WorldWideScience

Sample records for disposable bag bioreactors

  1. Aujeszky's disease virus production in disposable bioreactor

    Indian Academy of Sciences (India)

    Madhu

    1Laboratory for Cell Culture Technology and Biotransformations, 2Laboratory for ... A novel, disposable-bag bioreactor system that uses wave action for mixing and transferring ... consisted of 95% of air + 5% of CO2 using gas mixing module.

  2. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    Science.gov (United States)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  3. Disposable bioreactors: maturation into pharmaceutical glycoprotein manufacturing.

    Science.gov (United States)

    Brecht, René

    2009-01-01

    Modern biopharmaceutical development is characterised by deep understanding of the structure activity relationship of biological drugs. Therefore, the production process has to be tailored more to the product requirements than to the existing equipment in a certain facility. In addition, the major challenges for the industry are to lower the high production costs of biologics and to shorten the overall development time. The flexibility for providing different modes of operation using disposable bioreactors in the same facility can fulfil these demands and support tailor-made processes.Over the last 10 years, a huge and still increasing number of disposable bioreactors have entered the market. Bioreactor volumes of up to 2,000 L can be handled by using disposable bag systems. Each individual technology has been made available for different purposes up to the GMP compliant production of therapeutic drugs, even for market supply. This chapter summarises disposable technology development over the last decade by comparing the different technologies and showing trends and concepts for the future.

  4. Application of Disposable Bag Bioreactors in Tissue Engineering and for the Production of Therapeutic Agents

    Science.gov (United States)

    Eibl, R.; Eibl, D.

    In order to increase process efficiency, many pharmaceutical and biotechnology companies have introduced disposable bag technology over the last 10 years. Because this technology also greatly reduces the risk of cross-contamination, disposable bags are preferred in applications in which an absolute or improved process safety is a necessity, namely the production of functional tissue for implantation (tissue engineering), the production of human cells for the treatment of cancer and immune system diseases (cellular therapy), the production of viruses for gene therapies, the production of therapeutic proteins, and veterinary as well as human vaccines.

  5. Cultivation of shear stress sensitive microorganisms in disposable bag reactor systems.

    Science.gov (United States)

    Jonczyk, Patrick; Takenberg, Meike; Hartwig, Steffen; Beutel, Sascha; Berger, Ralf G; Scheper, Thomas

    2013-09-20

    Technical scale (≥5l) cultivations of shear stress sensitive microorganisms are often difficult to perform, as common bioreactors are usually designed to maximize the oxygen input into the culture medium. This is achieved by mechanical stirrers, causing high shear stress. Examples for shear stress sensitive microorganisms, for which no specific cultivation systems exist, are many anaerobic bacteria and fungi, such as basidiomycetes. In this work a disposable bag bioreactor developed for cultivation of mammalian cells was investigated to evaluate its potential to cultivate shear stress sensitive anaerobic Eubacterium ramulus and shear stress sensitive basidiomycetes Flammulina velutipes and Pleurotus sapidus. All cultivations were compared with conventional stainless steel stirred tank reactors (STR) cultivations. Good growth of all investigated microorganisms cultivated in the bag reactor was found. E. ramulus showed growth rates of μ=0.56 h⁻¹ (bag) and μ=0.53 h⁻¹ (STR). Differences concerning morphology, enzymatic activities and growth in fungal cultivations were observed. In the bag reactor growth in form of small, independent pellets was observed while STR cultivations showed intense aggregation. F. velutipes reached higher biomass concentrations (21.2 g l⁻¹ DCW vs. 16.8 g l⁻¹ DCW) and up to 2-fold higher peptidolytic activities in comparison to cell cultivation in stirred tank reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200-L orbitally-shaken disposable bioreactor.

    Science.gov (United States)

    Raven, Nicole; Rasche, Stefan; Kuehn, Christoph; Anderlei, Tibor; Klöckner, Wolf; Schuster, Flora; Henquet, Maurice; Bosch, Dirk; Büchs, Jochen; Fischer, Rainer; Schillberg, Stefan

    2015-02-01

    Tobacco BY-2 cells have emerged as a promising platform for the manufacture of biopharmaceutical proteins, offering efficient protein secretion, favourable growth characteristics and cultivation in containment under a controlled environment. The cultivation of BY-2 cells in disposable bioreactors is a useful alternative to conventional stainless steel stirred-tank reactors, and orbitally-shaken bioreactors could provide further advantages such as simple bag geometry, scalability and predictable process settings. We carried out a scale-up study, using a 200-L orbitally-shaken bioreactor holding disposable bags, and BY-2 cells producing the human monoclonal antibody M12. We found that cell growth and recombinant protein accumulation were comparable to standard shake flask cultivation, despite a 200-fold difference in cultivation volume. Final cell fresh weights of 300-387 g/L and M12 yields of ∼20 mg/L were achieved with both cultivation methods. Furthermore, we established an efficient downstream process for the recovery of M12 from the culture broth. The viscous spent medium prevented clarification using filtration devices, but we used expanded bed adsorption (EBA) chromatography with SP Sepharose as an alternative for the efficient capture of the M12 antibody. EBA was introduced as an initial purification step prior to protein A affinity chromatography, resulting in an overall M12 recovery of 75-85% and a purity of >95%. Our results demonstrate the suitability of orbitally-shaken bioreactors for the scaled-up cultivation of plant cell suspension cultures and provide a strategy for the efficient purification of antibodies from the BY-2 culture medium. © 2014 Wiley Periodicals, Inc.

  7. Strategy for selecting disposable bags for cell culture media applications based on a root-cause investigation.

    Science.gov (United States)

    Wood, Joseph; Mahajan, Ekta; Shiratori, Masaru

    2013-01-01

    The use of disposable bags for cell culture media storage has grown significantly in the past decade. Some of the key advantages of using disposable bags relative to non-disposable containers include increased product throughput, decreased cleaning validation costs, reduced risk of cross contamination and lower facility costs. As the scope of use of disposable bags for cell culture applications increases, problematic bags and scenarios should be identified and addressed to continue improving disposables technologies and meet the biotech industry's needs. In this article, we examine a cell culture application wherein media stored in disposable bags is warmed at 37°C before use for cell culture operations. A problematic bag film was identified through a prospective and retrospective cell culture investigation. The investigation provided information on the scope and variation of the issue with respect to different Chinese hamster ovary (CHO) cell lines, cell culture media, and application-specific parameters. It also led to the development of application-specific test methods and enabled a strategy for disposable bag film testing. The strategy was implemented for qualifying an alternative bag film for use in our processes. In this test strategy, multiple lots of 13 bag film types, encompassing eight vendors were evaluated using a three round, cell culture-based test strategy. The test strategy resulted in the determination of four viable bag film options based on the technical data. The results of this evaluation were used to conclude that a volatile or air-quenched compound, likely generated by gamma irradiation of the problematic bag film, negatively impacted cell culture performance. © 2013 American Institute of Chemical Engineers.

  8. Characterization and Application of a Disposable Rotating Bed Bioreactor for Mesenchymal Stem Cell Expansion.

    Science.gov (United States)

    Neumann, Anne; Lavrentieva, Antonina; Heilkenbrinker, Alexandra; Loenne, Maren; Kasper, Cornelia

    2014-11-27

    Recruitment of mesenchymal stromal cells (MSC) into the field of tissue engineering is a promising development since these cells can be expanded vivo to clinically relevant numbers and, after expansion, retain their ability to differentiate into various cell lineages. Safety requirements and the necessity to obtain high cell numbers without frequent subcultivation of cells raised the question of the possibility of expanding MSC in one-way (single-use) disposable bioreactors. In this study, umbilical cord-derived MSC (UC-MSC) were expanded in a disposable Z 2000 H bioreactor under dynamic conditions. Z was characterized regarding residence time and mixing in order to evaluate the optimal bioreactor settings, enabling optimal mass transfer in the absence of shear stress, allowing an reproducible expansion of MSC, while maintaining their stemness properties. Culture of the UC-MSC in disposable Z 2000 H bioreactor resulted in a reproducible 8-fold increase of cell numbers after 5 days. Cells were shown to maintain specific MSC surface marker expression as well as trilineage differentiation potential and lack stress-induced premature senescence.

  9. Characterization and Application of a Disposable Rotating Bed Bioreactor for Mesenchymal Stem Cell Expansion

    Directory of Open Access Journals (Sweden)

    Anne Neumann

    2014-11-01

    Full Text Available Recruitment of mesenchymal stromal cells (MSC into the field of tissue engineering is a promising development since these cells can be expanded vivo to clinically relevant numbers and, after expansion, retain their ability to differentiate into various cell lineages. Safety requirements and the necessity to obtain high cell numbers without frequent subcultivation of cells raised the question of the possibility of expanding MSC in one-way (single-use disposable bioreactors. In this study, umbilical cord-derived MSC (UC-MSC were expanded in a disposable Z 2000 H bioreactor under dynamic conditions. Z was characterized regarding residence time and mixing in order to evaluate the optimal bioreactor settings, enabling optimal mass transfer in the absence of shear stress, allowing an reproducible expansion of MSC, while maintaining their stemness properties. Culture of the UC-MSC in disposable Z 2000 H bioreactor resulted in a reproducible 8-fold increase of cell numbers after 5 days. Cells were shown to maintain specific MSC surface marker expression as well as trilineage differentiation potential and lack stress-induced premature senescence.

  10. Knowledge, attitude, and practices on usage, disposal, and effect of plastic bags on sheep and goats.

    Science.gov (United States)

    Otsyina, H R; Nguhiu-Mwangi, J; Mogoa, E G M; Mbuthia, P G; Ogara, W O

    2018-02-08

    The objective of this study was to evaluate knowledge, attitudes, and practices of people in the Nairobi and Kajiado Counties, Kenya, on the usage, disposal, and effect of plastic waste on sheep and goats (shoats). A semi-structured questionnaire was used to collect data from 384 respondents in four communities in the two counties. Most of the people irrespective of their age, occupation, and educational status used plastic bags of some type on a daily basis. A high proportion of the respondents (37.0%, 142) used plastic bags because of the low cost. Approximately, 79.1% (304) disposed used plastic bags in open dumps. A total of 147 (38.3%) households kept shoats. Out of these, 38.1% (56) purchased feed and also allowed their animals to roam. Most of them (45.3%, 174) thought that lack of feed for the animals was the main reason why shoats roam and scavenge at refuse dump sites and road sides. A large proportion of the respondents (44.5%, 143) mentioned death of animals as the ultimate consequence of ingestion of waste plastic bags. Though, the respondents were aware that indiscriminate disposal of used plastic bags could result in death of the animals from which they derive their livelihoods, they nevertheless continued with the practice. There is a need for a paradigm shift in the way and manner plastic bags are used and disposed.

  11. Control of an air pressure actuated disposable bioreactor for cultivating heart valves

    NARCIS (Netherlands)

    Beelen, M.J.; Neerincx, P.E.; Molengraft, van de M.J.G.

    2011-01-01

    A disposable injection molded bioreactor for growing tissue-engineered heart valves is controlled to mimic the physiological heart cycle. Tissue-engineered heart valves, cultured from human stem cells, are a possible alternative for replacing failing aortic heart valves, where nowadays biological

  12. Report on achievements in fiscal 1998. Development of a waste disposal and recycle related technology. (Development of a technology to dispose of air bags adequately); 1998 nendo haikibutsu shori recycle kanren gijutsu kaihatsu air bag tekisei shori gijutsu no kaihatsu nado seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-01

    This technological development is intended to develop a process technology to dispose adequately of air bags convergently when they are removed from waste cars, with consideration paid on environmental and safety aspects. This technology that can dispose of air bags remaining as air bag modules (ABM) in large quantity and adequately can solve the problems of maloperation in opening them in cars and noise in conventional disposal methods. The recovery and disposal system using an inflator can be expected of reducing work load on dismantling contractors and enhancing the work safety. Furthermore, the energy saving process utilizing combustion of plastics can save resources. However, this technology has not elucidated how dioxins, dust, smoke, sulfides, and nitrogen oxides are generated and how the generation can be prevented. Therefore, an exhaust gas dioxin testing facility and an exhaust gas treating facility were installed additionally to the existing heating treatment facility to develop a disposal technology to treat adequately the exhaust gases generated when ABMs are disposed conveergently in large quantity, and treat the waste water discharged from the facilities. Fiscal 1998 has performed preliminary tests to accumulate fundamental data, and design and installation of the above two facilities. (NEDO)

  13. Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale.

    Science.gov (United States)

    Klöckner, Wolf; Gacem, Riad; Anderlei, Tibor; Raven, Nicole; Schillberg, Stefan; Lattermann, Clemens; Büchs, Jochen

    2013-12-02

    Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham's π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/- 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale.

  14. Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200-L orbitally-shaken disposable bioreactor

    NARCIS (Netherlands)

    Raven, N.; Rasche, F.; Kuehn, C.; Anderlei, T.; Klöckner, W.; Schuster, F.; Henquet, M.G.L.; Bosch, H.J.; Büchs, J.; Fischer, R.; Schillberg, S.

    2015-01-01

    Tobacco BY-2 cells have emerged as a promising platform for the manufacture of biopharmaceutical proteins, offering efficient protein secretion, favourable growth characteristics and cultivation in containment under a controlled environment. The cultivation of BY-2 cells in disposable bioreactors is

  15. Characterization and Application of a Disposable Rotating BedBioreactor for Mesenchymal Stem Cell Expansion

    OpenAIRE

    Neumann, Anne; Lavrentieva, Antonina; Heilkenbrinker, Alexandra; Loenne, Maren; Kasper, Cornelia

    2014-01-01

    Recruitment of mesenchymal stromal cells (MSC) into the field of tissue engineering is a promising development since these cells can be expanded vivo to clinically relevant numbers and, after expansion, retain their ability to differentiate into various cell lineages. Safety requirements and the necessity to obtain high cell numbers without frequent subcultivation of cells raised the question of the possibility of expanding MSC in one-way (single-use) disposable bioreactors. In this study, u...

  16. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Keywords. Aujeszky's disease virus, baby hamster kidney cells, cell culture, disposable bioreactor, virus titre. Abstract. A novel, disposable-bag bioreactor system that uses wave action for mixing and transferring oxygen was evaluated for BHK 21 C13 cell line growth and Aujeszky's disease virus (ADV) production. Growth ...

  17. Using nudges to reduce waste? The case of Toronto's plastic bag levy.

    Science.gov (United States)

    Rivers, Nicholas; Shenstone-Harris, Sarah; Young, Nathan

    2017-03-01

    The overuse of disposable plastic bags is a major environmental problem across the globe. In recent years, numerous jurisdictions have sought to curb disposable bag use by implementing a levy or fee at the point of purchase. These levies are typically small and symbolic (around $0.05 per bag), but serve as a highly-visible and continuous reminder to consumers. As such, they are consistent with nudging policies that seek to encourage broad changes in behaviour through small, non-coercive measures that influence people's thinking about an issue. While existing empirical evidence suggests that nudges are highly effective in reducing disposable bag use, we argue that many of these studies are flawed because they lack adequate temporal and geographic controls. We use longitudinal data from four waves of a major Canadian survey to analyze the effect of a disposable bag levy in the City of Toronto. Controlling for demographics and changes in social norms over time, we find that the levy increased the use of reusable shopping bags by 3.4 percentage points. Moreover, we find that the impact of the policy was highly variable across behavioural and demographic groups. The levy was highly effective in encouraging people who already used reusable bags to use them more frequently, while having no effect on infrequent users. We also find that the effects are limited to households with high socio-economic status (as measured by income, educational attainment, and housing situation). This suggests important limitations for nudging policy more generally, as people with lower socio-economic status appear to have been unaffected by this behavioural prompt. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Solid and Liquid Waste Drying Bag

    Science.gov (United States)

    Litwiller, Eric (Inventor); Hogan, John A. (Inventor); Fisher, John W. (Inventor)

    2009-01-01

    Method and system for processing waste from human activities, including solids, liquids and vapors. A fluid-impermeable bag, lined with a liquid-impermeable but vapor-permeable membrane, defining an inner bag, is provided. A vacuum force is provided to extract vapors so that the waste is moved toward a selected region in the inner bag, extracted vapors, including the waste vapors and vaporized portions of the waste liquids are transported across the membrane, and most or all of the solids remain within the liner. Extracted vapors are filtered, and sanitized components thereof are isolated and optionally stored. The solids remaining within the liner are optionally dried and isolated for ultimate disposal.

  19. PLASTIC BAGS: AQUESTION OF CHANGING HABITS

    OpenAIRE

    Lorenzett, Juliana Benitti; Rizzatti, Cláudia Bach; Lorenzett, Daniel Benitti; Godoy, Leoni Pentiado

    2013-01-01

    http://dx.doi.org/10.5902/223613087725This study aimed to conduct a review about of the use and disposal of plastic bags, checking in the existing literature that has been studied and the current status of this environmental problem, besides conducting a survey with customers in a supermarket to check the involvement of the community with the adoption of reusable bags. A bibliographic search was conducted by internet, and is considered therefore works available online. The study survey was gi...

  20. Disposal leachates treatment

    Energy Technology Data Exchange (ETDEWEB)

    Coulomb, I.; Renaud, P. (SITA, 75 - Paris (France)); Courant, P. (FD Conseil, 78 - Gargenville (France)); Manem, J.; Mandra, V.; Trouve, E. (Lyonnaise des Eaux-Dumez, 78 - Le Pecq (France))

    1993-12-01

    Disposal leachates are complex and variable effluents. The use of a bioreactor with membranes, coupled with a reverse osmosis unit, gives a new solution to the technical burying centers. Two examples are explained here.

  1. Carbon footprint of shopping (grocery) bags in China, Hong Kong and India

    Science.gov (United States)

    Muthu, Subramanian Senthilkannan; Li, Y.; Hu, J. Y.; Mok, P. Y.

    2011-01-01

    Carbon footprint has become a term often used by the media in recent days. The human carbon footprint is professed to be a very serious global threat and every nation is looking at the possible options to reduce it since its consequences are alarming. A carbon footprint is a measure of the impact of human activities on earth and in particular on the environment; more specifically it relates to climate change and to the total amount of greenhouse gases produced, measured in units of carbon dioxide emitted. Effort of individuals in minimizing the carbon footprint is vital to save our planet. This article reports a study of the carbon footprint of various types of shopping bags (plastic, paper, non-woven and woven) using life cycle impact assessment (LCIA) technique in two stages. The first stage (baseline study), comprised the study of the impact of different types of shopping bags in the manufacturing phase, without considering their usage and disposal phases (cradle to gate stage). The LCIA was accomplished by the IPCC 2007 method, developed by the Inter Panel on Climate Change in SIMAPRO 7.2. The GWP (Global Warming Potential) values calculated by the IPCC 2007 method for 100 years were considered as a directive to compare the carbon footprint made by the different types of shopping bags under consideration. The next stage was the study of the carbon footprint of these bags including their usage and disposal phases (cradle to grave stage) and the results derived were compared with the results derived from the baseline study, which is the major focus of this research work. The values for usage and end-of-life phases were obtained from the survey questionnaire performed amongst different user groups of shopping bags in China, Hong Kong and India. The results show that the impact of different types of shopping bags in terms of their carbon footprint potential is very high if no usage and disposal options were provided. When the carbon footprint values from different

  2. The use of filtered bags to increase waste payload capacity

    International Nuclear Information System (INIS)

    Dustin, D.F.; Thorp, D.T.; Rivera, M.A.

    1998-01-01

    For the past few years, the Department of Energy has favored the direct disposal of low plutonium content residue materials from Rocky Flats rather than engage in expensive and time consuming plutonium recovery operations. One impediment to direct disposal has been the wattage limit imposed by the Waste Isolation Pilot Plant on hydrogenous materials such as combustibles and sludges. The issue of concern is the radiolytic generation and accumulation of hydrogen and other explosive gases in waste containers. The wattage limits that existed through 1996 restricted the amount of plutonium bearing hydrogenous materials that could be packaged in a WIPP bound waste drum to only a fraction of the capacity of a drum. Typically, only about one kilogram of combustible residue could be packaged in a waste drum before the wattage limit was exceeded resulting in an excessively large number of drums to be procured, stored, shipped, and interred. The Rocky Flats Environmental Technology Site has initiated the use of filtered plastic bags (called bag-out bags) used to remove transuranic waste materials from glove box lines. The bags contain small, disk like HEPA filters which are effective in containing radioactively contaminated particulate material but allow for the diffusion of hydrogen gas. Used in conjunction with filtered 55 gallon drums, filtered bag-out bags were pursued as a means to increase the allowable wattage limits for selected residue materials. In February 1997, the Nuclear Regulatory Commission approved the use of filtered bag-out bags for transuranic waste materials destined for WIPP. The concomitant increase in wattage limits now allows for approximately four times the payload per waste drum for wattage limited materials

  3. A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level.

    Science.gov (United States)

    Grünberger, Alexander; Paczia, Nicole; Probst, Christopher; Schendzielorz, Georg; Eggeling, Lothar; Noack, Stephan; Wiechert, Wolfgang; Kohlheyer, Dietrich

    2012-05-08

    In the continuously growing field of industrial biotechnology the scale-up from lab to industrial scale is still a major hurdle to develop competitive bioprocesses. During scale-up the productivity of single cells might be affected by bioreactor inhomogeneity and population heterogeneity. Currently, these complex interactions are difficult to investigate. In this report, design, fabrication and operation of a disposable picolitre cultivation system is described, in which environmental conditions can be well controlled on a short time scale and bacterial microcolony growth experiments can be observed by time-lapse microscopy. Three exemplary investigations will be discussed emphasizing the applicability and versatility of the device. Growth and analysis of industrially relevant bacteria with single cell resolution (in particular Escherichia coli and Corynebacterium glutamicum) starting from one single mother cell to densely packed cultures is demonstrated. Applying the picolitre bioreactor, 1.5-fold increased growth rates of C. glutamicum wild type cells were observed compared to typical 1 litre lab-scale batch cultivation. Moreover, the device was used to analyse and quantify the morphological changes of an industrially relevant l-lysine producer C. glutamicum after artificially inducing starvation conditions. Instead of a one week lab-scale experiment, only 1 h was sufficient to reveal the same information. Furthermore, time lapse microscopy during 24 h picolitre cultivation of an arginine producing strain containing a genetically encoded fluorescence sensor disclosed time dependent single cell productivity and growth, which was not possible with conventional methods.

  4. Air-tight disposing device for solid radioactive waste

    International Nuclear Information System (INIS)

    Aoyama, Saburo.

    1976-01-01

    Object: In a construction for air-tightly connecting radioactive material handling equipment with a radioactive waste container through a vinyl bag, to use a multi-stage expansion tube to introduce the radioactive waste into the waste container in safe and positive manner. Structure: During normal operation in the radioactive material handling equipment, a multi-stage expansion cylinder is extended by operation of a remote shaft to suitably throw the waste in a state with a vinyl bag protected, whereas when the waste is disposed away from the equipment, the multi-stage expansion cylinder is contracted and received into a holder, and the vinyl bag is heated and sealed at a given position and cut, after which a cover of an outer container for disposal is closed and carried out. The vinyl bag remained on the side of the holder after sealed and cut is put into the waste container after a fresh vinyl bag, in which another waste container is received, has been secured to the holder. (Taniai, N.)

  5. Alternative treatment for septic tank sludge: co-digestion with municipal solid waste in bioreactor landfill simulators.

    Science.gov (United States)

    Valencia, R; den Hamer, D; Komboi, J; Lubberding, H J; Gijzen, H J

    2009-02-01

    Co-disposal of septic tank sludge had a positive effect on the municipal solid waste (MSW) stabilisation process in Bioreactor Landfill simulators. Co-disposal experiments were carried out using the Bioreactor Landfill approach aiming to solve the environmental problems caused by indiscriminate and inadequate disposal of MSW and especially of septic tank sludge. The simulator receiving septic tank sludge exhibited a 200 days shorter lag-phase as compared to the 350 days required by the control simulator to start the exponential biogas production. Additionally, the simulator with septic sludge apparently retained more moisture (>60% w/w), which enhanced the overall conversion of organic matter hence increasing the biogas production (0.60 m3 biogas kg(-1)VS(converted)) and removal efficiency of 60% for VS from the simulator. Alkaline pH values (pH>8.5) did not inhibit the biogas production; moreover it contributed to reduce partially the negative effects of NH(4)(+) (>2 g L(-1)) due to NH(3) volatilisation thus reducing the nitrogen content of the residues. Associated risks and hazards with septage disposal were practically eliminated as total coliform and faecal coliform contents were reduced by 99% and 100%, respectively at the end of the experiment. These results indicate that co-disposal has two direct benefits, including the safe and environmentally sound disposal of septic tank sludge and an improvement of the overall performance of the Bioreactor Landfill by increasing moisture retention and supplying a more acclimatised bacterial population.

  6. Peepoo bag: self-sanitising single use biodegradable toilet.

    Science.gov (United States)

    Vinnerås, Björn; Hedenkvist, Mikael; Nordin, Annika; Wilhelmson, Anders

    2009-01-01

    Unsafe water, sanitation and hygiene together with deficient nutritional status are major contributors to the global burden of disease. Safe collection, disposal and reuse of human excreta would enable the risk of transmission of diseases to be decreased and household food security to be increased in many regions. However, the majority of the 2.5 billion people lacking improved sanitation comprise poor people in societies with weak infrastructure. This study developed a low cost sanitation option requiring little investment and maintenance--a single use, self-sanitising, biodegradable toilet (Peepoo bag) and tested it for smell, degradability and hygiene aspects. It was found that no smell was detectable from a 25 microm thick bag filled with faeces during 24 h in a 10 m2 room at 30 degrees C. Bags that had been in contact with urea-treated faeces or urine for 2 months in air, compost or water at 24 or 37 degrees C showed little signs of degradation. Furthermore, pathogen inactivation modelling of the 4 g of urea present in the bag indicated that appropriate sanitation of faecal material collected is achieved in the bag within 2-4 weeks, after which the bag can be degraded and reused as fertiliser.

  7. BAG3 Expression in Glioblastoma Cells Promotes Accumulation of Ubiquitinated Clients in an Hsp70-dependent Manner*

    Science.gov (United States)

    Gentilella, Antonio; Khalili, Kamel

    2011-01-01

    Disposal of damaged proteins and protein aggregates is a prerequisite for the maintenance of cellular homeostasis and impairment of this disposal can lead to a broad range of pathological conditions, most notably in brain-associated disorders including Parkinson and Alzheimer diseases, and cancer. In this respect, the Protein Quality Control (PQC) pathway plays a central role in the clearance of damaged proteins. The Hsc/Hsp70-co-chaperone BAG3 has been described as a new and critical component of the PQC in several cellular contexts. For example, the expression of BAG3 in the rodent brain correlates with the engagement of protein degradation machineries in response to proteotoxic stress. Nevertheless, little is known about the molecular events assisted by BAG3. Here we show that ectopic expression of BAG3 in glioblastoma cells leads to the activation of an HSF1-driven stress response, as attested by transcriptional activation of BAG3 and Hsp70. BAG3 overexpression determines an accumulation of ubiquitinated proteins and this event requires the N-terminal region, WW domain of BAG3 and the association of BAG3 with Hsp70. The ubiquitination mainly occurs on BAG3-client proteins and the inhibition of proteasomal activity results in a further accumulation of ubiquitinated clients. At the cellular level, overexpression of BAG3 in glioblastoma cell lines, but not in non-glial cells, results in a remarkable decrease in colony formation capacity and this effect is reverted when the binding of BAG3 to Hsp70 is impaired. These observations provide the first evidence for an involvement of BAG3 in the ubiquitination and turnover of its partners. PMID:21233200

  8. Soft tissue decomposition of submerged, dismembered pig limbs enclosed in plastic bags.

    Science.gov (United States)

    Pakosh, Caitlin M; Rogers, Tracy L

    2009-11-01

    This study examines underwater soft tissue decomposition of dismembered pig limbs deposited in polyethylene plastic bags. The research evaluates the level of influence that disposal method has on underwater decomposition processes and details observations specific to this scenario. To our knowledge, no other study has yet investigated decomposing, dismembered, and enclosed remains in water environments. The total sample size consisted of 120 dismembered pig limbs, divided into a subsample of 30 pig limbs per recovery period (34 and 71 days) for each treatment. The two treatments simulated non-enclosed and plastic enclosed disposal methods in a water context. The remains were completely submerged in Lake Ontario for 34 and 71 days. In both recovery periods, the non-enclosed samples lost soft tissue to a significantly greater extent than their plastic enclosed counterparts. Disposal of remains in plastic bags therefore results in preservation, most likely caused by bacterial inhibition and reduced oxygen levels.

  9. Adaptation of business activities to the requirements of climate change mitigation - Case carrier bags; Liiketoiminnan sopeuttaminen ilmastonmuutoksen hillinnaen vaatimuksiin (OPTIKASSI)

    Energy Technology Data Exchange (ETDEWEB)

    Dahlbo, H.; Mattila, T.; Korhonen, M.-R.; Myllymaa, T. (Finnish Environment Institute SYKE, Helsinki (Finland)); Soukka, R. (Lappeenranta Univ. of Technology, Department of Energy and Environmental Technology (Finland)); Kujanpaeae, M. (KCL Science and Consulting, Espoo (Finland))

    2009-07-01

    Shopping bags have been a prominent topic of debate lately. Many countries have banned disposable bags or imposed a tax on them. The motives have been to avoid littering, reduce reliance on oil, and curb climate change. Restrictions are also justified by the accumulation of plastic garbage in the oceans, and by the damage to marine organisms. The environmental effects of production, use, and disposal of shopping bags are small compared with other consumption. However, the choice of a shopping bag is repeated every week, and the consumer is not sure about the consequences of each alternative. To reduce this uncertainty the OPTIKASSI study was made. The study called 'Adaptation of business activities to the requirements of climate change mitigation . case shopping bags, OPTIKASSI project' was implemented to study shopping bag alternatives in Finnish grocery stores, and the effects of the bags on climate change and the possibilities to mitigate them. Finnish Environment Institute and Lappeenranta University of Technology were responsible for the study, funded by Tekes ClimBus Programme, and the bag producers Suominen Flexible Packaging Ltd, Plastiroll Oy (Ltd), UPM-Kymmene LtdWisapaper and CabassiOy. The goal of the OPTIKASSI project was to compile lifecycle based information about the climate effects of the most typical shopping bags. It was also desirable to find the best consumption and waste management solutions for bags made of various materials. Products compared were plastic bags of virgin material, and of recycled material, paper bags, canvas bags, and shopping bags of biodegradable plastic. According to the results the shopping bags are an insignificant part of the climate effects of a Finnish household, but negligent use of bags may multiply the effects. Based on scenario, sensitivity, and ambiguity studies: garbage bags should be replaced by plastic bags, and the bins packed full and tight, incineration is not sensible; paper bags should be

  10. Editorial: The need for reducing plastic shopping bag use and ...

    African Journals Online (AJOL)

    Editorial: The need for reducing plastic shopping bag use and disposal in Africa. S Rayne. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians ...

  11. Potential bags

    International Nuclear Information System (INIS)

    Ferreira, P.L.; Tomio, L.

    1992-01-01

    In this paper, relativistic confining potential models, endowed with bag constants associated to volume energy terms, are investigated. In contrast to the usual bag model, these potential bags are distinguished by having smeared bag surfaces. Based on the dynamical assumptions underlying the fuzzy bag model, these bag constants are derived from the corresponding energy-momentum tensor. Explicit expressions for the single-quark energies and for the nucleon bag constant are obtained by means of an improved analytical version of the saddle-point variational method for the Dirac equation with confining power-law potentials of the scalar plus vector (S + V) or pure scalar (S) type

  12. Bioreactor principles

    Science.gov (United States)

    2001-01-01

    Cells cultured on Earth (left) typically settle quickly on the bottom of culture vessels due to gravity. In microgravity (right), cells remain suspended and aggregate to form three-dimensional tissue. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  13. A quantitative analysis of municipal solid waste disposal charges in China.

    Science.gov (United States)

    Wu, Jian; Zhang, Weiqian; Xu, Jiaxuan; Che, Yue

    2015-03-01

    Rapid industrialization and economic development have caused a tremendous increase in municipal solid waste (MSW) generation in China. China began implementing a policy of MSW disposal fees for household waste management at the end of last century. Three charging methods were implemented throughout the country: a fixed disposal fee, a potable water-based disposal fee, and a plastic bag-based disposal fee. To date, there has been little qualitative or quantitative analysis on the effectiveness of this relatively new policy. This paper provides a general overview of MSW fee policy in China, attempts to verify whether the policy is successful in reducing general waste collected, and proposes an improved charging system to address current problems. The paper presents an empirical statistical analysis of policy effectiveness derived from an environmental Kuznets curve (EKC) test on panel data of China. EKC tests on different kinds of MSW charge systems were then examined for individual provinces or cities. A comparison of existing charging systems was conducted using environmental and economic criteria. The results indicate the following: (1) the MSW policies implemented over the study period were effective in the reduction of waste generation, (2) the household waste discharge fee policy did not act as a strong driver in terms of waste prevention and reduction, and (3) the plastic bag-based disposal fee appeared to be performing well according to qualitative and quantitative analysis. Based on current situation of waste discharging management in China, a three-stage transitional charging scheme is proposed and both advantages and drawbacks discussed. Evidence suggests that a transition from a fixed disposal fee to a plastic bag-based disposal fee involving various stakeholders should be the next objective of waste reduction efforts.

  14. Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors.

    Science.gov (United States)

    De Jesus, Maria; Wurm, Florian M

    2011-06-01

    Mammalian cells in bioreactors as production host are the focus of this review. We wish to briefly describe today's technical status and to highlight emerging trends in the manufacture of recombinant therapeutic proteins, focusing on Chinese hamster ovary (CHO) cells. CHO cells are the manufacturing host system of choice for more than 70% of protein pharmaceuticals on the market [21]. The current global capacity to grow mammalian cells in bioreactors stands at about 0.5 million liters, whereby the largest vessels can have a working volume of about 20,000l. We are focusing in this article on the upstream part of protein manufacturing. Over the past 25 years, volumetric yields for recombinant cell lines have increased about 20-fold mainly as the result of improvements in media and bioprocess design. Future yield increases are expected to come from improved gene delivery methods, from improved, possibly genetically modified host systems, and from further improved bioprocesses in bioreactors. Other emerging trends in protein manufacturing that are discussed include the use of disposal bioreactors and transient gene expression. We specifically highlight here current research in our own laboratories. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Industrialization of a perfusion bioreactor: Prime example of a non-straightforward process.

    Science.gov (United States)

    Talò, G; Turrisi, C; Arrigoni, C; Recordati, C; Gerges, I; Tamplenizza, M; Cappelluti, A; Riboldi, S A; Moretti, M

    2018-02-01

    Bioreactors are essential enabling technologies for the translation of advanced therapies medicinal products from the research field towards a successful clinical application. In order to speed up the translation and the spread of novel tissue engineering products into the clinical routine, tissue engineering bioreactors should evolve from laboratory prototypes towards industrialized products. In this work, we thus challenged the industrialization process of a novel technological platform, based on an established research prototype of perfusion bioreactor, following a GMP-driven approach. We describe how the combination of scientific background, intellectual property, start-up factory environment, wise industrial advice in the biomedical field, design, and regulatory consultancy allowed us to turn a previously validated prototype technology into an industrial product suitable for serial production with improved replicability and user-friendliness. The solutions implemented enhanced aesthetics, ergonomics, handling, and safety of the bioreactor, and they allowed compliance with the fundamental requirements in terms of traceability, reproducibility, efficiency, and safety of the manufacturing process of advanced therapies medicinal products. The result is an automated incubator-compatible device, housing 12 disposable independent perfusion chambers for seeding and culture of any perfusable tissue. We validated the cell seeding process of the industrialized bioreactor by means of the Design of Experiment approach, whilst the effectiveness of perfusion culture was evaluated in the context of bone tissue engineering. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Breaking BAG: The Co-Chaperone BAG3 in Health and Disease.

    Science.gov (United States)

    Behl, Christian

    2016-08-01

    Human BAG (Bcl-2-associated athanogene) proteins form a family of antiapoptotic proteins that currently consists of six members (BAG1-6) all sharing the BAG protein domain from which the name arises. Via this domain, BAG proteins bind to the heat shock protein 70 (Hsp70), thereby acting as a co-chaperone regulating the activity of Hsp70. In addition to their antiapoptotic activity, all human BAG proteins have distinct functions in health and disease, and BAG3 in particular is the focus of many investigations. BAG3 has a modular protein domain composition offering the possibility for manifold interactions with other proteins. Various BAG3 functions are implicated in disorders including cancer, myopathies, and neurodegeneration. The discovery of its role in selective autophagy and the description of BAG3-mediated selective macroautophagy as an adaptive mechanism to maintain cellular homeostasis, under stress as well as during aging, make BAG3 a highly interesting target for future pharmacological interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Urine drainage bags

    Science.gov (United States)

    Leg bag ... the catheter from your bladder into the leg bag. Your leg bag will be attached to you all day. You ... freely with it. You can hide your leg bag under skirts, dresses, or pants. They come in ...

  18. Evaluation of the environmental impact of portion bag for food packaging: a case study of Thailand

    Science.gov (United States)

    Ruangrit, Chaniporn; Usapein, Parnuwat; Limphitakphong, Nantamol; Chavalparit, Orathai

    2017-05-01

    This study applied life cycle assessment methodology in evaluating environmental impact of portion bag. The objective of this study was to identify the hotspot of environmental impact through life cycle of portion bag. The options were proposed for improving environmental performance of the product. The system boundary was defined as cradle-to-grave which included the ethylene production, LDPE and LLDPE resins production, portion bag production, disposal, and transportation. All materials and emissions were calculated based on 1 piece of portion bag which weighed 2.49 g. IMPACT 2002+ was used for assessing environmental impact on SimaPro V8.2 software. The result found that the most of environmental impact was generated from LDPE and LLDPE resins which was used as raw material for producing portion bag. After normalization, non-renewable energy showed the highest potential to concern. This impact related directly to the natural gas drilling, ethane production, ethylene production, resin productions, and energy in all process. In conclusion, it should be suggested that the selection of bio-material for producing portion bag can play an important role to reduce the environmental impact. The research demonstrates the possible way and benefits in improving cleaner raw material and suitable way of product's end-of-life for producing green portion bag in the future.

  19. Evaluating pharmaceutical waste disposal in pediatric units.

    Science.gov (United States)

    Almeida, Maria Angélica Randoli de; Wilson, Ana Maria Miranda Martins; Peterlini, Maria Angélica Sorgini

    2016-01-01

    To verify the disposal of pharmaceutical waste performed in pediatric units. A descriptive and observational study conducted in a university hospital. The convenience sample consisted of pharmaceuticals discarded during the study period. Handling and disposal during preparation and administration were observed. Data collection took place at pre-established times and was performed using a pre-validated instrument. 356 drugs disposals were identified (35.1% in the clinic, 31.8% in the intensive care unit, 23.8% in the surgical unit and 9.3% in the infectious diseases unit). The most discarded pharmacological classes were: 22.7% antimicrobials, 14.8% electrolytes, 14.6% analgesics/pain killers, 9.5% diuretics and 6.7% antiulcer agents. The most used means for disposal were: sharps' disposable box with a yellow bag (30.8%), sink drain (28.9%), sharps' box with orange bag (14.3%), and infectious waste/bin with a white bag (10.1%). No disposal was identified after drug administration. A discussion of measures that can contribute to reducing (healthcare) waste volume with the intention of engaging reflective team performance and proper disposal is necessary. Verificar o descarte dos resíduos de medicamentos realizado em unidades pediátricas. Estudo descritivo e observacional, realizado em um hospital universitário. A amostra de conveniência foi constituída pelos medicamentos descartados durante o período de estudo. Observaram-se a manipulação e o descarte durante o preparo e a administração. A coleta dos dados ocorreu em horários preestabelecidos e realizada por meio de instrumento pré-validado. Identificaram-se 356 descartes de medicamentos (35,1% na clínica, 31,8% na unidade de cuidados intensivos, 23,8% na cirúrgica e 9,3% na infectologia). As classes farmacológicas mais descartadas foram: 22,7% antimicrobianos, 14,8% eletrólitos, 14,6% analgésicos, 9,5% diuréticos e 6,7% antiulcerosos. Vias mais utilizadas: caixa descartável para perfurocortante com

  20. Chiral bag model

    International Nuclear Information System (INIS)

    Musakhanov, M.M.

    1980-01-01

    The chiral bag model is considered. It is suggested that pions interact only with the surface of a quark ''bag'' and do not penetrate inside. In the case of a large bag the pion field is rather weak and goes to the linearized chiral bag model. Within that model the baryon mass spectrum, β decay axial constant, magnetic moments of baryons, pion-baryon coupling constants and their form factors are calculated. It is shown that pion corrections to the calculations according to the chiral bag model is essential. The obtained results are found to be in a reasonable agreement with the experimental data

  1. [Determination of metals in waste bag filter of steel works by microwave digestion-flame atomic absorption spectrometry].

    Science.gov (United States)

    Ning, Xun-An; Zhou, Yun; Liu, Jing-Yong; Wang, Jiang-Hui; Li, Lei; Ma, Xiao-Guo

    2011-09-01

    A method of microwave digestion technique-flame atomic absorption spectrometry was proposed to determine the total contents of Cu, Zn, Pb, Cd, Cr and Ni in five different kinds of waste bag filters from a steel plant. The digestion effects of the six acid systems on the heavy metals digestion were studied for the first time. The relative standard deviation (RSD) of the method was between 1.02% and 9.35%, and the recovery rates obtained by standard addition method ranged from 87.7% to 105.6%. The results indicated that the proposed method exhibited the advantages of simplicity, speediness, accuracy and repeatability, and it was suitable for determining the metal elements of the waste bag filter. The results also showed that different digestion systems should be used according to different waste bag filters. The waste bag filter samples from different production processes had different metal elements content. The Pb and Zn were the highest in the waste bag filters, while the Cu, Ni, Cd and Cr were relatively lower. These determination results provided the scientific data for further treatment and disposal of the waste bag filter.

  2. Laparoscopic specimen retrieval bags.

    Science.gov (United States)

    Smorgick, Noam

    2014-10-01

    Specimen retrieval bags have long been used in laparoscopic gynecologic surgery for contained removal of adnexal cysts and masses. More recently, the concerns regarding spread of malignant cells during mechanical morcellation of myoma have led to an additional use of specimen retrieval bags for contained "in-bag" morcellation. This review will discuss the indications for use retrieval bags in gynecologic endoscopy, and describe the different specimen bags available to date.

  3. Bags Under Eyes

    Science.gov (United States)

    Bags under eyes Overview Bags under eyes — mild swelling or puffiness under the eyes — are common as you age. With aging, the tissues around your ... space below your eyes, adding to the swelling. Bags under eyes are usually a cosmetic concern and ...

  4. Measuring the Long-Term Effectiveness of a Compulsory Approach to Behaviour Change: Analysis of the "Say No to Plastic Bag" Campaign at the Universiti Sains Malaysia

    Science.gov (United States)

    Mustafa, Hasrina; Yusoff, Ronzi Mohd

    2011-01-01

    This research looked into the effectiveness of a campaign at the Universiti Sains Malaysia for a compulsory ban on disposable plastics. Although there was high awareness of the "Say No to Plastic Bags" bags campaign, and moderate compliance on campus, we wondered whether a compulsory approach would maintain the desired behaviours off…

  5. A risk analysis for production processes with disposable bioreactors.

    Science.gov (United States)

    Merseburger, Tobias; Pahl, Ina; Müller, Daniel; Tanner, Markus

    2014-01-01

    : Quality management systems are, as a rule, tightly defined systems that conserve existing processes and therefore guarantee compliance with quality standards. But maintaining quality also includes introducing new enhanced production methods and making use of the latest findings of bioscience. The advances in biotechnology and single-use manufacturing methods for producing new drugs especially impose new challenges on quality management, as quality standards have not yet been set. New methods to ensure patient safety have to be established, as it is insufficient to rely only on current rules. A concept of qualification, validation, and manufacturing procedures based on risk management needs to be established and realized in pharmaceutical production. The chapter starts with an introduction to the regulatory background of the manufacture of medicinal products. It then continues with key methods of risk management. Hazards associated with the production of medicinal products with single-use equipment are described with a focus on bioreactors, storage containers, and connecting devices. The hazards are subsequently evaluated and criteria for risk evaluation are presented. This chapter concludes with aspects of industrial application of quality risk management.

  6. The fuzzy bag model revisited

    International Nuclear Information System (INIS)

    Pilotto, F.; Vasconcellos, C.A.Z.; Coelho, H.T.

    2001-01-01

    In this work we develop a new version of the fuzzy bag model. Th main ideas is to include the conservation of energy and momentum in the model. This feature is not included in the original formulation of the fuzzy bag model, but is of paramount importance to interpret the model as being a bag model - that, is a model in which the outward pressure of the quarks inside the bag is balanced by the inward pressure of the non-perturbative vacuum outside the bag - as opposed to a relativistic potential model, in which there is no energy-momentum conservation. In the MT bag model, as well as in the original version of the fuzzy bag model, the non-perturbative QCD vacuum is parametrized by a constant B in the Lagrangian density. One immediate consequence of including energy-momentum conservation in the fuzzy bag model is that the bag constant B will acquire a radial dependence, B = B(r). (author)

  7. The fuzzy bag model revisited

    Energy Technology Data Exchange (ETDEWEB)

    Pilotto, F.; Vasconcellos, C.A.Z. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Coelho, H.T. [Pernambuco Univ., Recife, PE (Brazil). Inst. de Fisica

    2001-07-01

    In this work we develop a new version of the fuzzy bag model. Th main ideas is to include the conservation of energy and momentum in the model. This feature is not included in the original formulation of the fuzzy bag model, but is of paramount importance to interpret the model as being a bag model - that, is a model in which the outward pressure of the quarks inside the bag is balanced by the inward pressure of the non-perturbative vacuum outside the bag - as opposed to a relativistic potential model, in which there is no energy-momentum conservation. In the MT bag model, as well as in the original version of the fuzzy bag model, the non-perturbative QCD vacuum is parametrized by a constant B in the Lagrangian density. One immediate consequence of including energy-momentum conservation in the fuzzy bag model is that the bag constant B will acquire a radial dependence, B = B(r). (author)

  8. Dynamical chiral bag model

    International Nuclear Information System (INIS)

    Colanero, K.; Chu, M.-C.

    2002-01-01

    We study a dynamical chiral bag model, in which massless fermions are confined within an impenetrable but movable bag coupled to meson fields. The self-consistent motion of the bag is obtained by solving the equations of motion exactly assuming spherical symmetry. When the bag interacts with an external meson wave we find three different kinds of resonances: fermionic, geometric, and σ resonances. We discuss the phenomenological implications of our results

  9. 7 CFR 201.41 - Bags.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Bags. 201.41 Section 201.41 Agriculture Regulations of... Sampling in the Administration of the Act § 201.41 Bags. (a) For lots of six bags or less, each bag shall be sampled. A total of at least five trierfuls shall be taken. (b) For lots of more than six bags...

  10. Soumen Bag

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana. Soumen Bag. Articles written in Sadhana. Volume 38 Issue 1 February 2013 pp 133-168. A survey on optical character recognition for Bangla and Devanagari scripts · Soumen Bag Gaurav Harit · More Details Abstract Fulltext PDF. The past few decades have witnessed an intensive research on ...

  11. The Chiral bag model and the little bag

    International Nuclear Information System (INIS)

    Vento, Vincent.

    1980-11-01

    We review the properties of the existing solutions to the Chiral bag equations of motion and discuss how the 'little bag' picture could come about in this scheme. Our analysis leads to a model which is qualitatively similar to the naive quark model with pion cloud corrections. We use this latter approach to look for pion cloud signatures in experimental data

  12. Manufacturing and test of a low cost polypropylene bag to reduce the radioactive gas released by a radiopharmaceutical production facility

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Jose Carlos Freitas; Lacerda, Marco Aurelio de Sousa, E-mail: jcft@cdtn.b, E-mail: masl@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (SEPRA/ CDTN/CNEN-MG) Belo Horizonte, MG (Brazil). Servico de Protecao Radiologica; Nascimento, Leonardo Tafas Constantino do; Silva, Juliana Batista da, E-mail: ltcn@cdtn.b, E-mail: silvajb@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (SECPRA/ CDTN/CNEN-MG) Belo Horizonte, MG (Brazil). Secao de Producao de Radiofarmacos

    2011-07-01

    The main objective of this work was to evaluate the efficiency of a plastic gas storage bag to reduce the radioactive gas released by the chimney of a radiopharmaceutical production facility during the 2-[{sup 18}F]fluoro-2- deoxy-D-glucose ({sup 18}FDG) synthesis. The studied facility was the Development Centre of Nuclear Technology (CDTN/CNEN) in Belo Horizonte, Brazil. The bag was manufactured utilizing foils of polypropylene of 360 x 550 x 0.16 mm and disposable components of the cassette of the synthesizer. Two synthesis of {sup 18}FDG were done using the same hot cell and synthesizer to evaluate the efficiency of the bag. The manufactured bag was put in the gas exit of the synthesizer and the activity reported by the online radiation monitoring system in the first synthesis. These results were compared to the activity released in a synthesis performed without the bag. We observed when the bag was used the amount released was about 0.2% in 270 minutes. The second synthesis was performed without the bag, about 7,1% of the input activity was released by the exhaust of the facility in the same time interval. The bag presented a very good efficiency in the reducing of the radioactive gas released by the chimney of the radiopharmaceutical production facility. (author)

  13. Manufacturing and test of a low cost polypropylene bag to reduce the radioactive gas released by a radiopharmaceutical production facility

    International Nuclear Information System (INIS)

    Tavares, Jose Carlos Freitas; Lacerda, Marco Aurelio de Sousa; Nascimento, Leonardo Tafas Constantino do; Silva, Juliana Batista da

    2011-01-01

    The main objective of this work was to evaluate the efficiency of a plastic gas storage bag to reduce the radioactive gas released by the chimney of a radiopharmaceutical production facility during the 2-[ 18 F]fluoro-2- deoxy-D-glucose ( 18 FDG) synthesis. The studied facility was the Development Centre of Nuclear Technology (CDTN/CNEN) in Belo Horizonte, Brazil. The bag was manufactured utilizing foils of polypropylene of 360 x 550 x 0.16 mm and disposable components of the cassette of the synthesizer. Two synthesis of 18 FDG were done using the same hot cell and synthesizer to evaluate the efficiency of the bag. The manufactured bag was put in the gas exit of the synthesizer and the activity reported by the online radiation monitoring system in the first synthesis. These results were compared to the activity released in a synthesis performed without the bag. We observed when the bag was used the amount released was about 0.2% in 270 minutes. The second synthesis was performed without the bag, about 7,1% of the input activity was released by the exhaust of the facility in the same time interval. The bag presented a very good efficiency in the reducing of the radioactive gas released by the chimney of the radiopharmaceutical production facility. (author)

  14. Low-cost sensor system for non-invasive monitoring of cell growth in disposable bioreactors

    OpenAIRE

    Reinecke, Tobias; Biechele, Philipp; Schulte, V.; Scheper, Thomas; Zimmermann, Stefan

    2015-01-01

    To ensure productivity and product quality, the parameters of biotechnological processes need to be monitored. Along temperature or pH, one important parameter is the cell density in the culture medium. In this work, we present a low-cost sensor system for online cell growth monitoring in bioreactors via permittivity measurements based on coplanar transmission lines. To evaluate the sensor, E. coli cultivations are performed. We found a good correlation between optical density of the culture ...

  15. Bag facaden

    DEFF Research Database (Denmark)

    Hvidtfeldt, Susanne; Sjøstedt, Lotte Ebsen

    Bag facaden er et task-baseret materiale der går bag om danskerne kulturelt og sprogligt. Det henvender sig til spor 3-learnere på de sidste trin, men kan i nogle klasser godt anvendes tidligere. Teksterne i bogen er autentiske dagbogsnotater skrevet af danskere i alle aldre. Den nærværende og...... eller hun er i sin sprogtilegnelse og i sit behov for viden om dansk kultur og samfund. Derudover forbereder det fint learneren til almenprøve 2 og DUF eksamen, både hvad angår indhold og arbejdsformer. I forløb hvor der stiles mod folkeskolens afgangseksamner er Bag facaden relevant som supplerende...

  16. Vector-Interaction-Enhanced Bag Model

    Science.gov (United States)

    Cierniak, Mateusz; Klähn, Thomas; Fischer, Tobias; Bastian, Niels-Uwe

    2018-02-01

    A commonly applied quark matter model in astrophysics is the thermodynamic bag model (tdBAG). The original MIT bag model approximates the effect of quark confinement, but does not explicitly account for the breaking of chiral symmetry, an important property of Quantum Chromodynamics (QCD). It further ignores vector repulsion. The vector-interaction-enhanced bag model (vBag) improves the tdBAG approach by accounting for both dynamical chiral symmetry breaking and repulsive vector interactions. The latter is of particular importance to studies of dense matter in beta-equilibriumto explain the two solar mass maximum mass constraint for neutron stars. The model is motivated by analyses of QCD based Dyson-Schwinger equations (DSE), assuming a simple quark-quark contact interaction. Here, we focus on the study of hybrid neutron star properties resulting from the application of vBag and will discuss possible extensions.

  17. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease.

    Science.gov (United States)

    Stürner, Elisabeth; Behl, Christian

    2017-01-01

    In neurons, but also in all other cells the complex proteostasis network is monitored and tightly regulated by the cellular protein quality control (PQC) system. Beyond folding of newly synthesized polypeptides and their refolding upon misfolding the PQC also manages the disposal of aberrant proteins either by the ubiquitin-proteasome machinery or by the autophagic-lysosomal system. Aggregated proteins are primarily degraded by a process termed selective macroautophagy (or aggrephagy). One such recently discovered selective macroautophagy pathway is mediated by the multifunctional HSP70 co-chaperone BAG3 ( BCL-2-associated athanogene 3 ). Under acute stress and during cellular aging, BAG3 in concert with the molecular chaperones HSP70 and HSPB8 as well as the ubiquitin receptor p62/SQSTM1 specifically targets aggregation-prone proteins to autophagic degradation. Thereby, BAG3-mediated selective macroautophagy represents a pivotal adaptive safeguarding and emergency system of the PQC which is activated under pathophysiological conditions to ensure cellular proteostasis. Interestingly, BAG3-mediated selective macroautophagy is also involved in the clearance of aggregated proteins associated with age-related neurodegenerative disorders, like Alzheimer's disease (tau-protein), Huntington's disease (mutated huntingtin/polyQ proteins), and amyotrophic lateral sclerosis (mutated SOD1). In addition, based on its initial description BAG3 is an anti-apoptotic protein that plays a decisive role in other widespread diseases, including cancer and myopathies. Therefore, in the search for novel therapeutic intervention avenues in neurodegeneration, myopathies and cancer BAG3 is a promising candidate.

  18. Bag model with diffuse surface

    International Nuclear Information System (INIS)

    Phatak, S.C.

    1986-01-01

    The constraint of a sharp bag boundary in the bag model is relaxed in the present work. This has been achieved by replacing the square-well potential of the bag model by a smooth scalar potential and introducing a term similar to the bag pressure term. The constraint of the conservation of the energy-momentum tensor is used to obtain an expression for the added bag pressure term. The model is then used to determine the static properties of the nucleon. The calculation shows that the rms charge radius and the nucleon magnetic moment are larger than the corresponding bag model values. Also, the axial vector coupling constant and the πNN coupling constant are in better agreement with the experimental values

  19. Performance testing of the new AMPAC fire debris bag against three other commercial fire debris bags.

    Science.gov (United States)

    Grutters, Michiel M P; Dogger, Judith; Hendrikse, Jeanet N

    2012-09-01

    Fire debris evidence is collected and stored in a wide range of containers, including various polymer bags. Four different polymer bags have been investigated, including the NYLON, DUO, ALU, and AMPAC bags. The latter is the successor of the Kapak Fire DebrisPAK™. Microscopy and infrared spectroscopy were used to elucidate the composition of the bags. Gas chromatography/mass spectrometry was used to investigate performance parameters such as background volatiles, leak rate, cross-contamination, recovery, and sorption. The NYLON bag was susceptible for leakage and cross-contamination and showed decreased recoveries. The DUO and ALU bags showed some background volatiles, sorption, and poor recoveries. The AMPAC bag performed excellent: low background, no leakage or cross-contamination, good recoveries, and only traces of sorption. Heat sealing proved to be the best method of closure. Preliminary studies on AMPAC bags showed that polyethylene clamps are easy to use on-site and preserve ignitable liquids adequately for a limited period of time. © 2012 American Academy of Forensic Sciences.

  20. Use of disposable reactors to generate inoculum cultures for E. coli production fermentations.

    Science.gov (United States)

    Mahajan, Ekta; Matthews, Timothy; Hamilton, Ryan; Laird, Michael W

    2010-01-01

    Disposable technology is being used more each year in the biotechnology industry. Disposable bioreactors allow one to avoid expenses associated with cleaning, assembly and operations, as well as equipment validation. The WAVE bioreactor is well established for Chinese Hamster Ovary (CHO) production, however, it has not yet been thoroughly tested for E. coli production because of the high oxygen demand and temperature maintenance requirements of that platform. The objective of this study is to establish a robust process to generate inoculum for E. coli production fermentations in a WAVE bioreactor. We opted not to evaluate the WAVE system for production cultures because of the high cell densities required in our current E. coli production processes. Instead, the WAVE bioreactor 20/50 system was evaluated at laboratory scale (10-L) to generate inoculum with target optical densities (OD(550)) of 15 within 7-9 h (pre-established target for stainless steel fermentors). The maximum settings for rock rate (40 rpm) and angle (10.5) were used to maximize mass transfer. The gas feed was also supplemented with additional oxygen to meet the high respiratory demand of the culture. The results showed that the growth profiles for the inoculum cultures were similar to those obtained from conventional stainless steel fermentors. These inoculum cultures were subsequently inoculated into 10-L working volume stainless steel fermentors to evaluate the inocula performance of two different production systems during recombinant protein production. The results of these production cultures using WAVE inocula showed that the growth and recombinant protein production was comparable to the control data set. Furthermore, an economic analysis showed that the WAVE system would require less capital investment for installation and operating expenses would be less than traditional stainless steel systems. (c) 2010 American Institute of Chemical Engineers

  1. Dynamics of the soliton bag

    International Nuclear Information System (INIS)

    Wilets, L.; Goldflam, R.

    1983-09-01

    The MIT bag was one of the earliest and most successful models of QCD, imposing confinement and including perturbative gluon interactions. An evolution of the MIT bag came with the introduction of the chiral and cloudy bags, which treat pions as elementary particles. As a model of QCD, the soliton model proposed by Friedberg and Lee is particularly attractive. It is based on a covariant field theory and is sufficiently general so that, for certain limiting cases of the adjustable parameters, it can describe either the MIT or SLAC (string) bags. The confinement mechanism appears as a dynamic field. This allows non-static processes, such as bag oscillations and bag collisions, to be calculated utilizing the well-developed techniques of nuclear many-body theory. The utilization of the model for calculating dynamical processes is discussed. 14 references

  2. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease

    Directory of Open Access Journals (Sweden)

    Elisabeth Stürner

    2017-06-01

    Full Text Available In neurons, but also in all other cells the complex proteostasis network is monitored and tightly regulated by the cellular protein quality control (PQC system. Beyond folding of newly synthesized polypeptides and their refolding upon misfolding the PQC also manages the disposal of aberrant proteins either by the ubiquitin-proteasome machinery or by the autophagic-lysosomal system. Aggregated proteins are primarily degraded by a process termed selective macroautophagy (or aggrephagy. One such recently discovered selective macroautophagy pathway is mediated by the multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3. Under acute stress and during cellular aging, BAG3 in concert with the molecular chaperones HSP70 and HSPB8 as well as the ubiquitin receptor p62/SQSTM1 specifically targets aggregation-prone proteins to autophagic degradation. Thereby, BAG3-mediated selective macroautophagy represents a pivotal adaptive safeguarding and emergency system of the PQC which is activated under pathophysiological conditions to ensure cellular proteostasis. Interestingly, BAG3-mediated selective macroautophagy is also involved in the clearance of aggregated proteins associated with age-related neurodegenerative disorders, like Alzheimer’s disease (tau-protein, Huntington’s disease (mutated huntingtin/polyQ proteins, and amyotrophic lateral sclerosis (mutated SOD1. In addition, based on its initial description BAG3 is an anti-apoptotic protein that plays a decisive role in other widespread diseases, including cancer and myopathies. Therefore, in the search for novel therapeutic intervention avenues in neurodegeneration, myopathies and cancer BAG3 is a promising candidate.

  3. Following an Optimal Batch Bioreactor Operations Model

    DEFF Research Database (Denmark)

    Ibarra-Junquera, V.; Jørgensen, Sten Bay; Virgen-Ortíz, J.J.

    2012-01-01

    The problem of following an optimal batch operation model for a bioreactor in the presence of uncertainties is studied. The optimal batch bioreactor operation model (OBBOM) refers to the bioreactor trajectory for nominal cultivation to be optimal. A multiple-variable dynamic optimization of fed...... as the master system which includes the optimal cultivation trajectory for the feed flow rate and the substrate concentration. The “real” bioreactor, the one with unknown dynamics and perturbations, is considered as the slave system. Finally, the controller is designed such that the real bioreactor...

  4. BAG3 role in cardiomyocytes physiopathology

    OpenAIRE

    De Marco, Margot

    2013-01-01

    2010 - 2011 The anti-apoptotic protein BAG3 is expressed at high levels in skeletal and cardiac muscle in vivo. Our group recently focused its interest on BAG3 role in myocardiocyte proliferation, survival and response to stressful stimuli. We found that BAG3 is upregulated during the differentiation of cardiomyoblasts. Our results prompted us to verify whether bag3 silencing could affect the differentiation state of cardiocytes and we found that bag3 silencing resulted in highly reducing ...

