ER, closure of the disposal unit was conducted by ER, and deployment of the drainage lysimeter facility was conducted by WM and ER, with funding provided by the Accelerated Site Technology Deployment ( ASTD) program, administered under TD. In addition, this closure is unique in that a monolayer closure cover, also known as an evapotranspiration (ET) cover, consisting of native alluvium, received regulatory approval instead of a traditional Resource Conservation and Recovery Act (RCRA) multi-layered cover. Recent studies indicate that in the arid southwestern United States, monolayer covers may be more effective at isolating waste than layered covers because of the tendency of clay layers to desiccate and crack, and subsequently develop preferential pathways. The lysimeter facility deployed immediately adjacent to the closure cover consists of eight drainage lysimeters with three surface treatments: two were left bare; two were revegetated with native species; two were allowed to revegetate with invader species; and two are reserved for future studies. The lysimeters are constructed such that any drainage through the bottoms of the lysimeters can be measured. Sensors installed in the

  20. Waste Disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; B-Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    This contribution describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 1997 in three topical areas are reported on: performance assessments, waste forms/packages and near-and far field studies

  1. Mont Terri Project - Ventilation experiment in Opalinus Clay for the disposal of radioactive waste in underground repositories

    Energy Technology Data Exchange (ETDEWEB)

    Mayor, J. C. [Empresa Nacional de Residuos Radioactivos SA (ENRESA), Madrid (Spain); Garcia-Sineriz, J. [Asociacion para la Investigacion y Desarollo Industrial de los Recursos Naturales (AITEMIN), Madrid (Spain); Velasco, M. [DM Iberia SA, Madrid (Spain); Gomez-Hernandez, J. [Ingenieria Hidraulica y Medio Ambiente, Escuela de Ingenieros de Caminos (UPV), Valencia (Spain); Lloret, A.; Matray, J.-M. [IRSN/DEI/SARG/LETS, Fontenay-aux-Roses (France); Coste, F. [Aradis ESG, Sevres Cedex (France); Giraud, A. [LAEGO-ENSG, Vandoeuvre les Nancy (France); Rothfuchs, T. [Gesellschaft fuer Anlagen und Reaktorsicherheit mbH (GRS), Braunschweig (Germany); Marschall, P. [National Cooperative for the Disposal of Radioactive Waste (Nagra), Wettingen (Switzerland); Roesli, U. [Solexperts AG, Moenchaltorf (Switzerland); Mayer, G. [Colenco Power Engineering Ltd, Baden (Switzerland)

    2007-07-01

    The ventilation of the underground drifts during the construction and operation of a radioactive waste repository could produce the partial desaturation of the rock around the drifts, modifying its thermo-hydro-mechanical properties, especially in clayey rocks. This change of rock properties may have an impact on the design of the repositories (drifts spacing and repository size), which depends on the thermal load that the clay barrier and the rock can accept. To evaluate 'in situ' and better understand the desaturation process of a hard clay formation, the Ventilation Experiment (VE) has been carried out at the Mont Terri underground laboratory (Switzerland), generating a flow of dry air during several months along a section of a microtunnel. Specifically, the VE test has been performed, under practically isothermal conditions (T {approx_equal} 15-16 {sup o}C), in a 10 m long section of a non-lined horizontal microtunnel (diameter = 1.3 m), excavated in 1999 in the shaly facies of the Opalinus Clay of Mont Terri. The microtunnel is oriented perpendicular to the bedding strike direction of the rock (mean value of the bedding dip {approx_equal} 25{sup o}). The VE experiment real data and its modelling have shown that the desaturation of clayey rocks of low hydraulic conductivity (K < 10{sup -12} m/s) due to ventilation is very small. Under real repository conditions, the thermal and hydro-mechanical rock characteristics will not be practically affected by the ventilation. Specifically, the monitoring of the VE test (mainly the hygrometer data, confirmed also by the geoelectrical measurements) indicates that, after about 5 months of ventilation with almost dry air, the rock relative humidity (and then the degree of saturation) was less than 95% only in a ring of thickness less than 40 cm. Nevertheless, a suction state (subatmospheric liquid pressures) developed up to a distance of about 2 m, but it should be kept in mind that a clayey rock such as the

