WorldWideScience

Sample records for display visual angles

  1. Instrument Display Visual Angles for Conventional Aircraft and the MQ-9 Ground Control Station

    Science.gov (United States)

    Bendrick, Gregg A.; Kamine, Tovy Haber

    2008-01-01

    Aircraft instrument panels should be designed such that primary displays are in optimal viewing location to minimize pilot perception and response time. Human Factors engineers define three zones (i.e. "cones") of visual location: 1) "Easy Eye Movement" (foveal vision); 2) "Maximum Eye Movement" (peripheral vision with saccades), and 3) "Head Movement" (head movement required). Instrument display visual angles were measured to determine how well conventional aircraft (T-34, T-38, F- 15B, F-16XL, F/A-18A, U-2D, ER-2, King Air, G-III, B-52H, DC-10, B747-SCA) and the MQ-9 ground control station (GCS) complied with these standards, and how they compared with each other. Methods: Selected instrument parameters included: attitude, pitch, bank, power, airspeed, altitude, vertical speed, heading, turn rate, slip/skid, AOA, flight path, latitude, longitude, course, bearing, range and time. Vertical and horizontal visual angles for each component were measured from the pilot s eye position in each system. Results: The vertical visual angles of displays in conventional aircraft lay within the cone of "Easy Eye Movement" for all but three of the parameters measured, and almost all of the horizontal visual angles fell within this range. All conventional vertical and horizontal visual angles lay within the cone of "Maximum Eye Movement". However, most instrument vertical visual angles of the MQ-9 GCS lay outside the cone of "Easy Eye Movement", though all were within the cone of "Maximum Eye Movement". All the horizontal visual angles for the MQ-9 GCS were within the cone of "Easy Eye Movement". Discussion: Most instrument displays in conventional aircraft lay within the cone of "Easy Eye Movement", though mission-critical instruments sometimes displaced less important instruments outside this area. Many of the MQ-9 GCS systems lay outside this area. Specific training for MQ-9 pilots may be needed to avoid increased response time and potential error during flight.

  2. Visual merchandising window display

    Directory of Open Access Journals (Sweden)

    Opris (Cas. Stanila M.

    2013-12-01

    Full Text Available Window display plays a major part in the selling strategies; it does not only include the simple display of goods, nowadays it is a form of art, also having the purpose of sustaining the brand image. This article wants to reveal the tools that are essential in creating a fabulous window display. Being a window designer is not an easy job, you have to always think ahead trends, to have a sense of colour, to know how to use light to attract customers in the store after only one glance at the window. The big store window displays are theatre scenes: with expensive backgrounds, special effects and high fashion mannequins. The final role of the displays is to convince customers to enter the store and trigger the purchasing act which is the final goal of the retail activity.

  3. Reconfigurable Auditory-Visual Display

    Science.gov (United States)

    Begault, Durand R. (Inventor); Anderson, Mark R. (Inventor); McClain, Bryan (Inventor); Miller, Joel D. (Inventor)

    2008-01-01

    System and method for visual and audible communication between a central operator and N mobile communicators (N greater than or equal to 2), including an operator transceiver and interface, configured to receive and display, for the operator, visually perceptible and audibly perceptible signals from each of the mobile communicators. The interface (1) presents an audible signal from each communicator as if the audible signal is received from a different location relative to the operator and (2) allows the operator to select, to assign priority to, and to display, the visual signals and the audible signals received from a specified communicator. Each communicator has an associated signal transmitter that is configured to transmit at least one of the visual signals and the audio signal associated with the communicator, where at least one of the signal transmitters includes at least one sensor that senses and transmits a sensor value representing a selected environmental or physiological parameter associated with the communicator.

  4. Preferred viewing distance and screen angle of electronic paper displays.

    Science.gov (United States)

    Shieh, Kong-King; Lee, Der-Song

    2007-09-01

    This study explored the viewing distance and screen angle for electronic paper (E-Paper) displays under various light sources, ambient illuminations, and character sizes. Data analysis showed that the mean viewing distance and screen angle were 495 mm and 123.7 degrees. The mean viewing distances for Kolin Chlorestic Liquid Crystal display was 500 mm, significantly longer than Sony electronic ink display, 491 mm. Screen angle for Kolin was 127.4 degrees, significantly greater than that of Sony, 120.0 degrees. Various light sources revealed no significant effect on viewing distances; nevertheless, they showed significant effect on screen angles. The screen angle for sunlight lamp (D65) was similar to that of fluorescent lamp (TL84), but greater than that of tungsten lamp (F). Ambient illumination and E-paper type had significant effects on viewing distance and screen angle. The higher the ambient illumination was, the longer the viewing distance and the lesser the screen angle. Character size had significant effect on viewing distances: the larger the character size, the longer the viewing distance. The results of this study indicated that the viewing distance for E-Paper was similar to that of visual display terminal (VDT) at around 500 mm, but greater than normal paper at about 360 mm. The mean screen angle was around 123.7 degrees, which in terms of viewing angle is 29.5 degrees below horizontal eye level. This result is similar to the general suggested viewing angle between 20 degrees and 50 degrees below the horizontal line of sight.

  5. Three-dimensional Imaging, Visualization, and Display

    CERN Document Server

    Javidi, Bahram; Son, Jung-Young

    2009-01-01

    Three-Dimensional Imaging, Visualization, and Display describes recent developments, as well as the prospects and challenges facing 3D imaging, visualization, and display systems and devices. With the rapid advances in electronics, hardware, and software, 3D imaging techniques can now be implemented with commercially available components and can be used for many applications. This volume discusses the state-of-the-art in 3D display and visualization technologies, including binocular, multi-view, holographic, and image reproduction and capture techniques. It also covers 3D optical systems, 3D display instruments, 3D imaging applications, and details several attractive methods for producing 3D moving pictures. This book integrates the background material with new advances and applications in the field, and the available online supplement will include full color videos of 3D display systems. Three-Dimensional Imaging, Visualization, and Display is suitable for electrical engineers, computer scientists, optical e...

  6. Wide angles, color, holographic infinity optics display

    Science.gov (United States)

    Magarinos, J. R.; Coleman, D. J.

    1981-03-01

    This project demonstrates the feasibility of producing a holographic compound spherical beamsplitter mirror with full color response. Furthermore, this holographic beamsplitter was incorporated into a Pancake Window display system as a replacement for the classical glass spherical beamsplitter and its performance and color capabilities have been demonstrated.

  7. High performance visual display for HENP detectors

    CERN Document Server

    McGuigan, M; Spiletic, J; Fine, V; Nevski, P

    2001-01-01

    A high end visual display for High Energy Nuclear Physics (HENP) detectors is necessary because of the sheer size and complexity of the detector. For BNL this display will be of special interest because of STAR and ATLAS. To load, rotate, query, and debug simulation code with a modern detector simply takes too long even on a powerful work station. To visualize the HENP detectors with maximal performance we have developed software with the following characteristics. We develop a visual display of HENP detectors on BNL multiprocessor visualization server at multiple level of detail. We work with general and generic detector framework consistent with ROOT, GAUDI etc, to avoid conflicting with the many graphic development groups associated with specific detectors like STAR and ATLAS. We develop advanced OpenGL features such as transparency and polarized stereoscopy. We enable collaborative viewing of detector and events by directly running the analysis in BNL stereoscopic theatre. We construct enhanced interactiv...

  8. Visual acuity evaluated by pattern-reversal visual-evoked potential is affected by check size/visual angle.

    Science.gov (United States)

    Chen, Xiping; Li, Qianqian; Liu, Xiaoqin; Yang, Li; Xia, Wentao; Tao, Luyang

    2012-12-01

    PRVEP components to evaluate poor vision and to identify malingerers. (2) increased P1 amplitude and decreased P1 latency were associated with increasing visual acuity, and the P1 components displayed a linear correlation with visual acuity, especially in the range of optimal visual angles. Visual acuity can be deduced from P1 based on visual angle.

  9. Visual displays and Neuro-Linguistic Programming

    Energy Technology Data Exchange (ETDEWEB)

    Brown-VanHoozer, S.A. [Argonne National Lab., Idaho Falls, ID (United States); VanHoozer, W.R. [Tranceformations Unlimited, Rigby, ID (United States)

    1994-10-01

    Advancement of computer technology is forthcoming at such a rapid pace that the research concerning the interplay of humans and computer technology is lagging far behind. One area of particular concern is the design of visual displays that are pragmatic, ``user friendly,`` and ``user assisting.`` When engineers design visual displays, they generally do so methodically and logically, but only from within their own individual perspective or ``model of the world.`` They select the human aspects which make sense to them and not necessarily to non-engineers, operators, and others. The model design is what the engineer chooses to relate, based on his or her perspective of reality. These choices limit the model design thereby excluding the users` perspective. A set of techniques which can be used to assist the designers in expanding their choices and include the users` model is Neuro-Linguistic Programming (NLP).

  10. How the user views visual displays

    Energy Technology Data Exchange (ETDEWEB)

    Brown-VanHoozer, S.A.

    1995-12-31

    Most designers are not schooled in the area of human-interaction psychology and therefore tend to rely on the traditional ergonomic aspects of human factors when designing complex human-interactive workstations. Unfortunately, by ignoring the importance of the integration of the user interface at the psychophysiological level, the result can be ineffective use of a system leading to an inherently error- and failure-prone system. Therefore, to minimize failures in a human-interactive system, it is essential that designers understand how each user`s processing characteristics affect how the user gathers and processes information. By understanding the significant processing characteristics of the user, designers can implement practical and effective visual displays (or any other type of system) that are more desirable to all users. The material presented in this paper is based on a general study that involved users` perspective views of how visual displays should be designed for effective use. The methodology used was Neuro-Linguistic Programming (NLP), because of its applicability in expanding design choices from the users` ``model of the world.`` The findings of the study have provided a beginning in the development of user comfort parameters and visual displays.

  11. Perception of Visual Variables on Tiled Wall-Sized Displays for Information Visualization Applications.

    Science.gov (United States)

    Bezerianos, A; Isenberg, P

    2012-12-01

    We present the results of two user studies on the perception of visual variables on tiled high-resolution wall-sized displays. We contribute an understanding of, and indicators predicting how, large variations in viewing distances and viewing angles affect the accurate perception of angles, areas, and lengths. Our work, thus, helps visualization researchers with design considerations on how to create effective visualizations for these spaces. The first study showed that perception accuracy was impacted most when viewers were close to the wall but differently for each variable (Angle, Area, Length). Our second study examined the effect of perception when participants could move freely compared to when they had a static viewpoint. We found that a far but static viewpoint was as accurate but less time consuming than one that included free motion. Based on our findings, we recommend encouraging viewers to stand further back from the display when conducting perception estimation tasks. If tasks need to be conducted close to the wall display, important information should be placed directly in front of the viewer or above, and viewers should be provided with an estimation of the distortion effects predicted by our work-or encouraged to physically navigate the wall in specific ways to reduce judgement error.

  12. Influence of visual angle on pattern reversal visual evoked potentials

    Directory of Open Access Journals (Sweden)

    Ruchi Kothari

    2014-01-01

    Full Text Available Purpose: The aim of this study was to find whether the visual evoked potential (VEP latencies and amplitude are altered with different visual angles in healthy adult volunteers or not and to determine the visual angle which is the optimum and most appropriate among a wide range of check sizes for the reliable interpretation of pattern reversal VEPs (PRVEPs. Materials and Methods: The present study was conducted on 40 healthy volunteers. The subjects were divided into two groups. One group consisted of 20 individuals (nine males and 11 females in the age range of 25-57 years and they were exposed to checks subtending a visual angle of 90, 120, and 180 minutes of arc. Another group comprised of 20 individuals (10 males and 10 females in the age range of 36-60 years and they were subjected to checks subtending a visual angle of 15, 30, and 120 minutes of arc. The stimulus configuration comprised of the transient pattern reversal method in which a black and white checker board is generated (full field on a VEP Monitor by an Evoked Potential Recorder (RMS EMG. EPMARK II. The statistical analysis was done by One Way Analysis of Variance (ANOVA using EPI INFO 6. Results: In Group I, the maximum (max. P100 latency of 98.8 ± 4.7 and the max. P100 amplitude of 10.05 ± 3.1 μV was obtained with checks of 90 minutes. In Group II, the max. P100 latency of 105.19 ± 4.75 msec as well as the max. P100 amplitude of 8.23 ± 3.30 μV was obtained with 15 minutes. The min. P100 latency in both the groups was obtained with checks of 120 minutes while the min. P100 amplitude was obtained with 180 minutes. A statistically significant difference was derived between means of P100 latency for 15 and 30 minutes with reference to its value for 120 minutes and between the mean value of P100 amplitude for 120 minutes and that of 90 and 180 minutes. Conclusion: Altering the size of stimulus (visual angle has an effect on the PRVEP parameters. Our study found that the 120

  13. Securing information display by use of visual cryptography.

    Science.gov (United States)

    Yamamoto, Hirotsugu; Hayasaki, Yoshio; Nishida, Nobuo

    2003-09-01

    We propose a secure display technique based on visual cryptography. The proposed technique ensures the security of visual information. The display employs a decoding mask based on visual cryptography. Without the decoding mask, the displayed information cannot be viewed. The viewing zone is limited by the decoding mask so that only one person can view the information. We have developed a set of encryption codes to maintain the designed viewing zone and have demonstrated a display that provides a limited viewing zone.

  14. Studying Visual Displays: How to Instructionally Support Learning

    Science.gov (United States)

    Renkl, Alexander; Scheiter, Katharina

    2017-01-01

    Visual displays are very frequently used in learning materials. Although visual displays have great potential to foster learning, they also pose substantial demands on learners so that the actual learning outcomes are often disappointing. In this article, we pursue three main goals. First, we identify the main difficulties that learners have when…

  15. Visual display requirements: on standards and their users

    Science.gov (United States)

    van Nes, Floris L.

    2005-01-01

    A new ISO standard for visual displays: "Ergonomic requirements and measurement techniques for electronic visual displays" is soon to be released as a Draft International Standard. The core of the new standard is the part with generic ergonomic requirements for visual displays. Three parts of the standard describe three types of measurements: electro-optical ones, to be used in general; user performance test methods, for innovative displays for which no electro-optical methods exist; and field assessment methods, to be used outside of the laboratory, under the conditions of use at the workplace. The last part of the standard describes five compliance routes and procedures for five different display technologies and contexts of use. A number of choices and problems that standard writers have to face are mentioned. Should a visual display standard be written primarily for young users, with mostly a high visual acuity and in possession of their full accommodative power, wanting to use tiny hand-held displays featuring very small characters ? Or should the standard be focused on the elderly, with their reduction in visual faculties, barring the use of small characters that may irritate or disable such older users ? The question how to put human factors principles in standards sometimes seems a battle between idealists and realists. It therefore is important to strike a balance between different attitudes, backgrounds and interests in a standards writing committee - as indeed happens in ISO/TC 159/SC 4/WG 2, "Visual Display Requirements". The author is convener of this Working Group.