  5. Sacolas plásticas: destinações sustentáveis e alternativas de substituição Plastic bags: sustainable disposal and alternative routes to their substitution

    Directory of Open Access Journals (Sweden)

    Amélia S. F. e Santos

    2012-01-01

    Full Text Available Independentemente do material adotado como melhor estratégia para uso em sacolas, cada um tem um destino final ideal que pode ser: compostagem, reciclagem mecânica, reciclagem energética, aterros sanitários, entre outros. Assim, a infra-estrutura de coleta, identificação e disposição do resíduo pós-consumo desse material deve estar associada à escolha feita para garantir sua sustentabilidade sócio-econômica. Além disso, soluções ainda controversas com relação ao real impacto no meio ambiente, não podem ser condenadas, nem incentivadas, mas devem sim ser avaliadas. Nesse sentido, cabe à comunidade científica fornecer bases sólidas e confiáveis, para que as avaliações sejam baseadas em uma visão global do problema. Foi com esse objetivo que elaboramos o presente trabalho, expondo questões críticas e relatando as diferentes soluções adotadas no mundo, inclusive sobre avaliações de impactos ambientais das diferentes alternativas para minimizar e/ou solucionar os problemas relacionados ao uso de sacolas plásticas.Regardless of the material adopted as the best strategy for use in plastic bags, each material has an ideal final disposal, which may be composting, mechanical recycling, energy recycling, sanitary landfills, and others. Therefore, the infrastructure of collection, identification and disposal of post-consumer waste of this material should be tied to the choice made to ensure its socio-economic sustainability. Moreover, solutions that are still controversial in terms of their real environmental impact should be neither condemned nor encouraged - rather, they should be evaluated. In this context, it is up to the scientific community to provide solid and reliable foundations to ensure that such evaluations are based on a global vision of the problem. This was the objective that guided the present work, with an analysis of critical issues and description of the diverse solutions adopted around the world

  6. Analysis of a classical chiral bag model

    International Nuclear Information System (INIS)

    Nadeau, H.

    1985-01-01

    The author studies a classical chiral bag model with a Mexican hat-type potential for the self-coupling of the pion fields. He assumes a static spherical bag of radius R, the hedgehog ansatz for the chiral fields and that the quarks are all in the lowest lying s state. The author has considered three classes of models, the cloudy or pantopionic bags, the little or exopionic bags and the endopionic bags, where the pions are allowed all through space, only outside the bag and only inside the bag respectively. In all cases, the quarks are confined in the interior. He calculates the bag radius R, the bag constant B and the total ground state energy R for wide ranges of the two free parameters of the theory, namely the coupling constant λ and the quark frequency omega. The author focuses the study on the endopionic bags, the least known class, and compares the results with the familiar ones of other classes

  7. Quantization of bag-like solitons

    International Nuclear Information System (INIS)

    Breit, J.D.

    1982-01-01

    The method of collective coordinates is used to quantize bag-like solitons formed by scalar and spinor fields. This method leads to approximate wave functions for quarks in the bag that are orthogonal to the translational modes. Solutions are given for the MIT bag limit of the fields. (orig.)

  8. B P Bag

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B P Bag. Articles written in Bulletin of Materials Science. Volume 35 Issue 1 February 2012 pp 1-5. Structural and optical characterization of thick and thin polycrystalline diamond films deposited by microwave plasma activated CVD · S K Pradhan B Satpati B P Bag T Sharda.

  9. Storing Peanuts in Grain Bags

    Science.gov (United States)

    A study was executed to determine the potential of storing farmers stock peanuts and shelled peanuts for crushing in hermetically sealed grain bags. The objectives of the study were to evaluate equipment for loading and unloading the grain bags, the capacity of the grain bags, and the changes in qu...

  10. A bag with soft surface

    International Nuclear Information System (INIS)

    Il-Tong Cheon.

    1991-02-01

    The MIT bag has a sharply edged surface. It seems to be unnatural. Taking vector mesons into account, we discuss effects of a smooth surface of the bag constructed by superposition of the MIT bags with various radii on the baryon magnetic moments. (author). 9 refs, 2 figs, 2 tabs

  11. 21 CFR 878.4100 - Organ bag.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Organ bag. 878.4100 Section 878.4100 Food and... GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4100 Organ bag. (a) Identification. An organ bag is a device that is a flexible plastic bag intended to be used as a temporary receptacle for an...

  12. AN ENVIRONMENTAL COMPARISON OF PLASTIC AND PAPER CONSUMER CARRIER BAGS IN SOUTH AFRICA: IMPLICATIONS FOR THE LOCAL MANUFACTURING INDUSTRY

    Directory of Open Access Journals (Sweden)

    J. Sevitz

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The conventional consumer carrier bags have recently received considerable attention in South Africa. The choice of material for these bags, based on environmental preferences in the South African context, could significantly influence the local manufacturing industry. Life Cycle Assessment (LCA, an environmental management tool, has been applied to objectively evaluate and compare the overall environmental impacts of the complete life cycles (from raw material extraction to final disposal of consumer plastic and paper carrier bags in South Africa. Paper bags have a higher carrying capacity compared to plastic bags and different use ratios were subsequently evaluated. Plastic bags have a lower environmental impact for use ratios of up to 2.5 plastic bags to one paper bag. Above this ratio the conclusions are not reliable. Paper bags would need to increase its recycled content significantly to be competitive in terms of environmental impacts. The re-use of thicker plastic, as proposed by the new plastic bag legislation, has the potential to significantly lower the impact of plastic bags.

    AFRIKAANSE OPSOMMING: Die konvensionele gebruikersdrasakke het onlangs aansienlike aandag in Suid Afrika ontvang. Die keuse van materiaal vir hierdie sakke, wat gebaseer is op omgewingsvoorkeure in die Suid-Afrikaanse konteks, kan 'n wesenlike invloed uitoefen op die plaaslike vervaardigingsindustrie. Lewenssiklusanalise (LCA, 'n omgewingsbestuurgereedskap, is aangewend vir 'n objektiewe evaluasie en vergelyking van die algehele omgewingsimpakte van die totale lewenssiklus (vanaf grondstofekstraksie tot finale wegdoening van gebruikersplastiek- en papierdrasakke in Suid-Afrika. Aangesien papiersakke 'n hoër drakapasiteit het in vergelyking met plastieksakke, is verskillende gebruiksverhoudings evalueer. Plastieksakke het 'n laer omgewingsimpak vir gebruiksverhoudings tot en met 2.5 plastieksakke vir elke papiersak. Die gevolgtrekkings

  13. Cultivation and Differentiation of Encapsulated hMSC-TERT in a Disposable Small-Scale Syringe-Like Fixed Bed Reactor

    DEFF Research Database (Denmark)

    Weber, Christian; Pohl, Sebastian; Pörtner, Ralf

    2007-01-01

    The use of commercially available plastic syringes is introduced as disposable small-scale fixed bed bioreactors for the cultivation of implantable therapeutic cell systems on the basis of an alginate-encapsulated human mesenchymal stem cell line. The system introduced is fitted with a noninvasiv...

  14. Swelling and infusion of tea in tea bags.

    Science.gov (United States)

    Yadav, Geeta U; Joshi, Bhushan S; Patwardhan, Ashwin W; Singh, Gurmeet

    2017-07-01

    The present study deals with swelling and infusion kinetics of tea granules in tea bags. The swelling and infusion kinetics of tea bags differing in tea loading and tea bag shapes were compared with loose tea. Increment in temperature and dipping frequency of tea bag in hot water increased the infusion kinetics of tea bags. Reduction in particle size enhanced the swelling and infusion kinetics of tea in a tea bag. The effects of tea particle size, tea bag dipping rate, loading of tea granules in tea bag and tea bag shapes on infusion kinetics were investigated. Increase in tea loading in tea bags resulted in reduced infusion kinetics. Double chambered tea bag showed the highest swelling (30%) and infusion kinetics (8.30% Gallic acid equivalence) while single chambered tea bags showed the lowest kinetics, amongst the various bags studied. The swelling and infusion kinetics of loose tea was always faster and higher than that of tea bags. It was found that overall effect of percentage filling of tea granules and height of tea bed in a tea bag affects tea infusion kinetics the most. Weibull model was found to be in good agreement with the swelling data.

  15. Zebrafish models of BAG3 myofibrillar myopathy suggest a toxic gain of function leading to BAG3 insufficiency.

    Science.gov (United States)

    Ruparelia, Avnika A; Oorschot, Viola; Vaz, Raquel; Ramm, Georg; Bryson-Richardson, Robert J

    2014-12-01

    Mutations in the co-chaperone Bcl2-associated athanogene 3 (BAG3) can cause myofibrillar myopathy (MFM), a childhood-onset progressive muscle disease, characterized by the formation of protein aggregates and myofibrillar disintegration. In contrast to other MFM-causing proteins, BAG3 has no direct structural role, but regulates autophagy and the degradation of misfolded proteins. To investigate the mechanism of disease in BAG3-related MFM, we expressed wild-type BAG3 or the dominant MFM-causing BAG3 (BAG3(P209L)) in zebrafish. Expression of the mutant protein results in the formation of aggregates that contain wild-type BAG3. Through the stimulation and inhibition of autophagy, we tested the prevailing hypothesis that impaired autophagic function is responsible for the formation of protein aggregates. Contrary to the existing theory, our studies reveal that inhibition of autophagy is not sufficient to induce protein aggregation. Expression of the mutant protein, however, did not induce myofibrillar disintegration and we therefore examined the effect of knocking down Bag3 function. Loss of Bag3 resulted in myofibrillar disintegration, but not in the formation of protein aggregates. Remarkably, BAG3(P209L) is able to rescue the myofibrillar disintegration phenotype, further demonstrating that its function is not impaired. Together, our knockdown and overexpression experiments identify a mechanism whereby BAG3(P209L) aggregates form, gradually reducing the pool of available BAG3, which eventually results in BAG3 insufficiency and myofibrillar disintegration. This mechanism is consistent with the childhood onset and progressive nature of MFM and suggests that reducing aggregation through enhanced degradation or inhibition of nucleation would be an effective therapy for this disease.

  16. 21 CFR 880.6050 - Ice bag.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ice bag. 880.6050 Section 880.6050 Food and Drugs....6050 Ice bag. (a) Identification. An ice bag is a device intended for medical purposes that is in the... the body. The device may include a holder that keeps the bag in place against an external area of the...

  17. Quark bag coupling to finite size pions

    International Nuclear Information System (INIS)

    De Kam, J.; Pirner, H.J.

    1982-01-01

    A standard approximation in theories of quark bags coupled to a pion field is to treat the pion as an elementary field ignoring its substructure and finite size. A difficulty associated with these treatments in the lack of stability of the quark bag due to the rapid increase of the pion pressure on the bad as the bag size diminishes. We investigate the effects of the finite size of the qanti q pion on the pion quark bag coupling by means of a simple nonlocal pion quark interaction. With this amendment the pion pressure on the bag vanishes if the bag size goes to zero. No stability problems are encountered in this description. Furthermore, for extended pions, no longer a maximum is set to the bag parameter B. Therefore 'little bag' solutions may be found provided that B is large enough. We also discuss the possibility of a second minimum in the bag energy function. (orig.)

  18. Bosonization relations as bag boundary conditions

    International Nuclear Information System (INIS)

    Nadkarni, S.; Nielsen, H.B.; Zahed, I.

    1984-10-01

    The more sophisticated bag models of hadrons become, the less precisely they seem to determine the bag radius. Idealizing this situation leads to the concept of exact bag models - ''Cheshire Cat'' models, CCM'S - where the physics is completely insensitive to changes in the bag radius. CCM's are constructed explitly in 1+1-dimensions, where exact bosonization relations are known. In the formalism of bag models, these relations appear as boundary conditions which ensure that the shifting of the bag wall has no physical effect. Other notable features of 1+1-dimensional CCM's are: (i) Fermion number, though classically confined, can escape the bag via a vector current anomaly at the surface. (ii) Essentially the same boundary action works for a variety of models and its symmetries determine those of the external boson fields. Remarkably enough, this 1+1-dimensional boundary action has precisely the same form as the one used in 3+1-dimensional chiral bag models, lending support to the belief that the latter are indeed approximateCCM's. These 1+1-dimensional results are expected to provide useful guidelines in the attempt to, at least approximately, besonize 3+1-dimensional QCD. (orig.)

  19. A deformable bag model of hadrons, 1

    International Nuclear Information System (INIS)

    Ui, Haruo; Saito, Koich

    1983-01-01

    As a generalization of the MIT spherical bag model, we construct the spheroidal bag model of hadron with an arbitrary eccentricity. This generalization is made by slightly modifying the MIT linear boundary condition: The linear boundary condition is examined in detail. Our model always satisfies two necessary requirements of the MIT bag model - i.e., n.j = 0, no quark colour flux leaves the bag, and q-barq = 0, the scalar density of quark should vanish on the bag surface- and it reduces to the MIT spherical bag model in the limit of zero-eccentricity. Lagrangian formalism of our model is briefly described. The eigenfrequencies of a single massless quark confined in this spheroidal bag are numerically calculated. We obtain the level-splitting of the excited quark orbits, which is just analogous to the well-known Nilsson's splitting of single particle orbits in deformed nuclei. By using the numerical results of the lowest orbit, the effect of the bag-deformation on the mass of low-lying hadrons is estimated. It is found that, although the spherical bag is stable, the quark bag is extremely soft against the quadrupole deformation. Brief discussions are added on the mechanisms which make the spherical bag more stable. (author)

  20. Chiral pion dynamics for spherical nucleon bags

    International Nuclear Information System (INIS)

    Vento, V.; Rho, M.; Nyman, E.M.; Jun, J.H.; Brown, G.E.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette

    1980-01-01

    A chirally symmetric quark-bag model for the nucleon is obtained by introducing an explicit, classical, pion field exterior to the bag. The coupling at the bag surface is determined by the requirement of a conserved axial-vector current. The pion field satisfies equations of motion corresponding to the non-linear sigma-model. We study on this paper the simplified case where the bag and the pion field are spherically symmetric. Corrections due to gluon exchange between the quarks are ignored along with other interactions which split the N- and Δ-masses. The equations of motion for the pion field are solved and we find a substantial pion pressure at the bag surface, along with an attractive contribution to the nucleon self-energy. The total energy of the system, bag plus meson cloud, turns out to be approximately Msub(n)c 2 for a wide range of bag radii, from 1.5 fm down to about 0.5 fm. Introduction of a form factor for the pion would extend the range of possible radii to even smaller values. We propose that the bag with the smallest allowed radius be identified with the 'little bag' discussed before. One surprising result of the paper is that as long as one restricts to spherically symmetric bags, restoring chiral symmetry to the bag model makes the axial-vector current coupling constant gsub(A) to be always too large compared with the experimental value for any bag radius, suggesting a deviation from spherical symmetry for the intrinsic bag wave functions of the 'ground-state' hadrons. (orig.)

  1. Pions and the chiral bag

    International Nuclear Information System (INIS)

    Rho, M.

    1982-01-01

    As an aid to discussing the structure of nucleons and nuclei conceptual framework, heuristic arguments are presented which indicate that a hadron can be considered as a bag consisting of two different phases. The chiral structure of the phase outside the bag is discussed in terms of effective field theories and it is shown to what extent experiments in nuclei can constrain the structure of such theories. Results thus obtained are then combined to set up a set of equations for the bag structure of u and d hadrons, incorporating asymptotic freedom in the phase inside of the bag confinement of quarks and gluons by boundary conditions and spontaneously broken chiral symmetry in the outside. This set of equations which represent a chirally invariant generalization of the M.I.T. bag model is then solved. (U.K.)

  2. Bag models of hadrons

    International Nuclear Information System (INIS)

    DeTar, C.E.; Donoghue, J.F.

    1983-01-01

    We believe further progress in the bag model must come from a better understanding of QCD. The bag theory is basically a simple model of the vacuum. A ''perturbative'' vacuum of finite extent is found inside the bag, while the ''true'' vacuum is found outside. The formation of the bag can be viewed as a phase change between the two types of vacuum. In what sense does QCD support this view. There have been many recent attempts to characterize the QCD vacuum. Of particular relevance to the bag model is recent work by Hansson et al. They set out to determine the structure of the vacuum wave function by using a variational argument. Their ''trial'' wave function was inspired by the bag model, but their intention was to describe general features of QCD. Their work starts from the realization that with the usual perturbative model of the vacuum a J /sup PC/ = 0 ++ glueball state can be made with m 2 ++ glueball (C. B. Thorn, unpublished), which leads to a state with m 2 < 0 when c.m. corrections are included (65). Hansson et al show that the perturbative vacuum can lower its energy by filling up with scalar glueballs. They calculate the energy of glueballs containing two and four gluons and find that the energy of the four-gluon state is higher. Therefore the vacuum energy reaches a minimum when the glueballs start to overlap

  3. Design of the Brine Evaporation Bag for Increased Water Recovery in Microgravity

    Science.gov (United States)

    Hayden, Anna L.; Delzeit, Lance D.

    2015-01-01

    The existing water recovery system on the International Space Station (ISS) is limited to 75% reclamation; consequently, long duration space missions are currently unfeasible due to the large quantity of water necessary to sustain the crew. The Brine Evaporation Bag (BEB) is a proposed system to supplement the existing water recovery system aboard the ISS that can to increase water recovery to 99%. The largest barrier to high water recovery is mineral scaling inside the water recovery equipment, which leads to equipment failure; therefore, some water must remain to keep the minerals dissolved. This waste stream is liquid brine containing salts, acids, organics, and water. The BEB is designed to recover this remaining water while protecting the equipment from scale. The BEB consists of a sealed bag containing a hydrophobic membrane that allows water vapor and gas to pass through. It is operated under vacuum, heated, and continuously filled with brine to boil away the water. The water vapor is recovered and the solids are contained inside the bag for disposal. The BEB can dry the brine to a solid block. Ongoing work includes improving the design of the BEB and the evaporator to prevent leaks, maximize the rate of water removal, and minimize energy use and weight. Additional testing will determine whether designs are heat- or mass-transfer limited and the optimal water recovery rate.

  4. Effects of bagging materials and CaCl2 spray on fruit calcium concentration in fruit-bagged apple trees

    International Nuclear Information System (INIS)

    Yim, Y.J.; Choi, J.S.; Kim, S.B.

    1989-01-01

    This experiment was carried out to investigate the effects of bagging materials and CaCl 2 spray on fruit Ca concentration in fruit-bagged apple trees (Malus domestica Borkh.). No difference was noted in fruit Ca concentration among bagging materials during the growing season. And also, there was no difference in fruit Ca concentration between bagged and non-bagged fruits. The fruit flesh Ca concentration of bagged fruits was significantly lower than that of non-bagged fruits in the same tree, which 0.5 % CaCl 2 was sprayed 5 times in the late growing season. The radioactivity of 45 Ca was highest in the sprayed shoot leaves and bark, while only a trace amount was detected in the fruit and shoot proximate to the treated shoot 3 weeks after 3 times application of 45 CaCl 2 (5 micro Ci/ml). As a result, it is confirmed that the Ca once accumulated in a specific part is hardly retranslocated. Therefore, it is concluded that Ca foliar spray to the fruit-bagged tree has no influence on Ca concentration in the fruit

  5. Bioreactors in tissue engineering - principles, applications and commercial constraints.

    Science.gov (United States)

    Hansmann, Jan; Groeber, Florian; Kahlig, Alexander; Kleinhans, Claudia; Walles, Heike

    2013-03-01

    Bioreactor technology is vital for tissue engineering. Usually, bioreactors are used to provide a tissue-specific physiological in vitro environment during tissue maturation. In addition to this most obvious application, bioreactors have the potential to improve the efficiency of the overall tissue-engineering concept. To date, a variety of bioreactor systems for tissue-specific applications have been developed. Of these, some systems are already commercially available. With bioreactor technology, various functional tissues of different types were generated and cultured in vitro. Nevertheless, these efforts and achievements alone have not yet led to many clinically successful tissue-engineered implants. We review possible applications for bioreactor systems within a tissue-engineering process and present basic principles and requirements for bioreactor development. Moreover, the use of bioreactor systems for the expansion of clinically relevant cell types is addressed. In contrast to cell expansion, for the generation of functional three-dimensional tissue equivalents, additional physical cues must be provided. Therefore, bioreactors for musculoskeletal tissue engineering are discussed. Finally, bioreactor technology is reviewed in the context of commercial constraints. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Quantum chromodynamics, chiral symmetry and bag models

    International Nuclear Information System (INIS)

    Soyeur, M.

    1983-08-01

    This course deals with the following subjects: quarks; quantum chromodynamics (the classical Lagrangian of QCD, quark masses, the classical equations of motion of QCD, general properties, lattices); chiral symmetry (massless free Dirac theory, realizations, the σ-model); the M.I.T. bag model (basic assumptions and equations of motion, spherical cavity approximation, properties of hadrons); the chiral bag models (basic assumptions, the cloudy bag model, the little bag model); non-topological soliton bag models

  7. Quark structure of nucleons: the third bag

    International Nuclear Information System (INIS)

    Wilets, L.

    1983-01-01

    The soliton bag model proposed by Friedberg and Lee is discussed. Unlike the other bag models, it treats the confining bag as a fully dynamical object. A scalar soliton field is introduced to effect confinement. The combined quark-soliton system (plus gluons, Higgs fields, counter terms) is described by a Hamiltonian or Lagrangian. The standard bag models do not have a complete Hamiltonian or Lagrangian. The resulting bag can undergo oscillations, rotations and dynamical distortions

  8. Determination of H2 Diffusion Rates through Various Closures on TRU Waste Bag-Out Bags

    International Nuclear Information System (INIS)

    Noll, Phillip D. Jr.; Callis, E. Larry; Norman, Kirsten M.

    1999-01-01

    The amount of H 2 diffusion through twist and tape (horse-tail), wire tie, plastic tie, and heat sealed closures on transuranic (TRU) waste bag-out bags has been determined. H 2 diffusion through wire and plastic tie closures on TRU waste bag-out bags has not been previously characterized and, as such, TRU waste drums containing bags with these closures cannot be certified and/or shipped to the Waste Isolation Pilot Plant (WIPP). Since wire ties have been used at Los Alamos National Laboratory (LANL) from 1980 to 1991 and the plastic ties from 1991 to the present, there are currently thousands of waste drums that cannot be shipped to the WIPP site. Repackaging the waste would be prohibitively expensive. Diffusion experiments performed on the above mentioned closures show that the diffusion rates of plastic tie and horse-tail closures are greater than the accepted value presented in the TRU-PACT 11 Safety Analysis Report (SAR). Diffusion rates for wire tie closures are not statistically different from the SAR value. Thus, drums containing bags with these closures can now potentially be certified which would allow for their consequent shipment to WIPP

  9. Gravitating lepton bag model

    International Nuclear Information System (INIS)

    Burinskii, A.

    2015-01-01

    The Kerr–Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field corresponding to that of the Dirac electron. For the large spin/mass ratio, a ≫ m, the BH loses horizons and acquires a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has the important advantage of being in accordance with the external gravitational and electromagnetic fields of the KN solution. A peculiar two-sheeted structure of Kerr’s gravity provides a framework for the implementation of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the Compton radius, with a ring–string structure and a quark-like singular pole formed at the sharp edge of this disk, indicating that the considered lepton bag forms a single bag–string–quark system

  10. Bag pigtråd

    DEFF Research Database (Denmark)

    Bjerre, Jacob Halvas

    2015-01-01

    BogFeature om Inger Bjørn Knudsen: Bag Pigtråd - Rom flygtningelejr 1945-1948. Udg. af Lemvig Museum, 2014. 80 sider......BogFeature om Inger Bjørn Knudsen: Bag Pigtråd - Rom flygtningelejr 1945-1948. Udg. af Lemvig Museum, 2014. 80 sider...

  11. 19 CFR 148.83 - Diplomatic and consular bags.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Diplomatic and consular bags. 148.83 Section 148... bags. (a) Diplomatic bags. The contents of diplomatic bags are restricted to diplomatic documents and articles intended exclusively for official use and packages constituting the diplomatic bag must bear...

  12. Disposal sheet for preventing scattering of radioactive contaminated material

    International Nuclear Information System (INIS)

    Miyasaka, Shun-ichi; Kurioka, Hitoshi; Nakamura, Kenjiro.

    1990-01-01

    Upon disposal of vinyl sheets at the final stage of dismantling operation for nuclear buildings, etc., radioactive contaminated materials caused by cutting concretes, etc. remain on the sheets. In view of the above, members capable of restoring original shape due to the temperature difference are attached to the sheet main body so that the sheet main body may be folded into a bag-like shape. Since the members as described above are bent upon temperature elevation in the sheets, the sheet main body is pulled by the members and then spontaneously folded into a bag-like shape. As a result, the radioactive contaminated materials remaining on the sheets are wrapped into the sheet main body free from touch to operator's hands or without scattering to the surrounding. This can prevent operator's external and internal exposure. (T.M.)

  13. 49 CFR 173.166 - Air bag inflators, air bag modules and seat-belt pretensioners.

    Science.gov (United States)

    2010-10-01

    ... generant and, in some cases, a pressure vessel (cylinder)) is a gas generator used to inflate an air bag in... domestic transportation by highway, rail freight, cargo vessel or cargo aircraft, a serviceable air bag...

  14. Role of blood bag temperature indicators in maintaining patent temperature of the returned unused blood bags in blood bank.

    Science.gov (United States)

    Nurasyikin, Y; Leong, C F; Fadhlullah, T M; Hafiz, W M; Nadiah, Z; Atieqah, A N; Ling, T J; Das, S

    2011-01-01

    The main objective of the present study was to evaluate the temperature chain of red blood cells (RBC) returned unused blood bags using blood temperature indicator and ascertain the factors like transportation time, type, size of coolant box and number of bags per box. A total of 250 blood bags with the indicator were observed for the temperature changes with other factors like transportation time, type and size of coolant box and number of bags per box. The recordings were performed at several checkpoints located between the blood bank and the wards. Out of the 250 bags, 74 (29.6%) showed colour changes in which 64 (86.3%) were returned unused (RU) blood bags. The transportation time for these 74 bags was 818.3 ± 941.643 min, significantly higher than bags without colour changes, (p=0.02). Interestingly, 71.4% of the colour changes occurred within the ward. The 7 litre coolant box with an average of 1-5 blood bags per box had a statistically significant higher percentage of colour change with 59.2% compared to the 5 litre coolant box (p=0.05). This study showed that the temperature chain of blood bags was often not well maintained. These results could be mainly due to the non-adherence to the standard operating procedure (SOP) of blood transfusion and the usage of non-standardized coolant boxes.

  15. Efficacy of Alkaline Hydrolysis as an Alternative Method for Treatment and Disposal of Infectious Animal Waste.

    Science.gov (United States)

    Kaye, Gordon; Weber, Peter; Evans, Ann; Venezia, Richard

    1998-05-01

    The efficacy of alkaline hydrolysis as an alternative for incineration or autoclaving during treatment and disposal of infectious waste was evaluated by testing for the destruction of samples of pure cultures of selected infectious microorganisms during digestion of 114 to 136-kg loads of animal carcasses in an animal tissue digestor at the Albany Medical College. Ten milliliter samples of pure cultures of each microorganism were divided among 3 dialysis bags made from narrow diameter dialysis tubing, and each of these bags was placed inside another dialysis bag made from larger diameter dialysis tubing. Each double-bagged sample was suspended from the cover of the carcass basket of the tissue digestor so that it was completely covered by hot alkaline digestion solution during the carcass digestion process. The following organisms were required by the New York State Department of Health as representative pathogens for testing sterilization capabilities of the procedure: Staphylococcus aureus, Mycobacterium fortuitum, Candida albicans, Bacillus subtilis, Pseudomonas aeruginosa, Aspergillus fumigatus, Mycobacterium bovis BCG, MS-2 bacteriophage, and Giardia muris. Animal carcasses included pigs, sheep, rabbits, dogs, rats, mice, and guinea pigs. The tissue digestor was operated at 110 to 120 C and approximately 15 lb/in2 (gauge) for 18 h before the system was allowed to cool to 50 C and dialysis bags were retrieved and submitted for microbial culture. None of the samples obtained from the dialysis bags after the digestion process yielded indicator bacteria or yeast. Giardia cysts were completely destroyed; only small fragments of what appeared to be cyst wall could be recognized with light microscopic examination. No plaque-forming units were detected with MS-2 bacteriophage after digestion. Samples of the hydrolyzate also did not yield growth on culture media. Animal carcasses were completely solubilized and digested, with only the inorganic components of the bones

  16. Disposal of infective waste: demonstrated information and actions taken by nursing and medical students

    Directory of Open Access Journals (Sweden)

    Adenícia Custodia Silva Souza

    2015-03-01

    Full Text Available The inappropriate disposal of infectious waste generates occupational and environmental risks, representing the main cause of accidents with biological material. The aim of the present study was to verify the knowledge and the practice regarding the disposal of infectious waste among nursing and medical undergraduate students at a public university in the state of Goiás. Data were collected with the application of a questionnaire. The respondent students were observed in their practice and data were recorded in a checklist. Nursing students presented greater knowledge than medical students on the disposal of contaminated gloves (x²; p<0.001, as well as on the disposal of sharp cutting instruments (p=0.001. Contaminated gloves were disposed of into bags for common waste both by the nursing and the medical students. Results evidenced that the knowledge of students on the disposal of infectious waste was poor and insufficient to ensure its application to practice.

  17. The cochaperone BAG3 coordinates protein synthesis and autophagy under mechanical strain through spatial regulation of mTORC1.

    Science.gov (United States)

    Kathage, Barbara; Gehlert, Sebastian; Ulbricht, Anna; Lüdecke, Laura; Tapia, Victor E; Orfanos, Zacharias; Wenzel, Daniela; Bloch, Wilhelm; Volkmer, Rudolf; Fleischmann, Bernd K; Fürst, Dieter O; Höhfeld, Jörg

    2017-01-01

    The cochaperone BAG3 is a central protein homeostasis factor in mechanically strained mammalian cells. It mediates the degradation of unfolded and damaged forms of the actin-crosslinker filamin through chaperone-assisted selective autophagy (CASA). In addition, BAG3 stimulates filamin transcription in order to compensate autophagic disposal and to maintain the actin cytoskeleton under strain. Here we demonstrate that BAG3 coordinates protein synthesis and autophagy through spatial regulation of the mammalian target of rapamycin complex 1 (mTORC1). The cochaperone utilizes its WW domain to contact a proline-rich motif in the tuberous sclerosis protein TSC1 that functions as an mTORC1 inhibitor in association with TSC2. Interaction with BAG3 results in a recruitment of TSC complexes to actin stress fibers, where the complexes act on a subpopulation of mTOR-positive vesicles associated with the cytoskeleton. Local inhibition of mTORC1 is essential to initiate autophagy at sites of filamin unfolding and damage. At the same time, BAG3-mediated sequestration of TSC1/TSC2 relieves mTORC1 inhibition in the remaining cytoplasm, which stimulates protein translation. In human muscle, an exercise-induced association of TSC1 with the cytoskeleton coincides with mTORC1 activation in the cytoplasm. The spatial regulation of mTORC1 exerted by BAG3 apparently provides the basis for a simultaneous induction of autophagy and protein synthesis to maintain the proteome under mechanical strain. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Bioreactor design and optimization – a future perspective

    DEFF Research Database (Denmark)

    Gernaey, Krist

    2011-01-01

    Bioreactor design and optimisation are essential in translating the experience gained from lab or pilot scale experiments to efficient production processes in industrial scale bioreactors. This article gives a future perspective on bioreactor design and optimisation, where it is foreseen...

  19. Bioreactor design for tendon/ligament engineering.

    Science.gov (United States)

    Wang, Tao; Gardiner, Bruce S; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B; Wang, Allan; Xu, Jiake; Smith, David W; Lloyd, David G; Zheng, Ming H

    2013-04-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments.

  20. The Multifunctional Protein BAG3

    Directory of Open Access Journals (Sweden)

    Valerie D. Myers, MS

    2018-02-01

    Full Text Available The B-cell lymphoma 2–associated anthanogene (BAG3 protein is expressed most prominently in the heart, the skeletal muscle, and in many forms of cancer. In the heart, it serves as a co-chaperone with heat shock proteins in facilitating autophagy; binds to B-cell lymphoma 2, resulting in inhibition of apoptosis; attaches actin to the Z disk, providing structural support for the sarcomere; and links the α-adrenergic receptor with the L-type Ca2+ channel. When BAG3 is overexpressed in cancer cells, it facilitates prosurvival pathways that lead to insensitivity to chemotherapy, metastasis, cell migration, and invasiveness. In contrast, in the heart, mutations in BAG3 have been associated with a variety of phenotypes, including both hypertrophic/restrictive and dilated cardiomyopathy. In murine skeletal muscle and vasculature, a mutation in BAG3 leads to critical limb ischemia after femoral artery ligation. An understanding of the biology of BAG3 is relevant because it may provide a therapeutic target in patients with both cardiac and skeletal muscle disease.

  1. ARE PLASTIC GROCERY BAGS SACKING THE ENVIRONMENT?

    OpenAIRE

    Mangal Gogte

    2009-01-01

    This paper is oriented on analysis impacts of plastic bags on environment. In this paper is analyzed did plastic bags are so harmful, and what are the main ingredients of it. One part of this paper is oriented on effects of plastic bags and management of their usage. There is also made comparative analysis between impacts of plastic and paper bags on environment.

  2. A rotating bag model for hadrons. 2

    International Nuclear Information System (INIS)

    Iwasaki, Masaharu

    1994-01-01

    The MIT bag model is modified in order to describe rotational motion of hadrons. It has a kind of 'diatomic molecular' structure; The rotational excitation of the MIT bag is described by the polarized two colored sub-bags which are connected with each other by the gluon flux. One sub-bag contains a quark and the other has an antiquark for mesons. For baryons, the latter sub-bag contains the remaining two quarks instead of the antiquark. The Regge trajectories of hadrons are explained qualitatively by our new model with the usual MIT bag parameters. In particular the Regge slopes are reproduced fairly well. It is also pointed out that the gluon flux plays an important role in the rotational motion of hadrons. (author)

  3. Designing electrical stimulated bioreactors for nerve tissue engineering

    Science.gov (United States)

    Sagita, Ignasius Dwi; Whulanza, Yudan; Dhelika, Radon; Nurhadi, Ibrahim

    2018-02-01

    Bioreactor provides a biomimetic ecosystem that is able to culture cells in a physically controlled system. In general, the controlled-parameters are temperature, pH, fluid flow, nutrition flow, etc. In this study, we develop a bioreactor that specifically targeted to culture neural stem cells. This bioreactor could overcome some limitations of conventional culture technology, such as petri dish, by providing specific range of observation area and a uniform treatment. Moreover, the microfluidic bioreactor, which is a small-controlled environment, is able to observe as small number of cells as possible. A perfusion flow is applied to mimic the physiological environment in human body. Additionally, this bioreactor also provides an electrical stimulation which is needed by neural stem cells. In conclusion, we found the correlation between the induced shear stress with geometric parameters of the bioreactor. Ultimately, this system shall be used to observe the interaction between stimulation and cell growth.

  4. Production of cell culture (MDCK) derived live attenuated influenza vaccine (LAIV) in a fully disposable platform process.

    Science.gov (United States)

    George, Meena; Farooq, Masiha; Dang, Thi; Cortes, Bernadette; Liu, Jonathan; Maranga, Luis

    2010-08-15

    The majority of influenza vaccines are manufactured using embryonated hens' eggs. The potential occurrence of a pandemic outbreak of avian influenza might reduce or even eliminate the supply of eggs, leaving the human population at risk. Also, the egg-based production technology is intrinsically cumbersome and not easily scalable to provide a rapid worldwide supply of vaccine. In this communication, the production of a cell culture (Madin-Darby canine kidney (MDCK)) derived live attenuated influenza vaccine (LAIV) in a fully disposable platform process using a novel Single Use Bioreactor (SUB) is presented. The cell culture and virus infection was maintained in a disposable stirred tank reactor with PID control of pH, DO, agitation, and temperature, similar to traditional glass or stainless steel bioreactors. The application of this technology was tested using MDCK cells grown on microcarriers in proprietary serum free medium and infection with 2006/2007 seasonal LAIV strains at 25-30 L scale. The MDCK cell growth was optimal at the agitation rate of 100 rpm. Optimization of this parameter allowed the cells to grow at a rate similar to that achieved in the conventional 3 L glass stirred tank bioreactors. Influenza vaccine virus strains, A/New Caledonia/20/99 (H1N1 strain), A/Wisconsin/67/05 (H3N2 strain), and B/Malaysia/2506/04 (B strain) were all successfully produced in SUB with peak virus titers > or =8.6 log(10) FFU/mL. This result demonstrated that more than 1 million doses of vaccine can be produced through one single run of a small bioreactor at the scale of 30 L and thus provided an alternative to the current vaccine production platform with fast turn-around and low upfront facility investment, features that are particularly useful for emerging and developing countries and clinical trial material production.

  5. Acoustic Multipurpose Cargo Transfer Bag

    Science.gov (United States)

    Baccus, Shelley

    2015-01-01

    The Logistics Reduction (LR) project within the Advanced Exploration Systems (AES) program is tasked with reducing logistical mass and repurposing logistical items. Multipurpose Cargo Transfer Bags (MCTB) are designed to be the same external volume as a regular cargo transfer bag, the common logistics carrier for the International Space Station. After use as a cargo bag, the MCTB can be unzipped and unfolded to be reused. This Acoustic MCTBs transform into acoustic blankets after the initial logistics carrying objective is complete.

  6. Bagworm bags as portable armour against invertebrate predators

    Directory of Open Access Journals (Sweden)

    Shinji Sugiura

    2016-02-01

    Full Text Available Some animals have evolved the use of environmental materials as “portable armour” against natural enemies. Portable bags that bagworm larvae (Lepidoptera: Psychidae construct using their own silk and plant parts are generally believed to play an important role as a physical barrier against natural enemies. However, no experimental studies have tested the importance of bags as portable armour against predators. To clarify the defensive function, I studied the bagworm Eumeta minuscula and a potential predator Calosoma maximoviczi (Coleoptera: Carabidae. Under laboratory conditions, all bagworm larvae were attacked by carabid adults, but successfully defended themselves against the predators’ mandibles using their own bags. The portable bags, which are composed mainly of host plant twigs, may function as a physical barrier against predator mandibles. To test this hypothesis, I removed the twig bags and replaced some with herb leaf bags; all bag-removed larvae were easily caught and predated by carabids, while all bag-replaced larvae could successfully defend themselves against carabid attacks. Therefore, various types of portable bags can protect bagworm larvae from carabid attacks. This is the first study to test the defensive function of bagworm portable bags against invertebrate predators.

  7. Bagworm bags as portable armour against invertebrate predators.

    Science.gov (United States)

    Sugiura, Shinji

    2016-01-01

    Some animals have evolved the use of environmental materials as "portable armour" against natural enemies. Portable bags that bagworm larvae (Lepidoptera: Psychidae) construct using their own silk and plant parts are generally believed to play an important role as a physical barrier against natural enemies. However, no experimental studies have tested the importance of bags as portable armour against predators. To clarify the defensive function, I studied the bagworm Eumeta minuscula and a potential predator Calosoma maximoviczi (Coleoptera: Carabidae). Under laboratory conditions, all bagworm larvae were attacked by carabid adults, but successfully defended themselves against the predators' mandibles using their own bags. The portable bags, which are composed mainly of host plant twigs, may function as a physical barrier against predator mandibles. To test this hypothesis, I removed the twig bags and replaced some with herb leaf bags; all bag-removed larvae were easily caught and predated by carabids, while all bag-replaced larvae could successfully defend themselves against carabid attacks. Therefore, various types of portable bags can protect bagworm larvae from carabid attacks. This is the first study to test the defensive function of bagworm portable bags against invertebrate predators.

  8. ARE PLASTIC GROCERY BAGS SACKING THE ENVIRONMENT?

    Directory of Open Access Journals (Sweden)

    Mangal Gogte

    2009-12-01

    Full Text Available This paper is oriented on analysis impacts of plastic bags on environment. In this paper is analyzed did plastic bags are so harmful, and what are the main ingredients of it. One part of this paper is oriented on effects of plastic bags and management of their usage. There is also made comparative analysis between impacts of plastic and paper bags on environment.

  9. Effect of operating conditions in production of diagnostic Salmonella Enteritidis O-antigen-specific monoclonal antibody in different bioreactor systems.

    Science.gov (United States)

    Ayyildiz-Tamis, Duygu; Nalbantsoy, Ayse; Elibol, Murat; Deliloglu-Gurhan, Saime Ismet

    2014-01-01

    In this study, different cultivation systems such as roller bottles (RB), 5-L stirred-tank bioreactor (STR), and disposable bioreactors were used to cultivate hybridoma for lab-scale production of Salmonella Enteritidis O-antigen-specific monoclonal antibody (MAb). Hybridoma cell line was cultivated in either serum-containing or serum-free medium (SFM) culture conditions. In STR, MAb production scaled up to 4 L, and production capabilities of the cells were also evaluated in different featured production systems. Moreover, the growth parameters of the cells in all production systems such as glucose consumption, lactate and ammonia production, and also MAb productivities were determined. Collected supernatants from the reactors were concentrated by a cross-flow filtration system. In conclusion, cells were not adapted to SFM in RB and STR. Therefore, less MAb titer in both STR and RB systems with SFM was observed compared to the cultures containing fetal bovine serum-supplemented medium. A higher MAb titer was gained in the membrane-aerated system compared to those in STR and RB. Although the highest MAb titer was obtained in the static membrane bioreactor system, the highest productivity was obtained in STR operated in semicontinuous mode with overlay aeration.

  10. Bioreactor technology for herbal plants

    International Nuclear Information System (INIS)

    Sobri Hussein; Rusli Ibrahim; Abdul Rahim Harun; Azhar Mohamad; Hawa Abdul Aziz; Wan Nazirah Wan Ali

    2010-01-01

    Plants have been an important source of medicine for thousands of years and herbs are hot currency in the world today. During the last decade, popularity of alternative medicine increased significantly worldwide with noticeable trend. This in turn accelerated the global trade of herbal raw materials and herbal products and created greater scope for Asian countries that possess the major supply of herbal raw materials within their highly diversified tropical rain forest. As such, advanced bioreactor culture system possesses a great potential for large scale production than the traditional tissue culture system. Bioreactor cultures have many advantages over conventional cultures. Plant cells in bioreactors can grow fast and vigorously in shorter period as the culture conditions in bioreactor such as temperature, pH, concentrations of dissolved oxygen, carbon dioxide and nutrients can be optimised by on-line manipulation. Nutrient uptake can also be enhanced by continuous medium circulation, which ultimately increased cell proliferation rate. Consequently, production period and cost are substantially reduced, product quality is controlled and standardized as well as free of pesticide contamination and production of raw material can be conducted all year round. Taking all these into consideration, current research efforts were focused on varying several parameters such as inoculation density, air flow, medium formulation, PGRs etc. for increased production of cell and organ cultures of high market demand herbal and medicinal plants, particularly Eurycoma longifolia, Panax ginseng and Labisia pumila. At present, the production of cell and organ culture of these medicinal plants have also been applied in airlift bioreactor with different working volumes. It is hope that the investment of research efforts into this advanced bioreactor technology will open up a bright future for the modernization of agriculture and commercialisation of natural product. (author)

  11. Effects of quantum entropy on bag constant

    International Nuclear Information System (INIS)

    Miller, D.E.; Tawfik, A.

    2012-01-01

    The effects of quantum entropy on the bag constant are studied at low temperatures and for small chemical potentials. The inclusion of the quantum entropy of the quarks in the equation of state provides the hadronic bag with an additional heat which causes a decrease in the effective latent heat inside the bag. We have considered two types of baryonic bags, Δ and Ω - . In both cases we have found that the bag constant without the quantum entropy almost does not change with temperature and quark chemical potential. The contribution from the quantum entropy to the equation of state clearly decreases the value of the bag constant. Furthermore, we construct states densities for quarks using the 'Thomas Fermi model' and take into consideration a thermal potential for the interaction. (author)

  12. Process technology of luwak coffee through bioreactor utilization

    Science.gov (United States)

    Hadipernata, M.; Nugraha, S.

    2018-01-01

    Indonesia has an advantage in producing exotic coffee that is Luwak coffee. Luwak coffee is produced from the fermentation process in digestion of civet. Luwak coffee production is still limited due to the difficulty level in the use of civet animals as the only medium of Luwak coffee making. The research was conducted by developing technology of luwak coffee production through bioreactor utilization and addition the bacteria isolate from gastric of civet. The process conditions in the bioreactor which include temperature, pH, and bacteria isolate of civet are adjusted to the process that occurs in civet digestion, including peristaltic movement on the stomach and small intestine of the civet will be replaced by the use of propellers that rotate on the bioreactor. The result of research showed that proximat analysis data of artificial/bioreactor luwak coffee did not significant different with original luwak coffee. However, the original luwak coffee has higher content of caffeine compared to bioreactor luwak coffee. Based on the cuping test the bioreactor luwak coffee has a value of 84.375, while the original luwak coffee is 84.875. As the result, bioreactor luwak coffee has excellent taste that similiar with original luwak coffee taste.

  13. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  14. Behavioral Response to Plastic Bag Legislation in Botswana

    OpenAIRE

    Dikgang, Johane; Visser, Martine

    2010-01-01

    This paper investigates the use of charges and standards in dealing with a common externality, plastic litter from shopping bags in Botswana. The country passed a plastic bag tax (effective 2007) to curb the plastic bag demand. Interestingly, the legislation did not force retailers to charge for plastic bags, which they did voluntarily at different prices. We assessed the environmental effectiveness and efficiency of the plastic bag legislation by analyzing consumers’ sensitivity to the impro...

  15. Schisandra lignans production regulated by different bioreactor type.

    Science.gov (United States)

    Szopa, Agnieszka; Kokotkiewicz, Adam; Luczkiewicz, Maria; Ekiert, Halina

    2017-04-10

    Schisandra chinensis (Chinese magnolia vine) is a rich source of therapeutically relevant dibenzocyclooctadiene lignans with anticancer, immunostimulant and hepatoprotective activities. In this work, shoot cultures of S. chinensis were grown in different types of bioreactors with the aim to select a system suitable for the large scale in vitro production of schisandra lignans. The cultures were maintained in Murashige-Skoog (MS) medium supplemented with 3mg/l 6-benzylaminopurine (BA) and 1mg/l 1-naphthaleneacetic acid (NAA). Five bioreactors differing with respect to cultivation mode were tested: two liquid-phase systems (baloon-type bioreactor and bubble-column bioreactor with biomass immobilization), the gas-phase spray bioreactor and two commercially available temporary immersion systems: RITA ® and Plantform. The experiments were run for 30 and 60 days in batch mode. The harvested shoots were evaluated for growth and lignan content determined by LC-DAD and LC-DAD-ESI-MS. Of the tested bioreactors, temporary immersion systems provided the best results with respect to biomass production and lignan accumulation: RITA ® bioreactor yielded 17.86g/l (dry weight) during 60 day growth period whereas shoots grown for 30 days in Plantform bioreactor contained the highest amount of lignans (546.98mg/100g dry weight), with schisandrin, deoxyschisandrin and gomisin A as the major constituents (118.59, 77.66 and 67.86mg/100g dry weight, respectively). Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Membrane bioreactors for waste gas treatment.

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.

    1998-01-01

    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  17. Membrane bioreactors for waste gas treatment

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.

    1998-01-01

    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  18. Role of Bioreactors in Microbial Biomass and Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang [Chongqing University, Chongqing, China; Zhang, Biao [Chongqing University, Chongqing, China; Zhu, Xun [Chongqing University, Chongqing, China; Chang, Haixing [Chongqing University of Technology; Ou, Shawn [ORNL; Wang, HONG [Chongqing University, Chongqing, China

    2018-04-01

    Bioenergy is the world’s largest contributor to the renewable and sustainable energy sector, and it plays a significant role in various energy industries. A large amount of research has contributed to the rapidly evolving field of bioenergy and one of the most important topics is the use of the bioreactor. Bioreactors play a critical role in the successful development of technologies for microbial biomass cultivation and energy conversion. In this chapter, after a brief introduction to bioreactors (basic concepts, configurations, functions, and influencing factors), the applications of the bioreactor in microbial biomass, microbial biofuel conversion, and microbial electrochemical systems are described. Importantly, the role and significance of the bioreactor in the bioenergy process are discussed to provide a better understanding of the use of bioreactors in managing microbial biomass and energy conversion.

  19. Massless quark wavefunction in the deformed bag

    International Nuclear Information System (INIS)

    Min, D.P.; Park, B.Y.; Koh, Y.S.

    1984-01-01

    The quark wavefunctions inside the deformed bag are obtained using a modified linear boundary condition stemming from the MIT bag Lagrangian with an additional term. We propose an exact method to obtain the quark wavefunction even for a spheroidally deformed bag. (Author)

  20. Biodegradable bags for the production of plant seedlings

    Directory of Open Access Journals (Sweden)

    Ana Paula Bilck

    2014-10-01

    Full Text Available The production of plant seedlings has traditionally used polyethylene bags, which are thrown out in the soil or burned after transplant because the large amount of organic material attached to the bags makes recycling difficult. Additionally, when a seedling is taken from the bag for transplant, there is the risk of root damage, which compromises the plant’s development. In this study, we developed biodegradable bags to be used in seedling production, and we verify their influence on the development of Brazilian ginseng (Pfaffia glomerata (Spreng Pedersen, when the plant is planted without being removed from the bag. Both black and white biodegradable bags remained intact throughout the seedling production period (60 days. After being transplanted into containers (240 days, they were completely biodegraded, and there was no significant difference between the dry mass of these plants and that of plants that were transplanted without the bags. The plants that were cultivated without being removed from the polyethylene bags had root development difficulties, and the wrapping showed no signs of degradation. The use of biodegradable films is an alternative for the production of bags for seedlings, as these can then be transplanted directly into the soil without removing the bag, reducing the risk of damage to the roots during the moment of transplant.

  1. A Carrier Bag Story of (waste) food, hens and the sharing economy

    DEFF Research Database (Denmark)

    Fjalland, Emmy Laura Perez

    2018-01-01

    futures by showing the collaborative, compassionate, responsible qualities of the sharing economy of the exchange of waste food. With the help from The Carrier Bag Theory – an alternative, feminist narrative – and the mobilities paradigm, this article shows the transformative gestures of ethical......, ecologies and different waste, recycling and/or upcycling systems. Within these disposal systems, valuable resources are being lost. Based on empirical work from a Danish project called Sharing City and a local small-scale organic farm (named Hegnsholt), this article elaborates upon how particular waste......, this article ought to inspire us to rethink how to share this planet with earth-others....

  2. Multi-monopoles and magnetic bags

    International Nuclear Information System (INIS)

    Bolognesi, Stefano

    2006-01-01

    By analogy with the multi-vortices, we show that also multi-monopoles become magnetic bags in the large n limit. This simplification allows us to compute the spectrum and the profile functions by requiring the minimization of the energy of the bag. We consider in detail the case of the magnetic bag in the limit of vanishing potential and we find that it saturates the Bogomol'nyi bound and there is an infinite set of different shapes of allowed bags. This is consistent with the existence of a moduli space of solutions for the BPS multi-monopoles. We discuss the string theory interpretation of our result and also the relation between the 't Hooft large n limit of certain supersymmetric gauge theories and the large n limit of multi-monopoles. We then consider multi-monopoles in the cosmological context and provide a mechanism that could lead to their production

  3. Autoregulation of Co-Chaperone BAG3 Gene Transcription

    OpenAIRE

    Gentilella, Antonio; Khalili, Kamel

    2009-01-01

    The Bcl-2-associated athanogene, BAG, protein family through their BAG domain associates with the heat shock protein 70 (HSP-70) and modulates its chaperone activity. One member of this family, BAG3, appears to play an important role in protein homeostasis, as its expression promotes cell survival by preventing polyubiquitination of Hsp-70 client proteins. Expression of BAG3 is enhanced by a variety of stress-inducing agents. Here we describe a role for BAG3 to modulate transcription of its o...

  4. Baryon bags in strong coupling QCD

    Science.gov (United States)

    Gattringer, Christof

    2018-04-01

    We discuss lattice QCD with one flavor of staggered fermions and show that in the path integral the baryon contributions can be fully separated from quark and diquark contributions. The baryonic degrees of freedom (d.o.f.) are independent of the gauge field, and the corresponding free fermion action describes the baryons through the joint propagation of three quarks. The nonbaryonic dynamics is described by quark and diquark terms that couple to the gauge field. When evaluating the quark and diquark contributions in the strong coupling limit, the partition function completely factorizes into baryon bags and a complementary domain. Baryon bags are regions in space-time where the dynamics is described by a single free fermion made out of three quarks propagating coherently as a baryon. Outside the baryon bags, the relevant d.o.f. are monomers and dimers for quarks and diquarks. The partition sum is a sum over all baryon bag configurations, and for each bag, a free fermion determinant appears as a weight factor.

  5. Bag model with broken chiral symmetry

    International Nuclear Information System (INIS)

    Efrosinin, V.P.; Zaikin, D.A.

    1986-01-01

    A variant of the bag model in which chiral symmetry is broken and which provides a description of all the experimental data on the light hadrons, including the pion, is discussed. The pion and kaon decay constants are calculated in this model. The problem of taking into account the center-of-mass motion in bag models and the boundary conditions in the bag model with broken chiral symmetry are also discussed

  6. Application of semifluidized bed bioreactor as novel bioreactor ...

    African Journals Online (AJOL)

    The conventional bioreactors such as pond digester, anaerobic filtration, up-flow anaerobic sludge blanket (UASB), up-flow anaerobic sludge fixed-film (UASFF), continuous stirred tank reactor (CSTR), anaerobic contact digestion and fluidized bed, used over the past decades are largely operated anaerobically. They have ...

  7. The Cheshire Cat principle for hybrid bag models

    International Nuclear Information System (INIS)

    Nielsen, H.B.

    1987-05-01

    The Cheshire Cat point of view where the bag in the chiral bag model has no physical significance, but only a notational one is argued for. It is explained how a fermion - in, say, a 1+1 dimensional exact Cheshire Cat model - escapes the bag by means of an anomaly. The possibility to construct sophisticated hybrid bag models is suggested which use the lack of physical significance of the bag to fix the many parameters so as to anyway give hope of a phenomenologically sensible model. (orig.)

  8. The quark bag model

    International Nuclear Information System (INIS)

    Hasenfratz, P.; Kuti, J.

    1978-01-01

    The quark bag model is reviewed here with particular emphasis on spectroscopic applications and the discussion of exotic objects as baryonium, gluonium, and the quark phase of matter. The physical vacuum is pictured in the model as a two-phase medium. In normal phase of the vacuum, outside hadrons, the propagation of quark and gluon fields is forbidden. When small bubbles in a second phase are created in the medium of the normal phase with a characteristic size of one fermi, the hadron constituent fields may propagate inside the bubbles in normal manner. The bubble (bag) is stabilized against the pressure of the confined hadron constituent fields by vacuum pressure and surface tension. Inside the bag the colored quarks and gluons are governed by the equations of quantum chromodynamics. (Auth.)

  9. Ergonomics and safety of manual bag sealing.

    NARCIS (Netherlands)

    Groot, M.D. de; Bosch, T.; Eikhout, S.M.; Vink, P.

    2005-01-01

    A variety of seals is used to close bags. Each seal has advantages and disadvantages. For shop assistants sealing bags could be a repetitive physically demanding action. Opening and closing the bags again can cause some discomfort or annoyance for consumers. Besides, it is an activity which can

  10. Extended Stability of Epinephrine Hydrochloride Injection in Polyvinyl Chloride Bags Stored in Amber Ultraviolet Light-Blocking Bags.

    Science.gov (United States)

    Van Matre, Edward T; Ho, Kang C; Lyda, Clark; Fullmer, Beth A; Oldland, Alan R; Kiser, Tyree H

    2017-09-01

    Objective: The objective of this study was to evaluate the stability of epinephrine hydrochloride in 0.9% sodium chloride in polyvinyl chloride bags for up to 60 days. Methods: Dilutions of epinephrine hydrochloride to concentrations of 16 and 64 µg/mL were performed under aseptic conditions. The bags were then placed into ultraviolet light-blocking bags and stored at room temperature (23°C-25°C) or under refrigeration (3°C-5°C). Three samples of each preparation and storage environment were analyzed on days 0, 30, 45, and 60. Physical stability was performed by visual examination. The pH was assessed at baseline and upon final degradation evaluation. Sterility of the samples was not assessed. Chemical stability of epinephrine hydrochloride was evaluated using high-performance liquid chromatography. To determine the stability-indicating nature of the assay, degradation 12 months following preparation was evaluated. Samples were considered stable if there was less than 10% degradation of the initial concentration. Results: Epinephrine hydrochloride diluted to 16 and 64 µg/mL with 0.9% sodium chloride injection and stored in amber ultraviolet light-blocking bags was physically stable throughout the study. No precipitation was observed. At days 30 and 45, all bags had less than 10% degradation. At day 60, all refrigerated bags had less than 10% degradation. Overall, the mean concentration of all measurements demonstrated less than 10% degradation at 60 days at room temperature and under refrigeration. Conclusion: Epinephrine hydrochloride diluted to 16 and 64 µg/mL with 0.9% sodium chloride injection in polyvinyl chloride bags stored in amber ultraviolet light-blocking bags was stable up to 45 days at room temperature and up to 60 days under refrigeration.

  11. Recent status of the chiral bag model

    International Nuclear Information System (INIS)

    Hosaka, Atsushi; Toki, Hiroshi.

    1995-01-01

    In this note, recent status of the chiral bag model is presented. As it combines the MIT quark bag model and the Skyrme model, the chiral bag model interpolates the two models smoothly as a function of the chiral bag radius R. The correct limit of R → ∞ is reproduced by including the higher order terms in the Ω expansion of the cranking method. It resolves the so-called small g A problem in a class of models where the semiclassical method is used. (author)

  12. Fun and Functional Shopping Bags

    Science.gov (United States)

    Owen, Barbara Downing

    2009-01-01

    In conjunction with her school's interest in becoming more "green," this author designed an art project using inexpensive, sturdy, reusable grocery bags. In this article, she describes the different design concepts and art media used by each grade in decorating these bags. (Contains 1 online resource.)

  13. Storage of Maize in Purdue Improved Crop Storage (PICS) Bags.

    Science.gov (United States)

    Williams, Scott B; Murdock, Larry L; Baributsa, Dieudonne

    2017-01-01

    Interest in using hermetic technologies as a pest management solution for stored grain has risen in recent years. One hermetic approach, Purdue Improved Crop Storage (PICS) bags, has proven successful in controlling the postharvest pests of cowpea. This success encouraged farmers to use of PICS bags for storing other crops including maize. To assess whether maize can be safely stored in PICS bags without loss of quality, we carried out laboratory studies of maize grain infested with Sitophilus zeamais (Motshulsky) and stored in PICS triple bags or in woven polypropylene bags. Over an eight month observation period, temperatures in the bags correlated with ambient temperature for all treatments. Relative humidity inside PICS bags remained constant over this period despite the large changes that occurred in the surrounding environment. Relative humidity in the woven bags followed ambient humidity closely. PICS bags containing S. zeamais-infested grain saw a significant decline in oxygen compared to the other treatments. Grain moisture content declined in woven bags, but remained high in PICS bags. Seed germination was not significantly affected over the first six months in all treatments, but declined after eight months of storage when infested grain was held in woven bags. Relative damage was low across treatments and not significantly different between treatments. Overall, maize showed no signs of deterioration in PICS bags versus the woven bags and PICS bags were superior to woven bags in terms of specific metrics of grain quality.

  14. 40 CFR 258.41 - Project XL Bioreactor Landfill Projects.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Project XL Bioreactor Landfill... WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Design Criteria § 258.41 Project XL Bioreactor Landfill Projects. (a) Buncombe County, North Carolina Project XL Bioreactor Landfill Requirements...

  15. Bag-like contaminant control work module

    International Nuclear Information System (INIS)

    Buchanan, H.; Jacobson, E.B.

    1982-01-01

    A bag-like contaminant control work module is formed from a flexible impervious membrane which is inflated inside of an enclosed workspace to protect workers in the module from contaminants. The workspace, such as in a nuclear power steam generator, has a portal or manway opening into the workspace into which the module is secured by a module passageway. The module includes one or more glove boxes, in which the workers perform their assigned tasks after passing through the passageway and portal. The module includes one or more absolute filters allowing passage of air flow through the module passageway and into the workspace only through the filters. The module may include an auxiliary passageway secured to the outside of the module passageway and also secured in the portal opening and through which items can be passed back and forth to the worker in the glove box from outside the portal. The module is invertible so that it can be pulled out of the workspace trapping all the contaminants therein and disposed of without handling the contaminants

  16. 49 CFR 178.521 - Standards for paper bags.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for paper bags. 178.521 Section 178.521...-bulk Performance-Oriented Packaging Standards § 178.521 Standards for paper bags. (a) The following are identification codes for paper bags: (1) 5M1 for a multi-wall paper bag; and (2) 5M2 for a multi-wall water...

  17. Tubular membrane bioreactors for biotechnological processes.

    Science.gov (United States)

    Wolff, Christoph; Beutel, Sascha; Scheper, Thomas

    2013-02-01

    This article is an overview of bioreactors using tubular membranes such as hollow fibers or ceramic capillaries for cultivation processes. This diverse group of bioreactor is described here in regard to the membrane materials used, operational modes, and configurations. The typical advantages of this kind of system such as environments with low shear stress together with high cell densities and also disadvantages like poor oxygen supply are summed up. As the usage of tubular membrane bioreactors is not restricted to a certain organism, a brief overview of various applications covering nearly all types of cells from prokaryotic to eukaryotic cells is also given here.

