WorldWideScience

Sample records for disposal area sda

  1. Source Release Modeling for the Idaho National Engineering and Environmental Laboratory's Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Becker, B.H.

    2002-01-01

    A source release model was developed to determine the release of contaminants into the shallow subsurface, as part of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) evaluation at the Idaho National Engineering and Environmental Laboratory's (INEEL) Subsurface Disposal Area (SDA). The output of the source release model is used as input to the subsurface transport and biotic uptake models. The model allowed separating the waste into areas that match the actual disposal units. This allows quantitative evaluation of the relative contribution to the total risk and allows evaluation of selective remediation of the disposal units within the SDA

  2. UNSAT-H infiltration model calibration at the Subsurface Disposal Area, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Martian, P.

    1995-10-01

    Soil moisture monitoring data from the expanded neutron probe monitoring network located at the Subsurface Disposal Area (SDA) of the Idaho National Engineering Laboratory (INEL) were used to calibrate numerical infiltration models for 15 locations within and near the SDA. These calibrated models were then used to simulate infiltration into the SDA surficial sediments and underlying basalts for the entire operational period of the SDA (1952--1995). The purpose of performing the simulations was to obtain a time variant infiltration source term for future subsurface pathway modeling efforts as part of baseline risk assessment or performance assessments. The simulation results also provided estimates of the average recharge rate for the simulation period and insight into infiltration patterns at the SDA. These results suggest that the average aquifer recharge rate below the SDA may be at least 8 cm/yr and may be as high as 12 cm/yr. These values represent 38 and 57% of the average annual precipitation occurring at the INEL, respectively. The simulation results also indicate that the maximum evaporative depth may vary between 28 and 148 cm and is highly dependent on localized lithology within the SDA

  3. Development of a comprehensive source term model for the Subsurface Disposal Area at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    1997-01-01

    The first detailed comprehensive simulation study to evaluate fate and transport of wastes disposed in the Subsurface Disposal Area (SDA), at the Radioactive Waste Management Complex (RWMC), Idaho National Engineering and Environmental Laboratory (INEEL) has recently been conducted. One of the most crucial parts of this modeling was the source term or release model. The current study used information collected over the last five years defining contaminant specific information including: the amount disposed, the waste form (physical and chemical properties) and the type of container used for each contaminant disposed. This information was used to simulate the release of contaminants disposed in the shallow subsurface at the SDA. The DUST-MS model was used to simulate the release. Modifications were made to allow the yearly disposal information to be incorporated. The modeling includes unique container and release rate information for each of the 42 years of disposal. The results from this simulation effort are used for both a groundwater and a biotic uptake evaluation. As part of this modeling exercise, inadequacies in the available data relating to the release of contaminants have been identified. The results from this modeling study have been used to guide additional data collection activities at the SDA for purposes of increasing confidence in the appropriateness of model predictions

  4. Elevation of surficial sediment/basalt contact in the Subsurface Disposal Area, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1993-01-01

    The elevation of the surficial sediment/basalt contact at the Subsurface Disposal Area (SDA), within the Radioactive Waste Management Complex (RWMC) is presented to provide a data base for future remedial actions at this site. About 1,300 elevation data from published and unpublished reports, maps, and surveyors notes were compiled to generate maps and cross-sections of the surficial sediment/basalt contact. In general, an east to west trending depression exists in the south central portion of the SDA with basalt closer to land surface on the northern and southern boundaries of the SDA. The lowest elevation of the surficial sediment/basalt contact is 4,979 ft and the greatest is land surface at 5,012 ft. The median elevation of the sediment/basalt interface is 4,994 ft. The median depth to basalt in the SDA is 16 ft if land surface elevation is assumed to be 5,010 ft. The depth from land surface to the sediment/basalt interface ranges from 24 ft in the southeast corner of the SDA to less than 3 ft at the north-central boundary of the SDA

  5. Ecological vectors of radionuclide transport at a solid radioactive waste disposal facility in southeastern Idaho

    International Nuclear Information System (INIS)

    Arthur, W.J.; Markham, O.D.

    1983-01-01

    Radioecological research conducted at the Idaho National Engineering Laboratory Subsurface Disposal Area (SDA) has estimated the quantity of radionuclides transported by various ecosystem components and evaluated the impact of subsurface disposal of radioactive waste on biotic species inhabiting the area. Radiation dose rates received by small mammals ranged from 0.4 to 41790 mrad/day. Small mammal soil burrowing was an upward transport mechanism for transuranic radionuclides. Seventy-seven uCi of radioactivity occurred in SDA vegetation annually. None of these ecological vectors contributed appreciable quantities of radioactive contamination to the environment surrounding the SDA

  6. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Gratson, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1992-01-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the Acid Pit and Transuranic Pits and Trenches (TRU-PTs) that are present at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues exist that must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues associated with ISV application at the INEL SDA. The activities of the ISV Steering Committee are summarized in three volumes of this report. Volume 1 identifies the systematic approach used to identify and prioritize the ISV technical issues, and briefly discusses the methodology that will be employed to resolve these issues. This document Volume 2 and Volume 3 discusses each technical issue in greater detail and suggest specific closure roadmaps to be used in resolving technical issues associated with ISV at the SDA Acid Pit and TRU-PTs, respectively

  7. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Gratson, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1991-12-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the Acid Pit and Transuranic Pits and Trenches (TRU-PTs) that are present at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues exist that must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues associated with ISV application at the INEL SDA. The activities of the ISV Steering Committee are summarized in three volumes of this report. This document, Volume 1, identifies the systematic approach used to identify and prioritize the ISV technical issues, and briefly discusses the methodology that will be employed to resolve these issues

  8. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Krisman, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1992-07-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the acid pit and transuranic pits and trenches (TRU-PTs) at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues lated with ISV application at the SDA. The activities of the ISV Steering Committee are summarized in a three-volume report. Volume I identifies the systematic approach used to identify and prioritize the ISV technical issues and briefly discusses the methodology that will be employed to resolve these issues. Volumes 2 and 3 discuss each technical issue in greater detail and suggest specific closure roadmaps to be used in resolving technical issues associated with ISV at the SDA Acid Pit and TRU-PTS, respectively. The three-volume report is a working document that will be updated as necessary to reflect current evaluation strategy for the ISV technology. This is Volume 3

  9. Correlates of blood pressure in Seventh-Day Adventist (SDA) and non-SDA adolescents.

    Science.gov (United States)

    Kuczmarski, R J; Anderson, J J; Koch, G G

    1994-04-01

    This comparative study was designed to discover early determinants of systolic (S) and diastolic (D) blood pressure (BP) elevations in 138 Seventh-Day Adventist (SDA) and 89 non-SDA male and female adolescents (median age, 17 years) living at three residential secondary schools in North Carolina. Measurements were made of blood pressure, body weight, and height, and information was collected on lifestyle factors, dietary intake, and other behaviors, including exercise, religiosity, Type A behavior, and anger, by questionnaire. Multiple stepwise regression analyses were performed with BP, either SBP or DBP, as the independent variable. A significant direct association was found only between body weight and BP, but weak associations were shown between BP and other variables, including exercise, diet, religiosity, Type A behavior, and anger. Male and female SDA students showed significantly higher SBPs and DBPs than did non-SDA adolescents though the differences were small (approximately 5 mm for each sex). These findings suggest that the higher BP values of SDA adolescents, who were all practicing lacto-ovo-vegetarians, compared to similarly aged health-conscious non-SDAs, are determined more by eating behaviors that contribute to gains in body weight than by any other lifestyle variable. Furthermore, these data support the notion that the BP-protective effects of the vegetarian diet may not emerge in these SDA youth until early adulthood.

  10. Preliminary report of biological intrusion studies at the Idaho National Engineering Laboratory subsurface disposal area

    International Nuclear Information System (INIS)

    Reynolds, T.D.; Arthur, W.J.

    1983-01-01

    As part of a larger study on the effects of biological intrusion of plants and animals into the soil cover placed over low-level radioactive wastes stored at the Idaho National Engineering Laboratory Subsurface Disposal Area (SDA), research was initiated in the summer of 1982 to determine the burrow characteristics and movement patterns of several small mammal species, and the rooting depths of various plants. The depth, length, and volume of burrows were determined for four small mammal species: deer mouse (Peromyscus maniculatus), Ord's kangaroo rat (Dipodomys ordii), montane vole (Microtus montanus), and Townsend's ground squirrel (Spermophilis townsendii). The latter species excavated the greatest mean burrow depth (39 cm), length (404 cm), and volume (14.8 1). Movement patterns of three species were determined by radiotelemetry. The mean area of use for P. maniculatus, D. ordii, and M. montanus was 2.3, 1.5, and 1.2 ha respectively. Limited data on rooting depths of various native and introduced plant species at the SDA were obtained by literature review and excavation. During FY-83, experiments will be conducted, using the information obtained from the first year of this study, to evaluate the impact of burrowing mammals and root intrusion on the integrity of the soil cover currently existing at the SDA. Details of these experimental studies are presented

  11. Preliminary design of a biological treatment facility for trench water from a low-level radioactive waste disposal area at West Valley, New York

    Energy Technology Data Exchange (ETDEWEB)

    Rosten, R.; Malkumus, D. [Pacific Nuclear, Inc. (United States); Sonntag, T. [New York State Energy Research and Development Authority, NY (United States); Sundquist, J. [Ecology and Environment, Inc. (United States)

    1993-03-01

    The New York State Energy Research and Development Authority (NYSERDA) owns and manages a State-Licensed Low-Level Radioactive Waste Disposal Area (SDA) at West Valley, New York. Water has migrated into the burial trenches at the SDA and collected there, becoming contaminated with radionuclides and organic compounds. The US Environmental Protection Agency issued an order to NYSERDA to reduce the levels of water in the trenches. A treatability study of the contaminated trench water (leachate) was performed and determined the best available technology to treat the leachate and discharge the effluent. This paper describes the preliminary design of the treatment facility that incorporates the bases developed in the leachate treatability study.

  12. Mechanical environmental transport of actinides and ¹³⁷Cs from an arid radioactive waste disposal site.

    Science.gov (United States)

    Snow, Mathew S; Clark, Sue B; Morrison, Samuel S; Watrous, Matthew G; Olson, John E; Snyder, Darin C

    2015-10-01

    Aeolian and pluvial processes represent important mechanisms for the movement of actinides and fission products at the Earth's surface. Soil samples taken in the early 1970's near a Department of Energy radioactive waste disposal site (the Subsurface Disposal Area, SDA, located in southeastern Idaho) provide a case study for studying the mechanisms and characteristics of environmental actinide and (137)Cs transport in an arid environment. Multi-component mixing models suggest actinide contamination within 2.5 km of the SDA can be described by mixing between 2 distinct SDA end members and regional nuclear weapons fallout. The absence of chemical fractionation between (241)Am and (239+240)Pu with depth for samples beyond the northeastern corner and lack of (241)Am in-growth over time (due to (241)Pu decay) suggest mechanical transport and mixing of discrete contaminated particles under arid conditions. Occasional samples northeast of the SDA (the direction of the prevailing winds) contain anomalously high concentrations of Pu with (240)Pu/(239)Pu isotopic ratios statistically identical to those in the northeastern corner. Taken together, these data suggest flooding resulted in mechanical transport of contaminated particles into the area between the SDA and a flood containment dike in the northeastern corner, following which subsequent contamination spreading in the northeastern direction resulted from wind transport of discrete particles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Scale of Death Anxiety (SDA: Development and Validation

    Directory of Open Access Journals (Sweden)

    Wei Cai

    2017-05-01

    Full Text Available This study developed and validated a new measure to assess the death anxiety (i.e., Scale of Death Anxiety, SDA on an individual’s somatic, cognitive, emotional, and behavioral reactions from a symptomatic perspective in Chinese youth samples. Following a systematic process, a four-factor structure of the SDA was identified through principle components analysis and confirmatory factor analysis that revealed four aspects of death anxiety: Dysphoria, Death Intrusion, Fear of Death, and Avoidance of Death. The results of this study indicate that the SDA has a clear factor structure and good psychometric properties. The SDA supports death anxiety as a multidimensional construct, and the foundational role of fear of death in the generation of death anxiety. This scale is valuable and beneficial to research on death anxiety. This study makes a significant contribution to the literature because the SDA is the first assessment of death anxiety to include the constructs of dysphoria and somatic symptoms. And the potential clinical practice of the SDA was discussed.

  14. Sandia Data Archive (SDA) file specifications

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Daniel H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ao, Tommy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    The Sandia Data Archive (SDA) format is a specific implementation of the HDF5 (Hierarchal Data Format version 5) standard. The format was developed for storing data in a universally accessible manner. SDA files may contain one or more data records, each associated with a distinct text label. Primitive records provide basic data storage, while compound records support more elaborate grouping. External records allow text/binary files to be carried inside an archive and later recovered. This report documents version 1.0 of the SDA standard. The information provided here is sufficient for reading from and writing to an archive. Although the format was original designed for use in MATLAB, broader use is encouraged.

  15. MeCaSDa and ECaSDa: Methane and ethene calculated spectroscopic databases for the virtual atomic and molecular data centre

    International Nuclear Information System (INIS)

    Ba, Yaye Awa; Wenger, Christian; Surleau, Romain; Boudon, Vincent; Rotger, Maud; Daumont, Ludovic; Bonhommeau, David A.; Tyuterev, Vladimir G.; Dubernet, Marie-Lise

    2013-01-01

    Two spectroscopic relational databases, denoted MeCaSDa and ECaSDa, have been implemented for methane and ethene, and included in VAMDC (Virtual Atomic and Molecular Data Centre, (http://portal.vamdc.eu/vamdc_portal/home.seam)). These databases collect calculated spectroscopic data from the accurate analyses previously performed for the electronic ground state of methane, ethene, and some of their isotopologues: 12 CH 4 , 13 CH 4 , and 12 C 2 H 4 . Both infrared absorption and Raman scattering lines are included. The polyad structures are reported and the transitions are precisely described by their energy, their intensity and the full description of the lower and upper states involved in the transitions. The relational schemas of ECaSDa and MeCaSDa databases are equivalent and optimised to enable the better compromise between data retrieval and compatibility with the XSAMS (XML Schema for Atoms, Molecules, and Solids) format adopted within the VAMDC European project. -- Highlights: • We present two new spectroscopic databases, MeCaSDa and ECaSDa. • They contain calculated line lists for methane and ethene, respectively. • They collect data from accurate analyses previously preformed. • They are included in the Virtual Atomic and Molecular Data Centre (VAMDC)

  16. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  17. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE

  18. Bench-scale treatability testing of biological, UV oxidation, distillation, and ion-exchange treatment of trench water from a low-level radioactive waste disposal area at West Valley, New York

    Energy Technology Data Exchange (ETDEWEB)

    Sundquist, J.A.; Gillings, J.C. [Ecology and Environment, Inc. (United States); Sonntag, T.L. [New York State Energy Research and Development Authority (United States); Denault, R.P. [Pacific Nuclear, Inc. (United States)

    1993-03-01

    Ecology and Environment, Inc. (E and E), under subcontract to Pacific Nuclear Services (PNS), conducted for the New York State Energy Research and Development Authority (NYSERDA) treatability tests to support the selection and design of a treatment system for leachate from Trench 14 of the West Valley State-Licensed, Low-Level Radioactive Waste Disposal Area (SDA). In this paper E and E presents and discusses the treatability test results and provides recommendations for the design of the full-scale treatment system.

  19. Seismic Performance Comparison of a High-Content SDA Frame and Standard RC Frame

    Directory of Open Access Journals (Sweden)

    John W. van de Lindt

    2011-01-01

    Full Text Available This study presents the method and results of an experiment to study the seismic behavior of a concrete portal frame with fifty percent of its cement content replaced with a spray dryer ash (SDA. Based on multiple-shake-table tests, the high content SDA frame was found to perform as well as the standard concrete frame for two earthquakes exceeding design-level intensity earthquakes. Hence, from a purely seismic/structural standpoint, it may be possible to replace approximately fifty percent of cement in a concrete mix with SDA for the construction of structural members in high seismic zones. This would help significantly redirect spray dryer ash away from landfills, thus, providing a sustainable greener alternative to concrete that uses only Portland cement, or only a small percentage of SDA or fly ash.

  20. Regulatory controls on the hydrogeological characterization of a mixed waste disposal site, Radioactive Waste Management Complex, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Ruebelmann, K.L.

    1990-01-01

    Following the detection of chlorinated volatile organic compounds in the groundwater beneath the SDA in the summer of 1987, hydrogeological characterization of the Radioactive Waste Management Complex (RWMC), Idaho National Engineering Laboratory (INEL) was required by the Resource Conservation and Recovery Act (RCRA). The waste site, the Subsurface Disposal Area (SDA), is the subject of a RCRA Corrective Action Program. Regulatory requirements for the Corrective Action Program dictate a phased approach to evaluation of the SDA. In the first phase of the program, the SDA is the subject of a RCRA Facility Investigation (RIF), which will obtain information to fully characterize the physical properties of the site, determine the nature and extent of contamination, and identify pathways for migration of contaminants. If the need for corrective measures is identified during the RIF, a Corrective Measures Study (CMS) will be performed as second phase. Information generated during the RIF will be used to aid in the selection and implementation of appropriate corrective measures to correct the release. Following the CMS, the final phase is the implementation of the selected corrective measures. 4 refs., 1 fig

  1. Phytophthora capsici homologue of the cell cycle regulator SDA1 is required for sporangial morphology, mycelial growth and plant infection.

    Science.gov (United States)

    Zhu, Chunyuan; Yang, Xiaoyan; Lv, Rongfei; Li, Zhuang; Ding, Xiaomeng; Tyler, Brett M; Zhang, Xiuguo

    2016-04-01

    SDA1 encodes a highly conserved protein that is widely distributed in eukaryotic organisms. SDA1 is essential for cell cycle progression and organization of the actin cytoskeleton in yeasts and humans. In this study, we identified a Phytophthora capsici orthologue of yeast SDA1, named PcSDA1. In P. capsici, PcSDA1 is strongly expressed in three asexual developmental states (mycelium, sporangia and germinating cysts), as well as late in infection. Silencing or overexpression of PcSDA1 in P. capsici transformants affected the growth of hyphae and sporangiophores, sporangial development, cyst germination and zoospore release. Phalloidin staining confirmed that PcSDA1 is required for organization of the actin cytoskeleton. Moreover, 4',6-diamidino-2-phenylindole (DAPI) staining and PcSDA1-green fluorescent protein (GFP) fusions revealed that PcSDA1 is involved in the regulation of nuclear distribution in hyphae and sporangia. Both silenced and overexpression transformants showed severely diminished virulence. Thus, our results suggest that PcSDA1 plays a similar role in the regulation of the actin cytoskeleton and nuclear division in this filamentous organism as in non-filamentous yeasts and human cells. © 2015 BSPP and John Wiley & Sons Ltd.

  2. Palmprint and face multi-modal biometric recognition based on SDA-GSVD and its kernelization.

    Science.gov (United States)

    Jing, Xiao-Yuan; Li, Sheng; Li, Wen-Qian; Yao, Yong-Fang; Lan, Chao; Lu, Jia-Sen; Yang, Jing-Yu

    2012-01-01

    When extracting discriminative features from multimodal data, current methods rarely concern themselves with the data distribution. In this paper, we present an assumption that is consistent with the viewpoint of discrimination, that is, a person's overall biometric data should be regarded as one class in the input space, and his different biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, we propose a novel multimodal feature extraction and recognition approach based on subclass discriminant analysis (SDA). Specifically, one person's different bio-data are treated as different subclasses of one class, and a transformed space is calculated, where the difference among subclasses belonging to different persons is maximized, and the difference within each subclass is minimized. Then, the obtained multimodal features are used for classification. Two solutions are presented to overcome the singularity problem encountered in calculation, which are using PCA preprocessing, and employing the generalized singular value decomposition (GSVD) technique, respectively. Further, we provide nonlinear extensions of SDA based multimodal feature extraction, that is, the feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. For simplicity two typical types of biometric data are considered in this paper, i.e., palmprint data and face data. Compared with several representative multimodal biometrics recognition methods, experimental results show that our approaches outperform related multimodal recognition methods and KSDA-GSVD achieves the best recognition performance.

  3. Palmprint and Face Multi-Modal Biometric Recognition Based on SDA-GSVD and Its Kernelization

    Science.gov (United States)

    Jing, Xiao-Yuan; Li, Sheng; Li, Wen-Qian; Yao, Yong-Fang; Lan, Chao; Lu, Jia-Sen; Yang, Jing-Yu

    2012-01-01

    When extracting discriminative features from multimodal data, current methods rarely concern themselves with the data distribution. In this paper, we present an assumption that is consistent with the viewpoint of discrimination, that is, a person's overall biometric data should be regarded as one class in the input space, and his different biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, we propose a novel multimodal feature extraction and recognition approach based on subclass discriminant analysis (SDA). Specifically, one person's different bio-data are treated as different subclasses of one class, and a transformed space is calculated, where the difference among subclasses belonging to different persons is maximized, and the difference within each subclass is minimized. Then, the obtained multimodal features are used for classification. Two solutions are presented to overcome the singularity problem encountered in calculation, which are using PCA preprocessing, and employing the generalized singular value decomposition (GSVD) technique, respectively. Further, we provide nonlinear extensions of SDA based multimodal feature extraction, that is, the feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. For simplicity two typical types of biometric data are considered in this paper, i.e., palmprint data and face data. Compared with several representative multimodal biometrics recognition methods, experimental results show that our approaches outperform related multimodal recognition methods and KSDA-GSVD achieves the best recognition performance. PMID:22778600

  4. Palmprint and Face Multi-Modal Biometric Recognition Based on SDA-GSVD and Its Kernelization

    Directory of Open Access Journals (Sweden)

    Jing-Yu Yang

    2012-04-01

    Full Text Available When extracting discriminative features from multimodal data, current methods rarely concern themselves with the data distribution. In this paper, we present an assumption that is consistent with the viewpoint of discrimination, that is, a person’s overall biometric data should be regarded as one class in the input space, and his different biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, we propose a novel multimodal feature extraction and recognition approach based on subclass discriminant analysis (SDA. Specifically, one person’s different bio-data are treated as different subclasses of one class, and a transformed space is calculated, where the difference among subclasses belonging to different persons is maximized, and the difference within each subclass is minimized. Then, the obtained multimodal features are used for classification. Two solutions are presented to overcome the singularity problem encountered in calculation, which are using PCA preprocessing, and employing the generalized singular value decomposition (GSVD technique, respectively. Further, we provide nonlinear extensions of SDA based multimodal feature extraction, that is, the feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. For simplicity two typical types of biometric data are considered in this paper, i.e., palmprint data and face data. Compared with several representative multimodal biometrics recognition methods, experimental results show that our approaches outperform related multimodal recognition methods and KSDA-GSVD achieves the best recognition performance.

  5. Analýza marketingových aktivit neziskové organizace INEX-SDA

    OpenAIRE

    Müllerová, Michaela

    2015-01-01

    The aim of this thesis is to analyze marketing activities of nonprofit organization INEX-SDA and make recommendations relating to the marketing mix which would increase awareness of this foundation and also increase voluntary help from the public. The thesis is divided into two parts. First part deals with theoretical definition of marketing and its specifics related to the nonprofit sector. The theoretical part is followed by a practical part in which organization INEX-SDA and the individual...

  6. Skin displacement analysis (SDA: a tool for the quantitative evaluation of skin movements elicited by underlying muscles in the face and neck area

    Directory of Open Access Journals (Sweden)

    Proebstle TM

    2011-04-01

    Full Text Available Thomas M ProebstleDepartment of Dermatology, University Clinic of Mainz, Mainz, GermanyBackground: Quantitative numerical analysis of skin displacement triggered by muscles inserting the overlaying skin would be useful for monitoring the inhibition of mimetic muscles.Methods: By using removable grid markings and digital photographs, skin displacement analysis (SDA was performed on 13 patients pre-treatment and on Days 1, 2, 3, and 7 after injection of 18 units of botulinum toxin type A (BoNT/A in the fronto-glabellar area.Results: At baseline, amplitudes of horizontal skin displacement with fronto-glabellar contraction showed a linear increase along the eyebrow laterally from the midline; mean values (±standard deviation [SD] 15 and 30 mm lateral to the midline were 3.2 ± 1.0 mm (range, 1.9–4.9 mm and 6.5 ± 1.4 mm (range 4.0–8.5 mm, respectively. After injection of BoNT/A, maximum horizontal skin displacement 30 mm lateral to the midline showed a mean reduction (±SD to 62% ± 23% at Day 2 and to 17% ± 16% at Day 7; corresponding values 15 mm lateral to the midline were 62% ± 29% and 15% ± 20%, respectively. In all cases, the reduction in horizontal skin displacement compared with pre-injection levels was statistically significant (P < 0.001.Conclusion: SDA is a feasible method for the quantitative evaluation of skin movements elicited by muscles inserting the overlaying skin in the face and neck area.Keywords: botulinum toxin type A, fronto-glabellar contraction, skin displacement analysis, glabellar lines

  7. Exploratory and spatial data analysis (EDA-SDA) for determining regional background levels and anomalies of potentially toxic elements in soils from Catorce-Matehuala, Mexico

    Science.gov (United States)

    Chiprés, J.A.; Castro-Larragoitia, J.; Monroy, M.G.

    2009-01-01

    The threshold between geochemical background and anomalies can be influenced by the methodology selected for its estimation. Environmental evaluations, particularly those conducted in mineralized areas, must consider this when trying to determinate the natural geochemical status of a study area, quantifying human impacts, or establishing soil restoration values for contaminated sites. Some methods in environmental geochemistry incorporate the premise that anomalies (natural or anthropogenic) and background data are characterized by their own probabilistic distributions. One of these methods uses exploratory data analysis (EDA) on regional geochemical data sets coupled with a geographic information system (GIS) to spatially understand the processes that influence the geochemical landscape in a technique that can be called a spatial data analysis (SDA). This EDA-SDA methodology was used to establish the regional background range from the area of Catorce-Matehuala in north-central Mexico. Probability plots of the data, particularly for those areas affected by human activities, show that the regional geochemical background population is composed of smaller subpopulations associated with factors such as soil type and parent material. This paper demonstrates that the EDA-SDA method offers more certainty in defining thresholds between geochemical background and anomaly than a numeric technique, making it a useful tool for regional geochemical landscape analysis and environmental geochemistry studies.

  8. Seismic Performance Comparison of a High-Content SDA Frame and Standard RC Frame

    OpenAIRE

    van de Lindt, John W.; Rechan, R. Karthik

    2011-01-01

    This study presents the method and results of an experiment to study the seismic behavior of a concrete portal frame with fifty percent of its cement content replaced with a spray dryer ash (SDA). Based on multiple-shake-table tests, the high content SDA frame was found to perform as well as the standard concrete frame for two earthquakes exceeding design-level intensity earthquakes. Hence, from a purely seismic/structural standpoint, it may be possible to replace approximately fifty percen...

  9. DNase Sda1 allows invasive M1T1 Group A Streptococcus to prevent TLR9-dependent recognition.

    Directory of Open Access Journals (Sweden)

    Satoshi Uchiyama

    Full Text Available Group A Streptococcus (GAS has developed a broad arsenal of virulence factors that serve to circumvent host defense mechanisms. The virulence factor DNase Sda1 of the hyperinvasive M1T1 GAS clone degrades DNA-based neutrophil extracellular traps allowing GAS to escape extracellular killing. TLR9 is activated by unmethylated CpG-rich bacterial DNA and enhances innate immune resistance. We hypothesized that Sda1 degradation of bacterial DNA could alter TLR9-mediated recognition of GAS by host innate immune cells. We tested this hypothesis using a dual approach: loss and gain of function of DNase in isogenic GAS strains and presence and absence of TLR9 in the host. Either DNA degradation by Sda1 or host deficiency of TLR9 prevented GAS induced IFN-α and TNF-α secretion from murine macrophages and contributed to bacterial survival. Similarly, in a murine necrotizing fasciitis model, IFN-α and TNF-α levels were significantly decreased in wild type mice infected with GAS expressing Sda1, whereas no such Sda1-dependent effect was seen in a TLR9-deficient background. Thus GAS Sda1 suppressed both the TLR9-mediated innate immune response and macrophage bactericidal activity. Our results demonstrate a novel mechanism of bacterial innate immune evasion based on autodegradation of CpG-rich DNA by a bacterial DNase.

  10. Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [URS Coporation

    2012-06-26

    Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure, efforts have

  11. Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G

    International Nuclear Information System (INIS)

    French, Sean B.; Shuman, Rob

    2012-01-01

    Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure, efforts

  12. Composite analysis E-area vaults and saltstone disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.

  13. Composite analysis E-area vaults and saltstone disposal facilities

    International Nuclear Information System (INIS)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public

  14. A summary of the environmental restoration program Retrieval Demonstration Project at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    McQuary, J.

    1991-01-01

    This document summarizes the of retrieval techniques developed to excavate buried transuranic (TRU) mixed waste from the Subsurface Disposal Area (SDA). The SDA is located at the Idaho National Engineering Laboratory (INEL) in the Radioactive Waste Management Complex (RWMC). 31 refs., 1 fig

  15. Structure of the sporulation histidine kinase inhibitor Sda from Bacillus subtilis and insights into its solution state

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, David A.; Streamer, Margaret [School of Molecular and Microbial Biosciences, University of Sydney (Australia); Rowland, Susan L.; King, Glenn F. [Institute of Molecular Biology, University of Queensland (Australia); Guss, J. Mitchell; Trewhella, Jill; Langley, David B., E-mail: d.langley@usyd.edu.au [School of Molecular and Microbial Biosciences, University of Sydney (Australia)

    2009-06-01

    The crystal structure of Sda, a DNA-replication/damage checkpoint inhibitor of sporulation in B. subtilis, has been solved via the MAD method. The subunit arrangement in the crystal has enabled a reappraisal of previous biophysical data, resulting in a new model for the behaviour of the protein in solution. The crystal structure of the DNA-damage checkpoint inhibitor of sporulation, Sda, from Bacillus subtilis, has been solved by the MAD technique using selenomethionine-substituted protein. The structure closely resembles that previously solved by NMR, as well as the structure of a homologue from Geobacillus stearothermophilus solved in complex with the histidine kinase KinB. The structure contains three molecules in the asymmetric unit. The unusual trimeric arrangement, which lacks simple internal symmetry, appears to be preserved in solution based on an essentially ideal fit to previously acquired scattering data for Sda in solution. This interpretation contradicts previous findings that Sda was monomeric or dimeric in solution. This study demonstrates the difficulties that can be associated with the characterization of small proteins and the value of combining multiple biophysical techniques. It also emphasizes the importance of understanding the physical principles behind these techniques and therefore their limitations.

  16. Feasible research on VLLW disposal in control area of nuclear installation

    International Nuclear Information System (INIS)

    Kong Jinsong; Guo Weiqun

    2013-01-01

    Based on the basic requirements on the VLLW landfill disposal specified by the national codes and standards, a on-site disposal of VLLW in the control area of nuclear installation was proposed. A detail analysis of the advantages and disadvantages about the disposal method and the problem to be solved were described. Results showed that the on-site disposal of VLLW in the control area of nuclear installation was feasible in practice. (authors)

  17. INEL waste reduction: summary paper

    International Nuclear Information System (INIS)

    Rhoades, W.A.

    1987-01-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE) facility located in southeastern Idaho. Located at the INEL are a Waste Experimental Reduction Facility (WERF) which processes low level radioactive waste (LLW) materials and a Radioactive Waste Management Complex (RWMC) which provides for disposal of radioactive waste materials. There are currently 9 active facilities (waste generators) at the INEL which produce an average total volume of about 5000 cubic meters of solid LLW annually. This boxed or bulk waste is ultimately disposed of at the RWMC Subsurface Disposal Area (SDA). The SDA is currently the only active LLW disposal site at the INEL, and the prospects for opening another shallow land burial disposal facility are uncertain. Therefore, it has become imperative that EG and G Idaho Waste Management Department make every reasonable effort to extend the disposal life of the SDA. Among Waste Management Department's principal efforts to extend the SDA disposal life are operation of the Waste Experimental Reduction Facility (WERF) and administration of the INEL Waste Reduction Program. The INEL Waste Reduction Program is charged with providing assistance to all INEL facilities in reducing LLW generation rates to the lowest practical levels while at the same time encouraging optimum utilization of the volume reduction capabilities of WERF. Both waste volume and waste generation reductions are discussed

  18. Sda1, a Cys2-His2 zinc finger transcription factor, is involved in polyol metabolism and fumonisin B1 production in Fusarium verticillioides.

    Directory of Open Access Journals (Sweden)

    Martha Malapi-Wight

    Full Text Available The ubiquitous ascomycete Fusarium verticillioides causes ear rot and stalk rot of maize, both of which reduce grain quality and yield. Additionally, F. verticillioides produces the mycotoxin fumonisin B1 (FB1 during infection of maize kernels, and thus potentially compromises human and animal health. The current knowledge is fragmentary regarding the regulation of FB1 biosynthesis, particularly when considering interplay with environmental factors such as nutrient availability. In this study, SDA1 of F. verticillioides, predicted to encode a Cys-2 His-2 zinc finger transcription factor, was shown to play a key role in catabolizing select carbon sources. Growth of the SDA1 knock-out mutant (Δsda1 was completely inhibited when sorbitol was the sole carbon source and was severely impaired when exclusively provided mannitol or glycerol. Deletion of SDA1 unexpectedly increased FB1 biosynthesis, but reduced arabitol and mannitol biosynthesis, as compared to the wild-type progenitor. Trichoderma reesei ACE1, a regulator of cellulase and xylanase expression, complemented the F. verticillioides Δsda1 mutant, which indicates that Ace1 and Sda1 are functional orthologs. Taken together, the data indicate that Sda1 is a transcriptional regulator of carbon metabolism and toxin production in F. verticillioides.

  19. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

    2012-05-22

    As a condition to the Disposal Authorization Statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year 2011 annual review for Area G. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 and formally approved in 2009. These analyses are expected to provide reasonable estimates of the long-term performance of Area G and, hence, the disposal facility's ability to comply with Department of Energy (DOE) performance objectives. Annual disposal receipt reviews indicate that smaller volumes of waste will require disposal in the pits and shafts at Area G relative to what was projected for the performance assessment and composite analysis. The future inventories are projected to decrease modestly for the pits but increase substantially for the shafts due to an increase in the amount of tritium that is projected to require disposal. Overall, however, changes in the projected future inventories of waste are not expected to compromise the ability of Area G to satisfy DOE performance objectives. The Area G composite analysis addresses potential impacts from all waste disposed of at the facility, as well as other sources of radioactive material that may interact with releases from Area G. The level of knowledge about the other sources included in the composite analysis has not changed sufficiently to call into question the validity of that analysis. Ongoing environmental surveillance activities are conducted at, and in the vicinity of, Area G. However, the information generated by

  20. Subproject L-045H 300 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    1991-06-01

    The study focuses on the project schedule for Project L-045H, 300 Area Treated Effluent Disposal Facility. The 300 Area Treated Effluent Disposal Facility is a Department of Energy subproject of the Hanford Environmental Compliance Project. The study scope is limited to validation of the project schedule only. The primary purpose of the study is to find ways and means to accelerate the completion of the project, thereby hastening environmental compliance of the 300 Area of the Hanford site. The ''300 Area'' has been utilized extensively as a laboratory area, with a diverse array of laboratory facilities installed and operational. The 300 Area Process Sewer, located in the 300 Area on the Hanford Site, collects waste water from approximately 62 sources. This waste water is discharged into two 1500 feet long percolation trenches. Current environmental statutes and policies dictate that this practice be discontinued at the earliest possible date in favor of treatment and disposal practices that satisfy applicable regulations

  1. Elk and Deer Study, Material Disposal Area G, Technical Area 54: Source document

    International Nuclear Information System (INIS)

    Ferenbaugh, J.K.; Fresquez, P.R.; Ebinger, M.H.; Gonzales, G.J.; Jordan, P.A.

    1999-01-01

    As nuclear research has become more prevalent, environmental contamination from the disposal of radioactive waste has become a prominent issue. At Los Alamos National Laboratory (LANL) in northern New Mexico, radioactive contamination from disposal operations has raised some very specific concerns. Material Disposal Area G (Area G) is the primary low-level radioactive waste disposal site at LANL and occupies an area adjacent to land belonging to the Native American community of the Pueblo of San Ildefonso. Analyses of soil and vegetation collected from the perimeter of Area G have shown concentrations of radionuclides greater than background concentrations established for northern New Mexico. As a result, Pueblo residents had become concerned that contaminants from Area G could enter tribal lands through various ecological pathways. The residents specifically questioned the safety of consuming meat from elk and deer that forage near Area G and then migrate onto tribal lands. Consequently, this study addresses the uptake of 3 H, 90 Sr, tot U, 238 Pu, 239 Pu, 241 Am, and 137 Cs by elk (Cervus elaphus) and deer (Odocoileus hemionus) that forage around the perimeter of Area G and the associated doses to the animals and to humans who consume these animals. Radionuclide uptake by and internal dose to animals was estimated using equations modified from National Council on Radiological Protection Report 76. The Residual Radiation computer code was used to estimate the external dose to animals and the dose to humans consuming meat. Soil and water concentrations from the perimeter of Area G and from background regions in northern New Mexico were averaged over 4 years (1993--1996) and used as input data for the models. Concentration estimates generated by the model correspond to the concentration range measured in actual tissue samples from elk and deer collected at LANL. The highest dose estimates for both animals (0.028 mrad/d) and humans (0.072 mrem/y) were well below

  2. Management of Pit 9 - highlights of accomplishments and lessons learned to date

    International Nuclear Information System (INIS)

    Schwartz, F.G.

    1995-01-01

    The Pit 9 project is a U.S. Department of Energy prototype full scale demonstration to retrieve and treat buried mixed transuranic waste. The project is being managed by the DOE-Idaho Environmental Restoration Program, in conjunction with the Environmental Protection Agency Region 10 and the state of Idaho, under the Idaho National Engineering Laboratory Federal Facility Agreement and Consent Order. Pit 9 is located in the northeast corner of the Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). The Pit 9 project was conceived out of the need to determine capabilities to cost effectively retrieve and treat buried radioactive and radioactive mixed waste, and obtain characterization and contaminant migration data for buried waste at the INEL. Waste was disposed in Pit 9 from November 1967 to June 1969. Pit 9, at about 380 feet by 125 feet, represents approximately one acre of surface area of the 88 acre SDA. The pit contains approximately 350,000 ft 3 of soil beneath and between the buried waste and about 250,000 ft 3 of overburden soil. The average depth of the pit from soil surface to bedrock is approximately 17.5 feet. Approximately 110,000 ft 3 of transuranic (TRU) contaminated mixed wastes from Rocky Flats and approximately 40,000 ft 3 of low level and mixed wastes from the INEL were buried in Pit 9 during this period. Pit 9 is estimated to contain over 30,000 gallons of organics (over 30% of the total organic inventory in the SDA) and approximately 66 pounds of TRU radionuclides (between 3% and 4% of the total TRU inventory in the SDA). Pit 9 was selected as a demonstration site because it was one of the last disposal pits at the INEL to receive Rocky Flats waste, disposal records are better for Pit 9 than for disposal pits and trenches from earlier points in time, and the wastes in Pit 9 are representative of the wastes disposed in the SDA

  3. 200 Area treated effluent disposal facility operational test report

    International Nuclear Information System (INIS)

    Crane, A.F.

    1995-01-01

    This document reports the results of the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These completed operational testing activities demonstrated the functional, operational and design requirements of the 200 Area TEDF have been met

  4. Quality system of the SDA laboratory to obtain the certification of Good BPLC-2009 (CECMED)

    International Nuclear Information System (INIS)

    Pizarro, L.; Acevedo, Y; Fernández, C; Cordoví, Y; Vázquez, L; Fraga, M; Salazar, Y; Benitez, M; Fernández, N; Lazo, I.

    2016-01-01

    Due to the financial limitations of hospitals in Cuba since the 1990s, and using CENTIS's coverage of a licensed laboratory for working with radioactive substances, an experienced staff made it possible a centralized analytical service (SDA) was considered by the RIA / IRMA method, which would help to alleviate the unmet demand for analysis, and in accordance with the requirements established by the Good Clinical Laboratory Practices (BPLC 03- 2009). An SDA Quality System was designed as a complement to the CENTIS Quality System, which would guarantee the reliability of the results. In order to ensure the traceability of the samples and their results through all stages of service execution, a computer system was designed as a reliable tool, in addition to the use of certified reference materials, reagent sets, periodic and constant calibration of the samples. Means of measurement (pipettes, metering equipment), training and evaluation of personnel in RIA // IRMA test techniques applied. The new potentialities of SDA are directed towards the introduction of tumor markers. Tumor markers are currently used primarily to evaluate the cancer reaction to treatment and to control relapse, although its role in the early detection and diagnosis of cancer is still being studied.

  5. Addendum to the composite analysis for the E-Area Vaults and Saltstone Disposal Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.

    2000-03-13

    This report documents the composite analysis performed on the two active SRS low-level radioactive waste disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults Disposal Facility.

  6. Addendum to the composite analysis for the E-Area Vaults and Saltstone Disposal Facilities

    International Nuclear Information System (INIS)

    Cook, J.R.

    2000-01-01

    This report documents the composite analysis performed on the two active SRS low-level radioactive waste disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults Disposal Facility

  7. 200 Area Treated Effluent Disposal Facility operational test specification. Revision 2

    International Nuclear Information System (INIS)

    Crane, A.F.

    1995-01-01

    This document identifies the test specification and test requirements for the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These operational testing activities, when completed, demonstrate the functional, operational and design requirements of the 200 Area TEDF have been met. The technical requirements for operational testing of the 200 Area TEDF are defined by the test requirements presented in Appendix A. These test requirements demonstrate the following: pump station No.1 and associated support equipment operate both automatically and manually; pump station No. 2 and associated support equipment operate both automatically and manually; water is transported through the collection and transfer lines to the disposal ponds with no detectable leakage; the disposal ponds accept flow from the transfer lines with all support equipment operating as designed; and the control systems operate and status the 200 Area TEDF including monitoring of appropriate generator discharge parameters

  8. Elk and Deer Study, Material Disposal Area G, Technical Area 54: Source document

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Ferenbaugh; P. R. Fresquez; M. H. Ebinger; G. J. Gonzales; P. A. Jordan

    1999-09-01

    As nuclear research has become more prevalent, environmental contamination from the disposal of radioactive waste has become a prominent issue. At Los Alamos National Laboratory (LANL) in northern New Mexico, radioactive contamination from disposal operations has raised some very specific concerns. Material Disposal Area G (Area G) is the primary low-level radioactive waste disposal site at LANL and occupies an area adjacent to land belonging to the Native American community of the Pueblo of San Ildefonso. Analyses of soil and vegetation collected from the perimeter of Area G have shown concentrations of radionuclides greater than background concentrations established for northern New Mexico. As a result, Pueblo residents had become concerned that contaminants from Area G could enter tribal lands through various ecological pathways. The residents specifically questioned the safety of consuming meat from elk and deer that forage near Area G and then migrate onto tribal lands. Consequently, this study addresses the uptake of {sup 3}H, {sup 90}Sr, {sup tot}U, {sup 238}Pu, {sup 239}Pu, {sup 241}Am, and {sup 137}Cs by elk (Cervus elaphus) and deer (Odocoileus hemionus) that forage around the perimeter of Area G and the associated doses to the animals and to humans who consume these animals. Radionuclide uptake by and internal dose to animals was estimated using equations modified from National Council on Radiological Protection Report 76. The Residual Radiation computer code was used to estimate the external dose to animals and the dose to humans consuming meat. Soil and water concentrations from the perimeter of Area G and from background regions in northern New Mexico were averaged over 4 years (1993--1996) and used as input data for the models. Concentration estimates generated by the model correspond to the concentration range measured in actual tissue samples from elk and deer collected at LANL. The highest dose estimates for both animals (0.028 mrad/d) and humans

  9. Effect of food on specific dynamic action (SDA) of green and red types of sea cucumber ( Apostichopus japonicus Selenka)

    Science.gov (United States)

    Bao, Jie; Jiang, Hongbo; Dong, Shuanglin; Tian, Xiangli

    2017-10-01

    Specific dynamic action (SDA), the energy expended on all physiological processes that is associated with meal digestion and absorption, is strongly affected by food type. Effects of formulated diet (FMD), macroalgae (ALG) and sea mud (SMD) diets on the postprandial metabolic response of the green type and the red type of sea cucumber ( Apostichopus japonicus) were studied in order to understand their feeding physiology. Food offered to A. japonicus was different in protein, lipid content and energy but not in meal mass. SDA of A. japonicus resulted in a 1.3-2.7 folds of increase in oxygen consumption that can persist for up to 4.8-31.7 h after digesting three different diets. In a given type of sea cucumber, the magnitude of SDA was the highest when fed with FMD, medium with ALG, and the lowest with SMD, which is probably due to the differences in diet components and protein contents. The red type sea cucumber showed greater SDA magnitude than the green type with each diet treatment, which might result from the difference in factorial scope between the two types of sea cucumber. However, the smallest magnitude or even no difference was observed between the two types of A. japonicus in SMD group, perhaps owing to the poor nutrition and digestion of sea mud.

  10. Land suitability for waste disposal in metropolitan areas.

    Science.gov (United States)

    Baiocchi, Valerio; Lelo, Keti; Polettini, Alessandra; Pomi, Raffaella

    2014-08-01

    Site selection for waste disposal is a complex task that should meet the requirements of communities and stakeholders. In this article, three decision support methods (Boolean logic, index overlay and fuzzy gamma) are used to perform land suitability analysis for landfill siting. The study was carried out in one of the biggest metropolitan regions of Italy, with the objective of locating suitable areas for waste disposal. Physical and socio-economic information criteria for site selection were decided by a multidisciplinary group of experts, according to state-of-the-art guidelines, national legislation and local normative on waste management. The geographic information systems (GIS) based models used in this study are easy to apply but require adequate selection of criteria and weights and a careful evaluation of the results. The methodology is arranged in three steps, reflecting the criteria defined by national legislation on waste management: definition of factors that exclude location of landfills or waste treatment plants; classification of the remaining areas in terms of suitability for landfilling; and evaluation of suitable sites in relation to preferential siting factors (such as the presence of quarries or dismissed plants). The results showed that more than 80% of the provincial territory falls within constraint areas and the remaining territory is suitable for waste disposal for 0.72% or 1.93%, according to the model. The larger and most suitable sites are located in peripheral areas of the metropolitan system. The proposed approach represents a low-cost and expeditious alternative to support the spatial decision-making process. © The Author(s) 2014.

  11. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2016

    Energy Technology Data Exchange (ETDEWEB)

    Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Atchley, Adam Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Elizabeth D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-24

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis (PA/CA) maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the PA/CA are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2016 annual review for Area G.

  12. Addendum to the Composite Analysis for the E-Area Vaults and Saltstone Disposal Facilities

    International Nuclear Information System (INIS)

    Cook, J.R.

    2002-01-01

    Revision 1 of the Composite Analysis (CA) Addendum has been prepared to respond to the U.S. Department of Energy (DOE) Low-Level Waste Disposal Facilities Federal Review Group review of the CA. This addendum to the composite analysis responds to the conditions of approval. The composite analysis was performed on the two active SRS low-level radioactive waste disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of the Savannah River Site and contains all of the waste disposal facilities, the chemical separation facilities and associated high-level waste storage facilities, as well as numerous other sources of radioactive material

  13. A comprehensive inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the INEL RWMC during the years 1984-2003, Volume 1

    International Nuclear Information System (INIS)

    1995-05-01

    This report presents a comprehensive inventory of the radiological and nonradiological contaminants in waste buried or projected to be buried from 1984 through 2003 in the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory. The project to compile the inventory is referred to as the recent and projected data task. The inventory was compiled primarily for use in a baseline risk assessment under the Comprehensive Environmental Response, Compensation, and Liability Act. The compiled information may also be useful for environmental remediation activities that might be necessary at the RWMC. The information that was compiled has been entered into a database termed CIDRA-the Contaminant Inventory Database for Risk Assessment. The inventory information was organized according to waste generator and divided into waste streams for each generator. The inventory is based on waste information that was available in facility operating records, technical and programmatic reports, shipping records, and waste generator forecasts. Additional information was obtained by reviewing the plant operations that originally generated the waste, by interviewing personnel formerly employed as operators, and by performing nuclear physics and engineering calculations. In addition to contaminant inventories, information was compiled on the physical and chemical characteristics and the packaging of the 99 waste streams. The inventory information for waste projected to be buried at the SDA in the future was obtained from waste generator forecasts. The completeness of the contaminant inventories was confirmed by comparing them against inventories in previous reports and in other databases, and against the list of contaminants detected in environmental monitoring performed at the RWMC

  14. 300 Area Treated Effluent Disposal Facility (TEDF) Hazards Assessment

    International Nuclear Information System (INIS)

    CAMPBELL, L.R.

    1999-01-01

    This document establishes the technical basis in support of emergency planning activities for the 300 Area Treated Effluent Disposal Facility. The technical basis for project-specific Emergency Action Levels and Emergency Planning Zone is demonstrated

  15. Rodent movements, densities and radionuclide concentrations at a liquid radioactive waste disposal area

    International Nuclear Information System (INIS)

    Halford, D.K.

    1983-01-01

    Movements and densities of rodents at a liquid radioactive waste disposal area were studied from June to September 1981 using trap line and assessment line techniques. The average distance between points of successive capture was 42 +- 25 (SD) m for deer mice (Peromyscus maniculatus) and 37 +- 21 m for kangaroo rats (Dipodomys ordii). Densities of deer mice averaged 10.2/ha with a population estimate of 57 within the area of rodent captures. The population estimate of 4 species of small mammals at the waste pond complex was 93. Radionuclide concentrations averaged 133 +- 97 pCi/g for rodents captured inside the disposal area boundary, 18 +- 22 pCi/g for those captured outside of the dispoal area fence and 0.50 +- 0.6 pCi/g for control animals. Species captured outside of the waste area boundary had significantly lower (P 137 Cs, 134 Cs, 60 Co and 65 Zn) in rodents at the liquid waste disposal area was estimated to be about 162 nCi

  16. Engineered barrier durability: An issue for disposal near populated areas

    International Nuclear Information System (INIS)

    Porter, C.L.

    1995-01-01

    Under the current national policy for disposal of low-level radioactive waste (LLW) in the United States of America, each State is required to provide disposal capacity for the LLW generated within its borders. The formation of ''Compacts'' of several States is allowed if approved by Congress. Such forced regionalization of disposal facilities based on State boundaries results in some disposal facilities being sited near populated areas at locations with less than optimum site characteristics from a disposal standpoint. To compensate for this engineered barriers are included in the proposed designs. Portland cement based concrete (PCC), which is the dominant material for disposal vault designs, is degraded via many mechanisms, most of which are related to its permeability. The numerous uncertainties associated with the long-term performance of PCC has lead to many unsuccessful attempts to obtain public acceptance of proposed disposal facilities. These unsuccessful efforts have delayed establishing disposal capacity to the point that a crisis is looming on the horizon. This paper investigates the results of on-going research into the viability of commercially available, impermeable, mass-poured construction materials as an alternative to PCC in LLW disposal vaults. The results from testing and research on two such materials, concrete made from sulfur polymer cement (SPC) and ICOM (an epoxy based concrete) are reported. Material properties and test results include strength parameters, chemical resistance, porosity, permeability, deconability, radiation damage resistance, and biodegradation. The data indicates that with these alternative materials the uncertainties in predicting service life of an engineered barrier can be reduced

  17. PIT 9 Project: A private sector initiative

    International Nuclear Information System (INIS)

    Macdonald, D.W.; Hughes, F.P.; Burton, B.N.

    1993-01-01

    The Pit 9 Comprehensive Demonstration is intended to demonstrate a cost-effective approach to remediate an Idaho National Engineering Lab. (INEL) waste disposal pit through a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Interim Action. The remediation will include additional requirements, if needed, to provide high confidence that only minor additional work would be necessary to accomplish the final closure as part of the overall final closure strategy for the INEL's Subsurface Disposal Area (SDA). Pit 9 is an inactive waste disposal pit located in the northeastern corner of the SDA at the INEL's Radioactive Waste Management Complex (RWMC). It covers approximately 1 acre. The waste within Pit 9 is primarily transuranic waste generated at the Rocky Flats Plant and additional wastes, both hazardous and low-level radioactive, from generators at the INEL

  18. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility – Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis (PA/CA) are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2015 annual review for Area G.

  19. Special Analysis: 2017-001 Disposal of Drums Containing Enriched Uranium in Pit 38 at Technical Area 54, Area G

    Energy Technology Data Exchange (ETDEWEB)

    Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-05

    Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. This special analysis, SA 2017-001, evaluates the potential impacts of disposing of this waste in Pit 38 at Area G based on the assumptions that form the basis of the Area G PA/CA. Section 2 describes the methods used to conduct the analysis; the results of the evaluation are provided in Section 3; and conclusions and recommendations are provided in Section 4.

  20. In situ vitrification on buried waste

    International Nuclear Information System (INIS)

    Bates, S.O.

    1992-01-01

    In situ vitrification (ISV) is being evaluated as a remedial treatment technology for buried mixed and transuranic (TRU) wastes at the Subsurface Disposal Area (SDA) at Idaho National Engineering Laboratory (INEL) and can be related to buried wastes at other Department of Energy (DOE) sites. There are numerous locations around the DOE Complex where wastes were buried in the ground or stored for future burial. The Buried Waste Program (BWP) is conducting a comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation/feasibility study (RI/FS) for the Department of Energy - Field Office Idaho (DOE-ID). As part of the RI/FS, an ISV scoping study on the treatability of the SDA mixed low-level and mixed TRU waste is being performed for applicability to remediation of the waste at the Radioactive Waste Management Complex (RWMC). The ISV project being conducted at the INEL by EG ampersand G Idaho, Inc. consists of a treatability investigation to collect data to satisfy nine CERCLA criteria with regards to the SDA. This treatability investigation involves a series of experiments and related efforts to study the feasibility of ISV for remediation of mixed and TRU waste disposed of at the SDA

  1. Radiological performance assessment for the E-Area Vaults Disposal Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2000-01-01

    This report is the first revision to ''Radiological Performance Assessment for the E-Area Vaults Disposal Facility, Revision 0'', which was issued in April 1994 and received conditional DOE approval in September 1994. The title of this report has been changed to conform to the current name of the facility. The revision incorporates improved groundwater modeling methodology, which includes a large data base of site specific geotechnical data, and special Analyses on disposal of cement-based wasteforms and naval wastes, issued after publication of Revision 0

  2. Brazilian low and intermediate level radioactive waste disposal and environmental conservation areas

    International Nuclear Information System (INIS)

    Uemura, George; Cuccia, Valeria

    2013-01-01

    Low and intermediate level radioactive waste should be disposed off in proper disposal facilities. These facilities must include unoccupied areas as protection barriers, also called buffer zone. Besides that, Brazilian environmental laws require that certain enterprises must preserve part of their area for environmental conservation. The future Brazilian low and intermediate level waste repository (RBMN) might be classified as such enterprise. This paper presents and discusses the main Brazilian legal framework concerning different types of conservation areas that are allowed and which of them could be applied to the buffer zones of RBMN. The possibility of creating a plant repository in the buffer zone is also discussed. (author)

  3. Diseño óptimo de un sistema de distribución de agua (SDA aplicando el algoritmo Simulated Annealing (SA

    Directory of Open Access Journals (Sweden)

    Maikel Méndez-Morales

    2014-09-01

    Full Text Available En este artículo se presenta la aplicación del algoritmo Simulated Annealing (SA en el diseño óptimo de un sistema de distribución de agua (SDA. El SA es un algoritmo metaheurístico de búsqueda, basado en una analogía entre el proceso de recocido en metales (proceso controlado de enfriamiento de un cuerpo y la solución de problemas de optimización combinatorios. El algoritmo SA, junto con diversos modelos matemáticos, ha sido utilizado exitosamente en el óptimo diseño de SDA. Como caso de estudio se utilizó el SDA a escala real de la comunidad de Marsella, en San Carlos, Costa Rica. El algoritmo SA fue implementado mediante el conocido modelo EPANET, a través de la extensión WaterNetGen. Se compararon tres diferentes variaciones automatizadas del algoritmo SA con el diseño manual del SDA Marsella llevado a cabo a prueba y error, utilizando únicamente costos unitarios de tuberías. Los resultados muestran que los tres esquemas automatizados del SA arrojaron costos unitarios por debajo del 0.49 como fracción, respecto al costo original del esquema de diseño ejecutado a prueba y error. Esto demuestra que el algoritmo SA es capaz de optimizar problemas combinatorios ligados al diseño de mínimo costo de los sistemas de distribución de agua a escala real.