  2. Mont Terri Project - Ventilation experiment in Opalinus Clay for the disposal of radioactive waste in underground repositories

    International Nuclear Information System (INIS)

    Mayor, J. C.; Garcia-Sineriz, J.; Velasco, M.; Gomez-Hernandez, J.; Lloret, A.; Matray, J.-M.; Coste, F.; Giraud, A.; Rothfuchs, T.; Marschall, P.; Roesli, U.; Mayer, G.

    2007-01-01

    The ventilation of the underground drifts during the construction and operation of a radioactive waste repository could produce the partial desaturation of the rock around the drifts, modifying its thermo-hydro-mechanical properties, especially in clayey rocks. This change of rock properties may have an impact on the design of the repositories (drifts spacing and repository size), which depends on the thermal load that the clay barrier and the rock can accept. To evaluate 'in situ' and better understand the desaturation process of a hard clay formation, the Ventilation Experiment (VE) has been carried out at the Mont Terri underground laboratory (Switzerland), generating a flow of dry air during several months along a section of a microtunnel. Specifically, the VE test has been performed, under practically isothermal conditions (T ≅ 15-16 o C), in a 10 m long section of a non-lined horizontal microtunnel (diameter = 1.3 m), excavated in 1999 in the shaly facies of the Opalinus Clay of Mont Terri. The microtunnel is oriented perpendicular to the bedding strike direction of the rock (mean value of the bedding dip ≅ 25 o ). The VE experiment real data and its modelling have shown that the desaturation of clayey rocks of low hydraulic conductivity (K -12 m/s) due to ventilation is very small. Under real repository conditions, the thermal and hydro-mechanical rock characteristics will not be practically affected by the ventilation. Specifically, the monitoring of the VE test (mainly the hygrometer data, confirmed also by the geoelectrical measurements) indicates that, after about 5 months of ventilation with almost dry air, the rock relative humidity (and then the degree of saturation) was less than 95% only in a ring of thickness less than 40 cm. Nevertheless, a suction state (subatmospheric liquid pressures) developed up to a distance of about 2 m, but it should be kept in mind that a clayey rock such as the Opalinus Clay is quasi-saturated for suction values up

  3. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-07-19

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  4. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    International Nuclear Information System (INIS)

    2010-01-01

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  5. Alternative Site Technology Deployment-Monitoring System for the U-3ax/bl Disposal Unit at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dixon, J.M.; Levitt, D.G.; Rawlinson, S.E.

    2001-01-01

    In December 2000, a performance monitoring facility was constructed adjacent to the U-3ax/bl mixed waste disposal unit at the Nevada Test Site (NTS). Recent studies conducted in the arid southwestern United States suggest that a vegetated monolayer evapotranspiration (ET) closure cover may be more effective at isolating waste than traditional Resource Conservation and Recovery Act (RCRA) multi-layered designs. The monitoring system deployed next to the U-3ax/bl disposal unit consists of eight drainage lysimeters with three surface treatments: two are left bare; two are revegetated with native species; two are being allowed to revegetate with invader species; and two are reserved for future studies. Soil used in each lysimeter is native alluvium taken from the same location as the soil used for the cover material on U-3ax/bl. The lysimeters were constructed so that any drainage to the bottom can be collected and measured. To provide a detailed evaluation of the cover performance, an ar ray of 16 sensors was installed in each lysimeter to measure soil water content, soil water potential, and soil temperature. Revegetation of the U-3ax/bl closure cover establishes a stable plant community that maximizes water loss through transpiration while at the same time, reduces water and wind erosion and ultimately restores the disposal unit to its surrounding Great Basin Desert environment

  6. Test Plan: Sludge Treatment Project Corrosion Process Chemistry Follow-on Testing

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmidt, Andrew J.; Poloski, Adam P.