  18. Effect of sudden addition of PCE and bioreactor coupling to ZVI filters on performance of fluidized bed bioreactors operated in simultaneous electron acceptor modes.

    Science.gov (United States)

    Moreno-Medina, C U; Poggi-Varaldo, Hector M; Breton-Deval, L; Rinderknecht-Seijas, N

    2017-11-01

    The present work evaluated the effects of (i) feeding a water contaminated with 80 mg/L PCE to bioreactors seeded with inoculum not acclimated to PCE, (ii) coupling ZVI side filters to bioreactors, and (iii) working in different biological regimes, i.e., simultaneous methanogenic aeration and simultaneous methanogenic-denitrifying regimes, on fluidized bed bioreactor performance. Simultaneous electron acceptors refer to the simultaneous presence of two compounds operating as final electron acceptors in the biological respiratory chain (e.g., use of either O 2 or NO 3 - in combination with a methanogenic environment) in a bioreactor or environmental niche. Four lab-scale, mesophilic, fluidized bed bioreactors (bioreactors) were implemented. Two bioreactors were operated as simultaneous methanogenic-denitrifying (MD) units, whereas the other two were operated in partially aerated methanogenic (PAM) mode. In the first period, all bioreactors received a wastewater with 1 g chemical oxygen demand of methanol per liter (COD-methanol/L). In a second period, all the bioreactors received the wastewater plus 80 mg perchloroethylene (PCE)/L; at the start of period 2, one MD and one PAM were coupled to side sand-zero valent iron filters (ZVI). All bioreactors were inoculated with a microbial consortium not acclimated to PCE. In this work, the performance of the full period 1 and the first 60 days of period 2 is reported and discussed. The COD removal efficiency and the nitrate removal efficiency of the bioreactors essentially did not change between period 1 and period 2, i.e., upon PCE addition. On the contrary, specific methanogenic activity in PAM bioreactors (both with and without coupled ZVI filter) significantly decreased. This was consistent with a sharp fall of methane productivity in those bioreactors in period 2. During period 2, PCE removals in the range 86 to 97 % were generally observed; the highest removal corresponded to PAM bioreactors along with the

  19. Anaerobic membrane bioreactor under extreme conditions (poster)

    NARCIS (Netherlands)

    Munoz Sierra, J.D.; De Kreuk, M.K.; Spanjers, H.; Van Lier, J.B.

    2013-01-01

    Membrane bioreactors ensure biomass retention by the application of micro or ultrafiltration processes. This allows operation at high sludge concentrations. Previous studies have shown that anaerobic membrane bioreactors is an efficient way to retain specialist microorganisms for treating

  20. Nuclear surface vibrations in bag models

    International Nuclear Information System (INIS)

    Tomio, L.

    1984-01-01

    The main difficulties found in the hadron bag models are reviewed from the original version of the MIT bag model. Following, with the aim to answer two of the main difficulties in bag models, viz., the parity and the divergence illness, a dynamical model is presented. In the model, the confinement surface of the quarks (bag) is treated like a real physical object which interacts with the quarks and is exposed to vibrations. The model is applied to the nucleon, being observed that his spectrum, in the first excited levels, can be reproduced with resonable precision and obeying to the correct parity order. In the same way that in a similar work of Brown et al., it is observed to be instrumental the inclusion of the effect due to pions. (L.C.) [pt

  1. Operation of a fluidized-bed bioreactor for denitrification

    International Nuclear Information System (INIS)

    Hancher, C.W.; Taylor, P.A.; Napier, J.M.

    1978-01-01

    Two denitrification fluidized-bed bioreactors of the same length (i.e., 5 m) but with different inside diameters (i.e., 5 and 10 cm) have been operated on feed ranging in nitrate concentration from 200 to 2000 g/m 3 ; thus far, good agreement has been obtained. Two 10-cm-ID bioreactors operating in series have also been tested; the results are in accordance with predicted results based on the performance of a 5-cm-ID bioreactor. The overall denitrification rate in the dual 10-cm-ID bioreactor system was found to be 23 kg N(NO 3 - )/day-m 3 using feed with a nitrate concentration of 1800 g/m 3 . Data obtained in operating-temperature tests indicate that the maximum denitrification rate is achieved between 22 and 30 0 C. These data will form the basis of the design of our mobile pilot plant which consists of dual 20-cm-ID by 7.3-m-long bioreactors

  2. Detecting leaks in vacuum bags

    Science.gov (United States)

    Carlstrom, E. E.

    1980-01-01

    Small leaks in vacuum bag can be readily detected by eye, using simple chemical reaction: combination of ammonia and acetic acid vapors to produce cloudy white smoke. Technique has been successfully used to test seam integrity and to identify minute pinholes in vacuum bag used in assembly of ceramic-tile heat shield for Space Shuttle Orbiter.

  3. Knife-edge seal for vacuum bagging

    Science.gov (United States)

    Rauschl, J. A.

    1980-01-01

    Cam actuated clamps pinch bagging material between long knife edge (mounted to clamps) and high temperature rubber cushion bonded to baseplate. No adhesive, tape, or sealing groove is needed to seal edge of bagging sheet against base plate.

  4. Scale-up of bioreactors: The concept of bioreactor number and its relation to the physiology of industrial microorganisms at different scales

    Energy Technology Data Exchange (ETDEWEB)

    De Ford, D

    1988-01-01

    The objective of this research is to provide a novel approach to the problem of scale-up of fermentations. The work subscribes the idea that two regions appear in bioreactors as the volume increases. The first is where high oxygen transfer occurs and the second is where low oxygen transfer occurs. It is assumed that organisms grown in a stirred tank fermenter travel in a cyclical manner through these two regions. A dimensionless factor is developed, the bioreactor number. Using this number the performance of any stirred tank fermenter can be described as a function of its geometry, operating conditions and physical properties of media. A mathematical model for the prediction of the physiological response of aerobic micro-organisms (specific growth rate, final cell concentration and product synthesis) as a function of the bioreactor number is also developed. It was adjusted by using the results of fermentations performed in a specially designed experimental rig allowing the simulation of fermenters with various bioreactor numbers. If the bioreactor and physiological models are linked it is possible to predict how micro-organisms respond when geometry, operating conditions or media properties are changed in a bioreactor. This approach is a tool for decision making in the design and operation of fermenters.

  5. 16 CFR 501.3 - Replacement bags for vacuum cleaners.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Replacement bags for vacuum cleaners. 501.3... REQUIREMENTS AND PROHIBITIONS UNDER PART 500 § 501.3 Replacement bags for vacuum cleaners. Replacement bags for..., provided: (a) The quantity of contents is expressed in terms of numerical count of the bags; (b) A...

  6. Design and efficacy of a single-use bioreactor for heart valve tissue engineering.

    Science.gov (United States)

    Converse, Gabriel L; Buse, Eric E; Neill, Kari R; McFall, Christopher R; Lewis, Holley N; VeDepo, Mitchell C; Quinn, Rachael W; Hopkins, Richard A

    2017-02-01

    Heart valve tissue engineering offers the promise of improved treatments for congenital heart disorders; however, widespread clinical availability of a tissue engineered heart valve (TEHV) has been hindered by scientific and regulatory concerns, including the lack of a disposable, bioreactor system for nondestructive valve seeding and mechanical conditioning. Here we report the design for manufacture and the production of full scale, functional prototypes of such a system. To evaluate the efficacy of this bioreactor as a tool for seeding, ovine aortic valves were decellularized and subjected to seeding with human mesenchymal stem cells (hMSC). The effects of pulsatile conditioning using cyclic waveforms tuned to various negative and positive chamber pressures were evaluated, with respect to the seeding of cells on the decellularized leaflet and the infiltration of seeded cells into the interstitium of the leaflet. Infiltration of hMSCs into the aortic valve leaflet was observed following 72 h of conditioning under negative chamber pressure. Additional conditioning under positive pressure improved cellular infiltration, while retaining gene expression within the MSC-valve interstitial cell phenotype lineage. This protocol resulted in a subsurface pilot population of cells, not full tissue recellularization. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 249-259, 2017. © 2015 Wiley Periodicals, Inc.

  7. Reducing single-use plastic shopping bags in the USA.

    Science.gov (United States)

    Wagner, Travis P

    2017-12-01

    In the USA, local governments have the primary responsibility to manage MSW. However, local governments lack the authority to explicitly shift costs or responsibility back onto the producer for specific problem wastes. A particularly problematic waste for local governments is the single-use plastic bag. In 2014, in the USA, 103.465 billion single-use plastic shopping bags were consumed. Because of their extremely low recyclability rate, plastic bags remain a significant source of land-based litter and marine debris and impair stormwater management systems. They also reduce the effectiveness of automated recycling systems. In response, local governments increasingly have adopted a variety of measures specifically intended to reduce the store-level consumption of single-use shopping bags in 5 major categories: bans, imposition of fees and taxes, establishing minimum product design of bags, requiring consumer education, and mandating retailer take-back programs. As of September 2017, there were 271 local governments in the USA with plastic bag ordinances covering 9.7% of the nation's population. The majority (95%) of the ordinances is a ban on single-use plastic bags; 56.9% of these bans also include a mandatory fee on paper and/or reusable bags. For the fee-based ordinances, the mode is $0.10 per bag; every tax/fee ordinance allows retailers to retain some or all the collected fee. As local governments continue to increase their actions on plastic bags, 11 states have enacted laws to prohibit local governments from regulating single-use plastic bags. Because of the success with single-use bags, local governments are also enacting similar ordinances on single-use expanded polystyrene consumer products and other single-use plastic products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Biodegradable bags for the production of plant seedlings

    OpenAIRE

    Bilck,Ana Paula; Olivato,Juliana Bonametti; Yamashita,Fabio; Souza,José Roberto Pinto de

    2014-01-01

    The production of plant seedlings has traditionally used polyethylene bags, which are thrown out in the soil or burned after transplant because the large amount of organic material attached to the bags makes recycling difficult. Additionally, when a seedling is taken from the bag for transplant, there is the risk of root damage, which compromises the plant’s development. In this study, we developed biodegradable bags to be used in seedling production, and we verify their influence on the deve...

  9. Improved bag models of P-wave baryons

    International Nuclear Information System (INIS)

    Wang Fan; Wong Chunwa

    1988-01-01

    Problems in two previous bag-model calculations of P-wave baryon states are pointed out. The two-body matrix elements used in one of these models, the Myhrer-Wroldsen bag model, have now been revised and corrected by Myhrer, Umino and Wroldsen. We use their corrected matrix elements to construct simple bag models in which baryon masses are stabilized against collapse by using a finite pion size. We find that baryon masses in both ground and excited states can be fitted with the same model parameters. Models with small-bag baryons of the type proposed by Brown and Rho are then obtained. Typical bag radii are 0.5 fm for N, 0.6 fm for Δ and 0.7 fm for P-wave nonstrange baryons. In these models, the mixing angles are still unsatisfactory, while inadequacy in the treatment of center-of-mass motion found in an earlier paper persists. These results are briefly discussed. especially in connection with skyrmion models. (orig.)

  10. Comparison of membrane bioreactor technology and conventional ...

    African Journals Online (AJOL)

    The purpose of this paper was to review the use of membrane bioreactor technology as an alternative for treating the discharged effluent from a bleached kraft mill by comparing and contrasting membrane bioreactors with conventional activated sludge systems for wastewater treatment. There are many water shortage ...

  11. An innovative membrane bioreactor for methane biohydroxylation.

    Science.gov (United States)

    Pen, N; Soussan, L; Belleville, M-P; Sanchez, J; Charmette, C; Paolucci-Jeanjean, D

    2014-12-01

    In this study, a membrane bioreactor (MBR) was developed for efficient, safe microbial methane hydroxylation with Methylosinus trichosporium OB3b. This innovative MBR, which couples a bioreactor with two gas/liquid macroporous membrane contactors supplying the two gaseous substrates (methane and oxygen) was operated in fed-batch mode. The feasibility and the reproducibility of this new biohydroxylation process were first demonstrated. The mass transfer within this MBR was twice that observed in a batch reactor in similar conditions. The productivity reached with this MBR was 75±25mgmethanol(gdrycell)(-1)h(-1). Compared to the literature, this value is 35times higher than that obtained with the only other fed-batch membrane bioreactor reported, which was run with dense membranes, and is comparable to those obtained with bioreactors fed by bubble-spargers. However, in the latter case, an explosive gas mixture can be formed, a problem that is avoided with the MBR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold a...

  13. Wave energy absorption by a floating air bag

    DEFF Research Database (Denmark)

    Kurniawan, Adi; Chaplin, John; Greaves, Deborah

    2017-01-01

    A floating air bag, ballasted in water, expands and contracts as it heaves under wave action. Connecting the bag to a secondary volume via a turbine transforms the bag into a device capable of generating useful energy from the waves. Small-scale measurements of the device reveal some interesting...

  14. BAG3: a multifaceted protein that regulates major cell pathways

    Science.gov (United States)

    Rosati, A; Graziano, V; De Laurenzi, V; Pascale, M; Turco, M C

    2011-01-01

    Bcl2-associated athanogene 3 (BAG3) protein is a member of BAG family of co-chaperones that interacts with the ATPase domain of the heat shock protein (Hsp) 70 through BAG domain (110–124 amino acids). BAG3 is the only member of the family to be induced by stressful stimuli, mainly through the activity of heat shock factor 1 on bag3 gene promoter. In addition to the BAG domain, BAG3 contains also a WW domain and a proline-rich (PXXP) repeat, that mediate binding to partners different from Hsp70. These multifaceted interactions underlie BAG3 ability to modulate major biological processes, that is, apoptosis, development, cytoskeleton organization and autophagy, thereby mediating cell adaptive responses to stressful stimuli. In normal cells, BAG3 is constitutively present in a very few cell types, including cardiomyocytes and skeletal muscle cells, in which the protein appears to contribute to cell resistance to mechanical stress. A growing body of evidence indicate that BAG3 is instead expressed in several tumor types. In different tumor contexts, BAG3 protein was reported to sustain cell survival, resistance to therapy, and/or motility and metastatization. In some tumor types, down-modulation of BAG3 levels was shown, as a proof-of-principle, to inhibit neoplastic cell growth in animal models. This review attempts to outline the emerging mechanisms that can underlie some of the biological activities of the protein, focusing on implications in tumor progression. PMID:21472004

  15. Bioreactor Design for Tendon/Ligament Engineering

    OpenAIRE

    Wang, Tao; Gardiner, Bruce S.; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B.; Wang, Allan; Xu, Jiake; Smith, David W.; Lloyd, David G.; Zheng, Ming H.

    2012-01-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a s...

  16. Nonlinear cloudy bag model in the meson mean-field approximation

    International Nuclear Information System (INIS)

    Bunatyan, G.G.

    1989-01-01

    We investigate the cloudy bag model for the nucleon, including the essentially nonlinear interaction of the quarks with the meson field. From the boundary conditions, which guarantee the stability of the bag, we obtain equations for the size R of the bag, for the momentum p of the quarks, and for the mean pion field var-phi. We obtain an expression for the total energy E of the bag nucleon. By taking the appropriate averages of all the relations the calculations reduce to the case of a spherically symmetric bag. We show that in the general nonlinear cloudy bag model in question the equations for R, p, and var-phi have a simultaneous solution which corresponds to the absolute minimum of the bag energy E and, consequently, that there exists a stable equilibrium state of the bag nucleon

  17. Minipool Caprylic Acid Fractionation of Plasma Using Disposable Equipment: A Practical Method to Enhance Immunoglobulin Supply in Developing Countries

    Science.gov (United States)

    El-Ekiaby, Magdy; Vargas, Mariángela; Sayed, Makram; Gorgy, George; Goubran, Hadi; Radosevic, Mirjana; Burnouf, Thierry

    2015-01-01

    Background Immunoglobulin G (IgG) is an essential plasma-derived medicine that is lacking in developing countries. IgG shortages leave immunodeficient patients without treatment, exposing them to devastating recurrent infections from local pathogens. A simple and practical method for producing IgG from normal or convalescent plasma collected in developing countries is needed to provide better, faster access to IgG for patients in need. Methodology/Principal Findings IgG was purified from 10 consecutive minipools of 20 plasma donations collected in Egypt using single-use equipment. Plasma donations in their collection bags were subjected to 5%-pH5.5 caprylic acid treatment for 90 min at 31°C, and centrifuged to remove the precipitate. Supernatants were pooled, then dialyzed and concentrated using a commercial disposable hemodialyzer. The final preparation was filtered online by gravity, aseptically dispensed into storage transfusion bags, and frozen at 5 logs reduction of HIV, BVDV, and PRV infectivity in less than 15 min of caprylic acid treatment. Conclusions/Significance 90% pure, virally-inactivated immunoglobulins can be prepared from plasma minipools using simple disposable equipment and bag systems. This easy-to-implement process could be used to produce immunoglobulins from local plasma in developing countries to treat immunodeficient patients. It is also relevant for preparing hyperimmune IgG from convalescent plasma during infectious outbreaks such as the current Ebola virus episode. PMID:25719558

  18. Minipool caprylic acid fractionation of plasma using disposable equipment: a practical method to enhance immunoglobulin supply in developing countries.

    Directory of Open Access Journals (Sweden)

    Magdy El-Ekiaby

    2015-02-01

    Full Text Available Immunoglobulin G (IgG is an essential plasma-derived medicine that is lacking in developing countries. IgG shortages leave immunodeficient patients without treatment, exposing them to devastating recurrent infections from local pathogens. A simple and practical method for producing IgG from normal or convalescent plasma collected in developing countries is needed to provide better, faster access to IgG for patients in need.IgG was purified from 10 consecutive minipools of 20 plasma donations collected in Egypt using single-use equipment. Plasma donations in their collection bags were subjected to 5%-pH5.5 caprylic acid treatment for 90 min at 31°C, and centrifuged to remove the precipitate. Supernatants were pooled, then dialyzed and concentrated using a commercial disposable hemodialyzer. The final preparation was filtered online by gravity, aseptically dispensed into storage transfusion bags, and frozen at 5 logs reduction of HIV, BVDV, and PRV infectivity in less than 15 min of caprylic acid treatment.90% pure, virally-inactivated immunoglobulins can be prepared from plasma minipools using simple disposable equipment and bag systems. This easy-to-implement process could be used to produce immunoglobulins from local plasma in developing countries to treat immunodeficient patients. It is also relevant for preparing hyperimmune IgG from convalescent plasma during infectious outbreaks such as the current Ebola virus episode.

  19. Two cases of death due to plastic bag suffocation.

    Science.gov (United States)

    Nadesan, K; Beng, O B

    2001-01-01

    Deaths due to plastic bag suffocation or plastic bag asphyxia are not reported in Malaysia. In the West many suicides by plastic bag asphyxia, particularly in the elderly and those who are chronically and terminally ill, have been reported. Accidental deaths too are not uncommon in the West, both among small children who play with shopping bags and adolescents who are solvent abusers. Another well-known but not so common form of accidental death from plastic bag asphyxia is sexual asphyxia, which is mostly seen among adult males. Homicide by plastic bag asphyxia too is reported in the West and the victims are invariably infants or adults who are frail or terminally ill and who cannot struggle. Two deaths due to plastic bag asphyxia are presented. Both the autopsies were performed at the University Hospital Mortuary, Kuala Lumpur. Both victims were 50-year old married Chinese males. One death was diagnosed as suicide and the other as sexual asphyxia. Sexual asphyxia is generally believed to be a problem associated exclusively with the West. Specific autopsy findings are often absent in deaths due to plastic bag asphyxia and therefore such deaths could be missed when some interested parties have altered the scene and most importantly have removed the plastic bag. A visit to the scene of death is invariably useful.

  20. Biodegradation of phenolic waste liquors in stirred-tank, packed-bed, and fluidized-bed bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, D W; Hancher, G W; Chilcote, D D; Scott, C D

    1978-11-01

    The biological degradation of phenolic scrub liquors similar to those that arise in coal conversion processes was studied for symbiotic bacterial populations contained in a continuously stirred tank bioreactor, a three-phase packed-bed bioreactor, and a three-phase, fluidized-bed bioreactor. The conversions of phenol compounds were comparable in the three-phase, packed-bed bioreactor and the continuously stirred tank bioreactor; however, the packed-bed bioreactor degradation rates were as much as twice those in the continuously stirred tank bioreactor, and packed-bed bioreactor retention times were as low as one- tenth those of the continuously stirred tank bioreactors (minimum time was 12 hours).

  1. Baryon excitations in the bag model

    International Nuclear Information System (INIS)

    Jaffe, R.L.

    1976-07-01

    Two recent spectroscopic applications of the bag model are discussed. The first is a study of the place of multiquark states in meson and baryon spectroscopy, and the second is an attempt to sort out the P-wave baryon excitations in a bag model. 33 references

  2. Better Physician's 'Black Bags'

    Science.gov (United States)

    1976-01-01

    The "black bag" is outgrowth of astronaut monitoring technology from NASA's Johnson Space Center. Technically known as the portable medical status system, a highly advanced physician's "black bag" weighs less than 30 pounds, yet contains equipment for monitoring and recording vital signs, electrocardiograms, and electroencephalograms. Liquid crystal displays are used to present 15 digits of data simultaneously for long periods of time without excessive use of battery power. Single printed circuit card contains all circuitry required to measure and display vital signs such as heart and respiration rate, temperature, and blood pressure.

  3. The quark mass and baryon numbers of empty chiral bags

    International Nuclear Information System (INIS)

    Jezabek, M.; Zalewski, K.

    1984-01-01

    We show that for spherical chiral bags the baryon number of the Dirac vacuum inside the bag does not depend on quark masses. Thus, the sum of the baryon numbers of an empty chiral bag and the skyrmion surrounding the bag is an integer, which depends on the boundary condition on the surface of the bag. This extends the result obtained by Goldstone and Jaffe for massless quarks. (orig.)

  4. BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta

    Science.gov (United States)

    Minoia, Melania; Boncoraglio, Alessandra; Vinet, Jonathan; Morelli, Federica F; Brunsting, Jeanette F; Poletti, Angelo; Krom, Sabine; Reits, Eric; Kampinga, Harm H; Carra, Serena

    2014-01-01

    Eukaryotic cells use autophagy and the ubiquitin–proteasome system as their major protein degradation pathways. Upon proteasomal impairment, cells switch to autophagy to ensure proper clearance of clients (the proteasome-to-autophagy switch). The HSPA8 and HSPA1A cochaperone BAG3 has been suggested to be involved in this switch. However, at present it is still unknown whether and to what extent BAG3 can indeed reroute proteasomal clients to the autophagosomal pathway. Here, we show that BAG3 induces the sequestration of ubiquitinated clients into cytoplasmic puncta colabeled with canonical autophagy linkers and markers. Following proteasome inhibition, BAG3 upregulation significantly contributes to the compensatory activation of autophagy and to the degradation of the (poly)ubiquitinated proteins. BAG3 binding to the ubiquitinated clients occurs through the BAG domain, in competition with BAG1, another BAG family member, that normally directs ubiquitinated clients to the proteasome. Therefore, we propose that following proteasome impairment, increasing the BAG3/BAG1 ratio ensures the “BAG-instructed proteasomal to autophagosomal switch and sorting” (BIPASS). PMID:25046115

  5. Toponium Tests Of Top-Quark Higgs Bags

    OpenAIRE

    Macpherson, Alick L.; Campbell, Bruce A.

    1993-01-01

    Recently it has been suggested that top quarks, or very massive fourth generation quarks, might surround themselves with a Higgs "bag" of deformation of the Higgs expectation value from its vacuum magnitude. In this paper we address the question of whether such nonlinear Higgs-top interaction effects are subject to experimental test. We first note that if top quarks were necessarily accompanied by Higgs "bags", then top quark weak decay would involve the sudden disruption of the Higgs "bag", ...

  6. 49 CFR 178.520 - Standards for textile bags.

    Science.gov (United States)

    2010-10-01

    ..., plastic film bonded to the inner surface of the bag, or one or more inner liners made of paper or plastic... bag, or one or more inner liners made of plastic material or metalized film or foil. (4) Maximum net... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for textile bags. 178.520 Section 178...

  7. Stability of Fentanyl Citrate in Polyolefin Bags.

    Science.gov (United States)

    Donnelly, Ronald F

    2016-01-01

    Fentanyl is used to manage pain because it is a potent lipophilic opiate agonist. The stability of fentanyl in polyolefin bags when diluted to either 10 µg/mL or 50 µg/mL with sodium chloride 0.9% has not been studied. The chemical stability of fentanyl 50 µg/mL packaged in polyvinyl chloride bags has been studied, however, the stability in polyolefin bags is lacking. Polyolefin bags were aseptically filled with either 10-µg/mL or 50-µg/mL fentanyl solution. Containers were then stored at either 5°C and protected from light or 22°C and exposed to light for 93 days. Fentanyl peaks were monitored using a stability-indicatin high-performance liquid chromatographic method. Changes to color, clarity, and pH were also monitored. There were no signs of chemical degradation of fentanyl packaged in polyolefin bags at either 5°C or 22°C after storage for 93 days. Over the course of the study, all solutions remained colorless and clear. The pH showed a slight decrease during the 93 days of storage. The stability of both undiluted (50-µg/mL) and diluted (10-µg/mL) fentanyl solutions when packaged in polyolefin bags was 93 days when stored at either 5°C or 22°C. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  8. BAG3 is involved in neuronal differentiation and migration.

    Science.gov (United States)

    Santoro, Antonietta; Nicolin, Vanessa; Florenzano, Fulvio; Rosati, Alessandra; Capunzo, Mario; Nori, Stefania L

    2017-05-01

    Bcl2-associated athanogene 3 (BAG3) protein belongs to the family of co-chaperones interacting with several heat shock proteins. It plays a key role in protein quality control and mediates the clearance of misfolded proteins. Little is known about the expression and cellular localization of BAG3 during nervous system development and differentiation. Therefore, we analyze the subcellular distribution and expression of BAG3 in nerve-growth-factor-induced neurite outgrowth in PC12 cells and in developing and adult cortex of mouse brain. In differentiated PC12 cells, BAG3 was localized mainly in the neuritic domain rather than the cell body, whereas in control cells, it appeared to be confined to the cytoplasm near the nuclear membrane. Interestingly, the change of BAG3 localization during neuronal differentiation was associated only with a slight increase in total BAG3 expression. These data were coroborated by transmission electron microscopy showing that BAG3 was confined mainly within large dense-core vesicles of the axon in differentiated PC12 cells. In mouse developing cortex, BAG3 appeared to be intensely expressed in cellular processes of migrating cells, whereas in adult brain, a diffuse expression of low to medium intensity was detected in neuronal cell bodies. These findings suggest that BAG3 expression is required for neuronal differentiation and migration and that its role is linked to a change in its distribution pattern rather than to an increase in its protein expression levels.

  9. Modelling across bioreactor scales: methods, challenges and limitations

    DEFF Research Database (Denmark)

    Gernaey, Krist

    that it is challenging and expensive to acquire experimental data of good quality that can be used for characterizing gradients occurring inside a large industrial scale bioreactor. But which model building methods are available? And how can one ensure that the parameters in such a model are properly estimated? And what......Scale-up and scale-down of bioreactors are very important in industrial biotechnology, especially with the currently available knowledge on the occurrence of gradients in industrial-scale bioreactors. Moreover, it becomes increasingly appealing to model such industrial scale systems, considering...

  10. Degradation of plastic compost bags used for yard waste

    International Nuclear Information System (INIS)

    Taber, H.G.; Cox, D.F.

    1993-01-01

    Three trials, beginning June, July, and September 1991, examined the breakdown of photodegradable plastic bags. The plastic contained a light-sensitive compound dissolved in the polymer to hasten degradation. The bags were placed in east-west rows on bare ground. Other factors studied included turning the bags over either every 3 or 7 days and either filling the bags with fresh grass clippings or leaving them empty. Strength loss was determined with a hand-held puncture tester. Strength increased initially by 36%, 32%, and 63% in the three trials, respectively. The bags took 33, 35, and 64 days to reach brittleness (puncture strength of 180 g) in the three trials, respectively. Once degradation began, all trials showed similar rates of decline. However, the degradation began 7 days after exposure in the first two trials, but not until 14 days after exposure in the September trial. The addition of grass clippings to the bags increased the initial strength and delayed the onset of degradation. Turning the bags every 3 days rather than every 7 did not affect degradation

  11. Ellipsoidal bag model for heavy quark system

    International Nuclear Information System (INIS)

    Bi Pinzhen; Fudan Univ., Shanghai

    1991-01-01

    The ellipsoidal bag model is used to describe heavy quark systems such as Qanti Q, Qanti Qg and Q 2 anti Q 2 . Instead of two step model, these states are described by an uniform picture. The potential derived from the ellipsoidal bag for Qanti Q is almost equivalent to the Cornell potential. For a Q 2 anti Q 2 system with large quark pair separation, an improvement of 70 MeV is obtained comparing with the spherical bag. (orig.)

  12. Nitrate Removal Rates in Denitrifying Bioreactors During Storm Flows

    Science.gov (United States)

    Pluer, W.; Walter, T.

    2017-12-01

    Field denitrifying bioreactors are designed to reduce excess nitrate (NO3-) pollution in runoff from agricultural fields. Field bioreactors saturate organic matter to create conditions that facilitate microbial denitrification. Prior studies using steady flow in lab-scale bioreactors showed that a hydraulic retention time (HRT) between 4 and 10 hours was optimal for reducing NO3- loads. However, during storm-induced events, flow rate and actual HRT fluctuate. These fluctuations have the potential to disrupt the system in significant ways that are not captured by the idealized steady-flow HRT models. The goal of this study was to investigate removal rate during dynamic storm flows of variable rates and durations. Our results indicate that storm peak flow and duration were not significant controlling variables. Instead, we found high correlations (p=0.004) in average removal rates between bioreactors displaying a predominantly uniform flow pattern compared with bioreactors that exhibited preferential flow (24.4 and 21.4 g N m-3 d-1, respectively). This suggests that the internal flow patterns are a more significant driver of removal rate than external factors of the storm hydrograph. Designing for flow patterns in addition to theoretical HRT will facilitate complete mixing within the bioreactors. This will help maximize excess NO3- removal during large storm-induced runoff events.

  13. Sourav Bag

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Sourav Bag. Articles written in Journal of Chemical Sciences. Volume 128 Issue 3 March 2016 pp 339-347 Regular Articles. On the electrocatalytic activity of nitrogen-doped reduced graphene Oxide:Does the nature of nitrogen really control the activity towards oxygen ...

  14. Properties of the cloudy bag in nuclear matter

    International Nuclear Information System (INIS)

    Bunatyan, G.G.

    1986-01-01

    Because of the pion mode softening, the pion field of the clody bag in the nuclear matter increases if the nuclear density increases. This causes in its turn the decreasing of the bag size and at a sufficiently large density of the nuclear matter lead to absolute instability of the cloudy bag-nucleon, which means the transition of the nuclear matter in another nonnucleon phase

  15. Ammonia Diffusion through Nalophan Double Bags: Effect of Concentration Gradient Reduction

    Science.gov (United States)

    Capelli, Laura; Boiardi, Emanuela; Del Rosso, Renato

    2014-01-01

    The ammonia loss through Nalophan bags has been studied. The losses observed for storage conditions and times as allowed by the reference standard for dynamic olfactometry (EN 13725:2003) indicate that odour concentration values due to the presence of small molecules may be significantly underestimated if samples are not analysed immediately after sampling. A diffusion model was used in order to study diffusion through the bag. The study discusses the effect of concentration gradient (ΔC) across the polymeric membrane of the analyte. The ΔC was controlled by using a setup bag called “double bags.” Experimental data show a reduction of ammonia percentage losses due to the effect of the external multibarrier. The expedient of the double bag loaded with the same gas mixture allows a reduced diffusion of ammonia into the inner bag. Comparing the inner bag losses with those of the single bag stored in the same conditions (T, P, u) and with equal geometrical characteristics (S/V, z), it was observed that the inner bag of the double bag displays a 16% loss while the single bag displays a 37% loss. Acting on the ΔC it is possible to achieve a gross reduction of 57% in the ammonia leakage due to diffusion. PMID:25506608

  16. Ammonia diffusion through Nalophan double bags: effect of concentration gradient reduction.

    Science.gov (United States)

    Sironi, Selena; Eusebio, Lidia; Capelli, Laura; Boiardi, Emanuela; Del Rosso, Renato

    2014-01-01

    The ammonia loss through Nalophan bags has been studied. The losses observed for storage conditions and times as allowed by the reference standard for dynamic olfactometry (EN 13725:2003) indicate that odour concentration values due to the presence of small molecules may be significantly underestimated if samples are not analysed immediately after sampling. A diffusion model was used in order to study diffusion through the bag. The study discusses the effect of concentration gradient (ΔC) across the polymeric membrane of the analyte. The ΔC was controlled by using a setup bag called "double bags." Experimental data show a reduction of ammonia percentage losses due to the effect of the external multibarrier. The expedient of the double bag loaded with the same gas mixture allows a reduced diffusion of ammonia into the inner bag. Comparing the inner bag losses with those of the single bag stored in the same conditions (T, P, u) and with equal geometrical characteristics (S/V, z), it was observed that the inner bag of the double bag displays a 16% loss while the single bag displays a 37% loss. Acting on the ΔC it is possible to achieve a gross reduction of 57% in the ammonia leakage due to diffusion.

  17. Modeling of a membrane bioreactor for production of biodiesel

    International Nuclear Information System (INIS)

    Solano, Paola Andrea; Moncada, Jorge Andres; Cardona, Carlos Ariel; Ruiz, Orlando Simon

    2008-01-01

    Through the use of an enzymatic catalyst lipase, produced by Candida Antarctica a membrane bioreactor was modeled and simulated to obtain biodiesel from palm oil and ethanol. A conversion of 0.97 was reached for a residence time of 10.64 min. The membrane bioreactor was compared to a CSTR reactor, where a conversion of 0.76 was obtained. It was concluded that the membrane bioreactor is a better way of producing biodiesel than the CSTR

  18. BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress

    International Nuclear Information System (INIS)

    Jin, Young-Hee; Ahn, Sang-Gun; Kim, Soo-A.

    2015-01-01

    Bcl2-associated athoanogene (BAG) 3 is a member of the co-chaperone BAG family. It is induced by stressful stimuli such as heat shock and heavy metals, and it regulates cellular adaptive responses against stressful conditions. In this study, we identified a novel role for BAG3 in regulating the nuclear shuttling of HSF1 during heat stress. The expression level of BAG3 was induced by heat stress in HeLa cells. Interestingly, BAG3 rapidly translocalized to the nucleus upon heat stress. Immunoprecipitation assay showed that BAG3 interacts with HSF1 under normal and stressed conditions and co-translocalizes to the nucleus upon heat stress. We also demonstrated that BAG3 interacts with HSF1 via its BAG domain. Over-expression of BAG3 down-regulates the level of nuclear HSF1 by exporting it to the cytoplasm during the recovery period. Depletion of BAG3 using siRNA results in reduced nuclear HSF1 and decreased Hsp70 promoter activity. BAG3 in MEF(hsf1 −/− ) cells actively translocalizes to the nucleus upon heat stress suggesting that BAG3 plays a key role in the processing of the nucleocytoplasmic shuttling of HSF1 upon heat stress. - Highlights: • The expression level of BAG3 is induced by heat stress. • BAG3 translocates to the nucleus upon heat stress. • BAG3 interacts with HSF1 and co-localizes to the nucleus. • BAG3 is a key regulator for HSF1 nuclear shuttling

  19. BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Young-Hee [Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju 780-714 (Korea, Republic of); Ahn, Sang-Gun [Department of Pathology, Chosun University College of Dentistry, Gwangju 501-759 (Korea, Republic of); Kim, Soo-A., E-mail: ksooa@dongguk.ac.kr [Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju 780-714 (Korea, Republic of)

    2015-08-21

    Bcl2-associated athoanogene (BAG) 3 is a member of the co-chaperone BAG family. It is induced by stressful stimuli such as heat shock and heavy metals, and it regulates cellular adaptive responses against stressful conditions. In this study, we identified a novel role for BAG3 in regulating the nuclear shuttling of HSF1 during heat stress. The expression level of BAG3 was induced by heat stress in HeLa cells. Interestingly, BAG3 rapidly translocalized to the nucleus upon heat stress. Immunoprecipitation assay showed that BAG3 interacts with HSF1 under normal and stressed conditions and co-translocalizes to the nucleus upon heat stress. We also demonstrated that BAG3 interacts with HSF1 via its BAG domain. Over-expression of BAG3 down-regulates the level of nuclear HSF1 by exporting it to the cytoplasm during the recovery period. Depletion of BAG3 using siRNA results in reduced nuclear HSF1 and decreased Hsp70 promoter activity. BAG3 in MEF(hsf1{sup −/−}) cells actively translocalizes to the nucleus upon heat stress suggesting that BAG3 plays a key role in the processing of the nucleocytoplasmic shuttling of HSF1 upon heat stress. - Highlights: • The expression level of BAG3 is induced by heat stress. • BAG3 translocates to the nucleus upon heat stress. • BAG3 interacts with HSF1 and co-localizes to the nucleus. • BAG3 is a key regulator for HSF1 nuclear shuttling.

  20. PVC posting bags for glove boxes

    International Nuclear Information System (INIS)

    1976-12-01

    This specification covers the materials, measurements and manufacture of unpigmented PVC posting bags for use on glove boxes, together with methods of testing the materials. These bags are used in the handling of radioactive and toxic materials of a hazardous nature and therefore must be of the highest standard of mechanical strength, leak tightness and general finish. (author)

  1. Translational invariance in bag model

    International Nuclear Information System (INIS)

    Megahed, F.

    1981-10-01

    In this thesis, the effect of restoring the translational invariance to an approximation to the MIT bag model on the calculation of deep inelastic structure functions is investigated. In chapter one, the model and its major problems are reviewed and Dirac's method of quantisation is outlined. This method is used in chapter two to quantise a two-dimensional complex scalar bag and formal expressions for the form factor and the structure functions are obtained. In chapter three, the expression for the structure function away from the Bjorken limit is studied. The corrections to the L 0 - approximation to the structure function is calculated in chapter four and it is shown to be large. Finally, in chapter five, a bag-like model for kinematic corrections to structure functions is introduced and agreement with data between 2 and 6 (GeV/C) 2 is obtained. (author)

  2. BAG3 controls angiogenesis through regulation of ERK phosphorylation.

    Science.gov (United States)

    Falco, A; Festa, M; Basile, A; Rosati, A; Pascale, M; Florenzano, F; Nori, S L; Nicolin, V; Di Benedetto, M; Vecchione, M L; Arra, C; Barbieri, A; De Laurenzi, V; Turco, M C

    2012-12-13

    BAG3 is a co-chaperone of the heat shock protein (Hsp) 70, is expressed in many cell types upon cell stress, however, its expression is constitutive in many tumours. We and others have previously shown that in neoplastic cells BAG3 exerts an anti-apoptotic function thus favoring tumour progression. As a consequence we have proposed BAG3 as a target of antineoplastic therapies. Here we identify a novel role for BAG3 in regulation of neo-angiogenesis and show that its downregulation results in reduced angiogenesis therefore expanding the role of BAG3 as a therapeutical target. In brief we show that BAG3 is expressed in endothelial cells and is essential for the interaction between ERK and its phosphatase DUSP6, as a consequence its removal results in reduced binding of DUSP6 to ERK and sustained ERK phosphorylation that in turn determines increased levels of p21 and p15 and cell-cycle arrest in the G1 phase.

  3. Ingestion and fragmentation of plastic carrier bags by the amphipod Orchestia gammarellus: Effects of plastic type and fouling load.

    Science.gov (United States)

    Hodgson, D J; Bréchon, A L; Thompson, R C

    2018-02-01

    Inappropriate disposal of plastic debris has led to the contamination of marine habitats worldwide. This debris can be ingested by organisms; however, the extent to which chewing and gut transit modifies plastic debris is unclear. Detritivores, such as amphipods, ingest and shred natural organic matter and are fundamental to its breakdown. Here we examine ingestion and shredding of plastic carrier bags by Orchestia gammarellus. A laboratory experiment showed these amphipods shredded plastic carrier bags, generating numerous microplastic fragments (average diameter 488.59μm). The presence of a biofilm significantly increased the amount of shredding, but plastic type (conventional, degradable and biodegradable) had no effect. Subsequent field observations confirmed similar shredding occurred on the strandline. Rates of shredding will vary according to amphipod density; however, our data indicates that shredding by organisms could substantially accelerate the formation microplastics in the environment. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Cascades of bioreactors

    NARCIS (Netherlands)

    Gooijer, de C.D.

    1995-01-01

    In this thesis a common phenomenon in bioprocess engineering is described : the execution of a certain bioprocess in more than one bioreactor. Chapter 1, a review, classifies bioprocesses by means of a number of characteristics :
    i) processes with a variable

  5. Vector meson decays in the chiral bag model

    International Nuclear Information System (INIS)

    Maxwell, O.V.; Jennings, B.K.

    1985-01-01

    Vector meson decays are examined in a model where a confined quark and antiquark annihilate, producing a pair of elementary pseudoscalar mesons. Two versions of the pseudoscalar meson-quark interaction are employed, one where the coupling is restricted to the bag surface and one where it extends throughout the bag volume. Energy conservation is ensured in the model through insertion of exponential factors containing the bag energy at each interaction vertex. To guarantee momentum conservation, a wave-packet description is utilized in which the decay widths are normalized by a factor involving the overlap of the initial bag state with the confined qanti q state of zero momentum. With either interaction, the model yields a value for the p-width that exceeds the empirical width by a factor two. For the Ksup(*) and PHI mesons, the computed widths depend strongly on the interaction employed. Implications of these results for chiral bag models are discussed. (orig.)

  6. Impact of storage environment on the efficacy of hermetic storage bags.

    Science.gov (United States)

    Lane, Brett; Woloshuk, Charles

    2017-05-01

    Small hermetic bags (50 and 100 kg capacities) used by smallholder farmers in several African countries have proven to be a low-cost solution for preventing storage losses due to insects. The complexity of postharvest practices and the need for ideal drying conditions, especially in the Sub-Sahara, has led to questions about the efficacy of the hermetic bags for controlling spoilage by fungi and the potential for mycotoxin accumulation. This study compared the effects of environmental temperature and relative humidity at two locations (Indiana and Arkansas) on dry maize (14% moisture content) in woven polypropylene bags and Purdue Improved Crop Storage (PICS) hermetic bags. Temperature and relative humidity data loggers placed in the middle of each bag provided profiles of environmental influences on stored grain at the two locations. The results indicated that the PICS bags prevented moisture penetration over the three-month storage period. In contrast, maize in the woven bags increased in moisture content. For both bag types, no evidence was obtained indicating the spread of Aspergillus flavus from colonized maize to adjacent non-colonized maize. However, other storage fungi did increase during storage. The number of infected kernels did not increase in the PICS bags, but the numbers in the woven bags increased significantly. The warmer environment in Arkansas resulted in significantly higher insect populations in the woven bags than in Indiana. Insects in the PICS bags remained low at both locations. This study demonstrates that the PICS hermetic bags are effective at blocking the effects of external humidity fluctuations as well as the spread of fungi to non-infected kernels.

  7. Performance comparison of plastic shopping bags in modern and traditional retail

    Science.gov (United States)

    Radini, F. A.; Wulandari, R.; Nasiri, S. J. A.; Winarto, D. A.

    2017-07-01

    Followed by implementation of paid plastic bag policy in Indonesia’s modern and traditional retail, community question related to plastic shopping bag performance arise. But, there is limited information about it. Therefore, the assessment of the performance to compare between plastic shopping bags in modern retail and traditional retail should be interesting. The observation performance of plastic shopping bag were weight holding capacity, tear resistant and elongation. This performance were tested using Universal Testing Machine. Physical and physico-chemical properties also identified to determine factor affecting the performance of plastic shopping bag. The physical properties were analysed using visual and thickness gauge to see the colour and measure the thickness. The analysis of physico-chemical properties were carried out using DSC (Differential Scanning Calorimetry), TGA (Thermal Gravimetry Analysis), Furnace and FTIR (Fourier Transform Infra Red Spectroscopy) to identify the materials, also its melting and decomposition temperature. The result showed that the performance difference between modern retail plastic bag with traditional retail plastic bag appears only in the performance of elongation. The elongation of modern retail plastic bag is 121 - 413%, while traditional has 170 - 609%. According to physico-chemical test result, modern retail and traditional retail plastic bag contain polyethylene as main material and has melting temperature in the range of High Density Polyethylene (HDPE) melting temperature. However, modern retail plastic bag has 18.31 - 33.87% of inorganic filler percentage, whereas the traditional retail plastic bag has 0.35 - 9.85%. This inorganic filler percentage probably a contributing factor in the elongation performance difference between modern retail plastic bag with traditional retail plastic bag.

  8. Fundamentals of membrane bioreactors materials, systems and membrane fouling

    CERN Document Server

    Ladewig, Bradley

    2017-01-01

    This book provides a critical, carefully researched, up-to-date summary of membranes for membrane bioreactors. It presents a comprehensive and self-contained outline of the fundamentals of membrane bioreactors, especially their relevance as an advanced water treatment technology. This outline helps to bring the technology to the readers’ attention, and positions the critical topic of membrane fouling as one of the key impediments to its more widescale adoption. The target readership includes researchers and industrial practitioners with an interest in membrane bioreactors.

  9. The Effective Design of Bean Bag as a Vibroimpact Damper

    Directory of Open Access Journals (Sweden)

    A.Q. Liu

    2000-01-01

    Full Text Available The technique of a bean bag damper has been effectively applied in many engineering fields to control the vibroimpact of a structural system. In this study, the basic parameters responsible for the design of an effective bean bag: the size of beans, the mass ratio of the bean bag to the structure to which it is attached, the clearance distance and the position of the bag, are studied by both theoretical and experimental analyses. These will provide a better understanding of the performance of the bean bag for optimisation of damper design. It was found that reducing the size of beans would increase the exchange of momentum in the system due to the increase in the effective contact areas. Within the range of mass ratios studied, the damping performance of the damper was found to improve with higher mass ratios. There was an optimum clearance for any specific damper whereby the maximum attenuation could be achieved. The position of the bag with respect to nodes and antipodes of the primary structure determined the magnitude of attenuation attainable. Furthermore, the limitations of bean bags have been identified and a general criteria for the design of a bean bag damper has been formulated based on the study undertaken. It was shown that an appropriately configured bean bag damper was capable of reducing the amplitude of vibration by 80% to 90%.

  10. Models of quark bags and their consequences

    International Nuclear Information System (INIS)

    Bogolubov, P.N.

    1977-01-01

    The development of the first Dubna Quark Bag and the results obtained in this way are considered. The idea of the first Dubna Quark Bag is as follows: baryons are constructed of three quarks measons are constructed of two quarks, and each quark is interpreted as the Dirac particle which moves in a scalar square well. The so-called quasiindependent quark model is considered too. It is a simple quark model based on an analogy with the shell model for nuclei. The quarks are considered as moving in an arbitrary radially-symmetric field, and their one-particle wave function satisfies the usual Dirac equation. Such quark model can give at least the same results as the relativistic bag model. A possibility exists to improve the results of the relativistic quark model with the oscillator interaction between quarks. The results of the MIT-Bag model and the quasiindependent quark model coincide

  11. Streamlined bioreactor-based production of human cartilage tissues.

    Science.gov (United States)

    Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D

    2016-05-27

    Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines.

  12. Immobilized yeast in bioreactor for alcohol fermentation

    International Nuclear Information System (INIS)

    Handy, M.K.; Kim, K.

    1986-01-01

    Mutant of Saccharomyces cerevisiae was developed using a Co-60 source. Cells were immobilized onto sterile, channeled alumina beads and packed into bioreactor column under controlled temperature. Feedstocks containing substrate and nutrients were fed into the bioreactor at specific rates. Beads with greatest porosity and surface area produced the most ethanol. Factors affecting ethanol productivity included: temperature, pH, flow rate, nutrients and substrate in the feedstock

  13. 49 CFR 178.519 - Standards for plastic film bags.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for plastic film bags. 178.519 Section... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.519 Standards for plastic film bags. (a) The identification code for a plastic film bag is 5H4. (b) Construction requirements for plastic film...

  14. 49 CFR 178.518 - Standards for woven plastic bags.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for woven plastic bags. 178.518 Section... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.518 Standards for woven plastic bags. (a) The following are identification codes for woven plastic bags: (1) 5H1 for an unlined or non-coated...

  15. Leachables from saline-containing IV bags can alter therapeutic protein properties.

    Science.gov (United States)

    Chang, Judy Y; Xiao, Nina J; Zhu, Min; Zhang, Jennifer; Hoff, Ed; Russell, Stephen J; Katta, Viswanatham; Shire, Steven J

    2010-11-01

    To investigate the cause of the observed instability of dulanermin in 100 ml polyolefin (PO) infusion bags containing saline. Diluted dulanermin in IV bags was collected and frozen prior to analysis by size exclusion chromatography. The UV absorption profiles of the IV bag solutions were characterized by using spectrophotometry. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) measured the metal content. Leachables from IV bags were identified by LC-UV-high resolution MS/MS analysis. An elevated loss of dulanermin monomers was observed only in 100 ml PO bags. These IV bag solutions have a compound that contains zinc and has absorbance at 320 nm. This compound was identified to be 2-Mercaptobenzothiazole, and its zinc salt and was found to come from the stopper used in the 100 ml PO bags. The manufacturer has subsequently corrected this problem by using non-latex components in the 100 ml PO IV bag. End-users need to be aware that IV bags made from a particular polymer by the same manufacturer may contain components or use a manufacturing process that results in a different product. Analysis of samples after freezing and thawing proved to be useful in identifying potential incompatibility of dulanermin in the IV bags.

  16. BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress.

    Science.gov (United States)

    Jin, Young-Hee; Ahn, Sang-Gun; Kim, Soo-A

    2015-08-21

    Bcl2-associated athoanogene (BAG) 3 is a member of the co-chaperone BAG family. It is induced by stressful stimuli such as heat shock and heavy metals, and it regulates cellular adaptive responses against stressful conditions. In this study, we identified a novel role for BAG3 in regulating the nuclear shuttling of HSF1 during heat stress. The expression level of BAG3 was induced by heat stress in HeLa cells. Interestingly, BAG3 rapidly translocalized to the nucleus upon heat stress. Immunoprecipitation assay showed that BAG3 interacts with HSF1 under normal and stressed conditions and co-translocalizes to the nucleus upon heat stress. We also demonstrated that BAG3 interacts with HSF1 via its BAG domain. Over-expression of BAG3 down-regulates the level of nuclear HSF1 by exporting it to the cytoplasm during the recovery period. Depletion of BAG3 using siRNA results in reduced nuclear HSF1 and decreased Hsp70 promoter activity. BAG3 in MEF(hsf1(-/-)) cells actively translocalizes to the nucleus upon heat stress suggesting that BAG3 plays a key role in the processing of the nucleocytoplasmic shuttling of HSF1 upon heat stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Construction of a Simple Multipurpose Airlift Bioreactor and its ...

    African Journals Online (AJOL)

    BSN

    The aim of the present research is to develop a simple airlift bioreactor which can be operated even ... compression metal. The bioreactor is mixed ... the method developed by (Bailey and Olis, .... (Ed) Concise Encyclopedia of Bio-resources.

  18. Monopoles and bags

    International Nuclear Information System (INIS)

    Jun, J.H.

    1980-01-01

    From chapter III to chapter V properties of U(1) monopole are discussed by calculating radiative capture of an electron by a monopole, the scattering cross section of an electron by a dyon, and the bound state properties of the electron-dyon system. The Lipkin-Weisberger-Peshkin difficulty is overcome by an introduction of a small magnetic moment of the electron. In chapter VI, the linear deformation of the Prasad-Sommerfield solution of the t'Hooft Polyakov monopole is discussed, where we found all the deformed solutions analytically. In chapter VII and VIII, the question of a deformed bag and properties of an excited bag are discussed. The excited D-state is mixed with S-state to give the correct value of g/sub A/. Initially, in chapter II, energy ratios for trimuons produced through a heavy-lepton cascade decay are calculated

  19. The Portuguese plastic carrier bag tax: The effects on consumers' behavior.

    Science.gov (United States)

    Martinho, Graça; Balaia, Natacha; Pires, Ana

    2017-03-01

    Marine litter from lightweight plastic bags is a global problem that must be solved. A plastic bag tax was implemented in February 2015 to reduce the consumption of plastic grocery bags in Portugal and in turn reduce the potential contribution to marine litter. This study analyzes the effect of the plastic bag tax on consumer behavior to learn how it was received and determine the perceived effectiveness of the tax 4months after its implementation. In addition, the study assessed how proximity to coastal areas could influence behaviors and opinions. The results showed a 74% reduction of plastic bag consumption with a simultaneously 61% increase of reusable plastic bags after the tax was implemented. Because plastic bags were then reused for shopping instead of garbage bags, however, the consumption of garbage bags increased by 12%. Although reduction was achieved, the tax had no effect on the perception of marine litter or the impact of plastic bags on environment and health. The majority of respondents agree with the tax but view it as an extra revenue to the State. The distance to the coast had no meaningful influence on consumer behavior or on the perception of the tax. Although the tax was able to promote the reduction of plastics, the role of hypermarkets and supermarkets in providing alternatives through the distribution of reusable plastic bags was determinant to ensuring the reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Scale up of diesel oil biodegradation in a baffled roller bioreactor.

    Science.gov (United States)

    Nikakhtari, Hossein; Song, Wanning; Kumar, Pardeep; Nemati, Mehdi; Hill, Gordon A

    2010-05-01

    Diesel oil is a suitable substance to represent petroleum contamination from accidental spills in operating and transportation facilities. Using a microbial culture enriched from a petroleum contaminated soil, biodegradation of diesel oil was carried out in 2.2, 55, and 220 L roller baffled bioreactors. The effects of bioreactor rotation speed (from 5 to 45 rpm) and liquid loading (from 18% to 73% of total volume) on the biodegradation of diesel oil were studied. In the small scale bioreactor (2.2L), the maximum rotation speed of 45 rpm resulted in the highest biodegradation rate with a first order biodegradation kinetic constant of 0.095 d(-1). In the larger scale bioreactors, rotation speed did not affect the biodegradation rate. Liquid loadings higher than 64% resulted in reduced biodegradation rates in the small scale bioreactor; however, in the larger roller bioreactors liquid loading did not affect the biodegradation rate. Biodegradation of diesel oil at 5 rpm and 73% loading is recommended for operating large scale roller baffled bioreactors. Under these conditions, high diesel oil concentrations up to 50 gL(-1) can be bioremediated at a rate of 1.61 gL(-1)d(-1). Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Fermion bag solutions to some unsolved sign problems

    Science.gov (United States)

    Li, Anyi; Chandrasekharan, Shailesh

    2012-03-01

    Some interesting lattice four-fermion models containing N flavors of staggered fermions with Z2 and U(1) chiral symmetries suffer from sign problems in the auxiliary field approach. Earlier calculations have either ignored these sign problems or have circumvented them by adding conjugate fermion fields which changes the model. In this talk we show that the recently proposed fermion bag approach solves these sign problems. The basic idea of the new approach is to collect unpaired fermionic degrees of freedom inside a fermion bag. A resummation of all fermion world lines inside the bag is then sufficient to solve the sign problems. The fermion bag approach provides new opportunities to solve in these ``unsolved'' four-fermion models in the chiral limit efficiently.

  2. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  3. Off-gas filtration and releases: bag filters

    International Nuclear Information System (INIS)

    Hennart, D.M.J.G.

    1985-01-01

    During high-temperature incineration of radioactive waste, some metal oxides are volatilized and carried out with the off-gases. During cooling those oxides react with acidic components generated by the combustion of the fuel oil or of the waste itself. This results in a submicronic crystalline dust in which cesium isotopes are concentrated. Bag filters have been selected at S.C.K./C.E.N. to carry out the first step of dust separation. Two baghouses equipped with Teflon bags with a total filtering area of 100 m 2 have been installed. The bags are cleaned on line by compressed air backflow. The residual dust content is below 3 mg/m 3 , which is sufficiently low to be removed by HEPA filters. The baghouses were put into operation in October 1981 and since then have been on line for about 3000 hours. Some bags had to be replaced after a fire in mid-1983. (orig.)

  4. Development and functional significance of dorsal air bags in ...

    African Journals Online (AJOL)

    This study describes the morphology and investigates the possible function of the air bags found on the nestlings of Monteiro's Hornbill Tockus monteiri. These air bags increased in size with age and mass of the nestling until 14 d of age, and then decreased in size. By 20 d of age, the air bags were absent. Histological ...

  5. 2'-Hydroxycinnamaldehyde induces apoptosis through HSF1-mediated BAG3 expression.

    Science.gov (United States)

    Nguyen, Hai-Anh; Kim, Soo-A

    2017-01-01

    BAG3, a member of BAG co-chaperone family, is induced by stressful stimuli such as heat shock and heavy metals. Through interaction with various binding partners, BAG3 is thought to play a role in cellular adaptive responses against stressful conditions in normal and neoplastic cells. 2'-Hydroxycinnamaldehyde (HCA) is a natural derivative of cinnamaldehyde and has antitumor activity in various cancer cells. In the present study, for the first time, we identified that HCA induced BAG3 expression and BAG3-mediated apoptosis in cancer cells. The apoptotic cell death induced by HCA was demonstrated by caspase-7, -9 and PARP activation, and confirmed by Annexin V staining in both SW480 and SW620 colon cancer cells. Notably, both the mRNA and protein levels of BAG3 were largely induced by HCA in a dose- and time-dependent manner. By showing transcription factor HSF1 activation, we demonstrated that HCA induces the expression of BAG3 through HSF1 activation. More importantly, knockdown of BAG3 expression using siRNA largely inhibited HCA-induced apoptosis, suggesting that BAG3 is actively involved in HCA-induced cancer cell death. Considering the importance of the stress response mechanism in cancer progression, our results strongly suggest that BAG3 could be a potential target for anticancer therapy.

  6. Solar saddle bags. Solar-Fahrradpacktaschen

    Energy Technology Data Exchange (ETDEWEB)

    Willems, M

    1991-09-12

    The invention consists of the arrangement of solar cells on the upper side of saddle bags of every design (handle bar pocket, bicycle saddle bag etc.) which charge the accumulators in the pack pocket. One can drive the alternator of the bicycle, a transistor radio, a cassette tape recorder, or similar, with the power from the accumulators. The lamp and the taillight of the bicycle can still be used. The solar cells can be attached firmly to the pack pocket. However, they can also be assembled detachably, e.g. by push-buttons or zip-fasteners.

  7. Single-use disposable technologies for biopharmaceutical manufacturing.

    Science.gov (United States)

    Shukla, Abhinav A; Gottschalk, Uwe

    2013-03-01

    The manufacture of protein biopharmaceuticals is conducted under current good manufacturing practice (cGMP) and involves multiple unit operations for upstream production and downstream purification. Until recently, production facilities relied on the use of relatively inflexible, hard-piped equipment including large stainless steel bioreactors and tanks to hold product intermediates and buffers. However, there is an increasing trend towards the adoption of single-use technologies across the manufacturing process. Technical advances have now made an end-to-end single-use manufacturing facility possible, but several aspects of single-use technology require further improvement and are continually evolving. This article provides a perspective on the current state-of-the-art in single-use technologies and highlights trends that will improve performance and increase the market penetration of disposable manufacturing in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Plantform Bioreactor for Mass Micropropagation of Date Palm.

    Science.gov (United States)

    Almusawi, Abdulminam H A; Sayegh, Abdullah J; Alshanaw, Ansam M S; Griffis, John L

    2017-01-01

    A novel protocol for the commercial production of date palm through micropropagation is presented. This protocol includes the use of a semisolid medium alternation or in combination with a temporary immersion system (TIS, Plantform bioreactor) in date palm micropropagation. The use of the Plantform bioreactor for date palm results in an improved multiplication rate, reduced micropropagation time, and improved weaning success. It also reduces the cost of saleable units and thus improves economic return for commercial micropropagation. The use of the Plantform bioreactor successfully addresses other hindrances that can occur during the scale-up of date palm micropropagation, including asynchrony of somatic embryos, limited maturation of somatic embryos, and highly variable germination frequencies of embryos.

  9. Pharmaceutical proteins produced in plant bioreactor in recent years ...

    African Journals Online (AJOL)

    Plant bioreactor, also called molecular farming, has enormous potential to produce recombinant proteins infinitely. Products expressed in plants have natural physico-chemical properties and bioactivities. Plant bioreactor could be a safe, economic and convenient production system, and can been widely applied in ...

  10. Alternative hospital gift bags and breastfeeding exclusivity.

    Science.gov (United States)

    Bai, Yeon; Wunderlich, Shahla M; Kashdan, Rickie

    2013-01-01

    The type of gift bags given to new mothers at the time of discharge from the hospital can influence their confidence in breastfeeding. Most hospitals in the US continue to distribute commercial gift bags containing formula samples despite the reported negative influence of commercial bags on the duration of breastfeeding. This study compared breastfeeding outcomes in women receiving three different kinds of gift bags at discharge. A prospective intervention study was conducted during 2009-2010 in New Jersey. Three breastfeeding cohorts were recruited and assigned to three groups: COMMERCIAL received discharge bags containing formula samples, BF-INFO received breastfeeding information and supplies, and PUMP received breastfeeding information/supplies plus a manual breast pump. Follow-up contacts were at 2, 4, and 12 postpartum weeks to determine breastfeeding outcome. The mean durations of exclusive (EBF) and partial breastfeeding were compared between groups using ANOVA. A total of 386 participants completed the study. The mean EBF duration (weeks) in the PUMP (n = 138, 8.28 ± 4.86) and BF-INFO (n = 121, 7.87 ± 4.63) were significantly longer (P < 0.01) than COMMERCIAL (n = 127, 6.12 ± 4.49). The rate of EBF through 12 weeks in PUMP was most consistent. The mean duration of partial breastfeeding showed similar results: significantly longer in PUMP and BF-INFO than COMMERCIAL (P < 0.01).