  4. Importance of biota in radionuclide transport at the SL-1 radioactive waste disposal area

    International Nuclear Information System (INIS)

    Arthur, W.J.; Grant, J.C.; Markham, O.D.

    1983-01-01

    During summer 1981 and 1982, radioecological research was conducted at the Stationary Low Power Reactor-1 radioactive waste disposal area to: (1) identify vegetation, wildlife, and invertebrate species occurring at or using the area; (2) determine radionuclide concentrations in these various ecosystem components; and (3) to evaluate their respective roles in radionuclide uptake and transport through the surrounding environment. Cesium-137 concentrations detected in surface soils, small mammal excavated soils and small mammal tissues collected at the waste disposal site were significantly (P less than or equal to 0.05) greater than control area samples. Strontium-90 and 235 U analyses of SL-1 and control area samples and projections of total mass of ecosystem components in SL-1 area will be completed in summer of 1983 at which time estimates will be made on the total quantity of fission and activation radionuclides occurring in ecological media at the SL-1 waste disposal area

  5. Small mammal density and movement on the SL-1 disposal area, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Filipovich, M.A.; Keller, B.L.

    1983-01-01

    This study was initiated to examine the population composition, density and food habits of small mammals on a radioactive waste disposal area. Population parameters of small mammals were studied at 3-month intervals on and adjacent to the SL-1 radioactive waste disposal area (1.4 ha) and a 0.3 ha control area between August 1981 and February 1982 with mark-release methods. Both areas have crested wheatgrass (Agropyron cristatum) stands surrounded by sagebrush steppe. Species composition on the SL-1 and control area was similar to that found on the Subsurface Disposal Area at the Idaho National Engineering Laboratory. Considerable use by small mammals of the perimeter of the crested wheatgrass stands was found on both the SL-1 and control area. Additionally, deer mice (Peromyscus maniculatus) and Ord's kangaroo rats (Dipodomys ordii) that frequent the crested wheatgrass stands of the SL-1 and control area were often captured over 100 m from the crested wheatgrass stands. Thus, future research efforts will focus on examining the intensity of perimeter use and food habits of rodents residing on and adjacent to the SL-1. Results of this study will be used to evaluate ecological conditions that affect small mammal use of radioactive waste disposal areas

  6. Radiological performance assessment for the E-Area Vaults Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.; Hunt, P.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1994-04-15

    The E-Area Vaults (EAVs) located on a 200 acre site immediately north of the current LLW burial site at Savannah River Site will provide a new disposal and storage site for solid, low-level, non-hazardous radioactive waste. The EAV Disposal Facility will contain several large concrete vaults divided into cells. Three types of structures will house four designated waste types. The Intermediate Level Non-Tritium Vaults will receive waste radiating greater than 200 mR/h at 5 cm from the outer disposal container. The Intermediate Level Tritium Vaults will receive waste with at least 10 Ci of tritium per package. These two vaults share a similar design, are adjacent, share waste handling equipment, and will be closed as one facility. The second type of structure is the Low Activity Waste Vaults which will receive waste radiating less than 200 mR/h at 5 cm from the outer disposal container and containing less than 10 Ci of tritium per package. The third facility, the Long Lived Waste Storage Building, provides covered, long term storage for waste containing long lived isotopes. Two additional types of disposal are proposed: (1) trench disposal of suspect soil, (2) naval reactor component disposal. To evaluate the long-term performance of the EAVs, site-specific conceptual models were developed to consider: (1) exposure pathways and scenarios of potential importance; (2) potential releases from the facility to the environment; (3) effects of degradation of engineered features; (4) transport in the environment; (5) potential doses received from radionuclides of interest in each vault type.

  7. Radiological performance assessment for the E-Area Vaults Disposal Facility

    International Nuclear Information System (INIS)

    Cook, J.R.; Hunt, P.D.

    1994-01-01

    The E-Area Vaults (EAVs) located on a 200 acre site immediately north of the current LLW burial site at Savannah River Site will provide a new disposal and storage site for solid, low-level, non-hazardous radioactive waste. The EAV Disposal Facility will contain several large concrete vaults divided into cells. Three types of structures will house four designated waste types. The Intermediate Level Non-Tritium Vaults will receive waste radiating greater than 200 mR/h at 5 cm from the outer disposal container. The Intermediate Level Tritium Vaults will receive waste with at least 10 Ci of tritium per package. These two vaults share a similar design, are adjacent, share waste handling equipment, and will be closed as one facility. The second type of structure is the Low Activity Waste Vaults which will receive waste radiating less than 200 mR/h at 5 cm from the outer disposal container and containing less than 10 Ci of tritium per package. The third facility, the Long Lived Waste Storage Building, provides covered, long term storage for waste containing long lived isotopes. Two additional types of disposal are proposed: (1) trench disposal of suspect soil, (2) naval reactor component disposal. To evaluate the long-term performance of the EAVs, site-specific conceptual models were developed to consider: (1) exposure pathways and scenarios of potential importance; (2) potential releases from the facility to the environment; (3) effects of degradation of engineered features; (4) transport in the environment; (5) potential doses received from radionuclides of interest in each vault type

  8. Preparation of Radwaste Disposal Site in Jawa Island and Its Surrounding Areas

    International Nuclear Information System (INIS)

    Budi Setiawan; Teddy Sumantry; Heru Sriwahyuni; Hendra A Pratama; Nurul Efri E; Achmad Sjarmufni; Pratomo Budiman; Dadang Suganda; Soegeng Waluyo; Ari Pudyo; Dewi Susilowati; Marwoto

    2008-01-01

    The task continuation and national needs indicate the important of starting for radioactive waste disposal preparation. As the IAEA procedures for the first step are to accomplished the conceptual and planning stage of radwaste disposal siting in Jawa island. Within the plan, the Milestone, the site important factors, the potential host rock, the possible areas, the aims and the investigation programs have been defined. From the procedures which are followed hopefully in the end of the activities, suitable site(s) to be able selected for radioactive waste disposal facility in near future. (author)

  9. Geological characterisation of potential disposal areas for radioactive waste from Risoe, Denmark

    International Nuclear Information System (INIS)

    Gravesen, P.; Binderup, M.; Nilsson, B.; Schack Pedersen, S.A.

    2011-01-01

    Low- and intermediate-level radioactive waste from the Danish nuclear research facility, Risoe, includes construction materials from the reactors, different types of contaminated material from the research projects and radioactive waste from hospitals, industry and research institutes. This material must be stored in a permanent disposal site in Denmark for at least 300 years. The latter study was conducted by the Geological Survey of Denmark and Greenland (GEUS) and the aim was to locate a sediment or rock body with low permeability down to 100-300 m below the ground surface. GEUS was given the task to locate approximately 20 potential disposal areas. The survey resulted in the selection of 22 areas throughout Denmark. Six of these areas are preferred on geological and hydrogeological criteria. (LN)

  10. Cognition of high-level radioactive waste disposal in the Tokyo metropolitan area

    International Nuclear Information System (INIS)

    Kimura, Hiroshi

    2010-01-01

    In Japan, the disposal of high-level radioactive waste (HLW) produced by nuclear power generation is an urgent issue. Recently, some questionnaire surveys were conducted. Especially the surveys in the Tokyo metropolitan area which were conducted by AESJ include the fulfilling questions concerning HLW relatively. In this paper, the author shows the results of surveys by AESJ. These results show that the issue concerning HLW is not so much concern for the respondents by comparison with many kinds of issues in the society. They also show that female respondents have less understanding about HLW disposal and have more degree of anxiety against HLW and disposal than male respondents. (author)

  11. Geochemical and Geophysical Study in a Degraded Area Used for Disposal of Sludge from a Water Treatment Plant

    International Nuclear Information System (INIS)

    Moreira, R.C.A.; Nunes, S.A.; Da Silva, D.R.; Lira, C.P.; Boaventura, G.R.; Do Nascimento, C.T.C.; Moreira, R.C.A.; Pinheiro, L.A.

    2011-01-01

    The effects of disposal of sludge from water treatment plant (WTS) in area damaged by laterite extraction and its consequences to soil and groundwater were investigated. Therefore, the presence and concentration of anthropogenic elements and chemical compounds were determinated. WTS disposal's influence was characterized by electroresistivity method. The WTS's geochemical dispersion was noticed in the first meters of the non saturated zone from the lending area. Lateritic profiles were characterized due to the large variation in chemical composition between the horizons. Infiltration and percolation of rainwater through the WTS have caused migration of total dissolved solids to the groundwater. WTS's disposing area has more similarities to local preserved vegetation than to gravel bed area. WTS can be considered a noninert residue if disposed in degraded areas located in regions with similar geological and hydrochemical characteristics.

  12. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Water and waste disposal systems which have become... Water and waste disposal systems which have become part of an urban area. A water and/or waste disposal.... The following will be forwarded to the Administrator, Attention: Water and Waste Disposal Division...

  13. Estimation of doses to individuals from radionuclides disposed of in Solid Waste Storage Area 6

    International Nuclear Information System (INIS)

    Fields, D.E.; Boegly, W.J. Jr.; Huff, D.D.

    1986-01-01

    A simple methodology has been applied to estimate maximum possible doses to individuals from exposure to radionuclides released from Solid Waste Storage Area No. 6. This is the only operating shallow-land disposal site for radioactive waste at the Oak Ridge National Laboratory. The methodology is based upon simple, conservative assumptions. A data base of radionuclides disposed of in trenches and auger holes was prepared, and several radionuclide transport and ingestion scenarios were considered. The results of these simulations demonstrate the potential for adverse health effects associated with this waste disposal area, and support the need for further calculations using more complete and realistic assumptions

  14. The sdA problem - I. Physical properties

    Science.gov (United States)

    Pelisoli, Ingrid; Kepler, S. O.; Koester, D.

    2018-04-01

    The so-called sdA stars are defined by having H-rich spectra and surface gravities similar to hot subdwarf stars, but effective temperature below the zero-age horizontal branch. Their evolutionary history is an enigma: their surface gravity is too high for main-sequence stars, but too low for single evolution white dwarfs. They are most likely byproducts of binary evolution, including blue-stragglers, extremely-low mass white dwarf stars (ELMs) and their precursors (pre-ELMs). A small number of ELMs with similar properties to sdAs is known. Other possibilities include metal-poor A/F dwarfs, second generation stars, or even stars accreted from dwarf galaxies. In this work, we analyse colours, proper motions, and spacial velocities of a sample of sdAs from the Sloan Digital Sky Survey to assess their nature and evolutionary origin. We define a probability of belonging to the main sequence and a probability of being a (pre-)ELM based on these properties. We find that 7 per cent of the sdAs are more likely to be (pre-)ELMs than main-sequence stars. However, the spacial velocity distribution suggests that over 35 per cent of them cannot be explained as single metal-poor A/F stars.

  15. Quantitative risk assessment of the New York State operated West Valley Radioactive Waste Disposal Area.

    Science.gov (United States)

    Garrick, B John; Stetkar, John W; Bembia, Paul J

    2010-08-01

    This article is based on a quantitative risk assessment (QRA) that was performed on a radioactive waste disposal area within the Western New York Nuclear Service Center in western New York State. The QRA results were instrumental in the decision by the New York State Energy Research and Development Authority to support a strategy of in-place management of the disposal area for another decade. The QRA methodology adopted for this first of a kind application was a scenario-based approach in the framework of the triplet definition of risk (scenarios, likelihoods, consequences). The measure of risk is the frequency of occurrence of different levels of radiation dose to humans at prescribed locations. The risk from each scenario is determined by (1) the frequency of disruptive events or natural processes that cause a release of radioactive materials from the disposal area; (2) the physical form, quantity, and radionuclide content of the material that is released during each scenario; (3) distribution, dilution, and deposition of the released materials throughout the environment surrounding the disposal area; and (4) public exposure to the distributed material and the accumulated radiation dose from that exposure. The risks of the individual scenarios are assembled into a representation of the risk from the disposal area. In addition to quantifying the total risk to the public, the analysis ranks the importance of each contributing scenario, which facilitates taking corrective actions and implementing effective risk management. Perhaps most importantly, quantification of the uncertainties is an intrinsic part of the risk results. This approach to safety analysis has demonstrated many advantages of applying QRA principles to assessing the risk of facilities involving hazardous materials.

  16. Preparation of Potentially Site Candidate of Radioactive Waste Disposal in Java Island and Its Surrounding Areas

    International Nuclear Information System (INIS)

    Budi Setiawan

    2008-01-01

    Introduction plan of NPP in Indonesia raised public attentions specially for its radwaste management and its disposal activity. In the next 5 year (2007-2011) will be provided some sites for radwaste disposal, both for near surface disposal and geological disposal systems with suitable and safely based on the IAEA standard. To find out a save and suitable location, field investigation programme is needed. Prior entering into investigation programme, preliminary activities are necessary to be arranged such as secondary data collecting: identification of host rock, interest areas, objectives and investigation programmes. Through desktop study with limited references hopefully information of some areas in Java Island with widely enough, thick and exposed into surface of clay deposit indication could be obtained. Objective of the activity is to prepare important supporting data before actualize as a field survey programme. Results showed that secondary data such as rock identification, interest areas, objectives and investigation programmes are found out. (author)

  17. 30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of excess rock and earth materials on surface areas. 717.15 Section 717.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR INITIAL PROGRAM REGULATIONS UNDERGROUND MINING GENERAL PERFORMANCE STANDARDS § 717.15 Disposal of excess rock and...

  18. Plutonium Equivalent Inventory for Belowground Radioactive Waste at the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    International Nuclear Information System (INIS)

    French, Sean B.; Shuman, Robert

    2012-01-01

    The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Many aspects of the management of this waste are conducted at Technical Area 54 (TA-54); Area G plays a key role in these management activities as the Laboratory's only disposal facility for low-level radioactive waste (LLW). Furthermore, Area G serves as a staging area for transuranic (TRU) waste that will be shipped to the Waste Isolation Pilot Plant for disposal. A portion of this TRU waste is retrievably stored in pits, trenches, and shafts. The radioactive waste disposed of or stored at Area G poses potential short- and long-term risks to workers at the disposal facility and to members of the public. These risks are directly proportional to the radionuclide inventories in the waste. The Area G performance assessment and composite analysis (LANL, 2008a) project long-term risks to members of the public; short-term risks to workers and members of the public, such as those posed by accidents, are addressed by the Area G Documented Safety Analysis (LANL, 2011a). The Documented Safety Analysis uses an inventory expressed in terms of plutonium-equivalent curies, referred to as the PE-Ci inventory, to estimate these risks. The Technical Safety Requirements for Technical Area 54, Area G (LANL, 2011b) establishes a belowground radioactive material limit that ensures the cumulative projected inventory authorized for the Area G site is not exceeded. The total belowground radioactive waste inventory limit established for Area G is 110,000 PE-Ci. The PE-Ci inventory is updated annually; this report presents the inventory prepared for 2011. The approach used to estimate the inventory is described in Section 2. The results of the analysis are presented in Section 3.

  19. Population ecology of small mammals on the radioactive waste management complex, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Groves, C.R.; Keller, B.L.

    1983-01-01

    Species composition, diversity, biomass, population dynamics, absolute density, and movements of small mammal populations were examined on and adjacent to a solid radioactive waste disposal area in southeastern Idaho. The 15-month live-trapping study resulted in marking 2384 individuals representing 10 species of small mammals. Three vegetation types were sampled: crested wheatgrass (Agropyron cristatum) and Russian thistle (Salsola kali) habitats on the disposal area and native sagebrush (Artemisia tridentata) habitat surrounding the disposal area. The deer mouse (Peromyscus maniculatus) was the most common rodent in both disposal area habitats as well as the adjacent sagebrush habitat; Ord's kangaroo rat (Dipodomys ordii) was also an abundant rodent in all vegetation types. The montane vole (Microtus montanus) was common only in crested wheatgrass stands on the disposal area. The annual total small mammal biomass of 346 kg for the entire disposal area represents a potentially large vector for movement of radionuclides off the disposal area. However, the number of animals known to contact waste areas and traverse at least 50 m beyond the perimeter of the SDA appears to be small (8.7%)

  20. Investigation of radionuclide release from Solid Waste Disposal Area 3, Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Stueber, A.M.; Webster, D.A.; Munro, I.L.; Farrow, N.D.; Scott, T.G.

    1981-08-01

    Radionuclide release from Solid Waste Disposal Area (SWDA) 3 has been studied through the analysis of surface and ground waters from the local drainage areas. SWDA 3 is located in the Northwest Tributary drainage basin, a part of the White Oak Creek drainage; 90 Sr is the only radionuclide being discharged in solution in the main stream. Water-level measurements in wells around SWDA 3 suggest the presence of a ground-water divide beneath the southwestern end of the disposal area. Ground water below this area may be moving southwestward toward the Raccoon Creek drainage system. Strontium-90 activity has been detected in this watershed, discharging from a seep adjacent to a Raccoon Creek tributary stream about 640 m southwest of SWDA 3. It appears that 90 Sr is moving through ground-water flow to the northeast and to the southwest of SWDA 3 and that this direction of movement is related to bedrock structure. The trend of a line connecting the two seeps passes through the disposal area and is parallel to bedrock strike. Information from core-hole logs and televiewer logs suggests that 90 Sr in ground water may be moving through solution channels near the contact between units F and G of the Chickamauga Limestone. The apparent extent of migration of 90 Sr in bedrock has implications regarding potential underground radionuclide movement in Melton Valley

  1. Polonium-210 in the environment around a radioactive waste disposal area and phosphate ore processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, III, W J; Markham, O D

    1984-04-01

    Polonium-210 concentrations were determined for soil, vegetation and small mammal tissues collected at a solid radioactive waste disposal area, near a phosphate ore processing plant and at two rural areas in southeastern Idaho. Polonium concentrations in media sampled near the radioactive waste disposal facility were equal to or less than values from rural area samples, indicating that disposal of solid radioactive waste at the Idaho National Engineering Laboratory Site has not resulted in increased environmental levels of polonium. Concentrations of /sup 210/Po in soils, deer mice hide and carcass samples collected near the phosphate processing plant were statistically greater than the other sampling locations; however, the mean /sup 210/Po concentration in soils and small mammal tissues from sampling areas near the phosphate plant were only four and three times greater, respectively, than control values. No statistical difference was observed for /sup 210/Po concentrations in vegetation among any of the sampling locations.

  2. Closure Report for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. B. Campbell

    2003-03-01

    Corrective Action Unit (CAU) 425 is located on the Tonopah Test Range, approximately 386 kilometers (240 miles) northwest of Las Vegas, Nevada. CAU 425 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and is comprised of one Corrective Action Site (CAS). CAS 09-08-001-TA09 consisted of a large pile of concrete rubble from the original Hard Target and construction debris associated with the Tornado Rocket Sled Tests. CAU 425 was closed in accordance with the FFACO and the Nevada Division of Environmental Protection-approved Streamlined Approach for Environmental Restoration Plan for CAU 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada (U.S. Department of Energy, Nevada Operations Office, 2002). CAU 425 was closed by implementing the following corrective actions: The approved corrective action for this unit was clean closure. Closure activities included: (1) Removal of all the debris from the site. (2) Weighing each load of debris leaving the job site. (3) Transporting the debris to the U.S. Air Force Construction Landfill for disposal. (4) Placing the radioactive material in a U.S. Department of Transportation approved container for proper transport and disposal. (5) Transporting the radioactive material to the Nevada Test Site for disposal. (6) Regrading the job site to its approximate original contours/elevation.

  3. Hydrologic and Meteorological Data for an Unsaturated-Zone Study Area near the Radioactive Waste Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho, 1990-96

    International Nuclear Information System (INIS)

    Perkins, K. S.; Nimmo, J. R.; Pittman, J. R.

    1998-01-01

    Trenches and pits at the Radioactive Waste Management Complex (RWMC) Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (formerly known as the Idaho National Engineering Laboratory) have been used for burial of radioactive waste since 1952. In 1985, the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, began a multi-phase study of the geohydrology of the RWMC to provide a basis for estimating the extent of and the potential for migration of radionuclides in the unsaturated zone beneath the waste trenches and pits. This phase of the study provides hydrologic and meteorological data collected at a designated test trench area adjacent to the northern boundary of the RWMC SDA from 1990 through 1996. The test trench area was constructed by the USGS in 1985. Hydrologic data presented in this report were collected during 1990-96 in the USGS test trench area. Soil-moisture content measurement from disturbed and undisturbed soil were collected approximately monthly during 1990-96 from 11 neutron-probe access holes with a neutron moisture gage. In 1994, three additional neutron access holes were completed for monitoring. A meteorological station inside the test trench area provided data for determination of evapotranspiration rates. The soil-moisture and meteorological data are contained in files on 3-1/2 inch diskettes (disks 1 and 2) included with this report. The data are presented in simple American Standard Code for Information Interchange (ASCII) format with tab-delimited fields. The files occupy a total of 1.5 megabytes of disk space

  4. Concept and Planning of Site Preparation for Radioactive Waste Disposal in Jawa and Surrounding Area

    International Nuclear Information System (INIS)

    Heru Sriwahyuni; Sastrowardoyo, Pratomo B.; Teddy Sumantri; Dewi Susilowati; Hendra Adhi Pratama; Syarmufni, A.

    2008-01-01

    Concept and planning for radioactive waste disposal in Jawa and surrounding area have been done. These activities were part of the investigation for preparation of repository location in Jawa. In this report, the summary of previous sitting activities, the waste inventory in Radioactive Waste Technology Centre, and list of important factors for sitting on radioactive waste disposal location. Several potential areas such as Karawang, Subang, Majalengka, Rembang, Tuban, Madura will be the focus for next activities. The result will be part of activities report regarding the preparation of repository location in Jawa and surrounding area, that will be used as recommendation prior to radioactive waste management policy. (author)

  5. Disposal of waste from the cleanup of large areas contaminated as a result of a nuclear accident

    International Nuclear Information System (INIS)

    1992-01-01

    The report provides an overview of the methodology and technology available to load, transport and dispose of large volumes of contaminated material arising from the cleanup of areas after a nuclear accident and includes data on the planning, implementation, management and costing of such activities. To demonstrate the use of this information, three cleanup and disposal scenarios are examined, ranging from disposal in many small mounds or trenches within the contaminated area to disposal in a large facility away from the plant. As in the two companion reports, it is assumed that the population has been evacuated from the affected area. The report reviews the generic types of low level radioactive waste which are likely to arise from such a cleanup. The report does not deal with the recovery and disposal of intermediate and high level radioactive material on or near the plant site. This material will have to be recovered, packaged, transported and stored on-site or disposed of at an appropriate facility. These operations should be done by specialist teams using shielded or remotely operated equipment. Also not included are methods of in situ stabilization of contamination, for example ploughing to bury the top contaminated layer at a suitable depth. These techniques, which are likely to be widely used in part of the evacuated are, are discussed in IAEA Technical Reports Series No. 300, Vienna, 1989. 50 refs, 18 figs, 4 tabs

  6. Estimates of relative areas for the disposal in bedded salt of LWR wastes from alternative fuel cycles

    International Nuclear Information System (INIS)

    Lincoln, R.C.; Larson, D.W.; Sisson, C.E.

    1978-01-01

    The relative mine-level areas (land use requirements) which would be required for the disposal of light-water reactor (LWR) radioactive wastes in a hypothetical bedded-salt formation have been estimated. Five waste types from alternative fuel cycles have been considered. The relative thermal response of each of five different site conditions to each waste type has been determined. The fuel cycles considered are the once-through (no recycle), the uranium-only recycle, and the uranium and plutonium recycle. The waste types which were considered include (1) unreprocessed spent reactor fuel, (2) solidified waste derived from reprocessing uranium oxide fuel, (3) plutonium recovered from reprocessing spent reactor fuel and doped with 1.5% of the accompanying waste from reprocessing uranium oxide fuel, (4) waste derived from reprocessing mixed uranium/plutonium oxide fuel in the third recycle, and (5) unreprocessed spent fuel after three recycles of mixed uranium/plutonium oxide fuels. The relative waste-disposal areas were determined from a calculated value of maximum thermal energy (MTE) content of the geologic formations. Results are presented for each geologic site condition in terms of area ratios. Disposal area requirements for each waste type are expressed as ratios relative to the smallest area requirement (for waste type No. 2 above). For the reference geologic site condition, the estimated mine-level disposal area ratios are 4.9 for waste type No. 1, 4.3 for No. 3, 2.6 for No. 4, and 11 for No. 5

  7. Preparations for Retrieval of Buried Waste at Material Disposal Area B

    International Nuclear Information System (INIS)

    Chaloupka, A.B.; Criswell, C.W.; Goldberg, M.S.; Gregory, D.R.; Worth, E.P.

    2009-01-01

    Material Disposal Area B, a hazard category 3 nuclear facility, is scheduled for excavation and the removal of its contents. Wastes and excavated soils will be characterized for disposal at approved off-site waste disposal facilities. Since there were no waste disposal records, understanding the context of the historic operations at MDA B was essential to understanding what wastes were disposed of and what hazards these would pose during retrieval. The operational history of MDA B is tied to the earliest history of the Laboratory, the scope and urgency of World War II, the transition to the Atomic Energy Commission in January 1947, and the start of the cold war. A report was compiled that summarized the development of the process chemistry, metallurgy, and other research and production activities at the Laboratory during the 1944 to 1948 time frame that provided a perspective of the work conducted; the scale of those processes; and the handling of spent chemicals and contaminated items in lieu of waste disposal records. By 1947, all laboratories had established waste disposal procedures that required laboratory and salvage wastes to be boxed and sealed. Large items or equipment were to be wrapped with paper or placed in wooden crates. Most wastes were placed in cardboard boxes and were simply piled into the active trench. Bulldozers were used to cover the material with fill dirt on a weekly basis. No effort was made to separate waste types or loads, or to compact the wastes under the soil cover. Using the historical information and a statistical analysis of the plutonium inventory, LANL prepared a documented safety analysis for the waste retrieval activities at MDA B, in accordance with DOE Standard 1120-2005, Integration of Environment, Safety, and Health into Facility Disposition Activities, and the provisions of 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response. The selected hazard controls for the MDA B project consist of passive design

  8. Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site

    International Nuclear Information System (INIS)

    Kincaid, C.T.; Bergeron, M.P.; Cole, C.R.

    1998-03-01

    This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the open-quotes as low as reasonably achievableclose quotes concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes

  9. Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Kincaid, C.T.; Bergeron, M.P.; Cole, C.R. [and others

    1998-03-01

    This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the {open_quotes}as low as reasonably achievable{close_quotes} concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes.

  10. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning

  11. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning.

  12. Pit 9 project: A private sector initiative

    International Nuclear Information System (INIS)

    Macdonald, D.W.; Hughes, F.P.; Burton, B.N.

    1993-01-01

    This report discusses the Pit 9 Comprehensive Demonstration which is intended to demonstrate a cost-effective approach to remediate an Idaho National Engineering Laboratory (INEL) waste disposal pit through a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Interim Action. The remediation will include additional requirements, if needed, to provide high confidence that only minor additional work would be necessary to accomplish the final closure as part of the overall final closure strategy for the INEL's Subsurface Disposal Area (SDA)

  13. Readiness plan, Hanford 300 Area Treated Effluent Disposal Facility: Revision 1

    International Nuclear Information System (INIS)

    Storm, S.J.

    1994-01-01

    The 300 Area Treated Effluent Disposal Facility (TEDF) is designed for the collection, treatment, and eventual disposal of liquid waste from the 300 Area Process Sewer (PS) system. The PS currently discharges water to the 300 Area Process Trenches. Facilities supported total 54 buildings, including site laboratories, inactive buildings, and support facilities. Effluent discharges to the process sewer from within these facilities include heating, ventilation, and air conditioning systems, heat exchangers, floor drains, sinks, and process equipment. The wastewaters go through treatment processes that include iron coprecipitation, ion exchange and ultraviolet oxidation. The iron coprecipitation process is designed to remove general heavy metals. A series of gravity filters then complete the clarification process by removing suspended solids. Following the iron coprecipitation process is the ion exchange process, where a specific resin is utilized for the removal of mercury. The final main unit operation is the ultraviolet destruction process, which uses high power ultraviolet light and hydrogen peroxide to destroy organic molecules. The objective of this readiness plan is to provide the method by which line management will prepare for a Readiness Assessment (RA) of the TEDF. The self-assessment and RA will assess safety, health, environmental compliance and management readiness of the TEDF. This assessment will provide assurances to both WHC and DOE that the facility is ready to start-up and begin operation

  14. 76 FR 55711 - Confirmatory Order Modifying License No. SNM-2001 for the Shallow Land Disposal Area, Parks...

    Science.gov (United States)

    2011-09-08

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 40-8907; NRC-2011-0193] Confirmatory Order Modifying License No. SNM-2001 for the Shallow Land Disposal Area, Parks Township, Armstrong County, PA; Notice of... (SNM), pursuant to the terms and conditions of the aforementioned License, at the Shallow Land Disposal...

  15. Assessing and monitoring soil quality at agricultural waste disposal areas-Soil Indicators

    Science.gov (United States)

    Doula, Maria; Kavvadias, Victor; Sarris, Apostolos; Lolos, Polykarpos; Liakopoulou, Nektaria; Hliaoutakis, Aggelos; Kydonakis, Aris

    2014-05-01

    The necessity of elaborating indicators is one of the priorities identified by the United Nations Convention to Combat Desertification (UNCCD). The establishment of an indicator monitoring system for environmental purposes is dependent on the geographical scale. Some indicators such as rain seasonality or drainage density are useful over large areas, but others such as soil depth, vegetation cover type, and land ownership are only applicable locally. In order to practically enhance the sustainability of land management, research on using indicators for assessing land degradation risk must initially focus at local level because management decisions by individual land users are taken at this level. Soils that accept wastes disposal, apart from progressive degradation, may cause serious problems to the surrounding environment (humans, animals, plants, water systems, etc.), and thus, soil quality should be necessarily monitored. Therefore, quality indicators, representative of the specific waste type, should be established and monitored periodically. Since waste composition is dependent on their origin, specific indicators for each waste type should be established. Considering agricultural wastes, such a specification, however, could be difficult, since almost all agricultural wastes are characterized by increased concentrations of the same elements, namely, phosphorous, nitrogen, potassium, sulfur, etc.; contain large amounts of organic matter; and have very high values of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and electrical conductivity. Two LIFE projects, namely AgroStrat and PROSODOL are focused on the identification of soil indicators for the assessment of soil quality at areas where pistachio wastes and olive mill wastes are disposed, respectively. Many soil samples were collected periodically for 2 years during PROSODOL and one year during AgroStrat (this project is in progress) from waste disposal areas and analyzed for 23 parameters

  16. The use and disposal of greywater in the non-sewered areas of ...

    African Journals Online (AJOL)

    The main aim of this study was to investigate the use and disposal of greywater in non-sewered areas in South Africa and this included developing options for the management thereof, both in terms of reducing health and environmental risks as well as possibly providing benefits through controlled reuse. This paper reports ...

  17. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    2010-01-01

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles (mi)) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan

  18. SWSA [Solid Waste Storage Area] 6 tumulus disposal demonstration

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Clapp, R.B.

    1987-01-01

    A facility to demonstrate the above-grade disposal of solid low-level radioactive wastes (LLW) is being constructed in the Solid Waste Storage Area 6 (SWSA 6) at the Oak Ridge National Laboratory (ORNL). The demonstration facility will utilize the ''Tumulus'' technology, which basically involves sealing the waste in concrete vaults, placing the vaults on a grade level concrete pad, and covering the pad with a soil cover after vault placement is complete. Loading of the demonstration unit is scheduled to begin in June, and will continue one to one and a half years until the 28,000 ft 3 capacity is exhausted

  19. Hybrid disposal systems and nitrogen removal in individual sewage disposal systems

    Energy Technology Data Exchange (ETDEWEB)

    Franks, A.L.

    1993-06-01

    The use of individual disposal systems in ground-water basins that have adverse salt balance conditions and/or geologically unsuitable locations, has become a major problem in many areas of the world. There has been much research in design of systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of the treated waste in areas with adverse geologic conditions and systems for the removal of nitrogen and phosphorus prior to percolation to the ground water. This paper outlines the history of development and rationale for design and construction of individual sewage disposal systems and describes the designs and limitations of the hybrid and denitrification units. The disposal systems described include Mounds, Evapotranspiration and Evapotranspiration/Infiltration systems. The denitrification units include those using methanol, sulfur and limestone, gray water and secondary treated wastewater for energy sources.

  20. Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H. [Westinghouse Hanford Co., Richland, WA (United States); Serne, R.J.; Cantrell, K.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied.

  1. Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds

    International Nuclear Information System (INIS)

    Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H.; Serne, R.J.; Cantrell, K.J.

    1995-06-01

    This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied

  2. Groundwater Monitoring Plan for the Z-Area Saltstone Disposal Facility, Revision 3

    International Nuclear Information System (INIS)

    WELLS, DANIEL

    2005-01-01

    Groundwater monitoring has been conducted at the Z-Area Saltstone Disposal Facility since 1987. At that time, groundwater monitoring was not required by the industrial landfill regulations, but a modest monitoring program was required by the operating permit. At the time of the 1996 permit renewal, it was determined that a more robust monitoring program was needed. The draft permit required new monitoring wells within 25 feet of each active disposal cell. As an alternative, SRS proposed a program based on direct push sampling. This program called for biennial direct push sampling within 25 feet of each waste-containing cell with additional samples being taken in areas where excessive cracking had been observed. The direct push proposal was accepted by The South Carolina Department of Health and Environmental Control (SCDHEC), and was incorporated by reference into the Z-Area Saltstone Industrial Solid Waste Permit, No.025500-1603. The Industrial Solid Waste Landfill Regulations were revised in 1998 and now include specific requirements for groundwater monitoring. SRS's plan for complying with those regulations is discussed below. The plan calls for a return to traditional monitoring with permanent wells. It also proposes a more technically sound monitoring list based on the actual composition of saltstone

  3. Radionuclide concentrations in vegetation at radioactive-waste disposal Area G during the 1994 growing season

    International Nuclear Information System (INIS)

    Fresquez, P.R.; Biggs, J.B.; Bennett, K.D.

    1995-01-01

    Overstory (pinon pine) and understory (grass and forb) vegetation samples were collected within and around selected points at Area G-a low-level radioactive solid-waste disposal facility at Los Alamos National Laboratory-for the analysis of tritium ( 3 H), strontium ( 90 Sr), plutonium ( 238 Pu and 239 Pu), cesium ( 137 Cs), americium ( 241 Am), and total uranium. In general, most vegetation samples collected within and around Area G contained radionuclide levels in higher concentrations than vegetation collected from background areas. Tritium, in particular, was detected as high as 5,800 pCi/mL in overstory vegetation collected outside the fence just west of the tritium shafts; this suggests that tritium is migrating from this waste repository through subsurface pathways. Also, understory vegetation collected north of the transuranic (TRU) pads (outside the fence of Area G) contained the highest values of 90 Sr, 238 Pu, 239 Pu, 137 Cs, and 241 Am, and may be a result of surface holding, storage, or disposal activities

  4. Preliminary disposal limits, plume interaction factors, and final disposal limits

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-11

    In the 2008 E-Area Performance Assessment (PA), each final disposal limit was constructed as the product of a preliminary disposal limit and a plume interaction factor. The following mathematical development demonstrates that performance objectives are generally expected to be satisfied with high confidence under practical PA scenarios using this method. However, radionuclides that experience significant decay between a disposal unit and the 100-meter boundary, such as H-3 and Sr-90, can challenge performance objectives, depending on the disposed-of waste composition, facility geometry, and the significance of the plume interaction factor. Pros and cons of analyzing single disposal units or multiple disposal units as a group in the preliminary disposal limits analysis are also identified.

  5. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 4. Characterization and description of areas. Bornholm

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low - and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities and high sorption potentials of the sediments or rocks. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier been focused on deep seated salt deposits and basement rocks, but the Tertiary clays were also mapped. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas where a waste disposal potentially can be located. The 20 areas have to be reduced to 2-3 more precise locations, where detailed field investigations of the geological, hydrogeological-hydrochemical and technical conditions will be performed. The present report describes areas 1 and 2 on Bornholm, East Denmark. (LN)

  6. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 4. Characterization and description of areas. Bornholm

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low - and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities and high sorption potentials of the sediments or rocks. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier been focused on deep seated salt deposits and basement rocks, but the Tertiary clays were also mapped. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas where a waste disposal potentially can be located. The 20 areas have to be reduced to 2-3 more precise locations, where detailed field investigations of the geological, hydrogeological-hydrochemical and technical conditions will be performed. The present report describes areas 1 and 2 on Bornholm, East Denmark. (LN)

  7. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 6. Characterization and description of areas. Sjaelland

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, strong sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas potentially useful for a waste disposal. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological - hydrochemical and geotechnical conditions will be performed. The present report describes the areas 5 and 6 on Zealand. (LN)

  8. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 8. Characterization and description of areas. OEstjylland

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, high sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas where a waste disposal potentially can be located. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological - hydrochemical and geotechnical conditions will be performed. The present report describes the areas 12,13,14 and 15 in Eastern Jutland. (LN)

  9. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 10. Characterization and description of areas. Nordjylland

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, strong sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas potentially useful for a waste disposal. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological, hydrochemical and geotechnical conditions will be performed. The present report describes the area 22 in Northern Jutland. (LN)

  10. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 9. Characterization and description of areas. Limfjorden

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, strong sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas potentially useful for a waste disposal. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological, hydrochemical and geotechnical conditions will be performed. The present report describes the areas 16,17,18,19,20 and 21 around Limfjorden. (LN)

  11. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 8. Characterization and description of areas. Oestjylland

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, high sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas where a waste disposal potentially can be located. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological - hydrochemical and geotechnical conditions will be performed. The present report describes the areas 12,13,14 and 15 in Eastern Jutland. (LN)

  12. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 9. Characterization and description of areas. Limfjorden

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, strong sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas potentially useful for a waste disposal. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological, hydrochemical and geotechnical conditions will be performed. The present report describes the areas 16,17,18,19,20 and 21 around Limfjorden. (LN)

  13. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 6. Characterization and description of areas. Sjaelland

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, strong sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas potentially useful for a waste disposal. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological - hydrochemical and geotechnical conditions will be performed. The present report describes the areas 5 and 6 on Zealand. (LN)

  14. 3D-Printed Disposable Wireless Sensors with Integrated Microelectronics for Large Area Environmental Monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad; Karimi, Muhammad Akram; Salama, Khaled N.; Shamim, Atif

    2017-01-01

    disposable, compact, dispersible 3D-printed wireless sensor nodes with integrated microelectronics which can be dispersed in the environment and work in conjunction with few fixed nodes for large area monitoring applications. As a proof of concept

  15. Z-Area Saltstone Disposal Facility Groundwater Monitoring Report. 1997 Annual Report

    International Nuclear Information System (INIS)

    Roach, J.L. Jr.

    1997-12-01

    Samples from the ZBG wells at the Z-Area Saltstone Disposal Facility are analyzed for constituents required by South Carolina Department of Health and Environmental Control (SCDHEC) Industrial Solid Waste Permit number-sign 025500-1603 (formerly IWP-217). No constituents were reported above SCDHEC-proposed groundwater monitoring standards or final Primary Drinking Water Standards during first or third quareters 1997. No constituents were detected above SRS flagging criteria during first or third quarters 1997

  16. History and environmental setting of LASL near-surface land disposal facilities for radioactive wastes (Areas A, B, C, D, E, F, G, and T). A source document

    International Nuclear Information System (INIS)

    Rogers, M.A.

    1977-06-01

    The Los Alamos Scientific Laboratory (LASL) has been disposing of radioactive wastes since 1944. The LASL Materials Disposal Areas examined in this report, Areas A, B, C, D, E, F, G, and T, are solid radioactive disposal areas with the exception of Area T which is a part of the liquid radioactive waste disposal operation. Areas A, G, and T are currently active. Environmental studies of and monitoring for radioactive contamination have been done at LASL since 1944

  17. History and environmental setting of LASL near-surface land disposal facilities for radioactive wastes (Areas A, B, C, D, E, F, G, and T). A source document

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, M.A.

    1977-06-01

    The Los Alamos Scientific Laboratory (LASL) has been disposing of radioactive wastes since 1944. The LASL Materials Disposal Areas examined in this report, Areas A, B, C, D, E, F, G, and T, are solid radioactive disposal areas with the exception of Area T which is a part of the liquid radioactive waste disposal operation. Areas A, G, and T are currently active. Environmental studies of and monitoring for radioactive contamination have been done at LASL since 1944.

  18. Treatment studies of plutonium-bearing INEEL waste surrogates in a bench-scale arc furnace

    International Nuclear Information System (INIS)

    Freeman, C.J.

    1997-05-01

    Since 1989, the Subsurface Disposal Area (SDA) at the Idaho National Environmental and Engineering Laboratory (INEEL) has been included on the National Priority List for remediation. Arc- and plasma-heated furnaces are being considered for converting the radioactive mixed waste buried in the SDA to a stabilized-vitreous form. Nonradioactive, surrogate SDA wastes have been melted during tests in these types of furnaces, but data are needed on the behavior of transuranic (TRU) constituents, primarily plutonium, during thermal treatment. To begin collecting this data, plutonium-spiked SDA surrogates were processed in a bench-scale arc furnace to quantify the fate of the plutonium and other hazardous and nonhazardous metals. Test conditions included elevating the organic, lead, chloride, and sodium contents of the surrogates. Blends having higher organic contents caused furnace power levels to fluctuate. An organic content corresponding to 50% INEEL soil in a soil-waste blend was the highest achievable before power fluctuations made operating conditions unacceptable. The glass, metal, and off-gas solids produced from each surrogate blend tested were analyzed for elemental (including plutonium) content and the partitioning of each element to the corresponding phase was calculated

  19. Treatment studies of plutonium-bearing INEEL waste surrogates in a bench-scale arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, C.J.

    1997-05-01

    Since 1989, the Subsurface Disposal Area (SDA) at the Idaho National Environmental and Engineering Laboratory (INEEL) has been included on the National Priority List for remediation. Arc- and plasma-heated furnaces are being considered for converting the radioactive mixed waste buried in the SDA to a stabilized-vitreous form. Nonradioactive, surrogate SDA wastes have been melted during tests in these types of furnaces, but data are needed on the behavior of transuranic (TRU) constituents, primarily plutonium, during thermal treatment. To begin collecting this data, plutonium-spiked SDA surrogates were processed in a bench-scale arc furnace to quantify the fate of the plutonium and other hazardous and nonhazardous metals. Test conditions included elevating the organic, lead, chloride, and sodium contents of the surrogates. Blends having higher organic contents caused furnace power levels to fluctuate. An organic content corresponding to 50% INEEL soil in a soil-waste blend was the highest achievable before power fluctuations made operating conditions unacceptable. The glass, metal, and off-gas solids produced from each surrogate blend tested were analyzed for elemental (including plutonium) content and the partitioning of each element to the corresponding phase was calculated.

  20. Regulatory analysis and lessons learned from the LLRW [low-level radioactive waste] disposal area at West Valley, New York: Final report

    International Nuclear Information System (INIS)

    1986-12-01

    The New York State Energy Research and Development Authority has sponsored a project to develop an integrated set of site management plans for the West Valley low-level radioactive waste (LLRW) disposal area. The plans were directed to upgrade the disposal area so that passive custodial care and monitoring activities would be sufficient to protect public health and safety and the environment. Tasks 5 and 6, Regulatory Analysis and Lessons Learned, are the subject of this report. The regulatory analysis identified areas of inconsistencies between the historic site operations and the current state and federal LLRW disposal regulations and guidelines. The lessons learned task identified the causes of the disposal problems at West Valley, discussed the lessons learned, and described the responses developed by the NRC and industry to the lessons learned. 85 refs., 6 figs., 19 tabs

  1. Performance assessment for the disposal of low-level waste in the 200 east area burial grounds

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.I., Westinghouse Hanford

    1996-08-15

    A performance assessment analysis was completed for the 200 East Area Low-Level Burial Grounds (LLBG) to satisfy compliance requirements in DOE Order 5820.2A. In the analysis, scenarios of radionuclide release from the 200 East Area Low-Level waste facility was evaluated. The analysis focused on two primary scenarios leading to exposure. The first was inadvertent intrusion. In this scenario, it was assumed that institutional control of the site and knowledge of the disposal facility has been lost. Waste is subsequently exhumed and dose from exposure is received. The second scenario was groundwater contamination.In this scenario, radionuclides are leached from the waste by infiltrating precipitation and transported through the soil column to the underlying unconfined aquifer. The contaminated water is pumped from a well 100 m downstream and consumed,causing dose. Estimates of potential contamination of the surrounding environment were developed and the associated doses to the maximum exposed individual were calculated. The doses were compared with performance objective dose limits, found primarily in the DOE order 5850.2A. In the 200 East Area LLBG,it was shown that projected doses are estimated to be well below the limits because of the combination of environmental, waste inventory, and disposal facility characteristics of the 200 East Area LLBG. Waste acceptance criteria were also derived to ensure that disposal of future waste inventories in the 200 East Area LLBG will not cause an unacceptable increase in estimated dose.

  2. Hanford 300 Area Treated Effluent Disposal Facility inventory at risk calculations and safety analysis

    International Nuclear Information System (INIS)

    Olander, A.R.

    1995-11-01

    The 300 Area Treated Effluent Disposal Facility (TEDF) is a wastewater treatment plant being constructed to treat the 300 Area Process Sewer and Retention Process Sewer. This document analyzes the TEDF for safety consequences. It includes radionuclide and hazardous chemical inventories, compares these inventories to appropriate regulatory limits, documents the compliance status with respect to these limits, and identifies administrative controls necessary to maintain this status

  3. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    2010-01-01

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is

  4. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-10-04

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is

  5. Ecology of carrion beetles (Nicrophorus spp.) at a solid radioactive waste disposal area

    International Nuclear Information System (INIS)

    Veith, R.D.; Keller, B.L.

    1983-01-01

    A study of the population ecology of three species of carrion beetles (Nicrophorus hecate, N. hybridus, N. marginatus) was initiated on a solid radioactive waste disposal area on the Idaho National Engineering Laboratory in June 1981. Successive mark and recapture procedures were used to document redistribution of individually numbered adults. During the first summer of research, 1410 individuals were captured in baited pitfall traps, marked, and released during three 12-day sampling periods. Eighty marked individuals were subsequently caught at sampling stations located at varied distances from the site of release, but half of the recaptures occurred within 66.2 m of this point, and a decline in number of recaptures was observed with increasing distance. Capture of beetles at trapping points was related to the prevailing wind direction. Based upon the observed densities, local populations of these species could have an important role in the organic breakdown of small mammals that die on or adjacent to the disposal area. Thus, they may also be an important vector in the redistribution of radionuclides present in small mammals taht become contaminated prior to death

  6. Vapor vacuum extraction treatability study at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Herd, M.D.; Matthern, G.; Michael, D.L.; Spang, N.; Downs, W.; Weidner, J.; Cleary, P.

    1993-01-01

    During the 1960s and early 1970s, barreled mixed waste containing volatile organic compounds (VOCS) and radioactive waste was buried at the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). Over time, some of the barrels have deteriorated allowing, VOC vapors to be released into the vadose zone. The primary VOC contaminates of concern are CCl 4 and trichloroethylene; however, chloroform, tetrachloroethylene, and 1,1,1-trichloroethane have also been detected. Vapor Vacuum Extraction (VVE) is one alternative being considered for remediation of the RWMC SDA vadose zone. A proposed pilot-scale treatability study (TS) will provide operation and maintenance costs for the design of the potential scale-up of the system

  7. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 11. Description of areas. Danish and English summary; Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 11. Omraadebeskrivelser - Description of areas. Dansk og engelsk resume

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low - and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by choosing deposits with low water flow and high sorption potential of the sediments or rocks. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks but the Tertiary clays were also mapped. The salt diapirs, salt pillows and salt deposits and deep basement rocks are not included in the present study. These rocks and deposits are situated too deep for the present study and salt deposits seem to be unstable for a disposal (e.g. German salt mines). The regional geologic survey based on existing data was concluded by selecting 22 areas in Denmark. There remains now to reduce the number of potential areas to 1-3 where detailed field studies will be performed in order to select the final location. (LN)

  8. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 5. Characterization and description of areas. Falster and Lolland

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, strong sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas potentially useful for a waste disposal. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological, hydrochemical and geotechnical conditions will be performed. The present report describes areas 3 and 4 on Falster and Lolland. (LN)

  9. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 5. Characterization and description of areas. Falster and Lolland

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, strong sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas potentially useful for a waste disposal. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological, hydrochemical and geotechnical conditions will be performed. The present report describes areas 3 and 4 on Falster and Lolland. (LN)

  10. Evaluation of dredged material proposed for ocean disposal from Westchester Creek project area, New York

    Energy Technology Data Exchange (ETDEWEB)

    Pinza, M.R.; Gardiner, W.W.; Barrows, E.S.; Borde, A.B.

    1996-11-01

    The objective of the Westchester Creek project was to evaluate proposed dredged material from this area to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Westchester Creek was one of five waterways that the US Army Corps of Engineers- New York District (USACE-NYD) requested the Battelle/Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in May 1995. The evaluation of proposed dredged material from the Westchester Creek project area consisted of bulk sediment chemical analyses, chemical analyses of dredging site water and elutriate, benthic acute and water-column toxicity tests, and bioaccumulation studies. Thirteen individual sediment core samples were collected from this area and analyzed for grain size, moisture content, and total organic carbon (TOC). One composite sediment sample representing the Westchester Creek area to be dredged, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4-dichlorobenzene. Dredging site water and elutriate water, which is prepared from the suspended- particulate phase (SPP) of the Westchester Creek sediment composite, was analyzed for metals, pesticides, and PCBS.

  11. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 7. Characterization and description of areas. Langeland, Taesinge and Fyn

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, high sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas where a waste disposal potentially can be located. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological - hydrochemical and geotechnical conditions will be performed. The present report describes the areas 7,8,9,10, and 11 on the islands Langeland, Taasinge and Funen. (LN)

  12. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 7. Characterization and description of areas. Langeland, Taasinge and Fyn

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, high sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas where a waste disposal potentially can be located. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological - hydrochemical and geotechnical conditions will be performed. The present report describes the areas 7,8,9,10, and 11 on the islands Langeland, Taasinge and Funen. (LN)

  13. Radioactive waste management complex low-level waste radiological composite analysis

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.; Keck, K.N.; Honeycutt, T.K.

    1998-05-01

    The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consists of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective.

  14. Radioactive waste management complex low-level waste radiological composite analysis

    International Nuclear Information System (INIS)

    McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.; Keck, K.N.; Honeycutt, T.K.

    1998-05-01

    The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consists of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective

  15. 2005 dossier: granite. Tome: architecture and management of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the geologic disposal of high-level and long-lived radioactive wastes in granite formations. Content: 1 - Approach of the study: main steps since the December 30, 1991 law, ANDRA's research program on disposal in granitic formations; 2 - high-level and long-lived (HLLL) wastes: production scenarios, waste categories, inventory model; 3 - disposal facility design in granitic environment: definition of the geologic disposal functions, the granitic material, general facility design options; 4 - general architecture of a disposal facility in granitic environment: surface facilities, underground facilities, disposal process, operational safety; 5 - B-type wastes disposal area: primary containers of B-type wastes, safety options, concrete containers, disposal alveoles, architecture of the B-type wastes disposal area, disposal process and feasibility aspects, functions of disposal components with time; 6 - C-type wastes disposal area: C-type wastes primary containers, safety options, super-containers, disposal alveoles, architecture of the C-type wastes disposal area, disposal process in a reversibility logics, functions of disposal components with time; 7 - spent fuels disposal area: spent fuel assemblies, safety options, spent fuel containers, disposal alveoles, architecture of the spent fuel disposal area, disposal process in a reversibility logics, functions of disposal components with time; 8 - conclusions: suitability of the architecture with various types of French granites, strong design, reversibility taken into consideration. (J.S.)

  16. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea.

  17. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    International Nuclear Information System (INIS)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu

    2016-01-01

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea

  18. Data analysis of the 1984 and 1986 soil sampling programs at Materials Disposal Area T in the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Drennon, B.J.

    1993-09-01

    An environmental surveillance program for Materials Disposal Area T (MDA-T) at Los Alamos, New Mexico is described. The waste-use history of this disposal site is described, followed by a description of the materials and methods used to analyze data from two surface soil radionuclide sampling programs performed at this disposal site. The disposal site's physical features are related to the spatial distribution of radionuclide concentration contours in an attempt to evaluate radionuclide migration mechanisms in and around the site. The usefulness of the data analysis efforts is evaluated and recommendations are made for future studies

  19. A brief analysis and description of transuranic wastes in the subsurface disposal area of the radioactive waste management complex at INEL

    International Nuclear Information System (INIS)

    Arrenholz, D.A.; Knight, J.L.

    1991-02-01

    This document presents a brief summary of the wastes and waste types disposed of in the transuranic contaminated portions of the Subsurface Disposal Area during the period 1954 through 1970. Wastes included in this summary are organics, inorganics, metals, radionuclides, and special-case wastes. In addition to summarizing amounts of wastes disposed and describing the wastes, the document also provides information on disposal pit and trench dimensions and contaminated soil volumes. The report also points out discrepancies that exist in available documentation regarding waste and soil volumes and makes recommendations for future efforts at waste characterization. 20 refs., 3 figs., 17 tabs

  20. Hybrid empirical--theoretical approach to modeling uranium adsorption

    International Nuclear Information System (INIS)

    Hull, Larry C.; Grossman, Christopher; Fjeld, Robert A.; Coates, John T.; Elzerman, Alan W.

    2004-01-01

    An estimated 330 metric tons of U are buried in the radioactive waste Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An assessment of U transport parameters is being performed to decrease the uncertainty in risk and dose predictions derived from computer simulations of U fate and transport to the underlying Snake River Plain Aquifer. Uranium adsorption isotherms were measured for 14 sediment samples collected from sedimentary interbeds underlying the SDA. The adsorption data were fit with a Freundlich isotherm. The Freundlich n parameter is statistically identical for all 14 sediment samples and the Freundlich K f parameter is correlated to sediment surface area (r 2 =0.80). These findings suggest an efficient approach to material characterization and implementation of a spatially variable reactive transport model that requires only the measurement of sediment surface area. To expand the potential applicability of the measured isotherms, a model is derived from the empirical observations by incorporating concepts from surface complexation theory to account for the effects of solution chemistry. The resulting model is then used to predict the range of adsorption conditions to be expected in the vadose zone at the SDA based on the range in measured pore water chemistry. Adsorption in the deep vadose zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate decreases with depth

  1. Pumping evaluations with paste tailings thickened close to the surface disposal area

    OpenAIRE

    Wennberg, Thord; Sellgren, Anders

    2007-01-01

    An elevated location of a paste thickener on a ridge close to the disposal area is considered at a Swedish iron ore mine. About 0.7 Mtonnes of thickened tailings are planned to be layered as paste in the vicinity of the thickener over several years with pipeline lengths of up to 900 m after about 20 years. In order to clarify the pipeline pumping characteristics of the tailings product for volumetric solids concentration from 40 to 50%, experiments in loop systems with pipeline inner diameter...