  16. Autostereoscopic Displays for Visualization of Urban Environments

    Science.gov (United States)

    2006-09-01

    reality modeling language ( VRML ) representations generated by the scanning and fusion software are interpreted by a customized rendering engine to...stereo driver provided by nVidia. This allows for the direct use of many preexisting rendering engines and VRML browsers without appreciable modification...Cortona VRML brouser developed by Parallel Graphics. While the use of the stereoscopic display mode allows for simple compatibility with preexisting

  17. Distortions in memory for visual displays

    Science.gov (United States)

    Tversky, Barbara

    1989-01-01

    Systematic errors in perception and memory present a challenge to theories of perception and memory and to applied psychologists interested in overcoming them as well. A number of systematic errors in memory for maps and graphs are reviewed, and they are accounted for by an analysis of the perceptual processing presumed to occur in comprehension of maps and graphs. Visual stimuli, like verbal stimuli, are organized in comprehension and memory. For visual stimuli, the organization is a consequence of perceptual processing, which is bottom-up or data-driven in its earlier stages, but top-down and affected by conceptual knowledge later on. Segregation of figure from ground is an early process, and figure recognition later; for both, symmetry is a rapidly detected and ecologically valid cue. Once isolated, figures are organized relative to one another and relative to a frame of reference. Both perceptual (e.g., salience) and conceptual factors (e.g., significance) seem likely to affect selection of a reference frame. Consistent with the analysis, subjects perceived and remembered curves in graphs and rivers in maps as more symmetric than they actually were. Symmetry, useful for detecting and recognizing figures, distorts map and graph figures alike. Top-down processes also seem to operate in that calling attention to the symmetry vs. asymmetry of a slightly asymmetric curve yielded memory errors in the direction of the description. Conceptual frame of reference effects were demonstrated in memory for lines embedded in graphs. In earlier work, the orientation of map figures was distorted in memory toward horizontal or vertical. In recent work, graph lines, but not map lines, were remembered as closer to an imaginary 45 deg line than they had been. Reference frames are determined by both perceptual and conceptual factors, leading to selection of the canonical axes as a reference frame in maps, but selection of the imaginary 45 deg as a reference frame in graphs.

  18. Wide Angle, Color, Holographic Infinity Optics Display. Final Report.

    Science.gov (United States)

    Magarinos, Jose R.; Coleman, Daniel J.

    The project described demonstrated not only the feasibility of producing a holographic compound spherical beamspliter mirror with full color response, but the performance and color capabilities of such a beamsplitter when incorporated into a Pancake Window Display system as a replacement for the classical glass spherical beamsplitter. This…

  19. Wide-angle display developments by computer graphics

    Science.gov (United States)

    Fetter, William A.

    1989-01-01

    Computer graphics can now expand its new subset, wide-angle projection, to be as significant a generic capability as computer graphics itself. Some prior work in computer graphics is presented which leads to an attractive further subset of wide-angle projection, called hemispheric projection, to be a major communication media. Hemispheric film systems have long been present and such computer graphics systems are in use in simulators. This is the leading edge of capabilities which should ultimately be as ubiquitous as CRTs (cathode-ray tubes). These assertions are not from degrees in science or only from a degree in graphic design, but in a history of computer graphics innovations, laying groundwork by demonstration. The author believes that it is timely to look at several development strategies, since hemispheric projection is now at a point comparable to the early stages of computer graphics, requiring similar patterns of development again.

  20. Visual merchandising displays: the fashion retailer’s competitive edge?

    Directory of Open Access Journals (Sweden)

    Elsa C. Nell

    2015-10-01

    Full Text Available Visual merchandising has been called the silent salesman and retailers will be wise to use this silent salesman to enhance their total offering. This makes the in-store environment the perfect tool for fashion retailers to create a competitive advantage that other retailers might not have. The main research objective of this study was to explore if visual merchandising displays can be utilised to create a competitive advantage in fashion retail stores. A secondary objective was to explore the effect that visual merchandising displays have on a fashion retailer’s retail image. Qualitative research was performed by means of focus groups and the respondents were selected by means of purposive sampling. Thereafter, the data was analysed using thematic analysis. The results indicated that visual merchandising displays not only influence store image by communicating product quality and store character, but that they also create a purchasing environment that encourages impulse buying.

  1. Peripheral visual response time and visual display layout

    Science.gov (United States)

    Haines, R. F.

    1974-01-01

    Experiments were performed on a group of 42 subjects in a study of their peripheral visual response time to visual signals under positive acceleration, during prolonged bedrest, at passive 70 deg headup body lift, under exposures to high air temperatures and high luminance levels, and under normal stress-free laboratory conditions. Diagrams are plotted for mean response times to white, red, yellow, green, and blue stimuli under different conditions.

  2. Visualization and computer graphics on isotropically emissive volumetric displays.

    Science.gov (United States)

    Mora, Benjamin; Maciejewski, Ross; Chen, Min; Ebert, David S

    2009-01-01

    The availability of commodity volumetric displays provides ordinary users with a new means of visualizing 3D data. Many of these displays are in the class of isotropically emissive light devices, which are designed to directly illuminate voxels in a 3D frame buffer, producing X-ray-like visualizations. While this technology can offer intuitive insight into a 3D object, the visualizations are perceptually different from what a computer graphics or visualization system would render on a 2D screen. This paper formalizes rendering on isotropically emissive displays and introduces a novel technique that emulates traditional rendering effects on isotropically emissive volumetric displays, delivering results that are much closer to what is traditionally rendered on regular 2D screens. Such a technique can significantly broaden the capability and usage of isotropically emissive volumetric displays. Our method takes a 3D dataset or object as the input, creates an intermediate light field, and outputs a special 3D volume dataset called a lumi-volume. This lumi-volume encodes approximated rendering effects in a form suitable for display with accumulative integrals along unobtrusive rays. When a lumi-volume is fed directly into an isotropically emissive volumetric display, it creates a 3D visualization with surface shading effects that are familiar to the users. The key to this technique is an algorithm for creating a 3D lumi-volume from a 4D light field. In this paper, we discuss a number of technical issues, including transparency effects due to the dimension reduction and sampling rates for light fields and lumi-volumes. We show the effectiveness and usability of this technique with a selection of experimental results captured from an isotropically emissive volumetric display, and we demonstrate its potential capability and scalability with computer-simulated high-resolution results.

  3. Visual Disability Among Juvenile Open-angle Glaucoma Patients.

    Science.gov (United States)

    Gupta, Viney; Ganesan, Vaitheeswaran L; Kumar, Sandip; Chaurasia, Abadh K; Malhotra, Sumit; Gupta, Shikha

    2018-04-01

    Juvenile onset primary open-angle glaucoma (JOAG) unlike adult onset primary open-angle glaucoma presents with high intraocular pressure and diffuse visual field loss, which if left untreated leads to severe visual disability. The study aimed to evaluate the extent of visual disability among JOAG patients presenting to a tertiary eye care facility. Visual acuity and perimetry records of unrelated JOAG patients presenting to our Glaucoma facility were analyzed. Low vision and blindness was categorized by the WHO criteria and percentage impairment was calculated as per the guidelines provided by the American Medical Association (AMA). Fifty-two (15%) of the 348 JOAG patients were bilaterally blind at presentation and 32 (9%) had low vision according to WHO criteria. Ninety JOAG patients (26%) had a visual impairment of 75% or more. Visual disability at presentation among JOAG patients is high. This entails a huge economic burden, given their young age and associated social responsibilities.

  4. Visual search tasks: measurement of dynamic visual lobe and relationship with display movement velocity.

    Science.gov (United States)

    Yang, Lin-Dong; Yu, Rui-Feng; Lin, Xue-Lian; Xie, Ya-Qing; Ma, Liang

    2018-02-01

    Visual lobe is a useful tool for predicting visual search performance. Up till now, no study has focused on dynamic visual lobe. This study developed a dynamic visual lobe measurement system (DVLMS) that could effectively map dynamic visual lobe and calculate visual lobe shape indices. The effects of display movement velocity on lobe shape indices were examined under four velocity conditions: 0, 4, 8 and 16 deg/s. In general, with the increase of display movement velocity, visual lobe area and perimeter became smaller, whereas lobe shape roundness, boundary smoothness, symmetry and regularity deteriorated. The elongation index was not affected by velocity. Regression analyses indicated that display movement velocity was important in determining dynamic visual lobe shape indices. Dynamic visual lobe provides another option for better understanding dynamic vision, in addition to dynamic visual acuity. Findings of this study can provide guidelines for analysing and designing dynamic visual tasks. Practitioner Summary: Dynamic visual lobe is important in reflecting the visual ability of searching for a moving target. We developed a dynamic visual lobe measurement system (DVLMS) and examined display movement velocity's effects on lobe shape. Findings revealed that velocity was a key factor affecting dynamic visual lobe shape indices.

  5. Head Worn Display System for Equivalent Visual Operations

    Science.gov (United States)

    Cupero, Frank; Valimont, Brian; Wise, John; Best. Carl; DeMers, Bob

    2009-01-01

    Head-Worn Displays or so-called, near-to-eye displays have potentially significant advantages in terms of cost, overcoming cockpit space constraints, and for the display of spatially-integrated information. However, many technical issues need to be overcome before these technologies can be successfully introduced into commercial aircraft cockpits. The results of three activities are reported. First, the near-to-eye display design, technological, and human factors issues are described and a literature review is presented. Second, the results of a fixed-base piloted simulation, investigating the impact of near to eye displays on both operational and visual performance is reported. Straight-in approaches were flown in simulated visual and instrument conditions while using either a biocular or a monocular display placed on either the dominant or non-dominant eye. The pilot's flight performance, visual acuity, and ability to detect unsafe conditions on the runway were tested. The data generally supports a monocular design with minimal impact due to eye dominance. Finally, a method for head tracker system latency measurement is developed and used to compare two different devices.

  6. Visualization of cerebellopontine angle lesions by nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ochiai, Chikayuki; Takakura, Kintomo; Machida, Tohru; Araki, Tsutomu; Iio, Masahiro; Basugi, Norihiko.

    1983-01-01

    The preliminary results from the clinical use a prototype whole body nuclear magnetic resonance (NMR) machine constructed by Toshiba Inc. are presented. Cranial NMR scans were performed on more than 30 cases with broad spectrum of neurologic diseases using saturation-recovery and inversion-recovery sequences with a field strength of 1500 Gauss. Selective excitation sequence was used for the slice selection and filtered backprojection was used to reconstruct the images. They were displayed on a 256 x 256 matrix as 12 mm thick sections. Data aquisition time varied between 3 and 12 minutes. Our initial experiences with six cases harboring cerebellopontine angle lesions discolsed advantages and disadvantages of NMR imaging in comparison with X-ray CT. The advantages were the absence of linear artifacts from the surrounding bone, the marked gray-white matter differentiation, and the variety of tomographic planes available. The disadvantages included the lack of bone detail, the lack of visualization of the major intracranial vessels, and the long time required for scanning (several minutes per slice). Although much continued evaluation is necessary, NMR seems to have vast potential as a diagnostic tool. (author)

  7. ATLAS event display: Virtual Point-1 visualization software

    Science.gov (United States)

    Seeley, Kaelyn; Dimond, David; Bianchi, R. M.; Boudreau, Joseph; Hong, Tae Min; Atlas Collaboration

    2017-01-01

    Virtual Point-1 (VP1) is an event display visualization software for the ATLAS Experiment. VP1 is a software framework that makes use of ATHENA, the ATLAS software infrastructure, to access the complete detector geometry. This information is used to draw graphics representing the components of the detector at any scale. Two new features are added to VP1. The first is a traditional ``lego'' plot, displaying the calorimeter energy deposits in eta-phi space. The second is another lego plot focusing on the forward endcap region, displaying the energy deposits in r-phi space. Currently, these new additions display the energy deposits based on the granularity of the middle layer of the liquid-Argon electromagnetic calorimeter. Since VP1 accesses the complete detector geometry and all experimental data, future developments are outlined for a more detailed display involving multiple layers of the calorimeter along with their distinct granularities.

  8. Visual, tangible, and touch-screen: Comparison of platforms for displaying simple graphics.

    Science.gov (United States)

    Gershon, Pnina; Klatzky, Roberta L; Palani, Hari; Giudice, Nicholas A

    2016-01-01

    Four different platforms were compared in a task of exploring an angular stimulus and reporting its value. The angle was explored visually, tangibly as raised fine-grit sandpaper, or on a touch-screen with a frictional or vibratory signal. All platforms produced highly accurate angle judgments. Differences were found, however, in exploration time, with vision fastest as expected, followed by tangible, vibration, and friction. Relative to the tangible display, touch-screens evidenced greater noise in the perceived angular value, with a particular disadvantage for friction. The latter must be interpreted in the context of a first-generation display and a rapidly advancing technology. On the whole, the results point both to promise and barriers in the use of refreshable graphical displays for blind users.

  9. A different approach to designing visual displays and workstations

    Energy Technology Data Exchange (ETDEWEB)

    Brown-VanHoozer, S.A.

    1995-06-01

    The material presented in this paper is based on two studies involving the design of visual displays based on the user`s perspective model of a system. The studies involve a methodology known as Neuro-Linguistic Programming (NLP), and its use in expanding design choices from the user`s ``model of the world,`` and the use of virtual reality.

  10. Computer and visual display terminals (VDT) vision syndrome (CVDTS).

    Science.gov (United States)

    Parihar, J K S; Jain, Vaibhav Kumar; Chaturvedi, Piyush; Kaushik, Jaya; Jain, Gunjan; Parihar, Ashwini K S

    2016-07-01

    Computer and visual display terminals have become an essential part of modern lifestyle. The use of these devices has made our life simple in household work as well as in offices. However the prolonged use of these devices is not without any complication. Computer and visual display terminals syndrome is a constellation of symptoms ocular as well as extraocular associated with prolonged use of visual display terminals. This syndrome is gaining importance in this modern era because of the widespread use of technologies in day-to-day life. It is associated with asthenopic symptoms, visual blurring, dry eyes, musculoskeletal symptoms such as neck pain, back pain, shoulder pain, carpal tunnel syndrome, psychosocial factors, venous thromboembolism, shoulder tendonitis, and elbow epicondylitis. Proper identification of symptoms and causative factors are necessary for the accurate diagnosis and management. This article focuses on the various aspects of the computer vision display terminals syndrome described in the previous literature. Further research is needed for the better understanding of the complex pathophysiology and management.