  11. High expression of BAG3 predicts a poor prognosis in human medulloblastoma.

    Science.gov (United States)

    Yang, Dong; Zhou, Ji; Wang, Hao; Wang, Yutao; Yang, Ge; Zhang, Yundong

    2016-10-01

    Bcl2-associated athanogene 3 (BAG3), a co-chaperone of the heat shock protein (Hsp) 70, regulates various physiological and pathological processes. However, its role in human medulloblastoma has not been clarified. First of all, the expression of BAG3 was examined in formalin-fixed, paraffin-embedded specimens by immunohistochemical staining. And then, the prognostic role of BAG3 was analyzed in 51 medulloblastoma samples. Finally, the roles of BAG3 in the proliferation, migration, and invasion of Daoy medulloblastoma cell were investigated using a specific short hairpin RNA (shRNA). The expression of BAG3 in medulloblastoma tissues was higher than nontumorous samples. Furthermore, BAG3 overexpression significantly correlated with poor prognosis of patients with medulloblastoma. The overall survival and tumor-free survival in patients with BAG3 low expression were higher than high expression. Univariate and multivariate analysis showed that BAG3 overexpression was an independent prognostic marker for medulloblastoma. After the BAG3 knockdown, the Daoy cells exhibited decreased the ability to proliferate and form neurosphere. The preliminary mechanism study showed that overexpression of BAG3 might facilitate the cell cycle transition from G1 to S phase by modulating the cyclin-dependent kinase 2 (CDK2) and cyclin E expression. Additionally, we found that BAG3 might enhance the medulloblastoma cell migratory and invasive ability. In summary, BAG3 overexpression may regulate the survival and invasive properties of medulloblastoma and may serve as a potential therapy target for medulloblastoma.

  12. Nuclear matter as an MIT bag crystal

    International Nuclear Information System (INIS)

    Zhang, Q.; Derreth, C.; Schaefer, A.; Greiner, W.

    1986-01-01

    An MIT bag crystal model of nuclear matter is formulated. The energy bands of the quarks are calculated as a function of the overlap between adjacent bags. A clear indication of substantial overlap is found. Accordingly, infinite nuclear matter is more similar to a quark gas than to a nucleonic structure. (author)

  13. Connection between hydrodynamic, water bag and Vlasov models

    International Nuclear Information System (INIS)

    Gros, M.; Bertrand, P.; Feix, M.R.

    1978-01-01

    The connection between hydrodynamic, water bag and Vlasov models is still under consideration with numerical experiments. For long wavelength, slightly non linear excitations and initial preparations such as the usual adiabatic invariant Pn -3 is space independent, the hydrodynamic model is equivalent to the water bag, and for long wavelengths a nice agreement is found with the full numerical solution of the Vlasov equation. For other initial conditions when the water bag cannot be defined, the hydrodynamic approach does not represent the correct behaviour. (author)

  14. PICS bags safely store unshelled and shelled groundnuts in Niger.

    Science.gov (United States)

    Baributsa, D; Baoua, I B; Bakoye, O N; Amadou, L; Murdock, L L

    2017-05-01

    We conducted an experiment in Niger to evaluate the performance of hermetic triple layer (Purdue Improved Crop Storage- PICS) bags for the preservation of shelled and unshelled groundnut Arachis hypogaea L. Naturally-infested groundnut was stored in PICS bags and woven bags for 6.7 months. After storage, the average oxygen level in the PICS bags fell from 21% to 18% (v/v) and 21%-15% (v/v) for unshelled and shelled groundnut, respectively. Identified pests present in the stored groundnuts were Tribolium castaneum (Herbst), Corcyra cephalonica (Stainton) and Cryptolestes ferrugineus (Stephens). After 6.7 months of storage, in the woven bag, there was a large increase in the pest population accompanied by a weight loss of 8.2% for unshelled groundnuts and 28.7% for shelled groundnut. In PICS bags for both shelled and unshelled groundnuts, by contrast, the density of insect pests did not increase, there was no weight loss, and the germination rate was the same compared to that recorded at the beginning of the experiment. Storing shelled groundnuts in PICS bags is the most cost-effective way as it increases the quantity of grain stored.

  15. Staying alive! Sensors used for monitoring cell health in bioreactors.

    Science.gov (United States)

    O'Mara, P; Farrell, A; Bones, J; Twomey, K

    2018-01-01

    Current and next generation sensors such as pH, dissolved oxygen (dO) and temperature sensors that will help drive the use of single-use bioreactors in industry are reviewed. The current trend in bioreactor use is shifting from the traditional fixed bioreactors to the use of single-use bioreactors (SUBs). However as the shift in paradigm occurs there is now a greater need for sensor technology to play 'catch up' with the innovation of bioreactor technology. Many of the sensors still in use today rely on technology created in the 1960's such as the Clark-type dissolved oxygen sensor or glass pH electrodes. This is due to the strict requirements of sensors to monitor bioprocesses resulting in the use of traditional well understood methods, making it difficult to incorporate new sensor technology into industry. A number of advances in sensor technology have been achieved in recent years, a few of these advances and future research will also be discussed in this review. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Hybridizing the Skyrmion with an Anti-de-Sitter bag

    International Nuclear Information System (INIS)

    Rosu, H.

    1992-02-01

    We discuss a phenomenological model of the nucleon in which a small Anti-de-Sitter bag is placed into the Skyrmion configuration. Such a bag has a timelike boundary and allows naturally the Cheshire Cat Principle. Very important in this model is the membrane of the bag, the 3-dimensional manifold S 1 xS 2 , in which topological techniques will come into play. (author). 63 refs

  17. Review on the Influences of Bagging Treatment on Pesticide Residue in Fruits

    OpenAIRE

    ZHAO Xiao-yun; XIE De-fang

    2018-01-01

    At present, bagging technology has been widely applicated in fruit cultivation. Impact of bagging treatment on the pesticide residues have different results. On the basis of existing achievements, this paper systematically analyzed the influence of different bagging treatments on pesticide residues:such as different ways of applying pesticide, pesticide concentration, number of applying pesticide; bagging materials, bagged layer; the type of pesticide(systemic pesticide, nonendoscopic pestici...

  18. Bagging Weak Predictors

    DEFF Research Database (Denmark)

    Lukas, Manuel; Hillebrand, Eric

    Relations between economic variables can often not be exploited for forecasting, suggesting that predictors are weak in the sense that estimation uncertainty is larger than bias from ignoring the relation. In this paper, we propose a novel bagging predictor designed for such weak predictor variab...

  19. A hand in the bag; La main dans le sac

    Energy Technology Data Exchange (ETDEWEB)

    Dube, C.

    2009-10-15

    Many retailers have abandoned the plastic bag for seemingly more environmentally friendly biodegradable bags. However, the solution may be worse than the problem. Biodegradable plastic bags are essentially made of the same polyethylene that is used in regular plastic bags. The only difference is that oxo-biodegradable bags have an additive such as iron or manganese that enables them to decompose in 12 to 24 months. The plastic decomposes quickly when exposed to ultraviolet rays or stress. Although the bags have been touted to be recyclable, they are not. This article presented an example of how a park bench made of recycled materials began to deteriorate after only a few weeks outside. The additive therefore renders the plastics ineffectual for use in recycled plastic products. The article also emphasized that contrary to popular belief, the role of landfills is not to accelerate decomposition, but limit it in order to prevent emissions of greenhouse gases. 1 fig.

  20. Role of BAG3 in cancer progression: A therapeutic opportunity.

    Science.gov (United States)

    De Marco, Margot; Basile, Anna; Iorio, Vittoria; Festa, Michelina; Falco, Antonia; Ranieri, Bianca; Pascale, Maria; Sala, Gianluca; Remondelli, Paolo; Capunzo, Mario; Firpo, Matthew A; Pezzilli, Raffaele; Marzullo, Liberato; Cavallo, Pierpaolo; De Laurenzi, Vincenzo; Turco, Maria Caterina; Rosati, Alessandra

    2018-06-01

    BAG3 is a multifunctional protein that can bind to heat shock proteins (Hsp) 70 through its BAG domain and to other partners through its WW domain, proline-rich (PXXP) repeat and IPV (Ile-Pro-Val) motifs. Its intracellular expression can be induced by stressful stimuli, while is constitutive in skeletal muscle, cardiac myocytes and several tumour types. BAG3 can modulate the levels, localisation or activity of its partner proteins, thereby regulating major cell pathways and functions, including apoptosis, autophagy, mechanotransduction, cytoskeleton organisation, motility. A secreted form of BAG3 has been identified in studies on pancreatic ductal adenocarcinoma (PDAC). Secreted BAG3 can bind to a specific receptor, IFITM2, expressed on macrophages, and induce the release of factors that sustain tumour growth and the metastatic process. BAG3 neutralisation therefore appears to constitute a novel potential strategy in the therapy of PDAC and, possibly, other tumours. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Overexpressed BAG3 is a potential therapeutic target in chronic lymphocytic leukemia.

    Science.gov (United States)

    Zhu, Huayuan; Wu, Wei; Fu, Yuan; Shen, Wenyi; Miao, Kourong; Hong, Min; Xu, Wei; Young, Ken H; Liu, Peng; Li, Jianyong

    2014-03-01

    Bcl-2-associated athanogene 3 (BAG3), a member of BAG family, is shown to sustain cell survival and underlie resistance to chemotherapy in human neoplastic cells. We aimed to determine the exact role and underlying mechanisms of BAG3 in human chronic lymphocytic leukemia (CLL). One hundred human CLL samples and 20 normal B-cell samples from healthy controls were collected. We measured the BAG3 expression in these cells and explored its relationship with known prognostic factors for CLL. The roles of BAG3 in cell apoptosis and migration were evaluated by small interfering RNA-mediated knockdown of BAG3 in primary CLL cells. We showed that BAG3 expression level was increased in CLL cells compared with normal B cells. Moreover, BAG3 expression was particularly upregulated in CD38 positive, unmutated immunoglobulin heavy-chain patients and those with lymphadenopathy and/or splenomegaly. Importantly, patients with increased BAG3 expression level have poor overall survival in subgroups with positive ZAP-70 or those without any "p53 abnormality". In addition, knocking down of BAG3 expression resulted in increased apoptotic ratio and decreased migration in primary CLL cells. Our data indicate that BAG3 is a marker of poor prognostic in specific subgroups of CLL patients and may be a potential therapeutic target for this disease.

  2. Can "contamination" occur in body bags?-The example of background fibres in body bags used in Australia.

    Science.gov (United States)

    Schwendener, Giuliana; Moret, Sébastien; Cavanagh-Steer, Karen; Roux, Claude

    2016-09-01

    Impurities that are transferred to a crime scene or a body can have a significant negative impact on the investigation if the existence of the contamination is not known, and the source of the contamination is not identified. Forensic consumables, such as DNA swabs, have been known to have caused contaminations, wrongfully linking crimes throughout Europe. In that context, this study focused on body bags, widely used to transfer a corpse from the crime scene to the morgue. Our preliminary survey showed that several countries and Australian Jurisdictions are conducting the sampling of trace evidence at the morgue after the transportation of the body. Potential impurities present in body bags could thus interfere with pertinent traces. The aim of this work was to qualify and quantify the background contamination of trace evidence in body bags used within Australia. Fifteen body bags from four Australian Jurisdictions or laboratories were searched for micro traces. Impurities such as fibres and unidentified particles were detected in each examined body bag, with an estimated average of 3603 coloured fibres and 1429 unidentified particles. This number of fibres is similar to the amount found on a vinyl cinema seat in other studies. Various other contaminants such as pieces of fabric, hairs, parts of insects or feathers were also observed. It is hypothesised that these impurities are introduced during the manufacturing process. This high number of impurities can lead to incorrect conclusions and misleading investigative leads. This paper presents an overview of the problems these impurities can cause and proposes several strategies to prevent future issues. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Transcriptional upregulation of BAG3 upon proteasome inhibition

    International Nuclear Information System (INIS)

    Wang Huaqin; Liu Haimei; Zhang Haiyan; Guan Yifu; Du Zhenxian

    2008-01-01

    Proteasome inhibitors exhibit antitumoral activity against malignancies of different histology. Emerging evidence indicates that antiapoptotic factors may also accumulate as a consequence of exposure to these drugs, thus it seems plausible that activation of survival signaling cascades might compromise their antitumoral effects. Bcl-2-associated athanogene (BAG) family proteins are characterized by their property of interaction with a variety of partners involved in modulating the proliferation/death balance, including heat shock proteins (HSP), Bcl-2, Raf-1. In this report, we demonstrated that BAG3 is a novel antiapoptotic molecule induced by proteasome inhibitors in various cancer cells at the transcriptional level. Moreover, we demonstrated that BAG3 knockdown by siRNA sensitized cancer cells to MG132-induced apoptosis. Taken together, our results suggest that BAG3 induction might represents as an unwanted molecular consequence of utilizing proteasome inhibitors to combat tumors

  4. On the vacuum baryon number in the chiral bag model

    International Nuclear Information System (INIS)

    Jaroszewicz, T.

    1984-01-01

    We give a rederivation, generalization and interpretation of the result of Goldstone and Jaffe on the vacuum baryon number in the chiral bag model. Our results are based on considering the bag model as a theory of free quarks, massless inside and infinitely massive outside the bag. (orig.)

  5. The anti-apoptotic activity of BAG3 is restricted by caspases and the proteasome.

    Directory of Open Access Journals (Sweden)

    Victoria M Virador

    Full Text Available Caspase-mediated cleavage and proteasomal degradation of ubiquitinated proteins are two independent mechanisms for the regulation of protein stability and cellular function. We previously reported BAG3 overexpression protected ubiquitinated clients, such as AKT, from proteasomal degradation and conferred cytoprotection against heat shock. We hypothesized that the BAG3 protein is regulated by proteolysis.Staurosporine (STS was used as a tool to test for caspase involvement in BAG3 degradation. MDA435 and HeLa human cancer cell lines exposed to STS underwent apoptosis with a concomitant time and dose-dependent loss of BAG3, suggesting the survival role of BAG3 was subject to STS regulation. zVAD-fmk or caspase 3 and 9 inhibitors provided a strong but incomplete protection of both cells and BAG3 protein. Two putative caspase cleavage sites were tested: KEVD (BAG3(E345A/D347A within the proline-rich center of BAG3 (PXXP and the C-terminal LEAD site (BAG3(E516A/D518A. PXXP deletion mutant and BAG3(E345A/D347A, or BAG3(E516A/D518A respectively slowed or stalled STS-mediated BAG3 loss. BAG3, ubiquitinated under basal growth conditions, underwent augmented ubiquitination upon STS treatment, while there was no increase in ubiquitination of the BAG3(E516A/D518A caspase-resistant mutant. Caspase and proteasome inhibition resulted in partial and independent protection of BAG3 whereas inhibitors of both blocked BAG3 degradation. STS-induced apoptosis was increased when BAG3 was silenced, and retention of BAG3 was associated with cytoprotection.BAG3 is tightly controlled by selective degradation during STS exposure. Loss of BAG3 under STS injury required sequential caspase cleavage followed by polyubiquitination and proteasomal degradation. The need for dual regulation of BAG3 in apoptosis suggests a key role for BAG3 in cancer cell resistance to apoptosis.

  6. Chiral bag model with constituent quarks: topological and nontopological decisions

    International Nuclear Information System (INIS)

    Malakhov, I.Yu.; Sveshnikov, K.A.; Fedorov, S.M.; Khalili, M.F.

    2002-01-01

    The three-phase modification of the hybrid chiral bag containing along with asymptotic freedom and hadronization phases and also intermediate phase of the constituent quarks is considered. The self-consistent solutions of the equations of the model in the (1 + 1)-dimensional case are determined with an account of the fermion vacuum polarization effects. The bag renormalized complete energy is studied as a function of the parameters characterizing the bag geometry and its topological (baryon) charge. It is shown that for nonzero topological charge there exists the whole series of configurations representing the local minima of the bag complete energy and containing all three phases, whereas the bag energy minimum in the nontopological case corresponds to zero dimensions of the area corresponding to asymptotic freedom phase [ru

  7. EMC effect and multiquark bags in nuclei

    International Nuclear Information System (INIS)

    Kondratyuk, L.; Shmatikov, M.

    1984-01-01

    Assuming existence of 9q- and 12q bags in niclei the form factors of light nuclei at large momentum transfers and structure functions of deep inelastic scattering of leptons on nuclei are described. It is shown that the existing experimental data can be described in a unified way provided the momentum distribution of quarks in multiquark bags at k 0 has the exponential form PSIsub(q)sup(2)(k) approximately esup(-k/k 0 ) with the parameter k 0 approximately 50-60 MeV. Theoretical results agree well the EMC experimental data on the ratio of the iron and deuteron structure functions with the 20% admixture of 12q-bags in the Fe nucleus

  8. Clinical application of vacuum bag immobilization of the trunk in malignant tumor patients

    International Nuclear Information System (INIS)

    Su Jianxin; Wu Yuqi; Huang Jun; Lin Chengguang; Liu Hui; Huang Xiaoyan

    2005-01-01

    Objective: To evaluate the clinical application of vacuum bag immobilization of thorax and pelvis for patients with malignant tumors. Methods: Of 714 patients (fields) chosen randomly, 582(fields) were immobilized with vacuum bag, while the other 132 (fields) used only sand bags, tapes, and other simple immobilizing devices. The field movements were measured and compared before and after the setup, along with 56 patients immobilized twice with vacuum bag. Results: The variance of movement before and after the setup was 6.7% for patients with vacuum bag , while that was 26.5% for patients without the vacuum bag. It was even 32.1% for patients immobilized twice with vacuum bag. Conclusions: The variance of movement decreases significantly with vacuum bag immobilization. It should be used as frequently as possible. As the variance of movement rises obviously when vacuum bag is used twice, the semi-soft vacuum bag should be prepared afresh and checked under the simulator before the second use. (authors)

  9. Study of the suitability of DUO plastic bags for the storage of dynamites.

    Science.gov (United States)

    Sáiz, Jorge; Ferrando, José-Luis; Atoche, Juan-Carlos; García-Ruiz, Carmen

    2013-10-10

    A comparative study on the retentiveness of two plastic bags (DUO and Royal Pack) has been carried out by gas chromatography with mass spectrometry detection. Two types of dynamites were packed in both plastic bags. The bags were placed into glass jars and headspace analyses were performed over 11 weeks to detect whether the volatile constituents of the dynamites were released from the bags. DUO plastic bags showed much better retentiveness than Royal Pack plastic bags. Ethylene glycol dinitrate (EGDN) was quickly detected in the headspace of the glass jars containing Royal Pack plastic bags after 1 week of storage. On the contrary, only a weak signal of EGDN, which was not detectable in the total ion chromatogram, was detected after 11 weeks of storage. Moreover, DUO plastic bags have shown less background signals than the Royal Pack bags, being the former bags much more suitable for the storage of dynamites. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. BAG3 promotes chondrosarcoma progression by upregulating the expression of β-catenin

    Science.gov (United States)

    Shi, Huijuan; Chen, Wenfang; Dong, Yu; Lu, Xiaofang; Zhang, Wenhui; Wang, Liantang

    2018-01-01

    To investigate the roles of B-cell lymphoma-2 associated athanogene 3 (BAG3) in human chondrosarcoma and the potential mechanisms, the expression levels of BAG3 were detected in the present study, and the associations between BAG3 and clinical pathological parameters, clinical stage as well as the survival of patients were analyzed. The present study detected BAG3 mRNA and protein expression in the normal cartilage cell line HC-a and in SW1353 chondrosarcoma cells by reverse transcription-quantitative polymerase chain reaction and western blot analysis. The BAG3 protein expression in 59 cases of chondrosarcoma, 30 patients with endogenous chondroma and 8 cases of normal cartilage was semi-quantitatively analyzed using the immunohistochemical method. In addition, the BAG3 protein expression level, the clinical pathological parameters, clinical stage and the survival time of patients with chondrosarcoma were analyzed. The plasmid transfection method was employed to upregulate the expression BAG3 and small RNA interference to downregulate the expression of BAG3 in SW1353 cells. The expression levels of BAG3 protein and mRNA were significantly increased in the chondrosarcoma cell line when compared with the normal cartilage cell line. The immunohistochemistry results indicated that BAG3 protein was overexpressed in the tissue of human chondrosarcoma. Statistical analysis showed that the expression level of BAG3 was significantly increased in the different Enneking staging of patients with chondrosarcoma and Tumor staging, and there were no statistical differences in age, gender, histological classification and tumor size. In the in vitro experiments, the data revealed that BAG3 significantly promoted chondrosarcoma cell proliferation, colony-formation, migration and invasion; however, it inhibited chondrosarcoma cell apoptosis. It was observed that BAG3 upregulated β-catenin expression at the mRNA and protein levels. In addition, BAG3 induced the expression of runt

  11. BAG3 promotes chondrosarcoma progression by upregulating the expression of β-catenin.

    Science.gov (United States)

    Shi, Huijuan; Chen, Wenfang; Dong, Yu; Lu, Xiaofang; Zhang, Wenhui; Wang, Liantang

    2018-04-01

    To investigate the roles of B‑cell lymphoma‑2 associated athanogene 3 (BAG3) in human chondrosarcoma and the potential mechanisms, the expression levels of BAG3 were detected in the present study, and the associations between BAG3 and clinical pathological parameters, clinical stage as well as the survival of patients were analyzed. The present study detected BAG3 mRNA and protein expression in the normal cartilage cell line HC‑a and in SW1353 chondrosarcoma cells by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. The BAG3 protein expression in 59 cases of chondrosarcoma, 30 patients with endogenous chondroma and 8 cases of normal cartilage was semi-quantitatively analyzed using the immunohistochemical method. In addition, the BAG3 protein expression level, the clinical pathological parameters, clinical stage and the survival time of patients with chondrosarcoma were analyzed. The plasmid transfection method was employed to upregulate the expression BAG3 and small RNA interference to downregulate the expression of BAG3 in SW1353 cells. The expression levels of BAG3 protein and mRNA were significantly increased in the chondrosarcoma cell line when compared with the normal cartilage cell line. The immunohistochemistry results indicated that BAG3 protein was overexpressed in the tissue of human chondrosarcoma. Statistical analysis showed that the expression level of BAG3 was significantly increased in the different Enneking staging of patients with chondrosarcoma and Tumor staging, and there were no statistical differences in age, gender, histological classification and tumor size. In the in vitro experiments, the data revealed that BAG3 significantly promoted chondrosarcoma cell proliferation, colony‑formation, migration and invasion; however, it inhibited chondrosarcoma cell apoptosis. It was observed that BAG3 upregulated β‑catenin expression at the mRNA and protein levels. In addition, BAG3 induced the

  12. A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress.

    Science.gov (United States)

    Judge, Luke M; Perez-Bermejo, Juan A; Truong, Annie; Ribeiro, Alexandre Js; Yoo, Jennie C; Jensen, Christina L; Mandegar, Mohammad A; Huebsch, Nathaniel; Kaake, Robyn M; So, Po-Lin; Srivastava, Deepak; Pruitt, Beth L; Krogan, Nevan J; Conklin, Bruce R

    2017-07-20

    Molecular chaperones regulate quality control in the human proteome, pathways that have been implicated in many diseases, including heart failure. Mutations in the BAG3 gene, which encodes a co-chaperone protein, have been associated with heart failure due to both inherited and sporadic dilated cardiomyopathy. Familial BAG3 mutations are autosomal dominant and frequently cause truncation of the coding sequence, suggesting a heterozygous loss-of-function mechanism. However, heterozygous knockout of the murine BAG3 gene did not cause a detectable phenotype. To model BAG3 cardiomyopathy in a human system, we generated an isogenic series of human induced pluripotent stem cells (iPSCs) with loss-of-function mutations in BAG3. Heterozygous BAG3 mutations reduced protein expression, disrupted myofibril structure, and compromised contractile function in iPSC-derived cardiomyocytes (iPS-CMs). BAG3-deficient iPS-CMs were particularly sensitive to further myofibril disruption and contractile dysfunction upon exposure to proteasome inhibitors known to cause cardiotoxicity. We performed affinity tagging of the endogenous BAG3 protein and mass spectrometry proteomics to further define the cardioprotective chaperone complex that BAG3 coordinates in the human heart. Our results establish a model for evaluating protein quality control pathways in human cardiomyocytes and their potential as therapeutic targets and susceptibility factors for cardiac drug toxicity.

  13. Addressing challenges in bar-code scanning of large-volume infusion bags.

    Science.gov (United States)

    Raman, Kirthana; Heelon, Mark; Kerr, Gary; Higgins, Thomas L

    2011-08-01

    A hospital pharmacy's efforts to identify and address challenges with bedside scanning of bar codes on large-volume parenteral (LVP) infusion bags are described. Bar-code-assisted medication administration (BCMA) has been shown to reduce medication errors and improve patient safety. After the pilot implementation of a BCMA system and point-of-care scanning procedures at a medical center's intensive care unit, it was noted that nurses' attempted bedside scans of certain LVP bags for product identification purposes often were not successful. An investigation and root-cause analysis, including observation of nurses' scanning technique by a multidisciplinary team, determined that the scanning failures stemmed from the placement of two bar-code imprints-one with the product identification code and another, larger imprint with the expiration date and lot number-adjacently on the LVP bags. The nursing staff was educated on a modified scanning technique, which resulted in significantly improved success rates in the scanning of the most commonly used LVP bags. Representatives of the LVP bag manufacturer met with hospital staff to discuss the problem and corrective measures. As part of a subsequent infusion bag redesign, the manufacturer discontinued the use of the bar-code imprint implicated in the scanning failures. Failures in scanning LVP bags were traced to problematic placement of bar-code imprints on the bags. Interdisciplinary collaboration, consultation with the bag manufacturer, and education of the nursing and pharmacy staff resulted in a reduction in scanning failures and the manufacturer's removal of one of the bar codes from its LVP bags.

  14. The prosurvival protein BAG3: a new participant in vascular homeostasis.

    Science.gov (United States)

    Carrizzo, Albino; Damato, Antonio; Ambrosio, Mariateresa; Falco, Antonia; Rosati, Alessandra; Capunzo, Mario; Madonna, Michele; Turco, Maria C; Januzzi, James L; De Laurenzi, Vincenzo; Vecchione, Carmine

    2016-10-20

    Bcl2-associated athanogene 3 (BAG3), is constitutively expressed in a few normal cell types, including myocytes, peripheral nerves and in the brain, and is also expressed in certain tumors. To date, the main studies about the role of BAG3 are focused on its pro-survival effect in tumors through various mechanisms that vary according to cellular type. Recently, elevated concentrations of a soluble form of BAG3 were described in patients affected by advanced stage of heart failure (HF), identifying BAG3 as a potentially useful biomarker in monitoring HF progression. Despite the finding of high levels of BAG3 in the sera of HF patients, there are no data on its possible role on the modulation of vascular tone and blood pressure levels. The aim of this study was to investigate the possible hemodynamic effects of BAG3 performing both in vitro and in vivo experiments. Through vascular reactivity studies, we demonstrate that BAG3 is capable of evoking dose-dependent vasorelaxation. Of note, BAG3 exerts its vasorelaxant effect on resistance vessels, typically involved in the blood pressure regulation. Our data further show that the molecular mechanism through which BAG3 exerts this effect is the activation of the PI3K/Akt signalling pathway leading to nitric oxide release by endothelial cells. Finally, we show that in vivo BAG3 administration is capable of regulating blood pressure and that this is dependent on eNOS regulation since this ability is lost in eNOS KO animals.

  15. Smart sustainable bottle (SSB) system for E. coli based recombinant protein production.

    Science.gov (United States)

    Li, Zhaopeng; Carstensen, Bettina; Rinas, Ursula

    2014-11-05

    Recombinant proteins are usually required in laboratories interested in the protein but not in the production process itself. Thus, technical equipment which is easy to handle and straight forward protein production procedures are of great benefit to those laboratories. Companies selling single use cultivation bags and bioreactors are trying to satisfy at least part of these needs. However, single-use systems can contribute to major costs which might be acceptable when "good manufacturing practices" are required but not acceptable for most laboratories facing tight funding. The assembly and application of a simple self-made "smart sustainable bottle" (SSB) system for E. coli based protein production is presented. The core of the SSB system is a 2-L glass bottle which is operated at constant temperature, air flow, and stirrer speed without measurement and control of pH and dissolved oxygen. Oxygen transfer capacities are in the range as in conventional bioreactors operated at intermediate aeration rates and by far exceed those found in conventional shaking flasks and disposable bioreactors. The SSB system was applied for the production of various recombinant proteins using T7-based expression systems and a defined autoinduction medium. The production performance regarding amount and solubility of proteins with robust and delicate properties was as good as in state-of-the-art stirred tank commercial bioreactors. The SSB system represents a low cost protein production device applicable for easy, effective, and reproducible recombinant protein production.

  16. On the quantisation of one-dimensional bags

    International Nuclear Information System (INIS)

    Fairley, G.T.; Squires, E.J.

    1976-01-01

    The quantisation of one-dimensional MIT bags by expanding the fields as a sum of classical modes and truncating the series after the first term is discussed. The lowest states of a bag in a world containing two scalar quark fields are obtained. Problems associated with the zero-point oscillations of the field are discussed. (Auth.)

  17. Compact assembly generates plastic foam, inflates flotation bag

    Science.gov (United States)

    1965-01-01

    Device for generating plastic foam consists of an elastomeric bag and two containers with liquid resin and a liquid catalyst. When the walls of the containers are ruptured the liquids come into contact producing foam which inflates the elastomeric bag.

  18. Radioactive Material Containment Bags

    National Research Council Canada - National Science Library

    2000-01-01

    The audit was requested by Senator Joseph I. Lieberman based on allegations made by a contractor, Defense Apparel Services, about the Navy's actions on three contracts for radioactive material containment bags...

  19. Launching Garbage-Bag Balloons.

    Science.gov (United States)

    Kim, Hy

    1997-01-01

    Presents a modification of a procedure for making and launching hot air balloons made out of garbage bags. Student instructions for balloon construction, launching instructions, and scale diagrams are included. (DDR)

  20. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control.

    Science.gov (United States)

    Rameez, Shahid; Mostafa, Sigma S; Miller, Christopher; Shukla, Abhinav A

    2014-01-01

    Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr™) is an automated micro-bioreactor system with miniature single-use bioreactors with a 10-15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in-line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr™ resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr™ was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr™ system as a high throughput system for cell culture process development. © 2014 American Institute of Chemical Engineers.

  1. Radiative decays of vector mesons in the chiral bag model

    International Nuclear Information System (INIS)

    Tabachenko, A.N.

    1988-01-01

    A new model of radiative π-meson decays of vector mesons in the chiral bag model is proposed. The quark-π-meson interaction has the form of a pseudoscalar coupling and is located on the bag surface. The vector meson decay width depends on the quark masses, the π-meson decay constant, the radius of the bag, and the free parameter Z 2 , which specifies the disappearance of the bag during the decay. The obtained results for the omega- and p-decay widths are in satisfactory agreement with the experiment

  2. Define of internal recirculation coefficient for biological wastewater treatment in anoxic and aerobic bioreactors

    Science.gov (United States)

    Rossinskyi, Volodymyr

    2018-02-01

    The biological wastewater treatment technologies in anoxic and aerobic bioreactors with recycle of sludge mixture are used for the effective removal of organic compounds from wastewater. The change rate of sludge mixture recirculation between bioreactors leads to a change and redistribution of concentrations of organic compounds in sludge mixture in bioreactors and change hydrodynamic regimes in bioreactors. Determination of the coefficient of internal recirculation of sludge mixture between bioreactors is important for the choice of technological parameters of biological treatment (wastewater treatment duration in anoxic and aerobic bioreactors, flow capacity of recirculation pumps). Determination of the coefficient of internal recirculation of sludge mixture requires integrated consideration of hydrodynamic parameter (flow rate), kinetic parameter (rate of oxidation of organic compounds) and physical-chemical parameter of wastewater (concentration of organic compounds). The conducted numerical experiment from the proposed mathematical equations allowed to obtain analytical dependences of the coefficient of internal recirculation sludge mixture between bioreactors on the concentration of organic compounds in wastewater, the duration of wastewater treatment in bioreactors.

  3. BAG3 regulates contractility and Ca(2+) homeostasis in adult mouse ventricular myocytes.

    Science.gov (United States)

    Feldman, Arthur M; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D; Tilley, Douglas G; Gao, Erhe; Hoffman, Nicholas E; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y

    2016-03-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na(+)-K(+)-ATPase and L-type Ca(2+) channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca(2+) channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca(2+)]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca(2+) current (ICa) and sarcoplasmic reticulum (SR) Ca(2+) content but not Na(+)/Ca(2+) exchange current (INaCa) or SR Ca(2+) uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyryl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca(2+) entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca(2+) channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure. Copyright © 2016 Elsevier Ltd. All rights

  4. BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes

    Science.gov (United States)

    Feldman, Arthur M.; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D.; Tilley, Douglas G.; Gao, Erhe; Hoffman, Nicholas E.; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J.; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y.

    2016-01-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na+-K+-ATPase and L-type Ca2+ channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca2+ channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca2+]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca2+ current (ICa) and sarcoplasmic reticulum (SR) Ca2+ content but not Na+/Ca2+ exchange current (INaCa) or SR Ca2+ uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyrl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca2+ entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca2+ channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure. PMID:26796036

  5. BAG3 regulates epithelial-mesenchymal transition and angiogenesis in human hepatocellular carcinoma.

    Science.gov (United States)

    Xiao, Heng; Cheng, Shaobing; Tong, Rongliang; Lv, Zheng; Ding, Chaofeng; Du, Chengli; Xie, Haiyang; Zhou, Lin; Wu, Jian; Zheng, Shusen

    2014-03-01

    Bcl2-associated athanogene 3 (BAG3) protein is a co-chaperone of heat-shock protein (Hsp) 70 and may regulate major physiological and pathophysiological processes. However, few reports have examined the role of BAG3 in human hepatocellular carcinoma (HCC). In this study, we show that BAG3 regulates epithelial-mesenchymal transition (EMT) and angiogenesis in HCC. BAG3 was overexpressed in HCC tissues and cell lines. BAG3 knockdown resulted in reduction in migration and invasion of HCC cells, which was linked to reversion of EMT by increasing E-cadherin expression and decreasing N-cadherin, vimentin and slug expression, as well as suppressing matrix metalloproteinase 2 (MMP-2) expression. In a xenograft tumorigenicity model, BAG3 knockdown effectively inhibited tumor growth and metastasis through reduction in CD34 and VEGF expression and reversal of the EMT pathway. In conclusion, BAG3 is associated with the invasiveness and angiogenesis in HCC, and the BAG3 gene may be a novel therapeutic approach against HCC.

  6. Legitimization of regulatory norms: Waterfowl hunter acceptance of changing duck bag limits

    Science.gov (United States)

    Schroeder, Susan A.; Fulton, David C.; Lawrence, Jeffrey S.; Cordts, Steven D.

    2014-01-01

    Few studies have examined response to regulatory change over time, or addressed hunter attitudes about changes in hunting bag limits. This article explores Minnesota waterfowl hunters’ attitudes about duck bag limits, examining attitudes about two state duck bag limits that were initially more restrictive than the maximum set by the U.S. Fish and Wildlife Service (USFWS), but then increased to match federal limits. Results are from four mail surveys that examined attitudes about bag limits over time. Following two bag limit increases, a greater proportion of hunters rated the new bag limit “too high” and a smaller proportion rated it “too low.” Several years following the first bag limit increase, the proportion of hunters who indicated that the limit was “too high” had declined, suggesting hunter acceptance of the new regulation. Results suggest that waterfowl bag limits may represent legal norms that influence hunter attitudes and gain legitimacy over time.

  7. BAG3 Protein Is Over-Expressed in Endometrioid Endometrial Adenocarcinomas.

    Science.gov (United States)

    Esposito, Veronica; Baldi, Carlo; Zeppa, Pio; Festa, Michelina; Guerriero, Luana; d'Avenia, Morena; Chetta, Massimiliano; Zullo, Fulvio; De Laurenzi, Vincenzo; Turco, Maria Caterina; Rosati, Alessandra; Guida, Maurizio

    2017-02-01

    Endometrioid endometrial cancer is the most common gynaecological tumor in developed countries, and its incidence is increasing. The definition of subtypes, based on clinical and endocrine features or on histopathological characteristics, correlate to some extent with patient's prognosis, but there is substantial heterogeneity within tumor types. The search for molecules and mechanisms implied in determining the progression and the response to therapy for this cancer is still ongoing. BAG3 protein, a member of BAG family of co-chaperones, has a pro-survival role in several tumor types. BAG3 anti-apoptotic properties rely on its characteristic to bind several intracellular partners, thereby, modulating crucial events such as apoptosis, differentiation, cell motility, and autophagy. BAG3 expression in human endometrial cancer tissues was not investigated so far. Here, we show that BAG3 protein levels are elevated in tumoral and hyperplastic cells in respect to normal glands. Furthermore, BAG3 subcellular localization appears to be changed in tumoral compared to normal cells. Our results indicate a possible role for BAG3 protein in the maintenance of cell survival in endometrioid endometrial cancer and suggest that this field of studies is worthy of further investigations. J. Cell. Physiol. 232: 309-311, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Let's Do It Again: Bagging Equity Premium Predictors

    DEFF Research Database (Denmark)

    Hillebrand, Eric Tobias; Lee, Tae-Hwy; Medeiros, Marcelo C.

    The literature on excess return prediction has considered a wide array of estimation schemes, among them unrestricted and restricted regression coefficients. We consider bootstrap aggregation (bagging) to smooth parameter restrictions. Two types of restrictions are considered: positivity...... by smoothing the restriction through bagging....

  9. Performance of PICS bags under extreme conditions in the sahel zone of Niger.

    Science.gov (United States)

    Baoua, Ibrahim B; Bakoye, Ousmane; Amadou, Laouali; Murdock, Larry L; Baributsa, Dieudonne

    2018-03-01

    Experiments in Niger assessed whether extreme environmental conditions including sunlight exposure affect the performance of triple-layer PICS bags in protecting cowpea grain against bruchids. Sets of PICS bags and woven polypropylene bags as controls containing 50 kg of naturally infested cowpea grain were held in the laboratory or outside with sun exposure for four and one-half months. PICS bags held either inside or outside exhibited no significant increase in insect damage and no loss in weight after 4.5 months of storage compared to the initial values. By contrast, woven bags stored inside or outside side by side with PICS bags showed several-fold increases in insects present in or on the grain and significant losses in grain weight. Grain stored inside in PICS bags showed no reduction in germination versus the initial value but there was a small but significant drop in germination of grain in PICS bags held outside (7.6%). Germination rates dropped substantially more in grain stored in woven bags inside (16.1%) and still more in woven bags stored outside (60%). PICS bags held inside and outside retained their ability to maintain internal reduced levels of oxygen and elevated levels of carbon dioxide. Exposure to extreme environmental conditions degraded the external polypropylene outer layer of the PICS triple-layer bag. Even so, the internal layers of polyethylene were more slowly degraded. The effects of exposure to sunlight, temperature and humidity variation within the sealed bags are described.

  10. Soliton Bag Model

    International Nuclear Information System (INIS)

    Wilets, L.; Bickeboeller, M.; Birse, M.C.

    1985-01-01

    A summary of recent and current research on the Soliton Bag Model is presented. The unique feature of the model, namely dynamics, is emphasized, since this permits calculation of reactions within the framework of a covariant effective Lagrangian. One gluon exchange effects are included. 17 refs., 3 figs

  11. Functional study on two artificial liver bioreactors with collagen gel

    Directory of Open Access Journals (Sweden)

    XU Bing

    2014-10-01

    Full Text Available ObjectiveTo improve the hollow fiber bioreactor of artificial liver. MethodsRat hepatocytes mixed with collagen solution were injected into the external cavity of a hollow fiber reactor to construct a bioreactor of hepatocytes suspended in collagen gel (group Ⅰ. Other rat hepatocytes suspended in solution were injected into the external cavity of a hollow fiber reactor with a layer of collagen on the wall of the external cavity to construct a bioreactor of collagen layer and hepatocytes (group Ⅱ. For each group, the culture solution circulated through the internal cavity of the hollow fiber bioreactor; the bioreactor was put in a culture box for 9 d, and the culture solution in the internal cavity was exchanged for new one every 24 h; the concentrations of albumin (Alb, urea, and lactate dehydrogenase (LDH in the culture solution samples were measured to examine the hepatocyte function of the bioreactor. Statistical analysis was performed using SPSS 130. Continuous data were expressed as mean±SD, and comparison between groups was made by paired t test. ResultsFor groups Ⅰ and Ⅱ, Alb levels reached peak values on day 3 of culture (1.41±0.08 g/L and 0.65±0.05 g/L; from day 3 to 9, group I had a significantly higher Alb level than group Ⅱ (t>7.572, P<0.01. For groups Ⅰ and Ⅱ, urea levels reached peak values on days 3 and 5 of culture (1.73±0.14 mmol/L and 1.56±0.18 mmol/L; from days 5 to 9, group I had a significantly higher urea level than group Ⅱ (t>8.418, P<0.01. For groups Ⅰ and Ⅱ, LDH levels reached peak values on day 9 of culture (32.03±9.13 U/L and 70.17±25.28 U/L; from days 1 to 9, group I had a significantly lower LDH level than group Ⅱ(t>5.633, P<0.01. Therefore, the bioreactor of hepatocytes suspended in collagen gel (group Ⅰ showed a better hepatocyte function and less hepatic enzyme leakage compared with the bioreactor of collagen layer and hepatocytes (group Ⅱ. Conclusion

  12. Hsp70-Bag3 interactions regulate cancer-related signaling networks.

    Science.gov (United States)

    Colvin, Teresa A; Gabai, Vladimir L; Gong, Jianlin; Calderwood, Stuart K; Li, Hu; Gummuluru, Suryaram; Matchuk, Olga N; Smirnova, Svetlana G; Orlova, Nina V; Zamulaeva, Irina A; Garcia-Marcos, Mikel; Li, Xiaokai; Young, Z T; Rauch, Jennifer N; Gestwicki, Jason E; Takayama, Shinichi; Sherman, Michael Y

    2014-09-01

    Bag3, a nucleotide exchange factor of the heat shock protein Hsp70, has been implicated in cell signaling. Here, we report that Bag3 interacts with the SH3 domain of Src, thereby mediating the effects of Hsp70 on Src signaling. Using several complementary approaches, we established that the Hsp70-Bag3 module is a broad-acting regulator of cancer cell signaling by modulating the activity of the transcription factors NF-κB, FoxM1, Hif1α, the translation regulator HuR, and the cell-cycle regulators p21 and survivin. We also identified a small-molecule inhibitor, YM-1, that disrupts the Hsp70-Bag3 interaction. YM-1 mirrored the effects of Hsp70 depletion on these signaling pathways, and in vivo administration of this drug was sufficient to suppress tumor growth in mice. Overall, our results defined Bag3 as a critical factor in Hsp70-modulated signaling and offered a preclinical proof-of-concept that the Hsp70-Bag3 complex may offer an appealing anticancer target. ©2014 American Association for Cancer Research.

  13. The effects of four agrobotanical extracts and three types of bags on ...

    African Journals Online (AJOL)

    ... Shaki area of Oyo State, Nigeria and treated with extracts from Azadiractha indica (neem) leaf, Xylopia aethiopica(uda) pod, Occimum graticimum (nche anwu) leaf and Zingiber officinale (ginger) stem tuber. The storage bags were 0.05mm gauge polythene bags, 0.05mm gauge polythene-lined-jute bags and jute bags.

  14. Vented spikes improve delivery from intravenous bags with no air headspace.

    Science.gov (United States)

    Galush, William J; Horst, Travis A

    2015-07-01

    Flexible plastic bags are the container of choice for most intravenous (i.v.) infusions. Under certain circumstances, however, the air-liquid interface present in these i.v. bags can lead to physical instability of protein biopharmaceuticals, resulting in product aggregation. In principle, the air headspace present in the bags can be removed to increase drug stability, but experiments described here show that this can result in incomplete draining of solution from the bag using gravity delivery, or generation of negative pressure in the bag when an infusion pump is used. It is expected that these issues could lead to incomplete delivery of medication to patients or pump-related problems, respectively. However, here it is shown that contrary to the standard pharmacy practice of using nonvented spikes with i.v. bags, the use of vented spikes with i.v. bags that lack air headspace allows complete delivery of the dose solution without impacting the physical stability of a protein-based drug. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Non-leptonic hyperon decays and the chiral meson coupling to bags

    International Nuclear Information System (INIS)

    Horvat, D.; Tadic, D.

    1986-01-01

    Hyperon nonleptonic decays have been analyzed using a chiral-bag model instead of the MIT-bag model which was used in earlier analyses. The adopted theoretical formalism allows a step by step comparison between the new and the old approaches. The results are in agreement with the calculation which has used chiral model in its cloudy-bag variant. Chiral-bag model based theoretical predictions are not significantly different from the old MIT-bag model based results. Theory can account for overall gross features of the hyperon nonleptonic decays but not for the fine details like the exact, almost vanishing, value of the A(Σsub(+) + ) amplitude. (orig.)

  16. Hydraulic Behavior in The Downflow Hanging Sponge Bioreactor

    Directory of Open Access Journals (Sweden)

    Izarul Machdar

    2016-12-01

    Full Text Available Performance efficiency in a Downflow Hanging Sponge (DHS bioreactor is associated with the amount of time that a wastewater remains in the bioreactor. The bioreactor is considered as a plug flow reactor and its hydraulic residence time (HRT depends on the void volume of packing material and the flow rate. In this study, hydraulic behavior of DHS bioreactor was investigated by using tracer method. Two types of sponge module covers, cylindrical plastic frame (module-1 and plastic hair roller (module-2, were investigated and compared. A concentrated NaCl solution used as an inert tracer and input as a pulse at the inlet of DHS bioreactor. Analysis of the residence time distribution (RTD curves provided interpretation of the index distribution or holdup water (active volume, the degree of short-circuiting, number of tanks in series (the plug flow characteristic, and the dispersion number. It was found that the actual HRT was primarily shorter than theoretical HRT of each test. Holdup water of the DHS bioreactor ranged from 60% to 97% and 36% to 60% of module-1 and module-2, respectively. Eventhough module-1 has higher effective volume than module-2, result showed that the dispersion numbers of the two modules were not significant difference. Furthermore, N-values were found larger at a higher flow rate. It was concluded that a DHS bioreactor design should incorporated a combination of water distributor system, higher loading rate at startup process to generate a hydraulic behavior closer to an ideal plug flow.ABSTRAKEfisiensi unjuk kerja bioreactor Downflow Hanging Sponge (DHS berkaitan dengan lamanya waktu tinggal limbah berada di dalam bioreaktor tersebut. Bioreaktor DHS dianggap sebagai seuatu reaktor aliran sumbat (plug flow dimana waktu tinggal hidraulik (HRT tergantung pada volume pori material isian dan laju alir. Dua jenis modul digunakan dalam penelitian ini, yang diberi nama dengan module-1 dan module-2 untuk melihat pengaruh jenis modul

  17. Construction and evaluation of urinary bladder bioreactor for urologic tissue-engineering purposes.

    LENUS (Irish Health Repository)

    Davis, Niall F

    2012-01-31

    OBJECTIVE: To design and construct a urinary bladder bioreactor for urologic tissue-engineering purposes and to compare the viability and proliferative activity of cell-seeded extracellular matrix scaffolds cultured in the bioreactor with conventional static growth conditions. MATERIALS AND METHODS: A urinary bladder bioreactor was designed and constructed to replicate physiologic bladder dynamics. The bioreactor mimicked the filling pressures of the human bladder by way of a cyclical low-delivery pressure regulator. In addition, cell growth was evaluated by culturing human urothelial cells (UCs) on porcine extracellular matrix scaffolds in the bioreactor and in static growth conditions for 5 consecutive days. The attachment, viability, and proliferative potential were assessed and compared with quantitative viability indicators and by fluorescent markers for intracellular esterase activity and plasma membrane integrity. Scaffold integrity was characterized with scanning electron microscopy and 4\\

  18. Double Vacuum Bag Process for Resin Matrix Composite Manufacturing

    Science.gov (United States)

    Hou, Tan-Hung (Inventor); Jensen, Brian J. (Inventor)

    2007-01-01

    A double vacuum bag molding assembly with improved void management and laminate net shape control which provides a double vacuum enviromnent for use in fabricating composites from prepregs containing air and/or volatiles such as reactive resin matrix composites or composites from solvent containing prepregs with non-reactive resins matrices. By using two vacuum environments during the curing process, a vacuum can be drawn during a B-stage of a two-step cycle without placing the composite under significant relative pressure. During the final cure stage, a significant pressure can be applied by releasing the vacuum in one of the two environments. Inner and outer bags are useful for creating the two vacuum environments with a perforated tool intermediate the two. The composite is placed intermediate a tool plate and a caul plate in the first environment with the inner bag and tool plate defining the first environment. The second environment is characterized by the outer bag which is placed over the inner bag and the tool plate.

  19. Use of pliable bags in liquid scintillation counting

    International Nuclear Information System (INIS)

    Simonnet, G.; Jacquet, M.A.; Sharif, A.; Engler, R.

    1981-01-01

    Pliable plastic bags have been used to replace glass or plastic vials for liquid scintillation counting. The two major advantages of this method are the lower cost of the plastic bags and the fact that, per sample, the radioactive waste is significantly reduced. The following parameters have been checked: the impermeability of the bags to various scintillator mixtures and the fact that neither the irregular shape of the bags nor their position in the counting chamber had any effect on the results of the counting. The latter was also constant with time, at least over a period of 10 days. The technique has been used to count the radioactivity of 3 H-DNA precipitates prepared from bacteria and lymphocytes and deposited on filters impregnated with only 200 μl scintillator. It is a method that can be applied to the counting of any samples deposited on filters and insoluble in scintillator. (author)

  20. Biological reduction of nitrate wastewater using fluidized-bed bioreactors

    International Nuclear Information System (INIS)

    Walker, J.F. Jr.; Hancher, C.W.; Patton, B.D.; Kowalchuk, M.

    1981-01-01

    There are a number of nitrate-containing wastewater sources, as concentrated as 30 wt % NO 3 - and as large as 2000 m 3 /d, in the nuclear fuel cycle as well as in many commercial processes such as fertilizer production, paper manufacturing, and metal finishing. These nitrate-containing wastewater sources can be successfully biologically denitrified to meet discharge standards in the range of 10 to 20 gN(NO 3 - )/m 3 by the use of a fluidized-bed bioreactor. The major strain of denitrification bacteria is Pseudomonas which was derived from garden soil. In the fluidized-bed bioreactor the bacteria are allowed to attach to 0.25 to 0.50-mm-diam coal particles, which are fluidized by the upward flow of influent wastewater. Maintaining the bacteria-to-coal weight ratio at approximately 1:10 results in a bioreactor bacteria loading of greater than 20,000 g/m 3 . A description is given of the results of two biodenitrification R and D pilot plant programs based on the use of fluidized bioreactors capable of operating at nitrate levels up to 7000 g/m 3 and achieving denitrification rates as high as 80 gN(NO 3 - )/d per liter of empty bioreactor volume. The first of these pilot plant programs consisted of two 0.2-m-diam bioreactors, each with a height of 6.3 m and a volume of 208 liters, operating in series. The second pilot plant was used to determine the diameter dependence of the reactors by using a 0.5-m-diam reactor with a height of 6.3 m and a volume of 1200 liters. These pilot plants operated for a period of six months and two months respectively, while using both a synthetic waste and the actual waste from a gaseous diffusion plant operated by Goodyear Atomic Corporation

  1. Cost analysis of premixed multichamber bags versus compounded parenteral nutrition: breakeven point.

    Science.gov (United States)

    Bozat, Erkut; Korubuk, Gamze; Onar, Pelin; Abbasoglu, Osman

    2014-02-01

    Industrially premixed multichamber bags or hospital-manufactured compounded products can be used for parenteral nutrition. The aim of this study was to compare the cost of these 2 approaches. Costs of compounded parenteral nutrition bags in an university hospital were calculated. A total of 600 bags that were administered during 34 days between December 10, 2009 and February 17, 2010 were included in the analysis. For quality control, specific gravity evaluation of the filled bags was performed. It was calculated that the variable cost of a hospital compounded bag was $26.15. If we take the annual fixed costs into consideration, the production cost reaches $36.09 for each unit. It was estimated that the cost for the corresponding multichamber bag was $37.79. Taking the fixed and the variable costs into account, the breakeven point of the hospital compounded and the premixed multichamber bags was seen at 5,404 units per year. In specific gravity evaluation, it was observed that the mean and interval values were inside the upper and lower control margins. In this analysis, usage of hospital-compounded parenteral nutrition bags showed a cost advantage in hospitals that treat more than 15 patients per day. In small volume hospitals, premixed multichamber bags may be more beneficial.

  2. [Expression of BAG3 Gene in Acute Myeloid Leukemia and Its Prognostic Value].

    Science.gov (United States)

    Zhu, Hua-Yuan; Fu, Yuan; Wu, Wei; Xu, Jia-Dai; Chen, Ting-Mei; Qiao, Chun; Li, Jian-Yong; Liu, Peng

    2015-08-01

    To investigate the expression of BAG3 gene in acue myeloid leukemia (AML) and its prognostic value. Real-time quantitative RT-PCR was used to detect the expression of BAG3 mRNA in 88 previously untreated AML patients. The corelation of BAG3 expression level with clinical characteristics and known prognostic markers of AML was analyzed. In 88 patients with AML, the expression of BAG3 mRNA in NPMI mutated AML patients was obviously lower than that in NPMI unmutated patients (P = 0.018). The expression level of BAG3 mRNA did not related to clinical parameters, such as age, sex, FAB subtype, WBC count, extra-modullary presentation, and to prognostic factors including cytogenetics, FLT3-ITD, c-kit and CEBPα mutation status (P > 0.05). The expression level of BAG3 had no obvious effect on complete remission (CR) of patients in first treatment. The expression level of BAG3 in non-M3 patients was higher than that in relapsed patients (P = 0.036). The expression level of BAG3 had no effect on overall survival (OS) of patients. The expression level of BAG3 does not correlated with known-prognostic markers of AML, only the expression level of BAG3 in NPM1 mutated patients is lower than that in NPM1 unmutated patients. The expression level of BAG3 has no effect on OS of AML patients, the BAG3 can not be difined as a prognostic marker in AML.

  3. Warming preterm infants in the delivery room: polyethylene bags, exothermic mattresses or both?

    Science.gov (United States)

    McCarthy, Lisa K; O'Donnell, Colm P F

    2011-12-01

    To compare the admission temperature of infants treated with polyethylene bags alone to infants treated with exothermic mattresses in addition to bags in the delivery room. We prospectively studied infants born at bags at birth. Some infants were also placed on mattresses. Admission axillary temperatures were measured in all infants on admission to the neonatal intensive care. We compared the temperatures of infants treated with bags alone to those treated with mattresses and bags. We studied 43 infants: 15 were treated with bags while 28 were treated with a bag and mattress. Mean admission temperature was similar between the groups. Hypothermia and hyperthermia occurred more frequently in infants treated with a bag and mattress, and more infants treated with a bag had admission temperatures 36.5-37.5°C. The use of exothermic mattresses in addition to polyethylene bags, particularly in younger, smaller newborns, may result in more hypothermia and hyperthermia on admission. A randomised controlled trial is necessary to determine which strategy results in more infants having admission temperatures in the normal range. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.

  4. Silencing of BAG3 inhibits the epithelial-mesenchymal transition in human cervical cancer.

    Science.gov (United States)

    Song, Fei; Wang, Geng; Ma, Zhifang; Ma, Yuebing; Wang, Yingying

    2017-11-10

    Bcl2-associated athanogene 3 (BAG3) has been reported to be involved in aggressive progression of many tumors. In the present study, we examined the expression of BAG3 in human cervical cancer (CC) tissues and investigated the role of BAG3 in SiHa and HeLa cell growth, migration, and invasion. Here, we found that most of CC tissues highly expressed the protein and mRNA of BAG3, while their expression was obviously lower in paired normal tissues (all pBAG3 expression was associated with FIGO stage and metastasis (all pBAG3 siRNAs inhibited SiHa and HeLa cell growth, invasion and migration. Mechanically, BAG3 siRNAs inhibited the expression of EMT-regulating markers, involving MMP2, Slug and N-cadherin, and increased the expression of E-cadherin. In a xenograft nude model, BAG3 siRNAs inhibited tumor growth and the expression of EMT biomarkers. In conclusion, BAG3 is involved in the EMT process, including cell growth, invasion and migration in the development of CC. Thus, BAG3 target might be recommended as a novel therapeutic approach.

  5. Burns From Hot Wheat Bags: A Public Safety Issue

    Science.gov (United States)

    Collins, Anna; Amprayil, Mathew; Solanki, Nicholas S.; Greenwood, John Edward

    2011-01-01

    Introduction: Wheat bags are therapeutic devices that are heated in microwaves and commonly used to provide relief from muscle and joint pain. The Royal Adelaide Hospital Burns Unit has observed a number of patients with significant burn injuries resulting from their use. Despite their dangers, the products come with limited safety information. Methods: Data were collected from the Burns Unit database for all patients admitted with burns due to hot wheat bags from 2004 to 2009. This was analyzed to determine the severity of the burn injury and identify any predisposing factors. An experimental study was performed to measure the temperature of wheat bags when heated to determine their potential for causing thermal injury. Results: 11 patients were admitted with burns due to hot wheat bags. The median age was 52 years and the mean total body surface area was 1.1%. All burns were either deep dermal (45.5%) or full thickness (54.5%). Ten patients required operative management. Predisposing factors (eg, neuropathy) to thermal injury were identified in 7 patients. The experimental study showed that hot wheat bags reached temperatures of 57.3°C (135.1°F) when heated according to instructions, 63.3°C (145.9°F) in a 1000 W microwave and 69.6°C (157.3°F) on reheating. Conclusions: Hot wheat bags cause serious burn injury. When heated improperly, they can reach temperatures high enough to cause epidermal necrosis in a short period of time. Patients with impaired temperature sensation are particularly at risk. There should be greater public awareness of the dangers of wheat bag use and more specific safety warnings on the products. PMID:21915357

  6. Comparison of cryopreservation bags for hematopoietic progenitor cells using a WBC-enriched product.

    Science.gov (United States)

    Dijkstra-Tiekstra, Margriet J; Hazelaar, Sandra; Gkoumassi, Effimia; Weggemans, Margienus; de Wildt-Eggen, Janny

    2015-04-01

    Hematopoietic progenitor cells (HPC) are stored in cryopreservation bags that are resistant to liquid nitrogen. Since Cryocyte bags of Baxter (B-bags) are no longer available, an alternative bag was sought. Also, the influence of freezing volume was studied. Miltenyi Biotec (MB)- and MacoPharma (MP)-bags passed the integrity tests without failure. Comparing MB- and MP-bags with B-bags, no difference in WBC recovery or viability was found when using a WBC-enriched product as a "dummy" HPC product. Further, a freezing volume of 30 mL resulted in better WBC recovery and viability than 60 mL. Additonal studies using real HPC might be necessary. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Book Bag Buddies

    Science.gov (United States)

    Madden, Angie; Townsend, J. Scott; Green, Jennifer

    2011-01-01

    Children love to learn about new topics and share what they have discovered with their teachers, families, and friends. The authors designed the "Book Bag Buddies" project to give their third-grade students a chance to channel their enthusiasm and research from science investigations into writing. In this creative project, students integrated…

  8. BAG1: the guardian of anti-apoptotic proteins in acute myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Sanja Aveic

    Full Text Available BCL2 associated Athano-Gene 1 (BAG1 is a multifunctional protein that has been described to be involved in different cell processes linked to cell survival. It has been reported as deregulated in diverse cancer types. Here, BAG1 protein was found highly expressed in children with acute myeloid leukemia at diagnosis, and in a cohort of leukemic cell lines. A silencing approach was used for determining BAG1's role in AML, finding that its down-regulation decreased expression of BCL2, BCL-XL, MCL1, and phospho-ERK1/2, all proteins able to sustain leukemia, without affecting the pro-apoptotic protein BAX. BAG1 down-regulation was also found to increase expression of BAG3, whose similar activity was able to compensate the loss of function of BAG1. BAG1/BAG3 co-silencing caused an enhanced cell predisposition to death in cell lines and also in primary AML cultures, affecting the same proteins. Cell death was CASPASE-3 dependent, was accompanied by PARP cleavage and documented by an increased release of pro-apoptotic molecules Smac/DIABLO and Cytochrome c. BAG1 was found to directly maintain BCL2 and to protect MCL1 from proteasomal degradation by controlling USP9X expression, which appeared to be its novel target. Finally, BAG1 was found able to affect leukemia cell fate by influencing the expression of anti-apoptotic proteins crucial for AML maintenance.

  9. Charges for plastic bags : Motivational and behavioral effects

    NARCIS (Netherlands)

    Jakovcevic, Adriana; Steg, Linda; Mazzeo, Nadia; Caballero, Romina; Franco, Paul; Putrino, Natalia; Favara, Jesica

    2014-01-01

    Two field studies tested the effects of a charge for single-use plastic bags recently implemented in Buenos Aires City, Argentina. Study 1 showed a greater increase in consumers' own bag use after the charge was introduced in supermarkets where the policy was introduced, in comparison to control

  10. Zero-point energy in bag models

    International Nuclear Information System (INIS)

    Milton, K.A.