  2. Innovative Disposal Practices at the Nevada Test Site to Meet Its Low-Level Waste Generators' Future Disposal Needs

    International Nuclear Information System (INIS)

    Di Sanza, E.F.; Carilli, J.T.

    2006-01-01

    Waste Acceptance Criteria. The disposal operations previously mentioned take place at the NTS in two disposal facilities. The isolation protection and overall performance of the two LLW disposal facilities at the NTS transcend those of any federal radioactive waste disposal site in the United States. The first of the two disposal sites is the Area 5 Radioactive Waste Management Site (RWMS) which is situated on alluvial fan deposits in the Frenchman Flat basin, approximately 770 feet (235 meters) above the water table. The Area 5 RWMS utilizes a combination of engineered shallow land disposal cells and deep augured shafts for the disposal of a variety of waste streams. Fifteen miles (24 kilometers) north of the Area 5 RWMS is the Area 3 RWMS located approximately 1,600 feet (488 meters) above the water table in Yucca Flat. Disposal activities at the Area 3 RWMS center around the placement of bulk LLW in subsidence craters formed from underground testing of nuclear weapons. Native alluvium soil is used to cover waste placed in the disposal cells at both facilities. In addition, information on the technical attributes, facility performance, updates on waste disposal volumes and capabilities, and current and future disposal site requirements will also be described. (authors)

  3. Infiltration control for low-level radioactive solid waste disposal areas: an assessment

    International Nuclear Information System (INIS)

    Arora, H.S.

    1980-11-01

    The primary mode of radionuclide transport from shallow land-disposal sites for low-level wastes can be traced to infiltration of precipitation. This report examines the factors that affect surface water entry and movement in the ground and assesses available infiltration-control technology for solid-waste-disposal sites in the humid eastern portion of the United States. A survey of the literature suggests that a variety of flexible and rigid liner systems are available as barriers for the stored waste and would be effective in preventing water infiltration. Installation of near-surface seals of bentonite clay admixed with dispersive chemicals seem to offer the required durability and low permeability at a reasonable cost. The infiltration rate in a bentonite-sealed area may be further retarded by the application of dispersive chemicals that can be easily admixed with the surface soil. Because the effectiveness of a dispersive chemical for infiltration reduction is influenced by the physico-chemical properties of the soil, appropriate laboratory tests should be conducted prior to field application

  4. Research on geological disposal: R and D concept on geological disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The objective on geological disposal of high-level radioactive wastes are to ensure the long term radiological protection of the human and his environment in accordance with current internationally agreed radiation protection principles. The principle of geological disposal is to settle the high-level wastes in deep underground so as to isolate them from the human and his environment considering the existence of groundwater. Japan is currently in the stage of assessing technical feasibility of geological disposal to the extent practicable. In accordance with the AEC (Atomic Energy Commission) policy in 1989, PNC (Power Reactor and Nuclear Fuel Development Corporation) has conducted the research and development on geological disposal in three areas: 1) studies of geological environment, 2) research and development of disposal technology, and 3) performance assessment study. (author)

  5. ICRP guidance on radioactive waste disposal

    International Nuclear Information System (INIS)

    Cooper, J.R.

    2002-01-01

    The International Commission on Radiological Protection (ICRP) issued recommendations for a system of radiological protection in 1991 as the 1990 Recommendations. Guidance on the application of these recommendations in the general area of waste disposal was issued in 1997 as Publication 77 and guidance specific to disposal of solid long-lived radioactive waste was issued as Publication 81. This paper summarises ICRP guidance in radiological protection requirements for waste disposal concentrating on the ones of relevance to the geological disposal of solid radioactive waste. Suggestions are made for areas where further work is required to apply the ICRP guidance. (author)

  6. Closure Report for Corrective Action Unit 110: Areas 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Smith

    2001-08-01

    This Closure Report (CR) has been prepared for the Area 3 Radioactive Waste Management Site (RWMS) U-3ax/bl Disposal Unit Corrective Action Unit (CAU) 110 in accordance with the reissued (November 2000) Resource Conservation and Recovery Act (RCRA) Part B operational permit NEV HW009 (Nevada Division of Environmental Protection [NDEP], 2000) and the Federal Facility and Consent Order (FFACO) (NDEP et al., 1996). CAU 110 consists of one Corrective Action Site 03-23-04, described as the U-3ax/bl Subsidence Crater. Certifications of closure are located in Appendix A. The U-3ax/bl is a historic disposal unit within the Area 3 RWMS located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit was closed under the RCRA, as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (m{sup 3}) (8.12 x 10{sup 6} cubic feet [ft{sup 3}]) of waste. NTS atmospheric nuclear device testing generated approximately 95% of the total waste volume disposed of in U-3ax/bl; 80% of the total volume was generated from the Waste Consolidation Project. Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is normally in a state of moisture deficit.

  7. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 11. Description of areas. Danish and English summary

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low - and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by choosing deposits with low water flow and high sorption potential of the sediments or rocks. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks but the Tertiary clays were also mapped. The salt diapirs, salt pillows and salt deposits and deep basement rocks are not included in the present study. These rocks and deposits are situated too deep for the present study and salt deposits seem to be unstable for a disposal (e.g. German salt mines). The regional geologic survey based on existing data was concluded by selecting 22 areas in Denmark. There remains now to reduce the number of potential areas to 1-3 where detailed field studies will be performed in order to select the final location. (LN)

  8. Elevation of water table and various stratigraphic surfaces beneath e area low level waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Bagwell, Laura [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bennett, Patti [; Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-02

    This memorandum describes work that supports revision of the Radiological Performance Assessment (PA) for the E Area Low Level Radioactive Waste Disposal Facility (LLRWDF). The work summarized here addresses portions of the PA Strategic Planning Team's recommendation #148b (Butcher and Phifer, 2016).

  9. A brief analysis and description of transuranic wastes in the Subsurface Disposal Area of the radioactive waste management complex at INEL

    International Nuclear Information System (INIS)

    Arrenholz, D.A.; Knight, J.L.

    1991-08-01

    This document presents a brief summary of the wastes and waste types disposed of in the transuranic contaminated portions of the Subsurface Disposal Area of the radioactive waste management complex at Idaho National Engineering Laboratory from 1954 through 1970. Wastes included in this summary are organics, inorganics, metals, radionuclides, and atypical wastes. In addition to summarizing amounts of wastes disposed and describing the wastes, the document also provides information on disposal pit and trench dimensions and contaminated soil volumes. The report also points out discrepancies that exist in available documentation regarding waste and soil volumes and make recommendations for future efforts at waste characterization. 19 refs., 3 figs., 17 tabs

  10. A brief analysis and description of transuranic wastes in the Subsurface Disposal Area of the radioactive waste management complex at INEL

    Energy Technology Data Exchange (ETDEWEB)

    Arrenholz, D.A.; Knight, J.L.

    1991-08-01

    This document presents a brief summary of the wastes and waste types disposed of in the transuranic contaminated portions of the Subsurface Disposal Area of the radioactive waste management complex at Idaho National Engineering Laboratory from 1954 through 1970. Wastes included in this summary are organics, inorganics, metals, radionuclides, and atypical wastes. In addition to summarizing amounts of wastes disposed and describing the wastes, the document also provides information on disposal pit and trench dimensions and contaminated soil volumes. The report also points out discrepancies that exist in available documentation regarding waste and soil volumes and make recommendations for future efforts at waste characterization. 19 refs., 3 figs., 17 tabs.

  11. Regional hydrogeological conceptual model of candidate Beishan area for high level radioactive waste disposal repository

    International Nuclear Information System (INIS)

    Wang Hailong; Guo Yonghai

    2014-01-01

    The numerical modeling of groundwater flow is an important aspect of hydrogeological assessment in siting of a high level radioactive waste disposal repository. Hydrogeological conceptual model is the basic and premise of numerical modeling of groundwater flow. Based on the hydrogeological analysis of candidate Beishan area, surface water system was created by using DEM data and the modeling area is determined. Three-dimensional hydrogeological structure model was created through GMS software. On the basis of analysis and description of boundary condition, flow field, groundwater budget and hydrogeological parameters, hydrogeological conceptual model was set up for the Beishan area. (authors)

  12. Design of the disposal facility 2012

    International Nuclear Information System (INIS)

    Saanio, T.; Ikonen, A.; Keto, P.; Kirkkomaeki, T.; Kukkola, T.; Nieminen, J.; Raiko, H.

    2013-11-01

    The spent nuclear fuel accumulated from the nuclear power plants in Olkiluoto in Eurajoki and in Haestholmen in Loviisa will be disposed of in Olkiluoto. A facility complex will be constructed at Olkiluoto, and it will include two nuclear waste facilities according to Government Degree 736/2008. The nuclear waste facilities are an encapsulation plant, constructed to encapsulate spent nuclear fuel and a disposal facility consisting of an underground repository and other underground rooms and above ground service spaces. The repository is planned to be excavated to a depth of 400 - 450 meters. Access routes to the disposal facility are an inclined access tunnel and vertical shafts. The encapsulated fuel is transferred to the disposal facility in the canister lift. The canisters are transferred from the technical rooms to the disposal area via central tunnel and deposited in the deposition holes which are bored in the floors of the deposition tunnels and are lined beforehand with compacted bentonite blocks. Two parallel central tunnels connect all the deposition tunnels and these central tunnels are inter-connected at regular intervals. The solution improves the fire safety of the underground rooms and allows flexible backfilling and closing of the deposition tunnels in stages during the operational phase of the repository. An underground rock characterization facility, ONKALO, is excavated at the disposal level. ONKALO is designed and constructed so that it can later serve as part of the repository. The goal is that the first part of the disposal facility will be constructed under the building permit phase in the 2010's and operations will start in the 2020's. The fuel from 4 operating reactors as well the fuel from the fifth nuclear power plant under construction, has been taken into account in designing the disposal facility. According to the information from TVO and Fortum, the amount of the spent nuclear fuel is 5,440 tU. The disposal facility is being excavated

  13. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2002-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 425, Area 9 Main Lake Construction Debris Disposal Area. This CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). This site will be cleaned up under the SAFER process since the volume of waste exceeds the 23 cubic meters (m(sup 3)) (30 cubic yards[yd(sup 3)]) limit established for housekeeping sites. CAU 425 is located on the Tonopah Test Range (TTR) and consists of one Corrective Action Site (CAS) 09-08-001-TA09, Construction Debris Disposal Area (Figure 1). CAS 09-08-001-TA09 is an area that was used to collect debris from various projects in and around Area 9. The site is located approximately 81 meters (m) (265 feet[ft]) north of Edwards Freeway northeast of Main Lake on the TTR. The site is composed of concrete slabs with metal infrastructure, metal rebar, wooden telephone poles, and concrete rubble from the Hard Target and early Tornado Rocket sled tests. Other items such as wood scraps, plastic pipes, soil, and miscellaneous nonhazardous items have also been identified in the debris pile. It is estimated that this site contains approximately 2280 m(sup 3) (3000 yd(sup 3)) of construction-related debris

  14. Closure Plan for Corrective Action Unit 110: Area 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Fitzmaurice, T. M.

    2000-01-01

    This Closure Plan has been prepared for the Area 3 RWMS U-3ax/bl Disposal Unit Corrective Action Unit 110 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). The U-3ax/bl is a historic disposal unit within the Area 3 Radioactive Waste Management Site located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit is scheduled for permanent closure under the Resource Conservation and Recovery Act as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10 5 cubic meters (8.12 x 10 6 cubic feet) of waste. NTS nuclear device testing generated approximately 95 percent of the total volume disposed of in U-3ax/bl, the majority of which came from the Waste Consolidation Project (80 percent of the total volume) (Elletson and Johnejack, 1995). Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is continuously in a state of moisture deficit. The U-3ax/bl Disposal Unit will be closed in place by installing a Resource Conservation and Recovery Act equivalent cover. Following cover construction a fence will be installed around the cover to prevent accidental damage to the cover. Post-closure monitoring will consist of site inspections to determine the condition of the engineered cover and cover performance monitoring using Time-Domain Reflectometry arrays to monitor moisture migration in the cover. Any identified maintenance and repair

  15. Closure Plan for Corrective Action Unit 110: Area 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Fitzmaurice

    2000-08-01

    This Closure Plan has been prepared for the Area 3 RWMS U-3ax/bl Disposal Unit Corrective Action Unit 110 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). The U-3ax/bl is a historic disposal unit within the Area 3 Radioactive Waste Management Site located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit is scheduled for permanent closure under the Resource Conservation and Recovery Act as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (8.12 x 10{sup 6} cubic feet) of waste. NTS nuclear device testing generated approximately 95 percent of the total volume disposed of in U-3ax/bl, the majority of which came from the Waste Consolidation Project (80 percent of the total volume) (Elletson and Johnejack, 1995). Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is continuously in a state of moisture deficit. The U-3ax/bl Disposal Unit will be closed in place by installing a Resource Conservation and Recovery Act equivalent cover. Following cover construction a fence will be installed around the cover to prevent accidental damage to the cover. Post-closure monitoring will consist of site inspections to determine the condition of the engineered cover and cover performance monitoring using Time-Domain Reflectometry arrays to monitor moisture migration in the cover. Any identified maintenance and

  16. 36 CFR 13.1118 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  17. 36 CFR 13.1008 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  18. 36 CFR 13.1912 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located...

  19. 36 CFR 13.1604 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...

  20. Public Participation Plan for Waste Area Group 7 Operable Unit 7-13/14 at the Idaho National Laboratory Site

    International Nuclear Information System (INIS)

    B. G. Meagher

    2007-01-01

    This Public Participation Plan outlines activities being planned to: (1) brief the public on results of the remedial investigation and feasibility study, (2) discuss the proposed plan for remediation of Operable Unit 7-13/14 with the public, and (3) encourage public participation in the decision-making process. Operable Unit 7-13/14 is the Comprehensive Remedial Investigation/Feasibility Study for Waste Area Group 7. Analysis focuses on the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the Idaho National Laboratory (Site). This plan, a supplement to the Idaho National Laboratory Community Relations Plan (DOE-ID 2004), will be updated as necessary. The U.S. Department of Energy (DOE), Idaho Department of Environmental Quality (DEQ), and U.S. Environmental Protection Agency (EPA) will participate in the public involvement activities outlined in this plan. Collectively, DOE, DEQ, and EPA are referred to as the Agencies. Because history has shown that implementing the minimum required public involvement activities is not sufficient for high-visibility cleanup projects, this plan outlines additional opportunities the Agencies are providing to ensure that the public's information needs are met and that the Agencies can use the public's input for decisions regarding remediation activities

  1. Special Analysis: Updated Analysis of the Effect of Wood Products on Trench Disposal Limits at the E-Area Low-Level Waste Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2001-01-01

    This Special Analysis (SA) develops revised radionuclide inventory limits for trench disposal of low-level radioactive waste in the presence of wood products in the E-Area Low-Level Waste Facility. These limits should be used to modify the Waste Acceptance Criteria (WAC) for trench disposal. Because the work on which this SA is based employed data from tests using 100 percent wood products, the 40 percent limitation on wood products for trench (i.e., slit or engineered trench) disposal is not needed in the modified WAC

  2. Wastewater Disposal Wells, Fracking, and Environmental Injustice in Southern Texas.

    Science.gov (United States)

    Johnston, Jill E; Werder, Emily; Sebastian, Daniel

    2016-03-01

    To investigate race and poverty in areas where oil and gas wastewater disposal wells, which are used to permanently inject wastewater from hydraulic fracturing (fracking) operations, are permitted. With location data of oil and gas disposal wells permitted between 2007 and 2014 in the Eagle Ford area, a region of intensive fracking in southern Texas, we analyzed the racial composition of residents living less than 5 kilometers from a disposal well and those farther away, adjusting for rurality and poverty, using a Poisson regression. The proportion of people of color living less than 5 kilometers from a disposal well was 1.3 times higher than was the proportion of non-Hispanic Whites. Adjusting for rurality, disposal wells were 2.04 times (95% confidence interval = 2.02, 2.06) as common in areas with 80% people of color or more than in majority White areas. Disposal wells are also disproportionately sited in high-poverty areas. Wastewater disposal wells in southern Texas are disproportionately permitted in areas with higher proportions of people of color and residents living in poverty, a pattern known as "environmental injustice."

  3. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 3. Geological setting and tectonic framework in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Schack Pedersen, S.A.; Gravesen, P.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe (the nuclear reactor buildings plus different types of material from the research periods) and radioactive waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The Minister for Health and Prevention presented the background and decision plan for the Danish Parliament in January 2009. All political parties agreed on the plan. The task for the Geological Survey of Denmark and Greenland (GEUS) is to find approximately 20 areas potentially useful for a waste disposal. These 20 areas are afterwards reduced to 2-3 most optimal locations. At these 2-3 locations, detailed field investigations of the geological, hydrogeological - hydrochemical and technical conditions will be performed. This report provides an introduction to the geological setting of Denmark with the focus on providing an overview of the distribution of various tectonic and structural features. These are considered important in the context of choosing suitable areas for the location of a disposal for radioactive waste. The geological structures, deep and shallow are important for the selection of potential disposals basically because the structures describes the geometry of the areas. Additionally, the structures provides the information about the risk of unwanted movements of the geological layers around the disposal that have to be investigated and evaluated as a part of the selection process. (LN)

  4. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 3. Geological setting and tectonic framework in Denmark

    International Nuclear Information System (INIS)

    Schack Pedersen, S.A.; Gravesen, P.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe (the nuclear reactor buildings plus different types of material from the research periods) and radioactive waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The Minister for Health and Prevention presented the background and decision plan for the Danish Parliament in January 2009. All political parties agreed on the plan. The task for the Geological Survey of Denmark and Greenland (GEUS) is to find approximately 20 areas potentially useful for a waste disposal. These 20 areas are afterwards reduced to 2-3 most optimal locations. At these 2-3 locations, detailed field investigations of the geological, hydrogeological - hydrochemical and technical conditions will be performed. This report provides an introduction to the geological setting of Denmark with the focus on providing an overview of the distribution of various tectonic and structural features. These are considered important in the context of choosing suitable areas for the location of a disposal for radioactive waste. The geological structures, deep and shallow are important for the selection of potential disposals basically because the structures describes the geometry of the areas. Additionally, the structures provides the information about the risk of unwanted movements of the geological layers around the disposal that have to be investigated and evaluated as a part of the selection process. (LN)

  5. Reducing biosolids disposal costs using land application in forested areas

    International Nuclear Information System (INIS)

    Huffines, R.L.

    1995-01-01

    Switching biosolids land application from a reclamation site to a forested site significantly reduced the cost of biosolids disposal at the Savannah River Site. Previous beneficial reuse programs focused on reclamation of existing borrow pits. While extremely beneficial, this program became very costly due to the regulatory requirements for groundwater monitoring, soil monitoring and frequent biosolids analyses. A new program was developed to reuse biosolids in forested areas where the biosolids could be used as a soil conditioner and fertilizer to enhance timber yield. The forested land application site was designed so that groundwater monitoring and soil monitoring could be eliminated while biosolids monitoring and site maintenance were minimized. Monitoring costs alone were reduced by 80%. Capital costs for site preparation were also significantly reduced since there was no longer a need for expensive groundwater monitoring wells

  6. 2005 dossier: granite. Tome: phenomenological evolution of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the phenomenological aspects of the geologic disposal of high-level and long-lived radioactive wastes (HLLL) in granite formations. Content: 1 - introduction: ANDRA's research program on disposal in granitic formation; 2 - the granitic environment: geologic history, French granites; 3 - HLLL wastes and disposal design concepts; 4 - identification, characterization and modeling of a granitic site: approach, geologic modeling, hydrologic and hydro-geochemical modeling, geomechanical and thermal modeling, long-term geologic evolution of a site; 5 - phenomenological evolution of a disposal: main aspects of the evolution of a repository with time, disposal infrastructures, B-type wastes disposal area, C-type wastes disposal area; spent fuels disposal area, radionuclides transfer and retention in the granitic environment; 6 - conclusions: available knowledge, methods and tools for the understanding and modeling of the phenomenological evolution of a granitic disposal site. (J.S.)

  7. Fate of Brine Applied to Unpaved Roads at a Radioactive Waste Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Larry C. Hull; Carolyn W. Bishop

    2004-01-01

    Between 1984 and 1993, MgCl 2 brine was used to suppress dust on unpaved roads at a radioactive waste subsurface disposal area. Because Cl - might enhance corrosion of buried metals in the waste, we investigated the distribution and fate of Cl - in the vadose zone using pore water samples collected from suction lysimeters and soluble salt concentrations extracted from sediment samples. The Cl/Br mass ratio and the total dissolved Cl - concentration of pore water show that brine contamination occurs primarily within 13 m of treated roads, but can extend as much as 30 m laterally in near-surface sedimentary deposits. Within the deep vadose zone, which consists of interlayered basalt lava flows and sedimentary interbeds, brine has moved up to 110 m laterally. This lateral migration suggests formation of perched water and horizontal transport during periods of high recharge. In a few locations, brine migrated to depths of 67 m within 3 to 5 yr. Elevated Cl - concentrations were found to depths of 2 m in roadbed material. In drainage ditches along roads, where runoff accumulates and recharge of surface water is high, Cl - was flushed from the sediments in 3 to 4 yr. In areas of lower recharge, Cl - remained in the sediments after 5 yr. Vertical brine movement is directly related to surface recharge through sediments. The distribution of Cl - in pore water and sediments is consistent with estimates of vadose zone residence times and spatial distribution of surface water recharge from other investigations at the subsurface disposal area

  8. Subseabed disposal safety analysis

    International Nuclear Information System (INIS)

    Koplick, C.M.; Kabele, T.J.

    1982-01-01

    This report summarizes the status of work performed by Analytic Sciences Corporation (TASC) in FY'81 on subseabed disposal safety analysis. Safety analysis for subseabed disposal is divided into two phases: pre-emplacement which includes all transportation, handling, and emplacement activities; and long-term (post-emplacement), which is concerned with the potential hazard after waste is safely emplaced. Details of TASC work in these two areas are provided in two technical reports. The work to date, while preliminary, supports the technical and environmental feasibility of subseabed disposal of HLW

  9. Solvothermal Synthesis, Crystal Structure, and Magnetic Properties of [Co3(SDA)3(DMF)2]: 2-D Layered Metal-organic Framework Derived from 4,4'-Stilbenedicarboxylic Acid (H2SDA)

    International Nuclear Information System (INIS)

    Park, Gyung Se; Kim, Hyun Uk; Kim, Ki Moon; Lee, Gang Ho; Park, Sang Kyu

    2006-01-01

    A new 2-D coordination polymer has been synthesized and characterized by using a novel 4,4'-stilbene dicarboxylic acid and Co(ClO 4 ) 2 ·6H 2 O. The title complex has an unique Co 3 pin-wheel cluster in which central Co has octahedral geometry and two surrounding Co have tetrahedral geometry. The Co 3 pin-wheel clusters, the building unit, are linked through carboxylate oxygens to generate a 2-D layered coordination polymer in ABCABC packing mode. Variable-temperature magnetic susceptibility data of the title compound confirms the high spin splitting of Co with S=3/2. Syntheses of MOF by using SDA and other transition metal ions, Zn, Cd, and Mn, are on progress in this lab. Metal-organic frameworks (MOF) have attracted much more attention in the past decade owing to their various intriguing framework topologies and potential applications as functional materials in gas storage, separation, and catalysis. Because high framework stability is fundamental and essential property for many practical applications, multi-dentate linkers such as carboxylates have been extensively investigated for the formation of more rigid frameworks due to their ability to aggregate metal ions into M-O-C clusters called secondary building units (SBUs) rather than N-bound organic linkers such as 4,4-bipyridine (bipy)

  10. Alternative Concept to Enhance the Disposal Efficiency for CANDU Spent Fuel Disposal System

    International Nuclear Information System (INIS)

    Lee, Jong Youl; Cho, Dong Geun; Kook, Dong Hak; Lee, Min Soo; Choi, Heui Joo

    2011-01-01

    There are two types of nuclear reactors in Korea and they are PWR type and CANDU type. The safe management of the spent fuels from these reactors is very important factor to maintain the sustainable energy supply with nuclear power plant. In Korea, a reference disposal system for the spent fuels has been developed through a study on the direct disposal of the PWR and CANDU spent fuel. Recently, the research on the demonstration and the efficiency analyses of the disposal system has been performed to make the disposal system safer and more economic. PWR spent fuels which include a lot of reusable material can be considered being recycled and a study on the disposal of HLW from this recycling process is being performed. CANDU spent fuels are considered being disposed of directly in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System (KRS) which was to dispose of both PWR type and CANDU type, the more effective CANDU spent fuel disposal systems were developed. To do this, the disposal canister for CANDU spent fuels was modified to hold the storage basket for 60 bundles which is used in nuclear power plant. With these modified disposal canister concepts, the disposal concepts to meet the thermal requirement that the temperature of the buffer materials should not be over 100 .deg. C were developed. These disposal concepts were reviewed and analyzed in terms of disposal effective factors which were thermal effectiveness, U-density, disposal area, excavation volume, material volume etc. and the most effective concept was proposed. The results of this study will be used in the development of various wastes disposal system together with the HLW wastes from the PWR spent fuel recycling process.

  11. The disposal of orphan wastes using the greater confinement disposal concept

    International Nuclear Information System (INIS)

    Bonano, E.J.; Chu, M.S.Y.; Price, L.L.; Conrad, S.H.; Dickman, P.T.

    1991-01-01

    In the United States, radioactive wastes are conventionally classified as high-level wastes, transuranic wastes, or low-level wastes. Each of these types of wastes, by law, has a ''home'' for their final disposal; i.e., high-level wastes are destined for disposal at the proposed repository at Yucca Mountain, transuranic waste for the proposed Waste Isolation Pilot Plant, and low-level waste for shallow-land disposal sites. However, there are some radioactive wastes within the United States Department of Energy (DOE) complex that do not meet the criteria established for disposal of either high-level waste, transuranic waste, or low-level waste. The former are called ''special-case'' or ''orphan'' wastes. This paper describes an ongoing project sponsored by the DOE's Nevada Operations Office for the disposal of orphan wastes at the Radioactive Waste Management Site at Area 5 of the Nevada Test Site using the greater confinement disposal (GCD) concept. The objectives of the GCD project are to evaluate the safety of the site for disposal of orphan wastes by assessing compliance with pertinent regulations through performance assessment, and to examine the feasibility of this disposal concept as a cost-effective, safe alternative for management of orphan wastes within the DOE complex. Decisions on the use of GCD or other alternate disposal concepts for orphan wastes be expected to be addressed in a Programmatic Environmental Impact Statement being prepared by DOE. The ultimate decision to use GCD will require a Record of Decision through the National Environmental Policy Act (NEPA) process. 20 refs., 3 figs., 2 tabs

  12. Household waste disposal in Mekelle city, Northern Ethiopia

    International Nuclear Information System (INIS)

    Tadesse, Tewodros; Ruijs, Arjan; Hagos, Fitsum

    2008-01-01

    In many cities of developing countries, such as Mekelle (Ethiopia), waste management is poor and solid wastes are dumped along roadsides and into open areas, endangering health and attracting vermin. The effects of demographic factors, economic and social status, waste and environmental attributes on household solid waste disposal are investigated using data from household survey. Household level data are then analyzed using multinomial logit estimation to determine the factors that affect household waste disposal decision making. Results show that demographic features such as age, education and household size have an insignificant impact over the choice of alternative waste disposal means, whereas the supply of waste facilities significantly affects waste disposal choice. Inadequate supply of waste containers and longer distance to these containers increase the probability of waste dumping in open areas and roadsides relative to the use of communal containers. Higher household income decreases the probability of using open areas and roadsides as waste destinations relative to communal containers. Measures to make the process of waste disposal less costly and ensuring well functioning institutional waste management would improve proper waste disposal

  13. Verification of best available technology for the 300 Area Treated Effluent Disposal Facility (310 Facility)

    International Nuclear Information System (INIS)

    Wagner, R.N.

    1994-01-01

    This compilation of Project L-045H reference materials documents that the 300 Area Treated Effluent Disposal Facility (TEDF, also designated the 310 Facility) was designed, built, and will be operated in accordance with the best available technology (BAT) identified in the Engineering Summary Report. The facility is intended for treatment of 300 Area process sewer wastewater. The following unit operations for 300 Area process sewer water treatment are specified as: influent receipt; iron co-precipitation and sludge handling for removal of heavy metals and initial suspended solids; ion exchanged for removal of mercury and other heavy metals; ultraviolet (UV)/peroxide treatment for destruction of organic compounds, cyanide, coliforms, sulfide, and nitrite; and effluent discharge to the Columbia River with pH monitoring/control capability

  14. Waste Disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; B-Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    This contribution describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 1997 in three topical areas are reported on: performance assessments, waste forms/packages and near-and far field studies

  15. Use of a Paraffin Based Grout to Stabilize Buried Beryllium and Other Wastes

    International Nuclear Information System (INIS)

    Gretchen Matthern; Duane Hanson; Neal Yancey; Darrell Knudson

    2005-01-01

    The long term durability of WAXFIXi, a paraffin based grout, was evaluated for in situ grouting of activated beryllium wastes in the Subsurface Disposal Area (SDA), a radioactive landfill at the Radioactive Waste Management Complex, part of the Idaho National Laboratory (INL). The evaluation considered radiological and biological mechanisms that could degrade the grout using data from an extensive literature search and previous tests of in situ grouting at the INL. Conservative radioactive doses for WAXFIX were calculated from the ''hottest'' (i.e., highest-activity) Advanced Test Reactor beryllium block in the SDA.. These results indicate that WAXFIX would not experience extensive radiation damage for many hundreds of years. Calculation of radiation induced hydrogen generation in WAXFIX indicated that grout physical performance should not be reduced beyond the effects of radiation dose on the molecular structure. Degradation of a paraffin-based grout by microorganisms in the SDA is possible and perhaps likely, but the rate of degradation will be at a slower rate than found in the literature reviewed. The calculations showed the outer 0.46 m (18 in.) layer of each monolith, which represents the minimum expected distance to the beryllium block, was calculated to require 1,000 to 3,600 years to be consumed. The existing data and estimations of biodegradation and radiolysis rates for WAXFIX/paraffin do not indicate any immediate problems with the use of WAXFIX for grouting beryllium or other wastes in the SDA

  16. Estimating Uranium Partition Coefficients from Laboratory Adsorption Isotherms

    International Nuclear Information System (INIS)

    Hull, L.C.; Grossman, C.; Fjeld, R.A.; Coates, J.T.; Elzerman, A.W.

    2002-01-01

    An estimated 330 metric tons of uranium have been buried in the radioactive waste Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An assessment of uranium transport parameters is being performed to decrease the uncertainty in risk and dose predictions derived from computer simulations of uranium fate and transport to the underlying Snake River Plain Aquifer. Uranium adsorption isotherms have been measured in the laboratory and fit with a Freundlich isotherm. The Freundlich n parameter was statistically identical for 14 sediment samples. The Freundlich Kf for seven samples, where material properties have been measured, is correlated to sediment surface area. Based on these empirical observations, a model has been derived for adsorption of uranium on INEEL sedimentary materials using surface complexation theory. The model was then used to predict the range of adsorption conditions to be expected at the SDA. Adsorption in the deep vadose zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate decreases with depth

  17. Alternatives for future land disposal of radioactive waste

    International Nuclear Information System (INIS)

    Mallory, C.W.

    1982-01-01

    Shallow land burial incorporating improvements to facilitate stabilization and decommissioning will continue to be the primary method of disposing of low level waste in areas where conditions are suitable for this type of disposal. The existing disposal sites should be closely monitored to assure that continued acceptance of this method of disposal. Plans for the decommissioning of the existing sites should be closely reviewed to assure that the planning is adequate and that adequate resources will be available to implement the decommissioning plan. For these areas where geological conditions are not suitable for shallow land burial and in situations where a higher degree of containment is desired, alternative disposal methods should be considered. Technology exists or is readily attainable to provide engineered disposal facilities which provide a higher degree of containment and can be readily decommissioned. The cost of disposal using these methods can be competitive with shallow land burial when the cost of environmental and hydrogeologic investigations and decommissioning are included. Disposal of radioactive waste having low activity in secure sanitary landfills could significantly reduce the transportation and disposal requirements for low level waste

  18. Tritium waste disposal technology in the US

    International Nuclear Information System (INIS)

    Albenesius, E.L.; Towler, O.A.

    1983-01-01

    Tritium waste disposal methods in the US range from disposal of low specific activity waste along with other low-level waste in shallow land burial facilities, to disposal of kilocurie amounts in specially designed triple containers in 65' deep augered holes located in an aird region of the US. Total estimated curies disposed of are 500,000 in commercial burial sites and 10 million curies in defense related sites. At three disposal sites in humid areas, tritium has migrated into the ground water, and at one arid site tritium vapor has been detected emerging from the soil above the disposal area. Leaching tests on tritium containing waste show that tritium in the form of HTO leaches readily from most waste forms, but that leaching rates of tritiated water into polymer impregnated concrete are reduced by as much as a factor of ten. Tests on improved tritium containment are ongoing. Disposal costs for tritium waste are 7 to 10 dollars per cubic foot for shallow land burial of low specific activity tritium waste, and 10 to 20 dollars per cubic foot for disposal of high specific activity waste. The cost of packaging the high specific activity waste is 150 to 300 dollars per cubic foot. 18 references

  19. Special Analysis for Disposal of High-Concentration I-129 Waste in the Intermediate-Level Vaults at the E-Area Low-Level Waste Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collard, L.B.

    2000-09-26

    This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds.

  20. Special Analysis for Disposal of High-Concentration I-129 Waste in the Intermediate-Level Vaults at the E-Area Low-Level Waste Facility

    International Nuclear Information System (INIS)

    Collard, L.B.

    2000-01-01

    This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds

  1. Annual Status Report (FY2015) Performance Assessment for the Disposal of Low-Level Waste in the 200 West Area Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, R. [INTERA, Inc., Austin, TX (United States); Mehta, S. [CH2M Hill Plateau Remediation Company, Richland, WA (United States); Nichols, W. E. [CH2M Hill Plateau Remediation Company, Richland, WA (United States)

    2016-02-01

    This annual review provides the projected dose estimates of radionuclide inventories disposed in the active 200 West Area Low-Level Burial Grounds (LLBGs) since September 26, 1988. These estimates area calculated using the original does methodology developed in the performance assessment (PA) analysis (WHC-EP-0645).

  2. Disposable products in the hospital waste stream.

    OpenAIRE

    Gilden, D. J.; Scissors, K. N.; Reuler, J. B.

    1992-01-01

    Use of disposable products in hospitals continues to increase despite limited landfill space and dwindling natural resources. We analyzed the use and disposal patterns of disposable hospital products to identify means of reducing noninfectious, nonhazardous hospital waste. In a 385-bed private teaching hospital, the 20 disposable products of which the greatest amounts (by weight) were purchased, were identified, and total hospital waste was tabulated. Samples of trash from three areas were so...

  3. Probabilistic risk assessment for the Sandia National Laboratories Technical Area V Liquid Waste Disposal System surface impoundments

    International Nuclear Information System (INIS)

    Dawson, L.A.; Eidson, A.F.

    1996-01-01

    A probabilistic risk assessment was completed for a former radioactive waste disposal site. The site, two unlined surface impoundment, was designed as part of the Liquid Waste Disposal System (LWDS) to receive radioactive effluent from nuclear reactors in Technical Area-V (TA-V) at Sandia National Laboratories/New Mexico (SNL/NM). First, a statistical comparison of site sampling results to natural background, using EPA methods, and a spatial distribution analysis were performed. Risk assessment was conducted with SNL/NM's Probabilistic Risk Evaluation and Characterization Investigation System model. The risk assessment indicated that contamination from several constituents might have been high enough to require remediation. However, further analysis based on expected site closure activities and recent EPA guidance indicated that No Further Action was acceptable

  4. Recovery and disposal of discarded tires in the Taiwan area.

    Science.gov (United States)

    Hwang, J S; Roam, G D

    1994-12-01

    Urbanization and industrialization has resulted in a vast amount of artificial water containers in Taiwan, especially discarded automobile tires. 3.5 million automobile tires and several million motorcycle tires are discarded annually. The discarded tires contaminate the environment and also become a substantial number of breeding sites for the dengue vector mosquitoes. In order to establish a sound system for the recovery and disposal of discarded tires and to control dengue fever through source reduction, it has been emphasized that users must pay for their waste. It is necessary to recover and properly dispose of these discarded tired. The commercial firms which sell or manufacture tires are therefore advised to cooperate with the Environmental Protection Administration of the Executive Yuan, R.O.C. and follow the "Regulations of Recovery and Disposal of Discarded Tires". They are requested to establish foundations for the recovery of discarded tires. Those who are willing to join should prepay a deposit or related charge by the size of tire, which is imported or locally manufactured. The foundation utilizes the deposits for the recovery and disposal of discarded tires. From 1991 to 1993 the commercial tire firms had already achieved the 80% recovery rates declared by the authorities concerned. Some of the tires, after having been recovered, were recycled in the original form and the rest were cut into small pieces for recycling after physical treatment. It should be mentioned that the Department of Environmental Protection of Kaohsiung City has collected 80 thousand discarded automobile tires to be used as ocean jetty.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Rapid geophysical surveyor

    International Nuclear Information System (INIS)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved

  6. Geohydrology of industrial waste disposal site

    International Nuclear Information System (INIS)

    Gaynor, R.K.

    1984-01-01

    An existing desert site for hazardous chemical and low-level radioactive waste disposal is evaluated for suitability. This site is characterized using geologic, geohydrologic, geochemical, and other considerations. Design and operation of the disposal facility is considered. Site characteristics are also evaluated with respect to new and proposed regulatory requirements under the Resource Conservation and Recovery Act (1976) regulations, 40 CFR Part 264, and the ''Licensing Requirements for Landfill Disposal of Radioactive Waste,'' 10 CRF Part 61. The advantages and disadvantages of siting new disposal facilities in similar desert areas are reviewed and contrasted to siting in humid locations

  7. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    International Nuclear Information System (INIS)

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS

  8. Geomorphologic characteristic of low-intermediate level radioactive waste disposal land candidate at Lemahabang area

    International Nuclear Information System (INIS)

    Sucipta

    1998-01-01

    Geomorphological aspect is a factor should be considered on land evaluation for radioactive wastes disposal purpose. The aspect is important because geomorphological factors contribute on hydrological and erosion condition of the land. The objective of the study is to characterize the geomorphological condition of the land, i.e. land form, geomorphological processes, rock type, soil, surface water, ground water, vegetation and land use. The study was conducted by descriptive analyses from literature study and field geomorphological method, with evaluation as well as developed for terrain analyses. The study area can be divided industry for land from units, I.e. tuff undulating unit (land use: plantation), coastal deposits plain unit, silty sand fluvial plain unit (land use: wet rice field) and unconsolidated sand beach deposits plain unit (opened land without vegetation). Hydrologically, the study area can be divided indus tri three small river stream area (RSA). Detailed description of geomorfological condition is showed by table and geomorphological map. (author)

  9. 3D-Printed Disposable Wireless Sensors with Integrated Microelectronics for Large Area Environmental Monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad

    2017-05-19

    Large area environmental monitoring can play a crucial role in dealing with crisis situations. However, it is challenging as implementing a fixed sensor network infrastructure over large remote area is economically unfeasible. This work proposes disposable, compact, dispersible 3D-printed wireless sensor nodes with integrated microelectronics which can be dispersed in the environment and work in conjunction with few fixed nodes for large area monitoring applications. As a proof of concept, the wireless sensing of temperature, humidity, and H2S levels are shown which are important for two critical environmental conditions namely forest fires and industrial leaks. These inkjet-printed sensors and an antenna are realized on the walls of a 3D-printed cubic package which encloses the microelectronics developed on a 3D-printed circuit board. Hence, 3D printing and inkjet printing are uniquely combined in order to realize a low-cost, fully integrated wireless sensor node.

  10. Radionuclide concentrations in/on vegetation at radioactive-waste disposal Area G during the 1995 growing season. Progress report

    International Nuclear Information System (INIS)

    Fresquez, P.R.; Vold, E.L.; Naranjo, L. Jr.

    1996-01-01

    Overstory (pinon pine) and understory (grass and forb) vegetation were collected within and around selected points at Area G--a low- level radioactive solid-waste disposal facility at Los Alamos National Laboratory--for the analysis of tritium ( 3 H), strontium ( 90 Sr), plutonium ( 238 Pu and 239 Pu), cesium ( 137 Cs), and total uranium. Also, heavy metals (Ag, As, Ba, Be, Cd, Cr, Hg, Ni, Pb, Sb, Se, and Tl) in/on vegetation were determined. In general, most (unwashed) vegetation collected within and around Area G contained 3 H, uranium, 238 Pu, and 239 Pu in higher concentrations than vegetation collected from background areas. Tritium, in particular, was detected as high as 7300 pCi mL -1 in understory vegetation collected from the west side of the transuranic (TRU) pads. The south and west ends of the tritium shaft field also contained elevated levels of 3 H in overstory, and especially in understory vegetation, as compared to background; this suggests that 3 H may be migrating from this waste repository through surface and subsurface pathways. Also, understory vegetation collected north of the TRU pads (adjacent to the fence line of Area G) contained the highest values of 238 Pu and 239 Pu as compared to background, and may be a result of surface holding, storage, and/or disposal activities

  11. Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    Price, L.

    1994-09-01

    The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE's Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS

  12. Waste management, final waste disposal, fuel cycle

    International Nuclear Information System (INIS)

    Rengeling, H.W.

    1991-01-01

    Out of the legal poblems that are currently at issue, individual questions from four areas are dealt with: privatization of ultimate waste disposal; distribution of responsibilities for tasks in the field of waste disposal; harmonization and systematization of regulations; waste disposal - principles for making provisions for waste disposal - proof of having made provisions for waste disposal; financing and fees. A distinction has to be made between that which is legally and in particular constitutionally imperative or, as the case may be, permissible, and issues where there is room for political decision-making. Ultimately, the deliberations on the amendment are completely confined to the sphere of politics. (orig./HSCH) [de

  13. Mixed waste disposal facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Wells, M.N.; Bailey, L.L.

    1991-01-01

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission

  14. Thermal-hydraulic-geochemical coupled processes around disposed high level nuclear waste in deep granite hosted geological repositories: frontier areas of advanced groundwater research in India

    International Nuclear Information System (INIS)

    Bajpai, R.K.

    2012-01-01

    Indian policy for permanent disposal of high level nuclear wastes with radionuclide having very long half lives include their immobilization in a stable matrix i.e. glasses of suitable composition, its storage in high integrity steel canisters and subsequent disposal in suitable host rock like granites at a depth of 400-500m in stable geological set up. The site for such disposal facilities are selected after vigorous assessment of their stability implying an exhaustive site selection methodology based on a large number of criteria and attributes. In India, an area of about 70000 square kilometers occupied by granites has been subjected to such evaluation for generating comprehensive database on host rock parameters. The sites selected after such intensive analysis are expected to remain immune to processes like seismicity, volcanism, faulting, uplift, erosion, flooding etc. even in distant future spanning over tens of thousands of years. Nevertheless, groundwater has emerged as the only credible pathway through which disposed waste can eventually find its way to accessible biosphere. Hence groundwater research constitutes one of the most important aspects in demonstration of safety of such disposal. The disposed waste due to continuous emission of decay heat creates high temperature field around them with resultant increase in groundwater temperature in the vicinity. Hot groundwater on reacting with steel canisters, backfill clays and cement used around the disposed canister, produces geochemical environment characterized by altered Ph, Eh and groundwater compositions. Acceleration in geochemical interaction among waste-groundwater-clay-cement-granite often results in dissolution or precipitation reactions along the groundwater flow paths i.e. fractures with resultant increase or decrease in their permeability. Thus thermal, hydraulic and geochemical processes work interdependently around the disposed waste. These coupled processes also control the release and

  15. radioactive waste disposal standards abroad

    International Nuclear Information System (INIS)

    Lu Yan; Xin Pingping; Wu Jian; Zhang Xue

    2012-01-01

    With the world focus on human health and environmental protection, the problem of radioactive waste disposal has gradually become a global issue, and the focus of attention of public. The safety of radioactive waste disposal, is not only related to human health and environmental safety, but also an important factor of affecting the sustainable development of nuclear energy. In recent years the formulation of the radioactive waste disposal standards has been generally paid attention to at home and abroad, and it has made great progress. In China, radioactive waste management standards are being improved, and there are many new standards need to be developed. The revised task of implement standards is very arduous, and there are many areas for improvement about methods and procedures of the preparation of standards. This paper studies the current situation of radioactive waste disposal standards of the International Atomic Energy Agency, USA, France, Britain, Russia, Japan, and give some corresponding recommendations of our radioactive waste disposal standards. (authors)

  16. ANALISIS PRODUKTIVITAS ALAT MEKANIS, PEMAKAIAN MATERIAL SIPIL DAN BIAYA OPERASI PADA DISPOSAL AREA PT. INCO TBk.

    OpenAIRE

    Alamin, Rahmatan Lil

    2011-01-01

    Aktivitas disposal merupakan salah satu rangkaian dari aktivitas penambangan. Disposal adalah daerah pada suatu operasi tambang terbuka yang digunakan sebagai tempat membuang material kadar rendah dan/atau material bukan bijih. Material-material tersebut, merupakan material yang perlu digali dari pit demi memperoleh bijih/material kadar tinggi. PT. Inco Tbk. mempunyai dua tipe disposal aktif yang dibedakan berdasarkan faktor geometrinya, yaitu disposal tipe Finger dan disposal tipe Semi I...

  17. Source term development for the 300 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    Bendixsen, R.B.

    1994-04-01

    A novel method for developing a source term for radiation and hazardous material content of sludge processing equipment and barrels in a new waste water treatment facility is presented in this paper. The 300 Area Treated Effluent Disposal Facility (TEDF), located at the Hanford Site near Richland, Washington, will treat process sewer waste water from the 300 Area and discharge a permittable effluent flow into the Columbia River. A process information and hazards analysis document needed a process flowsheet detailing the concentrations of radionuclides, inorganics, and organics throughout the process, including the sludge effluent flow. A hazards analysis for a processing facility usually includes a flowsheet showing the process, materials, heat balances, and instrumentation for that facility. The flow sheet estimates stream flow quantities, activities, compositions, and properties. For the 300 Area TEDF, it was necessary to prepare the flow sheet with all of the information so that radiation doses to workers could be estimated. The noble method used to develop the 300 Area TEDF flowsheet included generating recycle factors. To prepare each component in the flowsheet, precipitation, destruction, and two recycle factors were developed. The factors were entered into a spreadsheet and provided a method of estimating the steady-state concentrations of all of the components in the facility. This report describes how the factors were developed, explains how they were used in developing the flowsheet, and presents the results of using these values to estimate radiation doses for personnel working in the facility. The report concludes with a discussion of the effect of estimates of radioactive and hazardous material concentrations on shielding design and the need for containment features for equipment in the facility

  18. Analysis of the low-level waste radionuclide inventory for the Radioactive Waste Management Complex performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Plansky, L.E.; Hoiland, S.A.

    1992-02-01

    This report summarizes the results of a study to improve the estimates of the radionuclides in the low-level radioactive waste (LLW) inventory which is buried in the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC) Subsurface Disposal Area (SDA). The work is done to support the RWMC draft performance assessment (PA). Improved radionuclide inventory estimates are provided for the INEL LLW generators. Engineering, environmental assessment or other research areas may find use for the information in this report. It may also serve as a LLW inventory baseline for data quality assurance. The individual INEL LLW generators, their history and their activities are also described in detail.

  19. Analysis of the low-level waste radionuclide inventory for the Radioactive Waste Management Complex performance assessment

    International Nuclear Information System (INIS)

    Plansky, L.E.; Hoiland, S.A.

    1992-02-01

    This report summarizes the results of a study to improve the estimates of the radionuclides in the low-level radioactive waste (LLW) inventory which is buried in the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC) Subsurface Disposal Area (SDA). The work is done to support the RWMC draft performance assessment (PA). Improved radionuclide inventory estimates are provided for the INEL LLW generators. Engineering, environmental assessment or other research areas may find use for the information in this report. It may also serve as a LLW inventory baseline for data quality assurance. The individual INEL LLW generators, their history and their activities are also described in detail

  20. Analysis of scenarios for the direct disposal of spent nuclear fuel disposal conditions as expected in Germany

    International Nuclear Information System (INIS)

    Ashton, P.; Mehling, O.; Mohn, R.; Wingender, H.J.

    1990-01-01

    This report contains an investigation of aspects of the waste management of spent light water reactor fuel by direct disposal in a deep geological formation on land. The areas covered are: interim dry storage of spent fuel with three options of pre-conditioning; conditioning of spent fuel for final disposal in a salt dome repository; disposal of spent fuel (heat-generating waste) in a salt dome repository; disposal of medium and low-level radioactive wastes in the Konrad mine. Dose commitments, effluent discharges and potential incidents were not found to vary significantly for the various conditioning options/salt dome repository types. Due to uncertainty in the cost estimates, in particular the disposal cost estimates, the variation between the three conditioning options examined is not considered as being significant. The specific total costs for the direct disposal strategy are estimated to lie in the range ECU 600 to 700 per kg hm (basis 1988)

  1. Oklahoma’s recent earthquakes and saltwater disposal

    Science.gov (United States)

    Walsh, F. Rall; Zoback, Mark D.

    2015-01-01

    Over the past 5 years, parts of Oklahoma have experienced marked increases in the number of small- to moderate-sized earthquakes. In three study areas that encompass the vast majority of the recent seismicity, we show that the increases in seismicity follow 5- to 10-fold increases in the rates of saltwater disposal. Adjacent areas where there has been relatively little saltwater disposal have had comparatively few recent earthquakes. In the areas of seismic activity, the saltwater disposal principally comes from “produced” water, saline pore water that is coproduced with oil and then injected into deeper sedimentary formations. These formations appear to be in hydraulic communication with potentially active faults in crystalline basement, where nearly all the earthquakes are occurring. Although most of the recent earthquakes have posed little danger to the public, the possibility of triggering damaging earthquakes on potentially active basement faults cannot be discounted. PMID:26601200

  2. The disposal of radioactive waste on land

    Energy Technology Data Exchange (ETDEWEB)

    None

    1957-09-01

    A committee of geologists and geophysicists was established by the National Academy of Sciences-National Research Council at the request of the Atomic Energy Commission to consider the possibilities of disposing of high level radioactive wastes in quantity within the continental limits of the United States. The group was charged with assembling the existing geologic information pertinent to disposal, delineating the unanswered problems associated with the disposal schemes proposed, and point out areas of research and development meriting first attention; the committee is to serve as continuing adviser on the geological and geophysical aspects of disposal and the research and development program. The Committee with the cooperation of the Johns Hopkins University organized a conference at Princeton in September 1955. After the Princeton Conference members of the committee inspected disposal installations and made individual studies. Two years consideration of the disposal problems leads to-certain general conclusions. Wastes may be disposed of safely at many sites in the United States but, conversely, there are many large areas in which it is unlikely that disposal sites can be found, for example, the Atlantic Seaboard. Disposal in cavities mined in salt beds and salt domes is suggested as the possibility promising the most practical immediate solution of the problem. In the future the injection of large volumes of dilute liquid waste into porous rock strata at depths in excess of 5,000 feet may become feasible but means of rendering, the waste solutions compatible with the mineral and fluid components of the rock must first be developed. The main difficulties, to the injection method recognized at present are to prevent clogging of pore space as the solutions are pumped into the rock and the prediction or control of the rate and direction of movement.

  3. Density, movement, and transuranic tissue inventory of small mammals at a liquid-radioactive waste disposal area

    International Nuclear Information System (INIS)

    Halford, D.K.

    1987-01-01

    Linear movement, density, and transuranic radionuclide inventory were estimated for small mammals residing at a liquid radioactive waste disposal area in southeastern Idaho. Deer mice (Peromyscus maniculatus), kangaroo rats (Dipodomys ordii), western harvest mice (Reithrodontomys megalotis), and Great Basin pocket mice (Perognathus parvus) were the predominant species. The total small mammal population within the 3.0-ha waste area was estimated to be 93. The distance between consecutive captures for all species combined averaged 41 m and ranged from 7 to 201 m. About 30% of the rodents captured inside the waste area were also captured outside its boundaries. The total population inventory of 238 Pu, /sup 239,240/Pu, 241 Am, 242 Cm, and 244 Cm was 44 pCi, 30 pCi, 19 pCi, 21 pCi, and <1 pCi, respectively. One-third, or about 35 pCi of transuranics, could be removed from the waste area by small mammals during the summer of 1981. 16 references, 3 figures, 3 tables

  4. Rapid Geophysical Surveyor

    International Nuclear Information System (INIS)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of US Department of Energy waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sites where historical records are inaccurate and survey benchmarks have changed because of refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho National Engineering Laboratory (INEL) during the summer of 1992. The RGS was funded by the Buried Waste Integrated Demonstration program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the INEL in September 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 in. along survey lines spaced 1-ft apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 worker-days using conventional ground survey techniques

  5. 2005 dossier: clay. Tome: architecture and management of the geologic disposal facility

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the design of a geologic disposal facility for high-level and long-lived radioactive wastes in argilite formations. Content: 1 - approach of the study: goal, main steps of the design study, iterative approach, content; 2 - general description: high-level and long-lived radioactive wastes, purposes of a reversible disposal, geologic context of the Meuse/Haute-Marne site - the Callovo-Oxfordian formation, design principles of the disposal facility architecture, role of the different disposal components; 3 - high-level and long-lived wastes: production scenarios, description of primary containers, inventory model, hypotheses about receipt fluxes of primary containers; 4- disposal containers: B-type waste containers, C-type waste containers, spent fuel disposal containers; 5 - disposal modules: B-type waste disposal modules, C-type waste disposal modules, spent-fuel disposal modules; 6 - overall underground architecture: main safety questions, overall design, dimensioning factors, construction logic and overall exploitation of the facility, dimensioning of galleries, underground architecture adaptation to different scenarios; 7 - boreholes and galleries: general needs, design principles retained, boreholes description, galleries description, building up of boreholes and galleries, durability of facilities, backfilling and sealing up of boreholes and galleries; 8 - surface facilities: general organization, nuclear area, industrial and administrative area, tailings area; 9 - nuclear exploitation means of the facility: receipt of primary containers and preparation of disposal containers, transfer of disposal containers from the surface to the disposal alveoles, setting up of containers inside alveoles; 10 - reversible management of the disposal: step by step disposal process, mastery of disposal behaviour and action capacity, observation and

  6. Use of a Paraffin Based Grout to Stabilize Buried Beryllium and Other Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Gretchen Matthern; Duane Hanson; Neal Yancey; Darrell Knudson

    2005-12-01

    The long term durability of WAXFIXi, a paraffin based grout, was evaluated for in situ grouting of activated beryllium wastes in the Subsurface Disposal Area (SDA), a radioactive landfill at the Radioactive Waste Management Complex, part of the Idaho National Laboratory (INL). The evaluation considered radiological and biological mechanisms that could degrade the grout using data from an extensive literature search and previous tests of in situ grouting at the INL. Conservative radioactive doses for WAXFIX were calculated from the "hottest" (i.e., highest-activity) Advanced Test Reactor beryllium block in the SDA.. These results indicate that WAXFIX would not experience extensive radiation damage for many hundreds of years. Calculation of radiation induced hydrogen generation in WAXFIX indicated that grout physical performance should not be reduced beyond the effects of radiation dose on the molecular structure. Degradation of a paraffin-based grout by microorganisms in the SDA is possible and perhaps likely, but the rate of degradation will be at a slower rate than found in the literature reviewed. The calculations showed the outer 0.46 m (18 in.) layer of each monolith, which represents the minimum expected distance to the beryllium block, was calculated to require 1,000 to 3,600 years to be consumed. The existing data and estimations of biodegradation and radiolysis rates

  7. Timing of High-level Waste Disposal

    International Nuclear Information System (INIS)

    2008-01-01

    This study identifies key factors influencing the timing of high-level waste (HLW) disposal and examines how social acceptability, technical soundness, environmental responsibility and economic feasibility impact on national strategies for HLW management and disposal. Based on case study analyses, it also presents the strategic approaches adopted in a number of national policies to address public concerns and civil society requirements regarding long-term stewardship of high-level radioactive waste. The findings and conclusions of the study confirm the importance of informing all stakeholders and involving them in the decision-making process in order to implement HLW disposal strategies successfully. This study will be of considerable interest to nuclear energy policy makers and analysts as well as to experts in the area of radioactive waste management and disposal. (author)

  8. Low-level waste disposal site selection demonstration

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1984-01-01

    This paper discusses the results of recent studies undertaken at EPRI related to low-level waste disposal technology. The initial work provided an overview of the state of the art including an assessment of its influence upon transportation costs and waste form requirements. The paper discusses work done on the overall system design aspects and computer modeling of disposal site performance characteristics. The results of this analysis are presented and provide a relative ranking of the importance of disposal parameters. This allows trade-off evaluations to be made of factors important in the design of a shallow land burial facility. To help minimize the impact of a shortage of low-level radioactive waste disposal sites, EPRI is closely observing the development of bellweather projects for developing new sites. The purpose of this activity is to provide information about lessons learned in those projects in order to expedite the development of additional disposal facilities. This paper describes most of the major stems in selecting a low-level radioactive waste disposal site in Texas. It shows how the Texas Low-Level Radioactive Waste Disposal Authority started with a wide range of potential siting areas in Texas and narrowed its attention down to a few preferred sites. The parameters used to discriminate between large areas of Texas and, eventually, 50 candidate disposal sites are described, along with the steps in the process. The Texas process is compared to those described in DOE and EPRI handbooks on site selection and to pertinent NRC requirements. The paper also describes how an inventory of low-level waste specific to Texas was developed and applied in preliminary performance assessments of two candidate sites. Finally, generic closure requirements and closure operations for low-level waste facilities in arid regions are given

  9. Total gaseous mercury and volatile organic compounds measurements at five municipal solid waste disposal sites surrounding the Mexico City Metropolitan Area

    Science.gov (United States)

    de la Rosa, D. A.; Velasco, A.; Rosas, A.; Volke-Sepúlveda, T.