    2007-08-17

    This test plan was prepared by the Pacific Northwest National Laboratory (PNNL) under contract with Fluor Hanford (FH). The test plan describes the scope and conditions to be used to perform laboratory-scale testing of the Sludge Treatment Project (STP) hydrothermal treatment of K Basin sludge. The STP, managed for the U. S. Department of Energy (DOE) by FH, was created to design and operate a process to eliminate uranium metal from the sludge prior to packaging for Waste Isolation Pilot Plant (WIPP) by using high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. The proposed testing builds on the approach and laboratory test findings for both K Basin sludge and simulated sludge garnered during prior testing from September 2006 to March 2007. The outlined testing in this plan is designed to yield further understanding of the nature of the chemical reactions, the effects of compositional and process variations and the effectiveness of various strategies to mitigate the observed high shear strength phenomenon observed during the prior testing. These tests are designed to provide process validation and refinement vs. process development and design input. The expected outcome is to establish a level of understanding of the chemistry such that successful operating strategies and parameters can be implemented within the confines of the existing STP corrosion vessel design. In July 2007, the DOE provided direction to FH regarding significant changes to the scope of the overall STP. As a result of the changes, FH directed PNNL to stop work on most of the planned activities covered in this test plan. Therefore, it is unlikely the testing described here will be performed. However, to preserve the test strategy and details developed to date, the test plan has been published.

  7. Near-field performance assessment for a low-activity waste glass disposal system: laboratory testing to modeling results

    International Nuclear Information System (INIS)

    McGrail, B.P.; Bacon, D.H.; Icenhower, J.P.; Mann, F.M.; Puigh, R.J.; Schaef, H.T.; Mattigod, S.V.

    2001-01-01

    Reactive chemical transport simulations of glass corrosion and radionuclide release from a low-activity waste (LAW) disposal system were conducted out to times in excess of 20 000 yr with the subsurface transport over reactive multiphases (STORM) code. Time and spatial dependence of glass corrosion rate, secondary phase formation, pH, and radionuclide concentration were evaluated. The results show low release rates overall for the LAW glasses such that performance objectives for the site will be met by a factor of 20 or more. Parameterization of the computer model was accomplished by combining direct laboratory measurements, literature data (principally thermodynamic data), and parameter estimation methods

  8. Preliminary identification of potentially disruptive scenarios at the Greater Confinement Disposal Facility, Area 5 of the Nevada Test Site

    International Nuclear Information System (INIS)

    Guzowski, R.V.; Newman, G.

    1993-12-01

    The Greater Confinement Disposal location is being evaluated to determine whether defense-generated transuranic waste buried at this location complies with the Containment Requirements established by the US Environmental Protection Agency. One step in determining compliance is to identify those combinations of events and processes (scenarios) that define possible future states of the disposal system for which performance assessments must be performed. An established scenario-development procedure was used to identify a comprehensive set of mutually exclusive scenarios. To assure completeness, 761 features, events, processes, and other listings (FEPS) were compiled from 11 references. This number was reduced to 205 primarily through the elimination of duplications. The 205 FEPs were screened based on site-specific, goal-specific, and regulatory criteria. Four events survived screening and were used in preliminary scenario development: (1) exploratory drilling penetrates a GCD borehole, (2) drilling of a withdrawal/injection well penetrates a GCD borehole, (3) subsidence occurs at the RWMS, and (4) irrigation occurs at the RWMS. A logic diagram was used to develop 16 scenarios from the four events. No screening of these scenarios was attempted at this time. Additional screening of the currently retained events and processes will be based on additional data and information from site-characterization activities. When screening of the events and processes is completed, a final set of scenarios will be developed and screened based on consequence and probability of occurrence

  9. Engineering geology of waste disposal

    International Nuclear Information System (INIS)

    Bentley, S.P.