    1979-01-01

    The zero-point (Casimir) energy of free vector (gluon) fields confined to a spherical cavity (bag) is computed. With a suitable renormalization the result for eight gluons is E = + 0.51/a. This result is substantially larger than that for a spherical shell (where both interior and exterior modes are present), and so affects Johnson's model of the QCD vacuum. It is also smaller than, and of opposite sign to, the value used in bag model phenomenology, so it will have important implications there. 1 figure

  11. Performance of triple bagging hermetic technology for postharvest storage of cowpea grain in Niger

    KAUST Repository

    Baoua, Ibrahim B.

    2012-10-01

    Triple bagging technology for protecting postharvest cowpea grain from losses to the bruchid, Callosobruchus maculatus Fabricius (Coleoptera: Chrysomelidae: Bruchinae) is currently being adopted on a fairly large scale in ten West and Central African countries, including Niger. The triple bag consists of two inner high-density polyethylene bags acting as oxygen barriers, which in turn are encased in an outer woven polypropylene bag that serves primarily for mechanical strength. These hermetic bags, available in either 50 or 100 kg capacity, are called Purdue Improved Cowpea Storage (PICS) bags. Adoption of PICS technology in West and Central Africa has been driven by its effectiveness, simplicity, low cost, durability, and manufacture within the region. From surveys on adoption we discovered that farmers have begun to re-use bags they had used the previous year or even the previous two years. In the present study, we compared the performance of three different types of PICS bags: (1) new 50 kg (2) new 100 kg bags and (3) once-used 50 kg bags, all filled with naturally infested untreated cowpeas. In these PICS bags the O 2 levels within the bags initially fell to about 3 percent (v/v) while the CO 2 rose to nearly 5 percent (v/v). After five months of storage, new and used 50 kg bags and new 100 kg bags preserved the grain equally well. There were greatly reduced numbers of adults and larvae in the PICS bags versus the controls, which consisted of grain stored in single layer woven bags. The proportion of grain having C. maculatus emergence holes after five months of storage in PICS bags was little changed from that found when the grain was first put into the bags. The PICS technology is practical and useful in Sahelian conditions and can contribute to improved farmers\\' incomes as well as increase availability of high quality, insecticide-free cowpea grain as food. © 2012 Elsevier Ltd.

  12. Bag-breakup control of surface drag in hurricanes

    Science.gov (United States)

    Troitskaya, Yuliya; Zilitinkevich, Sergej; Kandaurov, Alexander; Ermakova, Olga; Kozlov, Dmitry; Sergeev, Daniil

    2016-04-01

    Air-sea interaction at extreme winds is of special interest now in connection with the problem of the sea surface drag reduction at the wind speed exceeding 30-35 m/s. This phenomenon predicted by Emanuel (1995) and confirmed by a number of field (e.g., Powell, et al, 2003) and laboratory (Donelan et al, 2004) experiments still waits its physical explanation. Several papers attributed the drag reduction to spume droplets - spray turning off the crests of breaking waves (e.g., Kudryavtsev, Makin, 2011, Bao, et al, 2011). The fluxes associated with the spray are determined by the rate of droplet production at the surface quantified by the sea spray generation function (SSGF), defined as the number of spray particles of radius r produced from the unit area of water surface in unit time. However, the mechanism of spume droplets' formation is unknown and empirical estimates of SSGF varied over six orders of magnitude; therefore, the production rate of large sea spray droplets is not adequately described and there are significant uncertainties in estimations of exchange processes in hurricanes. Herewith, it is unknown what is air-sea interface and how water is fragmented to spray at hurricane wind. Using high-speed video, we observed mechanisms of production of spume droplets at strong winds by high-speed video filming, investigated statistics and compared their efficiency. Experiments showed, that the generation of the spume droplets near the wave crest is caused by the following events: bursting of submerged bubbles, generation and breakup of "projections" and "bag breakup". Statistical analysis of results of these experiments showed that the main mechanism of spray-generation is attributed to "bag-breakup mechanism", namely, inflating and consequent blowing of short-lived, sail-like pieces of the water-surface film. Using high-speed video, we show that at hurricane winds the main mechanism of spray production is attributed to "bag-breakup", namely, inflating and

  13. BAG3: a new player in the heart failure paradigm.

    Science.gov (United States)

    Knezevic, Tijana; Myers, Valerie D; Gordon, Jennifer; Tilley, Douglas G; Sharp, Thomas E; Wang, JuFang; Khalili, Kamel; Cheung, Joseph Y; Feldman, Arthur M

    2015-07-01

    BAG3 is a cellular protein that is expressed predominantly in skeletal and cardiac muscle but can also be found in the brain and in the peripheral nervous system. BAG3 functions in the cell include: serving as a co-chaperone with members of the heat-shock protein family of proteins to facilitate the removal of misfolded and degraded proteins, inhibiting apoptosis by interacting with Bcl2 and maintaining the structural integrity of the Z-disk in muscle by binding with CapZ. The importance of BAG3 in the homeostasis of myocytes and its role in the development of heart failure was evidenced by the finding that single allelic mutations in BAG3 were associated with familial dilated cardiomyopathy. Furthermore, significant decreases in the level of BAG3 have been found in end-stage failing human heart and in animal models of heart failure including mice with heart failure secondary to trans-aortic banding and in pigs after myocardial infarction. Thus, it becomes relevant to understand the cellular biology and molecular regulation of BAG3 expression in order to design new therapies for the treatment of patients with both hereditary and non-hereditary forms of dilated cardiomyopathy.

  14. Analysis of BAG3 plasma concentrations in patients with acutely decompensated heart failure.

    Science.gov (United States)

    Gandhi, Parul U; Gaggin, Hanna K; Belcher, Arianna M; Harisiades, Jamie E; Basile, Anna; Falco, Antonia; Rosati, Alessandra; Piscione, Federico; Januzzi, James L; Turco, M Caterina

    2015-05-20

    BCL-2-associated athanogene 3 (BAG3) is a protein implicated in the cardiomyocyte stress response and genesis of cardiomyopathy. Extracellular BAG3 is measurable in patients with heart failure (HF), but the relationship of BAG3 with HF prognosis is unclear. BAG3 plasma concentrations were measured in 39 acutely decompensated HF patients; the primary endpoint was death at 1 year. Baseline characteristics were compared by vital status and median BAG3 concentration. Correlation of BAG3 with left ventricular ejection fraction (LVEF) and other biomarkers was performed. Prognostic value was assessed using Cox proportional hazards regression and Kaplan-Meier analysis. At baseline, median BAG3 was significantly higher in decedents (N=11) than survivors (N=28; 1489 ng/mL versus 50 ng/mL; P=0.04); decedents also had worse renal function and higher median natriuretic peptide (NP) and sST2. BAG3 was not significantly correlated with NPs, mid-regional pro-adrenomedullin, sST2, or eGFR, however. Mortality was increased in patients with supra-median BAG3 (>336 ng/mL; 42.1% versus 15.0%, P=0.06). In age and LVEF-adjusted Cox proportional hazards, BAG3 remained a significant mortality predictor (HR=3.20; 95% CI=1.34-7.65; P=0.02); those with supra-median BAG3 had significantly shorter time-to-death (P=0.04). The stress response protein BAG3 is measurable in patients with ADHF and may be prognostic for death. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effect of pre-harvest fruit bagging on post-harvest quality of guava cv. Swarupkathi

    Directory of Open Access Journals (Sweden)

    Md. Mokter Hossain

    2018-04-01

    The investigation was carried out at Germplasm Centre (BAU-GPC, Bangladesh Agricultural University, during March to July 2016 in order to investigate the effect of pre-harvest fruit bagging on post-harvest quality of guava cv. Swarupkathi. Four different bagging materials viz. brown paper bag, white paper bag, white polythene bag, black polythene bag included for the study and uncovered fruits were used as control treatment. The experiment was laid out in randomized complete block design with three replications. Fruit bagging treatments showed significant effects on different parameters studied. It was observed that fruit size, fruit weight, vitamin C concentration, and moisture content increased due to fruit bagging. Fruits were gained maximum in size (6.59 cm length, 5.86 cm diameter and weight (164.26 g under white paper bag followed by white polythene bag (131.3g. The skin color of fruits was very attractive in case of white paper bag than that of other treatments. Total soluble solid concentration of the fruit was found maximum (12.33% Brix under brown paper bag while maximum vitamin C concentration (162.14 mg 100 g-1 was recorded under white paper bag. Uncovered fruits showed maximum total sugar, non-reducing sugar, reducing sugar concentrations (10.13%, 6.05%, 4.08%, respectively.The results revealed that fruit bagging in general, improved the growth and quality of guava fruits as compared to control. Among the various fruit covering materials, white paper bag was found to be the best for overall improvement of physical and chemical quality of guava cv. Swarupkathi. [Fundam Appl Agric 2018; 3(1.000: 363-371

  16. An alternative approach to heavy quark bags

    International Nuclear Information System (INIS)

    Baacke, J.; Kasperidus, G.

    1980-01-01

    We discuss a formulation of quark bags where the quark wave function depends only on the relative coordinate and the bag boundary is fixed with respect to the center of mass of the quark system. For technical reasons we have to restrict ourselves to a heavy quark-antiquark system in an s-wave with spherical boundary. A phenomenological application to quarkonium states encourages further investigation of the approach. (orig.)

  17. Wave energy absorption by a submerged air bag connected to a rigid float

    DEFF Research Database (Denmark)

    Kurniawan, Adi; Chaplin, J. R.; Hann, M. R.

    2017-01-01

    A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are gene......A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements...

  18. Modern status of quark bag model

    International Nuclear Information System (INIS)

    Bogolyubov, P.N.; Dorokhov, A.E.

    1987-01-01

    A review contains a modern status of the bag model - a composite quark model of hadrons. The idea of quasi-independent quarks moving in a finite closed region of space is a basic feature of the model. Dubna's formulation of the model and its different versions (MIT, chiral model and others) are given in detail. The role of symmetric and physical principles of the model is underlined, a critical review of mass formulas is given, the relation of the bag model and the soliton-like models (in particular with the Skyrme model) is considered

  19. Hydrogel/poly-dimethylsiloxane hybrid bioreactor facilitating 3D cell culturing

    NARCIS (Netherlands)

    Schurink, B.; Luttge, R.

    2013-01-01

    The authors present a hydrogel/poly-dimethylsiloxane (PDMS) hybrid bioreactor. The bioreactor enables a low shear stress 3D culture by integrating a hydrogel as a barrier into a PDMS casing. The use of PDMS allows the reversible adhesion of the device to a commercially available microelectrode

  20. Comparison of bacterial attachment to platelet bags with and without preconditioning with plasma.

    Science.gov (United States)

    Loza-Correa, M; Kalab, M; Yi, Q-L; Eltringham-Smith, L J; Sheffield, W P; Ramirez-Arcos, S

    2017-07-01

    Canadian Blood Services produces apheresis and buffy coat pooled platelet concentrates (PCs) stored in bags produced by two different manufacturers (A and B, respectively), both made of polyvinyl chloride-butyryl trihexyl citrate. This study was aimed at comparing Staphylococcus epidermidis adhesion to the inner surface of both bag types in the presence or absence of plasma factors. Sets (N = 2-6) of bags type A and B were left non-coated (control) or preconditioned with platelet-rich, platelet-poor or defibrinated plasma (PRP, PPP and DefibPPP, respectively). Each bag was inoculated with a 200-ml S. epidermidis culture adjusted to 0·5 colony-forming units/ml. Bags were incubated under platelet storage conditions for 7 days. After culture removal, bacteria attached to the plastic surface were either dislodged by sonication for bacterial quantification or examined in situ by scanning electron microscopy (SEM). Higher bacterial adhesion was observed to preconditioned PC bags than control containers for both bag types (P bags was confirmed by SEM. Bacteria adhered equally to both types of containers in the presence of PRP, PPP and DefibPPP residues (P > 0·05). By contrast, a significant increase in bacterial adherence was observed to type A bags compared with type B bags in the absence of plasma (P bags depends on the presence of plasma factors. Future efforts should be focused on reducing plasma proteins' attachment to platelet storage containers to decrease subsequent bacterial adhesion. © 2017 International Society of Blood Transfusion.

  1. Stability of odorants from pig production in sampling bags for olfactometry.

    Science.gov (United States)

    Hansen, Michael J; Adamsen, Anders P S; Feilberg, Anders; Jonassen, Kristoffer E N

    2011-01-01

    Odor from pig production facilities is typically measured with olfactometry, whereby odor samples are collected in sampling bags and assessed by human panelists within 30 h. In the present study, the storage stability of odorants in two types of sampling bags that are often used for olfactometry was investigated. The bags were made of Tedlar or Nalophan. In a field experiment, humid and dried air samples were collected from a pig production facility with growing-finishing pigs and analyzed with a gas chromatograph with an amperometric sulfur detector at 4, 8, 12, 28, 52, and 76 h after sampling. In a laboratory experiment, the bags were filled with a humid gas mixture containing carboxylic acids, phenols, indoles, and sulfur compounds and analyzed with proton-transfer-reaction mass spectrometry after 0, 4, 8, 12, and 24 h. The results demonstrated that the concentrations of carboxylic acids, phenols, and indoles decreased by 50 to >99% during the 24 h of storage in Tedlar and Nalophan bags. The concentration of hydrogen sulfide decreased by approximately 30% during the 24 h of storage in Nalophan bags, whereas in Tedlar bags the concentration of sulfur compounds decreased by bags, and the composition changes toward a higher relative presence of sulfur compounds. This can result in underestimation of odor emissions from pig production facilities and of the effect of odor reduction technologies. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. In vitro digestibility of lucerne hay using bag method

    Directory of Open Access Journals (Sweden)

    constantin gavan

    2013-10-01

    Full Text Available A filter bag method was used for estimating apparent dry matter (DM digestibility, apparent digestible organic matter in DM, true DM digestibility, true digestible organic matter in DM and Digestibility of neutral detergent fibre. The forage sample analysed comprised tree plant parts (whole, leaf and stem of alfalfa (Medicago sativa, one degree of particle breakdown (1 mm sieve size at miliing and two field replicates at Agricultural Research and Developement Station (ARDS Șimnic-Craiova. Rumen fluid was used from two cannulated dairy cows. The use of filter bags can give acceptable results for the in vitro digestibility of forages. The escape of soluble matter from bags with samples high in solubles could influence the microbial population and hence increase cell wall degradation in bags with samples low in soluble matter, if  all are in the same incubation vessel.

  3. Development of a new bioprocess scheme using frozen seed train intermediates to initiate CHO cell culture manufacturing campaigns.

    Science.gov (United States)

    Seth, Gargi; Hamilton, Robert W; Stapp, Thomas R; Zheng, Lisa; Meier, Angela; Petty, Krista; Leung, Stephenie; Chary, Srikanth

    2013-05-01

    Agility to schedule and execute cell culture manufacturing campaigns quickly in a multi-product facility will play a key role in meeting the growing demand for therapeutic proteins. In an effort to shorten campaign timelines, maximize plant flexibility and resource utilization, we investigated the initiation of cell culture manufacturing campaigns using CHO cells cryopreserved in large volume bags in place of the seed train process flows that are conventionally used in cell culture manufacturing. This approach, termed FASTEC (Frozen Accelerated Seed Train for Execution of a Campaign), involves cultivating cells to high density in a perfusion bioreactor, and cryopreserving cells in multiple disposable bags. Each run for a manufacturing campaign would then come from a thaw of one or more of these cryopreserved bags. This article reviews the development and optimization of individual steps of the FASTEC bioprocess scheme: scaling up cells to greater than 70 × 10(6) cells/mL and freezing in bags with an optimized controlled rate freezing protocol and using a customized rack configuration. Flow cytometry analysis was also employed to understand the recovery of CHO cells following cryopreservation. Extensive development data were gathered to ensure that the quantity and quality of the drug manufactured using the FASTEC bioprocess scheme was acceptable compared to the conventional seed train process flow. The result of offering comparable manufacturing options offers flexibility to the cell culture manufacturing network. Copyright © 2012 Wiley Periodicals, Inc.

  4. Hospital discharge bags and breastfeeding at 6 months: data from the infant feeding practices study II.

    Science.gov (United States)

    Sadacharan, Radha; Grossman, Xena; Matlak, Stephanie; Merewood, Anne

    2014-02-01

    Distribution of industry-sponsored formula sample packs to new mothers undermines breastfeeding. Using data from the Infant Feeding Practices Study II (IFPS II), we aimed to determine whether receipt of 4 different types of bags was associated with exclusive breastfeeding during the first 6 months of life. We extracted data from IFPS II questionnaires. Type of discharge bag received was categorized as "formula bag," "coupon bag," "breastfeeding supplies bag," or "no bag". We examined exclusive breastfeeding status at 10 weeks (post hoc) and at 6 months using univariate descriptive analyses and multivariate logistic regression models, controlling for sociodemographic and attitudinal variables. Overall, 1868 (81.4%) of women received formula bags, 96 (4.2%) received coupon bags, 46 (2.0%) received breastfeeding supplies bags, and 284 (12.4%) received no bag. By 10 weeks, recipients of breastfeeding supplies bags or no bag were significantly more likely to be exclusively breastfeeding than formula bag recipients. In the adjusted model, compared to formula bag/coupon bag recipients, recipients of breastfeeding supplies bag/no bag were significantly more likely to breastfeed exclusively for 6 months (odds ratio = 1.58; 95% confidence interval, 1.06-2.36). The vast majority of new mothers received formula sample packs at discharge, and this was associated with reduced exclusive breastfeeding at 10 weeks and 6 months. Bags containing breastfeeding supplies or no bag at all were positively associated with exclusive breastfeeding at 10 weeks and 6 months.

  5. Green Purchasing Behavior Analysis of Government Policy About Paid Plastic Bags

    Directory of Open Access Journals (Sweden)

    Muhammad Khoiruman

    2017-06-01

    Full Text Available This research will be conducted to know: 1 The influence of green perceived value to consumer green trust to use plastic bag after the policy of using plastic bag paid at modern retail store in Surakarta. 2 The influence of green perceived risk to consumer green trust to use plastic bag after the policy of using plastic bag paid at modern retail store in Surakarta. 3 The effect of green trust on green purchase behavior of consumers to use plastic bags after the policy of using plastic bag paid at modern retail store in Surakarta. The study was conducted in modern retail stores (Alfamart, Indomart and Superindo in Surakarta using 200 respondents who shop at the modern retail store. A model that can be used to measure green purchasing behavior in the use of paid plastic bags using four interrelated variables: green perceived value, green perceived risk, green trust and green purchasing. Data analysis using Structural Equation Model (SEM. The result of analysis and discussion showed that green perceived value have positive and significant effect to green trust, green trust has positive effect on green purchasing, but green perceived risk has no significant effect to green trust.

  6. Testing odorants recovery from a novel metallized fluorinated ethylene propylene gas sampling bag.

    Science.gov (United States)

    Zhu, Wenda; Koziel, Jacek A; Cai, Lingshuang; Wright, Donald; Kuhrt, Fred

    2015-12-01

    Industry-standard Tedlar bags for odor sample collection from confined animal feeding operations (CAFOs) have been challenged by the evidence of volatile organic compound (VOC) losses and background interferences. Novel impermeable aluminum foil with a thin layer of fluorinated ethylene propylene (FEP) film on the surface that is in contact with a gas sample was developed to address this challenge. In this research, Tedlar and metallized FEP bags were compared for (a) recoveries of four characteristic CAFO odorous VOCs (ethyl mercaptan, butyric acid, isovaleric acid and p-cresol) after 30 min and 24 hr sample storage time and for (b) chemical background interferences. All air sampling and analyses were performed with solid-phase microextraction (SPME) followed by gas chromatography-mass spectroscopy (GC-MS). Mean target gas sample recoveries from metallized FEP bags were 25.9% and 28.0% higher than those in Tedlar bags, for 30 min and 24 hr, respectively. Metallized FEP bags demonstrated the highest p-cresol recoveries after 30-min and 24-hr storage, 96.1±44.5% and 44.8±10.2%, respectively, among different types of sampling bags reported in previous studies. However, a higher variability was observed for p-cresol recovery with metallized FEP bags. A 0% recovery of ethyl mercaptan was observed with Tedlar bags after 24-hr storage, whereas an 85.7±7.4% recovery was achieved with metallized FEP bags. Recoveries of butyric and isovaleric acids were similar for both bag types. Two major impurities in Tedlar bags' background were identified as N,N-dimethylacetamide and phenol, while backgrounds of metallized FEP bags were significantly cleaner. Reusability of metallized FEP bags was tested. Caution is advised when using polymeric materials for storage of livestock-relevant odorous volatile organic compounds. The odorants loss with storage time confirmed that long-term storage in whole-air form is ill advised. A focused short-term odor sample containment should be

  7. Design-A-Bag Competition 2012

    Index Scriptorium Estoniae

    2012-01-01

    Eesti Kunstiakadeemia nahakunsti osakonna tudengid Kadri Paloveer, Inga Radikainen ja Mari Maripuu pälvisid Hong-Kongis korraldataval "DESIGN-A-BAG 2012" konkursil tihedas rahvusvahelises konkurentsis mitmeid preemiaid

  8. Overexpression of BAG3 Attenuates Hypoxia-Induced Cardiomyocyte Apoptosis by Inducing Autophagy

    Directory of Open Access Journals (Sweden)

    Jiankai Zhang

    2016-07-01

    Full Text Available Background: Hypoxia is a well-known factor in the promotion of apoptosis, which contributes to the development of numerous cardiac diseases, such as heart failure and myocardial infarction. Inhibiting apoptosis is an important therapeutic strategy for the treatment of related heart diseases caused by ischemia/hypoxic injury. Previous studies have demonstrated that BAG3 plays an important role in cardiomyocyte apoptosis and survival. However, the role of BAG3 in hypoxia-induced cardiomyocyte apoptosis remains to be clarified. Here, we demonstrate that BAG3 is induced by hypoxia stimuli in cultured cardiomyocytes. Methods: BAG3 expression level was measured in H9c2 cells treated with hypoxia for 48 h. Cell proliferation and apoptosis were tested using MTT assay and Annexin V FITC-PI staining assay, respectively. The mRNA or protein expression level of BAG3, LC3-I, LC3-II, Atg5, NF-κB p65 and phosphorylated NF-κB p65 were assessed by qRT-PCR and western blot assay, respectively. Resluts: Overexpression of BAG3 inhibited cell apoptosis and promoted proliferation in hypoxia-injured H9c2 cells. Furthermore, autophagy and NF-κB were activated by BAG3 overexpression, and the NF-κB inhibitor PDTC could inhibit the activation of autophagy induced by BAG3 overexpression. In addition, the autophagy inhibitor 3-MA partly impeded the inhibitory effect of BAG3 on hypoxia-induced cardiomyocyte apoptosis. Conclusion: these results suggested that overexpression of BAG3 promoted cell proliferation and inhibited apoptosis by activating autophagy though the NF-κB signaling pathway in hypoxia-injured cardiomyocytes.

  9. BAG3 regulates cell proliferation, migration, and invasion in human colorectal cancer.

    Science.gov (United States)

    Shi, Huiyong; Xu, Haidong; Li, Zengjun; Zhen, Yanan; Wang, Bin; Huo, Shoujun; Xiao, Ruixue; Xu, Zhongfa

    2016-04-01

    Bcl2-associated athanogene 3 (BAG3) has been reported to be elevated in various tumors. However, it is unclear whether BAG3 has a functional role in the initiation and progression of colorectal cancer (CRC). Here, we collected CRC samples and cell lines to validate the pathway by using gene and protein assays. RT-PCR showed that the expression of BAG3 mRNA in CRC tissues was obviously higher than that in non-tumor tissues (p BAG3 was found in most CRC tissues and strongly correlated with TNM stage (p = 0.001), differentiation (p = 0.003), and metastasis (p = 0.010). Low expression of BAG3 in HCT-8 significantly reduced cellular proliferation, migration, and invasion. The analysis of in vitro cell showed that HCT-8 cells were exposed to si-BAG3, and its growth was inhibited depending on modulation of cell cycle G1/S checkpoints and cell cycle regulators, involving cyclin D1, cyclin A2, and cyclin B1. Furthermore, suppression of the epithelial-mesenchymal transition (EMT) by si-BAG3 is linked to the decreased expression of E-cadherin and the increased expression of N-cadherin, vimentin, and MMP9. In conclusion, in the present study, we demonstrated that BAG3 overexpression plays a critical role in cell proliferation, migration, and invasion of colorectal cancer. Our data suggests targeted inhibition of BAG3 may be useful for patients with CRC.

  10. Review of nonconventional bioreactor technology

    Energy Technology Data Exchange (ETDEWEB)

    Turick, C.E.; Mcllwain, M.E.

    1993-09-01

    Biotechnology will significantly affect many industrial sectors in the future. Industrial sectors that will be affected include pharmaceutical, chemical, fuel, agricultural, and environmental remediation. Future research is needed to improve bioprocessing efficiency and cost-effectiveness in order to compete with traditional technologies. This report describes recent advances in bioprocess technologies and bioreactor designs and relates them to problems encountered in many industrial bioprocessing operations. The primary focus is directed towards increasing gas and vapor transfer for enhanced bioprocess kinetics as well as unproved by-product separation and removal. The advantages and disadvantages of various conceptual designs such as hollow-fiber, gas-phase, hyperbaric/hypobaric, and electrochemical bioreactors are also discussed. Specific applications that are intended for improved bioprocesses include coal desulfurization, coal liquefaction, soil bioremediation, biomass conversion to marketable chemicals, biomining, and biohydrometallurgy as well as bioprocessing of gases and vapors.

  11. The Role of Bioreactors in Ligament and Tendon Tissue Engineering.

    Science.gov (United States)

    Mace, James; Wheelton, Andy; Khan, Wasim S; Anand, Sanj

    2016-01-01

    Bioreactors are pivotal to the emerging field of tissue engineering. The formation of neotissue from pluripotent cell lineages potentially offers a source of tissue for clinical use without the significant donor site morbidity associated with many contemporary surgical reconstructive procedures. Modern bioreactor design is becoming increasingly complex to provide a both an expandable source of readily available pluripotent cells and to facilitate their controlled differentiation into a clinically applicable ligament or tendon like neotissue. This review presents the need for such a method, challenges in the processes to engineer neotissue and the current designs and results of modern bioreactors in the pursuit of engineered tendon and ligament.

  12. Development of Spray on Bag for manufacturing of large composites parts: Diffusivity analysis

    Science.gov (United States)

    Dempah, Maxime Joseph

    Bagging materials are utilized in many composites manufacturing processes. The selection is mainly driven by cost, temperature requirements, chemical compatibility and tear properties of the bag. The air barrier properties of the bag are assumed to be adequate or in many cases are not considered at all. However, the gas barrier property of a bag is the most critical parameter, as it can negatively affect the quality of the final laminate. The barrier property is a function of the bag material, uniformity, thickness and temperature. Improved barrier properties are needed for large parts, high pressure consolidated components and structures where air stays entrapped on the part surface. The air resistance property of the film is defined as permeability and is investigated in this thesis. A model was developed to evaluate the gas transport through the film and an experimental cell was implemented to characterize various commercial films. Understanding and characterizing the transport phenomena through the film allows optimization of the bagging material for various manufacturing processes. Spray-on-Bag is a scalable alternative bagging method compared to standard films. The approach allows in-situ fabrication of the bag on large and complex geometry structures where optimization of the bag properties can be varied on a local level. An experimental setup was developed and implemented using a six axis robot and an automated spraying system. Experiments were performed on a flat surface and specimens were characterized and compared to conventional films. Air barrier properties were within range of standard film approaches showing the potential to fabricate net shape bagging structures in an automated process.

  13. Lipid globule size in total nutrient admixtures prepared in three-chamber plastic bags.

    Science.gov (United States)

    Driscoll, David F; Thoma, Andrea; Franke, Rolf; Klütsch, Karsten; Nehne, Jörg; Bistrian, Bruce R

    2009-04-01

    The stability of injectable lipid emulsions in three-chamber plastic (3CP) bags, applying the globule-size limits established by United States Pharmacopeia ( USP ) chapter 729, was studied. A total of five premixed total nutrient admixture (TNA) products packaged in 3CP bags from two different lipid manufacturers containing either 20% soybean oil or a mixture of soybean oil and medium-chain-triglyceride oil as injectable lipid emulsions were tested. Two low-osmolarity 3CP bags and three high-osmolarity 3CP bags were studied. All products were tested with the addition of trace elements and multivitamins. All additive conditions (with and without electrolytes) were tested in triplicate at time 0 (immediately after mixing) and at 6, 24, 30, and 48 hours after mixing; the bags were stored at 24-26 degrees C. All additives were equally distributed in each bag for comparative testing, applying both globule sizing methods outlined in USP chapter 729. Of the bags tested, all bags from one manufacturer were coarse emulsions, showing signs of significant growth in the large-diameter tail when mixed as a TNA formulation and failing the limits set by method II of USP chapter 729 from the outset and throughout the study, while the bags from the other manufacturer were fine emulsions and met these limits. Of the bags that failed, significant instability was noted in one series containing additional electrolytes. Injectable lipid emulsions provided in 3CP bags that did not meet the globule-size limits of USP chapter 729 produced coarser TNA formulations than emulsions that met the USP limits.

  14. WW domain of BAG3 is required for the induction of autophagy in glioma cells.

    Science.gov (United States)

    Merabova, Nana; Sariyer, Ilker Kudret; Saribas, A Sami; Knezevic, Tijana; Gordon, Jennifer; Turco, M Caterina; Rosati, Alessandra; Weaver, Michael; Landry, Jacques; Khalili, Kamel

    2015-04-01

    Autophagy is an evolutionarily conserved, selective degradation pathway of cellular components that is important for cell homeostasis under healthy and pathologic conditions. Here we demonstrate that an increase in the level of BAG3 results in stimulation of autophagy in glioblastoma cells. BAG3 is a member of a co-chaperone family of proteins that associates with Hsp70 through a conserved BAG domain positioned near the C-terminus of the protein. Expression of BAG3 is induced by a variety of environmental changes that cause stress to cells. Our results show that BAG3 overexpression induces autophagy in glioma cells. Interestingly, inhibition of the proteasome caused an increase in BAG3 levels and induced autophagy. Further analysis using specific siRNA against BAG3 suggests that autophagic activation due to proteosomal inhibition is mediated by BAG3. Analyses of BAG3 domain mutants suggest that the WW domain of BAG3 is crucial for the induction of autophagy. BAG3 overexpression also increased the interaction between Bcl2 and Beclin-1, instead of disrupting them, suggesting that BAG3 induced autophagy is Beclin-1 independent. These observations reveal a novel role for the WW domain of BAG3 in the regulation of autophagy. © 2014 Wiley Periodicals, Inc.

  15. Treating domestic sewage by Integrated Inclined-Plate-Membrane bio-reactor

    Science.gov (United States)

    Song, Li Ming; Wang, Zi; Chen, Lei; Zhong, Min; Dong, Zhan Feng

    2017-12-01

    Membrane fouling shorten the service life of the membrane and increases aeration rate for membrane surface cleaning. Two membrane bio-reactors, one for working and another for comparing, were set up to evaluate the feasibility of alleviating membrane fouling and improving wastewater treatment efficiency by integrating inclined-plate precipitation and membrane separation. The result show that: (1) Inclined-plate in reactor had a good effect on pollutant removal of membrane bioreactor. The main role of inclined-plate is dividing reactor space and accelerating precipitation. (2) Working reactor have better performance in COD, TN and TP removal, which can attribute to that working reactor (integrated inclined-plate-Membrane bioreactor) takes both advantages of membrane separation and biological treatment. When influent COD, TP and TN concentration is 163-248 mg/L, 2.08-2.81 mg/L and 24.38-30.49 mg/L in working reactor, effluent concentration is 27-35 mg/L, 0.53-0.59 mg/L and 11.28-11.56 mg/L, respectively. (3) Membrane fouling was well alleviated in integrated inclined-plate-Membrane bioreactor, and membrane normal service time is significantly longer than that in comparing reactor, which can attribute to accelerating precipitation of inclined-plate. In summary, integrated inclined-plate-Membrane bioreactor is a promising technology to alleviating membrane fouling and improving wastewater treatment efficiency, having good performance and bright future in application.

  16. BAG3 facilitates the clearance of endogenous tau in primary neurons.

    Science.gov (United States)

    Lei, Zhinian; Brizzee, Corey; Johnson, Gail V W

    2015-01-01

    Tau is a microtubule associated protein that is found primarily in neurons, and in pathologic conditions, such as Alzheimer's disease (AD) it accumulates and contributes to the disease process. Because tau plays a fundamental role in the pathogenesis of AD and other tauopathies, and in AD mouse models reducing tau levels improves outcomes, approaches that facilitate tau clearance are being considered as therapeutic strategies. However, fundamental to the development of such interventions is a clearer understanding of the mechanisms that regulate tau clearance. Here, we report a novel mechanism of tau degradation mediated by the co-chaperone BAG3. BAG3 has been shown to be an essential component of a complex that targets substrates to the autophagy pathway for degradation. In rat primary neurons, activation of autophagy by inhibition of proteasome activity or treatment with trehalose resulted in significant decreases in tau and phospho-tau levels. These treatments also induced an upregulation of BAG3. Proteasome inhibition activated JNK, which was responsible for the upregulation of BAG3 and increased tau clearance. Inhibiting JNK or knocking down BAG3 blocked the proteasome inhibition-induced decreases in tau. Further, BAG3 overexpression alone resulted in significant decreases in tau and phospho-tau levels in neurons. These results indicate that BAG3 plays a critical role in regulating the levels of tau in neurons, and interventions that increase BAG3 levels could provide a therapeutic approach in the treatment of AD. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Nano-ceramic composite scaffolds for bioreactor-based bone engineering.

    Science.gov (United States)

    Lv, Qing; Deng, Meng; Ulery, Bret D; Nair, Lakshmi S; Laurencin, Cato T

    2013-08-01

    Composites of biodegradable polymers and bioactive ceramics are candidates for tissue-engineered scaffolds that closely match the properties of bone. We previously developed a porous, three-dimensional poly (D,L-lactide-co-glycolide) (PLAGA)/nanohydroxyapatite (n-HA) scaffold as a potential bone tissue engineering matrix suitable for high-aspect ratio vessel (HARV) bioreactor applications. However, the physical and cellular properties of this scaffold are unknown. The present study aims to evaluate the effect of n-HA in modulating PLAGA scaffold properties and human mesenchymal stem cell (HMSC) responses in a HARV bioreactor. By comparing PLAGA/n-HA and PLAGA scaffolds, we asked whether incorporation of n-HA (1) accelerates scaffold degradation and compromises mechanical integrity; (2) promotes HMSC proliferation and differentiation; and (3) enhances HMSC mineralization when cultured in HARV bioreactors. PLAGA/n-HA scaffolds (total number = 48) were loaded into HARV bioreactors for 6 weeks and monitored for mass, molecular weight, mechanical, and morphological changes. HMSCs were seeded on PLAGA/n-HA scaffolds (total number = 38) and cultured in HARV bioreactors for 28 days. Cell migration, proliferation, osteogenic differentiation, and mineralization were characterized at four selected time points. The same amount of PLAGA scaffolds were used as controls. The incorporation of n-HA did not alter the scaffold degradation pattern. PLAGA/n-HA scaffolds maintained their mechanical integrity throughout the 6 weeks in the dynamic culture environment. HMSCs seeded on PLAGA/n-HA scaffolds showed elevated proliferation, expression of osteogenic phenotypic markers, and mineral deposition as compared with cells seeded on PLAGA scaffolds. HMSCs migrated into the scaffold center with nearly uniform cell and extracellular matrix distribution in the scaffold interior. The combination of PLAGA/n-HA scaffolds with HMSCs in HARV bioreactors may allow for the generation of engineered

  18. Filtration characteristics in membrane bioreactors

    NARCIS (Netherlands)

    Evenblij, H.

    2006-01-01

    Causes of and remedies for membrane fouling in Membrane Bioreactors for wastewater treatment are only poorly understood and described in scientific literature. A Filtration Characterisation Installation and a measurement protocol were developed with the aim of a) unequivocally determination and

  19. [Evaluation of Storage Performance of Preserving Bags for Manually Separated Platelets].

    Science.gov (United States)

    Liu, Min-Xia; Duan, Lan; Wang, Jie-Xi; Wang, Yan; Zhuo, Hai-Long; Cai, Li-Na; Yi, Xiao-Yang; Zhou, Jian-Wei; Ang, Jian-Wei; Han, Ying

    2015-08-01

    To evaluate the storage performance of the domestically made platelet storage bags (experimental group) and the United States Trima set platelet storage bags (control group). The manually separated platelets were divided in two equal parts, which was added to control blood bags and experimental blood bags respectively, all samples were stored at a 22 °C ± 2 °C. The platelet count, mean volume, aggregation activity (ADP, THR), pH, glucose, lactate concentration, lactate dehydrogenase concentration, hypotonic shock reaction, CD62P and phosphatidic acid serine content were detected at day 0, 3, 5 and 7 of storage. There was no significant difference of platelet quality at day 5 after storage between the experimental group and the control group (T-test, P > 0.05). Two kinds of platelet storage bags have the similar storage performance.

  20. Dimerization Products of Chloroprene are Background Contaminants Emitted from ALTEF (Polyvinylidene Difluoride) Gas Sampling Bags.

    Science.gov (United States)

    Kwak, Jae; Fan, Maomian; Martin, Jennifer A; Ott, Darrin K; Grigsby, Claude C

    2017-01-01

    Gas sampling bags have been used for collecting air samples. Tedlar bags are most commonly used, but bleed background chemicals such as N,N-dimethylacetamide and phenol. It is often necessary to remove the contaminant by flushing the bags with pure nitrogen or air. In this study, we identified four chloroprene dimerization products as background contaminants emitted from ALTEF bags that are made of a proprietary polyvinylidene difluoride (PVDF). No monomer chloroprene was detected in the bags analyzed. All of the dimers gradually increased once bags were filled with nitrogen due to diffusion from the bag surface. Flushing the bags with nitrogen reduced their concentrations, but was not effective for removing the contaminants. When the bags that had been flushed with nitrogen 5 times were left for 24 h, they increased again, indicating that the dimers were constantly emitted from the ALTEF bag surface. To our knowledge, these compounds have never been demonstrated in ALTEF or other PVDF bags. Our finding indicates that ALTEF might be incorporated with Neoprene (chloroprene-based polymer) during its manufacturing process.

  1. The Welsh Single-Use Carrier Bag Charge and behavioural spillover

    OpenAIRE

    Thomas, Gregory O.; Poortinga, Wouter; Sautkina, Elena

    2016-01-01

    A Single-Use Carrier Bag Charge (SUCBC) requires bags to be sold for a small fee, instead of free of charge. SUCBCs may produce ‘spillover’ effects, where other pro-environmental attitudes and behaviours could increase or decrease. We investigate the 2011 Welsh SUCBC, and whether spillover occurs in other behaviours and attitudes. Using the Understanding Society Survey (n = 17,636), results show that use of own shopping bags increased in Wales, compared to England and Scotland. Increased use ...

  2. Promoting fertilizer use via controlled release of a bacteria-encapsulated film bag.

    Science.gov (United States)

    Wu, Chin-San

    2010-05-26

    A phosphate-solubilizing bacterium ( Burkholderia cepacia isolate) encapsulated in maleic anhydride (MA) grafted onto poly(butylene succinate adipate) (PBSA) and then combined with starch as film bag material (PBSA-g-MA/starch) incubated in a saline solution required approximately 20 days to deplete the starch in the film bags. Thereafter, the cell concentration in the saline solution increased significantly because of the release of cells from the severely destroyed film bags and also their growth by use of depolymerized PBSA-g-MA fragments as a substrate. The incubation proceeded for 60 days, by which time the PBSA-g-MA/starch composite had suffered a >80% weight loss. For practical application, effectiveness of the above-mentioned film bags was demonstrated because it could improve the absorbability of a fertilizer for plants and promote the growth of plants. As a result, it can avoid the accumulation of the phosphate in excess fertilizer that lead to the phenomenon of poor soils. These results demonstrate that PBSA-g-MA/starch can be used to encapsulate cells of an indigenous phosphate-solubilizing bacterium ( B. cepacia isolate) to form a controlled release of bacteria-encapsulated film bag (BEFB). The B. cepacia isolate was able to degrade the film bags material, causing cell release. Biodegradability of the film bags depended upon the type of material used, because the PBSA film bags were also degraded but to a lesser degree. The addition of starch made the film bags more biodegradable. The decrease in intrinsic viscosity was also higher for the starch composite, suggesting a strong connection between the biodegradability and these characteristics. The results suggest that the release of fertilizer-promoted bacteria might be controllable via a suitable film bag material formulation. In addition, this work adopted live bacteria to promote the absorption of phosphate, which is superior to the phosphate used in the traditional way.

  3. Overexpression of BAG3 Attenuates Hypoxia-Induced Cardiomyocyte Apoptosis by Inducing Autophagy.

    Science.gov (United States)

    Zhang, Jiankai; He, Zhangyou; Xiao, Wenjian; Na, Qingqing; Wu, Tianxiu; Su, Kaixin; Cui, Xiaojun

    2016-01-01

    Hypoxia is a well-known factor in the promotion of apoptosis, which contributes to the development of numerous cardiac diseases, such as heart failure and myocardial infarction. Inhibiting apoptosis is an important therapeutic strategy for the treatment of related heart diseases caused by ischemia/hypoxic injury. Previous studies have demonstrated that BAG3 plays an important role in cardiomyocyte apoptosis and survival. However, the role of BAG3 in hypoxia-induced cardiomyocyte apoptosis remains to be clarified. Here, we demonstrate that BAG3 is induced by hypoxia stimuli in cultured cardiomyocytes. BAG3 expression level was measured in H9c2 cells treated with hypoxia for 48 h. Cell proliferation and apoptosis were tested using MTT assay and Annexin V FITC-PI staining assay, respectively. The mRNA or protein expression level of BAG3, LC3-I, LC3-II, Atg5, NF-x03BA;B p65 and phosphorylated NF-x03BA;B p65 were assessed by qRT-PCR and western blot assay, respectively. Resluts: Overexpression of BAG3 inhibited cell apoptosis and promoted proliferation in hypoxia-injured H9c2 cells. Furthermore, autophagy and NF-x03BA;B were activated by BAG3 overexpression, and the NF-x03BA;B inhibitor PDTC could inhibit the activation of autophagy induced by BAG3 overexpression. In addition, the autophagy inhibitor 3-MA partly impeded the inhibitory effect of BAG3 on hypoxia-induced cardiomyocyte apoptosis. these results suggested that overexpression of BAG3 promoted cell proliferation and inhibited apoptosis by activating autophagy though the NF-x03BA;B signaling pathway in hypoxia-injured cardiomyocytes. © 2016 The Author(s) Published by S. Karger AG, Basel.

  4. Forecasting the settlement of a bioreactor landfill based on gas pressure changes.

    Science.gov (United States)

    Qiu, Gang; Li, Liang; Sun, Hongjun

    2013-10-01

    In order to study the influence of settlement under gas pressure in bioreactor landfill, the landfill is simplified as a one-way gas seepage field, combining Darcy's Law, the gas equation of state, and the principle of effective stress and fluid dynamics of porous media theory. First assume that the bioreactor landfill leachate is fully recharged on the basis of gas mass conservation, then according to the changes in gas pressure (inside the landfill and surrounding atmosphere) during the gas leakage time and settlement in the landfill, establish a numerical model of bioreactor landfill settlement under the action of the gas pressure, and use the finite difference method to solve it. Through a case study, the model's improved prediction of the settlement of bioreactor landfill is demonstrated.

  5. Optimal Homogenization of Perfusion Flows in Microfluidic Bio-Reactors: A Numerical Study

    DEFF Research Database (Denmark)

    Okkels, Fridolin; Dufva, Martin; Bruus, Henrik

    2011-01-01

    In recent years, the interest in small-scale bio-reactors has increased dramatically. To ensure homogeneous conditions within the complete area of perfused microfluidic bio-reactors, we develop a general design of a continually feed bio-reactor with uniform perfusion flow. This is achieved...... by introducing a specific type of perfusion inlet to the reaction area. The geometry of these inlets are found using the methods of topology optimization and shape optimization. The results are compared with two different analytic models, from which a general parametric description of the design is obtained...... and tested numerically. Such a parametric description will generally be beneficial for the design of a broad range of microfluidic bioreactors used for, e. g., cell culturing and analysis and in feeding bio-arrays....

  6. Flight Bags as a Cause of Back Injuries Among Commercial Pilots.

    Science.gov (United States)

    Kanumuri, Vamsi S R; Zautke, John L; Dorevitch, Samuel

    2015-06-01

    Pilots of fixed wing commercial aircraft face numerous occupational hazards. Low back pain is among the most common and costly workplace injury, though relatively little is known about causes of back injuries among pilots. The awkward lifting and twisting maneuvers in the flight deck to position flight bags has not been described as a cause of occupational back injury among pilots. A case series of low back injuries among pilots was identified and described by a retrospective review of charts at an airport-based clinic. Circumstances of occupational back injury, initial direct medical costs, treatment, and work status following evaluation were described. Over a 6-yr period, 37 occupational low back injuries among 35 pilots were evaluated and treated. Of these, 24 (65%) involved flight bags. Only 27% of pilots with flight bag-associated injuries were returned to work after initial evaluation; medications with sedating properties were frequently required for treatment. Injuries due to slips, trips, and falls, typically in jet bridges or associated with hotel shuttles, were common among pilots with back injuries not related to flight bags. The majority of occupational low back injuries seen among pilots in an airport based clinic were attributable to use of flight bags. Substituting electronic flight bags for traditional flight bags could contribute to back injury prevention among pilots.

  7. A validation study of new cryopreservation bags for implementation in a blood and marrow transplant laboratory.

    Science.gov (United States)

    Pomper, Gregory J; Wilson, Emily; Isom, Scott; Hurd, David D

    2011-06-01

    A new cryopreservation bag for hematopoietic cell transplantation requires validation as a safe alternative to the bag currently being used in the laboratory. The new bag was validated using both laboratory and clinical criteria. Laboratory validation proceeded using paired samples of mononuclear cells processed using standard procedures. Cells cryopreserved in the new and old bags were compared for viability, cell counts, CD34 enumeration, colony-forming unit assays, and bag integrity. After completion of laboratory investigations, engraftment with the new bags was followed and compared to historical engraftment using the old bags. There were no significant differences between the old and new bags detected using laboratory studies. Bag integrity was equivalent. The validation data suggested impaired cell function after cryopreservation in the new bags, but there were no significant differences in engraftment potential using either material. Days to engraftment was longer using the new bags, but statistical analysis revealed an association with CD34 dose and not with cryopreservation bag type. The new bags were noninferior to the old bags. A change in cryopreservation bag type may appear to affect cell function and potentially affect engraftment. Multiple analyses may be needed to understand the effect of cell processing changes. © 2010 American Association of Blood Banks.

  8. Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  9. Bioreactor droplets from liposome-stabilized all-aqueous emulsions

    Science.gov (United States)

    Dewey, Daniel C.; Strulson, Christopher A.; Cacace, David N.; Bevilacqua, Philip C.; Keating, Christine D.

    2014-08-01

    Artificial bioreactors are desirable for in vitro biochemical studies and as protocells. A key challenge is maintaining a favourable internal environment while allowing substrate entry and product departure. We show that semipermeable, size-controlled bioreactors with aqueous, macromolecularly crowded interiors can be assembled by liposome stabilization of an all-aqueous emulsion. Dextran-rich aqueous droplets are dispersed in a continuous polyethylene glycol (PEG)-rich aqueous phase, with coalescence inhibited by adsorbed ~130-nm diameter liposomes. Fluorescence recovery after photobleaching and dynamic light scattering data indicate that the liposomes, which are PEGylated and negatively charged, remain intact at the interface for extended time. Inter-droplet repulsion provides electrostatic stabilization of the emulsion, with droplet coalescence prevented even for submonolayer interfacial coatings. RNA and DNA can enter and exit aqueous droplets by diffusion, with final concentrations dictated by partitioning. The capacity to serve as microscale bioreactors is established by demonstrating a ribozyme cleavage reaction within the liposome-coated droplets.

  10. An update on purple urine bag syndrome

    Directory of Open Access Journals (Sweden)

    Hadano Y

    2012-08-01

    Full Text Available Yoshiro Hadano,1 Taro Shimizu,2 Shimon Takada,3 Toshiya Inoue,4 Sumire Sorano51Department of General Internal Medicine and Infectious Diseases, Rakuwakai Otowa Hospital, Yamashina-ku, Kyoto, Japan; 2Rollins School of Public Health, Emory University, Atlanta, GA, USA; 3Department of General Internal Medicine, Osaka City General Hospital, Miyakojima-ku, Osaka, Japan; 4Department of Emergency Medicine, Urasoe General Hospital, Urasoe-city, Okinawa, Japan; 5Kobe University School of Medicine, Kusunokicho, Chuoku, Kobe, JapanAbstract: Purple urine bag syndrome is characterized by the urinary drainage bag turning purple in patients on prolonged urinary catheterization, especially those in the bedridden state. It is associated with bacterial urinary tract infections caused by indigo-producing and indirubin-producing bacteria, usually affects women, and is associated with alkaline urine, constipation, and a high bacterial load in the urine. Almost all patients with purple urine bag syndrome are catheterized due to significant disability, and the urinary pH is 7.0 or more. In general, intensive treatment with antibiotics is not recommended. Purple urine bag syndrome per se almost always appears to be asymptomatic and harmless. However, caution is needed, because some cases have been reported to show progression to severe disease states, so further research into the morbidity and mortality of this infection is warranted.Keywords: purple urine, urinary catheterization, geriatrics, urinary tract infection

  11. Development and functional significance of dorsal air bags in ...

    African Journals Online (AJOL)

    Histological examination of the air bags showed that they were integumentary structures composed of an outer epidermis and an inner dermis. The air bags were not connected to the respiratory system. The body temperature (Tb) of Monteiro's Hornbill nestlings increased significantly with increasing age. Comparisons of ...

  12. Bioreactors as Engineering Support to Treat Cardiac Muscle and Vascular Disease

    Directory of Open Access Journals (Sweden)

    Diana Massai

    2013-01-01

    Full Text Available Cardiovascular disease is the leading cause of morbidity and mortality in the Western World. The inability of fully differentiated, load-bearing cardiovascular tissues to in vivo regenerate and the limitations of the current treatment therapies greatly motivate the efforts of cardiovascular tissue engineering to become an effective clinical strategy for injured heart and vessels. For the effective production of organized and functional cardiovascular engineered constructs in vitro, a suitable dynamic environment is essential, and can be achieved and maintained within bioreactors. Bioreactors are technological devices that, while monitoring and controlling the culture environment and stimulating the construct, attempt to mimic the physiological milieu. In this study, a review of the current state of the art of bioreactor solutions for cardiovascular tissue engineering is presented, with emphasis on bioreactors and biophysical stimuli adopted for investigating the mechanisms influencing cardiovascular tissue development, and for eventually generating suitable cardiovascular tissue replacements.

  13. Developing Baby Bag Design by Using Kansei Engineering Method

    Science.gov (United States)

    Janari, D.; Rakhmawati, A.

    2016-01-01

    Consumer's preferences and market demand are essential factors for product's success. Thus, in achieving its success, a product should have design that could fulfill consumer's expectation. Purpose of this research is accomplishing baby bag product as stipulated by Kansei. The results that represent Kanseiwords are; neat, unique, comfortable, safe, modern, gentle, elegant, antique, attractive, simple, spacious, creative, colorful, durable, stylish, smooth and strong. Identification value on significance of correlation for durable attribute is 0,000 baby's bag. While the value of coefficient regression is 0,812 baby's bag.The result of the baby's bag final design selectionbased on the questionnaire 3 is resulting the combination of all design. Space for clothes, diaper's space, shoulder grip, side grip, bottle's heater pocket and bottle's pocket are derived from design 1. Top grip, space for clothes, shoulder grip, and side grip are derived from design 2.Others design that were taken are, spaces for clothes from design 3, diaper's space and clothes’ space from design 4.

  14. Solitons, monopoles and bags

    International Nuclear Information System (INIS)

    Rajasekaran, G.

    1978-01-01

    Recent developments in the theory of solitons and related objects in the fields of high energy physics and nuclear physics are reviewed. The aim is to concentrate on the physical aspects and explain why these objects have awakened the interest of physicists. The physics of solitons is discussed with the help of a simple one-dimensional soliton. Then the physically more interesting monopole-soliton is considered and its connection with the original Dirac monopole is pointed out. The ''revolutionary'' possibility of making fermions as composites of bosons is indicated. Both the one-dimensional solitons and the monopole-soliton are examples of ''topological solitons'' and the role of topology in the physics of solitons is explained. The possible importance of topological quantum numbers in providing a fundamental understanding of the basic conservation laws of physics is pointed out. Two examples of non-topological solitons namely, the nucleon as a bag of almost-massless quarks and the abnormal nucleons as a bag of almost massless nucleons is discussed. (auth.)

  15. Bioreactor design for successive culture of anchorage-dependent cells operated in an automated manner.

    Science.gov (United States)

    Kino-Oka, Masahiro; Ogawa, Natsuki; Umegaki, Ryota; Taya, Masahito

    2005-01-01

    A novel bioreactor system was designed to perform a series of batchwise cultures of anchorage-dependent cells by means of automated operations of medium change and passage for cell transfer. The experimental data on contamination frequency ensured the biological cleanliness in the bioreactor system, which facilitated the operations in a closed environment, as compared with that in flask culture system with manual handlings. In addition, the tools for growth prediction (based on growth kinetics) and real-time growth monitoring by measurement of medium components (based on small-volume analyzing machinery) were installed into the bioreactor system to schedule the operations of medium change and passage and to confirm that culture proceeds as scheduled, respectively. The successive culture of anchorage-dependent cells was conducted with the bioreactor running in an automated way. The automated bioreactor gave a successful culture performance with fair accordance to preset scheduling based on the information in the latest subculture, realizing 79- fold cell expansion for 169 h. In addition, the correlation factor between experimental data and scheduled values through the bioreactor performance was 0.998. It was concluded that the proposed bioreactor with the integration of the prediction and monitoring tools could offer a feasible system for the manufacturing process of cultured tissue products.

  16. Investigating Comfort Temperatures and Heat Transfer in Sleeping Bags

    Science.gov (United States)

    Hill, Trevor; Hill, Lara

    2017-01-01

    After many years of confusion, thermal performance of sleeping bags has now been quantified and unified using expensive test techniques. Based on Newton's law of cooling, we present a simple inexpensive test and model to check manufacturers' claims on the temperature performance of a range of modern sleeping bags.

  17. Commissioning of Research Bioreactor made in Korea with Malaysian Environment Adaptation

    International Nuclear Information System (INIS)

    Mohd Jamil Hashim; Mohd Azmi Sidid Omar

    2011-01-01

    Bioreactor is equipment used by researcher in Agrotechnology and Biosciences department (BAB) as a scientific approach to get a scale up of product. Headed by one of the senior researcher in the department, an effort has been made to upscale the project by using MTDC fund. The technology platform has been acquired from South Korea. Some modification has to be made to cater for the need of a research bioreactor to be established for Nuclear Malaysia Agency. This research bioreactor is to emulate a tissue culture product in a bigger scale bio processing, pharmaceutical biotechnology and industrial production. (author)

  18. Quantitative analysis of microbial biomass yield in aerobic bioreactor.

    Science.gov (United States)

    Watanabe, Osamu; Isoda, Satoru

    2013-12-01

    We have studied the integrated model of reaction rate equations with thermal energy balance in aerobic bioreactor for food waste decomposition and showed that the integrated model has the capability both of monitoring microbial activity in real time and of analyzing biodegradation kinetics and thermal-hydrodynamic properties. On the other hand, concerning microbial metabolism, it was known that balancing catabolic reactions with anabolic reactions in terms of energy and electron flow provides stoichiometric metabolic reactions and enables the estimation of microbial biomass yield (stoichiometric reaction model). We have studied a method for estimating real-time microbial biomass yield in the bioreactor during food waste decomposition by combining the integrated model with the stoichiometric reaction model. As a result, it was found that the time course of microbial biomass yield in the bioreactor during decomposition can be evaluated using the operational data of the bioreactor (weight of input food waste and bed temperature) by the combined model. The combined model can be applied to manage a food waste decomposition not only for controlling system operation to keep microbial activity stable, but also for producing value-added products such as compost on optimum condition. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  19. Commercial liquid bags as a potential source of venous air embolism in shoulder arthroscopy.

    Science.gov (United States)

    Austin, Luke; Zmistowski, Benjamin; Tucker, Bradford; Hetrick, Robin; Curry, Patrick; Williams, Gerald

    2010-09-01

    Venous air embolism is a rare but potentially fatal complication of arthroscopy. Fatal venous air embolism has been reported with as little as 100 mL of air entering the venous system. During liquid-only arthroscopy, avenues for air introduction into the joint are limited. Therefore, we hypothesized that commercially prepared 3-L saline-solution bags are a source of potentially fatal amounts of gas that can be introduced into the joint by arthroscopic pumps. Eight 3-L arthroscopic saline-solution bags were obtained and visually inspected for air. The air was aspirated from four bags, and the volume of the air was recorded. A closed-system pump was prepared, and two 3-L bags were connected to it. The pump emptied into an inverted graduated cylinder immersed in a water bath. Both bags were allowed to run dry. Two more bags were then connected and also allowed to run dry. The air was quantified by the downward displacement of water. The experiment was then repeated with the four bags after the air had been aspirated from them. This experiment was performed at three institutions, with utilization of three pump systems and two brands of 3-L saline-solution bags. Air was visualized in all bags, and the bags contained between 34 and 85 mL of air. Arthroscopic pumps can pump air efficiently through the tubing. The total volumes of gas ejected from the tubing after the four 3-L bags had been emptied were 75, 80, and 235 mL. When bags from which the air had been evacuated were used, no air exited the system. Because a saline-solution arthroscopic pump is theoretically a closed system, venous air embolism has not been a concern. However, this study shows that it is possible to pump a fatal amount of air from 3-L saline-solution bags into an environment susceptible to the creation of emboli. Evacuation of air from the 3-L bags prior to use may eliminate this risk.

  20. The Cheshire Cat principle applied to hybrid bag models

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Wirzba, A.

    1987-05-01

    Here is argued for the Cheshire Cat point of view according to which the bag (itself) has only notational, but no physical significance. It is explained in a 1+1 dimensional exact Cheshire Cat model how a fermion can escape from the bag by means of an anomaly. We also suggest that suitably constructed hybrid bag models may be used to fix such parameters of effective Lagrangians that can otherwise be obtained from experiments only. This idea is illustrated in a calculation of the mass of the pseudoscalar η' meson in 1+1 dimension. Thus there is hope to find a construction principle for a phenomenologically sensible model. (orig.)

  1. Home-School Literacy Bags for Twenty-First Century Preschoolers

    Science.gov (United States)

    Brand, Susan Trostle; Marchand, Jessica; Lilly, Elizabeth; Child, Martha

    2014-01-01

    Combining home-school literacy bags with preschool family literature circles provided a strong foundation for family involvement at home and school during this year-long Reading Partners project, and helped parents become essential partners in their children's literacy development. Using home-school literacy bags, children and parents learned…

  2. Bogota bag in the treatment of abdominal wound dehiscence.

    Science.gov (United States)

    Sukumar, N; Shaharin, S; Razman, J; Jasmi, A Y

    2004-06-01

    A patient who underwent emergency laparotomy for rectal prolapse developed repeated abdominal wound dehiscence and subsequently an enteric fistula. The management of abdominal wound dehiscence is discussed, specifically with regards to the Bogota bag. Use of Bogota bag has been reported worldwide but this may be the first report here.

  3. Are the N and Δ deformed MIT bags

    International Nuclear Information System (INIS)

    Clement, G.; Maamache, M.

    1985-01-01

    The influence of the one-gluon exchange interaction, zero-point energy, and centre-of-mass correction, on the deformation of the nucleon and Δ bags, is studied in the MIT bag model. If the sharp MIT boundary conditions are taken seriously, the strong dependence of the zero-point energy on the deformation leads to the collapse of the N and Δ bags for realistic values of the strong fine structure constant α/sub S/. If on the other hand the zero-point energy is ignored altogether, then the nucleon, spherical for α/sub S/ 3.25, while the Δ is always prolate. The various predictions of the model are, for α/sub S/> or approx. =3.25, consistent with experiment, except for the proton magnetic moment which is only about 40% of the experimental value

  4. Anterior haptic flexing and in-the-bag subluxation of an accommodating intraocular lens due to excessive capsular bag contraction.

    Science.gov (United States)

    Kramer, Gregory D; Werner, Liliana; Neuhann, Tobias; Tetz, Manfred; Mamalis, Nick

    2015-09-01

    We describe the case of a patient who had cataract surgery with implantation of the hydrophilic acrylic Tetraflex accommodating intraocular lens (IOL), with subsequent development of capsulorhexis phimosis and in-the-bag IOL subluxation. Contraction of the capsular bag secondary to fibrosis resulted in significant anterior flexing of the lens haptic component. Explantation of the IOL-capsular bag complex was required 7 years after implantation. Histopathologic analysis demonstrated multiple areas of thick anterior subcapsular fibrosis. Pseudoexfoliative material was present throughout the surface of the lens capsule. Intraocular lenses manufactured from hydrophilic acrylic material are highly flexible and may be more susceptible to capsule contraction, even in the absence of predisposing ocular and systemic conditions. This case highlights the importance of developing guidelines regarding patient screening and selection for the appropriate use of accommodating and other highly flexible IOLs. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  5. Performance of triple bagging hermetic technology for postharvest storage of cowpea grain in Niger

    KAUST Repository

    Baoua, Ibrahim B.; Margam, Venu; Amadou, Laouali; Murdock, Larry L.