    The daily municipal solid waste (MSW) generation in the Mexico City Metropolitan Area (MCMA) is the highest nationwide (˜26000 ton day -1); this amount is discarded in sanitary landfills and controlled dumps. Information about the type and concentration of potential pollutants contained in landfill gas (LFG) from these MSW disposal sites is limited. This study intends to generate information about the composition of LFG from five MSW disposal sites with different operational characteristics and stages, in order to identify their contribution as potential pollutant sources of total gaseous mercury (TGM) and volatile organic compounds (VOCs). Important methane (CH 4) contents (>55%) in LFG were registered at three of the five sites, while two sites were found in semi-aerobic conditions (CH 4clay cover. High values of the TGM air/LFG ratio were also related to external TGM sources of influence, as a landfill in operation stage located at a highly industrialized area.

  10. Radiological performance assessment for the Z-Area Saltstone Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.; Fowler, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-12-18

    This radiological performance assessment (RPA) for the Savannah River Site (SRS) Saltstone Disposal Facility (SDF) was prepared in accordance with the requirements of Chapter III of the US Department of Energy Order 5820.2A. The Order specifies that an RPA should provide reasonable assurance that a low-level waste (LLW) disposal facility will comply with the performance objectives of the Order. The performance objectives require that: (1) exposures of the general public to radioactivity in the waste or released from the waste will not result in an effective dose equivalent of 25 mrem per year; (2) releases to the atmosphere will meet the requirements of 40 CFR 61; (3) inadvertent intruders will not be committed to an excess of an effective dose equivalent of 100 mrem per year from chronic exposure, or 500 mrem from a single acute exposure; and (4) groundwater resources will be protected in accordance with Federal, State and local requirements.

  11. Radiological performance assessment for the Z-Area Saltstone Disposal Facility

    International Nuclear Information System (INIS)

    Cook, J.R.; Fowler, J.R.

    1992-01-01

    This radiological performance assessment (RPA) for the Savannah River Site (SRS) Saltstone Disposal Facility (SDF) was prepared in accordance with the requirements of Chapter III of the US Department of Energy Order 5820.2A. The Order specifies that an RPA should provide reasonable assurance that a low-level waste (LLW) disposal facility will comply with the performance objectives of the Order. The performance objectives require that: (1) exposures of the general public to radioactivity in the waste or released from the waste will not result in an effective dose equivalent of 25 mrem per year; (2) releases to the atmosphere will meet the requirements of 40 CFR 61; (3) inadvertent intruders will not be committed to an excess of an effective dose equivalent of 100 mrem per year from chronic exposure, or 500 mrem from a single acute exposure; and (4) groundwater resources will be protected in accordance with Federal, State and local requirements

  12. Public Perspectives in the Japanese HLW Disposal Program

    International Nuclear Information System (INIS)

    Inatsugu, Shigefumi; Takeuchi, Mitsuo; Kato, Toshiaki

    2006-01-01

    Following legislation entitled the 'Specified Radioactive Waste Final Disposal Act', the Nuclear Waste Management Organization of Japan (NUMO) was established in October 2000 as the implementing organization for geological disposal of vitrified high-level waste (HLW). Implementation of NUMO's disposal project will be based on three principles: 1) respecting public initiative and opinion, 2) adopting a stepwise approach and 3) ensuring transparency in information disclosure. NUMO has decided to adopt an open solicitation approach to finding volunteer municipalities for Preliminary Investigation Areas (PIAs). The official announcement of the start of the open solicitation program was made in 2002. Although no official applications had been received from volunteer municipalities by the end of 2005, NUMO has been continuing to carry out various activities aimed specifically at public communication and encouraging dialogue about the deep geological disposal project This paper summarizes the results obtained and lessons learned so far and identifies the issues that NUMO must tackle immediately in the areas of communication and dialogue

  13. Public Perspectives in the Japanese HLW Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Inatsugu, Shigefumi; Takeuchi, Mitsuo; Kato, Toshiaki [Nuclear Waste Management Organization of Japan (NUNIO), Tokyo (Japan)

    2006-09-15

    Following legislation entitled the 'Specified Radioactive Waste Final Disposal Act', the Nuclear Waste Management Organization of Japan (NUMO) was established in October 2000 as the implementing organization for geological disposal of vitrified high-level waste (HLW). Implementation of NUMO's disposal project will be based on three principles: 1) respecting public initiative and opinion, 2) adopting a stepwise approach and 3) ensuring transparency in information disclosure. NUMO has decided to adopt an open solicitation approach to finding volunteer municipalities for Preliminary Investigation Areas (PIAs). The official announcement of the start of the open solicitation program was made in 2002. Although no official applications had been received from volunteer municipalities by the end of 2005, NUMO has been continuing to carry out various activities aimed specifically at public communication and encouraging dialogue about the deep geological disposal project This paper summarizes the results obtained and lessons learned so far and identifies the issues that NUMO must tackle immediately in the areas of communication and dialogue.

  14. 77 FR 14307 - Water and Waste Disposal Loans and Grants

    Science.gov (United States)

    2012-03-09

    ... CFR 1777 RIN 0572-AC26 Water and Waste Disposal Loans and Grants AGENCY: Rural Utilities Service, USDA... pertaining to the Section 306C Water and Waste Disposal (WWD) Loans and Grants program, which provides water... to assist areas designated as colonias that lack access to water or waste disposal systems and/or...

  15. Alternatives for definse waste-salt disposal

    International Nuclear Information System (INIS)

    Benjamin, R.W.; McDonell, W.R.

    1983-01-01

    Alternatives for disposal of decontaminated high-level waste salt at Savannah River were reviewed to estimate costs and potential environmental impact for several processes. In this review, the reference process utilizing intermediate-depth burial of salt-concrete (saltcrete) monoliths was compared with alternatives including land application of the decontaminated salt as fertilizer for SRP pine stands, ocean disposal with and without containment, and terminal storage as saltcake in existing SRP waste tanks. Discounted total costs for the reference process and its modifications were in the same range as those for most of the alternative processes; uncontained ocean disposal with truck transport to Savannah River barges and storage as saltcake in SRP tanks had lower costs, but presented other difficulties. Environmental impacts could generally be maintained within acceptable limits for all processes except retention of saltcake in waste tanks, which could result in chemical contamination of surrounding areas on tank collapse. Land application would require additional salt decontamination to meet radioactive waste disposal standards, and ocean disposal without containment is not permitted in existing US practice. The reference process was judged to be the only salt disposal option studied which would meet all current requirements at an acceptable cost

  16. Disposal of solid radioactive waste of nuclear power plant

    International Nuclear Information System (INIS)

    YU Shichen.

    1986-01-01

    The contaminations of marine enviroment by the disposal of radwastes should not been expected, then ocean disposal has been stoped in some countries, and land disposal of solid radwastes should been a better method for mankind and environment protection. Ground burial near the surface is currently considered to be feasible. Storage in spent pit or in plant area also should been adapted in several countries

  17. High-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Burkholder, H.C.

    1985-01-01

    The meeting was timely because many countries had begun their site selection processes and their engineering designs were becoming well-defined. The technology of nuclear waste disposal was maturing, and the institutional issues arising from the implementation of that technology were being confronted. Accordingly, the program was structured to consider both the technical and institutional aspects of the subject. The meeting started with a review of the status of the disposal programs in eight countries and three international nuclear waste management organizations. These invited presentations allowed listeners to understand the similarities and differences among the various national approaches to solving this very international problem. Then seven invited presentations describing nuclear waste disposal from different perspectives were made. These included: legal and judicial, electric utility, state governor, ethical, and technical perspectives. These invited presentations uncovered several issues that may need to be resolved before high-level nuclear wastes can be emplaced in a geologic repository in the United States. Finally, there were sixty-six contributed technical presentations organized in ten sessions around six general topics: site characterization and selection, repository design and in-situ testing, package design and testing, disposal system performance, disposal and storage system cost, and disposal in the overall waste management system context. These contributed presentations provided listeners with the results of recent applied RandD in each of the subject areas

  18. Nuclear waste disposal in subseabed geologic formatons: the Seabed Disposal Program

    International Nuclear Information System (INIS)

    Anderson, D.R.

    1979-05-01

    The goal of the Seabed Disposal Program is to assess the technical and environmental feasibility of using geologic formations under the sea floor for the disposal of processed high-level radioactive wastes or repackaged spent reactor fuel. Studies are focused on the abyssal hill regions of the sea floors in the middle of tectonic plates and under massive surface current gyres. The red-clay sediments here are from 50 to 100 meters thick, are continuously depositional (without periods of erosion), and have been geologically and climatologically stable for millions of years. Mineral deposits and biological activity are minimal, and bottom currents are weak and variable. Five years of research have revealed no technological reason why nuclear waste disposal in these areas would be impractical. However, scientific assessment is not complete. Also, legal political, and sociological factors may well become the governing elements in such use of international waters. These factors are being examined as part of the work of the Seabed Working Group, an international adjunct of the Seabed Program, with members from France, England, Japan, Canada, and the United States

  19. Nuclear waste disposal in subseabed geologic formatons: the Seabed Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.R.

    1979-05-01

    The goal of the Seabed Disposal Program is to assess the technical and environmental feasibility of using geologic formations under the sea floor for the disposal of processed high-level radioactive wastes or repackaged spent reactor fuel. Studies are focused on the abyssal hill regions of the sea floors in the middle of tectonic plates and under massive surface current gyres. The red-clay sediments here are from 50 to 100 meters thick, are continuously depositional (without periods of erosion), and have been geologically and climatologically stable for millions of years. Mineral deposits and biological activity are minimal, and bottom currents are weak and variable. Five years of research have revealed no technological reason why nuclear waste disposal in these areas would be impractical. However, scientific assessment is not complete. Also, legal political, and sociological factors may well become the governing elements in such use of international waters. These factors are being examined as part of the work of the Seabed Working Group, an international adjunct of the Seabed Program, with members from France, England, Japan, Canada, and the United States.

  20. Fifth in situ vitrification engineering-scale test of simulated INEL buried waste sites

    International Nuclear Information System (INIS)

    Bergsman, T.M.; Shade, J.W.; Farnsworth, R.K.

    1992-06-01

    In September 1990, an engineering-scale in situ vitrification (ISV) test was conducted on sealed canisters containing a combined mixture of buried waste materials expected to be present at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). The test was part of a Pacific Northwest Laboratory (PNL) program to assist INEL in treatability studies of the potential application of ISV to mixed transuranic wastes at the INEL SDA. The purpose of this test was to determine the effect of a close-packed layer of sealed containers on ISV processing performance. Specific objectives included determining (1) the effect of releases from sealed containers on hood plenum pressure and temperature, (2) the release pressure ad temperatures of the sealed canisters, (3) the relationships between canister depressurization and melt encapsulation, (4) the resulting glass and soil quality, (5) the potential effects of thermal transport due to a canister layer, (6) the effects on particle entrainment of differing angles of approach for the ISV melt front, and (7) the effects of these canisters on the volatilization of voltatile and semivolatile contaminants into the hood plenum

  1. Readiness Assessment Plan, Hanford 200 areas treated effluent disposal facilities

    International Nuclear Information System (INIS)

    Ulmer, F.J.

    1995-01-01

    This Readiness Assessment Plan documents Liquid Effluent Facilities review process used to establish the scope of review, documentation requirements, performance assessment, and plant readiness to begin operation of the Treated Effluent Disposal system in accordance with DOE-RLID-5480.31, Startup and Restart of Facilities Operational Readiness Review and Readiness Assessments

  2. 300 Area Treated Effluent Disposal Facility permit reopener run plan

    International Nuclear Information System (INIS)

    Olander, A.R.

    1995-01-01

    The 300 Area Treated Effluent Disposal Facility (TEDF) is authorized to discharge treated effluent to the Columbia River by National Pollutant Discharge Elimination System permit WA-002591-7. The letter accompanying the final permit noted the following: EPA recognizes that the TEDF is a new waste treatment facility for which full scale operation and effluent data has not been generated. The permit being issued by EPA contains discharge limits that are intended to force DOE's treatment technology to the limit of its capability.'' Because of the excessively tight limits the permit contains a reopener clause which may allow limits to be renegotiated after at least one year of operation. The restrictions for reopening the permit are as follows: (1) The permittee has properly operated and maintained the TEDF for a sufficient period to stabilize treatment plant operations, but has nevertheless been unable to achieve the limitation specified in the permit. (2) Effluent data submitted by the permittee supports the effluent limitation modifications(s). (3) The permittee has submitted a formal request for the effluent limitation modification(s) to the Director. The purpose of this document is to guide plant operations for approximately one year to ensure appropriate data is collected for reopener negotiations

  3. On area-specific underground research laboratory for geological disposal of high-level radioactive waste in China

    Directory of Open Access Journals (Sweden)

    Ju Wang

    2014-04-01

    Full Text Available Underground research laboratories (URLs, including “generic URLs” and “site-specific URLs”, are underground facilities in which characterisation, testing, technology development, and/or demonstration activities are carried out in support of the development of geological repositories for high-level radioactive waste (HLW disposal. In addition to the generic URL and site-specific URL, a concept of “area-specific URL”, or the third type of URL, is proposed in this paper. It is referred to as the facility that is built at a site within an area that is considered as a potential area for HLW repository or built at a place near the future repository site, and may be regarded as a precursor to the development of a repository at the site. It acts as a “generic URL”, but also acts as a “site-specific URL” to some extent. Considering the current situation in China, the most suitable option is to build an “area-specific URL” in Beishan area, the first priority region for China's high-level waste repository. With this strategy, the goal to build China's URL by 2020 may be achieved, but the time left is limited.

  4. The disposal of Canada's nuclear fuel waste: site screening and site evaluation technology

    International Nuclear Information System (INIS)

    Davison, C.C.; Brown, A.; Everitt, R.A.; Gascoyne, M.; Kozak, E.T.; Lodha, G.S.; Martin, C.D.; Soonawala, N.M.; Stevenson, D.R.; Thorne, G.A.; Whitaker, S.H.

    1994-06-01

    The concept for the disposal of Canada's nuclear fuel waste is to dispose of the waste in an underground vault, nominally at 500 m to 1000 m depth, at a suitable site in plutonic rock of the Canadian Shield. The feasibility of this concept and assessments of its impact on the environment and human health, will be documented by AECL in an Environmental Impact Statement (EIS). This report is one of nine primary references for the EIS. It describes the approach and methods that would be used during the siting stage of the disposal project to identify a preferred candidate disposal site and to confirm its suitability for constructing a disposal facility. The siting stage is divided into two distinct but closely related substages, site screening and site evaluation. Site screening would mainly involve reconnaissance investigations of siting regions of the Shield to identify potential candidate areas where suitable vault locations are likely to exist. Site screening would identify a small number of candidate areas where further detailed investigations were warranted. Site evaluation would involve progressively more detailed surface and subsurface investigations of the candidate areas to first identify potentially suitable vault locations within the candidate areas, and then characterize these potential disposal sites to identify the preferred candidate location for constructing the disposal vault. Site evaluation would conclude with the construction of exploratory shafts and tunnels at the preferred vault location, and underground characterization would be done to confirm the suitability of the preferred candidate site. An integrated program of geological, geophysical, hydrogeological, geochemical and geomechanical investigations would be implemented to obtain the geoscience information needed to assess the suitability of the candidate siting areas and candidate sites for locating a disposal vault. The candidate siting areas and candidate disposal vault sites would be

  5. Economics of low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Schafer, J.; Jennrich, E.

    1983-01-01

    Regardless of who develops new low-level radioactive waste disposal sites or when, economics will play a role. To assist in this area the Department of Energy's Low-Level Radioactive Waste Management Program has developed a computer program, LLWECON, and data base for projecting disposal site costs. This program and its non-site specific data base can currently be used to compare the costs associated with various disposal site development, financing, and operating scenarios. As site specific costs and requirements are refined LLWECON will be able to calculate exact life cycle costs for each facility. While designed around shallow land burial, as practiced today, LLWECON is flexible and the input parameters discrete enough to be applicable to other disposal options. What the program can do is illustrated

  6. Concept development for saltstone and low level waste disposal

    International Nuclear Information System (INIS)

    Wilhite, E.L.

    1987-03-01

    A low-level alkaline salt solution will be a byproduct in the processing of high-level waste at the Savannah River Plant (SRP). This solution will be incorporated into a cement wasteform, saltstone, and placed in surface vaults. Laboratory and field testing and mathematical modeling have demonstrated the predictability of contaminant release from cement wasteforms. Saltstone disposal in surface vaults will meet drinking water standards in shallow groundwater at the disposal area boundary. Planning for new Low-Level Waste (LLW) disposal could incorporate concepts developed for saltstone disposal

  7. Radioactive characterization of leachates and efflorescences in the neighbouring areas of a phosphogypsum disposal site as a preliminary step before its restoration

    International Nuclear Information System (INIS)

    Gázquez, M.J.; Mantero, J.; Mosqueda, F.; Bolívar, J.P.; García-Tenorio, R.

    2014-01-01

    After the recent closure of certain phosphoric acid plants located in the South-West of Spain, it has been decided to restore a big extension (more than six hundred hectares) of salt-marshes, where some million tonnes of phosphogypsum (PG), the main by-product generated by these plants, had been disposed of. This PG is characterized by its content of high activity concentrations of several radionuclides from the uranium series, mainly 226 Ra, 210 Pb, and 210 Po and, to a lesser extent, U-isotopes. The PG disposal area can be considered as a potential source of radionuclides into their nearby environment, through the waters which percolate from them and through the efflorescences formed in their surroundings. For this reason, a detailed radioactive characterization of the mentioned waters and efflorescences has been considered essential for a proper planning of the restoration tasks to be applied in the near future in the zone. To this end, U-isotopes, 234 Th, 230 Th, 226 Ra, 210 Pb and 210 Po activity concentrations have been determined by applying both alpha-particle and gamma-ray spectrometric techniques to selected water and efflorescence aliquots collected in the area. The analysis of the obtained results has enabled to obtain information about the geochemical behaviour in the area of the different radionuclides analyzed; and the conclusion to be drawn that, in the restoration plan under preparation, both the prohibition of outflowing waters from the disposal area to the neighbouring salt-marshes, and the removal of all the efflorescences now disseminated in their surroundings are essential. - Highlights: • A radioactive analysis of efflorescences and leaching water has been carried out. • Water contains very high concentrations of radionuclides from the uranium series. • Efflorescence shows a high activity concentrations of 238 U and 210 Pb. • This information is essential for the future restoration of a phosphogypsum piles

  8. Associate Directorate Environmental Management Infrastructure Plan for Area G and Area L Domes

    International Nuclear Information System (INIS)

    Stevens, Patrice Ann; Baumer, Andrew Ronald

    2016-01-01

    Technical Area 54, at Los Alamos National Laboratory (LANL) is situated in the east-central portion of the Laboratory on the Mesita del Buey between Pajarito Canyon to the south and Canada del Buey to the north. TA-54 includes four MDAs designated as G, H, J, and L; a waste characterization, container storage, and transfer facility; active TRU waste and MLLW waste storage and low-level waste (LLW) disposal operations at Area G; active hazardous and mixed low-level (MLLW) waste storage operations at Area L; and administrative and support areas. MDA J has previously under-gone closure. Area G is a waste management and disposal area, used for the disposal and storage of radioactive wastes since 1957. Since August 2015, Area G has been in warm standby and provides minimal operations to support safety, compliance, and nitrate salt remediation. Located within Area G, MDA G covers 63-acres. MDA G contains 334 active and inactive waste management units, which include 36 pits, 294 shafts, and 4 trenches. In 1971, Area G began use for the retrievable storage of TRU waste. There are two pits, four trenches and 60 shafts that contain retrievable TRU waste. Thirty-three of the shafts contain TRU waste that may present unique problems for retrieval. In 1986, segregation of MLLW was initiated at Area G for treatment and temporary storage or for off-site disposal. Area G is the only active LLW disposal facility at the Laboratory. Current operations at Area G include storage and characterization of TRU and mixed TRU waste destined for off-site disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico and the storage of MLLW destined for off-site treatment and/or disposal. Several above-ground container storage units (CSUs) are currently used for storage of containerized MLLW and/or mixed TRU wastes. These consist of asphalt pads and associated fabric domes or other structures. As defined by the Consent Order, MDA G contains 229 of the 334 subsurface waste

  9. Associate Directorate Environmental Management Infrastructure Plan for Area G and Area L Domes

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Patrice Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baumer, Andrew Ronald [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-26

    Technical Area 54, at Los Alamos National Laboratory (LANL) is situated in the east-central portion of the Laboratory on the Mesita del Buey between Pajarito Canyon to the south and Cañada del Buey to the north. TA-54 includes four MDAs designated as G, H, J, and L; a waste characterization, container storage, and transfer facility; active TRU waste and MLLW waste storage and low-level waste (LLW) disposal operations at Area G; active hazardous and mixed low-level (MLLW) waste storage operations at Area L; and administrative and support areas. MDA J has previously under-gone closure. Area G is a waste management and disposal area, used for the disposal and storage of radioactive wastes since 1957. Since August 2015, Area G has been in warm standby and provides minimal operations to support safety, compliance, and nitrate salt remediation. Located within Area G, MDA G covers 63-acres. MDA G contains 334 active and inactive waste management units, which include 36 pits, 294 shafts, and 4 trenches. In 1971, Area G began use for the retrievable storage of TRU waste. There are two pits, four trenches and 60 shafts that contain retrievable TRU waste. Thirty-three of the shafts contain TRU waste that may present unique problems for retrieval. In 1986, segregation of MLLW was initiated at Area G for treatment and temporary storage or for off-site disposal. Area G is the only active LLW disposal facility at the Laboratory. Current operations at Area G include storage and characterization of TRU and mixed TRU waste destined for off-site disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico and the storage of MLLW destined for off-site treatment and/or disposal. Several above-ground container storage units (CSUs) are currently used for storage of containerized MLLW and/or mixed TRU wastes. These consist of asphalt pads and associated fabric domes or other structures. As defined by the Consent Order, MDA G contains 229 of the 334 subsurface waste

  10. 2005 dossier: granite. Tome: architecture and management of the geologic disposal; Dossier 2005: granite. Tome architecture et gestion du stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the geologic disposal of high-level and long-lived radioactive wastes in granite formations. Content: 1 - Approach of the study: main steps since the December 30, 1991 law, ANDRA's research program on disposal in granitic formations; 2 - high-level and long-lived (HLLL) wastes: production scenarios, waste categories, inventory model; 3 - disposal facility design in granitic environment: definition of the geologic disposal functions, the granitic material, general facility design options; 4 - general architecture of a disposal facility in granitic environment: surface facilities, underground facilities, disposal process, operational safety; 5 - B-type wastes disposal area: primary containers of B-type wastes, safety options, concrete containers, disposal alveoles, architecture of the B-type wastes disposal area, disposal process and feasibility aspects, functions of disposal components with time; 6 - C-type wastes disposal area: C-type wastes primary containers, safety options, super-containers, disposal alveoles, architecture of the C-type wastes disposal area, disposal process in a reversibility logics, functions of disposal components with time; 7 - spent fuels disposal area: spent fuel assemblies, safety options, spent fuel containers, disposal alveoles, architecture of the spent fuel disposal area, disposal process in a reversibility logics, functions of disposal components with time; 8 - conclusions: suitability of the architecture with various types of French granites, strong design, reversibility taken into consideration. (J.S.)

  11. Fate of Magnesium Chloride Brine Applied to Suppress Dust from Unpaved Roads at the INEEL Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Larry Hull; Carolyn Bishop

    2004-01-01

    Between 1984 and 1993, MgCl 2 brine was used to suppress dust on unpaved roads at a radioactive waste subsurface disposal area. Because Cl - might enhance corrosion of buried metals in the waste, we investigated the distribution and fate of Cl - in the vadose zone using pore water samples collected from suction lysimeters and soluble salt concentrations extracted from sediment samples. The Cl/Br mass ratio and the total dissolved Cl - concentration of pore water show that brine contamination occurs primarily within 13 m of treated roads, but can extend as much as 30 m laterally in near-surface sedimentary deposits. Within the deep vadose zone, which consists of interlayered basalt lava flows and sedimentary interbeds, brine has moved up to 110 m laterally. This lateral migration suggests formation of perched water and horizontal transport during periods of high recharge. In a few locations, brine migrated to depths of 67 m within 3 to 5 yr. Elevated Cl - concentrations were found to depths of 2 m in roadbed material. In drainage ditches along roads, where runoff accumulates and recharge of surface water is high, Cl - was flushed from the sediments in 3 to 4 yr. In areas of lower recharge, Cl - remained in the sediments after 5 yr. Vertical brine movement is directly related to surface recharge through sediments. The distribution of Cl - in pore water and sediments is consistent with estimates of vadose zone residence times and spatial distribution of surface water recharge from other investigations at the subsurface disposal area

  12. Addendum to Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Marcel P.; Freeman, Eugene J.; Wurstner, Signe K.; Kincaid, Charles T.; Coony, Mike M.; Strenge, Dennis L.; Aaberg, Rosanne L.; Eslinger, Paul W.

    2001-09-28

    This report summarizes efforts to complete an addendum analysis to the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis). This document describes the background and performance objectives of the Composite Analysis and this addendum analysis. The methods used, results, and conclusions for this Addendum analysis are summarized, and recommendations are made for work to be undertaken in anticipation of a second analysis.

  13. Radioactive waste disposal areas and associated environmental surveillance data at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Oakes, T.W.; Shank, K.E.

    1979-12-01

    Environmental surveillance data have been collected around radioactive waste disposal areas for the past thirty years at Oak Ridge National Laboratory (ORNL). The wealth of data collected around the ORNL radioactive waste burial grounds is presented in this review. The purpose of this paper is to describe the solid waste burial grounds in detail along with the environmental monitoring data. The various monitoring systems are reviewed, and the liquid discharge trends are discussed. Monitoring at White Oak Dam, the last liquid control point for the Laboratory, was started in the late 1940's and is continuing. Presently, a network of five environmental monitoring stations is in operation to monitor the radionuclide content of surface waters in the White Oak Creek watershed. Facts observed during the lifetime of the disposal sites include: (1) a large amount of 106 Ru released during 1959 to 1964 due to the fact that Conasauga shale did not retain this element as well as it retained other radionuclides. (2) Large quantities of tritiated water have been released to the Clinch River in recent years, but, from a practical standpoint, little can be done to inhibit or control these releases. (3) A general downward trend in the number of curies released has been observed for all other radionuclides. A number of corrective measures that have been initiated at ORNL to reduce the radioactive liquid discharges are outlined in the paper

  14. Radionuclide limits for vault disposal at the Savannah River Site

    International Nuclear Information System (INIS)

    Cook, James R.

    1992-01-01

    The Savannah River Site is developing a facility called the E-Area Vaults which will serve as the new radioactive waste disposal facility beginning early in 1992. The facility will employ engineered below-grade concrete vaults for disposal and above grade storage for certain long-lived mobile radionuclides. This report documents the determination of interim upper limits for radionuclide inventories and concentrations which should be allowed in the disposal structures. The work presented here will aid in the development of both waste acceptance criteria and operating limits for the E-Area Vaults. Disposal limits for forty isotopes which comprise the SRS waste streams were determined. The limits are based on total facility and vault inventories for those radionuclides which impact groundwater) and on waste package concentrations for those radionuclides which could affect intruders. (author)

  15. Groundwater Monitoring and Tritium-Tracking Plan for the 200 Area State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    DB Barnett

    2000-08-31

    The 200 Area State-Approved Land Disposal Site (SALDS) is a drainfield which receives treated wastewater, occasionally containing tritium from treatment of Hanford Site liquid wastes at the 200 Area Effluent Treatment Facility (ETF). Since operation of the SALDS began in December 1995, discharges of tritium have totaled {approx}304 Ci, only half of what was originally predicted for tritium quantity through 1999. Total discharge volumes ({approx}2.7E+8 L) have been commensurate with predicted volumes to date. This document reports the results of all tritium analyses in groundwater as determined from the SALDS tritium-tracking network since the first SALDS wells were installed in 1992 through July 1999, and provides interpretation of these results as they relate to SALDS operation and its effect on groundwater. Hydrologic and geochemical information are synthesized to derive a conceptual model, which is in turn used to arrive at an appropriate approach to continued groundwater monitoring at the facility.

  16. Design, construction, and operations experience with the SWSA 6 [Solid Waste Storage Area] Tumulus Disposal Demonstration

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Van Cleve, J.E.; Wylie, A.N.; Williams, L.C.; Bolinsky, J.

    1988-01-01

    Efforts are underway at the Department of Energy facilities in Oak Ridge to improve the performance of radioactive waste disposal facilities. An engineered disposal concept demonstration involving placement of concrete encased waste on a monitored concrete pad with an earthen cover is being conducted. The design, construction, and operations experience with this project, the SWSA 6 Tumulus Disposal Demonstration, is described. 1 fig., 1 tab

  17. Interim Control Strategy for the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond - Two-year Update

    International Nuclear Information System (INIS)

    L. V. Street

    2007-01-01

    The Idaho Cleanup Project has prepared this interim control strategy for the U.S. Department of Energy Idaho Operations Office pursuant to DOE Order 5400.5, Chapter 11.3e (1) to support continued discharges to the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond. In compliance with DOE Order 5400.5, a 2-year review of the Interim Control Strategy document has been completed. This submittal documents the required review of the April 2005 Interim Control Strategy. The Idaho Cleanup Project's recommendation is unchanged from the original recommendation. The Interim Control Strategy evaluates three alternatives: (1) re-route the discharge outlet to an uncontaminated area of the TSF-07; (2) construct a new discharge pond; or (3) no action based on justification for continued use. Evaluation of Alternatives 1 and 2 are based on the estimated cost and implementation timeframe weighed against either alternative's minimal increase in protection of workers, the public, and the environment. Evaluation of Alternative 3, continued use of the TSF-07 Disposal Pond under current effluent controls, is based on an analysis of four points: - Record of Decision controls will protect workers and the public - Risk of increased contamination is low - Discharge water will be eliminated in the foreseeable future - Risk of contamination spread is acceptable. The Idaho Cleanup Project recommends Alternative 3, no action other than continued implementation of existing controls and continued deactivation, decontamination, and dismantlement efforts at the Test Area North/Technical Support Facility

  18. Development of the Korean Reference Vertical Disposal System Concept for Spent Fuels

    International Nuclear Information System (INIS)

    Lee, J.Y.; Cho, D.K.; Kim, S.G.; Choi, H.J.; Choi, J.W.; Hahn, P.S.

    2006-01-01

    The development of a deep geologic disposal system for the spent fuel from nuclear power plants has been carried out since this program was launched at 1997 in Korea. In ' this paper, a pre-conceptual design of the Korean Reference HLW Vertical disposal System (KRS-V1) is presented. Though no site for the underground repository has yet been specified in Korea, a generic site with granitic rock is considered for reference HLW repository design. Depth of the repository is assumed to be 500 meters. The repository consists of the disposal area, technical rooms with four shafts to connect them to the ground level in the controlled area and technical rooms with an access tunnel and three shafts to connect them to the ground level in the uncontrolled area. Disposal area consists of disposal tunnels, panel tunnels and a central tunnel. The repository will be excavated, operated and backfilled in several phases including an Underground Research Laboratory (URL) phase. The result of this preliminary conceptual design will be used for an evaluation of the feasibility, analyses of the long term safety, information for public communication and a cost estimation etc. (authors)

  19. Ecological questions on the disposal of radioactive waste

    International Nuclear Information System (INIS)

    Brenner, A.; Kägi, W.; Marugg, F.; Bellmann, R.; Giaquinto, K.

    2014-10-01

    This comprehensive paper elaborated for the Swiss Federal Office of Energy (SFOE) discusses six central key questions on the disposal of radioactive wastes. Various factors in the philosophical-ethics area are discussed including disposal and responsibility, disposal and social justness, co-operation, trusteeship, nature and ecocide and questions of guilt. The ethics part of the report is dedicated to conflict management. The second part of the report deals with environmental policy. Aspects dealt with include sustainability, the principles of provision, participation and the cost-by-cause principle. Efficiency and newer developments in environmental policy are discussed. The disposal of radioactive waste is reviewed together with the effects of discussions on this topic and related developments

  20. Post-disposal safety assessment of toxic and radioactive waste: waste types, disposal practices, disposal criteria, assessment methods and post-disposal impacts

    International Nuclear Information System (INIS)

    Torres, C.; Simon, I.; Little, R.H.; Charles, D.; Grogan, H.A.; Smith, G.M.; Sumerling, T.J.; Watkins, B.M.

    1993-01-01

    The need for safety assessments of waste disposal stems not only from the implementation of regulations requiring the assessment of environmental effects, but also from the more general need to justify decisions on protection requirements. As waste-disposal methods have become more technologically based, through the application of more highly engineered design concepts and through more rigorous and specific limitations on the types and quantities of the waste disposed, it follows that assessment procedures also must become more sophisticated. It is the overall aim of this study to improve the predictive modelling capacity for post-disposal safety assessments of land-based disposal facilities through the development and testing of a comprehensive, yet practicable, assessment framework. This report records all the work which has been undertaken during Phase 1 of the study. Waste types, disposal practices, disposal criteria and assessment methods for both toxic and radioactive waste are reviewed with the purpose of identifying those features relevant to assessment methodology development. Difference and similarities in waste types, disposal practices, criteria and assessment methods between countries, and between toxic and radioactive wastes are highlighted and discussed. Finally, an approach to identify post-disposal impacts, how they arise and their effects on humans and the environment is described

  1. Oceanography related to deep sea waste disposal

    International Nuclear Information System (INIS)

    1978-09-01

    In connection with studies on the feasibility of the safe disposal of radioactive waste, from a large scale nuclear power programme, either on the bed of the deep ocean or within the deep ocean bed, preparation of the present document was commissioned by the (United Kingdom) Department of the Environment. It attempts (a) to summarize the present state of knowledge of the deep ocean environment relevant to the disposal options and assess the processes which could aid or hinder dispersal of material released from its container; (b) to identify areas of research in which more work is needed before the safety of disposal on, or beneath, the ocean bed can be assessed; and (c) to indicate which areas of research can or should be undertaken by British scientists. The programmes of international cooperation in this field are discussed. The report is divided into four chapters dealing respectively with geology and geophysics, geochemistry, physical oceanography and marine biology. (U.K.)

  2. Radionuclide Concentration in Soils and Vegetation at Low-Level Radioactive Waste Disposal Area G during 2005

    International Nuclear Information System (INIS)

    Fresquez, P.R.; McNaughton, M.W.; Winch, M.J.

    2005-01-01

    Soil samples were collected at 15 locations and unwashed overstory and understory vegetation samples were collected from up to nine locations within and around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). Soil and plant samples were also collected from the proposed expansion area west of Area G for the purpose of gaining preoperational baseline data. Soil and plant samples were analyzed for radionuclides that have shown a history of detection in past years; these included 3 H, 238 Pu, 239,240 Pu, 241 Am, 234 U, 235 U, and 238 U for soils and 3 H, 238 Pu, and 239,240 Pu for plants. As in previous years, the highest levels of 3 H in soils and vegetation were detected at the south portion of Area G near the 3 H shafts; whereas, the highest concentrations of the Pu isotopes were detected in the northern and northeastern portions near the pads for transuranic waste. All concentrations of radionuclides in soils and vegetation, however, were still very low (pCi range) and far below LANL screening levels and regulatory standards

  3. Disposal of fly ash

    International Nuclear Information System (INIS)

    Singh, B.; Foley, C.

    1991-01-01

    Theoretical arguments and pilot plant results have shown that the transport of fly-furnace ash from the power station to the disposal area as a high concentration slurry is technically viable and economically attractive. Further, lack of free water, when transported as a high concentration slurry, offers significant advantages in environmental management and rehabilitation of the disposal site. This paper gives a basis for the above observations and discusses the plans to exploit the above advantages at the Stanwell Power Station. (4 x 350 MWe). This will be operated by the Queensland Electricity Commission. The first unit is to come into operation in 1992 and other units are to follow progressively on a yearly basis

  4. Geotechnical engineering of ocean waste disposal

    National Research Council Canada - National Science Library

    Demars, K. R; Chaney, Ronald C; Demars, Kenneth R

    1990-01-01

    Contents: 15 peer-reviewed papers on geotechnical test methods and procedures used for site evaluation, design, construction, and monitoring of both contaminated areas and waste disposal facilities in the marine environment...

  5. Siting of a low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Alvarado, R.A.

    1983-01-01

    The Texas Low-Level Radioactive Waste Disposal Authority was established by the 67th Legislature to assure safe and effective disposal of the state's low-level radioactive waste. The Authority operates under provisions of the Texas Low-Level Radioactive Waste Disposal Authority Act, VACS 4590f-1. In Texas, low-level radioactive waste is defined as any radioactive material that has a half-life of 35 years or less or that has less than 10 nanocuries per gram of transuranics, and may include radioactive material not excluded by this definition with a half-life or more than 35 years if special disposal criteria are established. Prior to beginning the siting study, the Authority developed both exclusionary and inclusionary criteria. Major requirements of the siting guidelines are that the site shall be located such that it will not interfere with: (1) existing or near-future industrial use, (2) sensitive environmental and ecological areas, and (3) existing and projected population growth. Therefore, the site should be located away from currently known recoverable mineral, energy and water resources, population centers, and areas of projected growth. This would reduce the potential for inadvertent intruders, increasing the likelihood for stability of the disposal site after closure. The identification of potential sites for disposal of low-level radioactive waste involves a phased progression from statewide screening to site-specific exploration, using a set of exclusionary and preferential criteria to guide the process. This methodology applied the criteria in a sequential manner to focus the analysis on progressively smaller and more favorable areas. The study was divided into three phases: (1) statewide screening; (2) site identification; and (3) preliminary site characterization

  6. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  7. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2014-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  8. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    Austad, S. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Guillen, L. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKnight, C. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ferguson, D. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  9. IMPACT OF THE JAKUŠEVEC-PRUDINEC WASTE DISPOSAL SITE ON GROUNDWATER QUALITY

    Directory of Open Access Journals (Sweden)

    Zoran Nakić

    2007-12-01

    Full Text Available The main goal of the research shown in this paper is to investigate the cause and effect relation of the Jakuševec-Prudinec waste disposal site and the groundwater pollution. The recovery of the Jakuševec-Prudinec waste disposal site by the end of 2003 did not have any significant impact on the pollution reduction in groundwater. Very high values of the pollution index defined in the area southeastern from the waste disposal site show spreading of the pollution toward Mičevec village. The analysis of the hydrogeochemical characteristics showed that in the waste disposal site area the local geochemical anomalies of the partial CO2 pressure exist, indicating that the intensive carbonate dissolution processes and HCO3- enrichment dominate in this area. Near the border of the waste disposal site groundwater with high ammonium ion (NH4+ and chloride ion (Cl- dominates. The high concentrations of the heavy metals and very strong geochemical bonds determined from the correlation coefficients show that in the reductive aquifer conditions heavy metals strongly release (the paper is published in Croatian.

  10. In situ vitrification engineering-scale test ES-INEL-5 test plan

    International Nuclear Information System (INIS)

    Stoots, P.R.

    1990-06-01

    In 1952, the Radioactive Waste Management Complex (RWMC) was established at the Idaho National Engineering Laboratory (INEL). RWMC is located on approximately 144 acres in the southwestern corner of the INEL site and was established as a controlled area for the burial of solid low-level wastes generated by INEL operations. In 1954, the 88-acre Subsurface Disposal Area (SDA) of RWMC began accepting solid transuranic-contaminated waste. From 1954 to 1970, transuranic-contaminated waste was accepted from the Rocky Flats Plant (RFP) near Golden, CO, as well as from other US Department of Energy (DOE) locations. In 1987, the Buried Waste Program (BWP) was established by EG ampersand G Idaho, Inc., the prime contractor at INEL. Following the Environmental Restoration guidelines of the Buried Waste Program, the In Situ Vitrification Program is participating in a Remedial Investigation/Feasibility Study (RI/FS) for permanent disposal of INEL waste, in compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This study was requested and is being funded by the Office of Technology Development of the Idaho Operations Office of DOE (DOE-ID). As part of the RI/FS, an in situ vitrification (ISV) scoping study on the treatability of mixed low-level and mixed transuranic-contaminated waste is being performed to determine applicability of ISV to remediation of waste at SDA. This In Situ Vitrification Engineering-Scale Test ES-INEL-5 Test Plan considers the data needs of engineering, regulatory, health, and safety activities for all sampling and analysis activities in support of engineering scale test ES-INEL-5. 5 refs., 3 figs., 4 tabs

  11. Radioactive waste storage and disposal: the challenge

    International Nuclear Information System (INIS)

    Prince, A.T.

    1978-03-01

    Solutions to waste management problems are available. After radium is removed, tailings from uranium ores can be disposed of safely in well-designed retention areas. Work is being done on the processing of non-fuel reactor wastes through incineration, reverse osmosis, and evaporation. Spent fuels have been stored safely for years in pools; dry storage in concrete cannisters is being investigated. Ultimate disposal of high-level wastes will be in deep, stable geologic formations. (LL)

  12. The disposal of low-level radioactive waste into the sea

    International Nuclear Information System (INIS)

    Saruhashi, Katsuko

    1979-01-01

    Disposal of low-level radioactive wastes is made both on land and in sea. Though the land disposal has been already carried out in the U.S.A. and the U.S.S.R., it is impossible in the narrow land of Japan. In the United States, the wastes solidified with cement in drums were previously abandoned in deep seas of the Pacific and the Atlantic. This is no longer done presently; instead, the land disposal is employed due to its lower costs. In European countries, the sea disposal is performed under OECDNEA, trial disposal in 1961 and full-scale disposal since 1967, in the Atlantic. Meanwhile, in Japan, test sea disposal will be carried out in the near future in deep sea of the northern Pacific, the important sea area for fisheries. The international trends of the deep sea disposal of low-level wastes and the correspondent trends of the same in Japan, in the past years are described. (J.P.N.)

  13. Radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Gera, F.

    1977-01-01

    The nuclear energy controversy, now raging in several countries, is based on two main issues: the safety of nuclear plants and the possibility to dispose safely of the long-lived radioactive wastes. Consideration of the evolution of the hazard potential of waste in function of decay time leads to a somewhat conservative reference containment time in the order of one hundred thousand years. Several concepts have been proposed for the disposal of long-lived wastes. At the present time, emplacement into suitable geological formations under land areas can be considered the most promising disposal option. It is practically impossible to define detailed criteria to be followed in selecting suitable sites for disposal of long-lived wastes. Basically there is a single criterion, namely; that the geological environment must be able to contain the wastes for at least a hundred thousand years. However, due to the extreme variability of geological settings, it is conceivable that this basic capability could be provided by a great variety of different conditions. The predominant natural mechanism by which waste radionuclides could be moved from a sealed repository in a deep geological formation into the biosphere is leaching and transfer by ground water. Hence the greatest challenge is to give a satisfactory demonstration that isolation from ground water will persist over the required containment time. Since geological predictions are necessarily affected by fairly high levels of uncertainty, the only practical approach is not a straight-forward forecast of future geological events, but a careful assessment of the upper limits of geologic changes that could take place in the repository area over the next hundred thousand years. If waste containment were to survive these extreme geological changes the disposal site could be considered acceptable. If some release of activity were to take place in consequence of the hypothetical events the disposal solution might still be

  14. Interim Control Strategy for the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond - Two-year Update

    Energy Technology Data Exchange (ETDEWEB)

    L. V. Street

    2007-04-01

    The Idaho Cleanup Project has prepared this interim control strategy for the U.S. Department of Energy Idaho Operations Office pursuant to DOE Order 5400.5, Chapter 11.3e (1) to support continued discharges to the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond. In compliance with DOE Order 5400.5, a 2-year review of the Interim Control Strategy document has been completed. This submittal documents the required review of the April 2005 Interim Control Strategy. The Idaho Cleanup Project's recommendation is unchanged from the original recommendation. The Interim Control Strategy evaluates three alternatives: (1) re-route the discharge outlet to an uncontaminated area of the TSF-07; (2) construct a new discharge pond; or (3) no action based on justification for continued use. Evaluation of Alternatives 1 and 2 are based on the estimated cost and implementation timeframe weighed against either alternative's minimal increase in protection of workers, the public, and the environment. Evaluation of Alternative 3, continued use of the TSF-07 Disposal Pond under current effluent controls, is based on an analysis of four points: - Record of Decision controls will protect workers and the public - Risk of increased contamination is low - Discharge water will be eliminated in the foreseeable future - Risk of contamination spread is acceptable. The Idaho Cleanup Project recommends Alternative 3, no action other than continued implementation of existing controls and continued deactivation, decontamination, and dismantlement efforts at the Test Area North/Technical Support Facility.

  15. Disposal of Hanford site tank wastes

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1993-09-01

    Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at the U.S. Department of Energy (DOE) Hanford Site in Southeastern Washington state. The 149 SSTs, located in 12 separate areas (tank farms) in the 200 East and 200 West areas, currently contain about 1.4 x 10 5 m 3 of solid and liquid wastes. Wastes in the SSTs contain about 5.7 x 10 18 Bq (170 MCi) of various radionuclides including 90 Sr, 99 Tc, 137 Cs, and transuranium (TRU) elements. The 28 DSTs also located in the 200 East and West areas contain about 9 x 10 4 m 3 of liquid (mainly) and solid wastes; approximately 4 x 10 18 Bq (90 MCi) of radionuclides are stored in the DSTs. Important characteristics and features of the various types of SST and DST wastes are described in this paper. However, the principal focus of this paper is on the evolving strategy for final disposal of both the SST and DST wastes. Also provided is a chronology which lists key events and dates in the development of strategies for disposal of Hanford Site tank wastes. One of these strategies involves pretreatment of retrieved tank wastes to separate them into a small volume of high-level radioactive waste requiring, after vitrification, disposal in a deep geologic repository and a large volume of low-level radioactive waste which can be safely disposed of in near-surface facilities at the Hanford Site. The last section of this paper lists and describes some of the pretreatment procedures and processes being considered for removal of important radionuclides from retrieved tank wastes

  16. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 2. Characterization of low permeable and fractured sediments and rocks in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.; Laier, T.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe (the nuclear reactor buildings plus different types of material from the research periods) and radioactive waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. In Denmark, many different kinds of fine-grained sediments and crystalline rocks occur from the ground surface down to 300 meters depth. Therefore, the possible geological situations include sediments and rocks of different composition and age. These situations are geographical distributed over large areas of Denmark. These sediments and rocks are shortly described based on existing information and include five different major types of sediments and rocks: 1: Crystalline granite and gneiss of Bornholm (because these rock types are host for waste disposals in many other countries). 2: Sandstone and shale from Bornholm (as these sediments are rela- tively homogeneous although they have fracture permeability). 3: Chalk and limestone (because these sediments may act as low permeable seals, but in most areas they act as groundwater reservoirs). 4: Fine-grained Tertiary clay deposits (as these sediments have a low permeability, are widely distributed and can reach large thicknesses). 5: Quaternary glacial, interglacial and Holocene clay deposits. These sediments are distributed all over Denmark. Following the descriptions of the geologic deposits, the areas below (including several possible locations for waste disposal sites) are selected for further investigation. The Precambrian basement rocks of Bornholm could be host rocks for the disposal. The rock types for further evaluation will be: Hammer Granite, Vang Granite, Roenne Granite, Bornholm gneiss, Paradisbakke Migmatite and Alminding Granite. In the Roskilde Fjord area around Risoe, a combination of Paleocene clays, meltwater clay and clayey till could be interesting. The area is partly included in the OSD area in North Sjaelland but

  17. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 2. Characterization of low permeable and fractured sediments and rocks in Denmark

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.; Laier, T.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe (the nuclear reactor buildings plus different types of material from the research periods) and radioactive waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. In Denmark, many different kinds of fine-grained sediments and crystalline rocks occur from the ground surface down to 300 meters depth. Therefore, the possible geological situations include sediments and rocks of different composition and age. These situations are geographical distributed over large areas of Denmark. These sediments and rocks are shortly described based on existing information and include five different major types of sediments and rocks: 1: Crystalline granite and gneiss of Bornholm (because these rock types are host for waste disposals in many other countries). 2: Sandstone and shale from Bornholm (as these sediments are rela- tively homogeneous although they have fracture permeability). 3: Chalk and limestone (because these sediments may act as low permeable seals, but in most areas they act as groundwater reservoirs). 4: Fine-grained Tertiary clay deposits (as these sediments have a low permeability, are widely distributed and can reach large thicknesses). 5: Quaternary glacial, interglacial and Holocene clay deposits. These sediments are distributed all over Denmark. Following the descriptions of the geologic deposits, the areas below (including several possible locations for waste disposal sites) are selected for further investigation. The Precambrian basement rocks of Bornholm could be host rocks for the disposal. The rock types for further evaluation will be: Hammer Granite, Vang Granite, Roenne Granite, Bornholm gneiss, Paradisbakke Migmatite and Alminding Granite. In the Roskilde Fjord area around Risoe, a combination of Paleocene clays, meltwater clay and clayey till could be interesting. The area is partly included in the OSD area in North Sjaelland but

  18. Waste disposal developments within BNFL

    International Nuclear Information System (INIS)

    Johnson, L.F.

    1989-01-01

    British Nuclear Fuels plc has broad involvement in topics of radioactive waste generation, treatment, storage and disposal. The Company's site at Drigg has been used since 1959 for the disposal of low level waste and its facilities are now being upgraded and extended for that purpose. Since September 1987, BNFL on behalf of UK Nirex Limited has been managing an investigation of the Sellafield area to assess its suitability for deep underground emplacement of low and intermediate level radioactive wastes. An approach will be described to establish a partnership with the local community to work towards a concept of monitored, underground emplacement appropriate for each waste category. (author)

  19. 10 CFR 61.52 - Land disposal facility operation and disposal site closure.

    Science.gov (United States)

    2010-01-01

    ... DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.52 Land disposal... wastes by placing in disposal units which are sufficiently separated from disposal units for the other... between any buried waste and the disposal site boundary and beneath the disposed waste. The buffer zone...

  20. Evaluation of engineered barriers at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Bhatt, R.N.; Porro, I.

    1998-03-01

    Subsurface Disposal (SDA) of the Radioactive Waste Management Complex serves as the low level waste burial ground at the Idaho National Engineering and Environmental Laboratory (INEEL). The low level wastes are buried in trenches, pits, and soil vaults in surficial sediments. A closure/post-closure plan must be written prior to closure of the SDA. The closure plan for the facility must include a design for an engineered barrier closure cover that will meet all applicable regulatory requirements. This paper describes the approach being followed at the INEEL to choose an appropriate cover design for the SDA closure. Regulatory requirements and performance objectives potentially applicable to closure of the SDA were identified. Technical issues related to SDA closure were identified from a literature search of previous arid site engineered barrier studies and from previous SDA closure cover evaluations. Five engineered barrier conceptual design alternatives were identified: (1) a bio/capillary barrier cover, (2) a thin soil cover, (3) a thick soil cover, (4) a Resource Conservation and Recovery Act cover, and (5) a concrete sealed surface cover. Two of these designs were chosen for in situ hydraulic testing, rather than all five, in order to maximize the amount of information generated relative to projected project costs. Testing of these two cover designs provides data to quantify hydrologic model input parameters and for verification of site specific hydrologic models for long term closure cover performance evaluation and detailed analysis of closure cover alternatives. The specific objectives of the field tests are to determine the water balance for the two covers over several years and to determine cover soil physical and hydraulic properties

  1. Radionuclide Concentration in Soils and Vegetation at Low-Level Radioactive Waste Disposal Area G during 2005

    Energy Technology Data Exchange (ETDEWEB)

    P.R. Fresquez; M.W. McNaughton; M.J. Winch

    2005-10-01

    Soil samples were collected at 15 locations and unwashed overstory and understory vegetation samples were collected from up to nine locations within and around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). Soil and plant samples were also collected from the proposed expansion area west of Area G for the purpose of gaining preoperational baseline data. Soil and plant samples were analyzed for radionuclides that have shown a history of detection in past years; these included {sup 3}H, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 234}U, {sup 235}U, and {sup 238}U for soils and {sup 3}H, {sup 238}Pu, and {sup 239,240}Pu for plants. As in previous years, the highest levels of {sup 3}H in soils and vegetation were detected at the south portion of Area G near the {sup 3}H shafts; whereas, the highest concentrations of the Pu isotopes were detected in the northern and northeastern portions near the pads for transuranic waste. All concentrations of radionuclides in soils and vegetation, however, were still very low (pCi range) and far below LANL screening levels and regulatory standards.

  2. Macrobenthic succession following the cessation of sewage sludge disposal

    Science.gov (United States)

    Birchenough, Silvana N. R.; Frid, Chris L. J.