    1996-01-01

    This volume covers a wide spectrum of activities in the field of waste disposal. These activities range from design of new landfills and containment properties of natural clays to investigation, hazard assessment and remediation of existing landfills. Consideration is given to design criteria for hard rock quarries when used for waste disposal. In addition, an entire section concerns the geotechnics of underground repositories. This covers such topics as deep drilling, in situ stress measurement, rock mass characterization, groundwater flows and barrier design. Engineering Geology of Waste Disposal examines, in detail, the active role of engineering geologists in the design of waste disposal facilities on UK and international projects. The book provides an authoritative mix of overviews and detailed case histories. The extensive spectrum of papers will be of practical value to those geologists, engineers and environmental scientists who are directly involved with waste disposal. (UK)

  10. Reversible deep disposal

    International Nuclear Information System (INIS)

    2009-10-01

    This presentation, given by the national agency of radioactive waste management (ANDRA) at the meeting of October 8, 2009 of the high committee for the nuclear safety transparency and information (HCTISN), describes the concept of deep reversible disposal for high level/long living radioactive wastes, as considered by the ANDRA in the framework of the program law of June 28, 2006 about the sustainable management of radioactive materials and wastes. The document presents the social and political reasons of reversibility, the technical means considered (containers, disposal cavities, monitoring system, test facilities and industrial prototypes), the decisional process (progressive development and blocked off of the facility, public information and debate). (J.S.)

  11. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container. type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3). nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.). building concerned. details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting o...

  12. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container; type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3); nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.); building concerned; details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting...

  13. Project B610 process control configuration acceptance test procedure

    International Nuclear Information System (INIS)

    Silvan, G.R.

    1994-01-01

    The purpose of this test is to verify the Westinghouse configuration of the MICON A/S Distributed Control System for project B610. The following will be verified: proper assignment and operation of all field inputs to and outputs from the MICON Termination panels; proper operation of all display data on the operator's console; proper operation of all required alarms; and proper operation of all required interlocks. The MICON A/S control system is configured to replace all the control, indication, and alarm panels now located in the Power Control Room. Nine systems are covered by this control configuration, 2736-ZB HVAC, 234-5Z HVAC, Process Vacuum, Dry Air, 291-Z Closed Loop Cooling, Building Accelerometer, Evacuation Siren, Stack CAMs, and Fire. The 2736-ZB HVAC system consists of the ventilation controls for 2736-ZB and 2736-Z as well as alarms for the emergency generators and 232-Z. The 234-5Z HVAC system is the ventilation controls for 235-5Z and 236-Z buildings. Process Vacuum covers the controls for the 26 inch vacuum system. Dry Air covers the controls for the steam and electric air dryers. The 291-Z Closed Loop Cooling system consists of the status indications and alarms for the 291-Z compressor and vacuum pump closed loop cooling system. The rest of closed loop cooling was tested earlier. The Building Accelerometer system consists of the status indications for the two seismic system accelerometers. The Evacuation Siren system includes the controls for the evacuation and take cover sirens. Stack CAMs cover the alarms for the various building ventilation stack continuous air monitors. Finally, the Fire system covers the various fire alarms now located in Room 321-A

  14. Scaled Vitrification System III (SVS III) Process Development and Laboratory Tests at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Jain, V.; Barnes, S.M.; Bindi, B.G.; Palmer, R.A.

    2000-01-01

    At the West Valley Demonstration Project (WVDP),the Vitrification Facility (VF)is designed to convert the high-level radioactive waste (HLW)stored on the site to a stable glass for disposal at a Department of Energy (DOE)-specified federal repository. The Scaled Vitrification System III (SVS-III)verification tests were conducted between February 1995 and August 1995 as a supplemental means to support the vitrification process flowsheet, but at only one seventh the scale.During these tests,the process flowsheet was refined and optimized. The SVS-III test series was conducted with a focus on confirming the applicability of the Redox Forecasting Model, which was based on the Index of Feed Oxidation (IFO)developed during the Functional and Checkout Testing of Systems (FACTS)and SVS-I tests. Additional goals were to investigate the prototypical feed preparation cycle and test the new target glass composition. Included in this report are the basis and current designs of the major components of the Scale Vitrification System and the results of the SVS-III tests.The major subsystems described are the feed preparation and delivery, melter, and off-gas treatment systems. In addition,the correlation between the melter's operation and its various parameters;which included feed rate,cold cap coverage,oxygen reduction (redox)state of the glass,melter power,plenum temperature,and airlift analysis;were developed