    2012-01-01

    ) new 100 kg bags and (3) once-used 50 kg bags, all filled with naturally infested untreated cowpeas. In these PICS bags the O 2 levels within the bags initially fell to about 3 percent (v/v) while the CO 2 rose to nearly 5 percent (v/v). After five

  6. Fully Disposable Manufacturing Concepts for Clinical and Commercial Manufacturing and Ballroom Concepts.

    Science.gov (United States)

    Boedeker, Berthold; Goldstein, Adam; Mahajan, Ekta

    2017-11-04

    The availability and use of pre-sterilized disposables has greatly changed the methods used in biopharmaceuticals development and production, particularly from mammalian cell culture. Nowadays, almost all process steps from cell expansion, fermentation, cell removal, and purification to formulation and storage of drug substances can be carried out in disposables, although there are still limitations with single-use technologies, particularly in the areas of pretesting and quality control of disposables, bag and connections standardization and qualification, extractables and leachables (E/L) validation, and dependency on individual vendors. The current status of single-use technologies is summarized for all process unit operations using a standard mAb process as an example. In addition, current pros and cons of using disposables are addressed in a comparative way, including quality control and E/L validation.The continuing progress in developing single-use technologies has an important impact on manufacturing facilities, resulting in much faster, less expensive and simpler plant design, start-up, and operation, because cell culture process steps are no longer performed in hard-piped unit operations. This leads to simpler operations in a lab-like environment. Overall it enriches the current landscape of available facilities from standard hard-piped to hard-piped/disposables hybrid to completely single-use-based production plants using the current segregation and containment concept. At the top, disposables in combination with completely and functionally closed systems facilitate a new, revolutionary design of ballroom facilities without or with much less segregation, which enables us to perform good manufacturing practice manufacturing of different products simultaneously in unclassified but controlled areas.Finally, single-use processing in lab-like shell facilities is a big enabler of transferring and establishing production in emergent countries, and this is

  7. The Danish game bag record and its role in wildlife management

    DEFF Research Database (Denmark)

    Asferg, Tommy

    2015-01-01

    The Danish Game Bag Record and its role in wildlife management The Danish Game Bag Record, i.e. the national hunting statistics database, was initiated in 1941. It is a compilation of annual, mandatory reports on bagged game (shot or trapped) from all hunting licence holders. Today, this database...... is reflected in the methods of collecting the hunting statistics but the basic principle of every hunter reporting his/hers personal game bag every year still applies. From 1941 onwards annual reports were delivered on paper forms, and since year 2000 it has been possible to report electronically via...... management is its ability to reflect changes in population size – at least for some game species – mainly on a nationwide scale, but for some of the more abundant species also on a regional scale. A few examples will be shown to illustrate this. Finally, a few suggestions for improvement of the bag record...

  8. A role of BAG3 in regulating SNCA/α-synuclein clearance via selective macroautophagy.

    Science.gov (United States)

    Cao, Yu-Lan; Yang, Ya-Ping; Mao, Cheng-Jie; Zhang, Xiao-Qi; Wang, Chen-Tao; Yang, Jing; Lv, Dong-Jun; Wang, Fen; Hu, Li-Fang; Liu, Chun-Feng

    2017-12-01

    Many studies reveal that BAG3 plays a critical role in the regulation of protein degradation via macroautophagy. However, it remains unknown whether BAG3 affects the quality control of α-synuclein (SNCA), a Parkinson's disease-related protein. In this study, we demonstrated the increases of BAG3 expression in the ventral midbrain of SNCA A53T transgenic mice and also in MG132-treated PC12 cells overexpressing wild-type SNCA (SNCA WT -PC12). Moreover, we showed that BAG3 overexpression was sufficient to enhance the autophagy activity while knockdown of Bag3 reduced it in SNCA WT -PC12 cells. Immunoprecipitation revealed that BAG3 interacted with heat shock protein 70 and sequestosome 1. The immunostaining also showed the perinuclear accumulation and colocalization of BAG3 with these 2 proteins, as well as with LC3 dots in tyrosine hydroxylase-positive neurons in the midbrain of SNCA A53T mice. BAG3 overexpression was able to modulate SNCA degradation via macroautophagy which was prevented by Atg5 knockdown. Taken together, these results indicate that BAG3 plays a relevant role in regulating SNCA clearance via macroautophagy, and the heat shock protein 70-BAG3-sequestosome 1 complex may be involved in this process. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. BAG3 protects bovine papillomavirus type 1-transformed equine fibroblasts against pro-death signals.

    Science.gov (United States)

    Cotugno, Roberta; Gallotta, Dario; d'Avenia, Morena; Corteggio, Annunziata; Altamura, Gennaro; Roperto, Franco; Belisario, Maria Antonietta; Borzacchiello, Giuseppe

    2013-07-22

    In human cancer cells, BAG3 protein is known to sustain cell survival. Here, for the first time, we demonstrate the expression of BAG3 protein both in equine sarcoids in vivo and in EqS04b cells, a sarcoid-derived fully transformed cell line harbouring bovine papilloma virus (BPV)-1 genome. Evidence of a possible involvement of BAG3 in equine sarcoid carcinogenesis was obtained by immunohistochemistry analysis of tumour samples. We found that most tumour samples stained positive for BAG3, even though to a different grade, while normal dermal fibroblasts from healthy horses displayed very weak staining pattern for BAG3 expression. By siRNA technology, we demonstrate in EqS04b the role of BAG3 in counteracting basal as well as chemical-triggered pro-death signals. BAG3 down-modulation was indeed shown to promote cell death and cell cycle arrest in G0/G1. In addition, we found that BAG3 silencing sensitized EqS04b cells to phenethylisothiocyanate (PEITC), a promising cancer chemopreventive/chemotherapeutic agent present in edible cruciferous vegetables. Notably, such a pro-survival role of BAG3 was less marked in E. Derm cells, an equine BPV-negative fibroblast cell line taken as a normal counterpart. Altogether our findings might suggest a mutual cooperation between BAG3 and viral oncoproteins to sustain cell survival.

  10. A novel bioreactor to simulate urinary bladder mechanical properties and compliance for bladder functional tissue engineering.

    Science.gov (United States)

    Wei, Xin; Li, Dao-bing; Xu, Feng; Wang, Yan; Zhu, Yu-chun; Li, Hong; Wang, Kun-jie

    2011-02-01

    Bioreactors are pivotal tools for generating mechanical stimulation in functional tissue engineering study. This study aimed to create a bioreactor that can simulate urinary bladder mechanical properties, and to investigate the effects of a mechanically stimulated culture on urothelial cells and bladder smooth muscle cells. We designed a bioreactor to simulate the mechanical properties of bladder. A pressure-record system was used to evaluate the mechanical properties of the bioreactor by measuring the pressure in culture chambers. To test the biocompatibility of the bioreactor, viabilities of urothelial cells and smooth muscle cells cultured in the bioreactor under static and mechanically changed conditions were measured after 7-day culture. To evaluate the effect of mechanical stimulations on the vital cells, urethral cells and smooth muscle cells were cultured in the simulated mechanical conditions. After that, the viability and the distribution pattern of the cells were observed and compared with cells cultured in non-mechanical stimulated condition. The bioreactor system successfully generated waveforms similar to the intended programmed model while maintaining a cell-seeded elastic membrane between the chambers. There were no differences between viabilities of urothelial cells ((91.90 ± 1.22)% vs. (93.14 ± 1.78)%, P > 0.05) and bladder smooth muscle cells ((93.41 ± 1.49)% vs. (92.61 ± 1.34)%, P > 0.05). The viability of cells and tissue structure observation after cultured in simulated condition showed that mechanical stimulation was the only factor affected cells in the bioreactor and improved the arrangement of cells on silastic membrane. This bioreactor can effectively simulate the physiological and mechanical properties of the bladder. Mechanical stimulation is the only factor that affected the viability of cells cultured in the bioreactor. The bioreactor can change the growth behavior of urothelial cells and bladder smooth muscle cells, resulting in

  11. Bag filters

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, M; Komeda, I; Takizaki, K

    1982-01-01

    Bag filters are widely used throughout the cement industry for recovering raw materials and products and for improving the environment. Their general mechanism, performance and advantages are shown in a classification table, and there are comparisons and explanations. The outer and inner sectional construction of the Shinto ultra-jet collector for pulverized coal is illustrated and there are detailed descriptions of dust cloud prevention, of measures used against possible sources of ignition, of oxygen supply and of other topics. Finally, explanations are given of matters that require careful and comprehensive study when selecting equipment.

  12. Storage quality and marketability potential of bagged silage for ...

    African Journals Online (AJOL)

    Bagged sole maize and maize–cowpea silages in three bag sizes were assessed at 42 and 282 d post-ensiling for sensory and chemical quality. A survey of dairy farmers on silage use and preferences was conducted in the Chikwaka communal area and Marirangwe small-scale commercial farming area. Only silage ...

  13. Bag-of-steps : Predicting lower-limb fracture rehabilitation length

    NARCIS (Netherlands)

    Pla, Albert; López, Beatriz; Nogueira, Cristofor; Mordvaniuk, Natalia; Blokhuis, Taco J.; Holtslag, Herman R.

    2016-01-01

    This paper presents bag-of-steps, a new methodology to predict the rehabilitation length of a patient by monitoring the weight he is bearing in his injured leg and using a predictive model based on the bag-of-words technique. A force sensor is used to monitor and characterize the patient's gait,

  14. Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

    2010-04-30

    Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

  15. Design of Control System for Flexible Packaging Bags Palletizing Production Line Based on PLC

    Science.gov (United States)

    Zheng, Huiping; Chen, Lin; Zhao, Xiaoming; Liu, Zhanyang

    Flexible packaging bags palletizing production line is to put the bags in the required area according to particular order and size, in order to finish handling, storage, loading and unloading, transportation and other logistics work of goods. Flexible packaging bags palletizing line is composed of turning bags mechanism, shaping mechanism, indexing mechanism, marshalling mechanism, pushing bags mechanism, pressing bags mechanism, laminating mechanism, elevator, tray warehouse, tray conveyor and loaded tray conveyor. Whether the whole production line can smoothly run depends on each of the above equipment and precision control among them. In this paper the technological process and the control logic of flexible packaging bags palletizing production line is introduced. Palletizing process of the production line realized automation by means of a control system based on programmable logic controller (PLC). It has the advantages of simple structure, reliable and easy maintenance etc.

  16. Evidence for the Role of BAG3 in Mitochondrial Quality Control in Cardiomyocytes.

    Science.gov (United States)

    Tahrir, Farzaneh G; Knezevic, Tijana; Gupta, Manish K; Gordon, Jennifer; Cheung, Joseph Y; Feldman, Arthur M; Khalili, Kamel

    2017-04-01

    Mitochondrial abnormalities impact the development of myofibrillar myopathies. Therefore, understanding the mechanisms underlying the removal of dysfunctional mitochondria from cells is of great importance toward understanding the molecular events involved in the genesis of cardiomyopathy. Earlier studies have ascribed a role for BAG3 in the development of cardiomyopathy in experimental animals leading to the identification of BAG3 mutations in patients with heart failure which may play a part in the onset of disease development and progression. BAG3 is co-chaperone of heat shock protein 70 (HSP70), which has been shown to modulate apoptosis and autophagy, in several cell models. In this study, we explore the potential role of BAG3 in mitochondrial quality control. We demonstrate that siRNA mediated suppression of BAG3 production in neonatal rat ventricular cardiomyocytes (NRVCs) significantly elevates the level of Parkin, a key component of mitophagy. We found that both BAG3 and Parkin are recruited to depolarized mitochondria and promote mitophagy. Suppression of BAG3 in NRVCs significantly reduces autophagy flux and eliminates clearance of Tom20, an essential import receptor for mitochondria proteins, after induction of mitophagy. These observations suggest that BAG3 is critical for the maintenance of mitochondrial homeostasis under stress conditions, and disruptions in BAG3 expression impact cardiomyocyte function. J. Cell. Physiol. 232: 797-805, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Attractive Casimir effect in an infrared modified gluon bag model

    International Nuclear Information System (INIS)

    Oxman, L.E.; Amaral, R.L.P.G.; Svaiter, N.F.

    2005-01-01

    In this work, we are motivated by previous attempts to derive the vacuum contribution to the bag energy in terms of familiar Casimir energy calculations for spherical geometries. A simple infrared modified model is introduced which allows studying the effects of the analytic structure as well as the geometry in a clear manner. In this context, we show that if a class of infrared vanishing effective gluon propagators is considered, then the renormalized vacuum energy for a spherical bag is attractive, as required by the bag model to adjust hadron spectroscopy

  18. 21 CFR 178.3730 - Piperonyl butoxide and pyrethrins as components of bags.

    Science.gov (United States)

    2010-04-01

    ... bags. 178.3730 Section 178.3730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... pyrethrins as components of bags. Piperonyl butoxide in combination with pyrethrins may be safely used for insect control on bags that are intended for use in contact with dried feed in compliance with §§ 561.310...

  19. Thinking beyond the Bioreactor Box: Incorporating Stream Ecology into Edge-of-Field Nitrate Management.

    Science.gov (United States)

    Goeller, Brandon C; Febria, Catherine M; Harding, Jon S; McIntosh, Angus R

    2016-05-01

    Around the world, artificially drained agricultural lands are significant sources of reactive nitrogen to stream ecosystems, creating substantial stream health problems. One management strategy is the deployment of denitrification enhancement tools. Here, we evaluate the factors affecting the potential of denitrifying bioreactors to improve stream health and ecosystem services. The performance of bioreactors and the structure and functioning of stream biotic communities are linked by environmental parameters like dissolved oxygen and nitrate-nitrogen concentrations, dissolved organic carbon availability, flow and temperature regimes, and fine sediment accumulations. However, evidence of bioreactors' ability to improve waterway health and ecosystem services is lacking. To improve the potential of bioreactors to enhance desirable stream ecosystem functioning, future assessments of field-scale bioreactors should evaluate the influences of bioreactor performance on ecological indicators such as primary production, organic matter processing, stream metabolism, and invertebrate and fish assemblage structure and function. These stream health impact assessments should be conducted at ecologically relevant spatial and temporal scales. Bioreactors have great potential to make significant contributions to improving water quality, stream health, and ecosystem services if they are tailored to site-specific conditions and implemented strategically with land-based and stream-based mitigation tools within watersheds. This will involve combining economic, logistical, and ecological information in their implementation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Cordyceps sinensis attenuates renal fibrosis and suppresses BAG3 induction in obstructed rat kidney.

    Science.gov (United States)

    Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Zong, Zhi-Hong; Du, Zhen-Xian; Li, De-Tian; Wang, Hua-Qin; Liu, Bo; Miao, Jia-Ning; Bian, Xiao-Hui

    2015-01-01

    BAG3 regulates a number of cellular processes, including cell proliferation, apoptosis, adhesion and migration, and epithelial-mesenchymal transition (EMT). However, the role of BAG3 in renal tubular EMT and renal interstitial fibrosis remains elusive. This study aimed to examine the dynamic expression of BAG3 during renal fibrosis, and to investigate the efficacy of Cordyceps sinensis (C. sinensis) on renal fibrosis. A rat model of unilateral ureteral obstruction (UUO) was established, and the expression of BAG3 and α-SMA, and the efficacy of C. sinensis on renal fibrosis induced by UUO were examined. The results showed that UUO led to collagen accumulation, which was significantly suppressed by C. sinensis. UUO increased the expression of BAG3 and α-SMA, a mesenchymal marker, while UUO induced BAG3 and α-SMA expression was significantly inhibited by C. sinensis. In addition, immunohistochemical staining demonstrated that BAG3 immunoreactivity was restricted to tubular epithelium. In conclusion, BAG3 is a potential target for the prevention and/or treatment of renal fibrosis, and C. Sinensis is a promising agent for renal fibrosis.

  1. Quark compound Bag model for NN scattering up to 1 GeV

    International Nuclear Information System (INIS)

    Fasano, C.; Lee, T.S.H.

    1987-01-01

    A Quark Compound Bag model has been constructed to describe NN s-wave scattering up to 1 GeV. The model contains a vertex interaction H/sub D/leftrightarrow/NN/ for describing the excitation of a confined six-quark Bag state, and a meson-exchange interaction obtained from modifying the phenomenological core of the Paris potential. Explicit formalisms and numerical results are presented to reveal the role of the Bag excitation mechanism in determining the relative wave function, P- and S-matrix of NN scattering. We explore the merit as well as the shortcoming of the Quark Compound Bag model developed by the ITEP group. It is shown that the parameters of the vertex interaction H/sub D/leftrightarrow/NN/ can be more rigorously determined from the data if the notation of the Chiral/Cloudy Bag model is used to allow the presence of the background meson-exchange interaction inside Bag excitation region. The application of the model in the study of quark degrees of freedom in nuclei is discussed. 41 refs., 6 figs., 3 tabs

  2. Waste product profile: Plastic film and bags

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C. [Environmental Industry Associations, Washington, DC (United States)

    1996-10-01

    Plastic film is recycled by being pelletized following a granulation or densifying process. Manufacturing and converting plants are the major sources of plastic film for recycling because they can supply sufficient amounts of clean raw material of a known resin type. Post-consumer collection programs are more recent. They tend to focus on businesses such as grocery stores that are large generators of plastic bags. In this case, the recycling process is more complex, requiring sorting, washing, and removal of contaminants as a first step. Curbside collection of plastic bags is rare.

  3. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  4. A dual flow bioreactor with controlled mechanical stimulation for cartilage tissue engineering

    NARCIS (Netherlands)

    Spitters, Tim; Leijten, Jeroen Christianus Hermanus; Deus, F.D.; Costa, I.B.F.; van Apeldoorn, Aart A.; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes

    2013-01-01

    In cartilage tissue engineering bioreactors can create a controlled environment to study chondrocyte behavior under mechanical stimulation or produce chondrogenic grafts of clinically relevant size. Here we present a novel bioreactor, which combines mechanical stimulation with a two compartment

  5. Ensacamento de frutos de pereira cv. Housui Bagging of nashi pear cv. Housui

    Directory of Open Access Journals (Sweden)

    Ivan Dagoberto Faoro

    2004-04-01

    Full Text Available Foi avaliada a qualidade de frutos de pêra japonesa cv. Housui (Pyrus pyrifolia var. culta ensacados com diferentes tipos de sacos de papel e em duas épocas: 34 e 83 dias após a florada. O ensacamento não influenciou na firmeza, no teor de sólidos solúveis totais e no peso médio dos frutos. Sacos vermelhos não induziram aumento do pH da polpa, mas o uso de sacos duplos, sacos marrons, sacos de papel kraft marrons e sacos de pipoca brancos aumentaram significativamente o pH. Ao buscar-se maior precocidade de colheita, os melhores resultados foram obtidos com o uso de sacos pequenos de papel manteiga aos 34 dias após a floração e o uso de sacos grandes duplos ou sacos grandes marrons, 83 dias após a plena floração. O ensacamento 34 dias após a plena floração, com sacos grandes de papel duplo de cor marrom ou sacos de papel kraft marrons, ou ainda o uso de sacos pequenos parafinados transparentes de papel manteiga, aos 34 dias, seguidos pela colocação, aos 83 dias, dos dois tipos de sacos grandes citados anteriormente, resultaram em frutos de melhor qualidade externa (película de coloração homogênea e mais clara, lisa e com lenticelas pouco salientes. O uso de sacos vermelhos de papel manteiga e de sacos de pipoca brancos, com ou sem ensacamento prévio com sacos pequenos de papel manteiga parafinado, não resultaram em melhoria substancial da qualidade externa do fruto.The fruit quality of Nashi pears cv. Housui (Pyrus pyrifolia var. culta have been evaluated after bagging with different paper bags at two bagging dates: 34 and 83 days after full bloom. The bagging did not affect the fruit firmness, the total soluble solids and the average fruit weight. Red bags did not affect the pH of the fruit flesh. However the fruit bagged with double bags of brown color, brown kraft paper and white popcorn paper increased the pH. In order to harvest precociously, the use of small transparent paraffin paper bags 34 days after full bloom

  6. The cloudy bag model

    International Nuclear Information System (INIS)

    Thomas, A.W.

    1981-01-01

    Recent developments in the bag model, in which the constraints of chiral symmetry are explicitly included are reviewed. The model leads to a new understanding of the Δ-resonance. The connection of the theory with current algebra is clarified and implications of the model for the structure of the nucleon are discussed

  7. Simulation of three-phase fluidized bioreactors for denitrification

    International Nuclear Information System (INIS)

    Hamza, A.V.; Dolan, J.F.; Wong, E.W.

    1981-03-01

    Fluidized-bed bioreactors were developed and operated at three scales (diameters of 0.1, 0.2, and 0.5 m) by the Chemical Technology Division. The performance of these reactors in denitrification was simulated using the following modified form of Monod kinetics to describe the reaction kinetics: rate = V/sub max/ (NO 3 - /K/sub s/ + NO 3 - ) (% biomass). In the fluids-movement portion of the simulation the tanks-in-series approximation to backmixing was used. This approach yielded a V/sub max/ of 3.5 g/m 3 -min (% biomass) and a K/sub s/ of 163 g/m 3 for the 0.5-m bioreactor. Values of V/sub max/ and K/sub s/ were also determined for data derived from the 0.1-m bioreactor, but inadequate RTD data reduced the confidence level in these results. A complication in denitrification is the multi-step nature of the reduction from nitrate to nitrite to hyponitrite and finally to nitrogen. An experimental study of the effect of biomass loading upon denitrification was begun. It is recommended that the experimental work be continued

  8. FUNGAL POPULATION, AFLATOXIN AND FREE FATTY ACID CONTENTS OF PEANUTS PACKED IN DIFFERENT BAG TYPES

    Directory of Open Access Journals (Sweden)

    SONIA S.P. BULAONG

    2002-01-01

    Full Text Available Shelled peanuts of Gajah var. with initial moisture content of 7% were stored at 11 kg/bag in four bag types namely: jute bag, polypropylene bag, jute bag doubled with thin polyethylene (PE, and jute bag doubled with thick PE. Storage was done for six months under warehouse conditions with monitoring of relative humidity and temperature. Samples taken at the be ginning of storage and every month thereafter were analyzed for moisture content, fungal population, aflatoxin and free fatty acid contents. Statistical analyses showed that moisture content, fungal population, and free fatty acid contents were signifi cantly higher in jute and polypropylene bags than in PE-dou,bled jute bags. No significant differences were obtained in aflatoxin contents among bag types but at the end of six months storage, toxin level in jute bag exceeded the 30 ppb limit. Polypropylene had second highest toxin level at 23 ppb. The PE-doubled bags ha d 17 and 19 ppb total aflatoxins for thin and thick films, respectively. The results indicated that the immediate packag ing of dried shelled peanuts at safe moisture level in plastic films with water vapor transmission rated of 1 g/m2/24 hr or lower is recommended. This p ackaging will delay critical increases in moisture content, fungal population, aflatoxin and free fatty acid contents of peanut kernels at ambient storage conditions.

  9. Method and Apparatus for a Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Kleis, Stanley J. (Inventor); Geffert, Sandra K. (Inventor); Gonda, Steve R. (Inventor)

    2015-01-01

    A bioreactor and method that permits continuous and simultaneous short, moderate, or long term cell culturing of one or more cell types or tissue in a laminar flow configuration is disclosed, where the bioreactor supports at least two laminar flow zones, which are isolated by laminar flow without the need for physical barriers between the zones. The bioreactors of this invention are ideally suited for studying short, moderate and long term studies of cell cultures and the response of cell cultures to one or more stressors such as pharmaceuticals, hypoxia, pathogens, or any other stressor. The bioreactors of this invention are also ideally suited for short, moderate or long term cell culturing with periodic cell harvesting and/or medium processing for secreted cellular components.

  10. Bagworm bags as portable armour against invertebrate predators

    OpenAIRE

    Sugiura, Shinji

    2016-01-01

    Some animals have evolved the use of environmental materials as “portable armour” against natural enemies. Portable bags that bagworm larvae (Lepidoptera: Psychidae) construct using their own silk and plant parts are generally believed to play an important role as a physical barrier against natural enemies. However, no experimental studies have tested the importance of bags as portable armour against predators. To clarify the defensive function, I studied the bagworm Eumeta minuscula and a po...

  11. Sensing in tissue bioreactors

    Science.gov (United States)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  12. Properties of hybrid stars in an extended MIT bag model

    International Nuclear Information System (INIS)

    Bao Tmurbagan; Liu Guangzhou; Zhu Mingfeng

    2009-01-01

    The properties of hybrid stars are investigated in the framework of the relativistic mean field theory (RMFT) and an MIT bag model with density-dependent bag constant to describe the hadron phase (HP) and quark phase (QP), respectively. We find that the density-dependent B(ρ) decreases with baryon density ρ; this decrement makes the strange quark matter become more energetically favorable than ever; which makes the threshold densities of the hadron-quark phase transition lower than those of the original bag constant case. In this case, the hyperon degrees of freedom can not be considered. As a result, the equations of state of a star in the mixed phase (MP) become softer whereas those in the QP become stiffer, and the radii of the star obviously decrease. This indicates that the extended MIT bag model is more suitable to describe hybrid stars with small radii. (authors)

  13. Assessment of the permeability properties of cryopreservation outer bags used in NHSBT.

    Science.gov (United States)

    Hogg, P; Rooney, P; Lomas, R; Kearney, J N

    2018-01-12

    This study was carried out to investigate leakage/transport across the bag material of six outer cryopreservation bags in common use within NHS Blood and Transplant. In order to do this two different leak testing procedures; coloured dye and hydrogen tracer gas, were used. The data obtained show that a coloured dye cannot permeate through the materials both at room temperature and following storage at liquid nitrogen temperature (- 196 °C). In addition, when filled with the smallest elemental molecule, hydrogen, in the form of a tracer gas, all of the bags only allowed trace amounts of hydrogen to escape, either through the seal or the bag material. The data indicated that each of the bag materials tested would be capable of preventing bacterial or viral cross-contamination as long as the material remained intact.

  14. Generation of Neural Progenitor Spheres from Human Pluripotent Stem Cells in a Suspension Bioreactor.

    Science.gov (United States)

    Yan, Yuanwei; Song, Liqing; Tsai, Ang-Chen; Ma, Teng; Li, Yan

    2016-01-01

    Conventional two-dimensional (2-D) culture systems cannot provide large numbers of human pluripotent stem cells (hPSCs) and their derivatives that are demanded for commercial and clinical applications in in vitro drug screening, disease modeling, and potentially cell therapy. The technologies that support three-dimensional (3-D) suspension culture, such as a stirred bioreactor, are generally considered as promising approaches to produce the required cells. Recently, suspension bioreactors have also been used to generate mini-brain-like structure from hPSCs for disease modeling, showing the important role of bioreactor in stem cell culture. This chapter describes a detailed culture protocol for neural commitment of hPSCs into neural progenitor cell (NPC) spheres using a spinner bioreactor. The basic steps to prepare hPSCs for bioreactor inoculation are illustrated from cell thawing to cell propagation. The method for generating NPCs from hPSCs in the spinner bioreactor along with the static control is then described. The protocol in this study can be applied to the generation of NPCs from hPSCs for further neural subtype specification, 3-D neural tissue development, or potential preclinical studies or clinical applications in neurological diseases.

  15. Dynamics of cesium-134 and biomass in treated and untreated turkey oak leaf-litter bags

    International Nuclear Information System (INIS)

    Croom, J.M.; Ragsdale, H.L.

    1978-01-01

    Litter bags were prepared from leaves harvested in late fall from turkey oak trees (Quercus laevis) tagged with 134 Cs. Untreated bags and bags treated by soaking in 1000 ppM HgCl 2 were placed in the field on Dec. 7, 1974. Five bags of each treatment were retrieved at 7-, 14-, and 30-day intervals as the experiment progressed. Treated bags remained free of visible fungal hyphae growth for 12 weeks. Untreated bags had lost more weight but less 134 Cs than treated bags after 14 and 56 days, respectively. After 9 months, untreated bags had lost 33% weight and 90% 134 Cs. Although 134 Cs is rapidly leached from litter (ecological half-life approximately equal to 12 weeks), some is retained by fungal hyphae on leaf-litter surfaces. This mechanism of mineral retention in the litter layer could represent adaptation at the ecosystem level for nutrient conservation

  16. Introducing Textiles as Material of Construction of Ethanol Bioreactors

    Directory of Open Access Journals (Sweden)

    Osagie A. Osadolor

    2014-11-01

    Full Text Available The conventional materials for constructing bioreactors for ethanol production are stainless and cladded carbon steel because of the corrosive behaviour of the fermenting media. As an alternative and cheaper material of construction, a novel textile bioreactor was developed and examined. The textile, coated with several layers to withstand the pressure, resist the chemicals inside the reactor and to be gas-proof was welded to form a 30 L lab reactor. The reactor had excellent performance for fermentative production of bioethanol from sugar using baker’s yeast. Experiments with temperature and mixing as process parameters were performed. No bacterial contamination was observed. Bioethanol was produced for all conditions considered with the optimum fermentation time of 15 h and ethanol yield of 0.48 g/g sucrose. The need for mixing and temperature control can be eliminated. Using a textile bioreactor at room temperature of 22 °C without mixing required 2.5 times longer retention time to produce bioethanol than at 30 °C with mixing. This will reduce the fermentation investment cost by 26% for an ethanol plant with capacity of 100,000 m3 ethanol/y. Also, replacing one 1300 m3 stainless steel reactor with 1300 m3 of the textile bioreactor in this plant will reduce the fermentation investment cost by 19%.

  17. A Comparison of Simple Rheological Parameters and Simulation Data for Zymomonas mobilis Fermentation Broths with High Substrate Loading in a 3-L Bioreactor

    Science.gov (United States)

    Um, Byung-Hwan; Hanley, Thomas R.

    Traditionally, as much as 80% or more of an ethanol fermentation broth is water that must be removed. This mixture is not only costly to separate but also produces a large aqueous stream that must then be disposed of or recycled. Integrative approaches to water reduction include increasing the biomass concentration during fermentation. In this paper, experimental results are presented for the rheological behavior of high-solids enzymatic cellulose hydrolysis and ethanol fermentation for biomass conversion using Solka Floc as the model feedstock. The experimental determination of the viscosity, shear stress, and shear rate relationships of the 10 to 20% slurry concentrations with constant enzyme concentrations are performed with a variable speed rotational viscometer (2.0 to 200 rpm) at 40 °C. The viscosities of enzymatic suspension observed were in range of 0.0418 to 0.0144, 0.233 to 0.0348, and 0.292 to 0.0447 Pa s for shear rates up to 100 reciprocal seconds at 10, 15, and 20% initial solids (w/v), respectively. Computational fluid dynamics analysis of bioreactor mixing demonstrates the change in bioreactor mixing with increasing biomass concentration. The portion-loading method is shown to be effective for processing highsolids slurries.

  18. Algae Bioreactor Using Submerged Enclosures with Semi-Permeable Membranes

    Science.gov (United States)

    Trent, Jonathan D (Inventor); Gormly, Sherwin J (Inventor); Embaye, Tsegereda N (Inventor); Delzeit, Lance D (Inventor); Flynn, Michael T (Inventor); Liggett, Travis A (Inventor); Buckwalter, Patrick W (Inventor); Baertsch, Robert (Inventor)

    2013-01-01

    Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO.sub.2/O.sub.2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a "dead zone") containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.

  19. Zero-point motion in the bag description of the nucleon

    International Nuclear Information System (INIS)

    Brown, G.E.; Durso, J.W.; Johnson, M.B.

    1983-01-01

    In the bag model, confinement of quarks is accomplished by introduction of a boundary condition at some definite radius R, where the energy of the total system is a minimum. This minimum is, however, relatively shallow and energies for substantially different bag radii are not much larger than this minimum value. This indicates that the zero-point motion of the bag surface may be important. In this paper, quantization of the bag surface motion is carried out in a somewhat ad hoc fashion, modelled after the generator coordinate theory in nuclear physics. This procedure unifies a number of ideas previously in the literature; it stresses the anharmonicity of the collective motion. As in earlier treatments, the Roper resonance emerges as a breathing-mode type of excitation of the nucleon. The one- and two-pion decays of the Roper resonance are calculated and the widths are found to fall short of the empirical ones. It is pointed out, however, that decays involving intermediate states containing virtual rho-mesons will enhance the widths. Pion-nucleon scattering in the P 11 channel is constructed in our model and found to agree roughly with experiment. A crucial term in the driving force involves the pion coupling to the nucleon through a virtual rho-meson. With introduction of zero-point motion of the bag surface, the motion of 'bag radius' becomes dependent on precisely which moment of the radius is measured. Our development gives a model for cutting off smoothly the pion-exchange term in the nucleon-nucleon interaction. (orig.)

  20. Pionic corrections to the MIT bag model: The (3,3) resonance

    International Nuclear Information System (INIS)

    Theberge, S.; Thomas, A.W.; Miller, G.A.

    1980-01-01

    By incorporating chiral invariance in the MIT bag model, we are led to a theory in which the pion field is coupled to the confined quarks only at the bag surface. An equivalent quantized theory of nucleons and Δ's interacting with pions is then obtained. The pion-nucleon scattering amplitude in this model is found to give a good fit to experimental data on the (3,3) resonance, with a bag radius of about 0.72 fm

  1. Anaerobic digestion of citrus waste using two-stage membrane bioreactor

    Science.gov (United States)

    Millati, Ria; Lukitawesa; Dwi Permanasari, Ervina; Wulan Sari, Kartika; Nur Cahyanto, Muhammad; Niklasson, Claes; Taherzadeh, Mohammad J.

    2018-03-01

    Anaerobic digestion is a promising method to treat citrus waste. However, the presence of limonene in citrus waste inhibits anaerobic digestion process. Limonene is an antimicrobial compound and could inhibit methane forming bacteria that takes a longer time to recover than the injured acid forming bacteria. Hence, volatile fatty acids will be accumulated and methane production will be decreased. One way to solve this problem is by conducting anaerobic digestion process into two stages. The first step is aimed for hydrolysis, acidogenesis, and acetogenesis reactions and the second stage is aimed for methanogenesis reaction. The separation of the system would further allow each stage in their optimum conditions making the process more stable. In this research, anaerobic digestion was carried out in batch operations using 120 ml-glass bottle bioreactors in 2 stages. The first stage was performed in free-cells bioreactor, whereas the second stage was performed in both bioreactor of free cells and membrane bioreactor. In the first stage, the reactor was set into ‘anaerobic’ and ‘semi-aerobic’ conditions to examine the effect of oxygen on facultative anaerobic bacteria in acid production. In the second stage, the protection of membrane towards the cells against limonene was tested. For the first stage, the basal medium was prepared with 1.5 g VS of inoculum and 4.5 g VS of citrus waste. The digestion process was carried out at 55°C for four days. For the second stage, the membrane bioreactor was prepared with 3 g of cells that were encased and sealed in a 3×6 cm2 polyvinylidene fluoride membrane. The medium contained 40 ml basal medium and 10 ml liquid from the first stage. The bioreactors were incubated at 55°C for 2 days under anaerobic condition. The results from the first stage showed that the maximum total sugar under ‘anaerobic’ and ‘semi-aerobic’ conditions was 294.3 g/l and 244.7 g/l, respectively. The corresponding values for total volatile

  2. BAG3 myofibrillar myopathy presenting with cardiomyopathy.

    Science.gov (United States)

    Konersman, Chamindra G; Bordini, Brett J; Scharer, Gunter; Lawlor, Michael W; Zangwill, Steven; Southern, James F; Amos, Louella; Geddes, Gabrielle C; Kliegman, Robert; Collins, Michael P

    2015-05-01

    Myofibrillar myopathies (MFMs) are a heterogeneous group of neuromuscular disorders distinguished by the pathological hallmark of myofibrillar dissolution. Most patients present in adulthood, but mutations in several genes including BCL2-associated athanogene 3 (BAG3) cause predominantly childhood-onset disease. BAG3-related MFM is particularly severe, featuring weakness, cardiomyopathy, neuropathy, and early lethality. While prior cases reported either neuromuscular weakness or concurrent weakness and cardiomyopathy at onset, we describe the first case in which cardiomyopathy and cardiac transplantation (age eight) preceded neuromuscular weakness by several years (age 12). The phenotype comprised distal weakness and severe sensorimotor neuropathy. Nerve biopsy was primarily axonal with secondary demyelinating/remyelinating changes without "giant axons." Muscle biopsy showed extensive neuropathic changes that made myopathic changes difficult to interpret. Similar to previous cases, a p.Pro209Leu mutation in exon 3 of BAG3 was found. This case underlines the importance of evaluating for MFMs in patients with combined neuromuscular weakness and cardiomyopathy. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Bird-resistant pollination bags for sorghum breeding and germplasm maintenance

    Science.gov (United States)

    Bird damage is a problem in sorghum breeding and germplasm maintenance operations. Paper pollination bags are damaged by rain and provide minimal deterrent to birds. To overcome these limitations we fabricated pollination bags from spun polyethylene fiber sheeting. Seed loss by bird damage was elimi...

  4. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system

    International Nuclear Information System (INIS)

    Johnson, D. Barrie; Hallberg, Kevin B.

    2005-01-01

    The compost bioreactor ('anaerobic cell') components of three composite passive remediation systems constructed to treat acid mine drainage (AMD) at the former Wheal Jane tin mine, Cornwall, UK were studied over a period of 16 months. While there was some amelioration of the preprocessed AMD in each of the three compost bioreactors, as evidenced by pH increase and decrease in metal concentrations, only one of the cells showed effective removal of the two dominant heavy metals (iron and zinc) present. With two of the compost bioreactors, concentrations of soluble (ferrous) iron draining the cells were significantly greater than those entering the reactors, indicating that there was net mobilisation (by reductive dissolution) of colloidal and/or solid-phase ferric iron compounds within the cells. Soluble sulfide was also detected in waters draining all three compost bioreactors which was rapidly oxidised, in contrast to ferrous iron. Oxidation and hydrolysis of iron, together with sulfide oxidation, resulted in reacidification of processed AMD downstream of the compost bioreactors in two of the passive treatment systems. The dominant cultivatable microorganism in waters draining the compost bioreactors was identified, via analysis of its 16S rRNA gene, as a Thiomonas sp. and was capable of accelerating the dissimilatory oxidation of both ferrous iron and reduced sulfur compounds. Sulfate-reducing bacteria (SRB) were also detected, although only in the bioreactor that was performing well were these present in significant numbers. This particular compost bioreactor had been shut down for 10 months prior to the monitoring period due to operational problems. This unforeseen event appears to have allowed more successful development of AMD-tolerant and other microbial populations with critical roles in AMD bioremediation, including neutrophilic SRB (nSRB), in this compost bioreactor than in the other two, where the throughput of AMD was not interrupted. This study has

  5. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system.

    Science.gov (United States)

    Johnson, D Barrie; Hallberg, Kevin B

    2005-02-01

    The compost bioreactor ("anaerobic cell") components of three composite passive remediation systems constructed to treat acid mine drainage (AMD) at the former Wheal Jane tin mine, Cornwall, UK were studied over a period of 16 months. While there was some amelioration of the preprocessed AMD in each of the three compost bioreactors, as evidenced by pH increase and decrease in metal concentrations, only one of the cells showed effective removal of the two dominant heavy metals (iron and zinc) present. With two of the compost bioreactors, concentrations of soluble (ferrous) iron draining the cells were significantly greater than those entering the reactors, indicating that there was net mobilisation (by reductive dissolution) of colloidal and/or solid-phase ferric iron compounds within the cells. Soluble sulfide was also detected in waters draining all three compost bioreactors which was rapidly oxidised, in contrast to ferrous iron. Oxidation and hydrolysis of iron, together with sulfide oxidation, resulted in reacidification of processed AMD downstream of the compost bioreactors in two of the passive treatment systems. The dominant cultivatable microorganism in waters draining the compost bioreactors was identified, via analysis of its 16S rRNA gene, as a Thiomonas sp. and was capable of accelerating the dissimilatory oxidation of both ferrous iron and reduced sulfur compounds. Sulfate-reducing bacteria (SRB) were also detected, although only in the bioreactor that was performing well were these present in significant numbers. This particular compost bioreactor had been shut down for 10 months prior to the monitoring period due to operational problems. This unforeseen event appears to have allowed more successful development of AMD-tolerant and other microbial populations with critical roles in AMD bioremediation, including neutrophilic SRB (nSRB), in this compost bioreactor than in the other two, where the throughput of AMD was not interrupted. This study has

  6. Compounds from multilayer plastic bags cause reproductive failures in artificial insemination.

    Science.gov (United States)

    Nerin, C; Ubeda, J L; Alfaro, P; Dahmani, Y; Aznar, M; Canellas, E; Ausejo, R

    2014-05-09

    High levels of reproductive failure were detected in some Spanish sow farms in the Spring of 2010. Regular returns to estrus and variable reductions in litter size were observed. The problem started suddenly and did not appear to be related to the quality of the ejaculates, disease, alterations of body condition or any other apparent reasons. Subsequent studies determined that the problem was the origin of the plastic bags used for semen storage. Chemical analysis of the suspicious bags identified unexpected compounds such as BADGE, a cyclic lactone and an unknown phthalate that leached into the semen at concentrations of 0.2 to 2.5 mg/L. Spermatozoa preserved in these bags passed all of the routine quality control tests, and no differences were observed between storage in the control and suspicious bags (p > 0.05). In vitro fecundation tests and endocrine profiler panel analysis (EPP) did not show any alterations, whereas the in vivo tests confirmed the described failure. This is the first described relationship between reproductive failure and toxic compounds released from plastic bags.

  7. Compounds from multilayer plastic bags cause reproductive failures in artificial insemination

    Science.gov (United States)

    Nerin, C.; Ubeda, J. L.; Alfaro, P.; Dahmani, Y.; Aznar, M.; Canellas, E.; Ausejo, R.

    2014-05-01

    High levels of reproductive failure were detected in some Spanish sow farms in the Spring of 2010. Regular returns to estrus and variable reductions in litter size were observed. The problem started suddenly and did not appear to be related to the quality of the ejaculates, disease, alterations of body condition or any other apparent reasons. Subsequent studies determined that the problem was the origin of the plastic bags used for semen storage. Chemical analysis of the suspicious bags identified unexpected compounds such as BADGE, a cyclic lactone and an unknown phthalate that leached into the semen at concentrations of 0.2 to 2.5 mg/L. Spermatozoa preserved in these bags passed all of the routine quality control tests, and no differences were observed between storage in the control and suspicious bags (p > 0.05). In vitro fecundation tests and endocrine profiler panel analysis (EPP) did not show any alterations, whereas the in vivo tests confirmed the described failure. This is the first described relationship between reproductive failure and toxic compounds released from plastic bags.

  8. BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes

    OpenAIRE

    Feldman, Arthur M.; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D.; Tilley, Douglas G.; Gao, Erhe; Hoffman, Nicholas E.; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J.; Su, Feifei; Khalili, Kamel

    2016-01-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (...

  9. Bagging constrained equity premium predictors

    DEFF Research Database (Denmark)

    Hillebrand, Eric; Lee, Tae-Hwy; Medeiros, Marcelo

    2014-01-01

    The literature on excess return prediction has considered a wide array of estimation schemes, among them unrestricted and restricted regression coefficients. We consider bootstrap aggregation (bagging) to smooth parameter restrictions. Two types of restrictions are considered: positivity of the r...

  10. An evaluation of different bioreactor configurations for continuous bio-ethanol production

    International Nuclear Information System (INIS)

    Ntihuga, Jean Nepomuscene; Senn, Thomas; Gschwind, Peter; Kohlus, Reinhard

    2013-01-01

    Highlights: • Two bioreactor configurations were constructed and compared. • Continuous bioethanol production was performed in both bioreactors. • Plate heat exchanger bioreactor was the best for solid mash fermentation. • Operational power costs of both bioreactors were different in small scale levels. • Further study needed for both bioreactors with optimized parameters. - Abstract: In this preliminary investigation, a so-called Blenke cascade and plate heat exchanger bioreactor configuration were compared in terms of mixing characteristics, contamination free process, operational power costs and overall performance. At room temperature, fermentation was initially started as batch run and switched to continuous operation, when the residual sugars within the reactor were detected to be C ⩽ 1% (g/L). Samples from both configurations were taken and analyzed for ethanol and residual sugar content, as well as for any infection of the fermentation and lactic acid content, respectively. Mixing characteristics were studied by the residence time distribution method. Both geometries behaved as a finite number n of continuous stirred tanks in series, behaving as a plug flow with superimposed axial dispersion. The number of tanks in series n obtained in the plate heat exchanger configuration was 1.5–3 times larger than those in the Blenke cascade. The average ethanol productivity was Q p = 3.07 (g/L h) and Q p = 2.31 (g/L h) for cascade and plate exchanger configuration, respectively. The analysis of operational power costs indicates relevant differences between the two reactors at laboratory scale; however, systems with different types of pumps and viscosities are compared. From an industrial scale point of view, specific operational costs decrease with scale-up, as no mechanical mixing is needed in the fermenters

  11. Membrane bio-reactor for textile wastewater treatment plant upgrading.

    Science.gov (United States)

    Lubello, C; Gori, R

    2005-01-01

    Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.

  12. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow.

    Science.gov (United States)

    Costa, Pedro F; Vaquette, Cédryck; Baldwin, Jeremy; Chhaya, Mohit; Gomes, Manuela E; Reis, Rui L; Theodoropoulos, Christina; Hutmacher, Dietmar W

    2014-09-01

    This study reports on an original concept of additive manufacturing for the fabrication of tissue engineered constructs (TEC), offering the possibility of concomitantly manufacturing a customized scaffold and a bioreactor chamber to any size and shape. As a proof of concept towards the development of anatomically relevant TECs, this concept was utilized for the design and fabrication of a highly porous sheep tibia scaffold around which a bioreactor chamber of similar shape was simultaneously built. The morphology of the bioreactor/scaffold device was investigated by micro-computed tomography and scanning electron microscopy confirming the porous architecture of the sheep tibiae as opposed to the non-porous nature of the bioreactor chamber. Additionally, this study demonstrates that both the shape, as well as the inner architecture of the device can significantly impact the perfusion of fluid within the scaffold architecture. Indeed, fluid flow modelling revealed that this was of significant importance for controlling the nutrition flow pattern within the scaffold and the bioreactor chamber, avoiding the formation of stagnant flow regions detrimental for in vitro tissue development. The bioreactor/scaffold device was dynamically seeded with human primary osteoblasts and cultured under bi-directional perfusion for two and six weeks. Primary human osteoblasts were observed homogenously distributed throughout the scaffold, and were viable for the six week culture period. This work demonstrates a novel application for additive manufacturing in the development of scaffolds and bioreactors. Given the intrinsic flexibility of the additive manufacturing technology platform developed, more complex culture systems can be fabricated which would contribute to the advances in customized and patient-specific tissue engineering strategies for a wide range of applications.

  13. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow

    International Nuclear Information System (INIS)

    Costa, Pedro F; Gomes, Manuela E; Reis, Rui L; Vaquette, Cédryck; Baldwin, Jeremy; Chhaya, Mohit; Theodoropoulos, Christina; Hutmacher, Dietmar W

    2014-01-01

    This study reports on an original concept of additive manufacturing for the fabrication of tissue engineered constructs (TEC), offering the possibility of concomitantly manufacturing a customized scaffold and a bioreactor chamber to any size and shape. As a proof of concept towards the development of anatomically relevant TECs, this concept was utilized for the design and fabrication of a highly porous sheep tibia scaffold around which a bioreactor chamber of similar shape was simultaneously built. The morphology of the bioreactor/scaffold device was investigated by micro-computed tomography and scanning electron microscopy confirming the porous architecture of the sheep tibiae as opposed to the non-porous nature of the bioreactor chamber. Additionally, this study demonstrates that both the shape, as well as the inner architecture of the device can significantly impact the perfusion of fluid within the scaffold architecture. Indeed, fluid flow modelling revealed that this was of significant importance for controlling the nutrition flow pattern within the scaffold and the bioreactor chamber, avoiding the formation of stagnant flow regions detrimental for in vitro tissue development. The bioreactor/scaffold device was dynamically seeded with human primary osteoblasts and cultured under bi-directional perfusion for two and six weeks. Primary human osteoblasts were observed homogenously distributed throughout the scaffold, and were viable for the six week culture period. This work demonstrates a novel application for additive manufacturing in the development of scaffolds and bioreactors. Given the intrinsic flexibility of the additive manufacturing technology platform developed, more complex culture systems can be fabricated which would contribute to the advances in customized and patient-specific tissue engineering strategies for a wide range of applications. (paper)

  14. Roughage digestion evaluation in horses with total feces collection and mobile nylon bags

    Directory of Open Access Journals (Sweden)

    Liziana Maria Rodrigues

    2012-02-01

    Full Text Available This study aimed to evaluate the nutrient digestibility of roughages in horses with total feces collection and mobile bags. Two trials were carried out simultaneously. The first trial evaluated the digestibility of nutrients of coastcross hay (Cynodon dactylon cv. coastcross with total feces collection. The second trial assessed the digestibility of nutrients of alfalfa hay (Medicago sativa, peanut (Arachis pintoi and coastcross hay with mobile bags. This trial was conducted with gastric insertions of nylon bags every 12 hours, and each bag contained 663 mg of feed samples in a proportion of 17 mg DM/cm². Feces and bags were collected directly from the stall floor immediately after excretion. There was no difference between the digestibility of dry matter, crude protein, carbohydrates and hydrolysable carbohydrates of coastcross hay estimated with feces collection and mobile bags. Forage peanut showed high nutrients digestibility, with values close to those observed with alfalfa, indicating potential for use in diets for horses.

  15. Biodegradable plastic bags on the seafloor: A future threat for seagrass meadows?

    Science.gov (United States)

    Balestri, Elena; Menicagli, Virginia; Vallerini, Flavia; Lardicci, Claudio

    2017-12-15

    Marine plastic litter is a global concern. Carrier bags manufactured from non-biodegradable polymers constitute a large component of this litter. Because of their adverse impact on marine life, non-biodegradable bags have recently been replaced by biodegradable ones. However, growing evidence shows that these latter are not readily degradable in marine sediments and can alter benthic assemblages. The potential impact of biodegradable bags on seagrasses inhabiting sandy bottoms, which are the most widespread and productive ecosystems of the coastal zones, has been ignored. Mesocosm experiments were conducted to assess the effect of a commercialized biodegradable bag on a common seagrass species of the Mediterranean, Cymodocea nodosa, both at the level of individual plant (clonal growth) and of plant community (plant-plant relationships), under three culture regimes (plant alone, in combination with a neighbour of the same species or of the co-existing seagrass Zostera noltei) simulating different natural conditions (bare substrate, monospecific meadows or mixed meadows). The bag behaviour in marine sediment and sediment physical/chemical variables were also examined. After six months of sediment exposure, the bag retained considerable mass (85% initial weight) and reduced sediment pore-water oxygen concentration and pH. In the presence of bag, C. nodosa root spread and vegetative recruitment increased compared to controls, both intra- and interspecific interactions shifted from neutral to competitive, and the growth form changed from guerrilla (loosely arranged group of widely spaced ramets) to phalanx form (compact structure of closed spaced ramets) but only with Z. noltei. These findings suggest that biodegradable bags altering sediment geochemistry could promote the spatial segregation of seagrass clones and influence species coexistence. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Radiation shielding member

    International Nuclear Information System (INIS)

    Nemezawa, Isao; Kimura, Tadahiro; Mizuochi, Akira; Omori, Tetsu

    1998-01-01

    A single body of a radiation shield comprises a bag prepared by welding or bonding a polyurethane sheet which is made flat while interposing metal plates at the upper and the lower portion of the bag. Eyelet fittings are disposed to the upper and the lower portions of the bag passing through the metal plates and the flat portion of the bag. Water supplying/draining ports are disposed to two upper and lower places of the bag at a height where the metal plates are disposed. Reinforcing walls welded or bonded to the inner wall surface of the bag are elongated in vertical direction to divide the inside of the bag to a plurality of cells. The bag is suspended and supported from a frame with S-shaped hooks inserted into the eyelet fittings as connecting means. A plurality of bags are suspended and supported from the frame at a required height by way of the eyelets at the lower portion of the suspended and supported bag and the eyelet fittings at the upper portion of the bag below the intermediate connection means. (I.N.)

  17. BAG3-related myopathy, polyneuropathy and cardiomyopathy with long QT syndrome.

    Science.gov (United States)

    Kostera-Pruszczyk, Anna; Suszek, Małgorzata; Płoski, Rafał; Franaszczyk, Maria; Potulska-Chromik, Anna; Pruszczyk, Piotr; Sadurska, Elżbieta; Karolczak, Justyna; Kamińska, Anna M; Rędowicz, Maria Jolanta

    2015-12-01

    BAG3 belongs to BAG family of molecular chaperone regulators interacting with HSP70 and anti-apoptotic protein Bcl-2. It is ubiquitously expressed with strong expression in skeletal and cardiac muscle, and is involved in a panoply of cellular processes. Mutations in BAG3 and aberrations in its expression cause fulminant myopathies, presenting with progressive limb and axial muscle weakness, and respiratory insufficiency and neuropathy. Herein, we report a sporadic case of a 15-years old girl with symptoms of myopathy, demyelinating polyneuropathy and asymptomatic long QT syndrome. Genetic testing demonstrated heterozygous mutation Pro209Leu (c.626C > T) in exon 3 of BAG3 gene causing severe myopathy and neuropathy, often associated with restrictive cardiomyopathy. We did not find a mutation in any known LQT syndrome genes. Analysis of muscle biopsy revealed profound disintegration of Z-discs with extensive accumulation of granular debris and large inclusions within fibers. We demonstrated profound alterations in BAG3 distribution as the protein localized to long filamentous structures present across the fibers that were positively stained not only for α-actinin but also for desmin and filamin indicating that those disintegrated Z-disc regions contained also other sarcomeric proteins. The mutation caused a decrease in the content of BAG3 and HSP70, and also of α-actinin desmin, filamin and fast myosin heavy chain, confirming its severe effect on the muscle fiber morphology and thus function. We provide further evidence that BAG3 is associated with Z-disc maintenance, and the Pro209Leu mutation may occur worldwide. We also provide a summary of cases associated with this mutation reported so far.

  18. Baby sleeping bag and conventional bedding conditions--comparative investigations by infrared thermography.

    Science.gov (United States)

    Sauseng, W; Kerbl, R; Thaller, S; Hanzer, M; Zotter, H

    2011-09-01

    Thermal stress is a risk factor for sudden infant death syndrome (SIDS). Recently, baby sleeping bags have been recommended as a preventive measure against SIDS. The aim of this study was to describe in which way the use of baby sleeping bags might influence thermoregulation of sleeping infants and maybe the incidence of SIDS. Body surface temperature was recorded by use of infrared thermography in 15 infants (median age 49 days). Recordings were done twice: after sleeping for 60 min under a blanket and after sleeping for 60 min in a baby sleeping bag. Temperature was recorded and compared for defined sites of body surface. Infants' mean body surface temperature as well as core temperature after sleeping in a baby sleeping bag did not show significant differences when compared to infants sleeping under a conventional blanket. Under controlled conditions, core temperature and mean body surface temperature are comparable, equally if using a baby sleeping bag or conventional bedding. However, under the more uncontrolled conditions of baby care at home, sleeping bags might provide a more constant temperature profile, while other bedding conditions may lead to significant variations of temperature pattern. © Georg Thieme Verlag KG Stuttgart · New York.

  19. The prosurvival protein BAG3: a new participant in vascular homeostasis

    OpenAIRE

    Carrizzo, Albino; Damato, Antonio; Ambrosio, Mariateresa; Falco, Antonia; Rosati, Alessandra; Capunzo, Mario; Madonna, Michele; Turco, Maria C; Januzzi, James L; De Laurenzi, Vincenzo; Vecchione, Carmine

    2016-01-01

    Bcl2-associated athanogene 3 (BAG3), is constitutively expressed in a few normal cell types, including myocytes, peripheral nerves and in the brain, and is also expressed in certain tumors. To date, the main studies about the role of BAG3 are focused on its pro-survival effect in tumors through various mechanisms that vary according to cellular type. Recently, elevated concentrations of a soluble form of BAG3 were described in patients affected by advanced stage of heart failure (HF), identif...

  20. A Novel Pulsatile Bioreactor for Mechanical Stimulation of Tissue Engineered Cardiac Constructs

    Directory of Open Access Journals (Sweden)

    Günther Eissner

    2011-07-01

    Full Text Available After myocardial infarction, the implantation of stem cell seeded scaffolds on the ischemic zone represents a promising strategy for restoration of heart function. However, mechanical integrity and functionality of tissue engineered constructs need to be determined prior to implantation. Therefore, in this study a novel pulsatile bioreactor mimicking the myocardial contraction was developed to analyze the behavior of mesenchymal stem cells derived from umbilical cord tissue (UCMSC colonized on titanium-coated polytetrafluorethylene scaffolds to friction stress. The design of the bioreactor enables a simple handling and defined mechanical forces on three seeded scaffolds at physiological conditions. The compact system made of acrylic glass, Teflon®, silicone, and stainless steel allows the comparison of different media, cells and scaffolds. The bioreactor can be gas sterilized and actuated in a standard incubator. Macroscopic observations and pressure-measurements showed a uniformly sinusoidal pulsation, indicating that the bioreactor performed well. Preliminary experiments to determine the adherence rate and morphology of UCMSC after mechanical loadings showed an almost confluent cellular coating without damage on the cell surface. In summary, the bioreactor is an adequate tool for the mechanical stress of seeded scaffolds and offers dynamic stimuli for pre-conditioning of cardiac tissue engineered constructs in vitro.

  1. Snap-lock bags with red band: A study of manufacturing characteristics, thermal and chemical properties.

    Science.gov (United States)

    Sim, Yvonne Hui Ying; Koh, Alaric C W; Lim, Shing Min; Yew, Sok Yee

    2015-10-01

    Drug packaging is commonly submitted to the Forensic Chemistry and Physics Laboratory of the Health Sciences Authority, Singapore, for examination. The drugs seized are often packaged in plastic bags. These bags are examined for linkages to provide law enforcement with useful associations between the traffickers and drug abusers. The plastic bags submitted may include snap-lock bags, some with a red band located above the snap-lock closure and some without. Current techniques for examination involve looking at the physical characteristics (dimensions, thickness and polarising patterns) and manufacturing marks of these bags. In cases where manufacturing marks on the main body of the bags are poor or absent, the manufacturing characteristics present on the red band can be examined. A study involving approximately 1000 bags was conducted to better understand the variations in the manufacturing characteristics of the red band. This understanding is crucial in helping to determine associations/eliminations between bags. Two instrumental techniques, namely differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) were explored to evaluate the effectiveness of examining the chemical composition to discriminate the bags. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Silencing of BAG3 inhibits the epithelial-mesenchymal transition in human cervical cancer

    OpenAIRE

    Song, Fei; Wang, Geng; Ma, Zhifang; Ma, Yuebing; Wang, Yingying

    2017-01-01

    Bcl2-associated athanogene 3 (BAG3) has been reported to be involved in aggressive progression of many tumors. In the present study, we examined the expression of BAG3 in human cervical cancer (CC) tissues and investigated the role of BAG3 in SiHa and HeLa cell growth, migration, and invasion. Here, we found that most of CC tissues highly expressed the protein and mRNA of BAG3, while their expression was obviously lower in paired normal tissues (all p

  3. Effects of Aeration of Sawdust Cultivation Bags on Hyphal Growth of Lentinula edodes.

    Science.gov (United States)

    Lee, Hwa-Yong; Ham, Eun-Ju; Yoo, Young-Jin; Kim, Eui-Sung; Shim, Kyu-Kwang; Kim, Myung-Kon; Koo, Chang-Duck

    2012-09-01

    The effects of aeration through lid filters on the hyphal growth of Lentinula edodes (oak mushroom) in sawdust cultivation bags were investigated. The aeration treatment levels were traditional 27 mm hole cotton plugs, cotton balls and combinations of seven hole sizes × two hole positions (up and under) in the lids covering plastic bags containing 1.4 kg sawdust medium at 63% moisture that had been autoclaved for one hour and inoculated with sawdust spawn of L. edodes strain 921. Aeration treatment effects were measured based on the CO(2) concentration at the 15th wk, as well as the hyphal growth rate and degree of weight loss of bags every 14 days for 15 wk. In bags with traditional cotton plugs, the CO(2) concentration was 3.8 ± 1.3%, daily mean hyphal growth was 2.3 ± 0.6 mm and daily mean weight loss was 0.84 ± 0.26 g. In the bags with 15 mm diameter holes, the CO(2) concentration was 6.0 ± 1.6%, daily hyphal growth was 2.8 ± 0.2 mm and daily weight loss was 0.86 ± 0.4 g. The bags with 15 mm holes had a higher CO(2) concentration and lower water loss than bags with other hole sizes, but the hyphal growth was not significantly different from that of other bags. The weight loss of bags increased proportionally relative to the lid hole sizes. Taken together, these results indicate that traditional cotton plugs are economically efficient, but 15 mm hole lids are the most efficient at maintaining hyphal growth and controlling water loss while allowing CO(2) emissions.

  4. Labor development strategy in the bag industry

    Directory of Open Access Journals (Sweden)

    Dyah Maya Nihayah

    2016-04-01

    Full Text Available The research aims to formulate strategies for improving the labor competencies in the bag industry in Kudus Regency. The data comprise business players, which will be analyzed using the Strength, Weaknesses, Opportunities, and Threats (SWOT analysis. The results reveal that the proper strategy for improving employment in the bag industry is growth and build strategy. Growth and development strategy are intensive actions undertaken through the development of labor competencies to improve the quality of output. It can be made with creating learning resources by designing methods and trainings refer to the Competency Based Training (CBT.