    2009-11-01

    Half a million tonnes of sewage sludge was disposed annually over an 18-yr period at a licensed area off the Northumberland coast, UK. The disposal operation ceased in December 1998, providing the ecological opportunity to study macrobenthic changes in relation to theoretical succession models. A transect from the centre of the disposal site to a control station was monitored three times a year (i.e. March, August and December). This study provides a description of the changes in the macrobenthos and physical environment in the initial '3 years' (i.e. 1999 - 2001). During the period of sewage sludge disposal there were indications of an impact on the macrobenthic community with a high total abundance of individuals ( N) and high total number of species ( S) at the stations located in the centre of the disposal ground. During the immediate post-disposal phase the site continued to show a localised increased of individuals and species in the disposal area. Over time the communities showed signs of successional changes when the reduction of organic matter source was eliminated from the natural system. Multivariate analysis demonstrated a clear gradient of change in the community composition between impacted and control stations. While most benthic studies assess re-colonisation and succession stages of macrobenthos by using manipulative field experiments, this study provides an in situ long-term assessment in the offshore environment. This study contributes with information on: i) initial colonization and succession of macrobenthic communities over a large scale and real world data; ii) macrobenthic data into existing successional models and iii) resilience of benthic communities following the cessation of sewage sludge disposal. This information has the potential to contribute to an effective management of the marine communities in the North Sea.

  3. Device for the disposal of radioactive liquid wastes

    International Nuclear Information System (INIS)

    Tomizawa, Toshi; Inoue, Tadashi.

    1976-01-01

    Object: To adsorb and collect radioactive nuclide ions contained in the radioactive liquid waste to select and separate thereof. Structure: A unitary disposing tank comprises an insulative cylindrical tank, an unsoluble cathode plate positioned thereunder and formed with a number of liquid inlet holes, an adsorbent layer filled with unsoluble electrically conductive substances having a large surface area in contact with the cathode plate, and an unsoluble anode plate positioned at the upper part of the cylindrical disposing tank so as not to come into contact with the adsorbent layer and formed with a number of liquid inlets, whereby one or more disposing tanks are stacked in a layer fashion, and a DC voltage is applied between the anode and cathode plates to flow a liquid to be disposed into the disposing tanks so that the radioactive metal ion nuclide in the liquid may be adsorbed and collected by the cathode and the adsorbent layer for selection and separation. (Ohara, T.)

  4. Low level tank waste disposal study

    Energy Technology Data Exchange (ETDEWEB)

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  5. Low level tank waste disposal study

    International Nuclear Information System (INIS)

    Mullally, J.A.

    1994-01-01

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site

  6. Data from studies of previous radioactive waste disposal in Massachusetts Bay

    International Nuclear Information System (INIS)

    Curtis, W.R.; Mardis, H.M.

    1984-12-01

    This report presents the results of studies conducted in Massachusetts Bay during 1981 and 1982. Included are data from: (1) a side scan sonar survey of disposal areas in the Bay that was carried out by the National Oceanic and Atmospheric Administration (NOAA) for EPA; (2) Collections of sediment and biota by NOAA for radiochemical analysis by EPA; (3) collections of marketplace seafood samples by the Food and Drug Administration (FDA) for radioanalysis by both FDA and EPA; and (4) a radiological monitoring survey of LLW disposal areas by EPA to determine whether there should be any concern for public health resulting from previous LLW disposals in the Bay

  7. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed

  8. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was

  9. Radiological performance assessment for the E-Area Vaults Disposal Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    1994-01-01

    These document contains appendices A-M for the performance assessment. They are A: details of models and assumptions, B: computer codes, C: data tabulation, D: geochemical interactions, E: hydrogeology of the Savannah River Site, F: software QA plans, G: completeness review guide, H: performance assessment peer review panel recommendations, I: suspect soil performance analysis, J: sensitivity/uncertainty analysis, K: vault degradation study, L: description of naval reactor waste disposal, M: porflow input file

  10. Trench design and construction techniques for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Tucker, P.G.

    1983-02-01

    This document provides information on trench design and construction techniques which can be used in the disposal of LLW by shallow land burial. It covers practices currently in use not only in the LLW disposal field, but also methods and materials being used in areas of hazardous and municipal waste disposal which are compatible with the performance objectives of 10 CFR Part 61. The complexity of a disposal site and its potential problems dictate the use of site-specific characteristics when designing a LLW disposal trench. This report presents the LLW disposal trench as consisting of various elements or unit processes. The term unit processes is used as it more fully relays the impact of the designer's choice of methods and materials. When choosing a material to fulfill the function of a certain trench element, the designer is also stipulating a portion of his operational procedure which must be compatible with the disposal operation as a whole. Information is provided on the properties, selection, and installation of various materials such as bentonite, soil-cement, polymeric materials, asphaltic materials, and geotechnical fabrics. This is not intended to outline step-by-step procedures. Basically, three time frames are addressed with respect to construction techniques; preoperational, operational, and postoperational. Within each of these time frames there are certain construction techniques which can be employed by the designer to enhance the overall ease of construction and ultimate success of the disposal facility. Among the techniques presented are precontouring the disposal area, alignment of the trench axis, sloping the trench bottom, incremental excavation, and surface water (runoff) management

  11. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2013-01-31

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of

  12. State-of-the-art report on radioactive waste disposal

    International Nuclear Information System (INIS)

    Larsson, A.

    1989-01-01

    In view of the considerable work required to develop repositories for radioactive waste, an extensive international co-operation has evolved within the area. The work has also engaged the IAEA to a great extent. The Agency has published a number of reports, covering different aspects of waste disposal. Following a recommendation by its Technical Review Committee on Underground Disposal (TRCUD) the Agency will publish a ''state-of-the-art'' report on radioactive waste disposal. The report is still in the preparation stage. In this article the principal subjects of the future report are discussed

  13. Evaluation of dredged material proposed for ocean disposal from Red Hook/Bay Ridge project areas, New York

    Energy Technology Data Exchange (ETDEWEB)

    Pinza, M.R.; Barrows, E.S.; Borde, A.B. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1996-09-01

    The objective of the Red HookIBay Ridge project was to evaluate proposed dredged material from these two areas to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Sediment samples were collected from the Red Hook/Bay Ridge project areas. Tests and analyses were conducted. The evaluation of proposed dredged material from the Red Hook/Bay Ridge project areas consisted of bulk sediment chemical analyses, chemical analyses of dredging site water and elutriate, water-column and benthic acute toxicity tests. Twenty-four individual sediment core samples were collected from these two areas and analyzed for grain size, moisture content, and total organic carbon (TOC). Three composite sediment samples, representing Red Hook Channel and the two Bay Ridge Reaches to be dredged, were analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene. Dredging site water and elutriate water, which is prepared from the suspended-particulate phase (SPP) of the three Red Hook Bay Ridge sediment composites, were analyzed for metals, pesticides, and PCBS. Benthic acute toxicity tests were performed. Water-column or SPP toxicity tests were performed. Bioaccumulation tests were also conducted.

  14. Power plant waste disposals in open-cast mines

    Energy Technology Data Exchange (ETDEWEB)

    Herstus, J.; Stastny, J. [AGE s.r.o. - Aplikovana Geotechnika a Ekologie, Thamova (Czechoslovakia)

    1995-12-01

    High population density in Czech Republic has led, as well as in other countries, to strong NIMBY syndrome influencing the waste disposal location. The largest thermal power plants are situated in neighborhood of extensive open-cast brown coal mines with huge area covered by tipped clayey spoil. Such spoil areas, technically almost useless, are potential space for power giant waste disposal position. There are several limitations, based on specific structural features of tipped clayey spoil, influencing decision to use such area as site for waste disposal. Low shear strength and extremely high compressibility belong to the geotechnical limitations. High permeability of upper ten or more meters of tipped spoil and its changes with applied stress level belongs to transitional features between geotechnical and environmental limitations. The problems of ash and FGD products stabilized interaction with such subgrade represent environmental limitation. The paper reports about the testing procedure developed for thickness and permeability estimation of upper soil layer and gives brief review of laboratory and site investigation results on potential sites from point of view of above mentioned limitations. Also gives an outline how to eliminate the influence of unfavorable conditions.

  15. Effects of dredged sediment disposal on the coastal marine macrobenthic assemblage in Southern Brazil

    Directory of Open Access Journals (Sweden)

    L. G. Angonesi

    Full Text Available The aim of this study was to evaluate the deposition impact of dredged material from Patos lagoon estuary on a benthic macroinvertebrate assemblage structure in an adjacent coastal marine area. Nine sampling stations were chosen at random in the disposal area, and nine others in the same way in an adjacent control area. Samples were collected at a 19 m depth before sediment disposal (11 July 2000, during dredging and disposal operations (25 Oct. 2000, and three months thereafter (24 Aug. 2001. Statistical analysis indicated that sampling periods presented similar characteristics in both the control and disposal sites. Disposal of dredged sediment from Patos lagoon had no detectable detrimental effects upon macrobenthic faunal assemblage at the dumping site. This result is attributed both to adaptation of resident biota to dynamic sedimentary conditions and to the fine estuarine sediment dredged, the dispersion of which in the water column might have minimized sediment deposition and consequent damage to the benthic fauna.

  16. Summary report of working group I CO{sub 2} capture, fixation/utilization, and disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The topics of our working group were divided into four key areas: CO{sub 2} Capture, Utilization/Fixation, Ocean Disposal, and Land Disposal. Fourteen presentations were made as follows: CO{sub 2} Capture: Toshikatsu Hakuta (Japan) and Rod Judkins, Bruce St. John, and Alan Wolsky (US). Utilization/Fixation: Hironori Arakawa, Yasuo Asada, and Takashi lbusuki (Japan) and Ed Lipinsky (US). Ocean Disposal: Yuji Shindo (Japan) and Eric Adams, Gerard Nihous, and Wheeler North (US). Land Disposal: Shoichi Tanaka (Japan) and Roger Bailey (US/Canada). Co-chairs for this working group were Toshikatsu Hakuta (Japan) and Howard Herzog (US). This document contains only a summary outline of research needs in the area of CO{sub 2} capture and sequestration. It should be used in conjunction with other assessments made in this area. For the U.S., a DOE report entitled A Research Needs Assessment for the Capture, Utilization and Disposal of Carbon Dioxide from Fossil Fuel-Fired Power Plants will be forthcoming in 1993.

  17. 25 CFR 168.16 - Impoundment and disposal of unauthorized livestock.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Impoundment and disposal of unauthorized livestock. 168... REGULATIONS FOR THE HOPI PARTITIONED LANDS AREA § 168.16 Impoundment and disposal of unauthorized livestock. Unauthorized livestock within any range unit of the Hopi Partitioned Lands which are not removed therefrom...

  18. US Department of Energy mixed waste characterization, treatment, and disposal focus area technical baseline development process

    International Nuclear Information System (INIS)

    Roach, J.A.; Gombert, D.

    1996-01-01

    The US Department of Energy (DOE) created the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop and facilitate implementation of technologies required to meet its commitments for treatment of mixed wastes under the Federal Facility Compliance Act (FFCA), and in accordance with the Land Disposal Restrictions (LDR) of the Resource Conservation and Recovery Act (RCRA). Mixed wastes include both mixed low-level waste (MLLW) and mixed transuranic (MTRU) waste. The goal of the MWFA is to develop mixed waste treatment systems to the point of implementation by the Environmental Management (EM) customer. To accomplish this goal, the MWFA is utilizing a three step process. First, the treatment system technology deficiencies were identified and categorized. Second, these identified needs were prioritized. This resulted in a list of technical deficiencies that will be used to develop a technical baseline. The third step, the Technical Baseline Development Process, is currently ongoing. When finalized, the technical baseline will integrate the requirements associated with the identified needs into the planned and ongoing environmental research and technology development activities supported by the MWFA. Completion of this three-step process will result in a comprehensive technology development program that addresses customer identified and prioritized needs. The MWFA technical baseline will be a cost-effective, technically-defensible tool for addressing and resolving DOE's mixed waste problems

  19. A simulation study of moisture movement in proposed barriers for the subsurface disposal area, INEL

    International Nuclear Information System (INIS)

    Magnuson, S.O.

    1993-09-01

    This document presents a simulation study that was conducted to investigate moisture movement within two engineered barriers, which are proposed for use in eventual closure of the Subsurface Disposal Area. The results of the study are intended to guide the design and implementation of field test plots that will be constructed to test the barrier designs. Discussed are the sensitivity of barrier performance to changes in the conceptual model, which was used to simulate the barriers, and to changes in hydrologic parameters, which were used to describe the materials composing the barriers. In addition, estimates are presented concerning the time required for the moisture profile within the barriers to come into equilibrium with the meteorological conditions at the surface. In addition, the performance of the barriers under conditions of supplemental precipitation and ponding is presented

  20. Radionuclide Concentrations in soils an Vegetation at Low-Level Radioactive Waste Disposal Area G During 2004

    International Nuclear Information System (INIS)

    Fresquez, P.R.; Lopez, E.A.

    2004-01-01

    Soil samples were collected at 15 locations and unwashed overstory and understory vegetation samples were collected at nine locations within and around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). These samples were analyzed for 3 H, 238 Pu, 239,240 Pu, 90 Sr, 241 Am, 137 Cs, 234 U, 235 U, and 238 U. Soil samples collected at Area G contained detectable concentrations of 3H (27%), 239,240 Pu (60%), 238 Pu (40%), and 241 Am (47%) above regional statistical reference levels (RSRLs). In contrast, the levels of 137 Cs, 90 Sr, and U in all of the soil samples at Area G were either nondetectable or within RSRLs. The highest levels of 3 H in soils were detected in the southwestern portion of Area G near the 3 H shafts, whereas the highest concentrations of the Pu isotopes were detected in the northern and northeastern portions. All concentrations of 3 H and Pu in soils, however, were far below LANL screening action levels. As for vegetation, most radionuclides in/on plants were either nondetectable or within RSRLs. The exceptions were 3 H in overstory and some understory vegetation, particularly in the southwestern portion of Area G, which correlated very well with the soils data in that area. Also, there was some foliar contamination from 241 Am and Pu isotopes in/on a few plant samples--the highest concentrations occurring in the northern section of Area G

  1. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1985-12-01

    The feasibility of safe ocean disposal options for heat-generating radioactive waste relies on the existence of suitable disposal sites. This review considers the status of the development of site selection criteria and the results of the study area investigations carried out under various national and international research programmes. In particular, the usefulness of the results obtained is related to the data needed for environmental and emplacement modelling. Preliminary investigations have identified fifteen potential deep ocean study areas in the North Atlantic. From these Great Meteor East (GME), Southern Nares Abyssal Plan (SNAP) and Kings Trough Flank (KTF) were selected for further investigation. The review includes appraisals of regional geology, geophysical studies, sedimentology, geotechnical studies, geochemical studies and oceanography. (author)

  2. 2005 dossier: granite. Tome: phenomenological evolution of the geologic disposal; Dossier 2005: Granite. Tome evolution phenomenologique du stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the phenomenological aspects of the geologic disposal of high-level and long-lived radioactive wastes (HLLL) in granite formations. Content: 1 - introduction: ANDRA's research program on disposal in granitic formation; 2 - the granitic environment: geologic history, French granites; 3 - HLLL wastes and disposal design concepts; 4 - identification, characterization and modeling of a granitic site: approach, geologic modeling, hydrologic and hydro-geochemical modeling, geomechanical and thermal modeling, long-term geologic evolution of a site; 5 - phenomenological evolution of a disposal: main aspects of the evolution of a repository with time, disposal infrastructures, B-type wastes disposal area, C-type wastes disposal area; spent fuels disposal area, radionuclides transfer and retention in the granitic environment; 6 - conclusions: available knowledge, methods and tools for the understanding and modeling of the phenomenological evolution of a granitic disposal site. (J.S.)

  3. 2005 dossier: granite. Tome: phenomenological evolution of the geologic disposal; Dossier 2005: Granite. Tome evolution phenomenologique du stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the phenomenological aspects of the geologic disposal of high-level and long-lived radioactive wastes (HLLL) in granite formations. Content: 1 - introduction: ANDRA's research program on disposal in granitic formation; 2 - the granitic environment: geologic history, French granites; 3 - HLLL wastes and disposal design concepts; 4 - identification, characterization and modeling of a granitic site: approach, geologic modeling, hydrologic and hydro-geochemical modeling, geomechanical and thermal modeling, long-term geologic evolution of a site; 5 - phenomenological evolution of a disposal: main aspects of the evolution of a repository with time, disposal infrastructures, B-type wastes disposal area, C-type wastes disposal area; spent fuels disposal area, radionuclides transfer and retention in the granitic environment; 6 - conclusions: available knowledge, methods and tools for the understanding and modeling of the phenomenological evolution of a granitic disposal site. (J.S.)

  4. Operable Unit 7-13/14 in situ thermal desorption treatability study work plan

    International Nuclear Information System (INIS)

    Shaw, P.; Nickelson, D.; Hyde, R.

    1999-01-01

    This Work Plan provides technical details for conducting a treatability study that will evaluate the application of in situ thermal desorption (ISTD) to landfill waste at the Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). ISTD is a form of thermally enhanced vapor vacuum extraction that heats contaminated soil and waste underground to raise its temperature and thereby vaporize and destroy most organics. An aboveground vapor vacuum collection and treatment system then destroys or absorbs the remaining organics and vents carbon dioxide and water to the atmosphere. The technology is a byproduct of an advanced oil-well thermal extraction program. The purpose of the ISTD treatability study is to fill performance-based data gaps relative to off-gas system performance, administrative feasibility, effects of the treatment on radioactive contaminants, worker safety during mobilization and demobilization, and effects of landfill type waste on the process (time to remediate, subsidence potential, underground fires, etc.). By performing this treatability study, uncertainties associated with ISTD as a selected remedy will be reduced, providing a better foundation of remedial recommendations and ultimate selection of remedial actions for the SDA

  5. Radionuclide concentrations in soils and vegetation at radioactive-waste disposal Area G during the 1996 growing season. Progress report

    International Nuclear Information System (INIS)

    Fresquez, P.R.; Vold, E.L.; Naranjo, L. Jr.

    1997-07-01

    Soil and overstory and understory vegetation (washed and unwashed) collected at eight locations within and around Area G--a low-level radioactive solid-waste disposal facility at Los Alamos National laboratory--were analyzed for 3 H, 90 Sr, 238 Pu, 239 Pu, 137 Cs, 234 U, 235 U, 238 U, tot U, 228 Ac, 214 Bi, 60 Co, 40 K, 54 Mn, 22 Na, 214 Pb, and 208 Tl. Also, heavy metals (Ag, As, Ba, Be, Cd, Cr, Hg, Ni, Pb, Sb, Se, and Tl) in soil and vegetation were determined. In general, most radionuclide concentrations, with the exception of 3 H and 239 Pu, in soils and washed and unwashed overstory and understory vegetation collected from within and around Area G were within upper limit background concentrations. Tritium was detected as high as 14,744 pCi mL -1 in understory vegetation collected from transuranic (TRU) waste pad number-sign 4, and the TRU waste pad area contained the highest levels of 239 Pu in soils and in understory vegetation as compared to other areas at Area G

  6. Execution techniques for high-level radioactive waste disposal. 2. Fundamental concept of geological disposal and implementing approach of disposal project

    International Nuclear Information System (INIS)

    Kawanishi, Motoi; Komada, Hiroya; Tsuchino, Susumu; Shiozaki, Isao; Kitayama, Kazumi; Akasaka, Hidenari; Inagaki, Yusuke; Kawamura, Hideki

    1999-01-01

    The making high activity of the high-level radioactive waste disposal business shall be fully started after establishing of the implementing organization which is planned around 2000. Considering each step of disposal business, in this study, the implementation procedure for a series of disposal business such as the selection of the disposal site, the construction and operation of the disposal facility, the closure and decommissioning of the disposal facility and the management after closure, which are carried forward by the implementation body is discussed in detail from the technical viewpoint and an example of the master schedule is proposed. Furthermore, we investigate and propose the concept of the geological disposal which becomes important in carrying forward to making of the business of the disposal, such as the present site selection smoothly, the fundamental idea of the safe securing for disposal, the basic idea to get trust to the disposal technique and the geological environmental condition which is the basic condition of this whole study for the disposal business making. (author)

  7. Monitoring methods for nuclear fuel waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R B; Barnard, J W; Bird, G A [and others

    1997-11-01

    This report examines a variety of monitoring activities that would likely be involved in a nuclear fuel waste disposal project, during the various stages of its implementation. These activities would include geosphere, environmental, vault performance, radiological, safeguards, security and community socioeconomic and health monitoring. Geosphere monitoring would begin in the siting stage and would continue at least until the closure stage. It would include monitoring of regional and local seismic activity, and monitoring of physical, chemical and microbiological properties of groundwater in rock and overburden around and in the vault. Environmental monitoring would also begin in the siting stage, focusing initially on baseline studies of plants, animals, soil and meteorology, and later concentrating on monitoring for changes from these benchmarks in subsequent stages. Sampling designs would be developed to detect changes in levels of contaminants in biota, water and air, soil and sediments at and around the disposal facility. Vault performance monitoring would include monitoring of stress and deformation in the rock hosting the disposal vault, with particular emphasis on fracture propagation and dilation in the zone of damaged rock surrounding excavations. A vault component test area would allow long-term observation of containers in an environment similar to the working vault, providing information on container corrosion mechanisms and rates, and the physical, chemical and thermal performance of the surrounding sealing materials and rock. During the operation stage, radiological monitoring would focus on protecting workers from radiation fields and loose contamination, which could be inhaled or ingested. Operational zones would be established to delineate specific hazards to workers, and movement of personnel and materials between zones would be monitored with radiation detectors. External exposures to radiation fields would be monitored with dosimeters worn by

  8. General Instructions for Disposable Respirators

    Centers for Disease Control (CDC) Podcasts

    2009-04-09

    This podcast, intended for the general public, demonstrates how to put on and take off disposable respirators that are to be used in areas affected by the influenza outbreak.  Created: 4/9/2009 by CDC, National Institute for Occupational Safety and Health (NIOSH).   Date Released: 4/29/2009.

  9. Regulatory decision making in the presence of uncertainty in the context of the disposal of long lived radioactive wastes. Third report of the Working group on principles and criteria for radioactive waste disposal

    International Nuclear Information System (INIS)

    1997-10-01

    Plans for disposing of radioactive wastes have raised a number of unique and mostly philosophical problems, mainly due to the very long time-scales which have to be considered. While there is general agreement on disposal concepts and on many aspects of a safety philosophy, consensus on a number of issues remains to be achieved. The IAEA established a subgroup under the International Radioactive Waste Management Advisory Committee (INWAC). The subgroup started its work in 1991 as the ''INWAC Subgroup on Principles and Criteria for Radioactive Waste Disposal''. With the reorganization in 1995 of IAEA senior advisory committees in the nuclear safety area, the title of the group was changed to ''Working Group on Principles and Criteria for Radioactive Waste Disposal''. The working group is intended to provide an open forum for: (1) the discussion and resolution of contentious issues, especially those with an international component, in the area of principles and criteria for safe disposal of waste; (2) the review and analysis of new ideas and concepts in the subject area; (3) establishing areas of consensus; (4) the consideration of issues related to safety principles and criteria in the IAEA's Radioactive Waste Safety Standards (RADWASS) programme; (5) the exchange of information on national safety criteria and policies for radioactive waste disposal. This is the third report of the working group and it deals with the subject of regulatory decision making under conditions of uncertainty which is a matter of concern with respect to disposal of radioactive wastes underground. 14 refs

  10. Institutional storage and disposal of radioactive materials

    International Nuclear Information System (INIS)

    St Germain, J.

    1986-01-01

    Storage and disposal of radioactive materials from nuclear medicine operations must be considered in the overall program design. The storage of materials from daily operation, materials in transit, and long-term storage represent sources of exposure. The design of storage facilities must include consideration of available space, choice of material, occupancy of surrounding areas, and amount of radioactivity anticipated. Neglect of any of these factors will lead to exposure problems. The ultimate product of any manipulation of radioactive material will be some form of radioactive waste. This waste may be discharged into the environment or placed within a storage area for packaging and transfer to a broker for ultimate disposal. Personnel must be keenly aware of packaging regulations of the burial site as well as applicable federal and local codes. Fire codes should be reviewed if there is to be storage of flammable materials in any area. Radiation protection personnel should be aware of community attitudes when considering the design of the waste program

  11. Basic research needs for management and disposal of DOE wastes

    International Nuclear Information System (INIS)

    Grazis, B.M.; Schulz, W.W.

    1991-04-01

    This document was chartered by the Department of Energy (DOE), Office of Energy Research. It identifies and describes 87 basic research needs in support of advanced technology for management and disposal of Department of Energy radioactive, hazardous chemical, and mixed wastes. A team of scientists and engineers from several DOE laboratories and sites, from academia, and from industry identified and described the basic research needs called out in this report. Special efforts were made to ensure that basic research needs related to management and disposal of any hazardous chemical wastes generated at nonnuclear DOE sites and facilities were properly identified. It is hoped that scientists in both DOE and nongovernment laboratories and institutions will find this document useful when formulating research efforts relevant to waste management and disposal. For management and disposal of DOE radioactive and mixed wastes, basic research needs are identified in nine separate action areas. Basic research needs for management and disposal of DOE hazardous chemical wastes are identified in five action areas. Sufficient description and background information are provided in the report for each particular research need to enable qualified and imaginative scientists to conceive research efforts and programs that will meet the need. 28 refs., 7 tabs

  12. Disposal of olive mill wastewater with DC arc plasma method.

    Science.gov (United States)

    Ibrahimoglu, Beycan; Yilmazoglu, M Zeki

    2018-07-01

    Olive mill wastewater is an industrial waste, generated as a byproduct of olive oil production process and generally contains components such as organic matter, suspended solids, oil, and grease. Although various methods have been developed to achieve the disposal of this industrial wastewater, due to the low cost, the most common disposal application is the passive storage in the lagoons. The main objective of this study is to reduce pollution parameters in olive mill wastewater and draw water to discharge limits by using plasma technology. Plasma-assisted disposal of olive mill wastewater method could be an alternative disposal technique when considering potential utilization of treated water in agricultural areas and economic value of flammable plasma gas which is the byproduct of disposal process. According to the experimental results, the rates of COD (chemical oxygen demand) and BOD (biological oxygen demand) of olive mill wastewater are decreased by 94.42% and 95.37%, respectively. The dissolved oxygen amount is increased from 0.36 to 6.97 mg/l. In addition, plasma gas with high H 2 content and treated water that can be used in agricultural areas for irrigation are obtained from non-dischargeable wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Low-level radioactive waste disposal operations at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stanford, A.R.

    1997-01-01

    Los Alamos National Laboratory (LANL) generates Low-Level Radioactive Waste (LLW) from various activities: research and development, sampling and storage of TRU wastes, decommissioning and decontamination of facilities, and from LANL's major role in stockpile stewardship. The Laboratory has its own active LLW disposal facility located at Technical Area 54, Area G. This paper will identify the current operations of the facility and the issues pertaining to operating a disposal facility in today's compliance and cost-effective environment

  14. Rock disposal problems identified

    Energy Technology Data Exchange (ETDEWEB)

    Knox, R

    1978-06-01

    Mathematical models are the only way of examining the return of radioactivity from nuclear waste to the environment over long periods of time. Work in Britain has helped identify areas where more basic data is required, but initial results look very promising for final disposal of high level waste in hard rock repositories. A report by the National Radiological Protection Board of a recent study, is examined.

  15. Fire analyses in central and disposal tunnels by APROS

    International Nuclear Information System (INIS)

    Peltokorpi, L.; Kukkola, T.; Nieminen, J.

    2012-12-01

    The central tunnels and the disposal tunnels on the north-east disposal area are the target areas of the fire studies. Target is to maintain under pressure in the fire zone in case of a fire. In the central tunnels a fire of a drilling jumbo with moderate fire propagation is used as heat release rate. In the disposal tunnel the heat release rate of a canister transfer and installation vehicle fire received as a result of the pyrolysis analyze as well as an average heat release rate of a van fire are used. Inlet air is to be conducted to the back end of the fire zone and the exhaust is to be lead out from the beginning of the fire zone. The worst location of the fire is in the beginning of the fire zone just below of the exhaust air clap valve. The size of the fire zone does not have big impact on pressure. In all analyzed cases the fire zone remains too long time over pressurized. Inlet air flow of a 30 m 3 /s is too much. The rotation controlled booster blowers will solve the pressure problems of the fire zone in fire cases. The rotation is controlled by the fire zone pressure. The fire of the canister transfer and installation vehicle in the central tunnel will not cause problems. The disposal tunnel fire door should be kept open, if the canister transfer and installation vehicle or the bentonite blocks transfer and installation vehicle is driven into the disposal tunnel. If a fire is caught in the disposal tunnel then the fire zone in the central tunnel is to be closed and the pressure is controlled by the rotation controlled booster blowers. If a personnel car or a van is driven into the disposal tunnel, then fire door of the disposal is to be kept closed against fires in the central tunnel. (orig.)

  16. The Dutch geologic radioactive waste disposal project

    International Nuclear Information System (INIS)

    Hamstra, J.; Verkerk, B.

    1981-01-01

    The Final Report reviews the work on geologic disposal of radioactive waste performed in the Netherlands over the period 1 January 1978 to 31 December 1979. The attached four topical reports cover detailed subjects of this work. The radionuclide release consequences of an accidental flooding of the underground excavations during the operational period was studied by the institute for Atomic Sciences in Agriculture (Italy). The results of the quantitative examples made for different effective cross-sections of the permeable layer connecting the mine excavations with the boundary of the salt dome, are that under all circumstances the concentration of the waste nuclides in drinking water will remain well within the ICRP maximum permissible concentrations. Further analysis work was done on what minima can be achieved for both the maximum local rock salt temperatures at the disposal borehole walls and the maximum global rock salt temperatures halfway between a square of disposal boreholes. Different multi-layer disposal configurations were analysed and compared. A more detailed description is given of specific design and construction details of a waste repository such as the shaft sinking and construction, the disposal mine development, the mine ventilation and the different plugging and sealing procedures for both the disposal boreholes and the shafts. Thanks to the hospitality of the Gesellschaft fuer Strahlenforschung, an underground working area in the Asse mine became available for performing a dry drilling experiment, which resulted successfully in the drilling of a 300 m deep disposal borehole from a mine room at the -750 m level

  17. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 1. Data, maps, models and methods used for selection of potential areas

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe (the nuclear reactor buildings plus different types of material from the research periods) and radioactive waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The Minister for Health and Prevention presented the background and decision plan for the Danish Parliament in January 2009. All political parties agreed on the plan. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. In the present study, the salt diapirs and the salt deposits are not included. The present report briefly describes the existing data collections (including databases, maps and models), that are used during the work of selection of ca. 20 potentially suitable areas. Most of the information is stored in GEUS databases: Location of boreholes, borehole data, rock sediment and ground water compounds, maps, geophysical data and much more, but information is also collected from other institutions. The methods are described in more details (chapter 6) and this description is the direct background for the selection process, the characterisation of the 20 areas and for the final selection of the 2 or 3 most potential sites. (LN)

  18. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 1. Data, maps, models and methods used for selection of potential areas

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe (the nuclear reactor buildings plus different types of material from the research periods) and radioactive waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The Minister for Health and Prevention presented the background and decision plan for the Danish Parliament in January 2009. All political parties agreed on the plan. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. In the present study, the salt diapirs and the salt deposits are not included. The present report briefly describes the existing data collections (including databases, maps and models), that are used during the work of selection of ca. 20 potentially suitable areas. Most of the information is stored in GEUS databases: Location of boreholes, borehole data, rock sediment and ground water compounds, maps, geophysical data and much more, but information is also collected from other institutions. The methods are described in more details (chapter 6) and this description is the direct background for the selection process, the characterisation of the 20 areas and for the final selection of the 2 or 3 most potential sites. (LN)

  19. Radionuclide Concentrations in soils an Vegetation at Low-Level Radioactive Waste Disposal Area G During 2004

    Energy Technology Data Exchange (ETDEWEB)

    P.R. Fresquez; E.A. Lopez

    2004-11-01

    Soil samples were collected at 15 locations and unwashed overstory and understory vegetation samples were collected at nine locations within and around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). These samples were analyzed for {sup 3}H, {sup 238}Pu, {sup 239,240}Pu, {sup 90}Sr, {sup 241}Am, {sup 137}Cs, {sup 234}U, {sup 235}U, and {sup 238}U. Soil samples collected at Area G contained detectable concentrations of 3H (27%), {sup 239,240}Pu (60%), {sup 238}Pu (40%), and {sup 241}Am (47%) above regional statistical reference levels (RSRLs). In contrast, the levels of {sup 137}Cs, {sup 90}Sr, and U in all of the soil samples at Area G were either nondetectable or within RSRLs. The highest levels of {sup 3}H in soils were detected in the southwestern portion of Area G near the {sup 3}H shafts, whereas the highest concentrations of the Pu isotopes were detected in the northern and northeastern portions. All concentrations of {sup 3}H and Pu in soils, however, were far below LANL screening action levels. As for vegetation, most radionuclides in/on plants were either nondetectable or within RSRLs. The exceptions were {sup 3}H in overstory and some understory vegetation, particularly in the southwestern portion of Area G, which correlated very well with the soils data in that area. Also, there was some foliar contamination from {sup 241}Am and Pu isotopes in/on a few plant samples--the highest concentrations occurring in the northern section of Area G.

  20. Long-term impacts on sewers following food waste disposer installation in housing areas.

    Science.gov (United States)

    Mattsson, Jonathan; Hedström, Annelie; Viklander, Maria

    2014-01-01

    To increase biogas generation and decrease vehicle transportation of solid waste, the integration of food waste disposers (FWDs) into the wastewater system has been proposed. However, concerns have been raised about the long-term impact of the additional load of the FWDs on sewer systems. To examine the said impact, this study has used closed-circuit television inspection techniques to evaluate the status of 181 concrete pipes serving single family housing areas with a diameter of 225 mm, ranging from a 100% connection rate of households with an FWD to none. A minor study was also performed on a multi-family housing area, where mainly plastic pipes (200 mm) were used. The extent and distribution of deposits related to the ratio of FWDs, inclination and pipe sagging (backfalls) were ascertained by using linear regression and analysis of variance. The results showed that FWDs have had an impact on the level of deposits in the sewer, but this has, in turn, been of minor significance. With a high connection rate of FWDs upstream of a pipe, the extent of the total level of deposits, as well as finer sediments, was statistically determined to be greater. However, the majority of the deposits were observed to be small, which would suggest the impact of FWDs on sewer performance to be minor. As food waste not compatible with the FWD was seen in the sewers, educational campaigns could be beneficial to further lower the risks of sewer blocking.

  1. Geomembranes as an interim measure to control water infiltration at a low-level radioactive waste disposal area

    International Nuclear Information System (INIS)

    Weishan, M.R.; Sonntag, T.L.; Shehane, W.D.

    1997-01-01

    Using an exposed geomembrane an interim measure to cover a closed, Low-Level Radioactive Waste Disposal Area requires unique design and construction considerations. In response to a Resource Conservation and Recovery Act Administrative Consent Order, the New York State Energy Research and Development Authority (NYSERDA) used very low-density polyethylene (VLDPE) geomembrane as an interim measure to cover two soil-capped, grass-covered waste trenches to address a rapid increase in water accumulation in the trenches. Two years later, NYSERDA covered the remaining grass-covered trench caps with a reinforced ethylene interpolymer alloy (EIA-R) geomembrane to reduce water accumulation in these trenches. This paper addresses the differences in geomembrane materials and discusses the lessons learned during design, construction, and operation since installation of the covers. Discussed are the successes and obstacles regarding the use of both geomembrane materials as an exposed cover, selecting the geomembrane materials, anchoring the geomembrane from wind uplift, and mitigating the increased surface water runoff from the geomembrane covered area

  2. Preliminary study of the oil shales of the Green River formation in the tri-state area of Colorado, Utah, and Wyoming to investigate their utility for disposal of radioactive waste

    International Nuclear Information System (INIS)

    1975-05-01

    Results are presented of a preliminary study of the oil shales of the Green River formation in the tri-state area of Colorado, Utah, and Wyoming to investigate their utility for possible disposal of radioactive waste material. The objective of this study was to make a preliminary investigation and to obtain a broad overview of the physical and economic factors which would have an effect on the suitability of the oil shale formations for possible disposal of radioactive waste material. These physical and economic factors are discussed in sections on magnitude of the oil shales, waste disposal relations with oil mining, cavities requirements, hydrological aspects, and study requirements

  3. Basic investigation and analysis for preferred host rocks and natural analogue study area with reference to high level radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Ryul; Park, J. K.; Hwang, D. H.; Lee, J. H.; Yun, H. S.; Kim, D. Y.; Park, H. S.; Koo, S. B.; Cho, J. D.; Kim, K. E. [Korea Inst. of Geology, Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    The purpose of this study is basic investigation and analysis for preferred host rocks and natural analogue study area to develope underground disposal technique of high level radioactive waste in future. The study has been done for the crystalline rocks(especially granitic rocks) with emphasis of abandoned metallic mines and uranium ore deposits, and for the geological structure study by using gravity and aeromagnetic data. 138 refs., 54 tabs., 130 figs. (author)

  4. Removal, transportation and disposal of the Millstone 2 neutron thermal shield

    International Nuclear Information System (INIS)

    Snedeker, D.F.; Thomas, L.S.; Schmoker, D.S.; Cade, M.S.

    1985-01-01

    Some PWR reactors equipped with neutron thermal shields (NTS) have experienced severe neutron shield degradation to the extent that removal and disposal of these shields has become necessary. Due to the relative size and activation levels of the thermal shield, disposal techniques, remote material handling and transportation equipment must be carefully evaluated to minimize plant down time and maintain disposal costs at a minimum. This paper describes the techniques, equipment and methodology employed in the removal, transportation and disposal of the NTS at the Millstone 2 Nuclear Generating Station, a PWR facility owned and operated by Northeast Utilities of Hartford, CT. Specific areas addressed include: (1) remote underwater equipment and tooling for use in segmenting and loading the thermal shield in a disposal liner; (2) adaptation of the General Electric IF-300 Irradiated Fuel Cask for transportation of the NTS for disposal; (3) equipment and techniques used for cask handling and liner burial at the Low Level Radioactive Waste (LLRW) disposal facility

  5. Effluent treatment and waste disposal

    International Nuclear Information System (INIS)

    1990-01-01

    In recent years there has been a great increase in the attention given to environmental matters by the public, media and Government. This has been reflected in the increased stature of environmental pressure groups and the introduction of new regulatory bodies and procedures. However, the satisfactory treatment and disposal of waste depends ultimately upon the development and employment of efficient low cost processes, and the enforcement of effective legislation. This Conference organised by the Yorkshire Branch of IChemE in association with the Institution's Environmental Protection Subject Group, will address the areas of waste monitoring, developments in pollution control processes and process economics and will look forward to future trends in waste disposal. It will also consider the impact of recent legislation upon the process industries. (author)

  6. How a developing country is facing LLW disposal problem

    International Nuclear Information System (INIS)

    Huang, C.C.; Shao, Y.T.; Tsai, C.M.

    1993-01-01

    Taiwan is a small island which measures about 36,000 square kilometers with over 70% mountainous area. Today over 90% of low-level radioactive waste (LLW) is produced from six nuclear power units operated by the Taiwan Power Company (Taipower or TPC). The rest of the country's LLW is produced from medical, agricultural, industrial, educational and research programs. Due to the fact that over 90% of Taiwan's LLW is produced by Taipower, Taipower was designated by the Government to dispose of LLW for entire country. This paper will focus on the planning and implementation of the first phase. Through area screening and potential site evaluation, candidate sites will be selected based on currently available information and sites investigation. At the same time, the disposal methods will be evaluated in terms of safety, cost, and Taiwan's generic conditions of climate, geology, and topography. The conceptual design of the disposal method(s) will then be developed. Also, during site investigation, preliminary designs will be made

  7. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    Science.gov (United States)

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  8. PBC Triggers in Water Reservoirs, Coal Mining Areas and Waste Disposal Sites: From Newcastle to New York

    Directory of Open Access Journals (Sweden)

    Daniel Smyk

    2010-01-01

    Full Text Available Various environmental factors have been proposed as triggers of primary biliary cirrhosis (PBC, a progressive autoimmune cholestatic liver disease which is characterised by the destruction of the small intrahepatic bile ducts. Support for their pathogenic role in PBC is provided by epidemiological studies reporting familial clustering and clusters of the disease within a given geographical area. The seminal study by Triger reporting that the great majority of PBC cases in the English city of Sheffield drank water from a specific water reservoir, has been followed by studies reporting disease 'hot spots' within a restricted geographic region of the former coal mining area of Newcastle. The New York study reporting an increased risk and significant clustering of PBC cases near toxic federal waste disposal sites has added strength to the notion that environmental factors, possibly in the form of infectious agents or toxic/chemical environmental factors in areas of contaminated land, water or polluted air may play a key role in the development of the disease. This review discusses the findings of reports investigating environmental factors which may contribute to the cause of primary biliary cirrhosis.

  9. Storage and disposal of medicines by academics from health area from a public university of Paraná

    Directory of Open Access Journals (Sweden)

    Lenita Nunes Piveta

    2015-11-01

    Full Text Available Medicines are indispensable tools for the health establishment and care is required in their storage and disposal. This study aimed to verify the form of storage and disposal of medicines by students from the Health SciencesDepartment of a public university in Paraná. A cross-sectional study was conducted with students of Nursing, Pharmacy and Medicine courses from UniversidadeEstadual de Londrina, Paraná, Brazil, through the application of a self-report study. The data collection was performed in the University’s classrooms during the months of May to June of 2014, resulting in 564 students surveyed. It was considered proper disposal when the student referred to disposing the expired or inappropriate for use products in locations that make the collection of these products. The students interviewed had a mean age of 21.0 years (Standart Deviation: 3.3; 74.1% of the total were female. The bedroom was the main location quoted for storage of medicines (47.8% most of them keep the medicines out of reach of children (82.6%. Regarding the verification of the expiration date 60.1% of the students do this practice. Most of (64.5% keeps the remains of treatments for future use, and household waste (63.0% was the main mentioned location for the disposal of those who are expired. Only 20.7% discarded the medicines correctly. The study population stores the products correctly, however, most are largely unaware of the disposal locations. Therefore, it is necessary to promote awareness and guidance for the future professionals.

  10. Management and disposal of radioactive waste from clean-up operations

    International Nuclear Information System (INIS)

    Lehto, J.

    1997-01-01

    Clean-up of large contaminated areas may create enormous amounts of radioactive waste which need to be safely disposed of. Disposal of the waste may include pre-treatment and transportation to a final repository. There is much experience of the removal and disposal of large amounts of radioactive contaminated material from uranium mill tailings sites. For example, in Salt Lake City, USA, two million tons of radium-containing waste was transported 140 km by rail to a disposal site. In Port Hope, Canada, 70,000 cubic meters of similar waste were moved by road to a disposal site 350 km away. The disposal of the uranium mill tailings can be pre-planned, but an accident situation is quite different. In an emergency, decisions on how to deal with the waste from the clean-up may have to be made rapidly and disposal options may be limited. After the Chernobyl accident, large amounts of contaminated material (mainly soil and trees) were disposed of in shallow pits and surface mounds. Overall, approximately 4x10 6 m 3 of waste were distributed between about 800 disposal sites. Because the amounts of waste after a major nuclear accident could be large, their final disposal may require large human and capital resources. Depending on the scale it is possible that the wastes will have to be placed in several final disposal sites. These are likely to be pits or surface mounds. Such repositories may need clay or concrete liners to prevent migration of the radionuclides from the disposal sites. (EG)

  11. Home Sewage Disposal. Special Circular 212.

    Science.gov (United States)

    Wooding, N. Henry

    This circular provides current information for homeowners who must repair or replace existing on-lot sewage disposal systems. Site requirements, characteristics and preparation are outlined for a variety of alternatives such as elevated sand mounds, sand-lined beds and trenches, and oversized absorption area. Diagrams indicating construction…

  12. Disposal safety

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    International consensus does not seem to be necessary or appropriate for many of the issues concerned with the safety of nuclear waste disposal. International interaction on the technical aspects of disposal has been extensive, and this interaction has contributed greatly to development of a consensus technical infrastructure for disposal. This infrastructure provides a common and firm base for regulatory, political, and social actions in each nation

  13. Radionuclide Concentrations in Soils and Vegetation at Low-Level Radioactive Waste Disposal Area G during the 1997 Growing Season

    Energy Technology Data Exchange (ETDEWEB)

    L. Naranjo, Jr.; P. R. Fresquez; R. J. Wechsler

    1998-08-01

    Soil and overstory and understory vegetation (washed and unwashed) collected at eight locations within and around Area G-a low-level radioactive solid-waste disposal facility at Los Alamos National Laboratory-were analyzed for 3H, 238Pu, 239Pu, 137CS, 234U, 235U, 228AC, Be, 214Bi, 60Co, 40& 54Mn, 22Na, 214Pb and 208Tl. In general, most radionuclide concentrations, with the exception of 3Ef and ~9Pu, in soils and overstory and understory vegetation collected from within and around Area G were within upper (95'%) level background concentrations. Although 3H concentrations in vegetation from most sites were significantly higher than background (>2 pCi mL-l), concentrations decreased markedly in comparison to last year's results. The highest `H concentration in vegetation was detected from a juniper tree that was growing over tritium shaft /+150; it contained 530,000 pCi 3H mL-l. Also, as in the pas~ the transuranic waste pad area contained the highest levels of 239Pu in soils and in understory vegetation as compared to other areas at Area G.

  14. French surface disposal experience. The disposal of large waste

    International Nuclear Information System (INIS)

    Dutzer, Michel; Lecoq, Pascal; Duret, Franck; Mandoki, Robert

    2006-01-01

    More than 90 percent of the volume of radioactive waste that are generated in France can be managed in surface disposal facilities. Two facilities are presently operated by ANDRA: the Centre de l'Aube disposal facility that is dedicated to low and intermediate short lived waste and the Morvilliers facility for very low level waste. The Centre de l'Aube facility was designed at the end of the years 1980 to replace the Centre de la Manche facility that ended operation in 1994. In order to achieve as low external exposure as possible for workers it was decided to use remote handling systems as much as possible. Therefore it was necessary to standardize the types of waste containers. But taking into account the fact that these waste were conditioned in existing facilities, it was not possible to change a major part of existing packages. As a consequence, 6 mobile roofs were constructed to handle 12 different types of waste packages in the disposal vaults. The scope of Centre de l'Aube was mainly to dispose operational waste. However some packages, as 5 or 10 m 3 metallic boxes, could be used for larger waste generated by decommissioning activities. The corresponding flow was supposed to be small. After the first years of operations, it appeared interesting to develop special procedures to dispose specific large waste in order to avoid external exposure costly cutting works in the generating facilities. A 40 m 3 box and a large remote handling device were disposed in vaults that were currently used for other types of packages. Such a technique could not be used for the disposal of vessel heads that were replaced in 55 pressurised water power reactors. The duration of disposal and conditioning operation was not compatible with the flow of standard packages that were delivered in the vaults. Therefore a specific type of vault was designed, including handling and conditioning equipment. The first pressure vessel head was delivered on the 29 of July 2004, 6 heads have been

  15. The disposal of Canada's nuclear fuel waste: engineering for a disposal facility

    International Nuclear Information System (INIS)

    Simmons, G.R.; Baumgartner, P.

    1994-01-01

    This report presents some general considerations for engineering a nuclear fuel waste disposal facility, alternative disposal-vault concepts and arrangements, and a conceptual design of a used-fuel disposal centre that was used to assess the technical feasibility, costs and potential effects of disposal. The general considerations and alternative disposal-vault arrangements are presented to show that options are available to allow the design to be adapted to actual site conditions. The conceptual design for a used-fuel disposal centre includes descriptions of the two major components of the disposal facility, the Used-Fuel Packaging Plant and the disposal vault; the ancillary facilities and services needed to carry out the operations are also identified. The development of the disposal facility, its operation, its decommissioning, and the reclamation of the site are discussed. The costs, labour requirements and schedules used to assess socioeconomic effects and that may be used to assess the cost burden of waste disposal to the consumer of nuclear energy are estimated. The Canadian Nuclear Fuel Waste Management Program is funded jointly by AECL and Ontario Hydro under the auspices of the CANDU Owners Group. (author)

  16. Proposed integrated hazardous waste disposal facility. Public environmental review

    International Nuclear Information System (INIS)

    1998-05-01

    This Public Environmental Report describes a proposal by the Health Department of Western Australia to establish a disposal facility for certain hazardous wastes and seeks comments from governments agencies and the public that will assist the EPA to make its recommendations to. The facility would only be used for wastes generated in Western Australia.The proposal specifically includes: a high temperature incinerator for the disposal of organo-chlorines (including agricultural chemicals and PCBs), and other intractable wastes for which this is the optimum disposal method; an area for the burial (after any appropriate conditioning) of low level radioactive intractable wastes arising from the processing of mineral sands (including monazite, ilmenite and zircon) and phosphate rock. Detailed information is presented on those wastes which are currently identified as requiring disposal at the facility.The proposed facility will also be suitable for the disposal of other intractable wastes including radioactive wastes (from industry, medicine and research) and other solid intractable wastes of a chemical nature including spent catalysts etc. Proposals to dispose of these other wastes at this facility in the future will be referred to the Environmental Protection Authority for separate assessment

  17. Chemical hazard evaluation of material disposal area (MDA) B closure project

    Energy Technology Data Exchange (ETDEWEB)

    Laul, Jagdish C [Los Alamos National Laboratory

    2010-04-19

    TA-21, MDA-B (NES) is the 'contaminated dump,' landfill with radionuclides and chemicals from process waste disposed in 1940s. This paper focuses on chemical hazard categorization and hazard evaluation of chemicals of concern (e.g., peroxide, beryllium). About 170 chemicals were disposed in the landfill. Chemicals included products, unused and residual chemicals, spent, waste chemicals, non-flammable oils, mineral oil, etc. MDA-B was considered a High hazard site. However, based on historical records and best engineering judgment, the chemical contents are probably at best 5% of the chemical inventory. Many chemicals probably have oxidized, degraded or evaporated for volatile elements due to some fire and limited shelf-life over 60 yrs, which made it possible to downgrade from High to Low chemical hazard site. Knowing the site history and physical and chemical properties are very important in characterizing a NES site. Public site boundary is only 20 m, which is a major concern. Chemicals of concern during remediation are peroxide that can cause potential explosion and beryllium exposure due to chronic beryllium disease (CBD). These can be prevented or mitigated using engineering control (EC) and safety management program (SMP) to protect the involved workers and public.

  18. New DEA rules expand options for controlled substance disposal.

    Science.gov (United States)

    Peterson, David M

    2015-03-01

    Prescription drug abuse and overdose are rapidly growing problems in the United States. The United States federal Disposal of Controlled Substances Rule became effective 9 October 2014, implementing the Secure and Responsible Drug Disposal Act of 2010 (Disposal Act). These regulations target escalating prescription drug misuse by reducing accumulation of unused controlled substances that may be abused, diverted or accidentally ingested. Clinical areas that can now participate in collecting unused controlled substances include retail pharmacies, hospitals or clinics with an onsite pharmacy, and narcotic treatment programs. Collection methods include placing a controlled substance collection receptacle or instituting a mail-back program. Because prompt onsite destruction of collected items is required of mail-back programs, collection receptacles are more likely to be used in clinical areas. Retail pharmacies and hospitals or clinics with an onsite pharmacy may also place and maintain collection receptacles at long-term care facilities. The Act and Rule are intended to increase controlled substance disposal methods and expand local involvement in collection of unused controlled substances. Potential barriers to participating in controlled substance collection include acquisition of suitable collection receptacles and liners, lack of available space meeting the necessary criteria, lack of employee time for verification and inventory requirements, and program costs.

  19. Subseabed Disposal Program Plan. Volume I. Overview

    International Nuclear Information System (INIS)

    1981-07-01

    The primary objective of the Subseabed Disposal Program (SDP) is to assess the scientific, environmental, and engineering feasibility of disposing of processed and packaged high-level nuclear waste in geologic formations beneath the world's oceans. High-level waste (HLW) is considered the most difficult of radioactive wastes to dispose of in oceanic geologic formations because of its heat and radiation output. From a scientific standpoint, the understanding developed for the disposal of such HLW can be used for other nuclear wastes (e.g., transuranic - TRU - or low-level) and materials from decommissioned facilities, since any set of barriers competent to contain the heat and radiation outputs of high-level waste will also contain such outputs from low-level waste. If subseabed disposal is found to be feasible for HLW, then other factors such as cost will become more important in considering subseabed emplacement for other nuclear wastes. A secondary objective of the SDP is to develop and maintain a capability to assess and cooperate with the seabed nuclear waste disposal programs of other nations. There are, of course, a number of nations with nuclear programs, and not all of these nations have convenient access to land-based repositories for nuclear waste. Many are attempting to develop legislative and scientific programs that will avoid potential hazards to man, threats to other ocean uses, and marine pollution, and they work together to such purpose in meetings of the international NEA/Seabed Working Group. The US SDP, as the first and most highly developed R and D program in the area, strongly influences the development of subseabed-disposal-related policy in such nations

  20. Effect of drains on the seepage of contaminants from subgrade tailings disposal areas

    International Nuclear Information System (INIS)

    Witten, A.J.; Pin, F.G.; Sharp, R.D.

    1984-01-01

    A numerical simulation study is performed to investigate the influence of ponded water and a bottom drain on the pathways for contaminant migration from a subgrade uranium mill tailings disposal pit. A numerical model is applied to a generic disposal pit constructed with a bottom clay liner and steep unlined sidewalls. The migration of a two-contaminant system is modeled assuming that neither contaminant decays and only one contaminant is retarded. Two dominant pathways are identified; one associated with lateral sidewall leakage and the other associated with transport through the bottom clay liner. It is found that the drain serves to reduce migration through the sidewall which, in turn, prevents the retarded contaminant from reaching the aquifer. The ponded water provides increased head which causes an accelerated vertical movement of moisture through the clay liner. 2 references, 8 figures

  1. Trace metal contamination of water at a solid waste disposal site at ...

    African Journals Online (AJOL)

    , and close to, a solid waste disposal site at Kariba, Zimbabwe, and in water flowing from the area during 1996 and 1997. Soil samples were collected from the surface inside the disposal site and at distances of 3m, 25m and 50m (from the ...

  2. Site-selection studies for final disposal of spent fuel in Finland

    International Nuclear Information System (INIS)

    Vuorela, P.; Aeikaes, T.

    1984-02-01

    In the management of waste by the Industrial Power Company Ltd. (TVO) preparations are being made for the final disposal of unprocessed spent fuel into the Finnish bedrock. The site selection program will advance in three phases. The final disposal site must be made at the latest by the end of the year 2000, in accordance with a decision laid down by the Finnish Government. In the first phase, 1983-85, the main object is to find homogeneous stable bedrock blocks surrounded by fracture zones located at a safe distance from the planned disposal area. The work usually starts with a regional structural analysis of mosaics of Landsat-1 winter and summer imagery. Next an assortment of different maps, which cover the whole country, is used. Technical methods for geological and hydrogeological site investigations are being developed during the very first phase of the studies, and a borehole 1000 meters deep will be made in southwestern Finland. Studies for the final disposal of spent fuel or high-level reprocessing waste have been made since 1974 in Finland. General suitability studies of the bedrock have been going on since 1977. The present results indicate that suitable investigation areas for the final disposal of highly active waste can be found in Finland

  3. Industrial feasibility study of a spent nuclear fuel package for direct deep disposal

    International Nuclear Information System (INIS)

    Le Lous, K.; Loubrieu, J.; Chupeau, J.; Serpantie, J.P.; Becle, D.; Aubry, S.

    2001-01-01

    EDF has undertaken to study the industrial feasibility of a spent nuclear fuel package meeting direct disposal requirements. In this context, a disposal concept has been defined in which packages are cooled in place until the module is finally sealed. Indeed, one of the objectives of that disposal concept is to reduce the underground area occupied by the repository. A functional analysis has been performed within the framework of that ventilated disposal concept, taking into account the phases of the package lifetime from its conditioning until the disposal post-closure phase. An industrial feasibility study is in progress, which takes into account the functional specifications and some preliminary studies. (author)

  4. Waste Incidental to Reprocessing Evaluation for Disposing Saltcake to Saltstone

    International Nuclear Information System (INIS)

    Jones, R.T.