  11. Study of a direct visualization display tool for space applications

    Science.gov (United States)

    Pereira do Carmo, J.; Gordo, P. R.; Martins, M.; Rodrigues, F.; Teodoro, P.

    2017-11-01

    The study of a Direct Visualization Display Tool (DVDT) for space applications is reported. The review of novel technologies for a compact display tool is described. Several applications for this tool have been identified with the support of ESA astronauts and are presented. A baseline design is proposed. It consists mainly of OLEDs as image source; a specially designed optical prism as relay optics; a Personal Digital Assistant (PDA), with data acquisition card, as control unit; and voice control and simplified keyboard as interfaces. Optical analysis and the final estimated performance are reported. The system is able to display information (text, pictures or/and video) with SVGA resolution directly to the astronaut using a Field of View (FOV) of 20x14.5 degrees. The image delivery system is a monocular Head Mounted Display (HMD) that weights less than 100g. The HMD optical system has an eye pupil of 7mm and an eye relief distance of 30mm.

  12. Visualization of information display at main control room

    Energy Technology Data Exchange (ETDEWEB)

    Min, D. H. [Korea Univ., Chochiwon (Korea, Republic of); Jung, Y. H.; Kim, B. R. [KAERI, Taejon (Korea, Republic of)

    2000-05-01

    An advanced main control room is planned for the next generation of nuclear power plants in Korea. Display devices such as LDP(Large Display Panel) and CRTs(Cathode Ray Tubes) are going to be utilized in that control room. Operating staff would have to perform tasks by monitoring displayed information about overall plant situation, subsystems, equipments, and components. However, if operators work with these new types of HMI(Human-Machine Interface), there are a lot of chances for unexperienced cognitive problems. Therefore, the designers of HMI should consider not only the information to be represented on display devices, but also visual information processing by operators and their cognitive limitations during information processing. This study reviews human's visual information processing process, classify information to be represented on display devices at the advanced control room, and possible representation formats for the classified information. We hope that the evaluation of HMI at the advanced control room would consider the result of this study.

  13. Visual disability in Newly Diagnosed Primary open Angle Glaucoma ...

    African Journals Online (AJOL)

    Background: Glaucoma remains the second leading cause of blindness worldwide and the highest cause of irreversible blindness worldwide. In Nigeria, Glaucoma accounts for 16% of blindness and primary open angle glaucoma is the most prevalent clinical type. Aim: The aim of this study is to assess the visual disability ...

  14. Visual angle model for car-following theory

    Science.gov (United States)

    Jin, Sheng; Wang, Dian-Hai; Huang, Zhi-Yi; Tao, Peng-Fei

    2011-06-01

    The vast majority of car-following models are lack of the consideration of human drivers' characteristics. Based on the fact that each driver of a following vehicle perceives closing-in or shying-away a leading vehicle in front of him/her, primarily due to changes in the apparent size of the leading vehicle, we improved the full velocity difference (FVD) model and presented a visual angle car-following model. This model is in view of the stimulus-response framework and uses the visual angle and the change rate of the visual angle as stimulus. Results from linear analysis showed that the neutral stability line is asymmetry and the width of the leading vehicle has a great impact on the stability of traffic flow. Numerical simulations obtained the same results as theoretical analysis clearly such as density wave, shrinking hysteresis, asymmetry and wide scattering. Thus, the introducing of the visual angle can explain some complex nature of traffic flow and contribute to the design of more realistic car-following models.

  15. Genome display tool: visualizing features in complex data sets

    Directory of Open Access Journals (Sweden)

    Lu Yue

    2007-02-01

    Full Text Available Abstract Background The enormity of the information contained in large data sets makes it difficult to develop intuitive understanding. It would be useful to have software that allows visualization of possible correlations between properties that can be associated with a core data set. In the case of bacterial genomes, existing visualization tools focus on either global properties such as variations in composition or detailed local displays of the features that comprise the annotation. It is not easy to visualize other information in the context of this core information. Results A Java based software known as the Genome Display Tool (GDT, allows the user to simultaneously view the distribution of multiple attributes pertaining to genes and intragenic regions in a single bacterial genome using different colours and shapes on a single screen. The display represents each gene by small boxes that correlate with physical position in the genome. The size of the boxes is dynamically allocated based on the number of genes and a zoom feature allows close-up inspection of regions of interest. The display is interfaced with a MS-Access relational database and can display any feature in the database that can be represented by discrete values. Data is readily added to the database from an MS-Excel spread sheet. The functionality of GDT is demonstrated by comparing the results of two predictions of recent horizontal transfer events in the genome of Synechocystis PCC-6803. The resulting display allows the user to immediately see how much agreement exists between the two methods and also visualize how genes in various categories (e.g. predicted in both methods, one method etc are distributed in the genome. Conclusion The GDT software provides the user with a powerful tool that allows development of an intuitive understanding of the relative distribution of features in a large data set. As additional features are added to the data set, the number of possible

  16. Designing visual displays and system models for safe reactor operations

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.

    1995-01-01

    The material presented in this paper is based on two studies involving the design of visual displays and the user's prospective model of a system. The studies involve a methodology known as Neuro-Linguistic Programming and its use in expanding design choices from the operator's perspective image. The contents of this paper focuses on the studies and how they are applicable to the safety of operating reactors

  17. Designing visual displays and system models for safe reactor operations

    Energy Technology Data Exchange (ETDEWEB)

    Brown-VanHoozer, S.A.

    1995-12-31

    The material presented in this paper is based on two studies involving the design of visual displays and the user`s prospective model of a system. The studies involve a methodology known as Neuro-Linguistic Programming and its use in expanding design choices from the operator`s perspective image. The contents of this paper focuses on the studies and how they are applicable to the safety of operating reactors.

  18. Coupling Retinal Scanning Displays to the Human Visual System: Visual System Response and Engineering Considerations

    National Research Council Canada - National Science Library

    Turner, Stuart

    2002-01-01

    A retinal scanning display (RSD) is a visual display that presents an image to an observer via a modulated beam of light that is directed through the eye's pupil and rapidly scanned in a raster-like pattern across the retina...

  19. Raw-data display and visual reconstruction validation in ALICE

    International Nuclear Information System (INIS)

    Tadel, M

    2008-01-01

    ALICE Event Visualization Environment (AliEVE) is based on ROOT and its GUI, 2D and 3D graphics classes. A small application kernel provides for registration and management of visualization objects. CINT scripts are used as an extensible mechanism for data extraction, selection and processing as well as for steering of frequent event-related tasks. AliEVE is used for event visualization in offline and high-level trigger frameworks. Mechanisms and base-classes provided for visual representation of raw-data for different detector-types are described. Common infrastructure for thresholding and color-coding of signal/time information, placement of detector-modules in various 2D/3D layouts and for user-interaction with displayed data is presented. Methods for visualization of raw-data on different levels of detail are discussed as they are expected to play an important role during early detector operation with poorly understood detector calibration, occupancy and noise-levels. Since September 2006 ALICE applies a regular visual-scanning procedure to simulated proton-proton data to detect any shortcomings in cluster finding, tracking and primary and secondary vertex reconstruction. A high-level of interactivity is required to allow in-depth exploration of event-structure. Navigation back to simulation records is supported for debugging purposes. Standard 2D projections and transformations are available for clusters, tracks and simplified detector geometry

  20. Variables Influencing The Perception of Flicker In Wide Angle CRT Displays.

    Science.gov (United States)

    Welde, William L.; Cream, Bertram W.

    An experiment was conducted to determine the influence of three variables on the perception of the psychophysical phenomenon of flicker in wide angle cathode ray tube (CRT) displays. The three independent variables treated in the experiment were: 3, 6, and 9 foot-lambers (FL) illumination levels; four images, three static and one dynamic; and 26…

  1. Initial flight and simulator evaluation of a head up display for standard and noise abatement visual approaches

    Science.gov (United States)

    Bourquin, K.; Palmer, E. A.; Cooper, G.; Gerdes, R. M.

    1973-01-01

    A preliminary assessment was made of the adequacy of a simple head up display (HUD) for providing vertical guidance for flying noise abatement and standard visual approaches in a jet transport. The HUD featured gyro-stabilized approach angle scales which display the angle of declination to any point on the ground and a horizontal flight path bar which aids the pilot in his control of the aircraft flight path angle. Thirty-three standard and noise abatement approaches were flown in a Boeing 747 aircraft equipped with a head up display. The HUD was also simulated in a research simulator. The simulator was used to familiarize the pilots with the display and to determine the most suitable way to use the HUD for making high capture noise abatement approaches. Preliminary flight and simulator data are presented and problem areas that require further investigation are identified.

  2. Event Display for the Visualization of CMS Events

    International Nuclear Information System (INIS)

    Bauerdick, L A T; Eulisse, G; Jones, C D; McCauley, T; Osborne, I; Kovalskyi, D; Tadel, A Mrak; Muelmenstaedt, J; Tadel, M; Tu, Y; Yagil, A

    2011-01-01

    During the last year the CMS experiment engaged in consolidation of its existing event display programs. The core of the new system is based on the Fireworks event display program which was by-design directly integrated with the CMS Event Data Model (EDM) and the light version of the software framework (FWLite). The Event Visualization Environment (EVE) of the ROOT framework is used to manage a consistent set of 3D and 2D views, selection, user-feedback and user-interaction with the graphics windows; several EVE components were developed by CMS in collaboration with the ROOT project. In event display operation simple plugins are registered into the system to perform conversion from EDM collections into their visual representations which are then managed by the application. Full event navigation and filtering as well as collection-level filtering is supported. The same data-extraction principle can also be applied when Fireworks will eventually operate as a service within the full software framework.

  3. Perception of angle in visual categorization by pigeons (Columba livia.

    Directory of Open Access Journals (Sweden)

    Walter T. Herbranson

    2017-08-01

    Full Text Available Pigeons are capable of learning to categorize stimuli based on visual features, and often reach levels of accuracy comparable with humans. Nevertheless, recent research has suggested that the cognitive processes behind categorization in pigeons and humans may not always be the same. Pigeons learned a categorization task in which they categorized either Shepard circles varying in size and orientation of a radial line (stimuli that are frequently used in research on human categorization, or moving dots varying in speed and direction of travel (stimuli that have been successfully used to study pigeon categorization. Even though categories were balanced so that the angles of orientation of Shepard circles matched the directions of travel for moving dots, birds failed to learn categories based on the former but not the latter. Results suggest that information about angle as a direction of travel may be more important for pigeons than information about angle of orientation.

  4. On the Benefits of Using Constant Visual Angle Glyphs in Interactive Exploration of 3D Scatterplots

    DEFF Research Database (Denmark)

    Stenholt, Rasmus

    2014-01-01

    structures. Furthermore, we introduce a new approach to glyph visualization—constant visual angle (CVA) glyphs—which has the potential to mitigate the effect of clutter at the cost of dispensing with the common real-world depth cue of relative size. In a controlled experiment where test subjects had......Visual exploration of clouds of data points is an important application of virtual environments. The common goal of this activ- ity is to use the strengths of human perception to identify interesting structures in data, which are often not detected using traditional, computational analysis methods....... In this article, we seek to identify some of the parameters that affect how well structures in visualized data clouds can be identified by a human observer. Two of the primary factors tested are the volumetric densities of the visualized structures and the presence/absence of clutter around the displayed...

  5. Progress on visual display terminal syndrome in children

    Directory of Open Access Journals (Sweden)

    Xiao-Fang Ren

    2013-12-01

    Full Text Available With the rapid development of information era, video display terminal(VDThas entered people's lives, and the operator's health problems have been recognized, which is so called VDT syndrome. At the same time, the frequency of children's exposure to the VDT is higher and higher. Childhood is the critical period of visual development. As the data show that the excessive use of VDT can cause eye fatigue, myopia, dry eye, abnormal blinking, headache and other symptoms. In this article, we will talk about the symptoms, mechanism, and the prevention and treatment of children's VDT syndrome.

  6. Epidemiological investigation of visual display terminal syndrome in migrant workers

    Directory of Open Access Journals (Sweden)

    Xue-Fen Wu

    2016-01-01

    Full Text Available AIM: To investigate the prevalence and related factors of visual display terminal(VDTsyndrome in migrant workers caused by using smartphones.METHODS: From January to October 2014, migrant workers who worked in 10 factories individually in Tangxia Town Dongguan City, were selected by systematic sampling. Every participant was asked to complete the visual display terminal questionnaire and acepted accommodative amplitude determination, tear-film break up time, corneal fluorescein staining, Schirmer I text and so on. The data was analyzed by the SPSS 19.0 software. RESULTS: Four hundred and sixty-nine people were enrolled(246 males, 223 females. Among them, 384 cases(206 males and 178 femaleswere diagnosed as the VDT syndrome, the prevalence rate was 81.9%. Compared the prevalence rate in different gender in 40~CONCLUSION:The main factors for VDT syndrome in the migrant workers are reading novels, watching videos, being in dark and shaking space, poor sport and less interval. To get rid of the bad habits in using smartphones, do more sport, take more intervals, moisten the ocular surface are expected to prevent VDT syndrome.

  7. The zone of comfort: Predicting visual discomfort with stereo displays

    Science.gov (United States)

    Shibata, Takashi; Kim, Joohwan; Hoffman, David M.; Banks, Martin S.

    2012-01-01

    Recent increased usage of stereo displays has been accompanied by public concern about potential adverse effects associated with prolonged viewing of stereo imagery. There are numerous potential sources of adverse effects, but we focused on how vergence–accommodation conflicts in stereo displays affect visual discomfort and fatigue. In one experiment, we examined the effect of viewing distance on discomfort and fatigue. We found that conflicts of a given dioptric value were slightly less comfortable at far than at near distance. In a second experiment, we examined the effect of the sign of the vergence–accommodation conflict on discomfort and fatigue. We found that negative conflicts (stereo content behind the screen) are less comfortable at far distances and that positive conflicts (content in front of screen) are less comfortable at near distances. In a third experiment, we measured phoria and the zone of clear single binocular vision, which are clinical measurements commonly associated with correcting refractive error. Those measurements predicted susceptibility to discomfort in the first two experiments. We discuss the relevance of these findings for a wide variety of situations including the viewing of mobile devices, desktop displays, television, and cinema. PMID:21778252

  8. Information visualization and retrieval using stereoscopic display of document and term relations

    Science.gov (United States)

    Fowler, Richard H.; Lawrence Fowler, Wendy A.