  5. BAG3 is upregulated by c-Jun and stabilizes JunD.

    Science.gov (United States)

    Li, Chao; Li, Si; Kong, De-Hui; Meng, Xin; Zong, Zhi-Hong; Liu, Bao-Qin; Guan, Yifu; Du, Zhen-Xian; Wang, Hua-Qin

    2013-12-01

    BAG3 plays a regulatory role in a number of cellular processes, including cell proliferation, apoptosis, adhesion and migration, epithelial-mesenchymal transition (EMT), autophagy activation, and virus infection. The AP-1 transcription factors are implicated in a variety of important biological processes including cell differentiation, proliferation, apoptosis and oncogenesis. Recently, it has been reported that AP-1 protein c-Jun inhibits autophagy and enhances apoptotic cell death mediated by starvation. However, the molecular mechanisms remain unclear. For the first time, the current study demonstrated that serum starvation downregulated BAG3 at the transcriptional level via c-Jun. In addition, the current study reported that BAG3 stabilized JunD mRNA, which was, at least in part, responsible for the promotion of serum starvation mediated-growth inhibition by BAG3. © 2013.

  6. Woodchip bioreactors effectively treat aquaculture effluent

    Science.gov (United States)

    Nutrients, in particular nitrogen and phosphorus, can create eutrophication problems in any watershed. Preventing water quality impairment requires controlling nutrients from both point-source and non-point source discharges. Woodchip bioreactors are one relatively new approach that can be utilized ...

  7. Smaller self-inflating bags produce greater guideline consistent ventilation in simulated cardiopulmonary resuscitation.

    Science.gov (United States)

    Nehme, Ziad; Boyle, Malcolm J

    2009-02-20

    Suboptimal bag ventilation in cardiopulmonary resuscitation (CPR) has demonstrated detrimental physiological outcomes for cardiac arrest patients. In light of recent guideline changes for resuscitation, there is a need to identify the efficacy of bag ventilation by prehospital care providers. The objective of this study was to evaluate bag ventilation in relation to operator ability to achieve guideline consistent ventilation rate, tidal volume and minute volume when using two different capacity self-inflating bags in an undergraduate paramedic cohort. An experimental study using a mechanical lung model and a simulated adult cardiac arrest to assess the ventilation ability of third year Monash University undergraduate paramedic students. Participants were instructed to ventilate using 1600 ml and 1000 ml bags for a length of two minutes at the correct rate and tidal volume for a patient undergoing CPR with an advanced airway. Ventilation rate and tidal volume were recorded using an analogue scale with mean values calculated. Ethics approval was granted. Suboptimal ventilation with the use of conventional 1600 ml bag was common, with 77% and 97% of participants unable to achieve guideline consistent ventilation rates and tidal volumes respectively. Reduced levels of suboptimal ventilation arouse from the use of the smaller bag with a 27% reduction in suboptimal tidal volumes (p = 0.015) and 23% reduction in suboptimal minute volumes (p = 0.045). Smaller self-inflating bags reduce the incidence of suboptimal tidal volumes and minute volumes and produce greater guideline consistent results for cardiac arrest patients.

  8. Keep pushing! Limiting interruptions to CPR; bag-valve mask versus ...

    African Journals Online (AJOL)

    This has led to first responders and paramedics performing single rescuer CPR using a bag-valve-mask (BVM) device as opposed to the historical practice of intubating and ventilating via an endotracheal tube. Bag-valve-mask ventilations, especially during single rescuer CPR, are however associated with complications ...

  9. Fermion bag approach to the sign problem in strongly coupled lattice QED with Wilson fermions

    OpenAIRE

    Chandrasekharan, Shailesh; Li, Anyi

    2010-01-01

    We explore the sign problem in strongly coupled lattice QED with one flavor of Wilson fermions in four dimensions using the fermion bag formulation. We construct rules to compute the weight of a fermion bag and show that even though the fermions are confined into bosons, fermion bags with negative weights do exist. By classifying fermion bags as either simple or complex, we find numerical evidence that complex bags with positive and negative weights come with almost equal probabilities and th...

  10. Cheshire Cat scenario in A 3+1 dimensional hybrid chiral bag

    International Nuclear Information System (INIS)

    Francia, M. De; Falomir, H.; Santangelo, E.M.

    1995-07-01

    The total energy in the two-phase chiral bag model is studied, including the contribution due to the bag (Casimir energy plus energy of the valence quarks), as well as the one coming from the Skyrmion in the external sector. A consistent determination of the parameters of the model and the renormalization constants in the energy is performed. The total energy shows an approximate independence with the bag radius (separation limit between the phases), in agreement with the Cheshire Cat Principle. (author). 21 refs, 3 figs

  11. Pion-nucleon scattering in the Chiral bag model

    International Nuclear Information System (INIS)

    Israilov, Z.Z.; Musakhanov, M.M.

    1981-01-01

    The effective hamiltonian of the πNΔ-system in the framework of the Chiral Bag Model (CBM) contains πNN-, πNΔ-, πΔΔ-interaction terms with a form factor which is esstentially dependent on the size and shape of the quark bag. The interation of the Born graphs of this model provides successful description of the (3,3) and (3,1) phase shifts [in the (3,3) resonance region] where the values of the paramters agree with the CBM. (orig.)

  12. Bcl-2 associated athanogene 5 (Bag5) is overexpressed in prostate cancer and inhibits ER-stress induced apoptosis

    International Nuclear Information System (INIS)

    Bruchmann, Anja; Roller, Corinna; Walther, Tamara Vanessa; Schäfer, Georg; Lehmusvaara, Sara; Visakorpi, Tapio; Klocker, Helmut; Cato, Andrew C B; Maddalo, Danilo

    2013-01-01

    The Bag (Bcl-2 associated athanogene) family of proteins consists of 6 members sharing a common, single-copied Bag domain through which they interact with the molecular chaperone Hsp70. Bag5 represents an exception in the Bag family since it consists of 5 Bag domains covering the whole protein. Bag proteins like Bag1 and Bag3 have been implicated in tumor growth and survival but it is not known whether Bag5 also exhibits this function. Bag5 mRNA and protein expression levels were investigated in prostate cancer patient samples using real-time PCR and immunoblot analyses. In addition immunohistological studies were carried out to determine the expression of Bag5 in tissue arrays. Analysis of Bag5 gene expression was carried out using one-way ANOVA and Bonferroni’s Multiple Comparison test. The mean values of the Bag5 stained cells in the tissue array was analyzed by Mann-Whitney test. Functional studies of the role of Bag5 in prostate cancer cell lines was performed using overexpression and RNA interference analyses. Our results show that Bag5 is overexpressed in malignant prostate tissue compared to benign samples. In addition we could show that Bag5 levels are increased following endoplasmic reticulum (ER)-stress induction, and Bag5 relocates from the cytoplasm to the ER during this process. We also demonstrate that Bag5 interacts with the ER-resident chaperone GRP78/BiP and enhances its ATPase activity. Bag5 overexpression in 22Rv.1 prostate cancer cells inhibited ER-stress induced apoptosis in the unfolded protein response by suppressing PERK-eIF2-ATF4 activity while enhancing the IRE1-Xbp1 axis of this pathway. Cells expressing high levels of Bag5 showed reduced sensitivity to apoptosis induced by different agents while Bag5 downregulation resulted in increased stress-induced cell death. We have therefore shown that Bag5 is overexpressed in prostate cancer and plays a role in ER-stress induced apoptosis. Furthermore we have identified GRP78/BiP as a novel

  13. BAG3 promoted starvation-induced apoptosis of thyroid cancer cells via attenuation of autophagy.

    Science.gov (United States)

    Li, Si; Zhang, Hai-Yan; Wang, Tian; Meng, Xin; Zong, Zhi-Hong; Kong, De-Hui; Wang, Hua-Qin; Du, Zhen-Xian

    2014-11-01

    BAG3 plays a regulatory role in a number of cellular processes. Recent studies have attracted much attention on its role in activation of selective autophagy. In addition, we have very recently reported that BAG3 is implicated in a BECN1-independent autophagy, namely noncanonical autophagy. The current study aimed to investigate the potential involvement of BAG3 in canonical autophagy triggered by Earle's Balanced Salt Solution (EBSS) starvation. Replacement of complete medium with EBSS was used to trigger canonical autophagy. BAG3 expression was measured using real-time RT-PCR and Western blot. Autophagy was monitored using LC3-II transition and p62/SQSTM1 accumulation by Western blot, as well as punctate distribution of LC3 by immunofluorescence staining. Cell growth and apoptotic cell death was investigated using real-time cell analyzer and flowcytometry, respectively. BAG3 expression was potently reduced by EBSS starvation. Forced expression of BAG3 suppressed autophagy and promoted apoptotic cell death of thyroid cancer cells elicited by starvation. In addition, in the presence of autophagy inhibitor, the enhancing effect of BAG3 on apoptotic cell death was attenuated. These results suggest that BAG3 promotes apoptotic cell death in starved thyroid cancer cells, at least in part by autophagy attenuation.

  14. BAG3 promotes the phenotypic transformation of primary rat vascular smooth muscle cells via TRAIL.

    Science.gov (United States)

    Fu, Yao; Chang, Ye; Chen, Shuang; Li, Yuan; Chen, Yintao; Sun, Guozhe; Yu, Shasha; Ye, Ning; Li, Chao; Sun, Yingxian

    2018-05-01

    Under normal physiological condition, the mature vascular smooth muscle cells (VSMCs) show differentiated phenotype. In response to various environmental stimuluses, VSMCs convert from the differentiated phenotype to dedifferentiated phenotype characterized by the increased ability of proliferation/migration and the reduction of contractile ability. The phenotypic transformation of VSMCs played an important role in atherosclerosis. Both Bcl-2-associated athanogene 3 (BAG3) and tumor necrosis factor-related apopt-osis inducing ligand (TRAIL) involved in apoptosis. The relationship between BAG3 and TRAIL and their effects the proliferation and migration in VSMCs are rarely reported. This study investigated the effects of BAG3 on the phenotypic modulation and the potential underlying mechanisms in primary rat VSMCs. Primary rat VSMCs were extracted and cultured in vitro. Cell proliferation was detected by cell counting, real-time cell analyzer (RTCA) and EdU incorporation. Cell migration was detected by wound healing, Transwell and RTCA. BAG3 and TRAIL were detected using real-time PCR and western blotting and the secreted proteins in the cultured media by dot blot. The expression of BAG3 increased with continued passages in cultured primary VSMCs. BAG3 promoted the proliferation and migration of primary rat VSMC in a time-dependent manner. BAG3 significantly increased the expression of TRAIL while had no effects on its receptors. TRAIL knockdown or blocking by neutralizing antibody inhibited the proliferation of VSMCs induced by BAG3. TRAIL knockdown exerted no obvious influence on the migration of VSMCs. Based on this study, we report for the first time that BAG3 was expressed in cultured primary rat VSMCs and the expression of BAG3 increased with continued passages. Furthermore, BAG3 promoted the proliferation of VSMCs via increasing the expression of TRAIL. In addition, we also demonstrated that BAG3 promoted the migration of VSMCs independent of TRAIL

  15. Evaluation of Productivity of Zymotis Solid-State Bioreactor Based on Total Reactor Volume

    Directory of Open Access Journals (Sweden)

    Oscar F. von Meien

    2002-01-01

    Full Text Available In this work a method of analyzing the performance of solid-state fermentation bioreactors is described. The method is used to investigate the optimal value for the spacing between the cooling plates of the Zymotis bioreactor, using simulated fermentation data supplied by a mathematical model. The Zymotis bioreactor has good potential for those solid-state fermentation processes in which the substrate bed must remain static. The current work addresses two design parameters introduced by the presence of the internal heat transfer plates: the width of the heat transfer plate, which is governed by the amount of heat to be removed and the pressure drop of the cooling water, and the spacing between these heat transfer plates. In order to analyze the performance of the bioreactor a productivity term is introduced that takes into account the volume occupied within the bioreactor by the heat transfer plates. As part of this analysis, it is shown that, for logistic growth kinetics, the time at which the biomass reaches 90 % of its maximum possible value is a good estimate of the optimum harvesting time for maximizing productivity. Application of the productivity analysis to the simulated fermentation results suggests that, with typical fast growing fungi ( = 0.324 h–1, the optimal spacing between heat transfer plates is of the order of 6 cm. The general applicability of this approach to evaluate the productivity of solid-state bioreactors is demonstrated.

  16. Reducing Mission Logistics with Multipurpose Cargo Transfer Bags

    Science.gov (United States)

    Baccus, Shelley; Broyan, James Lee, Jr.; Borrego, Melissa

    2016-01-01

    The Logistics Reduction (LR) project within Advanced Exploration Systems (AES) is tasked with reducing logistical mass and repurposing logistical items. Multipurpose Cargo Transfer Bags (MCTB) have been designed such that they can serve the same purpose as a Cargo Transfer Bag (CTB), the common logistics carrying bag for the International Space Station (ISS). After use as a cargo carrier, a regular CTB becomes trash, whereas the MCTB can be unfolded into a flat panel for reuse. Concepts and potential benefits for various MCTB applications will be discussed including partitions, crew quarters, solar radiation storm shelters, acoustic blankets, and forward osmosis water processing. Acoustic MCTBs are currently in use on ISS to reduce the noise generated by the T2 treadmill, which reaches the hazard limit at high speeds. The development of the AMCTB included identification of keep-out zones, acoustic properties, deployment considerations, and structural testing. Features developed for these considerations are applicable to MCTBs for all crew outfitting applications.

  17. Bag-model analyses of proton-antiproton scattering and atomic bound states

    International Nuclear Information System (INIS)

    Alberg, M.A.; Freedman, R.A.; Henley, E.M.; Hwang, W.P.; Seckel, D.; Wilets, L.

    1983-01-01

    We study proton-antiproton (pp-bar ) scattering using the static real potential of Bryan and Phillips outside a cutoff radius rsub0 and two different shapes for the imaginary potential inside a radius R*. These forms, motivated by bag models, are a one-gluon-annihilation potential and a simple geometric-overlap form. In both cases there are three adjustable parameters: the effective bag radius R*, the effective strong coupling constant αsubssup*, and rsub0. There is also a choice for the form of the real potential inside the cutoff radius rsub0. Analysis of the pp-bar scattering data in the laboratory-momentum region 0.4--0.7 GeV/c yields an effective nucleon bag radius R* in the range 0.6--1.1 fm, with the best fit obtained for R* = 0.86 fm. Arguments are presented that the deduced value of R* is likely to be an upper bound on the isolated nucleon bag radius. The present results are consistent with the range of bag radii in current bag models. We have also used the resultant optical potential to calculate the shifts and widths of the sup3Ssub1 and sup1Ssub0 atomic bound states of the pp-bar system. For both states we find upward (repulsive) shifts and widths of about 1 keV. We find no evidence for narrow, strongly bound pp-bar states in our potential model

  18. Ultra-micro aqua bioreactor systems for modifying edible oils and fats; Shokuyo yushi kaishitsuyo chobisuikei bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Kurashige, J. [Ajinomoto Co. Inc., Tokyo (Japan)

    1995-10-20

    Practical solvent-free bioreactor systems using immobilized lipases have been constructed to convert palm oil to high quality foodstuff oil without quality deterioration through hydrolysis of triglycerides in oil. To avoid hydrolysis, moisture level of substrate oil has to be maintained at less than the solubility level of water in oil, which we call ultra-micro aqueous level. On the other hand, lipase is well known to manifest its activities mostly at the interface between oil and water phases. To make lipase manifest its activities at the ultra-micro aqueous oil phase, the novel bioreactor systems with the new immobilizing method of lipase together with activator on-to hydrophylic carriers, and without a drying procedure have been developed. These biochemical accomplishments show high promises for efficient convention of edible fats and oils to highly valuable foodstuff, which can not be attained by means of chemical or physical methods. 29 refs., 9 figs., 4 tabs.

  19. Maximum Mass of Hybrid Stars in the Quark Bag Model

    Science.gov (United States)

    Alaverdyan, G. B.; Vartanyan, Yu. L.

    2017-12-01

    The effect of model parameters in the equation of state for quark matter on the magnitude of the maximum mass of hybrid stars is examined. Quark matter is described in terms of the extended MIT bag model including corrections for one-gluon exchange. For nucleon matter in the range of densities corresponding to the phase transition, a relativistic equation of state is used that is calculated with two-particle correlations taken into account based on using the Bonn meson-exchange potential. The Maxwell construction is used to calculate the characteristics of the first order phase transition and it is shown that for a fixed value of the strong interaction constant αs, the baryon concentrations of the coexisting phases grow monotonically as the bag constant B increases. It is shown that for a fixed value of the strong interaction constant αs, the maximum mass of a hybrid star increases as the bag constant B decreases. For a given value of the bag parameter B, the maximum mass rises as the strong interaction constant αs increases. It is shown that the configurations of hybrid stars with maximum masses equal to or exceeding the mass of the currently known most massive pulsar are possible for values of the strong interaction constant αs > 0.6 and sufficiently low values of the bag constant.

  20. Bag3-induced autophagy is associated with degradation of JCV oncoprotein, T-Ag.

    Directory of Open Access Journals (Sweden)

    Ilker Kudret Sariyer

    Full Text Available JC virus, JCV, is a human neurotropic polyomavirus whose replication in glial cells causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML. In addition, JCV possesses oncogenic activity and expression of its transforming protein, large T-antigen (T-Ag, in several experimental animals induces tumors of neural origin. Further, the presence of JCV DNA and T-Ag have been repeatedly observed in several human malignant tissues including primitive neuroectodermal tumors and glioblastomas. Earlier studies have demonstrated that Bag3, a member of the Bcl-2-associated athanogene (Bag family of proteins, which is implicated in autophagy and apoptosis, is downregulated upon JCV infection of glial cells and that JCV T-Ag is responsible for suppressing the activity of the BAG3 promoter. Here, we investigated the possible impact of Bag3 on T-Ag expression in JCV-infected human primary glial cells as well as in cells derived from T-Ag-induced medulloblastoma in transgenic animals. Results from these studies revealed that overexpression of Bag3 drastically decreases the level of T-Ag expression by inducing the autophagic degradation of the viral protein. Interestingly, this event leads to the inhibition of JCV infection of glial cells, suggesting that the reduced levels of T-antigen seen upon the overexpression of Bag3 has a biological impact on the viral lytic cycle. Results from protein-protein interaction studies showed that T-Ag and Bag3 physically interact with each other through the zinc-finger of T-Ag and the proline rich domains of Bag3, and this interaction is important for the autophagic degradation of T-Ag. Our observations open a new avenue of research for better understanding of virus-host interaction by investigating the interplay between T-Ag and Bag3, and their impact on the development of JCV-associated diseases.

  1. Bag3-induced autophagy is associated with degradation of JCV oncoprotein, T-Ag.

    Science.gov (United States)

    Sariyer, Ilker Kudret; Merabova, Nana; Patel, Prem Kumer; Knezevic, Tijana; Rosati, Alessandra; Turco, Maria C; Khalili, Kamel

    2012-01-01

    JC virus, JCV, is a human neurotropic polyomavirus whose replication in glial cells causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). In addition, JCV possesses oncogenic activity and expression of its transforming protein, large T-antigen (T-Ag), in several experimental animals induces tumors of neural origin. Further, the presence of JCV DNA and T-Ag have been repeatedly observed in several human malignant tissues including primitive neuroectodermal tumors and glioblastomas. Earlier studies have demonstrated that Bag3, a member of the Bcl-2-associated athanogene (Bag) family of proteins, which is implicated in autophagy and apoptosis, is downregulated upon JCV infection of glial cells and that JCV T-Ag is responsible for suppressing the activity of the BAG3 promoter. Here, we investigated the possible impact of Bag3 on T-Ag expression in JCV-infected human primary glial cells as well as in cells derived from T-Ag-induced medulloblastoma in transgenic animals. Results from these studies revealed that overexpression of Bag3 drastically decreases the level of T-Ag expression by inducing the autophagic degradation of the viral protein. Interestingly, this event leads to the inhibition of JCV infection of glial cells, suggesting that the reduced levels of T-antigen seen upon the overexpression of Bag3 has a biological impact on the viral lytic cycle. Results from protein-protein interaction studies showed that T-Ag and Bag3 physically interact with each other through the zinc-finger of T-Ag and the proline rich domains of Bag3, and this interaction is important for the autophagic degradation of T-Ag. Our observations open a new avenue of research for better understanding of virus-host interaction by investigating the interplay between T-Ag and Bag3, and their impact on the development of JCV-associated diseases.

  2. BAG3 promotes pancreatic ductal adenocarcinoma growth by activating stromal macrophages.

    Science.gov (United States)

    Rosati, Alessandra; Basile, Anna; D'Auria, Raffaella; d'Avenia, Morena; De Marco, Margot; Falco, Antonia; Festa, Michelina; Guerriero, Luana; Iorio, Vittoria; Parente, Roberto; Pascale, Maria; Marzullo, Liberato; Franco, Renato; Arra, Claudio; Barbieri, Antonio; Rea, Domenica; Menichini, Giulio; Hahne, Michael; Bijlsma, Maarten; Barcaroli, Daniela; Sala, Gianluca; di Mola, Fabio Francesco; di Sebastiano, Pierluigi; Todoric, Jelena; Antonucci, Laura; Corvest, Vincent; Jawhari, Anass; Firpo, Matthew A; Tuveson, David A; Capunzo, Mario; Karin, Michael; De Laurenzi, Vincenzo; Turco, Maria Caterina

    2015-11-02

    The incidence and death rate of pancreatic ductal adenocarcinoma (PDAC) have increased in recent years, therefore the identification of novel targets for treatment is extremely important. Interactions between cancer and stromal cells are critically involved in tumour formation and development of metastasis. Here we report that PDAC cells secrete BAG3, which binds and activates macrophages, inducing their activation and the secretion of PDAC supporting factors. We also identify IFITM-2 as a BAG3 receptor and show that it signals through PI3K and the p38 MAPK pathways. Finally, we show that the use of an anti-BAG3 antibody results in reduced tumour growth and prevents metastasis formation in three different mouse models. In conclusion, we identify a paracrine loop involved in PDAC growth and metastatic spreading, and show that an anti-BAG3 antibody has therapeutic potential.

  3. Expression of Anti-apoptotic Protein BAG3 in Human Sebaceous Gland Carcinoma of the Eyelid.

    Science.gov (United States)

    Yunoki, Tatsuya; Tabuchi, Yoshiaki; Hayashi, Atsushi

    2017-04-01

    Bcl-2-associated athanogene 3 (BAG3), a co-chaperone of heat shock protein 70 (HSP70), has been shown to play a role in anti-apoptosis of various malignant tumors. In this study, the expression of BAG3 was examined in human sebaceous gland carcinoma of the eyelid. The expression of BAG3 was evaluated by immunohistochemistry of surgical samples from 5 patients with sebaceous gland carcinoma in the eyelid. BAG3 was positive diffusely in the cytoplasm in all patients. The average positive rate of BAG3 was 73.0±26.0% in tumor cells of all patients. BAG3 was highly expressed in sebaceous gland carcinoma of the eyelid. BAG3 may play an important role in the pathogenesis and progression of sebaceous gland carcinoma of the eyelid. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. BIOREACTOR WITH LID FOR EASY ACCESS TO INCUBATION CAVITY

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a bioreactor which is provided with a lid (13) that facilitates access to the incubation cavity. Specifically the end wall of the incubation cavity is constituted by the lid (13) so that removal of the cap renders the incubation cavity fully accessible.......There is provided a bioreactor which is provided with a lid (13) that facilitates access to the incubation cavity. Specifically the end wall of the incubation cavity is constituted by the lid (13) so that removal of the cap renders the incubation cavity fully accessible....

  5. Effectiveness of insecticide-incorporated bags to control stored-product beetles

    Science.gov (United States)

    Adults of seven stored-product beetle species were exposed on the inside and outside surfaces of polypropylene polymer bags incorporated with the insecticide deltamethrin (approx. concentration of 3,000 ppm; ZeroFly® Storage Bags (3g/kg). Beetles were exposed for 60, 120, and 180 min, and 1, 3 and 5...

  6. Efficient expansion of mesenchymal stromal cells in a disposable fixed bed culture system.

    Science.gov (United States)

    Mizukami, Amanda; Orellana, Maristela D; Caruso, Sâmia R; de Lima Prata, Karen; Covas, Dimas T; Swiech, Kamilla

    2013-01-01

    The need for efficient and reliable technologies for clinical-scale expansion of mesenchymal stromal cells (MSC) has led to the use of disposable bioreactors and culture systems. Here, we evaluate the expansion of cord blood-derived MSC in a disposable fixed bed culture system. Starting from an initial cell density of 6.0 × 10(7) cells, after 7 days of culture, it was possible to produce of 4.2(±0.8) × 10(8) cells, which represents a fold increase of 7.0 (±1.4). After enzymatic retrieval from Fibra-Cell disks, the cells were able to maintain their potential for differentiation into adipocytes and osteocytes and were positive for many markers common to MSC (CD73, CD90, and CD105). The results obtained in this study demonstrate that MSC can be efficiently expanded in the culture system. This novel approach presents several advantages over the current expansion systems, based on culture flasks or microcarrier-based spinner flasks and represents a key element for MSC cellular therapy according to GMP compliant clinical-scale production system. Copyright © 2013 American Institute of Chemical Engineers.

  7. Smaller self-inflating bags produce greater guideline consistent ventilation in simulated cardiopulmonary resuscitation

    Directory of Open Access Journals (Sweden)

    Boyle Malcolm J

    2009-02-01

    Full Text Available Abstract Background Suboptimal bag ventilation in cardiopulmonary resuscitation (CPR has demonstrated detrimental physiological outcomes for cardiac arrest patients. In light of recent guideline changes for resuscitation, there is a need to identify the efficacy of bag ventilation by prehospital care providers. The objective of this study was to evaluate bag ventilation in relation to operator ability to achieve guideline consistent ventilation rate, tidal volume and minute volume when using two different capacity self-inflating bags in an undergraduate paramedic cohort. Methods An experimental study using a mechanical lung model and a simulated adult cardiac arrest to assess the ventilation ability of third year Monash University undergraduate paramedic students. Participants were instructed to ventilate using 1600 ml and 1000 ml bags for a length of two minutes at the correct rate and tidal volume for a patient undergoing CPR with an advanced airway. Ventilation rate and tidal volume were recorded using an analogue scale with mean values calculated. Ethics approval was granted. Results Suboptimal ventilation with the use of conventional 1600 ml bag was common, with 77% and 97% of participants unable to achieve guideline consistent ventilation rates and tidal volumes respectively. Reduced levels of suboptimal ventilation arouse from the use of the smaller bag with a 27% reduction in suboptimal tidal volumes (p = 0.015 and 23% reduction in suboptimal minute volumes (p = 0.045. Conclusion Smaller self-inflating bags reduce the incidence of suboptimal tidal volumes and minute volumes and produce greater guideline consistent results for cardiac arrest patients.

  8. M1-transitions in the MIT bag model

    International Nuclear Information System (INIS)

    Hackman, R.H.; Deshpande, N.G.; Dicus, D.A.; Teplitz, V.L.

    1977-03-01

    In the MIT bag model, the M1-transitions of low lying hadrons are investigated. The following calculations are performed: 32 hadron masses are recomputed with a choice of bag parameters designed to give the correct values for the proton magnetic moment, μ/sub p/, and several masses, M/sub rho/ M/sub ω/ M/sub Δ/ M/sub Ω/, and M/sub D/; (2) eta, eta', eta/sub c/ mixing is computed in an untrustworthy approximation; and the widths for 38 M1-transitions are computed

  9. Runer bag ruder

    DEFF Research Database (Denmark)

    2015-01-01

    efterhånden ses på dem. Vejr og vind har gennem tiderne sat deres præg på de enestående mindesmærker. Og de mange turister, der hvert år besøger monumentområder, kommer også helt tæt på mindesmærkerne. Så tæt at Haralds sten udsættes for et alvorligt graffitihærværk i 2011. Se med i filmen ”Runer bag ruder...

  10. Efficacy of Bioremediation of Agricultural Runoff Using Bacterial Communities in Woodchip Bioreactors.

    Science.gov (United States)

    Mortensen, Z. H.; Leandro, M.; Silveus, J. M.

    2016-12-01

    California's agricultural sector is fundamental in the State's economic growth and is responsible for supplying a large portion of the country's produce. In order to meet the market's demand for crop production the region's agrarian landscape requires an abundance of nutrient rich irrigation. The resultant agricultural effluent is a source of increased nutrient content in California's watershed and groundwater systems, promoting eutrophication and contributing to negative impacts on local ecosystems and human health. Previous studies have examined the denitrification potential of woodchip bioreactors. However, research has been deficient regarding specific variables that may affect the remediation process. To evaluate the efficacy of woodchip bioreactors in remediating waters containing high nitrate concentrations, denitrification rates were examined and parameters such as temperature, laminar flow, and hydraulic residence times were measured to identify potential methods for increasing denitrification efficiency. By measuring the rate of denitrification in a controlled environment where potentially confounding factors can be manipulated, physical components affecting the efficiency of woodchip bioreactors were examined to assess effects. Our research suggests the implementation of woodchip bioreactors to treat agricultural runoff would significantly reduce the concentration of nitrate in agricultural effluent and contribute to the mitigation of negative impacts associated with agricultural irrigation. Future research should focus on the ability of woodchip bioreactors to successfully remediate other agricultural pollutants, such as phosphates and pesticides, to optimize the efficiency of the bioremediation process.

  11. Modeling of hydrodynamics in hollow fiber membrane bioreactor for mammalian cells cultivation

    Directory of Open Access Journals (Sweden)

    N. V. Menshutina

    2016-01-01

    Full Text Available The mathematical modelling in CFD-packages are powerfull instrument for design and calculation of any engineering tasks. CFD-package contains the set of programs that allow to model the different objects behavior based on the mathematical lows. ANSYS Fluent are widely used for modelling of biotechnological and chemical-technological processes. This package is convenient to describe their hydrodynamics. As cell cultivation is one of the actual scientific direction in modern biotechnology ANSYS Fluent was used to create the model of hollow fiber membrane bioreactor. The fibers are hollow cylindrical membrane to be used for cell cultivation. The criterion of process effectiveness for cell growth is full filling of the membrane surface by cells in the bioreactor. While the cell growth the fiber permeability is decreased which effects to feed flow through membrane pores. The specific feature of this process is to ensure such feed flow to deliver the optimal nutrition for the cells on the external membrane surface. The velocity distribution inside the fiber and in all bioreactor as a whole has been calculated based on mass an impulse conservation equations taking into account the mathematical model assumptions. The hydrodynamics analysis in hollow fiber membrane bioreactor is described by the three-dimensional model created in ANSYS Fluent. The specific features of one membrane model are considered and for whole bioreactor too.

  12. A bag adapted for the handling of a filtering element or filter unit

    International Nuclear Information System (INIS)

    Marshall, D.A.G.

    1980-01-01

    The invention relates to a transparent, flexible, synthetic plastics bag adapted to contain a filter element or filter unit so that the latter can be inserted into or removed from a filter casing or duct while being contained in the bag. The bag has a neck portion which is capable of being removably secured in an air-tight manner on to a part of the casing, and gloves or glove portions are provided in, or are formed in, the wall of the bag to permit handles on the filter element or unit to be grasped. (author)

  13. Combination of Electrochemical Processes with Membrane Bioreactors for Wastewater Treatment and Fouling Control: A Review

    OpenAIRE

    Ensano, Benny M. B.; Borea, Laura; Naddeo, Vincenzo; Belgiorno, Vincenzo; de Luna, Mark D. G.; Ballesteros, Florencio C.

    2016-01-01

    This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR) in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs) combine biodegradation, electrochemical and membrane filtration processes into one syst...

  14. Combination of electrochemical processes with membrane bioreactors for wastewater treatment and fouling control: A review

    OpenAIRE

    Benny Marie B. Ensano; Laura Borea; Vincenzo Naddeo; Vincenzo Belgiorno; Mark Daniel G. de Luna; Mark Daniel G. de Luna; Florencio C. Ballesteros, Jr.; Florencio C. Ballesteros, Jr.

    2016-01-01

    This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR) in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs) combine biodegradation, electrochemical and membrane filtration processes into one syst...

  15. Sulfate-reducing bacteria in anaerobic bioreactors

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the

  16. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    Science.gov (United States)

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  17. The hydrodynamics of air-filled bags for wave energy conversion

    DEFF Research Database (Denmark)

    Greaves, Deborah; Hann, Martyn; Kurniawan, Adi

    of a fabric encased within an array of longitudinal tendons. In the first configuration, the bag is floating and ballasted such that it pierces the free surface. In the second configuration, the bag is completely submerged and connected at its top to a rigid float and at its bottom to a weight. In the third...

  18. Behaviour of hadron matter within the bag model: Pt. 2

    International Nuclear Information System (INIS)

    Auberson, G.; Savatier, F.

    1988-01-01

    On the basis of the quantum theory of the vibrating bag developed in I, it is worked out the partition function of a gas of hadronic bags. This is done within the small deformation, Van der Waals approximation. The outcome is in full agreement with a previous, less elaborate model of deconfinement phase transition

  19. Identification of BAG3 target proteins in anaplastic thyroid cancer cells by proteomic analysis.

    Science.gov (United States)

    Galdiero, Francesca; Bello, Anna Maria; Spina, Anna; Capiluongo, Anna; Liuu, Sophie; De Marco, Margot; Rosati, Alessandra; Capunzo, Mario; Napolitano, Maria; Vuttariello, Emilia; Monaco, Mario; Califano, Daniela; Turco, Maria Caterina; Chiappetta, Gennaro; Vinh, Joëlle; Chiappetta, Giovanni

    2018-01-30

    BAG3 protein is an apoptosis inhibitor and is highly expressed in Anaplastic Thyroid Cancer. We investigated the entire set of proteins modulated by BAG3 silencing in the human anaplastic thyroid 8505C cancer cells by using the Stable-Isotope Labeling by Amino acids in Cell culture strategy combined with mass spectrometry analysis. By this approach we identified 37 up-regulated and 54 down-regulated proteins in BAG3-silenced cells. Many of these proteins are reportedly involved in tumor progression, invasiveness and resistance to therapies. We focused our attention on an oncogenic protein, CAV1, and a tumor suppressor protein, SERPINB2, that had not previously been reported to be modulated by BAG3. Their expression levels in BAG3-silenced cells were confirmed by qRT-PCR and western blot analyses, disclosing two novel targets of BAG3 pro-tumor activity. We also examined the dataset of proteins obtained by the quantitative proteomics analysis using two tools, Downstream Effect Analysis and Upstream Regulator Analysis of the Ingenuity Pathways Analysis software. Our analyses confirm the association of the proteome profile observed in BAG3-silenced cells with an increase in cell survival and a decrease in cell proliferation and invasion, and highlight the possible involvement of four tumor suppressor miRNAs and TP53/63 proteins in BAG3 activity.

  20. HIV-1 Tat protein induces glial cell autophagy through enhancement of BAG3 protein levels.

    Science.gov (United States)

    Bruno, Anna Paola; De Simone, Francesca Isabella; Iorio, Vittoria; De Marco, Margot; Khalili, Kamel; Sariyer, Ilker Kudret; Capunzo, Mario; Nori, Stefania Lucia; Rosati, Alessandra

    2014-01-01

    BAG3 protein has been described as an anti-apoptotic and pro-autophagic factor in several neoplastic and normal cells. We previously demonstrated that BAG3 expression is elevated upon HIV-1 infection of glial and T lymphocyte cells. Among HIV-1 proteins, Tat is highly involved in regulating host cell response to viral infection. Therefore, we investigated the possible role of Tat protein in modulating BAG3 protein levels and the autophagic process itself. In this report, we show that transfection with Tat raises BAG3 levels in glioblastoma cells. Moreover, BAG3 silencing results in highly reducing Tat- induced levels of LC3-II and increasing the appearance of sub G0/G1 apoptotic cells, in keeping with the reported role of BAG3 in modulating the autophagy/apoptosis balance. These results demonstrate for the first time that Tat protein is able to stimulate autophagy through increasing BAG3 levels in human glial cells.

  1. Lactic acid Production with in situ Extraction in Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Hamidreza Ghafouri Taleghani

    2017-01-01

    Full Text Available Background and Objective: Lactic acid is widely used in the food, chemical and pharmaceutical industries. The major problems associated with lactic acid production are substrate and end-product inhibition, and by-product formation. Membrane technologyrepresents one of the most effective processes for lactic acid production. The aim of this work is to increase cell density and lactic acid productivity due to reduced inhibition effect of substrate and product in membrane bioreactor.Material and Methods: In this work, lactic acid was produced from lactose in membrane bioreactor. A laboratory scale membrane bioreactor was designed and fabricated. Five types of commercial membranes were tested at the same operating conditions (transmembrane pressure: 500 KPa and temperature: 25°C. The effects of initial lactose concentration and dilution rate on biomass growth, lactic acid production and substrate utilization were evaluated.Results and Conclusion: The high lactose retention of 79% v v-1 and low lactic acid retention of 22% v v-1 were obtained with NF1 membrane; therefore, this membrane was selected for membrane bioreactor. The maximal productivity of 17.1 g l-1 h-1 was obtainedwith the lactic acid concentration of 71.5 g l-1 at the dilution rate of 0.24 h−1. The maximum concentration of lactic acid was obtained at the dilution rate of 0.04 h−1. The inhibiting effect of lactic acid was not observed at high initial lactose concentration. The critical lactose concentration at which the cell growth severely hampered was 150 g l-1. This study proved that membrane bioreactor had great advantages such as elimination of substrate and product inhibition, high concentration of process substrate, high cell density,and high lactic acid productivity.Conflict of interest: There is no conflict of interest.

  2. 76 FR 70965 - Polyethylene Retail Carrier Bags From Thailand: Correction to the Amended Final Results of...

    Science.gov (United States)

    2011-11-16

    ... Bags From Thailand: Correction to the Amended Final Results of Antidumping Duty Administrative Review... bags from Thailand for the period August 1, 2009, through July 31, 2010. The notice did not include the... bags from Thailand. See Polyethylene Retail Carrier Bags From Thailand: Amended Final Results of...

  3. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.

    Science.gov (United States)

    Lei, Ying; Ferdous, Zannatul

    2016-05-01

    With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016. © 2016 American Institute of Chemical Engineers.

  4. BAG3 elevation inhibits cell proliferation via direct interaction with G6PD in hepatocellular carcinomas.

    Science.gov (United States)

    Kong, De-Hui; Li, Si; Du, Zhen-Xian; Liu, Chuan; Liu, Bao-Qin; Li, Chao; Zong, Zhi-Hong; Wang, Hua-Qin

    2016-01-05

    Bcl-2 associated athanogene 3 (BAG3) contains multiple protein-binding motifs to mediate potential interactions with chaperons and/or other proteins, which is possibly ascribed to the multifaceted functions assigned to BAG3. The current study demonstrated that BAG3 directly interacted with glucose 6 phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway (PPP). BAG3 suppressed the PPP flux, de novo DNA synthesis and cell growth in hepatocellular carcinomas (HCCs). The growth defect of HCCs with forced BAG3 expression can be rescued by enforced G6PD expression. However, BAG3 elevation did not cause a reduction in cellular NADPH concentrations, another main product of G6PD. In addition, supplement of nucleosides alone was sufficient to recover the growth defect mediated by BAG3 elevation. Collectively, the current study established a tumor suppressor-like function of BAG3 via direct interaction with G6PD in HCCs at the cellular level.

  5. BAG3 directly interacts with mutated alphaB-crystallin to suppress its aggregation and toxicity.

    Directory of Open Access Journals (Sweden)

    Akinori Hishiya

    Full Text Available A homozygous disruption or genetic mutation of the bag3 gene causes progressive myofibrillar myopathy in mouse and human skeletal and cardiac muscle disorder while mutations in the small heat shock protein αB-crystallin gene (CRYAB are reported to be responsible for myofibrillar myopathy. Here, we demonstrate that BAG3 directly binds to wild-type αB-crystallin and the αB-crystallin mutant R120G, via the intermediate domain of BAG3. Peptides that inhibit this interaction in an in vitro binding assay indicate that two conserved Ile-Pro-Val regions of BAG3 are involved in the interaction with αB-crystallin, which is similar to results showing BAG3 binding to HspB8 and HspB6. BAG3 overexpression increased αB-crystallin R120G solubility and inhibited its intracellular aggregation in HEK293 cells. BAG3 suppressed cell death induced by αB-crystallin R120G overexpression in differentiating C2C12 mouse myoblast cells. Our findings indicate a novel function for BAG3 in inhibiting protein aggregation caused by the genetic mutation of CRYAB responsible for human myofibrillar myopathy.

  6. BAG3 Directly Interacts with Mutated alphaB-Crystallin to Suppress Its Aggregation and Toxicity

    Science.gov (United States)

    Hishiya, Akinori; Salman, Mortada Najem; Carra, Serena; Kampinga, Harm H.; Takayama, Shinichi

    2011-01-01

    A homozygous disruption or genetic mutation of the bag3 gene causes progressive myofibrillar myopathy in mouse and human skeletal and cardiac muscle disorder while mutations in the small heat shock protein αB-crystallin gene (CRYAB) are reported to be responsible for myofibrillar myopathy. Here, we demonstrate that BAG3 directly binds to wild-type αB-crystallin and the αB-crystallin mutant R120G, via the intermediate domain of BAG3. Peptides that inhibit this interaction in an in vitro binding assay indicate that two conserved Ile-Pro-Val regions of BAG3 are involved in the interaction with αB-crystallin, which is similar to results showing BAG3 binding to HspB8 and HspB6. BAG3 overexpression increased αB-crystallin R120G solubility and inhibited its intracellular aggregation in HEK293 cells. BAG3 suppressed cell death induced by αB-crystallin R120G overexpression in differentiating C2C12 mouse myoblast cells. Our findings indicate a novel function for BAG3 in inhibiting protein aggregation caused by the genetic mutation of CRYAB responsible for human myofibrillar myopathy. PMID:21423662

  7. BAG3 regulates ECM accumulation in renal proximal tubular cells induced by TGF-β1.

    Science.gov (United States)

    Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Li, De-Tian; Du, Zhen-Xian; Wang, Hua-Qin; Wang, Yan-Qiu

    2015-01-01

    Previously we have demonstrated that Bcl-2-associated athanogene 3 (BAG3) is increased in renal fibrosis using a rat unilateral ureteral obstruction model. The current study investigated the role of BAG3 in renal fibrosis using transforming growth factor (TGF)-β1-treated human proximal tubular epithelial (HK-2) cells. An upregulation of BAG3 in vitro models was observed, which correlated with the increased synthesis of extracellular matrix (ECM) proteins and expression of tissue-type plasminogen activator inhibitor (PAI)-1. Blockade of BAG3 induction by shorting hairpin RNA suppressed the expression of ECM proteins but had no effect on PAI-1 expression induced by TGF-β1. Forced overexpression of BAG3 selectively increased collagens. TGF-β1-induced BAG3 expression in HK-2 cells was attenuated by ERK1/2 and JNK MAPK inhibitors. In addition, forced BAG3 overexpression blocked attenuation of collagens expression by ERK1/2 and JNK inhibitors. These data suggest that ERK1/2 and JNK signaling events are involved in modulating the expression of BAG3, which would ultimately contribute to renal fibrosis by enhancing the synthesis and deposition of ECM proteins.

  8. A symbiotic gas exchange between bioreactors enhances microalgal biomass and lipid productivities: taking advantage of complementary nutritional modes.

    Science.gov (United States)

    Santos, C A; Ferreira, M E; da Silva, T Lopes; Gouveia, L; Novais, J M; Reis, A

    2011-08-01

    This paper describes the association of two bioreactors: one photoautotrophic and the other heterotrophic, connected by the gas phase and allowing an exchange of O(2) and CO(2) gases between them, benefiting from a symbiotic effect. The association of two bioreactors was proposed with the aim of improving the microalgae oil productivity for biodiesel production. The outlet gas flow from the autotrophic (O(2) enriched) bioreactor was used as the inlet gas flow for the heterotrophic bioreactor. In parallel, the outlet gas flow from another heterotrophic (CO(2) enriched) bioreactor was used as the inlet gas flow for the autotrophic bioreactor. Aside from using the air supplied from the auto- and hetero-trophic bioreactors as controls, one mixotrophic bioreactor was also studied and used as a model, for its claimed advantage of CO(2) and organic carbon being simultaneously assimilated. The microalga Chlorella protothecoides was chosen as a model due to its ability to grow under different nutritional modes (auto, hetero, and mixotrophic), and its ability to attain a high biomass productivity and lipid content, suitable for biodiesel production. The comparison between heterotrophic, autotrophic, and mixotrophic Chlorella protothecoides growth for lipid production revealed that heterotrophic growth achieved the highest biomass productivity and lipid content (>22%), and furthermore showed that these lipids had the most suitable fatty acid profile in order to produce high quality biodiesel. Both associations showed a higher biomass productivity (10-20%), when comparing the two separately operated bioreactors (controls) which occurred on the fourth day. A more remarkable result would have been seen if in actuality the two bioreactors had been inter-connected in a closed loop. The biomass productivity gain would have been 30% and the lipid productivity gain would have been 100%, as seen by comparing the productivities of the symbiotic assemblage with the sum of the two

  9. Analysis of the efficiency of recombinant Escherichia coli strain cultivation in a gas-vortex bioreactor.

    Science.gov (United States)

    Savelyeva, Anna V; Nemudraya, Anna A; Podgornyi, Vladimir F; Laburkina, Nadezhda V; Ramazanov, Yuriy A; Repkov, Andrey P; Kuligina, Elena V; Richter, Vladimir A

    2017-09-01

    The levels of aeration and mass transfer are critical parameters required for an efficient aerobic bioprocess, and directly depend on the design features of exploited bioreactors. A novel apparatus, using gas vortex for aeration and mass transfer processes, was constructed in the Center of Vortex Technologies (Novosibirsk, Russia). In this paper, we compared the efficiency of recombinant Escherichia coli strain cultivation using novel gas-vortex technology with conventional bioprocess technologies such as shake flasks and bioreactors with mechanical stirrers. We demonstrated that the system of aeration and agitation used in gas-vortex bioreactors provides 3.6 times higher volumetric oxygen transfer coefficient in comparison with mechanical bioreactor. The use of gas-vortex bioreactor for recombinant E. coli strain cultivation allows to increase the efficiency of target protein expression at 2.2 times for BL21(DE3)/pFK2 strain and at 3.5 times for auxotrophic C600/pRT strain (in comparison with stirred bioreactor). © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  10. Catalytic bioreactors and methods of using same

    Science.gov (United States)

    Worden, Robert Mark; Liu, Yangmu Chloe

    2017-07-25

    Various embodiments provide a bioreactor for producing a bioproduct comprising one or more catalytically active zones located in a housing and adapted to keep two incompatible gaseous reactants separated when in a gas phase, wherein each of the one or more catalytically active zones may comprise a catalytic component retainer and a catalytic component retained within and/or thereon. Each of the catalytically active zones may additionally or alternatively comprise a liquid medium located on either side of the catalytic component retainer. Catalytic component may include a microbial cell culture located within and/or on the catalytic component retainer, a suspended catalytic component suspended in the liquid medium, or a combination thereof. Methods of using various embodiments of the bioreactor to produce a bioproduct, such as isobutanol, are also provided.

  11. Comparison between moving bed-membrane bioreactor (MB-MBR) and membrane bioreactor (MBR) systems: influence of wastewater salinity variation.

    Science.gov (United States)

    Di Trapani, Daniele; Di Bella, Gaetano; Mannina, Giorgio; Torregrossa, Michele; Viviani, Gaspare

    2014-06-01

    Two pilot plant systems were investigated for the treatment of wastewater subject to a gradual increase of salinity. In particular, a membrane bioreactor (MBR) and a moving bed biofilm membrane bioreactor (MB-MBR) were analyzed. Carbon and ammonium removal, kinetic constants and membranes fouling rates have been assessed. Both plants showed very high efficiency in terms of carbon and ammonium removal and the gradual salinity increase led to a good acclimation of the biomass, as confirmed by the respirometric tests. Significant biofilm detachments from carriers were experienced, which contributed to increase the irreversible superficial cake deposition. However, this aspect prevented the pore fouling tendency in the membrane module of MB-MBR system. On the contrary, the MBR pilot, even showing a lower irreversible cake deposition, was characterized by a higher pore fouling tendency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Pion-nucleon scattering in the chiral bag model

    International Nuclear Information System (INIS)

    Israilov, Z.Z.; Musakhanov, M.M.

    1981-01-01

    Pion-nucleon scattering in the (3.3) resonance region in the framework of chiral bag model(CBM) is considered. The effective Hamiltonian of πNΔ-system in the framework of the CBM contains πNN, πNΔ, πΔΔ interaction terms with the formfactor which is essentially dependent on the size and shape of the quark bag. The iteration of the Born graphs of this model provides successful description of the (3.3) and (3.1) scattering where the values of the parameters agree with CBM [ru

  13. Linearized theory of inhomogeneous multiple 'water-bag' plasmas

    Science.gov (United States)

    Bloomberg, H. W.; Berk, H. L.

    1973-01-01

    Equations are derived for describing the inhomogeneous equilibrium and small deviations from the equilibrium, giving particular attention to systems with trapped particles. An investigation is conducted of periodic systems with a single trapped-particle water bag, taking into account the behavior of the perturbation equations at the turning points. An outline is provided concerning a procedure for obtaining the eigenvalues. The results of stability calculations connected with the sideband effects are considered along with questions regarding the general applicability of the multiple water-bag approach in stability calculations.

  14. Development and Psychometric Evaluation of the Brief Adolescent Gambling Screen (BAGS).

    Science.gov (United States)

    Stinchfield, Randy; Wynne, Harold; Wiebe, Jamie; Tremblay, Joel

    2017-01-01

    The purpose of this study was to develop and evaluate the initial reliability, validity and classification accuracy of a new brief screen for adolescent problem gambling. The three-item Brief Adolescent Gambling Screen (BAGS) was derived from the nine-item Gambling Problem Severity Subscale (GPSS) of the Canadian Adolescent Gambling Inventory (CAGI) using a secondary analysis of existing CAGI data. The sample of 105 adolescents included 49 females and 56 males from Canada who completed the CAGI, a self-administered measure of DSM-IV diagnostic criteria for Pathological Gambling, and a clinician-administered diagnostic interview including the DSM-IV diagnostic criteria for Pathological Gambling (both of which were adapted to yield DSM-5 Gambling Disorder diagnosis). A stepwise multivariate discriminant function analysis selected three GPSS items as the best predictors of a diagnosis of Gambling Disorder. The BAGS demonstrated satisfactory estimates of reliability, validity and classification accuracy and was equivalent to the nine-item GPSS of the CAGI and the BAGS was more accurate than the SOGS-RA. The BAGS estimates of classification accuracy include hit rate = 0.95, sensitivity = 0.88, specificity = 0.98, false positive rate = 0.02, and false negative rate = 0.12. Since these classification estimates are preliminary, derived from a relatively small sample size, and based upon the same sample from which the items were selected, it will be important to cross-validate the BAGS with larger and more diverse samples. The BAGS should be evaluated for use as a screening tool in both clinical and school settings as well as epidemiological surveys.

  15. Development and Psychometric Evaluation of the Brief Adolescent Gambling Screen (BAGS

    Directory of Open Access Journals (Sweden)

    Randy Stinchfield

    2017-12-01

    Full Text Available The purpose of this study was to develop and evaluate the initial reliability, validity and classification accuracy of a new brief screen for adolescent problem gambling. The three-item Brief Adolescent Gambling Screen (BAGS was derived from the nine-item Gambling Problem Severity Subscale (GPSS of the Canadian Adolescent Gambling Inventory (CAGI using a secondary analysis of existing CAGI data. The sample of 105 adolescents included 49 females and 56 males from Canada who completed the CAGI, a self-administered measure of DSM-IV diagnostic criteria for Pathological Gambling, and a clinician-administered diagnostic interview including the DSM-IV diagnostic criteria for Pathological Gambling (both of which were adapted to yield DSM-5 Gambling Disorder diagnosis. A stepwise multivariate discriminant function analysis selected three GPSS items as the best predictors of a diagnosis of Gambling Disorder. The BAGS demonstrated satisfactory estimates of reliability, validity and classification accuracy and was equivalent to the nine-item GPSS of the CAGI and the BAGS was more accurate than the SOGS-RA. The BAGS estimates of classification accuracy include hit rate = 0.95, sensitivity = 0.88, specificity = 0.98, false positive rate = 0.02, and false negative rate = 0.12. Since these classification estimates are preliminary, derived from a relatively small sample size, and based upon the same sample from which the items were selected, it will be important to cross-validate the BAGS with larger and more diverse samples. The BAGS should be evaluated for use as a screening tool in both clinical and school settings as well as epidemiological surveys.

  16. BAG3 promotes proliferation of ovarian cancer cells via post-transcriptional regulation of Skp2 expression.

    Science.gov (United States)

    Yan, Jing; Liu, Chuan; Jiang, Jing-Yi; Liu, Hans; Li, Chao; Li, Xin-Yu; Yuan, Ye; Zong, Zhi-Hong; Wang, Hua-Qin

    2017-10-01

    Bcl-2 associated athanogene 3 (BAG3) contains a modular structure, through which BAG3 interacts with a wide range of proteins, thereby affording its capacity to regulate multifaceted biological processes. BAG3 is often highly expressed and functions as a pro-survival factor in many cancers. However, the oncogenic potential of BAG3 remains not fully understood. The cell cycle regulator, S-phase kinase associated protein 2 (Skp2) is increased in various cancers and plays an important role in tumorigenesis. The current study demonstrated that BAG3 promoted proliferation of ovarian cancer cells via upregulation of Skp2. BAG3 stabilized Skp2 mRNA via its 3'-untranslated region (UTR). The current study demonstrated that BAG3 interacted with Skp2 mRNA. In addition, miR-21-5p suppressed Skp2 expression, which was compromised by forced BAG3 expression. These results indicated that at least some oncogenic functions of BAG3 were mediated through posttranscriptional regulation of Skp2 via antagonizing suppressive action of miR-21-5p in ovarian cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. BAG3 directly stabilizes Hexokinase 2 mRNA and promotes aerobic glycolysis in pancreatic cancer cells.

    Science.gov (United States)

    An, Ming-Xin; Li, Si; Yao, Han-Bing; Li, Chao; Wang, Jia-Mei; Sun, Jia; Li, Xin-Yu; Meng, Xiao-Na; Wang, Hua-Qin

    2017-12-04

    Aerobic glycolysis, a phenomenon known historically as the Warburg effect, is one of the hallmarks of cancer cells. In this study, we characterized the role of BAG3 in aerobic glycolysis of pancreatic ductal adenocarcinoma (PDAC) and its molecular mechanisms. Our data show that aberrant expression of BAG3 significantly contributes to the reprogramming of glucose metabolism in PDAC cells. Mechanistically, BAG3 increased Hexokinase 2 (HK2) expression, the first key enzyme involved in glycolysis, at the posttranscriptional level. BAG3 interacted with HK2 mRNA, and the degree of BAG3 expression altered recruitment of the RNA-binding proteins Roquin and IMP3 to the HK2 mRNA. BAG3 knockdown destabilized HK2 mRNA via promotion of Roquin recruitment, whereas BAG3 overexpression stabilized HK2 mRNA via promotion of IMP3 recruitment. Collectively, our results show that BAG3 promotes reprogramming of glucose metabolism via interaction with HK2 mRNA in PDAC cells, suggesting that BAG3 may be a potential target in the aerobic glycolysis pathway for developing novel anticancer agents. © 2017 An et al.

  18. Membrane bioreactors for enzymatic hydrolysis of lactose; Idrolisi enzimatica del lattosio con bioreattori a membrana

    Energy Technology Data Exchange (ETDEWEB)

    Pizzichini, M; Pilloton, R [ENEA, Casaccia (Italy). Area Energia e Innovazione; Pontecorvo, M; Mignogna, G; Fortunato, A; Beone, F

    1993-03-01

    Bioreactor systems obtained by cell or enzyme immobilization offer many advantages compared with native enzyme, intact cell systems or other biocatalysts. Thus, many attempts have been made to design and use new types of bioreactor systems in order to improve performance, enhance productivity and reduce environmental impacts. Membrane bioreactors, obtained by physical immobilization of biocatalysts, in polymeric membrane support, offer such practical advantages as: a continuous separation and transformation process with low product inhibition and suitable hydraulic configuration (backflushing recycling, ultrafiltrating). Specific membrane modules (Amicon VitaFiber), for bioreactor applications are being commercialized. Beta-galctosidase enzyme has successfully been immobilized in a hollow fiber and in ceramic modules to hydrolyze lactose in waste whey. This technical report presents the general properties and performances (permeability, washing procedures, hydraulic configurations, physical and chemical properties) of both, polymeric and ceramic supports, enzyme kinetics, physical and covalent immobilization, mathematical model of the bioreactor and on-line process monitoring.

  19. Workplace Exposure to Titanium Dioxide Nanopowder Released from a Bag Filter System

    Directory of Open Access Journals (Sweden)

    Jun Ho Ji

    2015-01-01

    Full Text Available Many researchers who use laboratory-scale synthesis systems to manufacture nanomaterials could be easily exposed to airborne nanomaterials during the research and development stage. This study used various real-time aerosol detectors to investigate the presence of nanoaerosols in a laboratory used to manufacture titanium dioxide (TiO2. The TiO2 nanopowders were produced via flame synthesis and collected by a bag filter system for subsequent harvesting. Highly concentrated nanopowders were released from the outlet of the bag filter system into the laboratory. The fractional particle collection efficiency of the bag filter system was only 20% at particle diameter of 100 nm, which is much lower than the performance of a high-efficiency particulate air (HEPA filter. Furthermore, the laboratory hood system was inadequate to fully exhaust the air discharged from the bag filter system. Unbalanced air flow rates between bag filter and laboratory hood systems could result in high exposure to nanopowder in laboratory settings. Finally, we simulated behavior of nanopowders released in the laboratory using computational fluid dynamics (CFD.

  20. Microbial Community Structure and Functions in Ethanol-Fed Sulfate Removal Bioreactors for Treatment of Mine Water

    Directory of Open Access Journals (Sweden)

    Malin Bomberg

    2017-09-01

    Full Text Available Sulfate-rich mine water must be treated before it is released into natural water bodies. We tested ethanol as substrate in bioreactors designed for biological sulfate removal from mine water containing up to 9 g L−1 sulfate, using granular sludge from an industrial waste water treatment plant as inoculum. The pH, redox potential, and sulfate and sulfide concentrations were measured twice a week over a maximum of 171 days. The microbial communities in the bioreactors were characterized by qPCR and high throughput amplicon sequencing. The pH in the bioreactors fluctuated between 5.0 and 7.7 with the highest amount of up to 50% sulfate removed measured around pH 6. Dissimilatory sulfate reducing bacteria (SRB constituted only between 1% and 15% of the bacterial communities. Predicted bacterial metagenomes indicated a high prevalence of assimilatory sulfate reduction proceeding to formation of l-cystein and acetate, assimilatory and dissimilatory nitrate reduction, denitrification, and oxidation of ethanol to acetaldehyde with further conversion to ethanolamine, but not to acetate. Despite efforts to maintain optimal conditions for biological sulfate reduction in the bioreactors, only a small part of the microorganisms were SRB. The microbial communities were highly diverse, containing bacteria, archaea, and fungi, all of which affected the overall microbial processes in the bioreactors. While it is important to monitor specific physicochemical parameters in bioreactors, molecular assessment of the microbial communities may serve as a tool to identify biological factors affecting bioreactor functions and to optimize physicochemical attributes for ideal bioreactor performance.

  1. On relation between the quark-gluon bag surface tension and the colour tube string tension

    International Nuclear Information System (INIS)

    Bugaev, K.A.; Zinovjev, G.M.

    2010-01-01

    We revisit the bag phenomenology of deconfining phase transition aiming to replenish it by introducing systematically the bag surface tension. Comparing the free energies of such bags and the strings confining the static quark-antiquark pair, we express the string tension in terms of the bag surface tension and the bulk pressure in order to estimate the bag characteristics using the lattice QCD (LQCD) data. Our analysis of the bag entropy density demonstrates that the surface tension coefficient is amazingly negative at the cross-over (continuous transition). The approach developed allows us to naturally account for an origin of a pronounced maximum (observed in the LQCD studies) in the behaviour of heavy quark-antiquark pair entropy. The vicinity of the (tri-)critical endpoint is also analyzed to clarify the meaning of vanishing surface tension coefficient.

  2. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qiyong; Tian, Ying; Wang, Shen; Ko, Jae Hac, E-mail: jaehacko@pkusz.edu.cn

    2015-07-15

    Highlights: • Temporary aeration shortened the initial acid inhibition phase for methanogens. • COD decreased faster in the hybrid bioreactor than that in the anaerobic control. • Methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. • MSW settlement increased with increasing the frequency of intermittent aeration. - Abstract: Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10 months. The hybrid bioreactors were operated in an aerobic–anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia–nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75 d and 60 d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens.

  3. Comment on bag models with spontaneously broken color symmetry

    International Nuclear Information System (INIS)

    Jandel, M.