    2002-01-01

    This Waste Incidental to Reprocessing Evaluation is performed in accordance with Department of Energy Order 435.1, Radioactive Waste Management. This evaluation is performed in order to determine whether saltcake currently stored in the Tank Farms, when separated from supernate, meets WIR requirements and can therefore be managed as Low Level Waste and disposed in the Saltstone Production and Disposal Facility in Z-Area

  5. Low level waste disposal

    International Nuclear Information System (INIS)

    Barthoux, A.

    1985-01-01

    Final disposal of low level wastes has been carried out for 15 years on the shallow land disposal of the Manche in the north west of France. Final participant in the nuclear energy cycle, ANDRA has set up a new waste management system from the production center (organization of the waste collection) to the disposal site including the setting up of a transport network, the development of assessment, additional conditioning, interim storage, the management of the disposal center, records of the location and characteristics of the disposed wastes, site selection surveys for future disposals and a public information Department. 80 000 waste packages representing a volume of 20 000 m 3 are thus managed and disposed of each year on the shallow land disposal. The disposal of low level wastes is carried out according to their category and activity level: - in tumuli for very low level wastes, - in monoliths, a concrete structure, of the packaging does not provide enough protection against radioactivity [fr

  6. The effect of food waste disposers on municipal waste and wastewater management.

    Science.gov (United States)

    Marashlian, Natasha; El-Fadel, Mutasem

    2005-02-01

    This paper examines the feasibility of introducing food waste disposers as a waste minimization option within urban waste management schemes, taking the Greater Beirut Area (GBA) as a case study. For this purpose, the operational and economic impacts of food disposers on the solid waste and wastewater streams are assessed. The integration of food waste disposers can reduce the total solid waste to be managed by 12 to 43% under market penetration ranging between 25 and 75%, respectively. While the increase in domestic water consumption (for food grinding) and corresponding increase in wastewater flow rates are relatively insignificant, wastewater loadings increased by 17 to 62% (BOD) and 1.9 to 7.1% (SS). The net economic benefit of introducing food disposers into the waste and wastewater management systems constitutes 7.2 to 44.0% of the existing solid waste management cost under the various scenarios examined. Concerns about increased sludge generation persist and its potential environmental and economic implications may differ with location and therefore area-specific characteristics must be taken into consideration when contemplating the adoption of a strategy to integrate food waste disposers in the waste-wastewater management system.

  7. Geology of the Syncline Ridge area related to nuclear waste disposal, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Hoover, D.L.; Morrison, J.N.

    1980-01-01

    The Syncline Ridge area is in the western part of Yucca Flat, Nye Co., Nev. Drill holes, geophysical surveys, mapping, and laboratory studies during 1976 through 1978 were used to investigate argillite in unit J (Mississippian) of the Eleana Formation (Devonian and Mississippian) as a possible nuclear waste repository site. Argillite in unit J has a minimum stratigraphic thickness of at least 700 m. The argillite underlies most of the Syncline Ridge area east of the Eleana Range, and is overlain by Quaternary alluvium and the Tippipah Limestone of Syncline Ridge. At the edges of the Syncline Ridge area, alluvium and volcanic rocks overlie the argillite. The argillite is underlain by more than 1000 m of quartzite, siliceous argillite, and minor limestone in older units of the Eleana Formation. These older units crop out in the Eleana Range. The area is divided into southern, central, and northern structural blocks by two lateral faults. The southern and central blocks either have volumes of argillite too small for a repository site, or have irregular-shaped volumes caused by Mesozoic high-angle faults that make the structure too complex for a repository site. The northern block appears to contain thick argillite within an area of 6 to 8 km 2 . The postvolcanic history of the Syncline Ridge area indicates that the area has undergone less deformation than other areas in Yucca Flat. Most of the late Tertiary and Quaternary deformation consisted of uplift and eastward tilting in the Syncline Ridge area. Preliminary engineering geology investigations indicate that although the competency of the argillite is low, the argillite may be feasible for construction of a nuclear waste disposal facility. Physical, thermal, chemical, and mineralogical properties of the argillite appear to be within acceptable limits for a nuclear waste repository

  8. Waste disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure

  9. Hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass disposal

    Science.gov (United States)

    Kaown, D.; Kim, H.; Lee, S.; Hyun, Y.; Moon, H.; Ko, K.; Lee, K.

    2012-12-01

    The release of leachate from animal carcass disposal can potentially contaminate soil and groundwater. During the Korea's foot-and-mouth disease (FMD) outbreak in 2010-2011, about 3.53 million of pigs and cattle were slaughtered and 4,538 burial sites were constructed. The objectives of this study are to determine the hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass disposal. Hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass burial facilities were monitored to prevent further soil and groundwater contamination and to build effective plans for stabilization of the burial site. Two burial sites were investigated in this study. An animal carcass disposal site is located in a flat area and another disposal site is found in mountain area. The hydrogeochemical and hydrogeological characteristics were analyzed to identify groundwater contamination by leachate from livestock burial sites. After 5-6 months of burial, the concentrations of NH4+, Cl-, and HCO3- in leachate were decreased since the leachate was regularly pumped and treated. However, high concentrations of major contaminants (NH4+, Cl-, and HCO3-) were still observed in landfill leachate of mountain area even though pumping and treatment of leachate were continuously conducted. Bacterial community diversity over time in leachate from animal carcass disposal was analyzed using 16S rRNA gene-based pyrosequencing. The impact of landfill leachate on change of bacterial community in soil and groundwater were monitored for a year.

  10. Groundwater Monitoring and Tritium-Tracking Plan for the 200 Area State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. Brent

    2000-08-31

    The 200 Area State-Approved Land Disposal Site (SALDS) is a drainfield which receives treated wastewater, occasionally containing high levels of tritium from treatment of Hanford Site liquid wastes. Only the SALDS proximal wells (699-48-77A, 699-48-77C, and 699-48-77D) have been affected by tritium from the facility thus far; the highest activity observed (2.1E+6 pCi/L) occurred in well 699-48-77D in February 1998. Analytical results of groundwater geochemistry since groundwater monitoring began at the SALDS indicate that all constituents with permit enforcement limits have been below those limits with the exception of one measurement of total dissolved solids (TDS) in 1996. The revised groundwater monitoring sampling and analysis plan eliminates chloroform, acetone, tetrahydrofuran, benzene, and ammonia as constituents. Replicate field measurements will replace laboratory measurements of pH for compliance purposes. A deep companion well to well 699-51-75 will be monitored for tritium deeper in the uppermost aquifer.

  11. Waste disposal

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste, as a unavoidable remnant from the use of radioactive substances and nuclear technology. It is potentially hazardous to health and must therefore be managed to protect humans and the environment. The main bulk of radioactive waste must be permanently disposed in engineered repositories. Appropriate safety standards for repository design and construction are required along with the development and implementation of appropriate technologies for the design, construction, operation and closure of the waste disposal systems. As backend of the fuel cycle, resolving the issue of waste disposal is often considered as a prerequisite to the (further) development of nuclear energy programmes. Waste disposal is therefore an essential part of the waste management strategy that contributes largely to build confidence and helps decision-making when appropriately managed. The International Atomic Energy Agency provides assistance to Member States to enable safe and secure disposal of RW related to the development of national RWM strategies, including planning and long-term project management, the organisation of international peer-reviews for research and demonstration programmes, the improvement of the long-term safety of existing Near Surface Disposal facilities including capacity extension, the selection of potential candidate sites for different waste types and disposal options, the characterisation of potential host formations for waste facilities and the conduct of preliminary safety assessment, the establishment and transfer of suitable technologies for the management of RW, the development of technological solutions for some specific waste, the building of confidence through training courses, scientific visits and fellowships, the provision of training, expertise, software or hardware, and laboratory equipment, and the assessment of waste management costs and the provision of advice on cost minimisation aspects

  12. Shielding design of disposal container for disused sealed radioactive source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk Hoon; Kim, Ju Youl [FNC Technology Co., Yongin (Korea, Republic of)

    2017-06-15

    Disused Sealed Radioactive Sources (DSRSs), which are stored temporally in the centralized storage facility of Korea Radioactive Waste Agency (KORAD), will be disposed of in the low- and intermediate-level radioactive waste disposal facility located in Wolsong. Accordingly, the future plan on DSRS disposal should be established as soon as possible in connection with the construction and operation plan of disposal facility. In this study, as part of developing the systematic management plan, the radiation shielding analysis for three types of disposal container was performed for all kinds of radionuclides (excluding mixed sources) contained in DSRSs generated from domestic area using MicroShield and MCNP5 codes in consideration of the preliminary post-closure safety assessment result for disposal options, source-specific characteristics, and etc. In accordance with the analysis result, thickness of inner container for general disposal container and dimensions (i.e. diameter and height) of inner capsule for two types of special disposal container were determined as 3 mm, OD40×H120 mm (for type 1), and OD100× H240 mm (for type 2), respectively. These values were reflected in the conceptual design of DSRS disposal container, and the structural integrity of each container was confrmed through the structural analysis carried out separately from this study. Given the shielding and structural analysis results, the conceptual design derived from this study sufficiently fulfills the technical standards in force and the design performance level. And consequently, it is judged that the safe management for DSRSs to be disposed of is achieved by utilizing the disposal container with the conceptual design devised.

  13. Shielding design of disposal container for disused sealed radioactive source

    International Nuclear Information System (INIS)

    Kim, Suk Hoon; Kim, Ju Youl

    2017-01-01

    Disused Sealed Radioactive Sources (DSRSs), which are stored temporally in the centralized storage facility of Korea Radioactive Waste Agency (KORAD), will be disposed of in the low- and intermediate-level radioactive waste disposal facility located in Wolsong. Accordingly, the future plan on DSRS disposal should be established as soon as possible in connection with the construction and operation plan of disposal facility. In this study, as part of developing the systematic management plan, the radiation shielding analysis for three types of disposal container was performed for all kinds of radionuclides (excluding mixed sources) contained in DSRSs generated from domestic area using MicroShield and MCNP5 codes in consideration of the preliminary post-closure safety assessment result for disposal options, source-specific characteristics, and etc. In accordance with the analysis result, thickness of inner container for general disposal container and dimensions (i.e. diameter and height) of inner capsule for two types of special disposal container were determined as 3 mm, OD40×H120 mm (for type 1), and OD100× H240 mm (for type 2), respectively. These values were reflected in the conceptual design of DSRS disposal container, and the structural integrity of each container was confrmed through the structural analysis carried out separately from this study. Given the shielding and structural analysis results, the conceptual design derived from this study sufficiently fulfills the technical standards in force and the design performance level. And consequently, it is judged that the safe management for DSRSs to be disposed of is achieved by utilizing the disposal container with the conceptual design devised

  14. Evapotranspiration Cover for the 92-Acre Area Retired Mixed Waste Pits, Area 5 Waste Management Division, Nevada National Security Site, Final CQA Report

    International Nuclear Information System (INIS)

    2012-01-01

    The report is the Final Construction Quality Assurance (CQA) Report for the 92-Acrew Evapotranspiration Cover, Area 5 Waste Management Division Retired Mixed Waste Pits, Nevada National Security Site, Nevada, for the period of January 20, 2011, to January 31, 2012 The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. The 92-Acre Area encompasses the southern portion of the Area 5 RWMS, which has been designated for the first final closure operations. This area contains 13 Greater Confinement Disposal (GCD) boreholes, 16 narrow trenches, and 9 broader pits. With the exception of two active pits (P03 and P06), all trenches and pits in the 92-Acre Area had operational covers approximately 2.4 meters thick, at a minimum, in most areas when this project began. The units within the 92-Acre Area are grouped into the following six informal categories based on physical location, waste types and regulatory requirements: (1) Pit 3 Mixed Waste Disposal Unit (MWDU); (2) Corrective Action Unit (CAU) 111; (3) CAU 207; (4) Low-level waste disposal units; (5) Asbestiform low-level waste disposal units; and (6) One transuranic (TRU) waste trench.

  15. Disposal of the radioactive contaminated soils from the NPP site

    International Nuclear Information System (INIS)

    Matusek, I.; Plsko, J.; Sajtlava, M.; Hulla, J.; Kovacs, T.

    2004-01-01

    Disposal of contaminated soils at site of NPP is one of the most important task within the frame of research and development tasks of the NPP decommissioning. The works within this field can be seen in several areas. Considered soil activity monitoring, observation of its geo-technical and geo-chemical parameters, volume balance, research of the radio nuclides behaviour in the soil and simulation of their influence on the surrounding environment with special emphasis on underground water, project studies and construction of the disposal facility for contaminated soils. This work presents overview of gained results in the mentioned areas of the research and development. (author)

  16. Disposing of fluid wastes

    International Nuclear Information System (INIS)

    Bradley, J.S.

    1984-01-01

    Toxic liquid waste, eg liquid radioactive waste, is disposed of by locating a sub-surface stratum which, before removal of any fluid, has a fluid pressure in the pores thereof which is less than the hydrostatic pressure which is normal for a stratum at that depth in the chosen area, and then feeding the toxic liquid into the stratum at a rate such that the fluid pressure in the stratum never exceeds the said normal hydrostatic pressure. (author)

  17. Statistical evaluation of effluent monitoring data for the 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    Chou, C.J.; Johnson, V.G.

    2000-01-01

    The 200 Area Treated Effluent Disposal Facility (TEDF) consists of a pair of infiltration basins that receive wastewater originating from the 200 West and 200 East Areas of the Hanford Site. TEDF has been in operation since 1995 and is regulated by State Waste Discharge Permit ST 4502 (Ecology 1995) under the authority of Chapter 90.48 Revised Code of Washington (RCW) and Washington Administrative Code (WAC) Chapter 173-216. The permit stipulates monitoring requirements for effluent (or end-of-pipe) discharges and groundwater monitoring for TEDF. Groundwater monitoring began in 1992 prior to TEDF construction. Routine effluent monitoring in accordance with the permit requirements began in late April 1995 when the facility began operations. The State Waste Discharge Permit ST 4502 included a special permit condition (S.6). This condition specified a statistical study of the variability of permitted constituents in the effluent from TEDF during its first year of operation. The study was designed to (1) demonstrate compliance with the waste discharge permit; (2) determine the variability of all constituents in the effluent that have enforcement limits, early warning values, and monitoring requirements (WHC 1995); and (3) determine if concentrations of permitted constituents vary with season. Additional and more frequent sampling was conducted for the effluent variability study. Statistical evaluation results were provided in Chou and Johnson (1996). Parts of the original first year sampling and analysis plan (WHC 1995) were continued with routine monitoring required up to the present time

  18. TVO-92 safety analysis of spent fuel disposal

    International Nuclear Information System (INIS)

    Vieno, T.; Hautojaervi, A.; Koskinen, L.; Nordman, H.

    1993-08-01

    The spent fuel from the TVO I and TVO II reactors at the Olkiluoto nuclear power plant is planned to be disposed in a repository constructed at a depth of about 500 meters in crystalline bedrock. Teollisuuden Voima Oy (TVO) has carried out preliminary site investigations for spent fuel disposal between 1987 and 1992 at five areas in Finland (Olkiluoto, Kivetty, Romuvaara, Syyry and Veitsivaara). The Safety analysis of the disposal system is presented in the report. Spent fuel will be encapsulated in composite copper-steel canisters. The canister design (ACP canister) consists of an inner container of steel as a load-bearing element and an outer container of oxygen-free copper to provide a shield against corrosion. In the repository the canisters will be emplaced in vertical holes drilled in the floors of horizontal deposition tunnels. The annulus between the canister and the rock is filled with compacted bentonite. The results of the safety analysis attest that the planned disposal system fulfils the safety requirements. Suitable places for the repository can be found at each of the five investigation sites

  19. Outfall as a Suitable Alternative for Disposal of Municipal Wastewater in Coastal Areas

    Directory of Open Access Journals (Sweden)

    Afshin Takdastan

    2005-11-01

    Full Text Available Disposal of raw municipal wastewater or effluent of preliminary treatment into the sea and ocean is economically more accepted and technically more efficient than secondary treatment. In this method, the wastewater disposed at the bottom of the sea in some points from diffuser. Nowadays, lots of researchers select outfall as a suitable alternative treatment method for coastal cities. The goal of this paper was to introduce the outfall as a wastewater treatment method and its design criteria considering different characteristics of the sea such as salinity, density, temperature, stratification etc. In addition, stagnant sea and thermal stratification is reviewed. In this paper the latest information were reviewed. In this alternative the wastewater treated under dilution, mixing and natural conditions. Moreover, sensitive coastal point are preserved from different wastewater pollutants. Usually, there is no limitation regarding discharge of coliform, DO, BOD, and nutrient concentrations in initial mixing zoom. The parameters such as thermal stratification, salinity stratification, density stratification, marine flows influence design of outfall.

  20. Long Term Corrosion/Degradation Test Six Year Results

    Energy Technology Data Exchange (ETDEWEB)

    M. K. Adler Flitton; C. W. Bishop; M. E. Delwiche; T. S. Yoder

    2004-09-01

    The Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) contains neutron-activated metals from non-fuel, nuclear reactor core components. The Long-Term Corrosion/Degradation (LTCD) Test is designed to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements to the environment. The test is using two proven, industry-standard methods—direct corrosion testing using metal coupons, and monitored corrosion testing using electrical/resistance probes—to determine corrosion rates for various metal alloys generally representing the metals of interest buried at the SDA, including Type 304L stainless steel, Type 316L stainless steel, Inconel 718, Beryllium S200F, Aluminum 6061, Zircaloy-4, low-carbon steel, and Ferralium 255. In the direct testing, metal coupons are retrieved for corrosion evaluation after having been buried in SDA backfill soil and exposed to natural SDA environmental conditions for times ranging from one year to as many as 32 years, depending on research needs and funding availability. In the monitored testing, electrical/resistance probes buried in SDA backfill soil will provide corrosion data for the duration of the test or until the probes fail. This report provides an update describing the current status of the test and documents results to date. Data from the one-year and three-year results are also included, for comparison and evaluation of trends. In the six-year results, most metals being tested showed extremely low measurable rates of general corrosion. For Type 304L stainless steel, Type 316L stainless steel, Inconel 718, and Ferralium 255, corrosion rates fell in the range of “no reportable” to 0.0002 mils per year (MPY). Corrosion rates for Zircaloy-4 ranged from no measurable corrosion to 0.0001 MPY. These rates are two orders of magnitude lower than those specified in

  1. Trace metal contamination of Beaufort's Dyke, North Channel, Irish Sea: A legacy of ordnance disposal

    International Nuclear Information System (INIS)

    Callaway, Alexander; Quinn, Rory; Brown, Craig J.; Service, Matthew; Benetti, Sara

    2011-01-01

    Highlights: → Our samples are the first trace metal concentrations taken from the valley of Beaufort's Dyke. → There is no clear trend between concentrations of trace metals in Dyke and NMMP sediments. → Particle transport simulations show dispersal of trace metals from Beaufort's Dyke is possible. → Disposed ordnance may also contribute to contamination of surrounding areas. → These methods could help predict areas at risk of future trace metal contamination as a result of ordnance disposal. - Abstract: Beaufort's Dyke is a disused ordnance disposal ground within the North Channel of the Irish Sea. Over 1 million tonnes of ordnance were disposed of in the dyke over a 40 year period representing a substantial volume of trace metal pollutants introduced to the seabed. Utilising particle transport modelling software we simulated the potential transport of metal particles from Beaufort's Dyke over a 3 month period. This demonstrated that Beaufort's Dyke has the potential to act as a source for trace metal contamination to areas beyond the submarine valley. Trace metal analysis of sediments from the Dyke and surrounding National Marine Monitoring Programme areas demonstrate that the Dyke is not the most contaminated site in the region. Particle transport modelling enables the transport pathways of trace metal contaminants to be predicted. Implementation of the technique in other munitions disposal grounds will provide valuable information for the selection of monitoring stations.

  2. Code of practice for the disposal of radioactive waste by the user

    International Nuclear Information System (INIS)

    1985-01-01

    The purpose of the Code is to recommend practices for the Safe disposal of small quantities of radioactive waste so that the exposure of persons to radiation is as low as reasonably achievable and below prescribed limits. The areas covered are: radiological hazard assessments; waste forms; responsibilities of statutory authorities, users and tip and incinerator operators; transport of radioactive waste; mechanisms of disposal, including municipal tips, incineration, sewerage, disposal to the atmosphere and interim storage. Guidelines are given for the packaging and transport of radioactive waste

  3. The effect of drains on the seepage of contaminants from subgrade tailings disposal areas

    International Nuclear Information System (INIS)

    Witten, A.J.; Pin, F.G.; Sharp, R.D.

    1984-01-01

    A numerical simulation study is performed to investigate the influence of ponded water and a bottom drain on the pathways for contaminant migration from a subgrade uranium mill tailings disposal pit. A numerical model is applied to a generic disposal pit constructed with a bottom clay liner and steep unlined sidewalls. The migration of a two-contaminant system is modeled assuming that neither contaminant decays and only one contaminant is retarded. Two dominant pathways are indentified; one associated with lateral sidewall leakage and the other associated with transport through the bottom clay liner. It is found that the drain serves to reduce migration through the sidewall which, in turn, prevents the retarded contaminant from reaching the aquifer. The ponded water provides increased head which causes an accelarated vertical movement of moisture through the clay liner

  4. Final disposal of spent nuclear fuel - basis for site selection

    International Nuclear Information System (INIS)

    Anttila, P.

    1995-05-01

    International organizations, e.g. IAEA, have published several recommendations and guides for the safe disposal of radioactive waste. There are three major groups of issues affecting the site selection process, i.e. geological, environmental and socioeconomic. The first step of the site selection process is an inventory of potential host rock formations. After that, potential study areas are screened to identify sites for detailed investigations, prior to geological conditions and overall suitability for the safe disposal. This kind of stepwise site selection procedure has been used in Finland and in Sweden. A similar approach has been proposed in Canada, too. In accordance with the amendment to the Nuclear Energy Act, that entered into force in the beginning of 1995, Imatran Voima Oy has to make preparations for the final disposal of spent fuel in the Finnish bedrock. Relating to the possible site selection, the following geological factors, as internationally recommended and used in the Nordic countries, should be taken into account: topography, stability of bedrock, brokenness and fracturing of bedrock, size of bedrock block, rock type, predictability and natural resources. The bedrock of the Loviisa NPP site is a part of the Vyborg rapakivi massif. As a whole the rapakivi granite area forms a potential target area, although other rock types or areas cannot be excluded from possible site selection studies. (25 refs., 7 figs.)

  5. Environmental hazards of waste disposal patterns--a multimethod study in an unrecognized Bedouin village in the Negev area of Israel.

    Science.gov (United States)

    Meallem, Ilana; Garb, Yaakov; Cwikel, Julie

    2010-01-01

    The Bedouin of the Negev region of Israel are a formerly nomadic, indigenous, ethnic minority, of which 40% currently live in unrecognized villages without organized, solid waste disposal. This study, using both quantitative and qualitative methods, explored the transition from traditional rubbish production and disposal to current uses, the current composition of rubbish, methods of waste disposal, and the extent of exposure to waste-related environmental hazards in the village of Um Batim. The modern, consumer lifestyle produced both residential and construction waste that was dumped very close to households. Waste was tended to by women who predominantly used backyard burning for disposal, exposing villagers to corrosive, poisonous, and dangerously flammable items at these burn sites. Village residents expressed a high level of concern over environmental hazards, yet no organized waste disposal or environmental hazards reduction was implemented.

  6. Heavy element radionuclides (Pu, Np, U) and 137Cs in soils collected from the Idaho National Engineering and Environmental Laboratory and other sites in Idaho, Montana, and Wyoming

    International Nuclear Information System (INIS)

    Beasley, T.M.; Rivera, W. Jr.; Liszewski, M.J.; Orlandini, K.A.

    1998-10-01

    The isotopic composition of Pu in soils on and near the Idaho National Engineering and Environmental Laboratory (INEEL) has been determined in order to apportion the sources of the Pu into those derived from stratospheric fallout, regional fallout from the Nevada Test Site (NTS), and facilities on the INEEL site. Soils collected offsite in Idaho, Montana, and Wyoming were collected to further characterize NTS fallout in the region. In addition, measurements of 237 Np and 137 Cs were used to further identify the source of the Pu from airborne emissions at the Idaho Chemical Processing Plant (ICPP) or fugitive releases from the Subsurface Disposal Area (SDA) in the Radioactive Waste Management Complex (RWMC). There is convincing evidence from this study that 241 Am, in excess of that expected from weapons-grade Pu, constituted a part of the buried waste at the SDA that has subsequently been released to the environment. Measurements of 236 U in waters from the Snake River Plain aquifer and a soil core near the ICPP suggest that this radionuclide may be a unique interrogator of airborne releases from the ICPP. Neptunium-237 and 238 Pu activities in INEEL soils suggest that airborne releases of Pu from the ICPP, over its operating history, may have recently been overestimated

  7. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  8. Scenarios of the TWRS low-level waste disposal program

    International Nuclear Information System (INIS)

    1994-10-01

    As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 Area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pretreating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste

  9. Salt disposal: Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report presents the findings of a study conducted for the National Waste Terminal Storage (NWTS) Program. Permanent disposal options are examined for salt resulting from the excavation of a waste repository in the bedded salt deposits of the Paradox Basin of southeastern Utah. The study is based on a repository salt backfill compaction of 60% of the original density which leaves a total of 8 million tons of 95% pure salt to be disposed of over a 30-year period. The feasibility, impacts, and mitigation methods are examined for five options: commercial disposal, permanent onsite surface disposal, permanent offsite disposal, deepwell injection, and ocean and Great Salt Lake disposal. The study concludes the following: Commercial marketing of all repository salt would require a subsidy for transportation to major salt markets. Permanent onsite surface storage is both economically and technically feasible. Permanent offsite disposal is technically feasible but would incur additional transportation costs. Selection of an offsite location would provide a means of mitigating impacts associated with surface storage at the repository site. Deepwell injection is an attractive disposal method; however, the large water requirement, high cost of development, and poor performance of similar operating brine disposal wells eliminates this option from consideration as the primary means of disposal for the Paradox Basin. Ocean disposal is expensive because of high transportation cost. Also, regulatory approval is unlikely. Ocean disposal should be eliminated from further consideration in the Paradox Basin. Great Salt Lake disposal appears to be technically feasible. Great Salt Lake disposal would require state approval and would incur substantial costs for salt transportation. Permanent onsite disposal is the least expensive method for disposal of all repository salt

  10. Proposal of a SiC disposal canister for very deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui-Joo; Lee, Minsoo; Lee, Jong-Youl; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper authors proposed a silicon carbide, SiC, disposal canister for the DBD concept in Korea. A. Kerber et al. first proposed the SiC canister for a geological disposal of HLW, CANDU or HTR spent nuclear fuels. SiC has some drawbacks in welding or manufacturing a large canister. Thus, we designed a double layered disposal canister consisting of a stainless steel outer layer and a SiC inner layer. KAERI has been interested in developing a very deep borehole disposal (DBD) of HLW generated from pyroprocessing of PWR spent nuclear fuel and supported the relevant R and D with very limited its own budget. KAERI team reviewed the DBD concept proposed by Sandia National Laboratories (SNL) and developed its own concept. The SNL concept was based on the steel disposal canister. The authors developed a new technology called cold spray coating method to manufacture a copper-cast iron disposal canister for a geological disposal of high level waste in Korea. With this method, 8 mm thin copper canister with 400 mm in diameter and 1200 mm in height was made. In general, they do not give any credit on the lifetime of a disposal canister in DBD concept unlike the geological disposal. In such case, the expensive copper canister should be replaced with another one. We designed a disposal canister using SiC for DBD. According to an experience in manufacturing a small size canister, the fabrication of a large-size one is a challenge. Also, welding of SiC canister is not easy. Several pathways are being paved to overcome it.

  11. From dispensing to disposal: the role of student pharmacists in medication disposal and the implementation of a take-back program.

    Science.gov (United States)

    Gray-Winnett, Misty D; Davis, Courtney S; Yokley, Stephanie G; Franks, Andrea S

    2010-01-01

    To decrease the amount of pharmaceuticals present in our community's water supply, reduce the accidental and intentional ingestion of pharmaceuticals, and increase awareness of proper medication disposal. Knoxville, TN, from November 2008 to November 2009. Medication and thermometer collection events were held at various community retail establishments. Community officials and students collaborated to plan advertising, implementation, and appropriate medication and thermometer disposal. Event volunteers set up easily accessible tents and tables in high-traffic areas to collect unused medications, mercury thermometers, and recyclable medication bottles. Student pharmacists worked cooperatively with community partners to collect unused medications and exchange thermometers. Pounds of recyclables collected, pounds of medications collected, and number of thermometers exchanged. The events increased community awareness of appropriate medication disposal and pharmacists' roles in safe use of medications. From November 2008 to November 2009, more than 1,100 pounds of unwanted medications were collected through events and the drop box. Additionally, more than 470 pounds of recyclable packaging material was collected and 535 mercury thermometers exchanged. Student pharmacists can partner with community officials and businesses to provide safe and appropriate medication and mercury thermometer disposal.

  12. In-situ grouting of the low-level radioactive waste disposal silos at ORNL's Solid Waste Storage Area Six

    International Nuclear Information System (INIS)

    Francis, C.W.; Farmer, C.D.; Stansfield, R.G.

    1993-07-01

    At Oak Ridge National Laboratory (ORNL), one method of solid low-level radioactive waste disposal has been disposed of in below-grade cylindrical concrete silos. Located in Solid Waste Storage Area 6 (SWSA 6), each silo measures 8 ft in diameter and 20 ft deep. Present day operations involve loading the silos with low-level radioactive waste and grouting the remaining void space with a particulate grout of low viscosity. Initial operations involving the disposal of wastes into the below-grade silos did not include the grouting process. Grouting was stated as a standard practice (in late 1988) after discovering that ∼75% of the silos accumulated water in the bottom of the silos in the ∼2 years after capping. Silo water (leachate) contained a wide range of types and concentrations of radionuclides. The migration of contaminated leachate out of the silo into adjoining soil and groundwater was considered to be a serious environmental concern. This report describes how a specially designed particulate-base grout was used to grout 54 silos previously filled with low-level radioactive waste. Grouting involved three steps: (1) silo preparation, (2) formulation and preparation of the grout mixture, and (3) injection of the grout into the silos. Thirty-five of the 54 silos grouted were equipped with a 3-in.-diam Polyvinyl Chloride (PVC) pipe used to monitor water levels in the silos. A method for rupturing the bottom section of these PVC wells was developed so that grout could be pumped to the bottom of those silos. Holes (2-in. diam) were drilled through the ∼18 in. thick concrete to fill the remaining 19 wells without the PVC monitoring wells. The formulation of grout injected into the silos was based on a Portland Type I cement, flyash, sand, and silica fume admixture. Compressive strength of grout delivered to SWSA6 during grouting operations averaged 1,808 lb/in 2 with a bulk density of 3,549 lb/yd 3

  13. Special Analysis for the Disposal of the Materials and Energy Corporation Sealed Sources at the Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2017-05-15

    This special analysis (SA) evaluates whether the Materials and Energy Corporation (M&EC) Sealed Source waste stream (PERM000000036, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the M&EC Sealed Source waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The M&EC Sealed Source waste stream is recommended for acceptance without conditions.

  14. Cosmic disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Morisawa, S [Kyoto Univ. (Japan). Faculty of Engineering

    1975-03-01

    The technical and economical possibility and safety of the disposal of highly radioactive waste into cosmos are reviewed. The disposal of highly radioactive waste is serious problem to be solved in the near future, because it is produced in large amounts by the reprocessing of spent fuel. The promising methods proposed are (i) underground disposal, (ii) ocean disposal, (iii) cosmic disposal and (iv) extinguishing disposal. The final disposal method is not yet decided internationally. The radioactive waste contains very long life nuclides, for example transuranic elements and actinide elements. The author thinks the most perfect and safe disposal method for these very long life nuclides is the disposal into cosmos. The space vehicle carrying radioactive waste will be launched safely into outer space with recent space technology. The selection of orbit for vehicles (earth satellite or orbit around planets) or escape from solar system, selection of launching rocket type pretreatment of waste, launching weight, and the cost of cosmic disposal were investigated roughly and quantitatively. Safety problem of cosmic disposal should be examined from the reliable safety study data in the future.

  15. History of geological disposal concept (3). Implementation phase of geological disposal (2000 upward)

    International Nuclear Information System (INIS)

    Masuda, Sumio; Sakuma, Hideki; Umeki, Hiroyuki

    2015-01-01

    Important standards and concept about geological disposal have been arranged as an international common base and are being generalized. The authors overview the concept of geological disposal, and would like this paper to help arouse broad discussions for promoting the implementation plan of geological disposal projects in the future. In recent years, the scientific and technological rationality of geological disposal has been recognized internationally. With the addition of discussions from social viewpoints such as ethics, economy, etc., geological disposal projects are in the stage of starting after establishment of social consensus. As an international common base, the following consolidated and systematized items have been presented as indispensable elements in promoting business projects: (1) step-by-step approach, (2) safety case, (3) reversibility and recovery potential, and (4) trust building and communications. This paper outlines the contents of the following cases, where international common base was reflected on the geological disposal projects in Japan: (1) final disposal method and safety regulations, and (2) impact of the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Station accident on geological disposal plan. (A.O.)

  16. New Low-Level Radioactive Waste Storage/Disposal Facilities at the Savannah River Plant: Environmental information document

    International Nuclear Information System (INIS)

    Cook, J.R.; Grant, M.W.; Towler, O.O.

    1987-04-01

    Site selection, alternative facilities, and alternative operations are described for a new low-level solid radioactive waste storage/disposal operation at the Savannah River Plant. Performance assessments and cost estimates for the alternatives are presented. Appendix G contains an intensive archaeological survey of alternative waste disposal areas in the Savannah River Plant area. 117 refs., 99 figs., 128 tabs

  17. Materials testing for in situ stabilization treatability study of INEEL mixed wastes soils

    International Nuclear Information System (INIS)

    Heiser, J.; Fuhrmann, M.

    1997-09-01

    This report describes the contaminant-specific materials testing phase of the In Situ Stabilization Comprehensive Environment Response, Compensation, and Liability Act (CERCLA) Treatability Study (TS). The purpose of materials testing is to measure the effectiveness of grouting agents to stabilize Idaho National Engineering and Environmental Laboratory (INEEL) Acid Pit soils and select a grout material for use in the Cold Test Demonstration and Acid Pit Stabilization Treatability Study within the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC). Test results will assist the selecting a grout material for the follow-on demonstrations described in Test Plan for the Cold Test Demonstration and Acid Pit Stabilization Phases of the In Situ Stabilization Treatability Study at the Radioactive Waste Management Complex

  18. 1994 Characterization report for the state approved land disposal site

    International Nuclear Information System (INIS)

    Swanson, L.C.

    1994-01-01

    This report summarizes the results of characterization activities at the proposed state-approved land disposal site (SALDS); it updates the original characterization report with studies completed since the first characterization report. The initial characterization report discusses studies from two characterization boreholes, 699-48-77A and 699-48-77B. This revision includes data from implementation of the Groundwater Monitoring Plan and the Aquifer Test Plan. The primary sources of data are two down-gradient groundwater monitoring wells, 699-48-77C and 699-48-77D, and aquifer testing of three zones in well 699-48-77C. The SALDS is located on the Hanford Site, approximately 183 m north of the 200 West Area on the north side of the 200 Areas Plateau. The SALDS is an infiltration basin proposed for disposal of treated effluents from the 200 Areas of Hanford

  19. Health assessment of children and adolescents living in a residential area of production for the disposal of rocket fuel: according to the results of the medical examination

    Directory of Open Access Journals (Sweden)

    Uiba V.V.

    2014-12-01

    Full Text Available Aim: to determine the real prevalence separate nosological forms in the child population living in residential zone installations for the disposal of rocket fuel. Materials and methods. By mobile teams of pediatric physicians there was conducted a comprehensive medical examination of 1621 children in the area of the site location for disposal of rocket engines solid fuel. Results. The surveyed contingent of the most common diseases of the endocrine system, disorders of nutrition and metabolism (21.2% of diagnoses, diseases of the musculoskeletal and connective tissue (19.2 percent, as well as individual symptoms, signs and deviations from the norm by 14.4%. Conclusion. Data indicating the pronounced impact of adverse environmental factors, not identified.

  20. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1984-08-01

    The operational and technical feasibility of the penetrator option for HGW disposal has been reviewed and the areas where research is required to confirm feasibility have been identified. The research requirements have been presented against the Department's ocean disposal programme timescale on a series of bar charts. The bar charts show the need for theoretical and experimental studies of the basic mechanisms governing hole closure and the development of suitable instrumentation to assess the actual behaviour of the remoulded sediment in deep ocean trials. Detailed planning of deep ocean trials in sufficient time to develop strategy, models and instrumentation, identification of site investigation requirements and thermal response studies of sediments are also required. (author)

  1. Ocean Disposal Site Monitoring

    Science.gov (United States)

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  2. Selection of radioactive waste disposal site considering natural processes

    International Nuclear Information System (INIS)

    Nakamura, H.

    1991-01-01

    To dispose the radioactive waste, it is necessary to consider the transfer of material in natural environment. The points of consideration are 1) Long residence time of water 2) Independence of biosphere from the compartment containing the disposal site in the natural hydrologic cycle 3) Dilution with the natural inactive isotope or the same group of elements. Isotope dilution for 129 I and 14 C can be expected by proper selection of the site. 241 Am and 239 Pu will be homogenized into soil or sediment with insoluble elements such as iron and aluminium. For 237 Np and 99 Tc anionic condition is important for the selection. From the point of view of hydrologic cycle, anoxic dead water zone avoiding beneath mountain area is preferable for the disposal site. (author)

  3. Geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sato, Tsutomu

    2000-01-01

    For disposing method of radioactive wastes, various feasibilities are investigated at every nations and international organizations using atomic energy, various methods such as disposal to cosmic space, disposal to ice sheet at the South Pole and so forth, disposal into ocean bed or its sediments, and disposal into ground have been examined. It is, however, impossible institutionally at present, to have large risk on accident in the disposal to cosmic space, to be prohibited by the South Pole Treaty on the disposal to ice sheet at the South Pole, and to be prohibited by the treaty on prevention of oceanic pollution due to the disposal of wastes and so forth on the disposal into oceanic bed or its sediments (London Treaty). Against them, the ground disposal is thought to be the most powerful method internationally from some reasons shown as follows: no burden to the next generation because of no need in long-term management by human beings; safety based on scientific forecasting; disposal in own nation; application of accumulated technologies on present mining industries, civil engineering, and so forth to construction of a disposal facility; and, possibility to take out wastes again, if required. For the ground disposal, wastes must be buried into the ground and evaluated their safety for long terms. It is a big subject to be taken initiative by engineers on geoscience who have quantified some phenomena in the ground and at ultra long term. (G.K.)

  4. Seabed disposal program: a first-year report, December 1974

    International Nuclear Information System (INIS)

    Bishop, W.P.

    1975-03-01

    A summary is given of the progress made by a study group, composed of persons from many disciplines and organizations, which was formed to examine certain areas of the world's oceans to determine whether it is feasible to use such areas, or the ocean floor beneath them, as permanent disposal sites for high-level nuclear wastes. (U.S.)

  5. Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  6. Status of UFD Campaign International Activities in Disposal Research

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-09-01

    While the United States research program for geologic disposal of high-level radioactive waste over the past decades focused solely on an open tunnel emplacement in unsaturated densely fractured tuff, several international organizations have made significant progress in the characterization and performance evaluation of other disposal design options and host rock characteristics, most of which were very different from those studied in the U.S. As a result, areas of direct collaboration between the U.S. Department of Energy’s (DOE) and international geologic disposal programs were quite limited during that time. Recently, the decision by DOE to no longer pursue the geologic disposal of high-level radioactive waste and spent fuel at the Yucca Mountain site has shifted the nation’s focus to disposal design options and geologic environments similar to those being investigated by other nations. DOE started to recognize that close international collaboration is a beneficial and costeffective strategy for advancing disposal science and, in FY12, embarked on a comprehensive effort to identify international collaboration opportunities, to interact with international organizations and advance promising collaborations, and to plan/develop specific R&D activities in cooperation with international partners. This report describes the active collaboration opportunities available to U.S. researchers as a result of this effort, and presents specific cooperative research activities that have been recently initiated within DOE’s disposal research program. The focus in this report is on those opportunities that provide access to field data (and respective interpretation/modeling), and/or may allow participation in ongoing and planned field experiments.

  7. Long-term surveillance plan for the Canonsburg, Pennsylvania, disposal site

    International Nuclear Information System (INIS)

    1995-10-01

    This document establishes elements of the US Department of Energy's (DOE) Long-Term Surveillance Plan for the Canonsburg, Pennsylvania, disposal site. The US Nuclear Regulatory Commission (NRC) will use this plan in support of license issuance for the long-term surveillance of the Canonsburg site. The Canonsburg (CAN) site is located within the borough of Canonsburg, Washington County, in southwestern Pennsylvania. The Canonsburg site covers approximately 30 acres (74 hectares). The disposal cell contains approximately 226,000 tons (241,000 tons) of residual radioactive material (RRM). Area C is southeast of the Canonsburg site, between Strabane Avenue and Chartiers Creek. Contaminated soils were removed from Area C during the remedial action, and the area was restored with uncontaminated fill material.After this cleanup, residual quantities of thorium-230 were detected at several Area C locations. The remedial action plan did not consider the ingrowth of radium-226 from thorium-230 as part of the Area C cleanup, and only two locations contained sufficient thorium-230 concentrations to result in radium-226 concentrations slightly above the US Environmental Protection Agency (EPA) standards

  8. Design and operation of a low-level solid-waste disposal site at Los Alamos

    International Nuclear Information System (INIS)

    Balo, K.A.; Wilson, N.E.; Warren, J.L.

    1982-01-01

    Since the mid-1940's, approximately 185000 m 3 of low-level and transuranic radioactive solid waste, generated in operations at the Los Alamos National Laboratory, have been disposed of by on-site shallow land burial. Procedures and facilities have been designed and evaluated in the areas of waste acceptance, treatment and storage, disposal, traffic control, and support systems. The methodologies assuring the proper management and disposal of radioactive solid waste are summarized

  9. Survey and analysis of the domestic technology level for the concept development of high level waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Sun; Kim, Byung Su; Song, Jae Hyok [Seoul National University, Seoul (Korea); Park, Kwang Hon; Hwang, Ju Ho; Park, Sung Hyun; Lee, Jae Min [Kyunghee University, Seoul (Korea); Han, Joung Sang; Kim, Ku Young [Yonsei University, Seoul (Korea); Lee, Jae Ki; Chang, Jae Kwon [Hangyang University, Seoul (Korea)

    1998-09-01

    The objectives of this study are the analysis of the status of HLW disposal technology and the investigation of the domestic technology level. The study has taken two years to complete with the participation of forty five researchers. The study was mainly carried out through means of literature surveys, collection of related data, visits to research institutes, and meetings with experts in the specific fields. During the first year of this project, the International Symposium on the Concept Development of the High Level Waste Disposal System was held in Taejon, Korea in October, 1997. Eight highly professed foreign experts whose fields of expertise projected to the area of high level waste disposal were invited to the symposium. This study is composed of four major areas; disposal system design/construction, engineered barrier characterization, geologic environment evaluation and performance assessment and total safety. A technical tree scheme of HLW disposal has been illustrated according to the investigation and an analysis for each technical area. For each detailed technology, research projects, performing organization/method and techniques that are to be secured in the order of priority are proposed, but the suggestions are merely at a superfluous level of propositional idea due to the reduction of the budget in the second year. The detailed programs on HLW disposal are greatly affected by governmental HLW disposal policy and in this study, the primary decisions to be made in each level of HLW disposal enterprise and a rough scheme are proposed. (author). 20 refs., 97 figs., 33 tabs.

  10. Techno-economic Comparison of Geological Disposal of Carbon Dioxide and Radioactive Waste

    International Nuclear Information System (INIS)

    2014-12-01

    The reduction of greenhouse gas emissions is an important prerequisite for sustainable development. The energy sector is a major contributor to such emissions, which are mostly from fossil fuel fired power plants acting as point sources of carbon dioxide (CO 2 ) discharges. For the last twenty years, the new technology of carbon capture and storage, which mitigates CO 2 emissions, has been considered in many IAEA Member States. This technology involves the removal of CO 2 from the combustion process and its disposal in geological formations, such as depleted oil or gas fields, saline aquifers or unmineable coal seams. A large scale energy supply option with low CO 2 emissions is nuclear power. The high level radioactive waste produced during nuclear power plant operation and decommissioning as well as in nuclear fuel reprocessing is also planned to be disposed of in deep geological formations. To further research and development in these areas and to compare and learn from the planning, development and implementation of these two underground waste disposal concepts, the IAEA launched the coordinated research project (CRP) Techno-economic Comparison of Ultimate Disposal Facilities for Carbon Dioxide and Radioactive Waste. The project started in 2008 and was completed in 2012. The project established an international network of nine institutions from nine IAEA Member States, representing both developing and developed countries. The CRP results compared the geological disposal facilities in the following areas: geology, environmental impacts, risk and safety assessment, monitoring, cost estimation, public perception, policy, regulation and institutions. This publication documents the outcome of the CRP and is structured into thematic chapters, covering areas analysed. Each chapter was prepared under the guidance of a lead author and involved co-authors from different Member States with diverse expertise in related areas. Participants drew on the results of earlier

  11. Characterization of organics in leachates from low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Francis, A.J.; Iden, C.R.; Nine, B.; Chang, C.

    1979-01-01

    Low-level radioactive wastes generated by the nuclear industry, universities, research institutions, and hospitals are disposed of in shallow-land trenches and pits. In 1962 the first commercial disposal site was opened in Beatty, Nevada. Since then, the industry has grown to include three private companies operating six disposal areas located in sparsely populated areas: at Maxey Flats (Morehead), Kentucky; Beatty, Nevada; Sheffield, Illinois; Barnwell, South Carolina; West Valley, New York; and Richland, Washington. Although the facilities are operated by private industry, they are located on public land and are subject to federal and state regulation. Although inventories of the radioactive materials buried in the disposal sites are available, no specific records are kept on the kinds and quantities of organic wastes buried. In general, the organic wastes consist of contaminated paper, packing materials, clothing, plastics, ion-exchange resins, scintillation vials, solvents, chemicals, decontamination fluids, carcasses of experimental animals, and solidification agents. Radionuclides such as 14 C, 3 H, 90 Sr, 134 137 Cs, 60 Co, 241 Am, and 238 239 240 Pu have been identified in leachate samples collected from several trenches at Maxey Flats and West Valley. The purpose of this report is to identify some of the organic compounds present in high concentrations in trench leachates at the disposal sites in order to begin to evaluate their effect on radionuclide mobilization and contamination of the environment

  12. Alternative disposal options for alpha-mixed low-level waste

    International Nuclear Information System (INIS)

    Loomis, G.G.; Sherick, M.J.

    1995-01-01

    This paper presents several disposal options for the Department of Energy alpha-mixed low-level waste. The mixed nature of the waste favors thermally treating the waste to either an iron-enriched basalt or glass waste form, at which point a multitude of reasonable disposal options, including in-state disposal, are a possibility. Most notably, these waste forms will meet the land-ban restrictions. However, the thermal treatment of this waste involves considerable waste handling and complicated/expensive offgas systems with secondary waste management problems. In the United States, public perception of offgas systems in the radioactive incinerator area is unfavorable. The alternatives presented here are nonthermal in nature and involve homogenizing the waste with cryogenic techniques followed by complete encapsulation with a variety of chemical/grouting agents into retrievable waste forms. Once encapsulated, the waste forms are suitable for transport out of the state or for actual in-state disposal. This paper investigates variances that would have to be obtained and contrasts the alternative encapsulation idea with the thermal treatment option

  13. Alternative disposal options for alpha-mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, G.G.; Sherick, M.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    This paper presents several disposal options for the Department of Energy alpha-mixed low-level waste. The mixed nature of the waste favors thermally treating the waste to either an iron-enriched basalt or glass waste form, at which point a multitude of reasonable disposal options, including in-state disposal, are a possibility. Most notably, these waste forms will meet the land-ban restrictions. However, the thermal treatment of this waste involves considerable waste handling and complicated/expensive offgas, systems with secondary waste management problems. In the United States, public perception of off gas systems in the radioactive incinerator area is unfavorable. The alternatives presented here are nonthermal in nature and involve homogenizing the waste with cryogenic techniques followed by complete encapsulation with a variety of chemical/grouting agents into retrievable waste forms. Once encapsulated, the waste forms are suitable for transport out of the state or for actual in-state disposal. This paper investigates variances that would have to be obtained and contrasts the alternative encapsulation idea with the thermal treatment option.

  14. Waste disposal: preliminary studies

    International Nuclear Information System (INIS)

    Carvalho, J.F. de.

    1983-01-01

    The problem of high level radioactive waste disposal is analyzed, suggesting an alternative for the final waste disposal from irradiated fuel elements. A methodology for determining the temperature field around an underground disposal facility is presented. (E.G.) [pt

  15. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    International Nuclear Information System (INIS)

    Carilli, J.T.; Krenzien, S.K.; Geisinger, R.G.; Gordon, S.J.; Quinn, B.

    2009-01-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams

  16. Nonradiological groundwater quality at low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Goode, D.J.

    1986-04-01

    The NRC is investigating appropriate regulatory options for disposal of low-level radioactive waste containing nonradiological hazardous constituents, as defined by EPA regulations. Standard EPA/RCRA procedures to determine hazardous organics, metals, indicator parameters, and general water quality are applied to samples from groundwater monitoring wells at two commercial low-level radioactive waste disposal sites. At the Sheffield, IL site (nonoperating), several typical organic solvents are identified in elevated concentrations in onsite wells and in an offsite area exhibiting elevated tritium concentrations. At the Barnwell, SC site (operating), only very low concentrations of three organics are found in wells adjacent to disposal units. Hydrocarbons associated with petroleum products are detected at both sites. Hazardous constituents associated with previosuly identified major LLW mixed waste streams, toluene, xylene, chromium, and lead, are at or below detection limits or at background levels in all samples. Review of previously collected data also supports the conclusion that organic solvents are the primary nonradiological contaminants associated with LLW disposal

  17. 300 Area process sewer piping upgrade and 300 Area treated effluent disposal facility discharge to the City of Richland Sewage System, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The U.S. Department of Energy (DOE) is proposing to upgrade the existing 300 Area Process Sewer System by constructing and operating a new process sewer collection system that would discharge to the 300 Area Treated Effluent Disposal Facility. The DOE is also considering the construction of a tie-line from the TEDF to the 300 Area Sanitary Sewer for discharging the process wastewater to the City of Richland Sewage System. The proposed action is needed because the integrity of the old piping in the existing 300 Area Process Sewer System is questionable and effluents might be entering the soil column from leaking pipes. In addition, the DOE has identified a need to reduce anticipated operating costs at the new TEDF. The 300 Area Process Sewer Piping Upgrade (Project L-070) is estimated to cost approximately $9.9 million. The proposed work would involve the construction and operation of a new process sewer collection system. The new system would discharge the effluents to a collection sump and lift station for the TEDF. The TEDF is designed to treat and discharge the process effluent to the Columbia River. The process waste liquid effluent is currently well below the DOE requirements for radiological secondary containment and is not considered a RCRA hazardous waste or a State of Washington Hazardous Waste Management Act dangerous waste. A National Pollutant Discharge Elimination, System (NPDES) permit has been obtained from the U.S. Environmental Protection Agency for discharge to the Columbia River. The proposed action would upgrade the existing 300 Area Process Sewer System by the construction and operation of a new combined gravity, vacuum, and pressurized process sewer collection system consisting of vacuum collection sumps, pressure pump stations, and buried polyvinyl chloride or similar pipe. Two buildings would also be built to house a main collection station and a satellite collection station.

  18. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    Energy Technology Data Exchange (ETDEWEB)

    J. Simonds

    2006-09-01

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, admin facility, weigh scale, decon building, treatment systems, and various staging/storage areas. These facilities were designed and are being constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the central Idaho National Laboratory (INL) facilityyy for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams. This compliance demonstration document discusses the conceptual site model for the ICDF Complex area. Within this conceptual site model, the selection of the area for the ICDF Complex is discussed. Also, the subsurface stratigraphy in the ICDF Complex area is discussed along with the existing contamination beneath the ICDF Complex area. The designs for the various ICDF Complex facilities are also included in this compliance demonstration document. These design discussions are a summary of the design as presented in the Remedial Design/Construction Work Plans for the ICDF landfill and evaporation pond and the Staging, Storage, Sizing, and Treatment Facility. Each of the major facilities or systems is described including the design criteria.

  19. Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method

    Directory of Open Access Journals (Sweden)

    Shichun Xu

    2017-09-01

    Full Text Available We decompose factors affecting China’s energy-related air pollutant (NOx, PM2.5, and SO2 emission changes into different effects using structural decomposition analysis (SDA. We find that, from 2005 to 2012, investment increased NOx, PM2.5, and SO2 emissions by 14.04, 7.82 and 15.59 Mt respectively, and consumption increased these emissions by 11.09, 7.98, and 12.09 Mt respectively. Export and import slightly increased the emissions on the whole, but the rate of the increase has slowed down, possibly reflecting the shift in China’s foreign trade structure. Energy intensity largely reduced NOx, PM2.5, and SO2 emissions by 12.49, 14.33 and 23.06 Mt respectively, followed by emission efficiency that reduces these emissions by 4.57, 9.08, and 17.25 Mt respectively. Input-output efficiency slightly reduces the emissions. At sectoral and sub-sectoral levels, consumption is a great driving factor in agriculture and commerce, whereas investment is a great driving factor in transport, construction, and some industrial subsectors such as iron and steel, nonferrous metals, building materials, coking, and power and heating supply. Energy intensity increases emissions in transport, chemical products and manufacturing, but decreases emissions in all other sectors and subsectors. Some policies arising from our study results are discussed.

  20. Disposal facility in Olkiluoto, description of above ground facilities in tunnel transport alternative

    International Nuclear Information System (INIS)

    Kukkola, T.

    2006-11-01

    The above ground facilities of the disposal plant on the Olkiluoto site are described in this report as they will be when the operation of the disposal facility starts in the year 2020. The disposal plant is visualised on the Olkiluoto site. Parallel construction of the deposition tunnels and disposal of the spent fuel canisters constitute the principal design basis of the disposal plant. The annual production of disposal canisters for spent fuel amounts to about 40. Production of 100 disposal canisters has been used as the capacity basis. Fuel from the Olkiluoto plant and from the Loviisa plant will be encapsulated in the same production line. The disposal plant will require an area of about 15 to 20 hectares above ground level. The total building volume of the above ground facilities is about 75000 m 3 . The purpose of the report is to provide the base for detailed design of the encapsulation plant and the repository spaces, as well as for coordination between the disposal plant and ONKALO. The dimensioning bases for the disposal plant are shown in the Tables at the end of the report. The report can also be used as a basis for comparison in deciding whether the fuel canisters are transported to the repository by a lift or a by vehicle along the access tunnel. (orig.)

  1. Disposal facility in olkiluoto, description of above ground facilities in lift transport alternative

    International Nuclear Information System (INIS)

    Kukkola, T.

    2006-11-01

    The above ground facilities of the disposal plant on the Olkiluoto site are described in this report as they will be when the operation of the disposal facility starts in the year 2020. The disposal plant is visualised on the Olkiluoto site. Parallel construction of the deposition tunnels and disposal of the spent fuel canisters constitute the principal design basis of the disposal plant. The annual production of disposal canisters for spent fuel amounts to about 40. Production of 100 disposal canisters has been used as the capacity basis. Fuel from the Olkiluoto plant and from the Loviisa plant will be encapsulated in the same production line. The disposal plant will require an area of about 15 to 20 hectares above ground level. The total building volume of the above ground facilities is about 75000 m 3 . The purpose of the report is to provide the base for detailed design of the encapsulation plant and the repository spaces, as well as for coordination between the disposal plant and ONKALO. The dimensioning bases for the disposal plant are shown in the Tables at the end of the report. The report can also be used as a basis for comparison in deciding whether the fuel canisters are transported to the repository by a lift or by a vehicle along the access tunnel. (orig.)