    1998-04-01

    Scientific visualization brings human perceptual processes to bear in organizing and understanding data about physical phenomena. Information visualization has a similar goal for elements in often semantic domains. Document Explorer is an information visualization and retrieval system that displays 3D associative network representations of document and term relations. The system's networks of documents can be constructed from existing measures of association, e.g., link structure in hypertexts, or derived by the system using content similarity among documents. The system also maintains a network of terms which is available to the user for query formulation. Recently, we have added stereoscopic display of the system's several networks to enhance users' perception of structure. Additionally, users' head movements are tracked and used to change point and angle of view to further enhance structure perception and allow additional user interface mechanisms for navigation in three dimensions. By viewing and interacting with these networks using head-tracked stereoscopic display the user is better able to perceive relationships in the networks and, thus, better able to distinguish clusters of documents and categories of terms during the information retrieval process.

  9. Drop shape visualization and contact angle measurement on curved surfaces.

    Science.gov (United States)

    Guilizzoni, Manfredo

    2011-12-01

    The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. A robust smart window: reversibly switching from high transparency to angle-independent structural color display.

    Science.gov (United States)

    Ge, Dengteng; Lee, Elaine; Yang, Lili; Cho, Yigil; Li, Min; Gianola, Daniel S; Yang, Shu

    2015-04-17

    A smart window is fabricated from a composite consisting of elastomeric poly(dimethylsiloxane) embedded with a thin layer of quasi-amorphous silica nanoparticles. The smart window can be switched from the initial highly transparent state to opaqueness and displays angle-independent structural color via mechanical stretching. The switchable optical property can be fully recovered after 1000 stretching/releasing cycles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Visual Merchandising Displays – Functional or A Waste of Space in ...

    African Journals Online (AJOL)

    Other important aspects of visual merchandising that were identified were the positioning of displays and the use of space, lighting as well as the neatness of displays. A further important aspect that was noted was that visual merchandising displays should provide information about the products sold in store. It became clear ...

  12. New procedures to evaluate visually lossless compression for display systems

    Science.gov (United States)

    Stolitzka, Dale F.; Schelkens, Peter; Bruylants, Tim

    2017-09-01

    Visually lossless image coding in isochronous display streaming or plesiochronous networks reduces link complexity and power consumption and increases available link bandwidth. A new set of codecs developed within the last four years promise a new level of coding quality, but require new techniques that are sufficiently sensitive to the small artifacts or color variations induced by this new breed of codecs. This paper begins with a summary of the new ISO/IEC 29170-2, a procedure for evaluation of lossless coding and reports the new work by JPEG to extend the procedure in two important ways, for HDR content and for evaluating the differences between still images, panning images and image sequences. ISO/IEC 29170-2 relies on processing test images through a well-defined process chain for subjective, forced-choice psychophysical experiments. The procedure sets an acceptable quality level equal to one just noticeable difference. Traditional image and video coding evaluation techniques, such as, those used for television evaluation have not proven sufficiently sensitive to the small artifacts that may be induced by this breed of codecs. In 2015, JPEG received new requirements to expand evaluation of visually lossless coding for high dynamic range images, slowly moving images, i.e., panning, and image sequences. These requirements are the basis for new amendments of the ISO/IEC 29170-2 procedures described in this paper. These amendments promise to be highly useful for the new content in television and cinema mezzanine networks. The amendments passed the final ballot in April 2017 and are on track to be published in 2018.

  13. Applications of aerospace technology in industry: A technology transfer profile. Visual display systems

    Science.gov (United States)

    1972-01-01

    The growth of common as well as emerging visual display technologies are surveyed. The major inference is that contemporary society is rapidly growing evermore reliant on visual display for a variety of purposes. Because of its unique mission requirements, the National Aeronautics and Space Administration has contributed in an important and specific way to the growth of visual display technology. These contributions are characterized by the use of computer-driven visual displays to provide an enormous amount of information concisely, rapidly and accurately.

  14. Visual Display of Scientific Studies, Methods, and Results

    Science.gov (United States)

    Saltus, R. W.; Fedi, M.

    2015-12-01

    The need for efficient and effective communication of scientific ideas becomes more urgent each year.A growing number of societal and economic issues are tied to matters of science - e.g., climate change, natural resource availability, and public health. Societal and political debate should be grounded in a general understanding of scientific work in relevant fields. It is difficult for many participants in these debates to access science directly because the formal method for scientific documentation and dissemination is the journal paper, generally written for a highly technical and specialized audience. Journal papers are very effective and important for documentation of scientific results and are essential to the requirements of science to produce citable and repeatable results. However, journal papers are not effective at providing a quick and intuitive summary useful for public debate. Just as quantitative data are generally best viewed in graphic form, we propose that scientific studies also can benefit from visual summary and display. We explore the use of existing methods for diagramming logical connections and dependencies, such as Venn diagrams, mind maps, flow charts, etc., for rapidly and intuitively communicating the methods and results of scientific studies. We also discuss a method, specifically tailored to summarizing scientific papers that we introduced last year at AGU. Our method diagrams the relative importance and connections between data, methods/models, results/ideas, and implications/importance using a single-page format with connected elements in these four categories. Within each category (e.g., data) the spatial location of individual elements (e.g., seismic, topographic, gravity) indicates relative novelty (e.g., are these new data?) and importance (e.g., how critical are these data to the results of the paper?). The goal is to find ways to rapidly and intuitively share both the results and the process of science, both for communication

  15. Three-Dimensional Display Of Computed Tomographic Volume Images To Visualize Internal Organs

    Science.gov (United States)

    Harris, Lowell D.

    1981-10-01

    Volume images made up of "stacks" of parallel computed tomographic (CT) cross-sectional images are displayed in three dimensions utilizing the method of projection imaging. This technique involves the mathematical projection of the volume picture elements (voxels) of the 3-D image onto a plane to form a two-dimensional projection image which, for x-ray CT volume images, resemble conventional radiographs. Projection images formed at two angles of view, 2° to 8° apart, are utilized as stereo-pair projections to view the volume image in three dimensions. Before projection, selected regions of the volume image are partially dissolved or totally removed from the volume to enhance the visibility of remaining struc-tures. These processes, referred to as numerical tissue "dissolution" and "dissection", are utilized to overcome the undesired effects of superposition which occur as natural consequence of displaying a stack of cross sections as a volume image, i.e., deeper image regions are obscured by overlying structure. Examples are shown where overlying regions of the volume image have been "cut" from the volume to more clearly visualize deeper anatomy. Particular emphasis is given to the use of these methods in identifying two-and three-dimensional subregions of interest within the volume for further detailed view-ing and quantitative analysis. As an example, the use of the 3-D display of volume images to guide the process of identifying the optimal orientation of oblique section images through internal organs of the body is illustrated.

  16. Display of scientific data structures for algorithm visualization

    Science.gov (United States)

    Hibbard, William; Dyer, Charles R.; Paul, Brian

    1992-01-01

    We present a technique for defining graphical depictions for all the data types defined in an algorithm. The ability to display arbitrary combinations of an algorithm's data objects in a common frame of reference, coupled with interactive control of algorithm execution, provides a powerful way to understand algorithm behavior. Type definitions are constrained so that all primitive values occurring in data objects are assigned scalar types. A graphical display, including user interaction with the display, is modeled by a special data type. Mappings from the scalar types into the display model type provide a simple user interface for controlling how all data types are depicted, without the need for type-specific graphics logic.

  17. Effect of viewing angle on luminance and contrast for a five-million-pixel monochrome display and a nine-million-pixel color liquid crystal display.

    Science.gov (United States)

    Fifadara, Dipesh H; Averbukh, Alice; Channin, David S; Badano, Aldo

    2004-12-01

    Digital imaging systems used in radiology rely on electronic display devices to present images to human observers. Active-matrix liquid crystal displays (AMLCDs) continue to improve and are beginning to be considered for diagnostic image display. In spite of recent progress, AMLCDs are characterized by a change in luminance and contrast response with changes in viewing direction. In this article, we characterize high pixel density AMLCDs (a five-million-pixel monochrome display and a nine-million-pixel color display) in terms of the effect of viewing angle on their luminance and contrast response. We measured angular luminance profiles using a custom-made computer-controlled goniometric instrument and a conoscopic Fourier-optics instrument. We show the angular luminance response as a function of viewing angle, as well as the departure of the measured contrast from the desired response. Our findings indicate small differences between the five-million-pixel (5 MP) and the nine-million-pixel (9 MP) AMLCDs. The 9 MP shows lower variance in contrast with changes in viewing angle, whereas the 5 MP provides a slightly better GSDF compliance for off-normal viewing.

  18. The display of spatial information and visually guided behavior

    Science.gov (United States)

    Bennett, C. Thomas

    1991-01-01

    The basic informational elements of spatial orientation are attitude and position within a coordinate system. The problem that faces aeronautical designers is that a pilot must deal with several coordinate systems, sometimes simultaneously. The display must depict unambiguously not only position and attitude, but also designate the relevant coordinate system. If this is not done accurately, spatial disorientation can occur. The different coordinate systems used in aeronautical tasks and the problems that occur in the display of spatial information are explained.

  19. Low Cost, Wide Angle Infinity Optics Visual System.

    Science.gov (United States)

    1981-09-01

    in Droducinq optical simulators led to the develooment of the Pancake Window display , an in-line, compact, infinity display system with the advantages...of using only reflec- tive optics and providinq very large field-of-view anqles. The Pancake Window display consists of two linear polarizers, two...with its plane of polarization not crossed but oarallel to its linear axis: consequently, this light will be transmitted by the Pancake Window display . If

  20. Aspects of radiation effects due to visual display units at work

    International Nuclear Information System (INIS)

    Vana, N.

    1988-01-01

    The introduction and acceptance of video display units at work have led to a huge flood of information, rumours, and half-truths about those units. As the population became increasingly sensitized to 'radioactive radiation', there was, and in part still is, a tendency to consider particularly effects of unclear origin, first of all ionizing radiation and later on also non-ionizing radiation, as the main threat from video display units at work. Such important issuses as ergonomics, stress load, visual stress load, and social hygiene are often effaced by the question for 'the radiation load from visual display units'. The paper is an attempt to deal with aspects of radiation effects of visual display units at work. The discussion also extends to hazards, respectively the 'radiation environment', at the site of the visual display unit. (orig./DG) [de

  1. Visual Inspection Displays Good Accuracy for Detecting Caries Lesions

    DEFF Research Database (Denmark)

    Twetman, Svante

    2015-01-01

    /QUESTION: To evaluate the overall accuracy of visual methods for detecting caries lesions. SOURCE OF FUNDING: Brazilian government (Process 2012/17888-1). TYPE OF STUDY/DESIGN: Systematic review with meta-analysis of data LEVEL OF EVIDENCE: Level 1: Good-quality, patient-oriented evidence STRENGTH OF RECOMMENDATION...... GRADE: Grade A: Consistent, good-quality patient-oriented evidence....

  2. Display Device Color Management and Visual Surveillance of Vehicles

    Science.gov (United States)

    Srivastava, Satyam

    2011-01-01

    Digital imaging has seen an enormous growth in the last decade. Today users have numerous choices in creating, accessing, and viewing digital image/video content. Color management is important to ensure consistent visual experience across imaging systems. This is typically achieved using color profiles. In this thesis we identify the limitations…

  3. Analysis of visual coding variables on CRT generated displays

    International Nuclear Information System (INIS)

    Blackman, H.S.; Gilmore, W.E.

    1985-01-01

    Cathode ray tube generated safety parameter display systems in a nuclear power plant control room situation have been found to be improved in effectiveness when color coding is employed. Research has indicated strong support for graphic coding techniques particularly in redundant coding schemes. In addition, findings on pictographs, as applied in coding schemes, indicate the need for careful application and for further research in the development of a standardized set of symbols

  4. Solutions to helmet-mounted display visual correction compatibility issues

    Science.gov (United States)

    Rash, Clarence E.; Kalich, Melvyn E.; van de Pol, Corina

    2002-08-01

    To meet the goal of 24-hour, all-weather operation, U.S. Army aviation uses a number of imaging sensor systems on its aircraft. Imagery provided by these systems is presented on helmet-mounted displays (HMDs). Fielded systems include the Integrated Helmet Display Sighting System (IHADSS) used on the AH-64 Apache. Proposed future HMD systems such as the Helmet Integrated Display Sighting System (HIDSS) and the Microvision, Inc., Aircrew Integrated Helmet System (AIHS) scanning laser system are possible choices for the Army's RAH-66 Comanche helicopter. Ever present in current and future HMD systems is the incompatibility problem between the design-limited physical eye relief of the HMD and the need to provide for the integration of laser and nuclear, biological and chemical (NBC) protection, as well as the need to address the changing optical and vision requirements of the aging aviator. This paper defines the compatibility issue, reviews past efforts to solve this problem (e.g., contact lenses, NBC masks, optical inserts, etc.), and identifies emerging techniques (e.g., refractive surgery, adaptive optics, etc.) that require investigation.

  5. Color coding of control room displays: the psychocartography of visual layering effects.

    Science.gov (United States)

    Van Laar, Darren; Deshe, Ofer

    2007-06-01

    To evaluate which of three color coding methods (monochrome, maximally discriminable, and visual layering) used to code four types of control room display format (bars, tables, trend, mimic) was superior in two classes of task (search, compare). It has recently been shown that color coding of visual layers, as used in cartography, may be used to color code any type of information display, but this has yet to be fully evaluated. Twenty-four people took part in a 2 (task) x 3 (coding method) x 4 (format) wholly repeated measures design. The dependent variables assessed were target location reaction time, error rates, workload, and subjective feedback. Overall, the visual layers coding method produced significantly faster reaction times than did the maximally discriminable and the monochrome methods for both the search and compare tasks. No significant difference in errors was observed between conditions for either task type. Significantly less perceived workload was experienced with the visual layers coding method, which was also rated more highly than the other coding methods on a 14-item visual display quality questionnaire. The visual layers coding method is superior to other color coding methods for control room displays when the method supports the user's task. The visual layers color coding method has wide applicability to the design of all complex information displays utilizing color coding, from the most maplike (e.g., air traffic control) to the most abstract (e.g., abstracted ecological display).