  15. Recovery efficiency test project, Phase 2 activity report

    Energy Technology Data Exchange (ETDEWEB)

    Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1989-02-01

    The Recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency of gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. This volume contains appendices for: (1) supporting material and procedures for data frac'' stimulation of zone 6 using nitrogen and nitrogen foam; (2) supporting material and procedures for stimulation no. 1 nitrogen gas frac on zone no. 1; (3) supporting material and procedures for stimulation no. 2 in zone no. 1 using liquid CO{sub 2}; (4) supporting material and procedures for frac no. 3 on zone no.1 using nitrogen foam and proppant; (5) supporting material and procedures for stimulation no. 4 in zones 2--3 and 4 using nitrogen foam and proppant; (6) supporting materials and procedures for stimulation no. 5 in zones 5 and 8; and (7) fracture diagnostics reports and supporting materials.

  16. Maw and spent HTR Fuel Element Test storage in Boreholes in rock salt

    International Nuclear Information System (INIS)

    Barnert, E.; Brucher, P.H.; Kroth, K.; Merz, E.; Niephaus, D.

    1986-01-01

    The Budesminister fur Forschung und Technolgie (BMFT, Federal Ministry for Research and Technology) is sponsoring a project at the Kernforschungsanlage Julich (KFA, Juelich Nuclear Research Centre) entitled ''MAW and HTR Fuel Element Test disposal in Boreholes.'' The aim of this project is to develop a technique for the final disposal of (1) dissolver sludge, (2) cladding hulls/structural components and (3) spent HTR fuels elements in salt, and to test this technique in the abandoned Asse salt mine, including safety calculations and safety engineering demonstrations. The project is divided into the sub-projects I ''Disposal/sealing technique'' and II ''Retrievable disposal test.''

  17. Corrosion testing of selected packaging materials for disposal of high-level waste glass in rock salt formations

    International Nuclear Information System (INIS)

    Smailos, E.; Schwarzkopf, W.; Koester, R.; Fiehn, B.; Halm, G.

    1990-05-01

    In previous corrosion studies performed in salt brines, unalloyed steels, Ti 99.8-Pd and Hastelloy C4 have proved to be the most promising materials for long-term resistant packagings to be used in heat-generating waste (vitrified HLW, spent fuel) disposal in rock-salt formations. To characterise the corrosion behaviour of these materials in more detail, further in-depth laboratory-scale and in-situ corrosion studies have been performed in the present study. Besides the above-mentioned materials, also some in-situ investigations of the iron-base materials Ni-Resist D2 and D4, cast iron and Si-cast iron have been carried out in order to complete the results available to date. (orig.) [de

  18. A Test of the Validity of Projective and Quasi-Projective Measures of Interpersonal Distance.

    Science.gov (United States)

    Jones, Stanley E.; Aiello, John R.

    1979-01-01

    Discusses research supporting the conclusion that projective and quasi-projective measures of interpersonal distance do not measure the same phenomena as interactional measures. It is possible that they are more indicative of psychological rather than physical distance. (JMF)

  19. Projective Test Use among School Psychologists: A Survey and Critique

    Science.gov (United States)

    Hojnoski, Robin L.; Morrison, Rhonda; Brown, Melissa; Matthews, William J.

    2006-01-01

    The use of projective techniques by school psychologists has been a point of interest and debate, with a number of survey studies documenting usage. The purpose of this study is to update the status of projective use among school psychologists, with a specific focus on their use in the social emotional assessment of children in schools. In…

  20. Urban High School Student Engagement through CincySTEM iTEST Projects

    Science.gov (United States)

    Beckett, Gulbahar H.; Hemmings, Annette; Maltbie, Catherine; Wright, Kathy; Sherman, Melissa; Sersion, Brian

    2016-01-01

    This paper focuses on the notable heightening of underrepresented students' engagement in STEM education through project-based learning CincySTEM iTEST projects. The projects, funded by an iTEST NSF grant, were designed and facilitated by teachers at a new STEM urban public high school serving low-income African-American students. Student…

  1. Consequences of the EU basic safety standards. Omission of the clearance for demolition/disposal with respect to the deconstruction projects of WAK GmbH

    International Nuclear Information System (INIS)

    Wittmann, S.