  2. Evaluation of Proposed New LLW Disposal Activity: Disposal of Aqueous PUREX Waste Stream in the Saltstone Disposal Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2003-01-01

    The Aqueous PUREX waste stream from Tanks 33 and 35, which have been blended in Tank 34, has been identified for possible processing through the Saltstone Processing Facility for disposal in the Saltstone Disposal Facility

  3. Making waves with undersea (radioactive waste) disposal

    International Nuclear Information System (INIS)

    Milne, Roger.

    1987-01-01

    Following the Government's decision to halt the search for land-based disposal sites for low-level radioactive wastes, the search for alternative means of disposal of low- and intermediate-level wastes continues. Off-shore sites now seems to be the most likely. Two approaches are mentioned. The first is that proposed by Consolidated Environmental Technologies Ltd., to sink a shaft 15 metre in diameter under the seabed in an area of tectonic stability, possibly off Lincolnshire. The shaft could be 3000 metres deep. Waste packages and large decommissioning items would be lowered in from a giant barge. This would be expensive but environmentally more acceptable than the other approach. That is to tunnel out from the land and store the waste offshore, below the seabed. (U.K.)

  4. Exposure and risk calculations for disposal of wastes having minimal radioactivity

    International Nuclear Information System (INIS)

    Fields, D.E.

    1984-01-01

    The US Nuclear Regulatory Commission is currently considering revision of rules 10 CFR 20 and 10 CFR 61, which cover disposal of solid wastes containing minimal activity radioactivity. In support of these revised rules, we have evaluated the consequences of disposing of four waste streams at four types of disposal areas located in three different geographic regions. Consequences are expressed in terms of human exposures and associated health effects. Each geographic region has its own climate and geology. Example waste streams, waste disposal methods, and geographic regions chosen for this study are clearly specified. The PRESTO-II methodology was used to evaluate radionuclide transport and health effects. This methodology was developed to assess radiological impacts to a static local population for a 1000-year period following disposal. The modeling of pathways and processes of migration from the trench to exposed populations included the following considerations: groundwater transport, overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. 9 references, 2 figures, 3 tables

  5. Potential for post-closure radionuclide redistribution due to biotic intrusion: aboveground biomass, litter production rates, and the distribution of root mass with depth at material disposal area G, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    French, Sean B.; Christensen, Candace; Jennings, Terry L.; Jaros, Christopher L.; Wykoff, David S.; Crowell, Kelly J.; Shuman, Rob

    2008-01-01

    Low-level radioactive waste (LLW) generated at the Los Alamos National Laboratories (LANL) is disposed of at LANL's Technical Area (T A) 54, Material Disposal Area (MDA) G. The ability of MDA G to safely contain radioactive waste during current and post-closure operations is evaluated as part of the facility's ongoing performance assessment (PA) and composite analysis (CA). Due to the potential for uptake and incorporation of radio nuclides into aboveground plant material, the PA and CA project that plant roots penetrating into buried waste may lead to releases of radionuclides into the accessible environment. The potential amount ofcontamination deposited on the ground surface due to plant intrusion into buried waste is a function of the quantity of litter generated by plants, as well as radionuclide concentrations within the litter. Radionuclide concentrations in plant litter is dependent on the distribution of root mass with depth and the efficiency with which radionuclides are extracted from contaminated soils by the plant's roots. In order to reduce uncertainties associated with the PA and CA for MDA G, surveys are being conducted to assess aboveground biomass, plant litter production rates, and root mass with depth for the four prominent vegetation types (grasses, forbs, shrubs and trees). The collection of aboveground biomass for grasses and forbs began in 2007. Additional sampling was conducted in October 2008 to measure root mass with depth and to collect additional aboveground biomass data for the types of grasses, forbs, shrubs, and trees that may become established at MDA G after the facility undergoes final closure, Biomass data will be used to estimate the future potential mass of contaminated plant litter fall, which could act as a latent conduit for radionuclide transport from the closed disposal area. Data collected are expected to reduce uncertainties associated with the PA and CA for MDA G and ultimately aid in the assessment and subsequent

  6. Home range and local movement of small mammals on the Radioactive Waste Management Complex Idaho National Engineering Laboratory Site

    International Nuclear Information System (INIS)

    Groves, C.R.

    1978-01-01

    In April 1978, a study of local movement of small mammals on the Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) was undertaken in conjunction with a study of rodent dispersal. Live trapping in May and June revealed a strong potential for the detection of local movement of at least four species of rodents. Information on this movement is important as each species, during burrowing, may transport radioactive waste from the point of interment to the surface. The area over which contamination may be spread, as fecal deposits or as metabolically incorporated elements, is a function of the daily movement of each animal. At least eight factors may effect size and shape of home range. These factors are discussed, techniques employed in the calculation of home range are outlined, and problems associated with live trapping and studying local movement of small mammals are considered

  7. Classified Component Disposal at the Nevada National Security Site (NNSS) - 13454

    Energy Technology Data Exchange (ETDEWEB)

    Poling, Jeanne; Arnold, Pat [National Security Technologies, LLC (NSTec), P.O. Box 98521, Las Vegas, NV 89193-8521 (United States); Saad, Max [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States); DiSanza, Frank [E. Frank DiSanza Consulting, 2250 Alanhurst Drive, Henderson, NV 89052 (United States); Cabble, Kevin [U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, P.O. Box 98518, Las Vegas, NV 89193-8518 (United States)

    2013-07-01

    The Nevada National Security Site (NNSS) has added the capability needed for the safe, secure disposal of non-nuclear classified components that have been declared excess to national security requirements. The NNSS has worked with U.S. Department of Energy, National Nuclear Security Administration senior leadership to gain formal approval for permanent burial of classified matter at the NNSS in the Area 5 Radioactive Waste Management Complex owned by the U.S. Department of Energy. Additionally, by working with state regulators, the NNSS added the capability to dispose non-radioactive hazardous and non-hazardous classified components. The NNSS successfully piloted the new disposal pathway with the receipt of classified materials from the Kansas City Plant in March 2012. (authors)

  8. Classified Component Disposal at the Nevada National Security Site (NNSS) - 13454

    International Nuclear Information System (INIS)

    Poling, Jeanne; Arnold, Pat; Saad, Max; DiSanza, Frank; Cabble, Kevin

    2013-01-01

    The Nevada National Security Site (NNSS) has added the capability needed for the safe, secure disposal of non-nuclear classified components that have been declared excess to national security requirements. The NNSS has worked with U.S. Department of Energy, National Nuclear Security Administration senior leadership to gain formal approval for permanent burial of classified matter at the NNSS in the Area 5 Radioactive Waste Management Complex owned by the U.S. Department of Energy. Additionally, by working with state regulators, the NNSS added the capability to dispose non-radioactive hazardous and non-hazardous classified components. The NNSS successfully piloted the new disposal pathway with the receipt of classified materials from the Kansas City Plant in March 2012. (authors)

  9. Environmental information document: Y Area

    International Nuclear Information System (INIS)

    Cook, J.R.; Grant, M.W.

    1986-01-01

    Site selection, facility descriptions, and alternative operations are described for disposal/storage of concentrated waste streams resulting from waste treatment facilities at the Savannah River Plant. Performance assessments and cost estimates for these alternatives are presented. The new disposal site for this waste will be designated Y Area

  10. Application for Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-08-05

    The NTS is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. NNSA/NSO is the federal lands management authority for the NTS and NSTec is the Management & Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The U10C Disposal Site is located in the northwest corner of Area 9 at the NTS (Figure 1) and is located in a subsidence crater created by two underground nuclear events, one in October 1962 and another in April 1964. The disposal site opened in 1971 for the disposal of rubbish, refuse, pathological waste, asbestos-containing material, and industrial solid waste. A Notice of Intent form to operate the disposal site as a Class II site was submitted to the state of Nevada on January 26, 1994, and was acknowledged in a letter to the DOE on February 8, 1994. It operated as a state of Nevada Class II Solid Waste Disposal Site (SWDS) until it closed on October 5, 1995, for retrofit as a Class III SWDS. The retrofit consisted of the installation of a minimum four-foot compacted soil layer to segregate the different waste types and function as a liner to inhibit leachate and water flow into the lower waste zone. Five neutron monitoring tubes were installed in this layer to monitor possible leachate production and water activity. Upon acceptance of the installed barrier and approval of an Operating Plan by NDEP/BFF, the site reopened in January 1996 as a Class III SWDS for the disposal of industrial solid waste and other inert waste.

  11. Proposal for basic safety requirements regarding the disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    1980-04-01

    A working group commissioned to prepare proposals for basic safety requirements for the storage and transport of radioactive waste prepared its report to the Danish Agency of Environmental Protection. The proposals include: radiation protection requirements, requirements concerning the properties of high-level waste units, the geological conditions of the waste disposal location, the supervision of waste disposal areas. The proposed primary requirements for safety evaluation of the disposal of high-level waste in deep geological formations are of a general nature, not being tied to specific assumptions regarding the waste itself, the geological and other conditions at the place of disposal, and the technical methods of disposal. It was impossible to test the proposals for requirements on a working repository. As no country has, to the knowledge of the working group, actually disposed of hifg-level radioactive waste or approved of plans for such disposal. Methods for evaluating the suitability of geological formations for waste disposal, and background material concerning the preparation of these proposals for basic safety requirements relating to radiation, waste handling and geological conditions are reviewed. Appended to the report is a description of the phases of the fuel cycle that are related to the storage of spent fuel and the disposal of high-level reprocessing waste in a salt formation. It should be noted that the proposals of the working group are not limited to the disposal of reprocessed fuel, but also include the direct disposal of spent fuel as well as disposal in geological formations other than salt. (EG)

  12. Feasibility of deep ocean disposal of heat generating waste. V.1

    International Nuclear Information System (INIS)

    Hemming, C.R.

    1988-06-01

    This report summarises the research performed in the UK during the period 1977 to 1987 as part of the international programme investigating the feasibility of ocean disposal of heat generating radioactive waste. This study has involved: (i) the definition of the disposal operations needed to meet the minimum requirements for safely emplacing waste on or under the floor of the deep ocean; (ii) the identification and characterisation of areas of the deep ocean that might be suitable for containing heat generating waste; (iii) a study of the processes by which radionuclides might migrate through the multiple barriers that isolate the waste from man's environment; and (iv) a calculation of the radiological impact of the conceptual deep ocean repository. It is concluded that, from a technical and scientific viewpoint, disposal of heat generating waste in the deep ocean could provide a safe, economic and feasible alternative to deep disposal on land. (author)

  13. Underground disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-08-15

    Disposal of low- and intermediate-level radioactive wastes by shallow land burial, emplacement in suitable abandoned mines, or by deep well injection and hydraulic fracturing has been practised in various countries for many years. In recent years considerable efforts have been devoted in most countries that have nuclear power programmes to developing and evaluating appropriate disposal systems for high-level and transuranium-bearing waste, and to studying the potential for establishing repositories in geological formations underlaying their territories. The symposium, organized jointly by the IAEA and OECD's Nuclear Energy Agency in cooperation with the Geological Survey of Finland, provided an authoritative account of the status of underground disposal programmes throughout the world in 1979. It was evidence of the experience that has been gained and the comprehensive investigations that have been performed to study various options for the underground disposal of radioactive waste since the last IAEA/NEA symposium on this topic (Disposal of Radioactive Waste into the Ground) was held in 1967 in Vienna. The 10 sessions covered the following topics: National programme and general studies, Disposal of solid waste at shallow depth and in rock caverns, underground disposal of liquid waste by deep well injection and hydraulic fracturing, Disposal in salt formations, Disposal in crystalline rocks and argillaceous sediments, Thermal aspects of disposal in deep geological formations, Radionuclide migration studies, Safety assessment and regulatory aspects.

  14. Waste and Disposal: Research and Development

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.

    2002-01-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2001 in three topical areas are reported on: performance assessments (PA), waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. SCK-CEN partcipated in several PA projects supported by the European Commission. In the BENIPA project, the role of bentonite barriers in performance assessments of HLW disposal systems is evaluated. The applicability of various output variables (concentrations, fluxes) as performance and safety indicators is investigated in the SPIN project. The BORIS project investigates the chemical behaviour and the migration of radionuclides at the Borehole injection site at Krasnoyarsk-26 and Tomsk-7. SCK-CEN contributed to an impact assessment of a radium storage facility at Olen (Belgium) and conducted PA for site-specific concepts regarding surface or deep disposal of low-level waste at the nuclear zones in the Mol-Dessel region. As regards R and D on waste forms and packages, SCK continued research on the compatbility of various waste forms (bituminised waste, vitrified waste, spent fuel) with geological disposal in clay. Main emphasis in 2001 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to

  15. Waste and Disposal: Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P

    2002-04-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2001 in three topical areas are reported on: performance assessments (PA), waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. SCK-CEN partcipated in several PA projects supported by the European Commission. In the BENIPA project, the role of bentonite barriers in performance assessments of HLW disposal systems is evaluated. The applicability of various output variables (concentrations, fluxes) as performance and safety indicators is investigated in the SPIN project. The BORIS project investigates the chemical behaviour and the migration of radionuclides at the Borehole injection site at Krasnoyarsk-26 and Tomsk-7. SCK-CEN contributed to an impact assessment of a radium storage facility at Olen (Belgium) and conducted PA for site-specific concepts regarding surface or deep disposal of low-level waste at the nuclear zones in the Mol-Dessel region. As regards R and D on waste forms and packages, SCK continued research on the compatbility of various waste forms (bituminised waste, vitrified waste, spent fuel) with geological disposal in clay. Main emphasis in 2001 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to

  16. Alternative disposal technologies for new low-level radioactive waste disposal/storage facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    A Draft Environmental Impact Statement for Waste Management Activities for groundwater protection has been prepared for the Savannah River Plant. Support documentation for the DEIS included an Environmental Information Document on new radioactive waste disposal and storage facilities in which possible alternative disposal technologies were examined in depth. Six technologies that would meet the needs of the Savannah River Plant that selected for description and analysis include near surface disposal, near surface disposal with exceptions, engineered storage, engineered disposal, vault disposal of untreated waste, and a combination of near surface disposal, engineered disposal, and engineered storage. 2 refs

  17. Environmental Impact Statement. Disposal and Reuse of Castle Air Force Base, California

    Science.gov (United States)

    1994-11-01

    rendering infectious waste noninfectious and disposable as nonhazardous waste 3-74 Castle AFB Disposal and Reuse FEIS * Discharge to the sewage system if...American Indians Volume 8: California, Robert F. Heizer , ed., Smithsonian Institution, Washington, DC. Wedel, W.R., 1941. Arrha 3ological Investigations at...Undeswrable substances rendering something unfit for use Continental Control Area The arspace of the 48 contiguous states, the District of Columb.ia and

  18. Closure Strategy Nevada Test Site Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2007-03-01

    This paper presents an overview of the strategy for closure of part of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada (Figure 1). The Area 5 RWMS is in the northern part of Frenchman Flat, approximately 14 miles north of Mercury. The Area 5 RWMS encompasses 732 acres subdivided into quadrants, and is bounded by a 1,000-foot (ft)-wide buffer zone. The northwest and southwest quadrants have not been developed. The northeast and southeast quadrants have been used for disposal of unclassified low-level radioactive waste (LLW) and indefinite storage of classified materials. This paper focuses on closure of the 38 waste disposal and classified material storage units within the southeast quadrant of the Area 5 RWMS, called the ''92-Acre Area''. The U.S Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is currently planning to close the 92-Acre Area by 2011. Closure planning for this site must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. For ease of discussion, the 92-Acre Area has been subdivided into six closure units defined by waste type, location, and similarity in regulatory requirements. Each of the closure units contains one or more waste disposal units; waste disposal units are also called waste disposal cells. The paper provides a brief background of the Area 5 RWMS, identifies key closure issues for the 92-Acre Area, recommends actions to address the issues, and provides the National Security Technologies, LLC (NSTec), schedule for closure.

  19. Who regulates the disposal of low-level radioactive waste under the Low-Level Radioactive Waste Policy Act

    International Nuclear Information System (INIS)

    Mostaghel, D.M.

    1988-01-01

    The present existence of immense quantities of low-level nuclear waste, a federal law providing for state or regional control of such waste disposal, and a number of state disposal laws challenged on a variety of constitutional grounds underscore what currently may be the most serious problem in nuclear waste disposal: who is to regulate the disposal of low-level nuclear wastes. This problem's origin may be traced to crucial omissions in the Atomic Energy Act of 1946 and its 1954 amendments (AEA) that concern radioactive waste disposal. Although the AEA states that nuclear materials and facilities are affected with the public interest and should be regulated to provide for the public health and safety, the statute fails to prescribe specific guidelines for any nuclear waste disposal. The Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA) grants states some control over radioactive waste disposal, an area from which they were previously excluded by the doctrine of federal preemption. This Comment discusses the question of who regulates low-level radioactive waste disposal facilities by examining the following: the constitutional doctrines safeguarding federal government authority; area of state authority; grants of specific authority delegations under the LLRWPA and its amendment; and finally, potential problems that may arise depending on whether ultimate regulatory authority is deemed to rest with single states, regional compacts, or the federal government

  20. Preliminary geological suitability assessment for LILW disposal

    International Nuclear Information System (INIS)

    Tomse, P.; Mele, I.

    2001-01-01

    Due to the growing need for a final disposal of LILW, the final solution for the short-lived LILW is the key issue of radioactive waste management in Slovenia at the moment. ARAO - the Slovenian Agency for Radwaste Management - is intensely involved in the re-initiated site selection process for a LILW repository. In this new process we are trying to combine as best as possible the technical, geologically-led and the advocacy-site selection processes. By a combination of technical and volunteer approach to the site selection we wish to guarantee high public involvement and sufficient flexibility of the process to adapt to specific conditions or new circumstances while the project is ongoing. In the technical phase, our tendency is to retain a larger number of potential areas/sites. We also keep open the possibility of choosing the type of repository. The decision between the surface and underground option will be made only once the site has been defined. In accordance with the IAEA recommendations the site selection process is divided into four stages: the conceptual and planning stage, area survey stage, site characterisation stage and site confirmation stage. Last year the area survey stage was started. In the preliminary geological suitability assessment the required natural predisposition of Slovene territory was assessed in order to locate geologically suitable formations. The assessment of natural conditions of the system was based on consideration of the main geological, hydro-geological and seismotectonic conditions. It was performed with ARC/INFO technology. The results are compiled in a map, showing potential areas for underground and surface disposal of LILW in Slovenia. It has been established that there is a potential suitability for both surface and underground disposal on about 10 000 km 2 of the Slovenian territory, which represents almost half of the entire Slovenian territory. These preliminary results are now being carefully re-examined. As an

  1. Low-level radioactive mixed waste land disposal facility -- Permanent disposal

    International Nuclear Information System (INIS)

    Erpenbeck, E.G.; Jasen, W.G.

    1993-03-01

    Radioactive mixed waste (RMW) disposal at US Department of Energy (DOE) facilities is subject to the Resource Conservation and Recovery Act of 1976 (RCRA) and the Hazardous and Solid Waste Amendments of 1984 (HSWA). Westinghouse Hanford Company, in Richland, Washington, has completed the design of a radioactive mixed waste land disposal facility, which is based on the best available technology compliant with RCRA. When completed, this facility will provide permanent disposal of solid RMW, after treatment, in accordance with the Land Disposal Restrictions. The facility includes a double clay and geosynthetic liner with a leachate collection system to minimize potential leakage of radioactive or hazardous constituents from the landfill. The two clay liners will be capable of achieving a permeability of less than 1 x 10 -7 cm/s. The two clay liners, along with the two high density polyethylene (HDPE) liners and the leachate collection and removal system, provide a more than conservative, physical containment of any potential radioactive and/or hazardous contamination

  2. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    Energy Technology Data Exchange (ETDEWEB)

    Simonds, J.

    2007-11-06

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, administration facility, weigh scale, and various staging/storage areas. These facilities were designed and constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the Idaho National Laboratory (INL) facility for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams.

  3. CCA-treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal.

    Science.gov (United States)

    Jambeck, Jenna; Weitz, Keith; Solo-Gabriele, Helena; Townsend, Timothy; Thorneloe, Susan

    2007-01-01

    Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. Although some countries have banned the use of the product for some applications, others have not, and the product continues to enter the waste stream from construction, demolition and remodeling projects. CCA-treated wood as a solid waste is managed in various ways throughout the world. In the US, CCA-treated wood is disposed primarily within landfills; however some of the wood is combusted in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, sometimes including CCA-treated wood, is combustion for the production of energy. This paper presents an estimate of the quantity of CCA-treated wood entering the disposal stream in the US, as well as an examination of the trade-offs between landfilling and WTE combustion of CCA-treated wood through a life-cycle assessment and decision support tool (MSW DST). Based upon production statistics, the estimated life span and the phaseout of CCA-treated wood, recent disposal projections estimate the peak US disposal rate to occur in 2008, at 9.7 million m(3). CCA-treated wood, when disposed with construction and demolition (C&D) debris and municipal solid waste (MSW), has been found to increase arsenic and chromium concentrations in leachate. For this reason, and because MSW landfills are lined, MSW landfills have been recommended as a preferred disposal option over unlined C&D debris landfills. Between landfilling and WTE for the same mass of CCA-treated wood, WTE is more expensive (nearly twice the cost), but when operated in accordance with US Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbon emissions. If the wood is managed via WTE, less landfill area is required, which could be an influential trade-off in some countries. Although metals are concentrated

  4. A discussion about high-level radioactive waste disposal program. From the results of dialogue with citizens

    International Nuclear Information System (INIS)

    Kimura, Hiroshi; Furukawa, Masashi; Sugiyama, Daisuke; Chida, Taiji

    2008-01-01

    Implementation of HLW disposal is one of urgent issue, when we will continue the use of nuclear power. But, the citizens may not have the sufficient amount of information or knowledge about HLW disposal in order to make themselves decision to this issue. To know how the citizens understand about HLW disposal, we tried to talk about the HLW disposal with 11 citizen groups through the face-to-face dialogue. One group consists of 2-3 persons, and we had 3 times dialogue to one group. In this dialogue, the participants had a certain amount of knowledge about HLW disposal, and their opinions to the issue of HLW disposal program. These opinions include the doubt against open application system to select the siting area, the emotion like NIMBY, indication of lack of public relations about HLW disposal, and so on. (author)

  5. An overview of microbial research related to high-level nuclear waste disposal with emphasis on the Canadian concept for the disposal of nuclear fuel waste

    International Nuclear Information System (INIS)

    Stroes-Gascoyne, S.; West, J.M.

    1995-01-01

    Current research on the effects of microbiology on nuclear waste disposal, carried out in a number of countries, is summarized. Atomic Energy of Canada Limited has developed a concept for the permanent disposal of nuclear fuel waste in Canada. A program was initiated in 1991 to address and quantify the potential effects of microbial action on the integrity of the multibarrier system on which the disposal concept is based. This microbial program focuses on answering specific questions in areas such as the survival of bacteria under relevant radiation and desiccation conditions; growth and mobility of microbes in compacted clay buffer materials and the potential consequences for container corrosion and microbial gas production; the presence and activity of microbes in deep granitic groundwaters; and the effects of biofilms on radionuclide migration in the geosphere. (author)

  6. Sorption/ desorption studies of some radionuclides between disposal soil fractions and ground water. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    El-Reefy, S A; Ali, A [Hot Lab. Centre, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The radioactive waste management program in egypt includes shallow land disposal area for waste package disposal. The proposed site is located to the east of the Hot laboratory centre at Inchas. Assessment of the efficiency of the different sediments and rocks found in this area as a barrier against release of radioactive nuclide to the environment is of major importance. This study is related to evaluate the migration of Cs, Co, and Am within the environment of this site. In this concern, seven soil fractions were taken from a digging well from the proposed disposal site at different depths down to the basalt sheets. A column was constructed containing the soil fractions representing the stratigraphic successions taken from the site. The radionuclides; Cs-137, Co-60, and Am-241 were in this investigation representatives for mono, di- and tri-valent elements and also represented the radionuclides which are mostly associated with radioactive wastes. The sorption/ desorption studies of these radionuclides with the different soil fractions and ground water from the proposed disposal site were carried out. The results obtained were used to predict the migration pathways of these radionuclides within the disposal environment. 2 figs., 1 tab.

  7. Sorption/ desorption studies of some radionuclides between disposal soil fractions and ground water. Vol. 3

    International Nuclear Information System (INIS)

    El-Reefy, S.A.; Ali, A.

    1996-01-01

    The radioactive waste management program in egypt includes shallow land disposal area for waste package disposal. The proposed site is located to the east of the Hot laboratory centre at Inchas. Assessment of the efficiency of the different sediments and rocks found in this area as a barrier against release of radioactive nuclide to the environment is of major importance. This study is related to evaluate the migration of Cs, Co, and Am within the environment of this site. In this concern, seven soil fractions were taken from a digging well from the proposed disposal site at different depths down to the basalt sheets. A column was constructed containing the soil fractions representing the stratigraphic successions taken from the site. The radionuclides; Cs-137, Co-60, and Am-241 were in this investigation representatives for mono, di- and tri-valent elements and also represented the radionuclides which are mostly associated with radioactive wastes. The sorption/ desorption studies of these radionuclides with the different soil fractions and ground water from the proposed disposal site were carried out. The results obtained were used to predict the migration pathways of these radionuclides within the disposal environment. 2 figs., 1 tab

  8. Uncertainties about the safety of disposal leading to a wish to keep alternatives open. Discussion on the concepts 'storage' ('wait and see') vs. 'disposal' and 'retrievable disposal' vs. 'definitive disposal'

    International Nuclear Information System (INIS)

    Norrby, S.

    2000-01-01

    Uncertainties about the safety of final disposal may lead to unwillingness to take decisions about waste management issues that may seem to be non-reversible. This has lead to proposals that we should wait with decisions on final measures and instead store the waste for some period of time. Also the possibility of retrieval may lead to decisions not to go for permanent disposal but instead to retrievable disposal. These aspects and the pros and cons are discussed both from a more general perspective and also with some reflections from the Swedish programme for nuclear waste management and disposal. (author)

  9. Evaluation of Proposed New LLW Disposal Activity Disposal of Compacted Job Control Waste, Non-compactible, Non-incinerable Waste, And Other Wasteforms In Slit Trenches

    International Nuclear Information System (INIS)

    WILHITE, ELMER L.

    2000-01-01

    The effect of trench disposal of low-level wasteforms that were not analyzed in the original performance assessment for the E-Area low-level waste facility, but were analyzed in the revised performance assessment is evaluated. This evaluation was conducted to provide a bridge from the current waste acceptance criteria, which are based on the original performance assessment, to those that will be developed from the revised performance assessment. The conclusion of the evaluation is that any waste except for materials that would retain radionuclides more strongly than soil that meets the radionuclide concentration of package limits for trench burial based on the revised performance assessment, and presented in Table 1 of this document, is suitable for trench disposal; provided that, for cellulosic material the current 40 percent restriction is retained. Table 2 of this document lists materials acceptable for trench disposal

  10. Dungeness crab survey for the Southwest Ocean Disposal Site off Grays Harbor, Washington, June 1990

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, B.J.; Pearson, W.H. (Battelle/Marine Sciences Lab., Sequim, WA (United States))

    1991-09-01

    As part of the Grays Harbor Navigation Improvement Project, the Seattle District of the US Army Corps of Engineers has begun active use of the Southwest Ocean Disposal Site off Grays Harbor, Washington. This survey was to verify that the location of the area of high crab density observed during site selection surveys has not shifted into the Southeast Ocean Disposal Site. In June 1990, mean densities of juvenile Dungeness crab were 146 crab/ha within the disposal site and 609 crab/ha outside ad north of the disposal site. At nearshore locations outside the disposal site, juvenile crab density was 3275 crab/ha. Despite the low overall abundance, the spatial distribution of crab was such that the high crab densities in 1990 have remained outside the Southwest Ocean Disposal Site. The survey data have confirmed the appropriateness of the initial selection of the disposal site boundaries and indicated no need to move to the second monitoring tier. 8 refs., 9 figs., 2 tabs.

  11. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  12. Radiobiological effects in small mammals populations dwelled at radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Sypin, V.D.; Osipov, A.N.; Pol'skij, O.G.; Elakov, A.L.; Egorov, V.G.; Synsynys, B.I.

    2004-01-01

    A major issue in evaluating the ecological acceptability of a disposal system for radioactive waste is in preventing the ecological risk that may arise from exposures in the distant future. There is uncertainty surrounding any estimate of these doses or risks due to lack of knowledge about future conditions. Therefore, the adequate estimation of the ecological acceptability of a radioactive waste disposal system required a complex radioecological and radiobiological approach. Environmental surveillance at the Sergievo-Posadsky radioactive waste disposal system of the Scientific and Industrial Association Radon in additional to a standard complex radiological testing includes also the study of the radiobiological effects in different biological objects sampled from the contaminated areas. In present report the results obtained on small rodents (mice and voles) sampled from the strict mode and fence zones of this disposal system are displayed and discussed. (author)

  13. Unrestricted disposal of minimal activity levels of radioactive wastes: exposure and risk calculations

    International Nuclear Information System (INIS)

    Fields, D.E.; Emerson, C.J.

    1984-08-01

    The US Nuclear Regulatory Commission is currently considering revision of rule 10 CFR Part 20, which covers disposal of solid wastes containing minimal radioactivity. In support of these revised rules, we have evaluated the consequences of disposing of four waste streams at four types of disposal areas located in three different geographic regions. Consequences are expressed in terms of human exposures and associated health effects. Each geographic region has its own climate and geology. Example waste streams, waste disposal methods, and geographic regions chosen for this study are clearly specified. Monetary consequences of minimal activity waste disposal are briefly discussed. The PRESTO methodology was used to evaluate radionuclide transport and health effects. This methodology was developed to assess radiological impacts to a static local population for a 1000-year period following disposal. Pathways and processes of transit from the trench to exposed populations included the following considerations: groundwater transport, overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. 12 references, 2 figures, 8 tables

  14. Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

    2013-07-29

    Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  15. Difficulties are multiplying - topical legal issues relating to nuclear waste disposal

    International Nuclear Information System (INIS)

    Strassburg, W.

    1985-01-01

    The report points out topical legal issues relating to nuclear waste disposal, yet leaves no doubt that the technical-scientific concept for nuclear waste disposal incorporated into the nuclear energy law in 1976 was a success. Nonetheless it is desirable that there should be persistent efforts especially on the part of parliament when issuing legislation or statutory orders to reach greater clearness and thus predictability in areas where technology has been proven by many years of practice. (orig./HSCH) [de

  16. Fluorescent lamp and ballast disposal-efficiency and the environment: Panel discussion

    Energy Technology Data Exchange (ETDEWEB)

    Bleasby, P.

    1996-01-01

    This panel discussion looked at the present state of problems related to the disposal of fluorescent lamps and ballasts. EPA has not issued a ruling defining what is to be done, and as a result different areas of the country, and different users are treating the products differently. The authors review the history of the problem, where the environmental concerns are, possible alternatives for disposal, be it landfill, recycling, incineration, or treatment as hazardous wastes, and policy concerns with regard to this issue.

  17. Evaluation of groundwater monitoring results at the Hanford Site 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    Barnett, D.B.

    1998-09-01

    The Hanford Site 200 Area Treated Effluent Disposal Facility (TEDF) has operated since June 1995. Groundwater monitoring has been conducted quarterly in the three wells surrounding the facility since 1992, with contributing data from nearby B Pond System wells. Cumulative hydrologic and geochemical information from the TEDF well network and other surrounding wells indicate no discernable effects of TEDF operations on the uppermost aquifer in the vicinity of the TEDF. The lateral consistency and impermeable nature of the Ringold Formation lower mud unit, and the contrasts in hydraulic conductivity between this unit and the vadose zone sediments of the Hanford formation suggest that TEDF effluent is spreading laterally with negligible mounding or downward movement into the uppermost aquifer. Hydrographs of TEDF wells show that TEDF operations have had no detectable effects on hydraulic heads in the uppermost aquifer, but show a continuing decay of the hydraulic mound generated by past operations at the B Pond System. Comparison of groundwater geochemistry from TEDF wells and other, nearby RCRA wells suggests that groundwater beneath TEDF is unique; different from both effluent entering TEDF and groundwater in the B Pond area. Tritium concentrations, major ionic proportions, and lower-than-background concentrations of other species suggest that groundwater in the uppermost aquifer beneath the TEDF bears characteristics of water in the upper basalt confined aquifer system. This report recommends retaining the current groundwater well network at the TEDF, but with a reduction of sampling/analysis frequency and some modifications to the list of constituents sought

  18. Air monitoring data reveal previously unknown contamination at radioactive waste disposal area, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Kraig, D.H.; Conrad, R.C.

    2000-01-01

    Air monitoring at Area G, the low-level radioactive waste disposal area at Los Alamos National Laboratory, revealed increased air concentrations of 239 Pu and 241 Am at one location along the north boundary. This air monitoring location is a couple of meters north of a dirt road used to access the easternmost part of Area G. Air concentrations of 238 Pu were essentially unaffected which was puzzling because both 238 Pu and 239 Pu are present in the local, slightly contaminated soils. Air concentrations of these radionuclides increased about a factor of ten in early 1995 and remained at those levels until the first quarter of 1996. During the spring of 1996 air concentrations again increased by a factor of about ten. No other radionuclides were elevated, and no other Area G stations showed elevations of these radionuclides. After several formal meetings did not provide an adequate explanation for the elevations, a gamma-survey was performed and showed a small area of significant contamination just south of the monitor location. We found that in February 1995, a trench for a water line had been dug within a meter or so of the air stations. Then, during early 1996, the dirt road was rerouted such that its new path was directly over the unknown contamination. It appears that the trenching brought contaminated material to the surface and caused the firs rise in air concentrations and then the rerouting of the road over the contamination caused the second rise, during 1996. We also found that during 1976 and 1977 contaminated soils from the clean-up of an old processing facility had been spread over the filled pits in the vicinity of the air monitors. These soils, which were probably the source of the air contamination, were very low in 238 Pu which explains why we saw very little 238 Pu in the increased air concentrations. A layer of gravel and sand was spread over the contaminated area. Although air concentrations of 239 Pu and 241 Am dropped considerably, they have

  19. Radiological assessment of the consequences of the disposal of high-level radioactive waste in subseabed sediments

    International Nuclear Information System (INIS)

    de Marsily, G.; Behrendt, V.; Ensminger, D.A.

    1987-01-01

    The radiological assessment of the seabed option consists in estimating the detriment to man and to the environment that could result from the disposal of high-level waste (HLW) within the seabed sediments in deep oceans. The assessment is made for the high-level waste (vitrified glass) produced by the reprocessing of 10 5 tons of heavy metal from spent fuel, which represents the amount of waste generated by 3333 reactor-yr of 900-MW(electric) reactors, i.e., 3000 GW(electric) x yr. The disposal option considered is to use 14,667 steel penetrators, each of them containing five canisters of HLW glass (0.15 m 3 each). These penetrators would reach a depth of 50 m in the sediments and would be placed at an average distance of 180 m from each other, requiring a disposal area on the order of 22 x 22 km. Two such potential disposal areas in the Atlantic Ocean were studied, Great Meteor East (GME) and South Nares Abyssal Plains (SNAP). A special ship design is proposed to minimize transportation accidents. Approximately 100 shipments would be necessary to dispose of the proposed amount of waste. The results of this radiological assessment seem to show that the disposal of HLW in subseabed sediments is radiologically a very acceptable option

  20. Preliminary Systems Design Study assessment report

    International Nuclear Information System (INIS)

    Mayberry, J.L.; Quapp, W.J.; Feizollahi, F.; Del Signore, J.C.

    1991-07-01

    The System Design Study (SDS), part of the Waste Technology Development Department at Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic (TRU) waste stored at the Radioactive Waste Management Complex's (RWMC's) Subsurface Disposal Area (SDA) at INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. SDS resulted in the development of technology requirements including demonstration, testing and evaluation activities needed for implementing each concept. The SDS results are published in eight volumes. Volume 1 contains an executive summary. The SDS summary and analysis of results are presented in volume 2. Volumes 3 through 7 contain detailed descriptions of twelve system and four subsystem concepts. Volume 8 contains the appendices. 3 figs., 3 tabs

  1. Pad A treatability study long-range project plan

    International Nuclear Information System (INIS)

    Mousseau, J.D.

    1991-06-01

    This plan addresses the work to be accomplished by the Pad A Treatability Study Project. The purpose of this project is to investigate potential treatment and separation technologies, identify the best technologies, and to demonstrate by both lab- and pilot-scale demonstration, the most applicable remedial technologies for treating plutonium-contaminated salts at the Pad A site located at the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC) a the Idaho National Engineering Laboratory (INEL). The conduct of this project will be supported by other DOE laboratories, universities, and private industries, who will provide support for near-term demonstrations of treatment and separation technologies. The purpose of this long-range planning document is to present the detailed plan for the implementation of the Pad A Treatability Study Project

  2. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP)

  3. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    International Nuclear Information System (INIS)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-01-01

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used

  4. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    Energy Technology Data Exchange (ETDEWEB)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-06-21

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

  5. An industry perspective on commercial radioactive waste disposal conditions and trends.

    Science.gov (United States)

    Romano, Stephen A

    2006-11-01

    The United States is presently served by Class-A, -B and -C low-level radioactive waste and naturally-occurring and accelerator-produced radioactive material disposal sites in Washington and South Carolina; a Class-A and mixed waste disposal site in Utah that also accepts naturally-occurring radioactive material; and hazardous and solid waste facilities and uranium mill tailings sites that accept certain radioactive materials on a site-specific basis. The Washington site only accepts low-level radioactive waste from 11 western states due to interstate Compact restrictions on waste importation. The South Carolina site will be subject to geographic service area restrictions beginning 1 July 2008, after which only three states will have continued access. The Utah site dominates the commercial Class-A and mixed waste disposal market due to generally lower state fees than apply in South Carolina. To expand existing commercial services, an existing hazardous waste site in western Texas is seeking a Class-A, -B and -C and mixed waste disposal license. With that exception, no new Compact facilities are proposed. This fluid, uncertain situation has inspired national level rulemaking initiatives and policy studies, as well as alternative disposal practices for certain low-activity materials.

  6. Regional waste treatment with monolith disposal for low-level radioactive waste

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1983-01-01

    An alternative system is proposed for the disposal of low-level radioactive waste. This system, called REgional Treatment with MOnolith Disposal (RETMOD), is based on integrating three commercial technologies: automated package warehousing, whole-barrel rotary kiln incineration, and cement-based grouts for radioactive waste disposal. In the simplified flowsheet, all the sludges, liquids, resins, and combustible wastes are transported to regional facilities where they are incinerated. The ash is then mixed with special cement-based grouts, and the resulting mixture is poured into trenches to form large waste-cement monoliths. Wastes that do not require treatment, such as damaged and discarded equipment, are prepositioned in the trenches with the waste-cement mixture poured on top. The RETMOD system may provide higher safety margins by conversion of wastes into a solidified low-leach form, creation of low-surface area waste-cement monoliths, and centralization of waste processing into a few specialized facilities. Institutional problems would be simplified by placing total responsibility for safe disposal on the disposal site operator. Lower costs may be realized through reduced handling costs, the economics of scale, simplified operations, and less restrictive waste packaging requirements

  7. The geochemical environment of nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Gascoyne, M.

    1995-01-01

    The concept for disposal of Canada's nuclear fuel waste in a geologic environment on the Canadian Shield has recently been presented by Atomic Energy of Canada Limited (AECL) to governments, scientists, and the public, for review. An important part of this concept concerns the geochemical environment of a disposal vault and includes consideration of rock and groundwater compositions, geochemical interactions between rocks, groundwaters, and emplaced vault materials, and the influences and significance of anthropogenic and microbiological effects following closure of the vault. This paper summarizes the disposal concept and examines aspects of the geochemical environment. The presence of saline groundwaters and reducing conditions at proposed vault depths (500-1000 m) in the Canadian Shield has an important bearing on the stability of the used nuclear fuel, its container, and buffer and backfill materials. The potential for introduction of anthropogenic contaminants and microbes during site investigations and vault excavation, operation, and sealing is described with examples from AECL's research areas on the Shield and in their underground research laboratory in southeastern Manitoba. (author)

  8. Effects of land disposal of municipal sewage sludge on fate of nitrates in soil, streambed sediment, and water quality

    Science.gov (United States)

    Tindall, James A.; Lull, Kenneth J.; Gaggiani, Neville G.

    1994-01-01

    This study was undertaken to determine the effects of sewage-sludge disposal at the Lowry sewage-sludge-disposal area, near Denver, Colorado, on ground- and surface-water quality, to determine the fate of nitrates from sludge leachate, and to determine the source areas of leachate and the potential for additional leaching from the disposal area.Sewage-sludge disposal began in 1969. Two methods were used to apply the sludge: burial and plowing. Also, the sludge was applied both in liquid and cake forms. Data in this report represent the chemical composition of soil and streambed sediment from seven soil- and four streambed-sampling sites in 1986, chemical and bacterial composition of ground water from 28 wells from 1981 to 1987, and surface-water runoff from seven water-sampling sites from 1984 to 1987. Ground water samples were obtained from alluvial and bedrock aquifers. Samples of soil, streambed sediment, ground water and surface water were obtained for onsite measurement and chemical analysis. Measurements included determination of nitrogen compounds and major cations and anions, fecal-coliform and -streptococcus bacteria, specific conductance, and pH.Thirteen wells in the alluvial aquifer in Region 3 of the study area contain water that was probably affected by sewage-sludge leachate. The plots of concentration of nitrate with time show seasonal trends and trends caused by precipitation. In addition to yearly fluctuation, there were noticeable increases in ground-water concentrations of nitrate that coincided with increased precipitation. After 3 years of annual ground-water-quality monitoring and 4 years of a quarterly sampling program, it has been determined that leachate from the sewage-sludge-disposal area caused increased nitrite plus nitrate (as nitrogen) concentration in the alluvial ground water at the site. Soil analyses from the disposal area indicate that organic nitrogen was the dominant form of nitrogen in the soil.As a result of investigations at

  9. Groundwater monitoring plan for the Hanford Site 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    DB Barnett

    2000-01-01

    Seven years of groundwater monitoring at the 200 Area Treated Effluent Disposal Facility (TEDF) have shown that the uppermost aquifer beneath the facility is unaffected by TEDF effluent. Effluent discharges have been well below permitted and expected volumes. Groundwater mounding from TEDF operations predicted by various models has not been observed, and waterlevels in TEDF wells have continued declining with the dissipation of the nearby B Pond System groundwater mound. Analytical results for constituents with enforcement limits indicate that concentrations of all these are below Practical Quantitation Limits, and some have produced no detections. Likewise, other constituents on the permit-required list have produced results that are mostly below sitewide background. Comprehensive geochemical analyses of groundwater from TEDF wells has shown that most constituents are below background levels as calculated by two Hanford Site-wide studies. Additionally, major ion proportions and anomalously low tritium activities suggest that groundwater in the aquifer beneath the TEDF has been sequestered from influences of adjoining portions of the aquifer and any discharge activities. This inference is supported by recent hydrogeologic investigations which indicate an extremely slow rate of groundwater movement beneath the TEDF. Detailed evaluation of TEDF-area hydrogeology and groundwater geochemistry indicate that additional points of compliance for groundwater monitoring would be ineffective for this facility, and would produce ambiguous results. Therefore, the current groundwater monitoring well network is retained for continued monitoring. A quarterly frequency of sampling and analysis is continued for all three TEDF wells. The constituents list is refined to include only those parameters key to discerning subtle changes in groundwater chemistry, those useful in detecting general groundwater quality changes from upgradient sources, or those retained for comparison with end

  10. Fully Disposable Manufacturing Concepts for Clinical and Commercial Manufacturing and Ballroom Concepts.

    Science.gov (United States)

    Boedeker, Berthold; Goldstein, Adam; Mahajan, Ekta

    2017-11-04

    The availability and use of pre-sterilized disposables has greatly changed the methods used in biopharmaceuticals development and production, particularly from mammalian cell culture. Nowadays, almost all process steps from cell expansion, fermentation, cell removal, and purification to formulation and storage of drug substances can be carried out in disposables, although there are still limitations with single-use technologies, particularly in the areas of pretesting and quality control of disposables, bag and connections standardization and qualification, extractables and leachables (E/L) validation, and dependency on individual vendors. The current status of single-use technologies is summarized for all process unit operations using a standard mAb process as an example. In addition, current pros and cons of using disposables are addressed in a comparative way, including quality control and E/L validation.The continuing progress in developing single-use technologies has an important impact on manufacturing facilities, resulting in much faster, less expensive and simpler plant design, start-up, and operation, because cell culture process steps are no longer performed in hard-piped unit operations. This leads to simpler operations in a lab-like environment. Overall it enriches the current landscape of available facilities from standard hard-piped to hard-piped/disposables hybrid to completely single-use-based production plants using the current segregation and containment concept. At the top, disposables in combination with completely and functionally closed systems facilitate a new, revolutionary design of ballroom facilities without or with much less segregation, which enables us to perform good manufacturing practice manufacturing of different products simultaneously in unclassified but controlled areas.Finally, single-use processing in lab-like shell facilities is a big enabler of transferring and establishing production in emergent countries, and this is

  11. 3D inkjet printed disposable environmental monitoring wireless sensor node

    KAUST Repository

    Farooqui, Muhammad Fahad; Shamim, Atif

    2017-01-01

    We propose a disposable, miniaturized, moveable, fully integrated 3D inkjet-printed wireless sensor node for large area environmental monitoring applications. As a proof of concept, we show the wireless sensing of temperature, humidity and H2S

  12. Scenarios of the TWRS low-level waste disposal program. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pre-treating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste

  13. Toxic and hazardous waste disposal. Volume 4. New and promising ultimate disposal options

    International Nuclear Information System (INIS)

    Pojasek, R.B.

    1980-01-01

    Separate abstrats were prepared for four of the eighteen chapters of this book which reviews several disposal options available to the generators of hazardous wastes. The chapters not abstracted deal with land disposal of hazardous wastes, the solidification/fixation processes, waste disposal by incineration and molten salt combustion and the use of stabilized industrial waste for land reclamation and land farming

  14. Heavy element radionuclides (Pu, Np, U) and {sup 137}Cs in soils collected from the Idaho National Engineering and Environmental Laboratory and other sites in Idaho, Montana, and Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, T.M.; Rivera, W. Jr. [Dept. of Energy, New York, NY (United States). Environmental Measurements Lab.; Kelley, J.M.; Bond, L.A. [Pacific Northwest National Lab., Richland, WA (United States); Liszewski, M.J. [Bureau of Reclamation (United States); Orlandini, K.A. [Argonne National Lab., IL (United States)

    1998-10-01

    The isotopic composition of Pu in soils on and near the Idaho National Engineering and Environmental Laboratory (INEEL) has been determined in order to apportion the sources of the Pu into those derived from stratospheric fallout, regional fallout from the Nevada Test Site (NTS), and facilities on the INEEL site. Soils collected offsite in Idaho, Montana, and Wyoming were collected to further characterize NTS fallout in the region. In addition, measurements of {sup 237}Np and {sup 137}Cs were used to further identify the source of the Pu from airborne emissions at the Idaho Chemical Processing Plant (ICPP) or fugitive releases from the Subsurface Disposal Area (SDA) in the Radioactive Waste Management Complex (RWMC). There is convincing evidence from this study that {sup 241}Am, in excess of that expected from weapons-grade Pu, constituted a part of the buried waste at the SDA that has subsequently been released to the environment. Measurements of {sup 236}U in waters from the Snake River Plain aquifer and a soil core near the ICPP suggest that this radionuclide may be a unique interrogator of airborne releases from the ICPP. Neptunium-237 and {sup 238}Pu activities in INEEL soils suggest that airborne releases of Pu from the ICPP, over its operating history, may have recently been overestimated.

  15. Study on the background information for the geological disposal concept

    International Nuclear Information System (INIS)

    Matsui, Kazuaki; Murano, Tohru; Hirusawa, Shigenobu; Komoto, Harumi

    2000-03-01

    Japan Nuclear Cycle Development Institute (JNC) has published first R and D report in 1992, in which the fruits of the R and D work were compiled. Since then, JNC, has been promoting the second R and D progress report until before 2000, in which the background information on the geological disposal of high level radioactive waste (HLW) was to be presented as well as the technical basis. Recognizing the importance of the social consensus to the geological disposal, understanding and consensus by the society are essential to the development and realization of the geological disposal of HLW. In this fiscal year, studies were divided into 2 phases, considering the time schedule of the second R and D progress report. 1. Phase 1: Analysis of the background information on the geological disposal concept. Based on the recent informations and the research works of last 2 years, final version of the study was made to contribute to the background informations for the second R and D progress report. (This was published in Nov. 1999 as the intermediate report: JNC TJ 1420 2000-006). 2. Phase 2: Following 2 specific items were selected for the candidate issues which need to be studied, considering the present circumstances around the R and D of geological disposal. (1) Educational materials and strategies related to nuclear energy and nuclear waste. Specific strategies and approaches in the area of nuclear energy and nuclear waste educational outreach and curriculum activities by the nuclear industry, government and other entities in 6 countries were surveyed and summarized. (2) Alternatives to geological disposal of HLW: Past national/international consideration and current status. The alternatives for the disposal of HLW have been discussed in the past and the major waste-producing countries have almost all chosen deep geological disposal as preferred method. Here past histories and recent discussions on the variations to geological disposal were studied. (author)

  16. West Hackberry Brine Disposal Project pre-discharge characterization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C. (eds.)

    1982-01-01

    The physical, chemical and biological attributes are described for: (1) a coastal marine environment centered about a Department of Energy Strategic Petroleum Reserve (SPR) brine disposal site 11.4 km off the southwest coast of Louisiana; and (2) the lower Calcasieu and Sabine estuarine systems that provide leach waters for the SPR project. A three month sampling effort, February through April 1981, and previous investigations from the study area are integrated to establish baseline information for evaluation of impacts from brine disposal in the nearshore marine waters and from freshwater withdrawal from the coastal marsh of the Chenier Plain. January data are included for some tasks that sampled while testing and mobilizing their instruments prior to the February field effort. The study addresses the areas of physical oceanography, estuarine hydrology and hydrography, water and sediment quality, benthos, nekton, phytoplankton, zooplankton, and data management.

  17. Evaluation of alternatives for high-level and transuranic radioactive- waste disposal standards

    International Nuclear Information System (INIS)

    Klett, R.D.; Gruebel, M.M.

    1992-12-01

    The remand of the US Environmental Protection Agency's long-term performance standards for radioactive-waste disposal provides an opportunity to suggest modifications that would make the regulation more defensible and remove inconsistencies yet retain the basic structure of the original rule. Proposed modifications are in three specific areas: release and dose limits, probabilistic containment requirements, and transuranic-waste disposal criteria. Examination of the modifications includes discussion of the alternatives, demonstration of methods of development and implementation, comparison of the characteristics, attributes, and deficiencies of possible options within each area, and analysis of the implications for performance assessments. An additional consideration is the impact on the entire regulation when developing or modifying the individual components of the radiological standards

  18. Disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-01-15

    The problem of disposal can be tackled in two ways: the waste can be diluted and dispersed so that the radiation to which any single individual would be subjected would be negligible, or it can be concentrated and permanently isolated from man and his immediate environment. A variety of methods for the discharge of radioactive waste into the ground were described at the Monaco conference. They range from letting liquid effluent run into pits or wells at appropriately chosen sites to the permanent storage of high activity material at great depth in geologically suitable strata. Another method discussed consists in the incorporation of high level fission products in glass which is either buried or stored in vaults. Waste disposal into rivers, harbours, outer continental shelves and the open sea as well as air disposal are also discussed. Many of the experts at the Monaco conference were of the view that most of the proposed, or actually applied, methods of waste disposal were compatible with safety requirements. Some experts, felt that certain of these methods might not be harmless. This applied to the possible hazards of disposal in the sea. There seemed to be general agreement, however, that much additional research was needed to devise more effective and economical methods of disposal and to gain a better knowledge of the effects of various types of disposal operations, particularly in view of the increasing amounts of waste material that will be produced as the nuclear energy industry expands

  19. The disposal of Canada's nuclear fuel waste: postclosure assessment of a reference system

    International Nuclear Information System (INIS)

    Goodwin, B.W.; McConnell, D.B.; Andres, T.H.

    1994-01-01

    The concept for disposal of Canada's nuclear fuel waste is based on a vault located deep in plutonic rock of the Canadian Shield. We document in this report a method to assess the long-term impacts of a disposal facility for nuclear fuel waste. The assessment integrates relevant information from engineering design studies, site investigations, laboratory studies, expert judgment and detailed mathematical analyses to evaluate system performance in terms of safety criteria, guidelines and standards. The method includes the use of quantitative tools such as the Systems Variability Analysis computer Code (SYVAC) to deal with parameter uncertainty and the use of reasoned arguments based on well-established scientific principles. We also document the utility of the method by describing its application to a hypothetical implementation of the concept called the reference disposal system. The reference disposal system generally conforms to the overall characteristics of the concept, except we have made some specific site and design choices so that the assessment would be more realistic. To make the reference system more representative of a real system, we have used the geological observations of the AECL's Whiteshell Research Area located near Lac du Bonnet, Manitoba, to define the characteristics of the geosphere and the groundwater flow system. This research area has been subject to more than a decade of geological and hydrological studies. The analysis of the reference disposal system provides estimates of radiological and chemical toxicity impacts on members of a critical group and estimates of possible impacts on the environment. The latter impacts include estimates of radiation dose to nonhuman organisms. Other quantitative analyses examine the use of derived constraints to improve the margin of safety, the effectiveness of engineered and natural barriers, and the sensitivity of the results to influential features, events, and processes of the reference disposal

  20. Report on radioactive waste disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The safe management of radioactive wastes constitutes an essential part of the IAEA programme. A large number of reports and conference proceedings covering various aspects of the subject have been issued. The Technical Review Committee on Underground Disposal (February 1988) recommended that the Secretariat issue a report on the state of the art of underground disposal of radioactive wastes. The Committee recommended the need for a report that provided an overview of the present knowledge in the field. This report covers the basic principles associated with the state of the art of near surface and deep geological radioactive waste disposal, including examples of prudent practice, and basic information on performance assessment methods. It does not include a comprehensive description of the waste management programmes in different countries nor provide a textbook on waste disposal. Such books are available elsewhere. Reviewing all the concepts and practices of safe radioactive waste disposal in a document of reasonable size is not possible; therefore, the scope of this report has been limited to cover essential parts of the subject. Exotic disposal techniques and techniques for disposing of uranium mill tailings are not covered, and only brief coverage is provided for disposal at sea and in the sea-bed. The present report provides a list of references to more specialized reports on disposal published by the IAEA as well as by other bodies, which may be consulted if additional information is sought. 108 refs, 22 figs, 2 tabs

  1. Korean Reference HLW Disposal System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Lee, J. Y.; Kim, S. S. (and others)

    2008-03-15

    This report outlines the results related to the development of Korean Reference Disposal System for High-level radioactive wastes. The research has been supported around for 10 years through a long-term research plan by MOST. The reference disposal method was selected via the first stage of the research during which the technical guidelines for the geological disposal of HLW were determined too. At the second stage of the research, the conceptual design of the reference disposal system was made. For this purpose the characteristics of the reference spent fuels from PWR and CANDU reactors were specified, and the material and specifications of the canisters were determined in term of structural analysis and manufacturing capability in Korea. Also, the mechanical and chemical characteristics of the domestic Ca-bentonite were analyzed in order to supply the basic design parameters of the buffer. Based on these parameters the thermal and mechanical analysis of the near-field was carried out. Thermal-Hydraulic-Mechanical behavior of the disposal system was analyzed. The reference disposal system was proposed through the second year research. At the final third stage of the research, the Korean Reference disposal System including the engineered barrier, surface facilities, and underground facilities was proposed through the performance analysis of the disposal system.