  6. From Big Data to Big Displays High-Performance Visualization at Blue Brain

    KAUST Repository

    Eilemann, Stefan

    2017-10-19

    Blue Brain has pushed high-performance visualization (HPV) to complement its HPC strategy since its inception in 2007. In 2011, this strategy has been accelerated to develop innovative visualization solutions through increased funding and strategic partnerships with other research institutions. We present the key elements of this HPV ecosystem, which integrates C++ visualization applications with novel collaborative display systems. We motivate how our strategy of transforming visualization engines into services enables a variety of use cases, not only for the integration with high-fidelity displays, but also to build service oriented architectures, to link into web applications and to provide remote services to Python applications.

  7. The Development and Evaluation of Color Display Systems for Airborne Applications. Phase 1. Fundamental Visual, Perceptual, and Display System Considerations

    Science.gov (United States)

    1985-07-18

    programmable read-only memory PWM pulsewldth modulation R/C refresh channel RFP request for proposal RGB red/green/blue RLS remote light sensor RSS root...the triangular region by appropriate mixtures of luminous output from the primaries. However, because the CIE chromaticity system is based on...provide meaningful estimates of the relative efficiency of colors used for time-critical visual signals as a function of display location. In general

  8. Human Visual Performance and Flat Panel Display Image Quality

    Science.gov (United States)

    1980-07-01

    half-tones and colour with the ultimate goal of the large screen picture-on-the-wall television, wnich is the television engineers’ dream for the...the visual sys- tem. Rarely does a linear mood <»ver describe biologically dynamic systems with great accuracy; in fact, rarely does a linear model...Proceedings of the S.I_.D., 1980, 21_, 17-20. Stiles, W. S. Investigations of the scotopic and trichromatic mechanisms of vision by the two- colour

  9. Viewing angle switching of liquid crystal display using fringe-field switching to control off-axis phase retardation

    International Nuclear Information System (INIS)

    Lim, Young Jin; Kim, Jin Ho; Her, Jung Hwa; Lee, Seung Hee; Park, Kyoung Ho; Lee, Joun Ho; Kim, Byeong Koo; Kang, Wan-Seok; Lee, Gi-Dong

    2010-01-01

    A viewing angle switchable liquid crystal display associated with fringe-field switching mode is proposed. In the device, one pixel is composed of a main pixel and a sub-pixel, in which both pixels are formed to generate a fringe electric field. However, the field directions are different from each other so that in the main pixel, the fringe field rotates the liquid crystal for displaying the main image, whereas it controls only the tilt angle of the liquid crystal without rotating in the sub-pixel region. In this way, phase retardation to cause leakage of light at the off-normal axis can be generated in the sub-pixel, and by utilizing the light, the main displayed image in the normal direction can be blocked in the oblique viewing direction.

  10. Viewing angle switching of liquid crystal display using fringe-field switching to control off-axis phase retardation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Young Jin; Kim, Jin Ho; Her, Jung Hwa; Lee, Seung Hee [Polymer BIN Fusion Research Center, Department of Polymer Nano-Science and Technology, Chonbuk National University, Chonju, Chonbuk 561-756 (Korea, Republic of); Park, Kyoung Ho; Lee, Joun Ho; Kim, Byeong Koo [Mobile Product Development Department, LG Display Company, Ltd, Gumi, Gyungbuk 730-350 (Korea, Republic of); Kang, Wan-Seok; Lee, Gi-Dong, E-mail: gdlee@dau.ac.k, E-mail: lsh1@chonbuk.ac.k [Department of Electronics Engineering, Dong-A University, Pusan 604-714 (Korea, Republic of)

    2010-03-03

    A viewing angle switchable liquid crystal display associated with fringe-field switching mode is proposed. In the device, one pixel is composed of a main pixel and a sub-pixel, in which both pixels are formed to generate a fringe electric field. However, the field directions are different from each other so that in the main pixel, the fringe field rotates the liquid crystal for displaying the main image, whereas it controls only the tilt angle of the liquid crystal without rotating in the sub-pixel region. In this way, phase retardation to cause leakage of light at the off-normal axis can be generated in the sub-pixel, and by utilizing the light, the main displayed image in the normal direction can be blocked in the oblique viewing direction.

  11. Optimisation of underwater visual census and controlled angling ...

    African Journals Online (AJOL)

    Whereas UVC provided less variable estimates of relative density, controlled angling provided greater sampling efficiency. It is thus recommended that the two methods be used in conjunction. The optimal sampling protocols identified are suitable for rapid assessments or long-term monitoring of subtidal, temperate reef fish ...

  12. Comparison of human driver dynamics in simulators with complex and simple visual displays and in an automobile on the road

    Science.gov (United States)

    Mcruer, D. T.; Klein, R. H.

    1975-01-01

    As part of a comprehensive program exploring driver/vehicle system response in lateral steering tasks, driver/vehicle system describing functions and other dynamic data have been gathered in several milieu. These include a simple fixed base simulator with an elementary roadway delineation only display; a fixed base statically operating automobile with a terrain model based, wide angle projection system display; and a full scale moving base automobile operating on the road. Dynamic data with the two fixed base simulators compared favorably, implying that the impoverished visual scene, lack of engine noise, and simplified steering wheel feel characteristics in the simple simulator did not induce significant driver dynamic behavior variations. The fixed base vs. moving base comparisons showed substantially greater crossover frequencies and phase margins on the road course.

  13. Depth cues in human visual perception and their realization in 3D displays

    Science.gov (United States)

    Reichelt, Stephan; Häussler, Ralf; Fütterer, Gerald; Leister, Norbert

    2010-04-01

    Over the last decade, various technologies for visualizing three-dimensional (3D) scenes on displays have been technologically demonstrated and refined, among them such of stereoscopic, multi-view, integral imaging, volumetric, or holographic type. Most of the current approaches utilize the conventional stereoscopic principle. But they all lack of their inherent conflict between vergence and accommodation since scene depth cannot be physically realized but only feigned by displaying two views of different perspective on a flat screen and delivering them to the corresponding left and right eye. This mismatch requires the viewer to override the physiologically coupled oculomotor processes of vergence and eye focus that may cause visual discomfort and fatigue. This paper discusses the depth cues in the human visual perception for both image quality and visual comfort of direct-view 3D displays. We concentrate our analysis especially on near-range depth cues, compare visual performance and depth-range capabilities of stereoscopic and holographic displays, and evaluate potential depth limitations of 3D displays from a physiological point of view.

  14. Visualization techniques for studying high angle of attack separated vortical flows

    Science.gov (United States)

    Nelson, Robert C.

    1988-01-01

    Flow visualization techniques can provide information on high angle of attack separated flows around slender aircraft configurations that may be unobtainable otherwise. At large angles of attack the flow field is dominated by vortical structures originating on the forebody wing extension, wing and forward control surfaces. Several techniques that are suitable for tracking vortices in subsonic wind tunnels are introduced. A discussion of visualization photographs and quantitative data obtained from visualization studies on vortex trajectory and breakdown position on both static and dynamic wind tunnel models is presented.

  15. Discriminant learning through multiple principal angles for visual recognition.

    Science.gov (United States)

    Su, Ya; Fu, Yun; Gao, Xinbo; Tian, Qi

    2012-03-01

    Canonical correlation has been prevalent for multiset-based pairwise subspace analysis. As an extension, discriminant canonical correlations (DCCs) have been developed for classification purpose by learning a global subspace based on Fisher discriminant modeling of pairwise subspaces. However, the discriminative power of DCCs is not optimal as it only measures the "local" canonical correlations within subspace pairs, which lacks the "global" measurement among all the subspaces. In this paper, we propose a multiset discriminant canonical correlation method, i.e., multiple principal angle (MPA). It jointly considers both "local" and "global" canonical correlations by iteratively learning multiple subspaces (one for each set) as well as a global discriminative subspace, on which the angle among multiple subspaces of the same class is minimized while that of different classes is maximized. The proposed computational solution is guaranteed to be convergent with much faster converging speed than DCC. Extensive experiments on pattern recognition applications demonstrate the superior performance of MPA compared to existing subspace learning methods.

  16. Reading on LCD vs e-Ink displays: effects on fatigue and visual strain.

    Science.gov (United States)

    Siegenthaler, Eva; Bochud, Yves; Bergamin, Per; Wurtz, Pascal

    2012-09-01

    Most recently light and mobile reading devices with high display resolutions have become popular and they may open new possibilities for reading applications in education, business and the private sector. The ability to adapt font size may also open new reading opportunities for people with impaired or low vision. Based on their display technology two major groups of reading devices can be distinguished. One type, predominantly found in dedicated e-book readers, uses electronic paper also known as e-Ink. Other devices, mostly multifunction tablet-PCs, are equipped with backlit LCD displays. While it has long been accepted that reading on electronic displays is slow and associated with visual fatigue, this new generation is explicitly promoted for reading. Since research has shown that, compared to reading on electronic displays, reading on paper is faster and requires fewer fixations per line, one would expect differential effects when comparing reading behaviour on e-Ink and LCD. In the present study we therefore compared experimentally how these two display types are suited for reading over an extended period of time. Participants read for several hours on either e-Ink or LCD, and different measures of reading behaviour and visual strain were regularly recorded. These dependent measures included subjective (visual) fatigue, a letter search task, reading speed, oculomotor behaviour and the pupillary light reflex. Results suggested that reading on the two display types is very similar in terms of both subjective and objective measures. It is not the technology itself, but rather the image quality that seems crucial for reading. Compared to the visual display units used in the previous few decades, these more recent electronic displays allow for good and comfortable reading, even for extended periods of time. © 2012 The College of Optometrists.

  17. Semiquantitative slab view display for visual evaluation of 123I-FP-CIT SPECT.

    Science.gov (United States)

    Buchert, Ralph; Hutton, Chloe; Lange, Catharina; Hoppe, Peter; Makowski, Marcus; Bamousa, Thamer; Platsch, Günther; Brenner, Winfried; Declerck, Jerome

    2016-05-01

    Dopamine transporter single-photon emission computed tomography (SPECT) with I-FP-CIT is used widely in the diagnosis of clinically uncertain parkinsonian syndromes. In terms of the evaluation of FP-CIT SPECT, some practice guidelines state that visual interpretation alone is generally sufficient in clinical patient care, whereas other guidelines consider semiquantitative analysis of striatal dopamine transporter availability mandatory. This discrepancy might be because of a relative lack of widely available display tools for FP-CIT SPECT. In this study, we evaluate a semiquantitative slab view display optimized for visual evaluation of FP-CIT SPECT that might resolve the discrepancy. The reconstructed FP-CIT SPECT image was stereotactically normalized and scaled voxel by voxel to the mean uptake in the entire brain without striata. From the resulting distribution volume ratio image, a 12-mm-thick transversal slice (slab) through the striata was displayed with a standard colour table with predefined fixed thresholds on the distribution volume ratio. Visual scoring of the semiquantitative slab view was performed twice by four independent readers in 235 unselected patients. The specific binding ratio in the caudate and putamen was computed by fully automated semiquantitative analysis with predefined standard regions of interest in template space. Intrarater and inter-rater agreement of binary visual categorization as 'normal' or 'reduced' was excellent (mean Cohen's κ=0.88 and 0.83, respectively). The area under the receiver-operator characteristic curve of the specific putamen-binding ratio for differentiation between visually normal and visually reduced (majority read) was 0.96. Visual interpretation of FP-CIT SPECT on the basis of the semiquantitative slab view display provides excellent stability within and between readers as well as very high agreement with semiquantitative analysis. This suggests that the slab view display enables reliable visual

  18. Comparison of two head-up displays in simulated standard and noise abatement night visual approaches

    Science.gov (United States)

    Cronn, F.; Palmer, E. A., III

    1975-01-01

    Situation and command head-up displays were evaluated for both standard and two segment noise abatement night visual approaches in a fixed base simulation of a DC-8 transport aircraft. The situation display provided glide slope and pitch attitude information. The command display provided glide slope information and flight path commands to capture a 3 deg glide slope. Landing approaches were flown in both zero wind and wind shear conditions. For both standard and noise abatement approaches, the situation display provided greater glidepath accuracy in the initial phase of the landing approaches, whereas the command display was more effective in the final approach phase. Glidepath accuracy was greater for the standard approaches than for the noise abatement approaches in all phases of the landing approach. Most of the pilots preferred the command display and the standard approach. Substantial agreement was found between each pilot's judgment of his performance and his actual performance.

  19. Surgical planning for radical prostatectomies using three-dimensional visualization and a virtual reality display system

    Science.gov (United States)

    Kay, Paul A.; Robb, Richard A.; King, Bernard F.; Myers, R. P.; Camp, Jon J.

    1995-04-01

    Thousands of radical prostatectomies for prostate cancer are performed each year. Radical prostatectomy is a challenging procedure due to anatomical variability and the adjacency of critical structures, including the external urinary sphincter and neurovascular bundles that subserve erectile function. Because of this, there are significant risks of urinary incontinence and impotence following this procedure. Preoperative interaction with three-dimensional visualization of the important anatomical structures might allow the surgeon to understand important individual anatomical relationships of patients. Such understanding might decrease the rate of morbidities, especially for surgeons in training. Patient specific anatomic data can be obtained from preoperative 3D MRI diagnostic imaging examinations of the prostate gland utilizing endorectal coils and phased array multicoils. The volumes of the important structures can then be segmented using interactive image editing tools and then displayed using 3-D surface rendering algorithms on standard work stations. Anatomic relationships can be visualized using surface displays and 3-D colorwash and transparency to allow internal visualization of hidden structures. Preoperatively a surgeon and radiologist can interactively manipulate the 3-D visualizations. Important anatomical relationships can better be visualized and used to plan the surgery. Postoperatively the 3-D displays can be compared to actual surgical experience and pathologic data. Patients can then be followed to assess the incidence of morbidities. More advanced approaches to visualize these anatomical structures in support of surgical planning will be implemented on virtual reality (VR) display systems. Such realistic displays are `immersive,' and allow surgeons to simultaneously see and manipulate the anatomy, to plan the procedure and to rehearse it in a realistic way. Ultimately the VR systems will be implemented in the operating room (OR) to assist the

  20. Significance of Visual Evoked Potentials in the Assessment of Visual Field Defects in Primary Open-Angle Glaucoma: A Review

    Directory of Open Access Journals (Sweden)

    Ruchi Kothari

    2013-01-01

    Full Text Available Visual evoked potentials is an important visual electrophysiological tool which has been used for the evaluation of visual field defects in primary open-angle glaucoma and is an appropriate objective measure of optic nerve function. Significant correlations between the magnitude of the VEP parameters and MD of Humphrey static perimetry suggest that the impaired visual cortical responses observed in glaucoma patients can be revealed by both electrophysiological and psychophysical methods. In addition, the severity of global glaucomatous damage evidenced by reduction in MD could depend on the delay in neural conduction from retina to the visual cortex as revealed by the significant correlation between VEP latencies and MD which also supports the validity of the VEP testing in progression of glaucoma.