    2013-01-01

    The WAK GmbH's task is to decommission the nuclear installation projects at the KIT Campus Nord. These include the former Reprocessing Plant (WAK-Anlage), the Multi-purpose Research Reactor (MZFR), Research Reactor 2 (FR2), Compact Sodium-cooled Nuclear Reactor Facility (KNK), the Hot Cells (HZ) and some more small research facilities of the KIT. The buildings should be released by paragraph 29 German Radiation Protection Ordinance (StrlSchV) after the demolition of the process-engineering equipment. For this the clearance levels for 'demolition of buildings' Annex III Tab. 1 Column 10 (StrlSchV) must be reached, depth profiles were sampled on order to estimate how much material of the walls has to be removed to reach the values of the clearance levels. In a proposal (10926/12 ATO 90 SOC 501 SAN 149) on the basis of new scientific knowledge the EU plans to introduce clearance levels from the IAEA - ''Application of the Concepts of Exclusion, Exemption and Clearance RS-G-1.7''. In the proposal there are only clearance levels for an unrestricted release. Clearance levels for specific purpose (Annex III Tab. 1 Column 9a - 9d, 10 and 10a StrlSchV) are not named. A worst case scenario has been made what the possible effects are if the unrestricted release in the proposal of the basic safety standards from EU is guilty for every material. An estimation were done how much material and how much volume of building rubbish has to be removed to reach these new resulted clearance. Based on these volumes the caused additional financial costs for the final disposal for the WAK GmbH were calculated. (orig.)

  2. Confirmation tests of construction method and initial performance quality for low permeable engineered barrier in side part of radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Yamada, Atsuo; Chijimatsu, Masakazu; Akiyama, Yoshihiro; Komine, Hideo; Iizuka, Atsushi

    2016-01-01

    As for the low permeable layer, important functions are expected as an engineered barrier of radioactive waste disposal for low-level waste with comparatively high radiation levels. On examining the construction methods of this low permeable layer, it is important to confirm the possibility of the construction in the conditions similar to the actual constructed conditions with a true scale size. Therefore, the construction examination for the side part of the low permeable layer by bentonite and the performance check test of the low permeable layer were carried out. The result of the construction examination showed that the possibility of the construction were confirmed, and the result of performance check test showed that it was possible to ensure the required performance of the low permeable layer, such as hydraulic conductivity. (author)

  3. The borehole disposal of spent sources (BOSS)

    International Nuclear Information System (INIS)

    Heard, R.G.

    2002-01-01

    During the International Atomic Energy Agency (IAEA) Regional Training Course on 'The Management of Low-Level Radioactive Waste from Hospitals and Other Nuclear Applications' hosted by the Atomic Energy Corporation of SA Ltd. (AEC), now NECSA, during July/August 1995, the African delegates reviewed their national radioactive waste programmes. Among the issues raised, which are common to most African countries, were the lack of adequate storage facilities, lack of disposal solutions and a lack of equipment to implement widely used disposal concepts to dispose of their spent sources. As a result of this meeting, a Technical Co-operation (TC) project was launched to look at the technical feasibility and economic viability of such a concept. Phase I and II of the project have been completed and the results can be seen in three reports produced by NECSA. The Safety Assessment methodology used in the evaluation of the concept was that developed during the ISAM programme and detailed in Van Blerk's PhD thesis. This methodology is specifically developed for shallow land repositories, but was used in this case as the borehole need not be more than 100m deep and could fit into the definition of a shallow land disposal system. The studies found that the BOSS concept would be suitable for implementation in African countries as the borehole has a large capacity for sources and it is possible that an entire country's disused sources can be placed in a single borehole. The costs are a lot lower than for a shallow land trench, and the concept was evaluated using radium (226) sources as the most limiting inventory. The conclusion of the initial safety assessment was that the BOSS concept is robust, and provides a viable alternative for the disposal of radium needles. The concept is expected to provide good assurance of safety at real sites. The extension of the safety assessment to other types of spent sources is expected to be relatively straightforward. Disposal of radium needles

  4. Irradiated test fuel shipment plan for the LWR MOX fuel irradiation test project

    International Nuclear Information System (INIS)

    Shappert, L.B.; Dickerson, L.S.; Ludwig, S.B.