  2. Disposal options for radioactive waste

    International Nuclear Information System (INIS)

    Olivier, J.P.

    1991-01-01

    On the basis of the radionuclide composition and the relative toxicity of radioactive wastes, a range of different options are available for their disposal. Practically all disposal options rely on confinement of radioactive materials and isolation from the biosphere. Dilution and dispersion into the environment are only used for slightly contaminated gaseous and liquid effluents produced during the routine operation of nuclear facilities, such as power plants. For the bulk of solid radioactive waste, whatever the contamination level and decay of radiotoxicity with time are, isolation from the biosphere is the objective of waste disposal policies. The paper describes disposal approaches and the various techniques used in this respect, such as shallow land burial with minimum engineered barriers, engineered facilities built at/near the surface, rock cavities at great depth and finally deep geologic repositories for long-lived waste. The concept of disposing long-lived waste into seabed sediment layers is also discussed, as well as more remote possibilities, such as disposal in outer space or transmutation. For each of these disposal methods, the measures to be adopted at institutional level to reinforce technical isolation concepts are described. To the extent possible, some comments are made with regard to the applicability of such disposal methods to other hazardous wastes. (au)

  3. Underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This report is an overview document for the series of IAEA reports dealing with underground waste disposal to be prepared in the next few years. It provides an introduction to the general considerations involved in implementing underground disposal of radioactive wastes. It suggests factors to be taken into account for developing and assessing waste disposal concepts, including the conditioned waste form, the geological containment and possible additional engineered barriers. These guidelines are general so as to cover a broad range of conditions. They are generally applicable to all types of underground disposal, but the emphasis is on disposal in deep geological formations. Some information presented here may require slight modifications when applied to shallow ground disposal or other types of underground disposal. Modifications may also be needed to reflect local conditions. In some specific cases it may be that not all the considerations dealt with in this book are necessary; on the other hand, while most major considerations are believed to be included, they are not meant to be all-inclusive. The book primarily concerns only underground disposal of the wastes from nuclear fuel cycle operations and those which arise from the use of isotopes for medical and research activities

  4. Derivation of activity limits for the disposal of radioactive waste in near surface disposal facilities

    International Nuclear Information System (INIS)

    2003-12-01

    Radioactive waste must be managed safely, consistent with internationally agreed safety standards. The disposal method chosen for the waste should be commensurate with the hazard and longevity of the waste. Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides and low concentrations of long lived radionuclides. The term 'near surface disposal' encompasses a wide range of design options, including disposal in engineered structures at or just below ground level, disposal in simple earthen trenches a few metres deep, disposal in engineered concrete vaults, and disposal in rock caverns several tens of metres below the surface. The use of a near surface disposal option requires design and operational measures to provide for the protection of human health and the environment, both during operation of the disposal facility and following its closure. To ensure the safety of both workers and the public (both in the short term and the long term), the operator is required to design a comprehensive waste management system for the safe operation and closure of a near surface disposal facility. Part of such a system is to establish criteria for accepting waste for disposal at the facility. The purpose of the criteria is to limit the consequences of events which could lead to radiation exposures and in addition, to prevent or limit hazards, which could arise from non-radiological causes. Waste acceptance criteria include limits on radionuclide content concentration in waste materials, and radionuclide amounts in packages and in the repository as a whole. They also include limits on quantity of free liquids, requirements for exclusion of chelating agents and pyrophoric materials, and specifications of the characteristics of the waste containers. Largely as a result of problems encountered at some disposal facilities operated in the past, in 1985 the IAEA published guidance on generic acceptance

  5. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    International Nuclear Information System (INIS)

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-01-01

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information

  6. Transuranic advanced disposal systems: preliminary 239Pu waste-disposal criteria for Hanford

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

    1982-08-01

    An evaluation of the feasibility and potential application of advanced disposal systems is being conducted for defense transuranic (TRU) wastes at the Hanford Site. The advanced waste disposal options include those developed to provide greater confinement than provided by shallow-land burial. An example systems analysis is discussed with assumed performance objectives and various Hanford-specific disposal conditions, waste forms, site characteristics, and engineered barriers. Preliminary waste disposal criteria for 239 Pu are determined by applying the Allowable Residual Contamination Level (ARCL) method. This method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. A 10,000 year environmental performance period is assumed, and the dose rate limit for human intrusion is assumed to be 500 mrem/y to any exposed individual. Preliminary waste disposal criteria derived by this method for 239 Pu in soils at the Hanford Site are: 0.5 nCi/g in soils between the surface and a depth of 1 m, 2200 nCi/g of soil at a depth of 5 m, and 10,000 nCi/g of soil at depths 10 m and below. These waste disposal criteria are based on exposure scenarios that reflect the dependence of exposure versus burial depth. 2 figures, 5 tables

  7. Corrective Action Investigation Plan for Corrective Action Unit 561: Waste Disposal Areas, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Grant Evenson

    2008-01-01

    Corrective Action Unit (CAU) 561 is located in Areas 1, 2, 3, 5, 12, 22, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 561 is comprised of the 10 corrective action sites (CASs) listed below: (1) 01-19-01, Waste Dump; (2) 02-08-02, Waste Dump and Burn Area; (3) 03-19-02, Debris Pile; (4) 05-62-01, Radioactive Gravel Pile; (5) 12-23-09, Radioactive Waste Dump; (6) 22-19-06, Buried Waste Disposal Site; (7) 23-21-04, Waste Disposal Trenches; (8) 25-08-02, Waste Dump; (9) 25-23-21, Radioactive Waste Dump; and (10) 25-25-19, Hydrocarbon Stains and Trench. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 561. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the Corrective Action Investigation for CAU 561 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct

  8. Modeling of thermal evolution of near field area around single pit mode nuclear waste canister disposal in soft rocks

    International Nuclear Information System (INIS)

    Bajpai, R.K.; Verma, A.K.; Maheshwar, Sachin

    2016-01-01

    Soft rocks like argillites/shales are under consideration worldwide as host rock for geological disposal of vitrified as well as spent fuel nuclear waste. The near field around disposed waste canister at 400-500m depth witnesses a complex heat field evolution due to varying thermal characteristics of rocks, coupling with hydraulic processes and varying intensity of heat flux from the canister. Smooth heat dissipation across the rock is desirable to avoid buildup of temperature beyond design limit (100 °C) and resultant micro fracturing due to thermal stresses in the rocks and intervening buffer clay layers. This also causes enhancement of hydraulic conductivity of the rocks, radionuclide transport and greater groundwater ingress towards the canister. Hence heat evolution modeling constitutes an important part of safety assessment of geological disposal facilities

  9. MODIFIED APPROACH FOR SITE SELECTION OF UNWANTED RADIOACTIVE SEALED SOURCES DISPOSAL IN ARID COUNTRIES (CASE STUDY - EGYPT)

    International Nuclear Information System (INIS)

    ABDEL AZIZ, M.A.H.; COCHRAN, J.R.

    2008-01-01

    The aim of this study is to present a systematic methodology for siting of radioactive sealed sources disposal in arid countries and demonstrate the use of this methodology in Egypt. Availing from the experience gained from the greater confinement disposal (GCD) boreholes in Nevada, USA, the IAEA's approach for siting of near disposal was modified to fit the siting of the borehole disposal which suits the unwanted radioactive sealed sources. The modifications are represented by dividing the surveyed area into three phases; the exclusion phase in which the areas that meet exclusion criteria should be excluded, the site selection phase in which some potential sites that meet the primary criteria should be candidate and the preference stage in which the preference between the potential candidate sites should be carried out based on secondary criteria to select one or two sites at most. In Egypt, a considerable amount of unwanted radioactive sealed sources wastes have accumulated due to the peaceful uses of radio-isotopes.Taking into account the regional aspects and combining of the proposed developed methodology with geographic information system (GIS), the Nile Delta and its valley, the Sinai Peninsula and areas of historical heritage value are excluded from our concern as potential areas for radioactive waste disposal. Using the primary search criteria, some potential sites south Kharga, the Great Sand Sea, Gilf El-Kebear and the central part of the eastern desert have been identified as candidate areas meeting the primary criteria of site selection. More detailed studies should be conducted taking into account the secondary criteria to prefer among the above sites and select one or two sites at most

  10. Safety assessment of HLW geological disposal system

    International Nuclear Information System (INIS)

    Naito, Morimasa

    2006-01-01

    that Japan is located in a tectonically active zone. Safety assessment for a disposal system differs from that for other engineered systems such as power stations in terms of: Extremely long timescales must be taken into account. Natural environments, which are heterogeneous and cover large spatial areas, must be evaluated. It is thus impossible to apply conventional engineering approaches, where an entire system is constructed and utilized in such a way as to demonstrate system safety. This is a problem specific to the safety assessment of geological disposal. Taking this into account, this paper describes a general methodology of safety assessment for geological system including presentation of a series of steps for the assessment with examples of JNC's H12 safety assessment. (author)

  11. HLW Disposal System Development

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. W.; Choi, H. J.; Lee, J. Y. (and others)

    2007-06-15

    A KRS is suggested through design requirement analysis of the buffer and the canister which are the constituent of disposal system engineered barrier and HLW management plans are proposed. In the aspect of radionuclide retention capacity, the thickness of the buffer is determined 0.5m, the shape to be disc and ring and the dry density to be 1.6 g/cm{sup 3}. The maximum temperature of the buffer is below 100 .deg. which meets the design requirement. And bentonite blocks with 5 wt% of graphite showed more than 1.0 W/mK of thermal conductivity without the addition of sand. The result of the thermal analysis for proposed double-layered buffer shows that decrease of 7 .deg. C in maximum temperature of the buffer. For the disposal canister, the copper for the outer shell material and cast iron for the inner structure material is recommended considering the results analyzed in terms of performance of the canisters and manufacturability and the geochemical properties of deep groundwater sampled from the research area with granite, salt water intrusion, and the heavy weight of the canister. The results of safety analysis for the canister shows that the criticality for the normal case including uncertainty is the value of 0.816 which meets subcritical condition. Considering nation's 'Basic Plan for Electric Power Demand and Supply' and based on the scenario of disposing CANDU spent fuels in the first phase, the disposal system that the repository will be excavated in eight phases with the construction of the Underground Research Laboratory (URL) beginning in 2020 and commissioning in 2040 until the closure of the repository is proposed. Since there is close correlation between domestic HLW management plans and front-end/back-end fuel cycle plans causing such a great sensitivity of international environment factor, items related to assuring the non-proliferation and observing the international standard are showed to be the influential factor and acceptability

  12. Effects of land disposal of municipal sewage sludge on soil, streambed sediment, and ground- and surface-water quality at a site near Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Gaggiani, N.G.

    1991-01-01

    The report describes the effects of burial and land application of municipal sewage sludge on soil and streambed sediment and water quality in the underlying aquifers and surface water within and around the Lowry sewage-sludge-disposal area. The existing ground-water observation-well network at the disposal area was expanded for the study. Surface-water-sampling sites were selected so that runoff could be sampled from intense rainstorms or snowmelt. The sampling frequency for ground-water and surface-water runoff was changed from yearly to quarterly, and soil samples were collected. Four years of data were collected from 1984 to 1987 during the expanded monitoring program at the Lowry sewage-sludge-disposal area. These data, in addition to the data collected by the U.S. Geological Survey from 1981 to 1983, were used to determine effects of sewage-sludge-disposal on soil and streambed sediment and surface- and ground-water quality at the disposal area.

  13. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Allan, C.J.

    1993-01-01

    The Canadian concept for nuclear fuel waste disposal is based on disposing of the waste in a vault excavated 500-1000 m deep in intrusive igneous rock of the Canadian Shield. The author believes that, if the concept is accepted following review by a federal environmental assessment panel (probably in 1995), then it is important that implementation should begin without delay. His reasons are listed under the following headings: Environmental leadership and reducing the burden on future generations; Fostering public confidence in nuclear energy; Forestalling inaction by default; Preserving the knowledge base. Although disposal of reprocessing waste is a possible future alternative option, it will still almost certainly include a requirement for geologic disposal

  14. Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Alfred Wickline

    2007-01-01

    Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval

  15. Synthesis of the Results of the Field Verification Program Upland Disposal Alternative

    National Research Council Canada - National Science Library

    Folsom, Bobby

    1998-01-01

    ...) procedures for predicting potential contaminant mobility into animals. The upland disposal site was constructed within a protected area using conventional construction techniques and was hydraulically filled from barges...

  16. Getting Wasted at WOMADelaide: The Effect of Signage on Waste Disposal

    Directory of Open Access Journals (Sweden)

    Sarah Verdonk

    2017-02-01

    Full Text Available In recent years, there has been a rise in environmental consciousness and community awareness of waste disposal issues. However, discrepancies remain between people’s attitude and their behavior regarding waste disposal and recycling; commonly known as the “attitude behavior gap”. This study was designed to aid in bridging this gap by exploring how signage, incorporating psychological principles and effective sign design, can encourage people to correctly dispose of their unwanted materials. The utilization of festivals, mass gatherings and events as spaces to test the impact of pro-environmental messaging on behavior is an emerging field of research. This study investigated the role of signage in aiding attendees of the world music festival WOMADelaide to correctly dispose of their unwanted materials. To complement and support the three-bin system utilized by the waste contractors for the event, four signs were developed and tested in the catering area. These signs included a baseline sign, as well as three motivational signs containing graphics and messages, based on different theoretical positions or psychological principles. The results gained from analyzing the concealed camera footage indicated that the bins under the three motivational signs elicited a greater number of deposits. However, the waste was no better sorted than those located under the baseline sign. The findings of this study support previous research into the “attitude behavior gap” and highlight areas for future research into signage in a festival setting.

  17. Does the prescriptive lifestyle of Seventh-day Adventists provide 'immunity' from the secular effects of changes in BMI?

    Science.gov (United States)

    Kent, Lillian M; Worsley, Anthony

    2009-04-01

    To examine the effect of Seventh-day Adventist (SDA) membership on 'immunity' to the secular effects of changes in BMI. Three independent, cross-sectional, screening surveys conducted by Sydney Adventist Hospital in 1976, 1986 and 1988 and a survey conducted among residents of Melbourne in 2006. Two hundred and fifty-two SDA and 464 non-SDA in 1976; 166 SDA and 291 non-SDA in 1986; 120 SDA and 300-non SDA in 1988; and 251 SDA and 294 non-SDA in 2006. Height and weight measured by hospital staff in 1976, 1986 and 1988; self-reported by respondents in 2006. The mean BMI of non-SDA men increased between 1986 and 2006 (P < 0.001) but did not change for SDA men or non-SDA women. Despite small increases in SDA women's mean BMI (P = 0.030) between 1988 and 2006, this was no different to that of SDA men and non-SDA women in 2006. The diet and eating patterns of SDA men and women were more 'prudent' than those of non-SDA men and women, including more fruit, vegetables, grains, nuts and legumes, and less alcohol, meat, sweetened drinks and coffee. Many of these factors were found to be predictors of lower BMI. The 'prudent' dietary and lifestyle prescriptions of SDA men appear to have 'immunised' them to the secular effects of changes that occurred among non-SDA men's BMI. The dietary and lifestyle trends of SDA women did not reflect the increase in their BMI observed in 2006.

  18. Experimental Study on the Microstructure Evolution of Mixed Disposal Paste in Surface Subsidence Areas

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2016-05-01

    Full Text Available The integrated disposal of surface subsidence pits and surface solid waste can be realized by backfilling a surface subsidence area with a paste made from the solid wastes of mines, such as tailings and waste rock. The microstructures of these wastes determine the macroscopic properties of a paste backfill. This paper presents an experimental study on the internal structure evolution of pasty fluid mixed with different waste rock concentrations (10%, 30%, and 50% and cement dosages (1% and 2% under damage. To this end, a real-time computed tomography (CT scan is conducted using medical CT and a small loading device. Results show that UCS (uniaxial compressive strength increases when the amount of cement increases. Given a constant amount of cement, UCS increases first and then decreases as waste rock content increases. UCS is maximized at 551 kPa when the waste rock content is 30%. The paste body is a typical medium used to investigate initial damage, which mainly consists of microholes, pores, and microcracks. The initial damages also exhibit a high degree of random inhomogeneity. After loading, cracks are initiated and expand gradually from the original damage location until the overall damages are generated. The mesostructure evolution model of the paste body is divided into six categories, and this mesostructure is reasonable when the waste rock content is 30%.

  19. Moisture Monitoring at Area G, Technical Area 54, Los Alamos National Laboratory, 2016 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Levitt, Daniel Glenn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jennings, Terry L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-17

    Hydrological characterization and moisture monitoring activities provide data required for evaluating the transport of subsurface contaminants in the unsaturated and saturated zones beneath Area G, and for the Area G Performance Assessment and Composite Analysis. These activities have been ongoing at Area G, Technical Area 54 of the Los Alamos National Laboratory since waste disposal operations began in 1957. This report summarizes the hydrological characterization and moisture monitoring activities conducted at Area G. It includes moisture monitoring data collected from 1986 through 2016 from numerous boreholes and access tubes with neutron moisture meters, as well as data collected by automated dataloggers for water content measurement sensors installed in a waste disposal pit cover, and buried beneath the floor of a waste disposal pit. This report is an update of a nearly identical report by Levitt et al., (2015) that summarized data collected through early 2015; this report includes additional moisture monitoring data collected at Pit 31 and the Pit 38 extension through December, 2016. It also includes information from the Jennings and French (2009) moisture monitoring report and includes all data from Jennings and French (2009) and the Draft 2010 Addendum moisture monitoring report (Jennings and French, 2010). For the 2015 version of this report, all neutron logging data, including neutron probe calibrations, were investigated for quality and pedigree. Some data were recalculated using more defensible calibration data. Therefore, some water content profiles are different from those in the Jennings and French (2009) report. All of that information is repeated in this report for completeness. Monitoring and characterization data generally indicate that some areas of the Area G vadose zone are consistent with undisturbed conditions, with water contents of less than five percent by volume in the top two layers of the Bandelier tuff at Area G. These data also

  20. Waste-Mixes Study for space disposal

    International Nuclear Information System (INIS)

    McCallum, R.F.; Blair, H.T.; McKee, R.W.; Silviera, D.J.; Swanson, J.L.

    1983-01-01

    The Wastes Mixes Study is a component of Cy-1981 and 1982 research activities to determine if space disposal could be a feasible complement to geologic disposal for certain high-level (HLW) and transuranic wastes (TRU). The objectives of the study are: to determine if removal of radionuclides from HLW and TRU significantly reduces the long-term radiological risks of geologic disposal; to determine if chemical partitioning of the waste for space disposal is technically feasible; to identify acceptable waste forms for space disposal; and to compare improvements in geologic disposal system performance to impacts of additional treatment, storage, and transportation necessary for space disposal. To compare radiological effects, five system alternatives are defined: Reference case - All HLW and TRU to a repository. Alternative A - Iodine to space, the balance to a repository. Alternative B - Technetium to space, the balance to a repository. Alternative C - 95% of cesium and strontium to a repository; the balance of HLW aged first, then to space; plutonium separated from TRU for recycle; the balance of the TRU to a repository. Alternative D - HLW aged first, then to space, plutonium separated from TRU for recycle; the balance of the TRU to a repository. The conclusions of this study are: the incentive for space disposal is that it offers a perception of reduced risks rather than significant reduction. Suitable waste forms for space disposal are cermet for HLW, metallic technetium, and lead iodide. Space disposal of HLW appears to offer insignificant safety enhancements when compared to geologic disposal; the disposal of iodine and technetium wastes in space does not offer risk advantages. Increases in short-term doses for the alternatives are minimal; however, incremental costs of treating, storing and transporting wastes for space disposal are substantial

  1. Geotechnical, geological, and selected radionuclide retention characteristics of the radioactive waste disposal site near the Farallon Islands

    Science.gov (United States)

    Booth, J.S.; Winters, W.J.; Poppe, L.J.; Neiheisel, J.; Dyer, R.S.

    1989-01-01

    A geotechnical and geological investigation of the Farallon Islands low-level radioactive waste (LLW) disposal area was conducted to qualitatively assess the host sediments' relative effectiveness as a barrier to radionuclide migration, to estimate the portion of the barrier that is in contact with the waste packages at the three primary disposal sites, and to provide a basic physical description of the sediments. Box cores recovered from within the general disposal area at depths of 500, 1000, and 1500 m were subcored to provide samples (~30 cm in length) for detailed descriptions, textural and mineralogical analyses, and a suite of geotechnical tests (index property, CRS consolidation, and CIU triaxial compression). -from Authors

  2. Treated Effluent Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Treated non-hazardous and non-radioactive liquid wastes are collected and then disposed of through the systems at the Treated Effluent Disposal Facility (TEDF). More...

  3. Unreviewed Disposal Question Evaluation: Waste Disposal in Engineered Trenches 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hamm, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-12

    Revision 0 of this UDQE addressed the proposal to place Engineered Trench #3 (ET#3) in the footprint designated for Slit Trench #12 (ST#12) and operate using ST#12 disposal limits. Similarly, Revision 1 evaluates whether ET#4 can be located in and operated to Slit Trench #13 (ST#13) disposal limits. Both evaluations conclude that the proposed operations result in an acceptably small risk of exceeding a SOF of 1.0 and approve these actions from a performance assessment (PA) perspective. Because ET#3 will be placed in the location previously designated for ST#12, Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore, new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  4. Disposal of disused sealed sources and approach for safety assessment of near surface disposal facilities (national practice of Ukraine)

    International Nuclear Information System (INIS)

    Alekseeva, Z.; Letuchy, A.; Tkachenko, N.V.

    2003-01-01

    The main sources of wastes are 13 units of nuclear power plants under operation at 4 NPP sites (operational wastes and spent sealed sources), uranium-mining industry, area of Chernobyl exclusion zone contaminated as a result of ChNPP accident, and over 8000 small users of sources of ionising radiation in different fields of scientific, medical and industrial applications. The management of spent sources is carried out basing on the technology from the early sixties. In accordance with this scheme accepted sources are disposed of either in the near surface concrete vaults or in borehole facilities of typical design. Radioisotope devices and gamma units are placed into near surface vaults and sealed sources in capsules into borehole repositories respectively. Isotope content of radwaste in the repositories is multifarious including Co-60, Cs-137, Sr-90, Ir-192, Tl-204, Po-210, Ra-226, Pu-239, Am-241, H-3, Cf-252. A new programme for waste management has been adopted. It envisions the modifying of the 'Radon' facilities for long-term storage safety assessment and relocation of respective types of waste in 'Vector' repositories.Vector Complex will be built in the site which is located within the exclusion zone 10Km SW of the Chernobyl NPP. In Vector Complex two types of disposal facilities are designed to be in operation: 1) Near surface repositories for short lived LLRW and ILRW disposal in reinforced concrete containers. Repositories will be provided with multi layer waterproofing barriers - concrete slab on layer composed of mixture of sand and clay. Every layer of radwaste is supposed to be filled with 1cm clay layer following disposal; 2) Repositories for disposal of bulky radioactive waste without cans into concrete vaults. Approaches to safety assessment are discussed. Safety criteria for waste disposal in near surface repositories are established in Radiation Protection Standards (NRBU-97) and Addendum 'Radiation protection against sources of potential exposure

  5. Geological disposal of nuclear waste

    International Nuclear Information System (INIS)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed

  6. Preoperational baseline and site characterization report for the Environmental Restoration Disposal Facility: Volume 1. Revision 1

    International Nuclear Information System (INIS)

    Weekes, D.C.; Ford, B.H.; Jaeger, G.K.

    1996-09-01

    This site characterization report provides the results of the field data collection activities for the Environmental Restoration Disposal Facility site. Information gathered on the geology, hydrology, ecology, chemistry, and cultural resources of the area is presented. The Environmental Restoration Disposal Facility is located at the Hanford Site in Richland, Washington

  7. The disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ormai, P.

    2006-01-01

    The first part shows different ways of 'producing' radioactive wastes, defines the wastes of small, medium and high activity and gives estimation on the quantity of the necessary capacities of waste disposal facilities. The modern radioactive waste disposal that is the integrated processing of the form of waste, the package, the technical facility and the embedding geological environment that guarantee the isolation together. Another factor is the lifetime of radioactive waste which means that any waste containing long lifetime waste in higher concentration than 400-4000 kBq/kg should be disposed geologically. Today the centre of debate disposal of radioactive waste is more social than technical. For this reason not only geological conditions and technical preparations, but social discussions and accepting communities are needed in selecting place of facilities. Now, the focus is on long term temporary disposal of high activity wastes, like burnt out heating elements. The final part of the paper summarizes the current Hungarian situation of disposal of radioactive wastes. (T-R.A.)

  8. Marine disposal of radioactive wastes - the debate

    International Nuclear Information System (INIS)

    Blair, I.

    1985-01-01

    The paper defends the case for marine disposal of radioactive wastes. The amount of packaged waste disposed; the site for marine disposal; the method of disposal; the radioactivity arising from the disposal; and safety factors; are all briefly discussed. (U.K.)

  9. Prediction of long-term crustal movement for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sasaki, Takeshi; Morikawa, Seiji; Tabei, Kazuto; Koide, Hitoshi; Tashiro, Toshiharu

    2000-01-01

    Long-term stability of the geological environment is essential for the safe geological disposal of radioactive waste, for which it is necessary to predict the crustal movement during an assessment period. As a case study, a numerical analysis method for the prediction of crustal movement in Japan is proposed. A three-dimensional elastic analysis by FEM for the geological block structure of the Kinki region and the Awaji-Rokko area is presented. Stability analysis for a disposal cavern is also investigated. (author)

  10. Control and tracking arrangements for solid low-level waste disposals to the UK Drigg disposal site

    International Nuclear Information System (INIS)

    Elgie, K.G.; Grimwood, P.D.

    1993-01-01

    The Drigg disposal site has been the principal disposal site for solid low-level radioactive wastes (LLW) in the United Kingdom since 1959. It is situated on the Cumbrian coast, some six kilometers to the south of the Sellafield nuclear reprocessing site. The Drigg site receives LLW from a wide range of sources including nuclear power generation, nuclear fuel cycle activities, defense activities, isotope manufacture, universities, hospitals, general industry and clean-up of contaminated sites. This LLW has been disposed of in a series of trenches cut into the underlying clay layer of the site, and, since 1988, also into concrete lined vault. The total volume of LLW disposed of at Drigg is at present in the order of 800,000m 3 , with disposals currently approximately 25,000m 3 per year. British Nuclear Fuels plc (BNFL) owns and operates the Drigg disposal site. To meet operational and regulatory requirements, BNFL needs to ensure the acceptability of the disposed waste and be able to track it from its arising point to its specific disposal location. This paper describes the system that has been developed to meet these requirements

  11. 27 CFR 21.151 - List of denaturants authorized for denatured spirits.

    Science.gov (United States)

    2010-04-01

    ..., liquid S.D.A. 36. Cedar leaf oil, U.S.P.XIII S.D.A. 38-B. Chloroform S.D.A. 20. Chlorothymol, N.F.XII S.D... (Glycerol), U.S.P S.D.A. 31-A. Green soap, U.S.P S.D.A. 27-B. Guaiacol, N.F.X S.D.A. 38-B. Heptane C.D.A. 18...) S.D.A. 45. Soap, hard, N.F.XI S.D.A. 31-A. Sodium iodide, U.S.P S.D.A. 25, 25-A. Sodium, metallic S...

  12. Fire analyses in central and disposal tunnels by APROS; Keskus- ja loppusijoitustunneleiden palotarkasteluja APROSilla

    Energy Technology Data Exchange (ETDEWEB)

    Peltokorpi, L.; Kukkola, T.; Nieminen, J. [Fortum Power and Heat Oy, Espoo (Finland)

    2012-12-15

    The central tunnels and the disposal tunnels on the north-east disposal area are the target areas of the fire studies. Target is to maintain under pressure in the fire zone in case of a fire. In the central tunnels a fire of a drilling jumbo with moderate fire propagation is used as heat release rate. In the disposal tunnel the heat release rate of a canister transfer and installation vehicle fire received as a result of the pyrolysis analyze as well as an average heat release rate of a van fire are used. Inlet air is to be conducted to the back end of the fire zone and the exhaust is to be lead out from the beginning of the fire zone. The worst location of the fire is in the beginning of the fire zone just below of the exhaust air clap valve. The size of the fire zone does not have big impact on pressure. In all analyzed cases the fire zone remains too long time over pressurized. Inlet air flow of a 30 m{sup 3}/s is too much. The rotation controlled booster blowers will solve the pressure problems of the fire zone in fire cases. The rotation is controlled by the fire zone pressure. The fire of the canister transfer and installation vehicle in the central tunnel will not cause problems. The disposal tunnel fire door should be kept open, if the canister transfer and installation vehicle or the bentonite blocks transfer and installation vehicle is driven into the disposal tunnel. If a fire is caught in the disposal tunnel then the fire zone in the central tunnel is to be closed and the pressure is controlled by the rotation controlled booster blowers. If a personnel car or a van is driven into the disposal tunnel, then fire door of the disposal is to be kept closed against fires in the central tunnel. (orig.)

  13. The opalinus clay project - disposal of medium and highly-active nuclear wastes

    International Nuclear Information System (INIS)

    Mueller, U.

    2003-01-01

    This article describes the project to demonstrate the feasibility of disposing of long-living medium-active and highly-radioactive nuclear wastes in sedimentary rock in Switzerland. The disposal tasks to be carried out are reviewed and the solutions proposed are described, including short-term handling, intermediate storage and final disposal of low, medium and highly-active wastes. The present state of affairs is described and, in particular, the feasibility of implementing a final storage facility in the opalinus clay beds to be found in northern Switzerland. The project for such a facility in the wine-growing area of the canton of Zurich is described in detail, including the storage concept, the technology to be used and operational aspects as well as questions of safety

  14. A dose assessment for final low level waste disposal located at Cernavoda

    International Nuclear Information System (INIS)

    Moldoveanu, E.

    1995-01-01

    This paper presents the first step in the radiological effect evaluation of the low radioactive wastes disposal which will be located in Cernavoda's area. The calculations are done with some approximations based on pessimistic hypotheses. In this sense, the primary step of the accident scenario is a total failure of the wastes disposal and a total emission of radioactive wastes in the environment. The results are estimated versus the time in which radioisotopes migrate through geological formations until they arrive at the underground water. It is considered that for Cernavoda, a town situated in the vicinity of the disposal, the water is contaminated with all radioisotopes arising in this way, and people ingest this water (2 l/day). The results are presented in tables and figures. (author)

  15. [Arsenic contents in soil, water, and crops in an e-waste disposal area].

    Science.gov (United States)

    Yao, Chun-xia; Yin, Xue-bin; Song, Jing; Li, Chen-xi; Qian, Wei; Zhao, Qi-guo; Luo, Yong-ming

    2008-06-01

    In order to study whether disposing electronic wastes and secondary metal smelting could cause an arsenic pollution in the environment or not, Luqiao town, Taizhou City, Zhejiang Province was selected as a study area. The main purpose of this paper was to characterize arsenic contents in the local environment, including waters, sediments, soils and rice, and to assess the potential risk to humans. Additionally, the arsenic spatial distribution property and arsenic uptake-translocation rule in soil-rice system were also studied. The results showed that the average arsenic levels in the surface water and the groundwater were 8.26 microg/L and 18.52 microg/L, respectively, which did not exceed the limiting value of Chinese Environment Standards class III . Whereas,some groundwater exceeded the recommended standard by the WHO for drinking water (10 microg/L). The arsenic (on average 7.11 mg/kg) in paddy soils and arsenic (on average 6.17 mg/kg) in the vegetable garden soils were lower than the value recommended by the National Standard (level I). The average arsenic contents in brown rice and husks were 165.1 microg/kg and 144.2 microg/kg, which was also lower than the Chinese Foods Quality Standard. The arsenic contents between the corresponding soils-rice and husks-brown rice showed significantly positive correlations. By comparison, the arsenic contents of soils and husks collected around electroplating were relatively higher than most of other pollutant sources, indicating the electroplating may lead accumulation of arsenic in the paddy soil-rice system.

  16. Information on the confinement capability of the facility disposal area at West Valley, New York

    International Nuclear Information System (INIS)

    Nicholson, T.J.; Hurt, R.D.

    1985-12-01

    This report summarizes the previous NRC research studies, NRC licensee source term data and recent DOE site investigations that deal with assessment of the radioactive waste inventory and confinement capability of the Facility Disposal Area (FDA) at West Valley, New York. The radioactive waste inventory for the FDA has a total radioactivity of about 135,000 curies (Ci) and is comprised of H-3 (9,500 Ci), Co-60 (64,000 Ci), SR-90/Y-90 (24,300 Ci), Cs-137/Ba-137m (24,400 Ci), and Pu-241 (13,300 Ci). These wastes are buried in the Lavery Till, a glacial till unit comprised of a clayey silt with very low hydraulic conductivity properties. Recent studies of a tributylphosphate-kerosene plume moving through the shallow ground-water flow system in the FDA indicate a need to better assess the fracture flow components of this system particularly the weathered and fractured Lavery Till unit. The analysis of the deeper ground-water flow system studied by the USGS and NYSGS staffs indicated relatively long pathways and travel times to the accessible environment. Mass wasting, endemic to the glacial-filled valley, contributed to the active slumping in the ravines surrounding the FDA and also need attention. 31 refs., 8 figs., 8 tabs

  17. Near-surface land disposal

    International Nuclear Information System (INIS)

    Kittel, J.H.

    1989-01-01

    The Radioactive Waste Management Handbook provides a comprehensive, systematic treatment of nuclear waste management. Near-Surface Land Disposal, the first volume, is a primary and secondary reference for the technical community. To those unfamiliar with the field, it provides a bridge to a wealth of technical information, presenting the technology associated with the near-surface disposal of low or intermediate level wastes. Coverage ranges from incipient planning to site closure and subsequent monitoring. The book discusses the importance of a systems approach during the design of new disposal facilities so that performance objectives can be achieved; gives an overview of the radioactive wastes cosigned to near-surface disposal; addresses procedures for screening and selecting sites; and emphasizes the importance of characterizing sites and obtaining reliable geologic and hydrologic data. The planning essential to the development of particular sites (land acquisition, access, layout, surface water management, capital costs, etc.) is considered, and site operations (waste receiving, inspection, emplacement, closure, stabilization, etc.) are reviewed. In addition, the book presents concepts for improved confinement of waste, important aspects of establishing a monitoring program at the disposal facility, and corrective actions available after closure to minimize release. Two analytical techniques for evaluating alternative technologies are presented. Nontechnical issues surrounding disposal, including the difficulties of public acceptance are discussed. A glossary of technical terms is included

  18. Application of GIS in siting disposal repository for high level radioactive waste

    International Nuclear Information System (INIS)

    Zhong Xia; Wang Ju; Huang Shutao

    2010-01-01

    High level radioactive waste geo-disposal is directly related to environment protection and Sustainable Utilization of nuclear energy. To ensure both success and long-term safe disposal of the high level-radioactive waste, finding suitable sites is an important step in the research. Meanwhile, siting and evaluation the geo-disposal repository for high level-radioactive waste need a wide range of relevant information, including geology and geophysical surveys data, geochemistry data and other geoscience data in the field. At the same time, some of the data has its spatial property. Geographic information system (GIS) have a role to play in all geographic and spatial aspects of the development and management of the siting disposal repository. GIS has greatly enhanced our ability to store, analyze and communicate accounts of the information. This study was conducted to compare the more suitable sites for the repository using GIS -based on the data which belongs to the preselected area in BeiShan, Gansu Province, China. First, the data of the pre-selected site is captured by GIS and stored in the geoscience database. Then, according to the relevant guide line in the field, the analysis models based on GIS are build. There are some thematic layers of the sites character grouped into two basic type, namely social factors(town, traffic and nuclear plant) and natural factors (water, land and animals and plants).In the paper, a series of GIS models was developed to compare the pre-selected areas in order to make optimal decision. This study shows that with appropriate and enough information GIS used in modeling is a powerful tool for site selection for disposal repository. (authors)

  19. Preliminary conceptual design of a geological disposal system for high-level wastes from the pyroprocessing of PWR spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui-Joo, E-mail: hjchoi@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daeduk-Daero, Yuseong, Daejon 305-353 (Korea, Republic of); Lee, Minsoo; Lee, Jong Youl [Korea Atomic Energy Research Institute, 1045 Daeduk-Daero, Yuseong, Daejon 305-353 (Korea, Republic of)

    2011-08-15

    Highlights: > A geological disposal system consists of disposal overpacks, a buffer, and a deposition hole or a disposal tunnel for high-level wastes from a pyroprocessing of PWR spent fuels is proposed. The amount and characteristics of high-level wastes are analyzed based on the material balance of pyroprocessing. > Four kinds of deposition methods, two horizontal and two vertical, are proposed. Thermal design is carried out with ABAQUS program. The spacing between the disposal modules is determined for the peak temperature in buffer not to exceed 100 deg. C. > The effect of the double-layered buffer is compared with the traditional single-layered buffer in terms of disposal density. Also, the effect of cooling time (aging) is illustrated. > All the thermal calculations are represented by comparing the disposal area of PWR spent fuels with the same cooling time. - Abstract: The inventories of spent fuels are linearly dependent on the production of electricity generated by nuclear energy. Pyroprocessing of PWR spent fuels is one of promising technologies which can reduce the volume of spent fuels remarkably. The properties of high-level wastes from the pyroprocessing are totally different from those of spent fuels. A geological disposal system is proposed for the high-level wastes from pyroprocessing of spent fuels. The amount and characteristics of high-level wastes are analyzed based on the material balance of pyroprocessing. Around 665 kg of monazite ceramic wastes are expected from the pyroprocessing of 10 MtU of PWR spent fuels. Decay heat from monazite ceramic wastes is calculated using the ORIGEN-ARP program. Disposal modules consisting of storage cans, overpacks, and a deposition hole or a disposal tunnel are proposed. Four kinds of deposition methods are proposed. Thermal design is carried out with ABAQUS program and geological data obtained from the KAERI Underground Research Tunnel. Through the thermal analysis, the spacing between the disposal modules

  20. A sensitivity analysis of hazardous waste disposal site climatic and soil design parameters using HELP3

    International Nuclear Information System (INIS)

    Adelman, D.D.; Stansbury, J.

    1997-01-01

    The Resource Conservation and Recovery Act (RCRA) Subtitle C, Comprehensive Environmental Response, Compensation, And Liability Act (CERCLA), and subsequent amendments have formed a comprehensive framework to deal with hazardous wastes on the national level. Key to this waste management is guidance on design (e.g., cover and bottom leachate control systems) of hazardous waste landfills. The objective of this research was to investigate the sensitivity of leachate volume at hazardous waste disposal sites to climatic, soil cover, and vegetative cover (Leaf Area Index) conditions. The computer model HELP3 which has the capability to simulate double bottom liner systems as called for in hazardous waste disposal sites was used in the analysis. HELP3 was used to model 54 combinations of climatic conditions, disposal site soil surface curve numbers, and leaf area index values to investigate how sensitive disposal site leachate volume was to these three variables. Results showed that leachate volume from the bottom double liner system was not sensitive to these parameters. However, the cover liner system leachate volume was quite sensitive to climatic conditions and less sensitive to Leaf Area Index and curve number values. Since humid locations had considerably more cover liner system leachate volume than and locations, different design standards may be appropriate for humid conditions than for and conditions

  1. Disposal options for disused radioactive sources

    International Nuclear Information System (INIS)

    2005-01-01

    This report presents a review of relevant information on the various technical factors and issues, as well as approaches and relevant technologies, leading to the identification of potential disposal options for disused radioactive sources. The report attempts to provide a logical 'road map' for the disposal of disused radioactive sources, taking into consideration the high degree of variability in the radiological properties of such types of radioactive waste. The use of borehole or shaft type repositories is highlighted as a potential disposal option, particularly for those countries that have limited resources and are looking for a simple, safe and cost effective solution for the disposal of their radioactive source inventories. It offers information about usage and characteristics of radioactive sources, disposal considerations, identification and screening of disposal options as well as waste packaging and acceptance criteria for disposal. The information provided in the report could be adapted or adopted to identify and develop specific disposal options suitable for the type and inventory of radioactive sources kept in storage in a given Member State

  2. Fate of Potential Contaminants Due to Disposal of Olive Mill Wastewaters in Unprotected Evaporation Ponds.

    Science.gov (United States)

    Kavvadias, V; Elaiopoulos, K; Theocharopoulos, Sid; Soupios, P

    2017-03-01

    The disposal of olive mill wastewaters (OMW) in shallow and unprotected evaporation ponds is a common, low-cost management practice, followed in Mediterranean countries. So far, the fate of potential soil pollutants in areas located near evaporation ponds is not adequately documented. This study investigates the extent in which the long-term disposal of OMW in evaporation ponds can affect the soil properties of the area located outside the evaporation pond and assesses the fate of the pollution loads of OMW. Four soil profiles situated outside and around the down slope side of the disposal area were excavated. The results showed considerable changes in concentration of soil phenols at the down-site soil profiles, due to the subsurface transport of the OMW. In addition, excessive concentrations of NH 4 + , PO 4 3- and phenols were recorded in liquid samples taken from inside at the bottom of the soil profiles. It is concluded that unprotected evaporation ponds located in light texture soils pose a serious threat to favour soil and water pollution.

  3. Disposal of tritium-exposed metal hydrides

    International Nuclear Information System (INIS)

    Nobile, A.; Motyka, T.

    1991-01-01

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R ampersand D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed

  4. Disposal of Iodine-129

    International Nuclear Information System (INIS)

    Morgan, M.T.; Moore, J.G.; Devaney, H.E.; Rogers, G.C.; Williams, C.; Newman, E.

    1978-01-01

    One of the problems to be solved in the nuclear waste management field is the disposal of radioactive iodine-129, which is one of the more volatile and long-lived fission products. Studies have shown that fission products can be fixed in concrete for permanent disposal. Current studies have demonstrated that practical cementitious grouts may contain up to 18% iodine as barium iodate. The waste disposal criterion is based on the fact that harmful effects to present or future generations can be avoided by isolation and/or dilution. Long-term isolation is effective in deep, dry repositories; however, since penetration by water is possible, although unlikely, release was calculated based on leach rates into water. Further considerations have indicated that sea disposal on or in the ocean floor may be a more acceptable alternative

  5. Sub-seabed disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sivintsaev, Yu.V.

    1990-01-01

    The first stage of investigations of possibility of sub-seabed disposal of long-living intermediate-level radioactive wastes carried out by NIREX (UK) is described. Advantages and disadvantages of sub-seabed disposal of radioactive wastes are considered; regions suitable for disposal, transport means for marine disposal are described. Three types of sub-seabed burials are characterized

  6. Knowledge and Self-Reported Practice of Insulin Injection Device Disposal among Diabetes Patients in Gondar Town, Ethiopia: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Abebe Basazn Mekuria

    2016-01-01

    Full Text Available Background. Incorrect sharp disposal practices may expose the public to needle-stick injuries. The present study aimed at assessing the knowledge and practice of diabetic patients towards insulin injection device disposal in Gondar town, Ethiopia. Methods. A cross-sectional study was employed on insulin requiring diabetes patients who visited the diabetes clinic at Gondar University Referral Hospital (GURH from February 1 to March 28, 2016. Frequencies, percentages, and ANOVA (analysis of variance and Student’s t-test were used to analyze variables. Results. About half of the participants (49.5% had poor knowledge towards safe insulin injection waste disposal. More than two-thirds (80.7% of respondents had poor practice and 64.3% of respondents did not put insulin needle and lancets into the household garbage. 31% of respondents threw sharps on street when they travel outside. Respondents living in urban areas had a higher mean of knowledge and practice score than those who live in rural area. Conclusions. This study revealed that knowledge and practice of diabetic patients were low towards safe insulin injection waste disposal in study area. Healthcare providers should also be aware of safe disposing system and counsel patients on appropriate disposal of used syringes.

  7. Disposal of olive oil mill wastes in evaporation ponds: effects on soil properties.

    Science.gov (United States)

    Kavvadias, V; Doula, M K; Komnitsas, K; Liakopoulou, N

    2010-10-15

    The most common practice followed in the Med countries for the management of olive oil mill wastes (OMW) involves disposal in evaporation ponds or direct disposal on soil. So far there is lack of reliable information regarding the long-term effects of OMW application on soils. This study assesses the effects of OMW disposal in evaporation ponds on underlying soil properties in the wider disposal site as well as the impacts of untreated OMW application on agricultural soils. In case of active disposal sites, the carbonate content in most soils was decreased, whereas soil EC, as well as Cl(-), SO(4)(2-), PO(4)(3-), NH(4)(+) and particularly K(+) concentrations were substantially increased. Soil pH was only marginally affected. Phenol, total N, available P and PO(4)(3-) concentrations were considerably higher in the upper soil layers in areas adjacent to the ponds. Available B as well as DTPA extractable Cu, Mn, Zn and Fe increased substantially. Most surface soil parameters exhibited increased values at the inactive site 6 years after mill closure and cease of OMW disposal activities but differences were diminished in deeper layers. It is therefore concluded that long-term uncontrolled disposal of raw OMW on soils may affect soil properties and subsequently enhance the risk for groundwater contamination. 2010 Elsevier B.V. All rights reserved.

  8. Technical basis for tumbleweed survey requirements and disposal criteria

    International Nuclear Information System (INIS)

    J. D. Arana

    2000-01-01

    This technical basis document describes the technique for surveying potentially contaminated tumbleweeds in areas where the Environmental Restoration Contractor has jurisdiction and the disposal criteria based on these survey results. The report also discusses the statistical basis for surveys and the historical basis for the assumptions that are used to interpret the surveys

  9. Technical Basis for Tumbleweed Survey Requirements and Disposal Criteria

    International Nuclear Information System (INIS)

    Arana, J.D.

    2000-01-01

    This technical basis document describes the technique for surveying potentially contaminated tumbleweeds in areas where the Environmental Restoration Contractor has jurisdiction and the disposal criteria based on these survey results. The report also discusses the statistical basis for surveys and the historical basis for the assumptions that are used to interpret the surveys

  10. Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site

    International Nuclear Information System (INIS)

    Kincaid, Charles T.; Bryce, Robert W.; Buck, John W.

    2004-01-01

    A composite analysis is required by U.S. Department of Energy (DOE) Manual 435.1-1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site (DOE/HQ-Manual 435.1-1). A Composite Analysis is defined as ''a reasonably conservative assessment of the cumulative impact from active and planned low-level waste disposal facilities, and all other sources from radioactive contamination that could interact with the low-level waste disposal facility to affect the dose to future members of the public''. At the Hanford Site, a composite analysis is required for continued disposal authorization for the immobilized low-activity waste, tank waste vitrification plant melters, low level waste in the 200 East and 200 West Solid Waste Burial Grounds, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste in the Environmental Restoration Disposal Facility. The 2004 Composite Analysis will be a site-wide analysis, considering final remedial actions for the Columbia River corridor and the Central Plateau at the Hanford Site. The river corridor includes waste sites and facilities in each of the 100 Areas as well as the 300, 400, and 600 Areas. The remedial actions for the river corridor are being conducted to meet residential land use standards with the vision of the river corridor being devoted to a combination of recreation and preservation. The ''Central Plateau'' describes the region associated with operations and waste sites of the 200 Areas. DOE is developing a strategy for closure of the Central Plateau area by 2035. At the time of closure, waste management activities will shrink to a Core Zone within the Central Plateau. The Core Zone will contain the majority of Hanford's permanently disposed waste

  11. Financing of radioactive waste disposal

    International Nuclear Information System (INIS)

    Reich, J.

    1989-01-01

    Waste disposal is modelled as a financial calculus. In this connection the particularity is not primarily the dimension to be expected of financial requirement but above all the uncertainty of financial requirement as well as the ecological, socio-economic and especially also the temporal dimension of the Nuclear Waste Disposal project (disposal of spent fuel elements from light-water reactors with and without reprocessing, decommissioning = safe containment and disposal of nuclear power plants, permanent isolation of radioactive waste from the biosphere, intermediate storage). Based on the above mentioned factors the author analyses alternative approaches of financing or financial planning. He points out the decisive significance of the perception of risks or the evaluation of risks by involved or affected persons - i.e. the social acceptance of planned and designed waste disposal concepts - for the achievement and assessment of alternative solutions. With the help of an acceptance-specific risk measure developed on the basis of a mathematical chaos theory he illustrates, in a model, the social influence on the financing of nuclear waste disposal. (orig./HP) [de

  12. Social dimensions of nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Armin [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Technology Assessment and Systems Analysis

    2015-07-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  13. Phytoextraction crop disposal--an unsolved problem

    International Nuclear Information System (INIS)

    Sas-Nowosielska, A.; Kucharski, R.; Malkowski, E.; Pogrzeba, M.; Kuperberg, J.M.; Krynski, K.

    2004-01-01

    Several methods of contaminated crop disposal after phytoextraction process (composting, compaction, incineration, ashing, pyrolysis, direct disposal, liquid extraction) have been described. Advantages and disadvantages of methods are presented and discussed. Composting, compaction and pyrolysis are the pretreatment steps, since significant amount of contaminated biomass will still exist after each of the process. Four methods of final disposal were distinguished: incineration, direct disposal, ashing and liquid extraction. Among them, incineration (smelting) is proposed as the most feasible, economically acceptable and environmentally sound. - Methods of contaminated crop disposal are described and evaluated

  14. Social dimensions of nuclear waste disposal

    International Nuclear Information System (INIS)

    Grunwald, Armin

    2015-01-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  15. DISPOSAL CONTAINER HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    E. F. Loros

    2000-06-30

    The Disposal Container Handling System receives and prepares new disposal containers (DCs) and transfers them to the Assembly Transfer System (ATS) or Canister Transfer System (CTS) for loading. The system receives the loaded DCs from ATS or CTS and welds the lids. When the welds are accepted the DCs are termed waste packages (WPs). The system may stage the WP for later transfer or transfer the WP directly to the Waste Emplacement/Retrieval System. The system can also transfer DCs/WPs to/from the Waste Package Remediation System. The Disposal Container Handling System begins with new DC preparation, which includes installing collars, tilting the DC upright, and outfitting the container for the specific fuel it is to receive. DCs and their lids are staged in the receipt area for transfer to the needed location. When called for, a DC is put on a cart and sent through an airlock into a hot cell. From this point on, all processes are done remotely. The DC transfer operation moves the DC to the ATS or CTS for loading and then receives the DC for welding. The DC welding operation receives loaded DCs directly from the waste handling lines or from interim lag storage for welding of the lids. The welding operation includes mounting the DC on a turntable, removing lid seals, and installing and welding the inner and outer lids. After the weld process and non-destructive examination are successfully completed, the WP is either staged or transferred to a tilting station. At the tilting station, the WP is tilted horizontally onto a cart and the collars removed. The cart is taken through an air lock where the WP is lifted, surveyed, decontaminated if required, and then moved into the Waste Emplacement/Retrieval System. DCs that do not meet the welding non-destructive examination criteria are transferred to the Waste Package Remediation System for weld preparation or removal of the lids. The Disposal Container Handling System is contained within the Waste Handling Building System

  16. Geological aspects of the high level waste and spent fuel disposal programme in Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Matej, Gedeon; Milos, Kovacik; Jozef, Hok [Geological Survey of Slovak Republic, Bratislava (Slovakia)

    2001-07-01

    An autonomous programme for development of a deep geological high level waste and spent fuel disposal began in 1996. One of the most important parts in the programme is siting of the future deep seated disposal. Geological conditions in Slovakia are complex due to the Alpine type tectonics that formed the geological environment during Tertiary. Prospective areas include both crystalline complexes (tonalites, granites, granodiorites) and Neogene (Miocene) argillaceous complexes. (author)

  17. Land disposal alternatives for low-level waste

    International Nuclear Information System (INIS)

    Alexander, P.; Lindeman, R.; Saulnier, G.; Adam, J.; Sutherland, A.; Gruhlke, J.; Hung, C.

    1982-01-01

    The objective of this project is to develop data regarding the effectiveness and costs of the following options for disposing of specific low-level nuclear waste streams; sanitary landfill; improved shallow land burial; intermediate depth disposal; deep well injection; conventional shallow land burial; engineered surface storage; deep geological disposal; and hydrofracturing. This will be accomplished through the following steps: (1) characterize the properties of the commercial low-level wastes requiring disposal; (2) evaluate the various options for disposing of this waste, characterize selected representative waste disposal sites and design storage facilities suitable for use at those sites; (3) calculate the effects of various waste disposal options on population health risks; (4) estimate the costs of various waste disposal options for specific sites; and (5) perform trade-off analyses of the benefits of various waste disposal options against the costs of implementing these options. These steps are described. 2 figures, 2 tables

  18. Critical groups and biospheres in the context of radioactive waste disposal. Fourth report of the working group on principles and criteria for radioactive waste disposal

    International Nuclear Information System (INIS)

    1999-04-01

    Plans for disposing radioactive wastes have raised a number of unique and mostly philosophical problems, mainly due to the very long time-scales which have to be considered. This report is concerned with the choice of critical groups and associated biospheres for application in safety assessments for underground disposal of radioactive wastes. For assessment of safety in the far future, when human behaviour or biosphere conditions cannot be known with any certainty, it is proposed that a stylized approach be adopted. The approach is consistent with that adopted in areas of radiation protection where it is impracticable to establish the precise characteristics of exposed individuals

  19. Integrated disposal Facility Sagebrush Habitat Mitigation Project: FY2007 Compensation Area Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Durham, Robin E.; Sackschewsky, Michael R.

    2007-09-01

    This report summarizes the first year survival of sagebrush seedlings planted as compensatory mitigation for the Integrated Disposal Facility Project. Approximately 42,600 bare root seedlings and 26,000 pluglings were planted at a mitigation site along Army Loop Road in February 2007. Initial baseline monitoring occurred in March 2007, and first summer survival was assessed in September 2007. Overall survival was 19%, with bare root survival being marginally better than pluglings (21% versus 14%). Likely major factors contributing to low survival were late season planting and insufficient soil moisture during seedling establishment.

  20. Unreviewed Disposal Question: A Discipline Process to Manage Change in LLW Disposal

    International Nuclear Information System (INIS)

    Goldston, W.T.

    2000-01-01

    The Department of Energy's waste management Order, DOE O 435.1, requires that low--level waste disposal facilities develop and maintain a radiological performance assessment to ensure that disposal operations are within a performance envelope defined by performance objectives for long-term protection of the public and the environment. The Order also requires that a radiological composite analysis be developed and maintained to ensure that the disposal facility, in combination with other sources of radioactive material that may remain when all DOE activities have ceased, will not compromise future radiological protection of the public and the environment. The Order further requires that a Disposal Authorization Statement (DAS) be obtained from DOE Headquarters and that the disposal facility be operated within the performance assessment, composite analysis, and DAS. Maintenance of the performance assessment and composite analysis includes conducting test, research, and monitoring activities to increase confidence in the results of the analyses. It also includes updating the analyses as changes are proposed in the disposal operations, or other information requiring an update, becomes available. Personnel at the Savannah River Site have developed and implemented an innovative process for reviewing proposed or discovered changes in low-level radioactive waste disposal operations. The process is a graded approach to determine, in a disciplined manner, whether changes are within the existing performance envelope, as defined by the performance assessment, composite analysis, and DAS, or whether additional analysis is required to authorize the change. This process is called the Unreviewed Disposal Question (UDQ) process. It has been developed to be analogous to the Unreviewed Safety Question (UDQ) process that has been in use within DOE for many years. This is the first formalized system implemented in the DOE complex to examine low-level waste disposal changes the way the