  1. Bandwidth Optimization On Design Of Visual Display Information System Based Networking At Politeknik Negeri Bali

    Science.gov (United States)

    Sudiartha, IKG; Catur Bawa, IGNB

    2018-01-01

    Information can not be separated from the social life of the community, especially in the world of education. One of the information fields is academic calendar information, activity agenda, announcement and campus activity news. In line with technological developments, text-based information is becoming obsolete. For that need creativity to present information more quickly, accurately and interesting by exploiting the development of digital technology and internet. In this paper will be developed applications for the provision of information in the form of visual display, applied to computer network system with multimedia applications. Network-based applications provide ease in updating data through internet services, attractive presentations with multimedia support. The application “Networking Visual Display Information Unit” can be used as a medium that provides information services for students and academic employee more interesting and ease in updating information than the bulletin board. The information presented in the form of Running Text, Latest Information, Agenda, Academic Calendar and Video provide an interesting presentation and in line with technological developments at the Politeknik Negeri Bali. Through this research is expected to create software “Networking Visual Display Information Unit” with optimal bandwidth usage by combining local data sources and data through the network. This research produces visual display design with optimal bandwidth usage and application in the form of supporting software.

  2. Audio Cues to Assist Visual Search in Robotic System Operator Control Unit Displays

    Science.gov (United States)

    2005-12-01

    Christopher C. Stachowiak , and Michael A. Lattin ARL-TR-3632 December 2005 Approved for...Assist Visual Search in Robotic System Operator Control Unit Displays Ellen C. Haas, Ramakrishna S. Pillalamarri, Christopher C. Stachowiak , and...5e. TASK NUMBER 6. AUTHOR(S) Ellen C. Haas, Ramakrishna S. Pillalamarri, Christopher C. Stachowiak , and Michael A. Lattin (all of ARL

  3. Adaptive luminance contrast for enhancing reading performance and visual comfort on smartphone displays

    Science.gov (United States)

    Na, Nooree; Suk, Hyeon-Jeong

    2014-11-01

    This study developed a model for setting the adaptive luminance contrast between text and background for enhancing reading performance and visual comfort on smartphone displays. The study was carried out in two experiments. In Experiment I, a user test was conducted to identify the optimal luminance contrast with regard to subjects' reading performance, measured by lines of text reading and visual comfort, assessed by self-report after the reading. Based on the empirical results of the test, an ideal adaptive model which decreases the luminance contrast gradually with passage of time was developed. In Experiment II, a validation test involving reading performance, visual comfort, and physiological stress measured by a brainwave analysis using an electroencephalogram confirmed that the proposed adaptive luminance contrast is adequate for prolonged text reading on smartphone displays. The developed model enhances both reading performance and visual comfort as well as reduces the energy consumption of a smartphone; hence, it is expected that this study will be applied to diverse kinds of visual display terminals.

  4. Development and Testing of Functionally Operative and Visually Appealing Remote Firing Room Displays and Applications

    Science.gov (United States)

    Quaranto, Kristy

    2014-01-01

    This internship provided an opportunity for an intern to work with NASA's Ground Support Equipment (GSE) for the Spaceport Command and Control System (SCCS) at Kennedy Space Center as a remote display developer, under NASA technical mentor Kurt Leucht. The main focus was on creating remote displays and applications for the hypergolic and high pressure helium subsystem team to help control the filling of the respective tanks. As a remote display and application developer for the GSE hypergolic and high pressure helium subsystem team the intern was responsible for creating and testing graphical remote displays and applications to be used in the Launch Control Center (LCC) on the Firing Room's computers. To become more familiar with the subsystem, the individual attended multiple project meetings and acquired their specific requirements regarding what needed to be included in the software. After receiving the requirements for the displays, the next step was to create displays that had both visual appeal and logical order using the Display Editor, on the Virtual Machine (VM). In doing so, all Compact Unique Identifiers (CUI), which are associated with specific components within the subsystem, were need to be included in each respective display for the system to run properly. Then, once the display was created it was to be tested to ensure that the display runs as intended by using the Test Driver, also found on the VM. This Test Driver is a specific application that checks to make sure all the CUIs in the display are running properly and returning the correct form of information. After creating and locally testing the display it needed to go through further testing and evaluation before deemed suitable for actual use. For the remote applications the intern was responsible for creating a project that focused on channelizing each component included in each display. The core of the application code was created by setting up spreadsheets and having an auto test generator

  5. Design of a High Resolution Scalable Cluster Based Portable Tiled Display for Earth Sciences Visualization

    Science.gov (United States)

    Nayak, A. M.; Dawe, G.; Samilo, D.; Keen, C.; Matthews, J.; Patel, A.; Im, T.; Orcutt, J.; Defanti, T.

    2006-12-01

    The Center for Earth Observations and Applications (CEOA) collaborated with researchers at the Scripps Institution of Oceanography Visualization Center and the California Institute for Telecommunications and Information Technology (Calit2) to design an advanced portable visualization system to explore geophysical and oceanography datasets at very high resolution. The system consists of 15 Dell 24" monitors arranged in a 3x5 grid ( 3 panels high and 5 wide). Each monitor supports a resolution of upto 1920 x 1200 and is driven by one node of a cluster of 15 Intel Mac Minis. The tiled display supports a total resolution of over 34 million pixels and can be used either as a single large desktop to display rendered animations, HD movies and image files or to display web-based content on each panel for simultaneous viewing of mutliple datasets. The system is enclosed in a custom built case that can hold all the required components and transported to research sites or to meetings and conferences for public awareness activities. We call the system the 'Mobile INteractive Imaging Multidisplay Environment' or simply 'miniMe'. The design of the miniMe wall is based on a class of advanced display systems called Geowall-2 developed at the Electronic Visualization Laboratory, University of Illinois at Chicago.

  6. Choosing colors for map display icons using models of visual search.

    Science.gov (United States)

    Shive, Joshua; Francis, Gregory

    2013-04-01

    We show how to choose colors for icons on maps to minimize search time using predictions of a model of visual search. The model analyzes digital images of a search target (an icon on a map) and a search display (the map containing the icon) and predicts search time as a function of target-distractor color distinctiveness and target eccentricity. We parameterized the model using data from a visual search task and performed a series of optimization tasks to test the model's ability to choose colors for icons to minimize search time across icons. Map display designs made by this procedure were tested experimentally. In a follow-up experiment, we examined the model's flexibility to assign colors in novel search situations. The model fits human performance, performs well on the optimization tasks, and can choose colors for icons on maps with novel stimuli to minimize search time without requiring additional model parameter fitting. Models of visual search can suggest color choices that produce search time reductions for display icons. Designers should consider constructing visual search models as a low-cost method of evaluating color assignments.

  7. Using Auditory Cues to Perceptually Extract Visual Data in Collaborative, Immersive Big-Data Display Systems

    Science.gov (United States)

    Lee, Wendy

    The advent of multisensory display systems, such as virtual and augmented reality, has fostered a new relationship between humans and space. Not only can these systems mimic real-world environments, they have the ability to create a new space typology made solely of data. In these spaces, two-dimensional information is displayed in three dimensions, requiring human senses to be used to understand virtual, attention-based elements. Studies in the field of big data have predominately focused on visual representations and extractions of information with little focus on sounds. The goal of this research is to evaluate the most efficient methods of perceptually extracting visual data using auditory stimuli in immersive environments. Using Rensselaer's CRAIVE-Lab, a virtual reality space with 360-degree panorama visuals and an array of 128 loudspeakers, participants were asked questions based on complex visual displays using a variety of auditory cues ranging from sine tones to camera shutter sounds. Analysis of the speed and accuracy of participant responses revealed that auditory cues that were more favorable for localization and were positively perceived were best for data extraction and could help create more user-friendly systems in the future.

  8. Observer performance in dynamic displays: effect of frame rate on visual signal detection in noisy images

    Science.gov (United States)

    Whiting, James S.; Honig, David A.; Carterette, Edward; Eigler, Neal L.

    1991-06-01

    An observer's ability to detect low contrast features (signals) within an image is an important measure of image quality. A theory exists for describing the relationship between measurable image parameters and the detectability of simple visual signals such as squares or disks in single images. This signal detection theory has been successfully applied to many practical visual tasks yielding fundamental re'ationships between noise, contrast, and the effect on detectability of intensifying screen/x-ray film combinations in conventional radiology2, and quantization noise,3 image processing,4 and window/level settings5'6 in digital displays. We are aware of no studies examining signal detectability in dynamically displayed medical images, despite the importance of these displays for many imaging modalities. Examples of dynamic displays in medical imaging include x-ray fluoroscopy, cardiac cineangiography, real-time two-dimensional ultrasound (2D-Echo), rapid-sequence nuclear magnetic resonance imaging (cine MRI), radioisotope ventriculography, and ultrafast computed tomography (UFCT) . The goal of the present study was to quantify the psychophysical parameters which affect observer performance in dynamically displayed sequences of noisy images.

  9. Optical information for car following: the driving by visual angle (DVA) model.

    Science.gov (United States)

    Andersen, George J; Sauer, Craig W

    2007-10-01

    The present study developed and tested a model of car following by human drivers. Previous models of car following are based on 3-D parameters such as lead vehicle speed and distance information, which are not directly available to a driver. In the present paper we present the driving by visual angle (DVA) model, which is based on the visual information (visual angle and rate of change of visual angle) available to the driver. Two experiments in a driving simulator examined car-following performance in response to speed variations of a lead vehicle defined by a sum of sine wave oscillations and ramp acceleration functions. In addition, the model was applied to six driving events using real world-driving data. The model provided a good fit to car-following performance in the driving simulation studies as well as in real-world driving performance. A comparison with the advanced interactive microscopic simulator for urban and nonurban networks (AIMSUN) model, which is based on 3-D parameters, suggests that the DVA was more predictive of driver behavior in matching lead vehicle speed and distance headway. Car-following behavior can be modeled using only visual information to the driver and can produce performance more predictive of driver performance than models based on 3-D (speed or distance) information. The DVA model has applications to several traffic safety issues, including automated driving systems and traffic flow models.

  10. Effects of spatial separation between stimuli in whole report from brief visual displays

    DEFF Research Database (Denmark)

    Kyllingsbæk, Søren; Valla, Christian; Vanrie, Jan

    2007-01-01

    Direct measurements of effects of spatial separation between stimuli in whole report from brief visual displays are reported. The stimuli were presented on the periphery of an imaginary circle centered on fixation. In Experiment 1, each display showed 2 capital letters (letter height = 1.3°, width...... with triples of letters. Experiment 3 showed that accuracy increased with spatial separation for report of 2 short words, and Experiment 4 showed the same result for words presented upside-down. The results are explained by a model of lateral masking (crowding) based on competitive interactions within...

  11. Image size invariant visual cryptography for general access structures subject to display quality constraints.

    Science.gov (United States)

    Lee, Kai-Hui; Chiu, Pei-Ling

    2013-10-01

    Conventional visual cryptography (VC) suffers from a pixel-expansion problem, or an uncontrollable display quality problem for recovered images, and lacks a general approach to construct visual secret sharing schemes for general access structures. We propose a general and systematic approach to address these issues without sophisticated codebook design. This approach can be used for binary secret images in non-computer-aided decryption environments. To avoid pixel expansion, we design a set of column vectors to encrypt secret pixels rather than using the conventional VC-based approach. We begin by formulating a mathematic model for the VC construction problem to find the column vectors for the optimal VC construction, after which we develop a simulated-annealing-based algorithm to solve the problem. The experimental results show that the display quality of the recovered image is superior to that of previous papers.

  12. Measuring Visual Displays’ Effect on Novice Performance in Door Gunnery

    Science.gov (United States)

    2014-12-01

    34 flat panel screen condition. Additional key equipment included the use of the NCM3’s demilitarized M240 Medium Machine Gun (MG) with simulated recoil ...Specifically, we examined the effect that different visual displays had on novice soldier performance; qualified infantrymen with machine gun experience...Florida (UCF) and the co-director of the Modeling and Simulation graduate program at UCF. Dr. Kincaid’s areas of research include training systems

  13. 3D interactive surgical visualization system using mobile spatial information acquisition and autostereoscopic display.

    Science.gov (United States)

    Fan, Zhencheng; Weng, Yitong; Chen, Guowen; Liao, Hongen

    2017-07-01

    Three-dimensional (3D) visualization of preoperative and intraoperative medical information becomes more and more important in minimally invasive surgery. We develop a 3D interactive surgical visualization system using mobile spatial information acquisition and autostereoscopic display for surgeons to observe surgical target intuitively. The spatial information of regions of interest (ROIs) is captured by the mobile device and transferred to a server for further image processing. Triangular patches of intraoperative data with texture are calculated with a dimension-reduced triangulation algorithm and a projection-weighted mapping algorithm. A point cloud selection-based warm-start iterative closest point (ICP) algorithm is also developed for fusion of the reconstructed 3D intraoperative image and the preoperative image. The fusion images are rendered for 3D autostereoscopic display using integral videography (IV) technology. Moreover, 3D visualization of medical image corresponding to observer's viewing direction is updated automatically using mutual information registration method. Experimental results show that the spatial position error between the IV-based 3D autostereoscopic fusion image and the actual object was 0.38±0.92mm (n=5). The system can be utilized in telemedicine, operating education, surgical planning, navigation, etc. to acquire spatial information conveniently and display surgical information intuitively. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Naïve realism: folk fallacies in the design and use of visual displays.