    1985-01-01

    A recently suggested field-theoretic bag model, where gluons are confined via a Higgs mechanism, is discussed. It is found that the proposed model creates gluon boundary conditions that break global SU/sub c/(3) invariance. A modified scheme that removes this anomaly is suggested. However, some severe generic problems remain. Examples are the lack of a suppression mechanism for states with open color and the large surface energy of the bag states

  4. Construction and characterization of a novel vocal fold bioreactor.

    Science.gov (United States)

    Zerdoum, Aidan B; Tong, Zhixiang; Bachman, Brendan; Jia, Xinqiao

    2014-08-01

    In vitro engineering of mechanically active tissues requires the presentation of physiologically relevant mechanical conditions to cultured cells. To emulate the dynamic environment of vocal folds, a novel vocal fold bioreactor capable of producing vibratory stimulations at fundamental phonation frequencies is constructed and characterized. The device is composed of a function generator, a power amplifier, a speaker selector and parallel vibration chambers. Individual vibration chambers are created by sandwiching a custom-made silicone membrane between a pair of acrylic blocks. The silicone membrane not only serves as the bottom of the chamber but also provides a mechanism for securing the cell-laden scaffold. Vibration signals, generated by a speaker mounted underneath the bottom acrylic block, are transmitted to the membrane aerodynamically by the oscillating air. Eight identical vibration modules, fixed on two stationary metal bars, are housed in an anti-humidity chamber for long-term operation in a cell culture incubator. The vibration characteristics of the vocal fold bioreactor are analyzed non-destructively using a Laser Doppler Vibrometer (LDV). The utility of the dynamic culture device is demonstrated by culturing cellular constructs in the presence of 200-Hz sinusoidal vibrations with a mid-membrane displacement of 40 µm. Mesenchymal stem cells cultured in the bioreactor respond to the vibratory signals by altering the synthesis and degradation of vocal fold-relevant, extracellular matrix components. The novel bioreactor system presented herein offers an excellent in vitro platform for studying vibration-induced mechanotransduction and for the engineering of functional vocal fold tissues.

  5. BAG3 sensitizes cancer cells exposed to DNA damaging agents via direct interaction with GRP78.

    Science.gov (United States)

    Kong, De-Hui; Zhang, Qiang; Meng, Xin; Zong, Zhi-Hong; Li, Chao; Liu, Bao-Qin; Guan, Yifu; Wang, Hua-Qin

    2013-12-01

    Bcl-2 associated athanogene 3 (BAG3) has a modular structure that contains a BAG domain, a WW domain, a proline-rich (PxxP) domain to mediate potential interactions with chaperons and other proteins that participate in more than one signal transduction. In search for novel interacting partners, the current study identified that 78kDa glucose-regulated protein (GRP78) was a novel partner interacting with BAG3. Interaction between GRP78 and BAG3 was confirmed by coimmunoprecipitation and glutathione S-transferase (GST) pulldown. We also identified that the ATPase domain of GRP78 and BAG domain of BAG3 mediated their interaction. Counterintuitive for a prosurvival protein, BAG3 was found to promote the cytotoxicity of breast cancer MCF7, thyroid cancer FRO and glioma U87 cells subjected to genotoxic stress. In addition, the current study demonstrated that BAG3 interfered with the formation of the antiapoptotic GRP78-procaspase-7 complex, which resulted in an increased genotoxic stress-induced cytotoxicity in cancer cells. Furthermore, overexpression of GRP78 significantly blocked the enhancing effects of BAG3 on activation of caspase-7 and induction of apoptosis by genotoxic stress. Overall, these results suggested that through direct interaction BAG3 could prevent the antiapoptotic effect of GRP78 upon genotoxic stress. © 2013.

  6. The existing situation and challenges regarding the use of plastic carrier bags in Europe.

    Science.gov (United States)

    Kasidoni, Maria; Moustakas, Konstantinos; Malamis, Dimitris

    2015-05-01

    Since day one, retailers and consumers have favoured plastic carrier bags. However, owing to the numerous environmental disadvantages, lightweight plastic carrier bags have been drawing the attention of the European Union competent authorities. Therefore, many European Union member states have taken action so as to reduce the use of plastic carrier bags. Based on the existing legislation and voluntary initiatives for the reduction of lightweight plastic carrier bags, the challenges and achieved outcomes from the implemented policy options in the various European Union member states are discussed and commented regarding the forthcoming transposition of the 'Directive 94/62/EC on packaging and packaging waste to reduce the consumption of lightweight plastic carrier bags' into the European Union member states' national law. © The Author(s) 2015.

  7. Microscale 3D Liver Bioreactor for In Vitro Hepatotoxicity Testing under Perfusion Conditions

    Directory of Open Access Journals (Sweden)

    Nora Freyer

    2018-03-01

    Full Text Available The accurate prediction of hepatotoxicity demands validated human in vitro models that can close the gap between preclinical animal studies and clinical trials. In this study we investigated the response of primary human liver cells to toxic drug exposure in a perfused microscale 3D liver bioreactor. The cellularized bioreactors were treated with 5, 10, or 30 mM acetaminophen (APAP used as a reference substance. Lactate production significantly decreased upon treatment with 30 mM APAP (p < 0.05 and ammonia release significantly increased in bioreactors treated with 10 or 30 mM APAP (p < 0.0001, indicating APAP-induced dose-dependent toxicity. The release of prostaglandin E2 showed a significant increase at 30 mM APAP (p < 0.05, suggesting an inflammatory reaction towards enhanced cellular stress. The expression of genes involved in drug metabolism, antioxidant reactions, urea synthesis, and apoptosis was differentially influenced by APAP exposure. Histological examinations revealed that primary human liver cells in untreated control bioreactors were reorganized in tissue-like cell aggregates. These aggregates were partly disintegrated upon APAP treatment, lacking expression of hepatocyte-specific proteins and transporters. In conclusion, our results validate the suitability of the microscale 3D liver bioreactor to detect hepatotoxic effects of drugs in vitro under perfusion conditions.

  8. Microscale 3D Liver Bioreactor for In Vitro Hepatotoxicity Testing under Perfusion Conditions.

    Science.gov (United States)

    Freyer, Nora; Greuel, Selina; Knöspel, Fanny; Gerstmann, Florian; Storch, Lisa; Damm, Georg; Seehofer, Daniel; Foster Harris, Jennifer; Iyer, Rashi; Schubert, Frank; Zeilinger, Katrin

    2018-03-15

    The accurate prediction of hepatotoxicity demands validated human in vitro models that can close the gap between preclinical animal studies and clinical trials. In this study we investigated the response of primary human liver cells to toxic drug exposure in a perfused microscale 3D liver bioreactor. The cellularized bioreactors were treated with 5, 10, or 30 mM acetaminophen (APAP) used as a reference substance. Lactate production significantly decreased upon treatment with 30 mM APAP ( p < 0.05) and ammonia release significantly increased in bioreactors treated with 10 or 30 mM APAP ( p < 0.0001), indicating APAP-induced dose-dependent toxicity. The release of prostaglandin E2 showed a significant increase at 30 mM APAP ( p < 0.05), suggesting an inflammatory reaction towards enhanced cellular stress. The expression of genes involved in drug metabolism, antioxidant reactions, urea synthesis, and apoptosis was differentially influenced by APAP exposure. Histological examinations revealed that primary human liver cells in untreated control bioreactors were reorganized in tissue-like cell aggregates. These aggregates were partly disintegrated upon APAP treatment, lacking expression of hepatocyte-specific proteins and transporters. In conclusion, our results validate the suitability of the microscale 3D liver bioreactor to detect hepatotoxic effects of drugs in vitro under perfusion conditions.

  9. Effect of Salted Ice Bags on Surface and Intramuscular Tissue Cooling and Rewarming Rates.

    Science.gov (United States)

    Hunter, Eric J; Ostrowski, Jennifer; Donahue, Matthew; Crowley, Caitlyn; Herzog, Valerie

    2016-02-01

    Many researchers have investigated the effectiveness of different cryotherapy agents at decreasing intramuscular tissue temperatures. However, no one has looked at the effectiveness of adding salt to an ice bag. To compare the cooling effectiveness of different ice bags (wetted, salted cubed, and salted crushed) on cutaneous and intramuscular temperatures. Repeated-measures counterbalanced design. University research laboratory. 24 healthy participants (13 men, 11 women; age 22.46 ± 2.33 y, height 173.25 ± 9.78 cm, mass 74.51 ± 17.32 kg, subcutaneous thickness 0.63 ± 0.27 cm) with no lower-leg injuries, vascular diseases, sensitivity to cold, compromised circulation, or chronic use of NSAIDs. Ice bags made of wetted ice (2000 mL ice and 300 mL water), salted cubed ice (intervention A; 2000 mL of cubed ice and 1/2 tablespoon of salt), and salted crushed ice (intervention B; 2000 mL of crushed ice and 1/2 tablespoon of salt) were applied to the posterior gastrocnemius for 30 min. Each participant received all conditions with at least 4 d between treatments. Cutaneous and intramuscular (2 cm plus adipose thickness) temperatures of nondominant gastrocnemius were measured during a 10-min baseline period, a 30-min treatment period, and a 45-min rewarming period. Differences from baseline were observed for all treatments. The wetted-ice and salted-cubed-ice bags produced significantly lower intramuscular temperatures than the salted-crushed-ice bag. Wetted-ice bags produced the greatest temperature change for cutaneous tissues. Wetted- and salted-cubed-ice bags were equally effective at decreasing intramuscular temperature at 2 cm subadipose. Clinical practicality may favor salted-ice bags over wetted-ice bags.

  10. BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta: implications for a proteasome-to-autophagy switch.

    Science.gov (United States)

    Minoia, Melania; Boncoraglio, Alessandra; Vinet, Jonathan; Morelli, Federica F; Brunsting, Jeanette F; Poletti, Angelo; Krom, Sabine; Reits, Eric; Kampinga, Harm H; Carra, Serena

    2014-09-01

    Eukaryotic cells use autophagy and the ubiquitin-proteasome system as their major protein degradation pathways. Upon proteasomal impairment, cells switch to autophagy to ensure proper clearance of clients (the proteasome-to-autophagy switch). The HSPA8 and HSPA1A cochaperone BAG3 has been suggested to be involved in this switch. However, at present it is still unknown whether and to what extent BAG3 can indeed reroute proteasomal clients to the autophagosomal pathway. Here, we show that BAG3 induces the sequestration of ubiquitinated clients into cytoplasmic puncta colabeled with canonical autophagy linkers and markers. Following proteasome inhibition, BAG3 upregulation significantly contributes to the compensatory activation of autophagy and to the degradation of the (poly)ubiquitinated proteins. BAG3 binding to the ubiquitinated clients occurs through the BAG domain, in competition with BAG1, another BAG family member, that normally directs ubiquitinated clients to the proteasome. Therefore, we propose that following proteasome impairment, increasing the BAG3/BAG1 ratio ensures the "BAG-instructed proteasomal to autophagosomal switch and sorting" (BIPASS).

  11. Computational fluid dynamics modeling of momentum transport in rotating wall perfused bioreactor for cartilage tissue engineering.

    Science.gov (United States)

    Cinbiz, Mahmut N; Tığli, R Seda; Beşkardeş, Işil Gerçek; Gümüşderelioğlu, Menemşe; Colak, Uner

    2010-11-01

    In this study, computational fluid dynamics (CFD) analysis of a rotating-wall perfused-vessel (RWPV) bioreactor is performed to characterize the complex hydrodynamic environment for the simulation of cartilage development in RWPV bioreactor in the presence of tissue-engineered cartilage constructs, i.e., cell-chitosan scaffolds. Shear stress exerted on chitosan scaffolds in bioreactor was calculated for different rotational velocities in the range of 33-38 rpm. According to the calculations, the lateral and lower surfaces were exposed to 0.07926-0.11069 dyne/cm(2) and 0.05974-0.08345 dyne/cm(2), respectively, while upper surfaces of constructs were exposed to 0.09196-0.12847 dyne/cm(2). Results validate adequate hydrodynamic environment for scaffolds in RWPV bioreactor for cartilage tissue development which concludes the suitability of operational conditions of RWPV bioreactor. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Comparison of storage stability of odorous VOCs in polyester aluminum and polyvinyl fluoride Tedlar® bags.

    Science.gov (United States)

    Kim, Yong-Hyun; Kim, Ki-Hyun; Jo, Sang-Hee; Jeon, Eui-Chan; Sohn, Jong Ryeul; Parker, David B

    2012-01-27

    Whole air sampling using containers such as flexible bags or rigid canisters is commonly used to collect samples of volatile organic compounds (VOC) in air. The objective of this study was to compare the stability of polyester aluminum (PEA) and polyvinyl fluoride (PVF, brand name Tedlar(®)) bags for gaseous VOC sampling. Eight VOC standards (benzene, toluene, p-xylene, styrene, methyl ethyl ketone, methyl isobutyl ketone, butyl acetate, and isobutyl alcohol) were placed into each bag at storage times of 0, 2, and 3 days prior to analyses by gas chromatography/mass spectrometry (GC/MS). From each bag representing each storage day, samples of 3 different mass loadings were withdrawn and analyzed to derive response factors (RF) of each chemical between the slope of the GC response (y-axis) vs. loaded mass (x-axis). The relative recoveries (RR) of VOC, if derived by dividing RF value of a given storage day by that of 0 day, varied by time, bag type, and VOC type. If the RR values after three days are compared, those of methyl isobutyl ketone were the highest with 96 (PVF) and 99% (PEA); however, the results of isobutyl alcohol were highly contrasting between the two bags with 31 and 94%, respectively. Differences in RR values between the two bag types increased with storage time, such that RR of PEA bags (88±10%) were superior to those of PVF bags (73±22%) after three days, demonstrating that VOC in PEA bags were more stable than in PVF bags. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Yolo County's Accelerated Anaerobic and Aerobic Composting (Full-Scale Controlled Landfill Bioreactor) Project

    Science.gov (United States)

    Yazdani, R.; Kieffer, J.; Akau, H.; Augenstein, D.

    2002-12-01

    Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for about 217 million tons of waste annually (U.S. EPA, 1997) and has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and economic growth will continue to render landfilling as an important and necessary component of solid waste management. Yolo County Department of Planning and Public Works, Division of Integrated Waste Management is demonstrating a new landfill technology called Bioreactor Landfill to better manage solid waste. In a Bioreactor Landfill, controlled quantities of liquid (leachate, groundwater, gray-water, etc.) are added and recirculated to increase the moisture content of the waste and improve waste decomposition. As demonstrated in a small-scale demonstration project at the Yolo County Central Landfill in 1995, this process significantly increases the biodegradation rate of waste and thus decreases the waste stabilization and composting time (5 to 10 years) relative to what would occur within a conventional landfill (30 to 50 years or more). When waste decomposes anaerobically (in absence of oxygen), it produces landfill gas (biogas). Biogas is primarily a mixture of methane, a potent greenhouse gas, carbon dioxide, and small amounts of Volatile Organic Compounds (VOC's) which can be recovered for electricity or other uses. Other benefits of a bioreactor landfill composting operation include increased landfill waste settlement which increases in landfill capacity and life, improved leachate chemistry, possible reduction of landfill post-closure management time, opportunity to explore decomposed waste for landfill mining, and abatement of greenhouse gases through highly efficient methane capture over a much shorter period of time than is typical of waste management through conventional landfilling. This project also investigates the aerobic decomposition of waste of 13,000 tons of waste (2.5 acre) for

  14. A review of some parameters involved in fluidized bed bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Wright, P.C. [School of Chemical Engineering and Industrial Chemistry, The Univ. of New South Wales, Sydney (Australia); Raper, J.A. [School of Chemical Engineering and Industrial Chemistry, The Univ. of New South Wales, Sydney (Australia)

    1996-02-01

    Three-phase fluidized bed bioreactors have advantages over conventional chemical reaction systems. There is a lack of agreement over most major operational conditions, and a wide range of design variables are open to question. A large body of recent work in the field has been reviewed, with a degree of historical comparison and discussion. It has been found that aspects of fluidized bed biofilm reactors of vital importance include: choice of solid media, gas and liquid loadings, bacterial type and reactor mechanical design. A large proportion of the work in the field of three-phase fluidization is non-biologically specific, or not tested on a bacterially inoculated system. The majority of three-phase fluidized bed bioreactor work is in the field of water treatment. Although this work has highlighted the potential for use of bio-fluidized beds for this application, there are still specific problems hinderin the large scale industrial acceptance of three-phase fluidized bed bioreactors. (orig.)

  15. Membrane bioreactors' potential for ethanol and biogas production: a review.

    Science.gov (United States)

    Ylitervo, Päivi; Akinbomia, Julius; Taherzadeha, Mohammad J

    2013-01-01

    Companies developing and producing membranes for different separation purposes, as well as the market for these, have markedly increased in numbers over the last decade. Membrane and separation technology might well contribute to making fuel ethanol and biogas production from lignocellulosic materials more economically viable and productive. Combining biological processes with membrane separation techniques in a membrane bioreactor (MBR) increases cell concentrations extensively in the bioreactor. Such a combination furthermore reduces product inhibition during the biological process, increases product concentration and productivity, and simplifies the separation of product and/or cells. Various MBRs have been studied over the years, where the membrane is either submerged inside the liquid to be filtered, or placed in an external loop outside the bioreactor. All configurations have advantages and drawbacks, as reviewed in this paper. The current review presents an account of the membrane separation technologies, and the research performed on MBRs, focusing on ethanol and biogas production. The advantages and potentials of the technology are elucidated.

  16. Topological and nontopological solutions for the chiral bag model with constituent quarks

    International Nuclear Information System (INIS)

    Sveshnikov, K.; Malakhov, I.; Khalili, M.; Fedorov, S.

    2002-01-01

    The three-phase version of the hybrid chiral bag model, containing the phase of asymptotic freedom, the hadronization phase as well as the intermediate phase of constituent quarks is proposed. For this model the self-consistent solutions of different topology are found in (1 + 1)D with due regard for fermion vacuum polarization effects. The renormalized total energy of the bag is studied as a function of its geometry and topological charge. It is shown that in the case of nonzero topological charge there exists a set of configurations being the local minima of the total energy of the bag and containing all the three phases, while in the nontopological case the minimum of the total energy of the bag corresponds to vanishing size of the phase of asymptotic freedom

  17. Biogas Production from Citrus Waste by Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Rachma Wikandari

    2014-08-01

    Full Text Available Rapid acidification and inhibition by d-limonene are major challenges of biogas production from citrus waste. As limonene is a hydrophobic chemical, this challenge was encountered using hydrophilic polyvinylidine difluoride (PVDF membranes in a biogas reactor. The more sensitive methane-producing archaea were encapsulated in the membranes, while freely suspended digesting bacteria were present in the culture as well. In this membrane bioreactor (MBR, the free digesting bacteria digested the citrus wastes and produced soluble compounds, which could pass through the membrane and converted to biogas by the encapsulated cell. As a control experiment, similar digestions were carried out in bioreactors containing the identical amount of just free cells. The experiments were carried out in thermophilic conditions at 55 °C, and hydraulic retention time of 30 days. The organic loading rate (OLR was started with 0.3 kg VS/m3/day and gradually increased to 3 kg VS/m3/day. The results show that at the highest OLR, MBR was successful to produce methane at 0.33 Nm3/kg VS, while the traditional free cell reactor reduced its methane production to 0.05 Nm3/kg VS. Approximately 73% of the theoretical methane yield was achieved using the membrane bioreactor.

  18. Loss-of-function mutations in co-chaperone BAG3 destabilize small HSPs and cause cardiomyopathy.

    Science.gov (United States)

    Fang, Xi; Bogomolovas, Julius; Wu, Tongbin; Zhang, Wei; Liu, Canzhao; Veevers, Jennifer; Stroud, Matthew J; Zhang, Zhiyuan; Ma, Xiaolong; Mu, Yongxin; Lao, Dieu-Hung; Dalton, Nancy D; Gu, Yusu; Wang, Celine; Wang, Michael; Liang, Yan; Lange, Stephan; Ouyang, Kunfu; Peterson, Kirk L; Evans, Sylvia M; Chen, Ju

    2017-08-01

    Defective protein quality control (PQC) systems are implicated in multiple diseases. Molecular chaperones and co-chaperones play a central role in functioning PQC. Constant mechanical and metabolic stress in cardiomyocytes places great demand on the PQC system. Mutation and downregulation of the co-chaperone protein BCL-2-associated athanogene 3 (BAG3) are associated with cardiac myopathy and heart failure, and a BAG3 E455K mutation leads to dilated cardiomyopathy (DCM). However, the role of BAG3 in the heart and the mechanisms by which the E455K mutation leads to DCM remain obscure. Here, we found that cardiac-specific Bag3-KO and E455K-knockin mice developed DCM. Comparable phenotypes in the 2 mutants demonstrated that the E455K mutation resulted in loss of function. Further experiments revealed that the E455K mutation disrupted the interaction between BAG3 and HSP70. In both mutants, decreased levels of small heat shock proteins (sHSPs) were observed, and a subset of proteins required for cardiomyocyte function was enriched in the insoluble fraction. Together, these observations suggest that interaction between BAG3 and HSP70 is essential for BAG3 to stabilize sHSPs and maintain cardiomyocyte protein homeostasis. Our results provide insight into heart failure caused by defects in BAG3 pathways and suggest that increasing BAG3 protein levels may be of therapeutic benefit in heart failure.

  19. Cardiac Dysfunction in HIV-1 Transgenic Mouse: Role of Stress and BAG3.

    Science.gov (United States)

    Cheung, Joseph Y; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Tilley, Douglas G; Gao, Erhe; Koch, Walter J; Rabinowitz, Joseph; Klotman, Paul E; Khalili, Kamel; Feldman, Arthur M

    2015-08-01

    Since highly active antiretroviral therapy improved long-term survival of acquired immunodeficiency syndrome (AIDS) patients, AIDS cardiomyopathy has become an increasingly relevant clinical problem. We used human immunodeficiency virus (HIV)-1 transgenic (Tg26) mouse to explore molecular mechanisms of AIDS cardiomyopathy. Tg26 mice had significantly lower left ventricular (LV) mass and smaller end-diastolic and end-systolic LV volumes. Under basal conditions, cardiac contractility and relaxation and single myocyte contraction dynamics were not different between wild-type (WT) and Tg26 mice. Ten days after open heart surgery, contractility and relaxation remained significantly depressed in Tg26 hearts, suggesting that Tg26 mice did not tolerate surgical stress well. To simulate heart failure in which expression of Bcl2-associated athanogene 3 (BAG3) is reduced, we down-regulated BAG3 by small hairpin ribonucleic acid in WT and Tg26 hearts. BAG3 down-regulation significantly reduced contractility in Tg26 hearts. BAG3 overexpression rescued contractile abnormalities in myocytes expressing the HIV-1 protein Tat. We conclude: (i) Tg26 mice exhibit normal contractile function at baseline; (ii) Tg26 mice do not tolerate surgical stress well; (iii) BAG3 down-regulation exacerbated cardiac dysfunction in Tg26 mice; (iv) BAG3 overexpression rescued contractile abnormalities in myocytes expressing HIV-1 protein Tat; and (v) BAG3 may occupy a role in pathogenesis of AIDS cardiomyopathy. © 2015 Wiley Periodicals, Inc.

  20. Effects of Density-Dependent Bag Constant and Strange Star Rotation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qiao-Er; GUO Hua

    2003-01-01

    With the emphasis on the effects of the density-dependent bag constant and the rotation of strange star the limiting mass of strange star is calculated. The obtained results show that the limiting mass and the corresponding radius of strange star increase as the rotation frequency increases, and tend to be lowered when the density-dependent bag constant is considered.

  1. The center-of-mass bag model and the Lorentz-boost

    International Nuclear Information System (INIS)

    Wang, X.M.

    1984-01-01

    A center-of-mass (CM) bag model and its cavity approximation are suggested by introducing a phenomenological four-potential of confinement and the CM four-vector. This model, equivalent to the MIT version on the rest CM-frame, seems to provide a field-theory interpretation of our previous assumptions about the collective motion of bagged quarks and can be readily quantized. (orig.)

  2. Light hadrons in the bag model with broken chiral symmetry

    International Nuclear Information System (INIS)

    Efrosinin, V.P.; Zaikin, D.A.

    1987-01-01

    A version of the bag model with broken chiral symmetry is proposed. A satisfactory description of the experimental data on light hadrons including the pion is obtained. The estimate of the pion-nucleon σ term is given in the framework of this model. The pion and kaon decay constants are calculated. The centre-of-mass motion problem in bag models is discussed

  3. The bag model and the Nambu-Goldstone pion

    International Nuclear Information System (INIS)

    Lee, H.C.; Ho-Kim, Q.

    1983-01-01

    The MIT bag model for the pion is improved and extended in such a way that the pion does not have spurious center-of-mass motions; perturbative gluon contributions to the pion mass msub(π) and decay constant fsub(π) are both calculated to lowest order in αsub(s). The pion is a Nambu-Goldstone boson in the sense that the vacuum in the bag refers to massive constituent quarks, but not so massless current quarks. The transformation of Nambu and Jona-Lasinio between massive and massless quarks is utilized in the computation of fsub(π), the result of which strongly suggests that quarks in the pion are correlated, characterized by a correlation momentum which is proportional 300 MeV/c. The vacuum expectation value for the massless quark condensate is calculated to be proportional0.04 GeV 3 , corresponding to a current quark mass of proportional4 MeV. The requirement that msub(π) approaches zero in a manner consistent with PCAC constrains the bag energy to be msub(π)/4. (orig.)

  4. Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, Vertical-Wheel bioreactor system: Impact of bioreactor design on performance of microcarrier-based cell culture processes.

    Science.gov (United States)

    Sousa, Marcos F Q; Silva, Marta M; Giroux, Daniel; Hashimura, Yas; Wesselschmidt, Robin; Lee, Brian; Roldão, António; Carrondo, Manuel J T; Alves, Paula M; Serra, Margarida

    2015-01-01

    Anchorage-dependent cell cultures are used for the production of viruses, viral vectors, and vaccines, as well as for various cell therapies and tissue engineering applications. Most of these applications currently rely on planar technologies for the generation of biological products. However, as new cell therapy product candidates move from clinical trials towards potential commercialization, planar platforms have proven to be inadequate to meet large-scale manufacturing demand. Therefore, a new scalable platform for culturing anchorage-dependent cells at high cell volumetric concentrations is urgently needed. One promising solution is to grow cells on microcarriers suspended in single-use bioreactors. Toward this goal, a novel bioreactor system utilizing an innovative Vertical-Wheel™ technology was evaluated for its potential to support scalable cell culture process development. Two anchorage-dependent human cell types were used: human lung carcinoma cells (A549 cell line) and human bone marrow-derived mesenchymal stem cells (hMSC). Key hydrodynamic parameters such as power input, mixing time, Kolmogorov length scale, and shear stress were estimated. The performance of Vertical-Wheel bioreactors (PBS-VW) was then evaluated for A549 cell growth and oncolytic adenovirus type 5 production as well as for hMSC expansion. Regarding the first cell model, higher cell growth and number of infectious viruses per cell were achieved when compared with stirred tank (ST) bioreactors. For the hMSC model, although higher percentages of proliferative cells could be reached in the PBS-VW compared with ST bioreactors, no significant differences in the cell volumetric concentration and expansion factor were observed. Noteworthy, the hMSC population generated in the PBS-VW showed a significantly lower percentage of apoptotic cells as well as reduced levels of HLA-DR positive cells. Overall, these results showed that process transfer from ST bioreactor to PBS-VW, and scale-up was

  5. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration

    Science.gov (United States)

    Colon, Guillermo

    1995-01-01

    The CELSS (controlled ecological life support system) resource recovery system, which is a waste processing system, uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. The anaerobic degradation of the inedible biomass by means of culture of rumen bacteria,generates organic compounds such as volatile fatty acids (acetic, propionic, butyric, VFA) and ammonia. The presence of VFA in the bioreactor medium at fairly low concentrations decreases the microbial population's metabolic reactions due to end-product inhibition. Technologies to remove VFA continuously from the bioreactor are of high interest. Several candidate technologies were analyzed, such as organic solvent liquid-liquid extraction, adsorption and/or ion exchange, dialysis, electrodialysis, and pressure driven membrane separation processes. The proposed technique for the on-line removal of VFA from the anaerobic bioreactor was a nanofiltration membrane recycle bioreactor. In order to establish the nanofiltration process performance variables before coupling it to the bioreactor, a series of experiments were carried out using a 10,000 MWCO tubular ceramic membrane module. The variables studied were the bioreactor slurry permeation characteristics, such as, the permeate flux, VFA and the nutrient removal rates as a function of applied transmembrane pressure, fluid recirculation velocity, suspended matter concentration, and process operating time. Results indicate that the permeate flux, VFA and nutrients removal rates are directly proportional to the fluid recirculation velocity in the range between 0.6 to 1.0 m/s, applied pressure when these are low than 1.5 bar, and inversely proportional to the total suspended solids concentration in the range between 23,466 to 34,880. At applied pressure higher than 1.5 bar the flux is not more linearly dependent due to concentration polarization and fouling effects over the membrange surface. It was also found

  6. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration.

    Science.gov (United States)

    Colon, G; Sager, J C

    2001-01-01

    The CELSS resource recovery system, which is a waste-processing system, uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. The anaerobic degradation of the inedible biomass, by means of culture of rumen bacteria, generates organic compounds such as volatile fatty acids (VFA) (acetic, propionic, butyric) and ammonia. The presence of VFA in the bioreactor medium at fairly low concentrations decreases the microbial population's metabolic reactions due to end-product inhibition. Technologies to remove VFA continuously from the bioreactor are of high interest. Several candidate technologies were analyzed, such as organic solvent liquid-liquid extraction, adsorption and/or ion exchange, dialysis, electrodialysis, and pressure-driven membrane separation processes. The proposed technique for the on-line removal of VFA from the anaerobic bioreactor was a nanofiltration membrane recycle bioreactor. In order to establish the nanofiltration process performance variables before coupling it to the bioreactor, a series of experiments was carried out using a 10,000 molecular weight cutoff (MWCO) tubular ceramic membrane module. The variables studied were the bioreactor slurry permeation characteristics, such as: the permeate flux, VFA and nutrient removal rates as a function of applied transmembrane pressure, fluid recirculation velocity, suspended matter concentration, and process operating time. Results indicated that the permeate flux, VFA, and nutrients removal rates are directly proportional to the fluid recirculation velocity in the range between 0.6 and 1.0 m/s, applied pressure when these are lower than 1.5 bar, and inversely proportional to the total suspended solids concentration in the range between 23,466 and 34,880 mg/L. At applied pressure higher than 1.5 bar the flux is not more linearly dependent due to concentration polarization and fouling effects over the membrane surface. It was also found that the

  7. BAG3 down-modulation reduces anaplastic thyroid tumor growth by enhancing proteasome-mediated degradation of BRAF protein.

    Science.gov (United States)

    Chiappetta, Gennaro; Basile, Anna; Arra, Claudio; Califano, Daniela; Pasquinelli, Rosa; Barbieri, Antonio; De Simone, Veronica; Rea, Domenica; Giudice, Aldo; Pezzullo, Luciano; De Laurenzi, Vincenzo; Botti, Gerardo; Losito, Simona; Conforti, Daniela; Turco, Maria Caterina

    2012-01-01

    Anaplastic thyroid tumors (ATC) express high levels of BAG3, a member of the BAG family of cochaperone proteins that is involved in regulating cell apoptosis through multiple mechanisms. The objective of the study was the investigation of the influence of B-cell lymphoma-2-associated athanogene 3 (BAG3) on ATC growth. We investigated the effects of BAG3 down-modulation, obtained by using a specific small interfering RNA, on in vitro and in vivo growth of the human ATC cell line 8505C. Because BRAF protein plays an important role in ATC cell growth, we analyzed the effects of BAG3 down-modulation on BRAF protein levels. Furthermore, by using a proteasome inhibitor, we verified whether BAG3-mediated regulation of BRAF levels involved a proteasome-dependent mechanism. BAG3 down-modulation significantly inhibits ATC growth in vitro and in vivo. BAG3 coimmunoprecipitates with BRAF protein, and its down-modulation results in a significant reduction of BRAF protein levels, which can be reverted by incubation with the proteasome inhibitor MG132. BAG3 protein sustains ATC growth in vitro and in vivo. The underlying molecular mechanism appears to rely on BAG3 binding to BRAF, thus protecting it from proteasome-dependent degradation. These results are in line with the reported ability of BAG3 to interfere with the proteasomal delivery of a number of other client proteins.

  8. The fuzzy bag and baryonic properties with center of mass and recoil corrections

    International Nuclear Information System (INIS)

    Pilotto, F.

    2003-01-01

    The fuzzy bag is a hadronic model which has features both of the bag model (energy-momentum conservation, QCD vacuum energy) and of relativistic potential models (confinement achieved through a potential). It is also a chiral model, with the unique property that the pion field is suppressed in the interior of the bag by means of a scalar potential, and yet chiral symmetry is preserved. This scalar potential allows one to control how far the pion field can penetrate in the interior of the bag. We calculate the masses of the fundamental baryon octet taking into account the center of mass, one-gluon exchange and one-pion exchange corrections. We also calculate the nucleon axial charge, charge radii and magnetic moments including center of mass and recoil corrections. The agreement with experiment is excellent, and the results indicate that the pion field is suppressed only very close to the center of the bag. (orig.)

  9. FibreBags vs. FibreCaps for acid and neutral detergent fibre analysis

    OpenAIRE

    Koivisto , Jason

    2003-01-01

    International audience; A new procedure for determining acid detergent fibre and neutral detergent fibre (ADF and NDF) was developed to reduce the need for filtration and to allow for batch processing of forage samples. The FibreBag system is an economically necessary evolution of the earlier FibreCap system. The purpose of this enquiry was to determine if the FibreBag is a suitable replacement for the FibreCap. The FibreBag method produced very similar results to the FibreCap system of analy...

  10. CULTIVATION OF HUMAN LIVER CELLS AND ADIPOSE-DERIVED MESENCHYMAL STROMAL CELLS IN PERFUSION BIOREACTOR

    Directory of Open Access Journals (Sweden)

    Yu. В. Basok

    2018-01-01

    Full Text Available Aim: to show the progress of the experiment of cultivation of human liver cells and adipose-derived mesenchymal stromal cells in perfusion bioreactor.Materials and methods. The cultivation of a cell-engineered construct, consisting of a biopolymer microstructured collagen-containing hydrogel, human liver cells, adipose-derived mesenchymal stromal cells, and William’s E Medium, was performed in a perfusion bioreactor.Results. On the 7th day large cells with hepatocyte morphology – of a polygonal shape and a centrally located round nucleus, – were present in the culture chambers of the bioreactor. The metabolic activity of hepatocytes in cell-engineered constructs was confi rmed by the presence of urea in the culture medium on the seventh day of cultivation in the bioreactor and by the resorption of a biopolymer microstructured collagen-containing hydrogel.

  11. Novel bacterial sulfur oxygenase reductases from bioreactors treating gold-bearing concentrates

    DEFF Research Database (Denmark)

    Chen, Z-W; Liu, Y-Y; Wu, J-F

    2007-01-01

    The microbial community and sulfur oxygenase reductases of metagenomic DNA from bioreactors treating gold-bearing concentrates were studied by 16S rRNA library, real-time polymerase chain reaction (RT-PCR), conventional cultivation, and molecular cloning. Results indicated that major bacterial......) of bacteria and archaea were 4.59 x 10(9) and 6.68 x 10(5), respectively. Bacterial strains representing Acidithiobacillus, Leptospirillum, and Sulfobacillus were isolated from the bioreactors. To study sulfur oxidation in the reactors, pairs of new PCR primers were designed for the detection of sulfur...... oxygenase reductase (SOR) genes. Three sor-like genes, namely, sor (Fx), sor (SA), and sor (SB) were identified from metagenomic DNAs of the bioreactors. The sor (Fx) is an inactivated SOR gene and is identical to the pseudo-SOR gene of Ferroplasma acidarmanus. The sor (SA) and sor (SB) showed...

  12. Preharvest bagging with wavelength-selective materials enhances development and quality of mango (Mangifera indica L.) cv. Nam Dok Mai #4.

    Science.gov (United States)

    Chonhenchob, Vanee; Kamhangwong, Damrongpol; Kruenate, Jittiporn; Khongrat, Krittaphat; Tangchantra, Nantavat; Wichai, Uthai; Singh, S Paul

    2011-03-15

    Preharvest bagging has been shown to improve development and quality of fruits. Different light transmittance bags showed different effects on fruit quality. This study presents the benefits of using newly developed plastic bagging materials with different wavelength-selective characteristics for mangoes (cv. Nam Dok Mai #4). Mangoes were bagged at 45 days after full bloom (DAFB) and randomly harvested at 65, 75, 85, 95, and 105 DAFB. The bags were removed on the harvest days. The wavelength-selective bags (no pigment, yellow, red, blue/violet, blue) were compared with the Kraft paper bag with black paper liner, which is currently used commercially for several fruits, and with non-bagging as a control. Bagging significantly (p⩽0.05) reduced diseases and blemishes. Mango weight at 95 DAFB was increased approximately 15% by VM and V plastic bagging, as compared to paper bagging and control. Plastic bagging accelerated mango ripening as well as growth. Plastic-bagged mangoes reached maturity stage at 95 DAFB, while non-bagged mangoes reached maturity stage at 105 DAFB. Paper bagging resulted in a pale-yellow peel beginning at 65 DAFB, while plastic bagging improved peel glossiness. Preharvest bagging with different wavelength-selective materials affected mango development and quality. Bagging mangoes with VM and V materials could reduce peel defects and diseases, increase weight, size, and sphericity, improve peel appearance, and shorten the development periods of mangoes. The results suggest a favorable practice using the newly developed VM and V plastic bags in the production of mangoes, and possibly other fruits as well. Copyright © 2010 Society of Chemical Industry.

  13. Temperature and baryon-chemical-potential-dependent bag pressure for a deconfining phase transition

    International Nuclear Information System (INIS)

    Patra, B.K.; Singh, C.P.

    1996-01-01

    We explore the consequences of a bag model developed by Leonidov et al. for the deconfining phase transition in which the bag pressure is made to depend on the temperature and baryon chemical potential in order to ensure the entropy and baryon number conservation at the phase boundary together with the Gibbs construction for an equilibrium phase transition. We show that the bag pressure thus obtained yields an anomalous increasing behavior with the increasing baryon chemical potential at a fixed temperature which defies a physical interpretation. We demonstrate that the inclusion of the perturbative interactions in the QGP phase removes this difficulty. Further consequences of the modified bag pressure are discussed. copyright 1996 The American Physical Society

  14. The small surface oscillations of the gluon tube: The elongated bag

    International Nuclear Information System (INIS)

    Laperashvili, L.V.

    1986-01-01

    We investigate surface oscillations on a bag tube, inside of which is spanned a longitudinal color electric field, and calculate the masses for such vibrations conceived of as quasi-particles on the string. This represents the bag tube for several suggestive values of the parameters in the bag model. Contrary to similar calculations by Vladimirsky, we consider the case where there is a surface tension and we consider higher than zero angular momentum modes. The nonzero angular momentum modes have zero mass in the case of zero surface tension (when higher quantum corrections are ignored). Our considerations point towards the surface tension not being zero. (orig.)

  15. 76 FR 68137 - Polyethylene Retail Carrier Bags From Thailand: Amended Final Results of Antidumping Duty...

    Science.gov (United States)

    2011-11-03

    ... Bags From Thailand: Amended Final Results of Antidumping Duty Administrative Review AGENCY: Import..., the Department of Commerce (the Department) published Polyethylene Retail Carrier Bags From Thailand... 351.224(c) from the Polyethylene Retail Carrier Bag Committee and its individual members, Hilex Poly...

  16. Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system.

    Science.gov (United States)

    Tabernacka, Agnieszka; Zborowska, Ewa; Lebkowska, Maria; Borawski, Maciej

    2014-01-15

    A two-stage waste air treatment system, consisting of hybrid bioreactors (modified bioscrubbers) and a biofilter, was used to treat waste air containing chlorinated ethenes - trichloroethylene (TCE) and tetrachloroethylene (PCE). The bioreactor was operated with loadings in the range 0.46-5.50gm(-3)h(-1) for TCE and 2.16-9.02gm(-3)h(-1) for PCE. The biofilter loadings were in the range 0.1-0.97gm(-3)h(-1) for TCE and 0.2-2.12gm(-3)h(-1) for PCE. Under low pollutant loadings, the efficiency of TCE elimination was 23-25% in the bioreactor and 54-70% in the biofilter. The efficiency of PCE elimination was 44-60% in the bioreactor and 50-75% in the biofilter. The best results for the bioreactor were observed one week after the pollutant loading was increased. However, the process did not stabilize. In the next seven days contaminant removal efficiency, enzymatic activity and biomass content were all diminished. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. A Study on Membrane Bioreactor for Water Reuse from the Effluent of Industrial Town Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Majid Hosseinzadeh

    2014-03-01

    Full Text Available Background: Considering the toxic effects of heavy metals and microbial pathogens in industrial wastewaters, it is necessary to treat metal and microbial contaminated wastewater prior to disposal in the environment. The purpose of this study is to assess the removal of heavy metals pollution and microbial contamination from a mixture of municipal and industrial wastewater using membrane bioreactor. Methods: A pilot study with a continuous stream was conducted using a 32-L-activated sludge with a flat sheet membrane. Actual wastewater from industrial wastewater treatment plant was used in this study. Membrane bioreactor was operated with a constant flow rate of 4 L/hr and chemical oxygen demand, suspended solids concentration, six heavy metals concentration, and total coliform amounts were recorded during the operation. Results: High COD, suspended solids, heavy metals, and microbial contamination removal was measured during the experiment. The average removal percentages obtained by the MBR system were 81% for Al, 53% for Fe, 94% for Pb, 91% for Cu, 59% for Ni, and 49% for Cr which indicated the presence of Cu, Ni, and Cr in both soluble and particle forms in mixed liquor while Al, Fe, and Pb were mainly in particulate form. Also, coliforms in the majority of the samples were <140 MPN/100mL that showed that more than 99.9% of total coliform was removed in MBR effluent. Conclusion: The Membrane Biological Reactor (MBR showed a good performance to remove heavy metals and microbial matters as well as COD and suspended solids. The effluent quality was suitable for reusing purposes.

  18. The Practicalities of Crowdsourcing: Lessons from the Tea Bag Index - UK

    Science.gov (United States)

    Duddigan, Sarah; Alexander, Paul; Shaw, Liz; Collins, Chris

    2017-04-01

    The Tea Bag Index -UK is a collaborative project between the University of Reading and the Royal Horticultural Society (RHS), working with members of the gardening community as citizen scientists. This project aims to quantify how decomposition varies across the country, and whether decomposition is influenced by how gardeners manage their soil, particularly with respect to the application of compost. Launched in 2015 as part of a PhD project, the Tea Bag Index- UK project asks willing volunteers to bury tea bags in their gardens, as part of a large scale, litter bag style decomposition rate study. Over 450 sets of tea bags have been dispatched to participants, across the length and breadth of the UK. The group was largely recruited via social media, magazine articles and public engagement events and active discourse was undertaken with these citizen scientists using Facebook, Twitter and regular email communication. In order to run a successful crowdsourcing citizen science project there are number of stages that need to be considered including (but not limited to): planning; launch and recruitment; communications; and feedback. Throughout a project of this nature an understanding of the motivations of your volunteers is vital. Reflecting on these motivations while publicising the project, and communicating regularly with its participants is incredibly important for a successful project.

  19. Catalytic pleat filter bags for combined particulate separation and nitrogen oxides removal from flue gas streams

    International Nuclear Information System (INIS)

    Park, Young Ok; Choi, Ho Kyung

    2010-01-01

    The development of a high temperature catalytically active pleated filter bag with hybrid filter equipment for the combined removal of particles and nitrogen oxides from flue gas streams is presented. A special catalyst load in stainless steel mesh cartridge with a high temperature pleated filter bag followed by optimized catalytic activation was developed to reach the required nitrogen oxides levels and to maintain the higher collection efficiencies. The catalytic properties of the developed high temperature filter bags with hybrid filter equipment were studied and demonstrated in a pilot scale test rig and a demonstration plant using commercial scale of high temperature catalytic pleated filter bags. The performance of the catalytic pleated filter bags were tested under different operating conditions, such as filtration velocity and operating temperature. Moreover, the cleaning efficiency and residual pressure drop of the catalyst loaded cartridges in pleated filter bags were tested. As result of theses studies, the optimum operating conditions for the catalytic pleated filter bags are determined. (author)

  20. Prediction of air temperature for thermal comfort of people using sleeping bags: a review.

    Science.gov (United States)

    Huang, Jianhua

    2008-11-01

    Six models for determining air temperatures for thermal comfort of people using sleeping bags were reviewed. These models were based on distinctive metabolic rates and mean skin temperatures. All model predictions of air temperatures are low when the insulation values of the sleeping bag are high. Nevertheless, prediction variations are greatest for the sleeping bags with high insulation values, and there is a high risk of hypothermia if an inappropriate sleeping bag is chosen for the intended conditions of use. There is, therefore, a pressing need to validate the models by wear trial and determine which one best reflects ordinary consumer needs.

  1. Effects of granular activated carbon on methane removal performance and methanotrophic community of a lab-scale bioreactor.

    Science.gov (United States)

    Lee, Eun-Hee; Choi, Sun-Ah; Yi, Taewoo; Kim, Tae Gwan; Lee, Sang-Don; Cho, Kyung-Suk

    2015-01-01

    Two identical lab-scale bioreactor systems were operated to examine the effects of granular activated carbon (GAC) on methane removal performance and methanotrophic community. Both bioreactor systems removed methane completely at a CH4 loading rate of 71.2 g-CH4·d(-1) for 17 days. However, the methane removal efficiency declined to 88% in the bioreactor without GAC, while the bioreactor amended with GAC showed greater methane removal efficiency of 97% at a CH4 loading rate of 107.5 g-CH4·d(-1). Although quantitative real-time PCR showed that methanotrophic populations were similar levels of 5-10 × 10(8) pmoA gene copy number·VSS(-1) in both systems, GAC addition changed the methanotrophic community composition of the bioreactor systems. Microarray assay revealed that GAC enhanced the type I methanotrophic genera including Methylobacter, Methylomicrobium, and Methylomonas of the system, which suggests that GAC probably provided a favorable environment for type I methanotrophs. These results indicated that GAC is a promising support material in bioreactor systems for CH4 mitigation.

  2. Wastewater treatments by membrane bioreactors (MBR); Bioreactores de membrana (MBR) para la depuracion de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Guardino Ferre, R.

    2001-07-01

    Wastewater treatments by membrane bioreactors (MBR), are a good alternative of treatment to the conventional processes when wish to obtain very high quality of the treated water or to try high load contaminants in low flow. Simultaneously, the article explains the significant reduction of the wastewater treatment plant space, eliminating the secondary septic tank. (Author) 7 refs.

  3. Safety and durability of low-density polyethylene bags in solar water disinfection applications.

    Science.gov (United States)

    Danwittayakul, Supamas; Songngam, Supachai; Fhulua, Tipawan; Muangkasem, Panida; Sukkasi, Sittha

    2017-08-01

    Solar water disinfection (SODIS) is a simple point-of-use process that uses sunlight to disinfect water for drinking. Polyethylene terephthalate (PET) bottles are typically used as water containers for SODIS, but a new SODIS container design has recently been developed with low-density polyethylene (LDPE) bags and can overcome the drawbacks of PET bottles. Two nesting layers of LDPE bags are used in the new design: the inner layer containing the water to be disinfected and the outer one creating air insulation to minimize heat loss from the water to the surroundings. This work investigated the degradation of LDPE bags used in the new design in actual SODIS conditions over a period of 12 weeks. The degradation of the LDPE bags was investigated weekly using a scanning electron microscope, Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometer, and tensile strength tester. It was found that the LDPE bags gradually degraded under the sunlight due to photo-oxidation reactions, especially in the outer bags, which were directly exposed to the sun and surroundings, leading to the reduction of light transmittance (by 11% at 300 nm) and tensile strength (by 33%). In addition, possible leaching of organic compounds into the water contained in the inner bags was examined using gas chromatography-mass spectrometer. 2,4-Di-tert-butylphenol was found in some SODIS water samples as well as the as-received water samples, in the concentration range of 1-4 μg/L, which passes the Environmental Protection Agency Drinking Water Guidance on Disinfection By-Products.

  4. Photoacoustic measurements of red blood cell oxygen saturation in blood bags in situ

    Science.gov (United States)

    Pinto, Ruben N.; Bagga, Karan; Douplik, Alexandre; Acker, Jason P.; Kolios, Michael C.

    2017-03-01

    Red blood cell (RBC) transfusion is a critical component of the health care services. RBCs are stored in blood bags in hypothermic temperatures for a maximum of 6 weeks post donation. During this in vitro storage period, RBCs have been documented to undergo changes in structure and function due to mechanical and biochemical stress. Currently, there are no assessment methods that monitor the quality of RBCs within blood bags stored for transfusion. Conventional assessment methods require the extraction of samples, consequently voiding the sterility of the blood bags and potentially rendering them unfit for transfusions. It is hypothesized that photoacoustic (PA) technology can provide a rapid and non-invasive indication of RBC quality. In this study, a novel PA setup was developed for the acquisition of oxygen saturation (SO2) of two blood bags in situ. These measurements were taken throughout the lifespan of the blood bags (42 days) and compared against the clinical gold standard method of the blood gas analyzer (BGA). SO2 values of the blood bags increased monotonically throughout the storage period. A strong correlation between PA SO2 and BGA SO2 was found, however, PA values were on average 3.5% lower. Both techniques found the bags to increase by an SO2 of approximately 20%, and measured very similar rates of SO2 change. Future work will be focused on determining the cause of discrepancy between SO2 values acquired from PA versus BGA, as well as establishing links between the measured SO2 increase and other changes in RBC in situ.

  5. Differentiation of cartilaginous anlage in entire embryonic mouse limbs cultured in a rotating bioreactor.

    Science.gov (United States)

    Duke, P.; Oakley, C.; Montufar-Solis, D.

    The embryonic mammalian limb is sensitive both in vivo and in vitro to changes in gravitational force. Hypergravity of centrifugation and microgravity of space decreased size of elements due to precocious or delayed chondrogenesis respectively. In recapitulating spaceflight experiments, premetatarsals were cultured in suspension in a low stress, low sheer rotating bioreactor, and found to be shorter than those cultured in standard culture dishes, and cartilage development was delayed. This study only measured length of the metatarsals, and did not account for possible changes in width and/or in form of the skeletal elements. Shorter cartilage elements in limbbuds cultured in the bioreactor may be due to the ability of the system to reproduce a more in vivo 3D shape than traditional organ cultures. Tissues subjected to traditional organ cultures become flattened by their own weight, attachment to the filter, and restrictions imposed by nutrient diffusion. The purpose of the current experiment was to determine if entire limb buds could be successfully cultured in the bioreactor, and to compare the effects on 3D shape with that of culturing in a culture dish system. Fore and hind limbs from E11-E13 ICR mouse embryos were placed either in the bioreactor, in Trowell culture, or fixed as controls. Limbbuds were cultured for six days, fixed, and processed either as whole mounts or embedded for histology. Qualitative analysis revealed that the Trowell culture specimens were flattened, while bioreactor culture specimens had a more in vivo-like 3D limb shape. Sections of limbbuds from both types of cultures had excellent cartilage differentiation, with apparently more cell maturation, and hypertrophy in the specimens cultured in the bioreactor. Morphometric quantitation of the cartilaginous elements for comparisons of the two culture systems was complicated due to some limb buds fusing together during culture. This problem was especially noticeable in the younger limbs, and

  6. The impact of habitual school bag carriage on the health of ...

    African Journals Online (AJOL)

    School bag carriage represents a considerable daily occupational load for children. The carriage of heavy school bags is a suspected aetiological factor of the daily physical stress of school pupils which negatively impacts on the health of their vertebral column. The objectives of this study was to determine the prevalence of ...

  7. Membrane filtration device for studying compression of fouling layers in membrane bioreactors.

    Directory of Open Access Journals (Sweden)

    Mads Koustrup Jørgensen

    Full Text Available A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology's ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation.

  8. Bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Jamaleddine, E. [McGill Univ., Montreal, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    Composting is once again gaining interest among ecological engineers in view of greener industrial and residential activities. Uniform composting is needed to ensure decomposition and to keep the whole system at the same composting stage. A homogeneous temperature must be maintained throughout the media. A bioreactor design consisting of a heater core made of copper tubing was designed and tested. Two four-inch holes were made at the top and bottom of the barrel to allow air to flow through the system and promote aerobic composting. Once composting began and temperature increased, the water began to flow through the copper piping and the core heat was distributed throughout the medium. Three thermocouples were inserted at different heights on a 200 litre plastic barrel fitted with the aforementioned apparatus. Temperature variations were found to be considerably lower when the apparatus was operated with the heat redistribution system, enabling uniform composting, accelerating the process and reducing the risks of pathogenic or other contaminants remaining active in the barrels.

  9. Carrying shopping bags does not alter static postural stability and gait parameters in healthy older females.

    Science.gov (United States)

    Bampouras, Theodoros M; Dewhurst, Susan

    2016-05-01

    Food shopping is an important aspect of maintaining independence and social interaction in older age. Carriage of shopping bags alters the body's weight distribution which, depending on load distribution, could potentially increase instability during standing and walking. The study examined the effect of carrying UK style shopping bags on static postural stability and gait in healthy older and young females. Nine older (71.0±6.0 years) and 10 young (26.7±5.2 years) females were assessed in five conditions carrying no bags, one 1.5kg bag in each hand, one 3kg bag in each hand, one 1.5kg bag in preferred hand, one 3kg bag in preferred hand. Antero-posterior and medio-lateral displacement, and 95% ellipse area from a 30s quiet standing were used for postural stability assessment. Stride length and its coefficient of variation, total double support time, step asymmetry and gait stability ratio were calculated from 1min treadmill walking at self-selected speed for gait assessment. Carrying shopping bags did not negatively affect postural stability or gait variables, in either group. Further, in older individuals, a decrease in sway velocity was found when holding bags during the postural stability assessment (pbags, irrespective of the load distribution, may have a stabilising effect during quiet standing. These results should help to alleviate concerns regarding safety of carrying shopping bags and help encourage shopping, both as a social and as a physical activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. WW domain of BAG3 is required for the induction of autophagy in glioma cells

    OpenAIRE

    Merabova, Nana; Sariyer, Ilker Kudret; Saribas, A Sami; Knezevic, Tijana; Gordon, Jennifer; Weaver, Michael; Landry, Jacques; Khalili, Kamel

    2015-01-01

    Autophagy is an evolutionarily conserved, selective degradation pathway of cellular components that is important for cell homeostasis under healthy and pathologic conditions. Here we demonstrate that an increase in the level of BAG3 results in stimulation of autophagy in glioblastoma cells. BAG3 is a member of a co-chaperone family of proteins that associate with Hsp70 through a conserved BAG domain positioned near the C-terminus of the protein. Expression of BAG3 is induced by a variety of e...

  11. Multipurpose Cargo Transfer Bags fro Reducing Exploration Mission Logistics

    Science.gov (United States)

    Baccus, Shelley; Broyan, James Lee, Jr.; Borrego, Melissa

    2016-01-01

    The Logistics Reduction (LR) project within the Advanced Exploration Systems (AES) division is tasked with reducing logistical mass and repurposing logistical items. Multipurpose Cargo Transfer Bags (MCTB) have been designed such that they can serve the same purpose as a Cargo Transfer Bag (CTB), the common logistics carrying bag for the International Space Station (ISS). After use as a cargo carrier, a regular CTB becomes trash, whereas the MCTB can be unfolded into a flat panel for reuse. Concepts and potential benefits for various MCTB applications will be discussed including partitions, crew quarters, solar radiation storm shelters, acoustic blankets, and forward osmosis water processing. Acoustic MCTBs are currently in use on ISS to reduce the noise generated by the T2 treadmill, which reaches the hazard limit at high speeds. The development of the AMCTB included identification of keep out zones, acoustic properties, deployment considerations, and structural testing. Features developed for these considerations are applicable to MCTBs for all crew outfitting applications.

  12. Self-consistent quark bags

    International Nuclear Information System (INIS)

    Rafelski, J.

    1979-01-01

    After an introductory overview of the bag model the author uses the self-consistent solution of the coupled Dirac-meson fields to represent a bound state of strongly ineteracting fermions. In this framework he discusses the vivial approach to classical field equations. After a short description of the used numerical methods the properties of bound states of scalar self-consistent Fields and the solutions of a self-coupled Dirac field are considered. (HSI) [de

  13. ANAEROBIC MEMBRANE BIOREACTORS FOR DOMESTIC WASTEWATER TREATMENT. PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Luisa Vera

    2014-12-01

    Full Text Available The operation of submerged anaerobic membrane bioreactors (SAnMBRs for domestic wastewaters treatment was studied in laboratory scale, with the objective to define sustainable filtration conditions of the suspensions along the process. During continuous experiments, the organic matter degradation by anaerobic way showed an average DQOT removal of 85% and 93%. Indeed, the degradation generated biogas after 12 days of operation and its relative methane composition was of 60% after 25 days of operation. Additionally, the comparison between membrane bioreactors (MBRs performance in aerobic and anaerobic conditions in filterability terms, reported that both systems behave similarly once reached the stationary state.

  14. 78 FR 76280 - Polyethylene Retail Carrier Bags From the People's Republic of China: Affirmative Preliminary...

    Science.gov (United States)

    2013-12-17

    ... Bags From the People's Republic of China: Affirmative Preliminary Determination of Circumvention of the... determines that imports of unfinished polyethylene retail carrier bags (PRCBs) from the People's Republic of... Duty Order: Polyethylene Retail Carrier Bags From the People's Republic of China, 69 FR 48201 (August 9...

  15. Inflatable bag with sealing and protection layer

    International Nuclear Information System (INIS)

    Kocourek, L.; Dohnal, M.; Klinga, J.; Matal, O.; Holy, F.

    1989-01-01

    The inflatable bag consists of a textile casing in which a cylindrical pvc tyre with concave bottoms is inserted and glued to the casing. A sealing protective layer is provided on the outer periphery of the cylindrical part of the tyre. A tyre valve with flange and fixing ears and also a relief valve are provided in the concave bottom. The casing material, such as a layer of 0.5 to 5 mm silicone rubber bands is suitable for use in contact with austenitic materials. The bag completely seals spaces such as the mouths of steam generator tubes or collector branches in a nuclear power plant. Decontamination can easily be achieved by rinsing the surface with common means. (J.B.). 2 figs

  16. Testing of Replacement Bag Material

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1998-01-01

    Recently, the FB-Line bagout material was changed to simplify the processing of sand, slag, and crucible.The results of the strength tests and the outgassing measurements and calculations demonstrate that the proposed replacement nylon bag materials (HRMP and orange anti-static material) are acceptable substitutes for LDPE and the original nylon with respect to mechanical properties

  17. Homemade specimen retrieval bag for laparoscopic cholecystectomy: A solution in the time of fiscal crisis.

    Science.gov (United States)

    Stavrou, George; Fotiadis, Kyriakos; Panagiotou, Dimitrios; Faitatzidou, Afroditi; Kotzampassi, Katerina

    2015-05-01

    Due to the current economic crisis in Greece, major cutbacks on healthcare costs have been imposed, resulting in a shortage of surgical supplies, including laparoscopic materials. In an attempt to reduce costs, we developed a homemade specimen retrieval bag for laparoscopic cholecystectomy. We used the polyethylene bag containing the catheter of a Redon drainage set. The bag was cut in half and pleated longitudinally; then, the gallbladder was placed in the bag and removed through the umbilicus with a grasping forceps. From September 2011 to June 2012, we used our homemade bag on 85 patients undergoing laparoscopic cholecystectomy. No rupture, accidental opening, or bile leak was observed. The learning curve was found to be five cases. Our homemade specimen retrieval bag seems to be a safe, effective, and easy tool for tissue extraction. Further studies need to be conducted to evaluate its full potential. © 2015 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.

  18. Effect of potassium and potting-bag size on foliar biomass and ...

    African Journals Online (AJOL)

    Foliar fresh mass was significantly increased by the interaction between K concentration and potting-bag size. Growers may use a 5.3 mmol L−1 K concentration and a 5 L potting bag for optimum production of rose geranium under soil-less cultivation. Keywords: C:G ratio, enzyme activation, oil quality, potassium, rose ...

  19. Psychological interventional approach for reduce resource consumption : Reducing plastic bag usage at supermarkets

    OpenAIRE

    Ohtomo, Shoji; OHNUMA, Susumu

    2014-01-01

    A field study was conducted to investigate the reduction of plastic bag usage at supermarkets. Many behaviors leading to potential damage to the environment may be unintentional. This study applied a dual motivation model to plastic bag usage and examined the effects of an intervention aimed at promoting pro-environmental behavior. A voice prompt intervention was implemented in Japanese supermarkets. In the first (control) week, shoppers were given free plastic bags by the cashier. In the sec...

  20. Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors.

    Science.gov (United States)

    Hallberg, Kevin B; Johnson, D Barrie

    2005-02-01

    Mine drainage waters vary considerably in the range and concentration of heavy metals they contain. Besides iron, manganese is frequently present at elevated concentrations in waters draining both coal and metal mines. Passive treatment systems (aerobic wetlands and compost bioreactors) are designed to remove iron by biologically induced oxidation/precipitation. Manganese, however, is problematic as it does not readily form sulfidic minerals and requires elevated pH (>8) for abiotic oxidation of Mn (II) to insoluble Mn (IV). As a result, manganese removal in passive remediation systems is often less effective than removal of iron. This was found to be the case at the pilot passive treatment plant (PPTP) constructed to treat water draining the former Wheal Jane tin mine in Cornwall, UK, where effective removal of manganese occurred only in one of the three rock filter components of the composite systems over a 1-year period of monitoring. Water in the two rock filter systems where manganese removal was relatively poor was generally system. These differences in water chemistry and manganese removal were due to variable performances in the compost bioreactors that feed the rock filter units in the composite passive systems at Wheal Jane. An alternative approach for removing soluble manganese from mine waters, using fixed bed bioreactors, was developed. Ferromanganese nodules (about 2 cm diameter), collected from an abandoned mine adit in north Wales, were used to inoculate the bioreactors (working volume ca. 700 ml). Following colonization by manganese-oxidizing microbes, the aerated bioreactor catalysed the removal of soluble manganese, via oxidation of Mn (II) and precipitation of the resultant Mn (IV) in the bioreactor, in synthetic media and mine water from the Wheal Jane PPTP. Such an approach has potential application for removing soluble Mn from mine streams and other Mn-contaminated water courses.