    1998-01-01

    This document outlines the responsibilities of DOE, DOE contractors, the commercial carrier, and other organizations participating in a shipping campaign of irradiated test specimen capsules containing mixed-oxide (MOX) fuel from the Idaho National Engineering and Environmental Laboratory (INEEL) to the Oak Ridge National Laboratory (ORNL). The shipments described here will be conducted according to applicable regulations of the US Department of Transportation (DOT), US Nuclear Regulatory Commission (NRC), and all applicable DOE Orders. This Irradiated Test Fuel Shipment Plan for the LWR MOX Fuel Irradiation Test Project addresses the shipments of a small number of irradiated test specimen capsules and has been reviewed and agreed to by INEEL and ORNL (as participants in the shipment campaign). Minor refinements to data entries in this plan, such as actual shipment dates, exact quantities and characteristics of materials to be shipped, and final approved shipment routing, will be communicated between the shipper, receiver, and carrier, as needed, using faxes, e-mail, official shipping papers, or other backup documents (e.g., shipment safety evaluations). Any major changes in responsibilities or data beyond refinements of dates and quantities of material will be prepared as additional revisions to this document and will undergo a full review and approval cycle

  5. Test report : Dallas Integrated Corridor Management (ICM) demonstration project.

    Science.gov (United States)

    2015-05-01

    The Dallas Area Rapid Transit (DART) is leading the US 75 Integrated Corridor Management (ICM) : Demonstration Project for the Dallas region. Coordinated corridor operations and management is : predicated on being able to share transportation informa...

  6. Design and validation of the THMC China-Mock-Up test on buffer material for HLW disposal

    Directory of Open Access Journals (Sweden)

    Yuemiao Liu

    2014-04-01

    Full Text Available According to the preliminary concept of the high-level radioactive waste (HLW repository in China, a large-scale mock-up facility, named China-Mock-Up was constructed in the laboratory of Beijing Research Institute of Uranium Geology (BRIUG. A heater, which simulates a container of radioactive waste, is placed inside the compacted Gaomiaozi (GMZ-Na-bentonite blocks and pellets. Water inflow through the barrier from its outer surface is used to simulate the intake of groundwater. The numbers of water injection pipes, injection pressure and the insulation layer were determined based on the numerical modeling simulations. The current experimental data of the facility are herein analyzed. The experiment is intended to evaluate the thermo-hydro-mechano-chemical (THMC processes occurring in the compacted bentonite-buffer during the early stage of HLW disposal and to provide a reliable database for numerical modeling and further investigation of engineered barrier system (EBS, and the design of HLW repository.

  7. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site - 8422

    International Nuclear Information System (INIS)

    D Wieland; V Yucel; L Desotell; G Shott; J Wrapp

    2008-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) plans to close the waste and classified material storage cells in the southeast quadrant of the Area 5 Radioactive Waste Management Site (RWMS), informally known as the '92-Acre Area', by 2011. The 25 shallow trenches and pits and the 13 Greater Confinement Disposal (GCD) borings contain various waste streams including low-level waste (LLW), low-level mixed waste (LLMW), transuranic (TRU), mixed transuranic (MTRU), and high specific activity LLW. The cells are managed under several regulatory and permit programs by the U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP). Although the specific closure requirements for each cell vary, 37 closely spaced cells will be closed under a single integrated monolayer evapotranspirative (ET) final cover. One cell will be closed under a separate cover concurrently. The site setting and climate constrain transport pathways and are factors in the technical approach to closure and performance assessment. Successful implementation of the integrated closure plan requires exce