    Science.gov (United States)

    Smallman, Harvey S; Cook, Maia B

    2011-07-01

    Often implicit in visual display design and development is a gold standard of photorealism. By approximating direct perception, photorealism appeals to users and designers by being both attractive and apparently effortless. The vexing result from numerous performance evaluations, though, is that increasing realism often impairs performance. Smallman and St. John (2005) labeled misplaced faith in realistic information display Naïve Realism and theorized it resulted from a triplet of folk fallacies about perception. Here, we illustrate issues associated with the wider trend towards realism by focusing on a specific current trend for high-fidelity perspective view (3D) geospatial displays. In two experiments, we validated Naïve Realism for different terrain understanding tasks, explored whether certain individuals are particularly prone to Naïve Realism, and determined the ability of task feedback to mitigate Naïve Realism. Performance was measured for laying and judging a concealed route across realistic terrain shown in different display formats. Task feedback was either implicit, in Experiment 1, or explicit in Experiment 2. Prospective and retrospective intuitions about the best display formats for the tasks were recorded and then related to task performance and participant spatial ability. Participants generally intuited they would perform tasks better with more realism than they actually required. For example, counter to intuitions, lowering fidelity of the terrain display revealed the gross scene layout needed to lay a well-concealed route. Individuals of high spatial ability calibrated their intuitions with only implicit task feedback, whereas those of low spatial ability required salient, explicit feedback to calibrate their intuitions about display realism. Results are discussed in the wider context of applying perceptual science to display design, and combating folk fallacies. Copyright © 2010 Cognitive Science Society, Inc.

  15. Three-dimensional visualization and display technologies; Proceedings of the Meeting, Los Angeles, CA, Jan. 18-20, 1989

    International Nuclear Information System (INIS)

    Robbins, W.E.; Fisher, S.S.

    1989-01-01

    Special attention was given to problems of stereoscopic display devices, such as CAD for enhancement of the design process in visual arts, stereo-TV improvement of remote manipulator performance, a voice-controlled stereographic video camera system, and head-mounted displays and their low-cost design alternatives. Also discussed was a novel approach to chromostereoscopic microscopy, computer-generated barrier-strip autostereography and lenticular stereograms, and parallax barrier three-dimensional TV. Additional topics include processing and user interface isssues and visualization applications, including automated analysis and fliud flow topology, optical tomographic measusrements of mixing fluids, visualization of complex data, visualization environments, and visualization management systems

  16. Flow Visualization in Evaporating Liquid Drops and Measurement of Dynamic Contact Angles and Spreading Rate

    Science.gov (United States)

    Zhang, Neng-Li; Chao, David F.

    2001-01-01

    A new hybrid optical system, consisting of reflection-refracted shadowgraphy and top-view photography, is used to visualize flow phenomena and simultaneously measure the spreading and instant dynamic contact angle in a volatile-liquid drop on a nontransparent substrate. Thermocapillary convection in the drop, induced by evaporation, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this unique technique clearly reveal that thermocapillary convection strongly affects the spreading process and the characteristics of dynamic contact angle of the drop. Comprehensive information of a sessile drop, including the local contact angle along the periphery, the instability of the three-phase contact line, and the deformation of the drop shape is obtained and analyzed.

  17. Hybrid wide-angle viewing-endoscopic vitrectomy using a 3D visualization system

    Directory of Open Access Journals (Sweden)

    Kita M

    2018-02-01

    Full Text Available Mihori Kita, Yuki Mori, Sachiyo Hama Department of Ophthalmology, National Organization Kyoto Medical Center, Kyoto, Japan Purpose: To introduce a hybrid wide-angle viewing-endoscopic vitrectomy, which we have reported, using a 3D visualization system developed recently. Subjects and methods: We report a single center, retrospective, consecutive surgical case series of 113 eyes that underwent 25 G vitrectomy (rhegmatogenous retinal detachment or proliferative vitreoretinopathy, 49 eyes; epiretinal membrane, 18 eyes; proliferative diabetic retinopathy, 17 eyes; vitreous opacity or vitreous hemorrhage, 11 eyes; macular hole, 11 eyes; vitreomacular traction syndrome, 4 eyes; and luxation of intraocular lens, 3 eyes. Results: This system was successfully used to perform hybrid vitrectomy in the difficult cases, such as proliferative vitreoretinopathy and proliferative diabetic retinopathy. Conclusion: Hybrid wide-angle viewing-endoscopic vitrectomy using a 3D visualization system appears to be a valuable and promising method for managing various types of vitreoretinal disease. Keywords: 25 G vitrectomy, endoscope, wide-angle viewing system, 3D visualization system, hybrid

  18. Visual Stability of Objects and Environments Viewed through Head-Mounted Displays

    Science.gov (United States)

    Ellis, Stephen R.; Adelstein, Bernard D.

    2015-01-01

    Virtual Environments (aka Virtual Reality) is again catching the public imagination and a number of startups (e.g. Oculus) and even not-so-startup companies (e.g. Microsoft) are trying to develop display systems to capitalize on this renewed interest. All acknowledge that this time they will get it right by providing the required dynamic fidelity, visual quality, and interesting content for the concept of VR to take off and change the world in ways it failed to do so in past incarnations. Some of the surprisingly long historical background of the technology that the form of direct simulation that underlies virtual environment and augmented reality displays will be briefly reviewed. An example of a mid 1990's augmented reality display system with good dynamic performance from our lab will be used to illustrate some of the underlying phenomena and technology concerning visual stability of virtual environments and objects during movement. In conclusion some idealized performance characteristics for a reference system will be proposed. Interestingly, many systems more or less on the market now may actually meet many of these proposed technical requirements. This observation leads to the conclusion that the current success of the IT firms trying to commercialize the technology will depend on the hidden costs of using the systems as well as the development of interesting and compelling content.

  19. Real-Time Detection and Reading of LED/LCD Displays for Visually Impaired Persons.

    Science.gov (United States)

    Tekin, Ender; Coughlan, James M; Shen, Huiying

    2011-01-05

    Modern household appliances, such as microwave ovens and DVD players, increasingly require users to read an LED or LCD display to operate them, posing a severe obstacle for persons with blindness or visual impairment. While OCR-enabled devices are emerging to address the related problem of reading text in printed documents, they are not designed to tackle the challenge of finding and reading characters in appliance displays. Any system for reading these characters must address the challenge of first locating the characters among substantial amounts of background clutter; moreover, poor contrast and the abundance of specular highlights on the display surface - which degrade the image in an unpredictable way as the camera is moved - motivate the need for a system that processes images at a few frames per second, rather than forcing the user to take several photos, each of which can take seconds to acquire and process, until one is readable.We describe a novel system that acquires video, detects and reads LED/LCD characters in real time, reading them aloud to the user with synthesized speech. The system has been implemented on both a desktop and a cell phone. Experimental results are reported on videos of display images, demonstrating the feasibility of the system.

  20. The development of a visualization tool for displaying analysis and test results

    International Nuclear Information System (INIS)

    Uncapher, W.L.; Ammerman, D.J.; Ludwigsen, J.S.; Wix, S.D.

    1995-01-01

    The evaluation and certification of packages for transportation of radioactive materials is performed by analysis, testing, or a combination of both. Within the last few years, many transport packages that were certified have used a combination of analysis and testing. The ability to combine and display both kinds of data with interactive graphical tools allows a faster and more complete understanding of the response of the package to these environments. Sandia National Laboratories has developed an initial version of a visualization tool that allows the comparison and display of test and of analytical data as part of a Department of Energy-sponsored program to support advanced analytical techniques and test methodologies. The capability of the tool extends to both mechanical (structural) and thermal data

  1. Improving Communication During Cardiac ICU Multidisciplinary Rounds Through Visual Display of Patient Daily Goals.

    Science.gov (United States)

    Justice, Lindsey B; Cooper, David S; Henderson, Carla; Brown, James; Simon, Katherine; Clark, Lindsey; Fleckenstein, Elizabeth; Benscoter, Alexis; Nelson, David P

    2016-07-01

    To improve communication during daily cardiac ICU multidisciplinary rounds. Quality improvement methodology. Twenty-five-bed cardiac ICUs in an academic free-standing pediatric hospital. All patients admitted to the cardiac ICU. Implementation of visual display of patient daily goals through a write-down and read-back process. The Rounds Effectiveness Assessment and Communication Tool was developed based on the previously validated Patient Knowledge Assessment Tool to evaluate comprehension of patient daily goals. Rounds were assessed for each patient by the bedside nurse, nurse practitioner or fellow, and attending physician, and answers were compared to determine percent agreement per day. At baseline, percent agreement for patient goals was only 62%. After initial implementation of the daily goal write-down/read-back process, which was written on paper by the bedside nurse, the Rounds Effectiveness Assessment and Communication Tool survey revealed no improvement. With adaptation of the intervention so goals were written on whiteboards for visual display during rounds, the percent agreement improved to 85%. Families were also asked to complete a survey (1-6 Likert scale) of their satisfaction with rounds and understanding of daily goals before and after the intervention. Family survey results improved from a mean of 4.6-5.7. Parent selection of the best possible score for each question was 19% at baseline and 75% after the intervention. Visual display of patient daily goals via a write-down/read-back process improves comprehension of goals by all team members and improves parent satisfaction. The daily goal whiteboard facilitates consistent development of a comprehensive plan of care for each patient, fosters goal-directed care, and provides a checklist for providers and parents to review throughout the day.

  2. Google Glass Glare: disability glare produced by a head-mounted visual display.

    Science.gov (United States)

    Longley, Chris; Whitaker, David

    2016-03-01

    Head mounted displays are a type of wearable technology - a market that is projected to expand rapidly over the coming years. Probably the most well known example is the device Google Glass (or 'Glass'). Here we investigate the extent to which the device display can interfere with normal visual function by producing monocular disability glare. Contrast sensitivity was measured in two normally sighted participants, 32 and 52 years of age. Data were recorded for the right eye, the left eye and then again in a binocular condition. Measurements were taken both with and without the Glass in place, across a range of stimulus luminance levels using a two-alternative forced-choice methodology. The device produced a significant reduction in contrast sensitivity in the right eye (>0.5 log units). The level of disability glare increased as stimulus luminance was reduced in a manner consistent with intraocular light scatter, resulting in a veiling retinal illuminance. Sensitivity in the left eye was unaffected. A significant reduction in binocular contrast sensitivity occurred at lower luminance levels due to a loss of binocular summation, although binocular sensitivity was not found to fall below the sensitivity of the better monocular level (binocular inhibition). Head mounted displays such as Google Glass have the potential to cause significant disability glare in the eye exposed to the visual display, particularly under conditions of low luminance. They can also cause a more modest binocular reduction in sensitivity by eliminating the benefits of binocular summation. © 2015 The Authors Ophthalmic & Physiological Optics © 2015 The College of Optometrists.

  3. The beauty of anatomy: visual displays and surgical education in early-nineteenth-century London.

    Science.gov (United States)

    Berkowitz, Carin

    2011-01-01

    The early-nineteenth-century artist, anatomist, and teacher Sir Charles Bell saw anatomy and art as closely related subjects. He taught anatomy to artists and surgeons, illustrated his own anatomical texts, and wrote a treatise on the use of anatomy in art. The author explores the connections among visual displays representing human anatomy, aesthetics, and pedagogical practices for Bell and a particular group of British surgeon-anatomists. Creating anatomical models and drawings was thought to discipline the surgeon's hand, while the study of anatomy and comparative anatomy would discipline the artist's eye. And for Bell, beauty made drawings into better pedagogical tools.

  4. Development of a standard methodology for optimizing remote visual display for nuclear maintenance tasks

    Science.gov (United States)

    Clarke, M. M.; Garin, J.; Prestonanderson, A.

    A fuel recycle facility being designed at Oak Ridge National Laboratory involves the Remotex concept: advanced servo-controlled master/slave manipulators, with remote television viewing, will totally replace direct human contact with the radioactive environment. The design of optimal viewing conditions is a critical component of the overall man/machine system. A methodology was developed for optimizing remote visual displays for nuclear maintenance tasks. The usefulness of this approach was demonstrated by preliminary specification of optimal closed circuit TV systems for such tasks.

  5. Personal risk factors for carpal tunnel syndrome in female visual display unit workers

    OpenAIRE

    Matteo Riccò; Silvia Cattani; Carlo Signorelli

    2016-01-01

    Objectives: Carpal tunnel syndrome (CTS) is the most common nerve entrapment syndrome, which since the beginning of the seventies has been linked to the keyboard and visual display unit (VDU). The objective of this study was to investigate the prevalence and personal factors associated with CTS in female VDU workers in Italy. Material and Methods: Participants in this study were female adult subjects, working ≥ 20 h/week (N = 631, mean age 38.14±7.81 years, mean working age 12.9±7.24 years). ...

  6. Radiation from visual display terminals is harmless - but there are other hazards

    International Nuclear Information System (INIS)

    Hidos, P.

    1980-01-01

    Widespread cases of rashes on, and irritation of the facial skin and eye inflammation among operators using visual display terminals led to anxiety that the cause could be electromagnetic radiation from the screens. Investigations carried out by the US National Institute fOr occupational safety and Health show that this is not the case. Other health hazards of an ergonomic and psychological nature are however indicated. A hypothesis advanced by the Work Environment Inspectorate in Bergen (Norway) is that minute dust particles become highly electrostatically charged by the screens and act as projectiles, striking the face and eyes. (JIW)

  7. Structuring Visualization Mock-Ups at the Graphical Level by Dividing the Display Space.

    Science.gov (United States)

    Vuillemot, Romain; Boy, Jeremy

    2018-01-01

    Mock-ups are rapid, low fidelity prototypes, that are used in many design-related fields to generate and share ideas. While their creation is supported by many mature methods and tools, surprisingly few are suited for the needs of information visualization. In this article, we introduce a novel approach to creating visualizations mock-ups, based on a dialogue between graphic design and parametric toolkit explorations. Our approach consists in iteratively subdividing the display space, while progressively informing each division with realistic data. We show that a wealth of mock-ups can easily be created using only temporary data attributes, as we wait for more realistic data to become available. We describe the implementation of this approach in a D3-based toolkit, which we use to highlight its generative power, and we discuss the potential for transitioning towards higher fidelity prototypes.

  8. [Health Surveillance Guide of workers using video display terminals: evaluation from a visual health perspective].

    Science.gov (United States)

    Seguí Crespo, M Del Mar; Ronda Pérez, Elena; López Navarro, Alberto; Juan Pérez, Pedro Vicente; Tascón Bernabéu, Elena; Martínez Verdú, Francisco Miguel

    2008-01-01

    Visual health surveillance is essential in the protection of workers who use video display terminals (VDT). In Spain, the most used is the Specific Health Surveillance Guide published in 1999 by the Ministry of Health. The increase of the scientific production upon computer related occupational visual hazards and the experience in its applicability during the last decade justify the aim of this work: reviewing the quality of the guide from the point of view of visual health. A consensus strategy was used among nine experts by means of a mixed groupal technique in two consecutive stages combining some aspects of the Delphi method and of the nominal group: individual evaluation of the guide using the consensus guide made by the authors based on the AGREE instrument and the subsequent meeting in order to reach an agreement and to fix the final recommendations for improving it. For the analysis the standardized score of the review domains was calculated: scope and purpose, stakeholder involvement, rigour of development, clarity and presentation and applicability. It was also calculated for the items.' Concordance in the answers of the experts was also analyzed. All domains obtained scores under 50%. The applicability, rigour and stakeholder involvement during the development of the guide, where the most deficient domains. Six out of the nine experts would not recommend the guide and think it should be remade. The guide does not reach the necessary quality for the surveillance of the visual health of the workers who use VDT. Efforts must be focussed to improve the guide.

  9. Multisensory teamwork: using a tactile or an auditory display to exchange gaze information improves performance in joint visual search.

    Science.gov (United States)

    Wahn, Basil; Schwandt, Jessika; Krüger, Matti; Crafa, Daina; Nunnendorf, Vanessa; König, Peter

    2016-06-01

    In joint tasks, adjusting to the actions of others is critical for success. For joint visual search tasks, research has shown that when search partners visually receive information about each other's gaze, they use this information to adjust to each other's actions, resulting in faster search performance. The present study used a visual, a tactile and an auditory display, respectively, to provide search partners with information about each other's gaze. Results showed that search partners performed faster when the gaze information was received via a tactile or auditory display in comparison to receiving it via a visual display or receiving no gaze information. Findings demonstrate the effectiveness of tactile and auditory displays for receiving task-relevant information in joint tasks and are applicable to circumstances in which little or no visual information is available or the visual modality is already taxed with a demanding task such as air-traffic control. Practitioner Summary: The present study demonstrates that tactile and auditory displays are effective for receiving information about actions of others in joint tasks. Findings are either applicable to circumstances in which little or no visual information is available or when the visual modality is already taxed with a demanding task.

  10. Individual Differences in Search and Monitoring for Color Targets in Dynamic Visual Displays.

    Science.gov (United States)

    Muhl-Richardson, Alex; Godwin, Hayward J; Garner, Matthew; Hadwin, Julie A; Liversedge, Simon P; Donnelly, Nick

    2018-02-01

    Many real-world tasks now involve monitoring visual representations of data that change dynamically over time. Monitoring dynamically changing displays for the onset of targets can be done in two ways: detecting targets directly, post-onset, or predicting their onset from the prior state of distractors. In the present study, participants' eye movements were measured as they monitored arrays of 108 colored squares whose colors changed systematically over time. Across three experiments, the data show that participants detected the onset of targets both directly and predictively. Experiments 1 and 2 showed that predictive detection was only possible when supported by sequential color changes that followed a scale ordered in color space. Experiment 3 included measures of individual differences in working memory capacity (WMC) and anxious affect and a manipulation of target prevalence in the search task. It found that predictive monitoring for targets, and decisions about target onsets, were influenced by interactions between individual differences in verbal and spatial WMC and intolerance of uncertainty, a characteristic that reflects worry about uncertain future events. The results have implications for the selection of individuals tasked with monitoring dynamic visual displays for target onsets. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. Coherence across consciousness levels: Symmetric visual displays spare working memory resources.

    Science.gov (United States)

    Dumitru, Magda L

    2015-12-15

    Two studies demonstrate that the need for coherence could nudge individuals to use structural similarities between binary visual displays and two concurrent cognitive tasks to unduly solve the latter in similar fashion. In an overt truth-judgement task, participants decided whether symmetric colourful displays matched conjunction or disjunction descriptions (e.g., "the black and/or the orange"). In the simultaneous covert categorisation task, they decided whether a colour name (e.g., "black") described a two-colour object or half of a single-colour object. Two response patterns emerged as follows. Participants either acknowledged or rejected matches between disjunction descriptions and two visual stimuli and, similarly, either acknowledged or rejected matches between single colour names and two-colour objects or between single colour names and half of single-colour objects. These findings confirm the coherence hypothesis, highlight the role of coherence in preserving working-memory resources, and demonstrate an interaction between high-level and low-level consciousness. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Correlation of Papillomacular Nerve Fiber Bundle Thickness with Central Visual Function in Open-Angle Glaucoma

    Directory of Open Access Journals (Sweden)

    Wataru Kobayashi

    2015-01-01

    Full Text Available Purpose. To determine the correlation of reduced retinal thickness in the central papillomacular bundle (CPB to central visual function, including central retinal sensitivity and visual acuity, in glaucoma patients. Methods. This study enrolled 50 eyes of 50 patients with open-angle glaucoma who were carefully screened for comorbid conditions that can cause decreased central visual function, such as cataracts or macular diseases. We used a novel CPB analysis comprising a program for optical coherence tomography that measured RNFL thickness and GCC thickness in the CPB and divided lengthwise into three parts (upper, middle, and lower CPB. The relationship of these parameters, including conventional macular thickness, to visual field sensitivity in four central standard automated perimetry points (the central four thresholds and BCVA was analyzed. Results. The two parameters most highly correlated with central four thresholds were macular GCCT and macular RNFLT. The two parameters most highly correlated with BCVA were middle CPB (mid-CPB GCCT and mid-CPB RNFLT. A multiple regression analysis revealed that mid-CPB GCCT was an independent factor impacting central retinal thresholds and BCVA. Conclusions. Our results suggest that mid-CPB RNFLT and GCCT, parameters of a novel papillomacular bundle analysis, are candidate biomarkers of decreased central visual function in glaucomatous eyes.

  13. Volume Visualization and Compositing on Large-Scale Displays Using Handheld Touchscreen Interaction

    KAUST Repository

    Gastelum, Cristhopper Jacobo Armenta

    2011-07-27

    Advances in the physical sciences have progressively delivered ever increasing, already extremely large data sets to be analyzed. High performance volume rendering has become critical to the scientists for a better understanding of the massive amounts of data to be visualized. Cluster based rendering systems have become the base line to achieve the power and flexibility required to perform such task. Furthermore, display arrays have become the most suitable solution to display these data sets at their natural size and resolution which can be critical for human perception and evaluation. The work in this thesis aims at improving the scalability and usability of volume rendering systems that target visualization on display arrays. The first part deals with improving the performance by introducing the implementations of two parallel compositing algorithms for volume rendering: direct send and binary swap. The High quality Volume Rendering (HVR) framework has been extended to accommodate parallel compositing where previously only serial compositing was possible. The preliminary results show improvements in the compositing times for direct send even for a small number of processors. Unfortunately, the results of binary swap exhibit a negative behavior. This is due to the naive use of the graphics hardware blending mechanism. The expensive transfers account for the lengthy compositing times. The second part targets the development of scalable and intuitive interaction mechanisms. It introduces the development of a new client application for multitouch tablet devices, like the Apple iPad. The main goal is to provide the HVR framework, that has been extended to use tiled displays, a more intuitive and portable interaction mechanism that can get advantage of the new environment. The previous client is a PC application for the typical desktop settings that use a mouse and keyboard as sources of interaction. The current implementation of the client lets the user steer and

  14. The Visual Display of Quantitative Information; Envisioning Information; Visual Explanations: Images and Quantities, Evidence and Narrative (by Edward R. Tufte)

    Science.gov (United States)

    Harris, Harold H.

    1999-02-01

    The Visual Display of Quantitative Information Edward R. Tufte. Graphics Press: Cheshire, CT, 1983. 195 pp. ISBN 0-961-39210-X. 40.00. Envisioning Information Edward R. Tufte. Graphics Press: Cheshire, CT, 1990. 126 pp. ISBN 0-961-39211-8. 48.00. Visual Explanations: Images and Quantities, Evidence and Narrative Edward R. Tufte. Graphics Press: Cheshire, CT, 1997. 156 pp. ISBN 0-9613921-2-6. $45.00. Visual Explanations: Images and Quantities, Evidence and Narrative is the most recent of three books by Edward R. Tufte about the expression of information through graphs, charts, maps, and images. The most important of all the practical advice in these books is found on the first page of the first book, The Visual Display of Quantitative Information. Quantitative graphics should: Show the data Induce the viewer to think about the substance rather than the graphical design Avoid distorting what the data have to say Present many numbers in a small space Make large data sets coherent Encourage the eye to compare data Reveal the data at several levels of detail Serve a clear purpose: description, exploration, tabulation, or decoration Be closely integrated with the statistical and verbal descriptions of a data set Tufte illustrates these principles through all three books, going to extremes in the care with which he presents examples, both good and bad. He has designed the books so that the reader almost never has to turn a page to see the image, graph, or table that is being described in the text. The books are set in Monotype Bembo, a lead typeface designed so that smaller sizes open the surrounding white space, producing a pleasing balance. Some of the colored pages were put through more than 20 printing steps in order to render the subtle shadings required. The books are printed on heavy paper stock, and the fact that contributing artists, the typeface, the printing company, and the bindery are all credited on one of the back flyleaves is one indication of how

  15. Research on steady-state visual evoked potentials in 3D displays

    Science.gov (United States)

    Chien, Yu-Yi; Lee, Chia-Ying; Lin, Fang-Cheng; Huang, Yi-Pai; Ko, Li-Wei; Shieh, Han-Ping D.

    2015-05-01

    Brain-computer interfaces (BCIs) are intuitive systems for users to communicate with outer electronic devices. Steady state visual evoked potential (SSVEP) is one of the common inputs for BCI systems due to its easy detection and high information transfer rates. An advanced interactive platform integrated with liquid crystal displays is leading a trend to provide an alternative option not only for the handicapped but also for the public to make our lives more convenient. Many SSVEP-based BCI systems have been studied in a 2D environment; however there is only little literature about SSVEP-based BCI systems using 3D stimuli. 3D displays have potentials in SSVEP-based BCI systems because they can offer vivid images, good quality in presentation, various stimuli and more entertainment. The purpose of this study was to investigate the effect of two important 3D factors (disparity and crosstalk) on SSVEPs. Twelve participants participated in the experiment with a patterned retarder 3D display. The results show that there is a significant difference (p-valuefuture.

  16. Effects of Visual Display on Joint Excursions Used to Play Virtual Dodgeball.

    Science.gov (United States)

    Thomas, James S; France, Christopher R; Applegate, Megan E; Leitkam, Samuel T; Pidcoe, Peter E; Walkowski, Stevan

    2016-09-15

    Virtual reality (VR) interventions hold great potential for rehabilitation as commercial systems are becoming more affordable and can be easily applied to both clinical and home settings. In this study, we sought to determine how differences in the VR display type can influence motor behavior, cognitive load, and participant engagement. Movement patterns of 17 healthy young adults (8 female, 9 male) were examined during games of Virtual Dodgeball presented on a three-dimensional television (3DTV) and a head-mounted display (HMD). The participant's avatar was presented from a third-person perspective on a 3DTV and from a first-person perspective on an HMD. Examination of motor behavior revealed significantly greater excursions of the knee (P=.003), hip (P<.001), spine (P<.001), shoulder (P=.001), and elbow (P=.026) during HMD versus 3DTV gameplay, resulting in significant differences in forward (P=.003) and downward (P<.001) displacement of the whole-body center of mass. Analyses of cognitive load and engagement revealed that relative to 3DTV, participants indicated that HMD gameplay resulted in greater satisfaction with overall performance and was less frustrating (P<.001). There were no significant differences noted for mental demand. Differences in visual display type and participant perspective influence how participants perform in Virtual Dodgeball. Because VR use within rehabilitation settings is often designed to help restore movement following orthopedic or neurologic injury, these findings provide an important caveat regarding the need to consider the potential influence of presentation format and perspective on motor behavior.

  17. Visual attention during the evaluation of facial attractiveness is influenced by facial angles and smile.

    Science.gov (United States)

    Kim, Seol Hee; Hwang, Soonshin; Hong, Yeon-Ju; Kim, Jae-Jin; Kim, Kyung-Ho; Chung, Chooryung J

    2018-05-01

    To examine the changes in visual attention influenced by facial angles and smile during the evaluation of facial attractiveness. Thirty-three young adults were asked to rate the overall facial attractiveness (task 1 and 3) or to select the most attractive face (task 2) by looking at multiple panel stimuli consisting of 0°, 15°, 30°, 45°, 60°, and 90° rotated facial photos with or without a smile for three model face photos and a self-photo (self-face). Eye gaze and fixation time (FT) were monitored by the eye-tracking device during the performance. Participants were asked to fill out a subjective questionnaire asking, "Which face was primarily looked at when evaluating facial attractiveness?" When rating the overall facial attractiveness (task 1) for model faces, FT was highest for the 0° face and lowest for the 90° face regardless of the smile ( P < .01). However, when the most attractive face was to be selected (task 2), the FT of the 0° face decreased, while it significantly increased for the 45° face ( P < .001). When facial attractiveness was evaluated with the simplified panels combined with facial angles and smile (task 3), the FT of the 0° smiling face was the highest ( P < .01). While most participants reported that they looked mainly at the 0° smiling face when rating facial attractiveness, visual attention was broadly distributed within facial angles. Laterally rotated faces and presence of a smile highly influence visual attention during the evaluation of facial esthetics.

  18. Visual Fatigue Induced by Viewing a Tablet Computer with a High-resolution Display.

    Science.gov (United States)

    Kim, Dong Ju; Lim, Chi Yeon; Gu, Namyi; Park, Choul Yong

    2017-10-01

    In the present study, the visual discomfort induced by smart mobile devices was assessed in normal and healthy adults. Fifty-nine volunteers (age, 38.16 ± 10.23 years; male : female = 19 : 40) were exposed to tablet computer screen stimuli (iPad Air, Apple Inc.) for 1 hour. Participants watched a movie or played a computer game on the tablet computer. Visual fatigue and discomfort were assessed using an asthenopia questionnaire, tear film break-up time, and total ocular wavefront aberration before and after viewing smart mobile devices. Based on the questionnaire, viewing smart mobile devices for 1 hour significantly increased mean total asthenopia score from 19.59 ± 8.58 to 22.68 ± 9.39 (p < 0.001). Specifically, the scores for five items (tired eyes, sore/aching eyes, irritated eyes, watery eyes, and hot/burning eye) were significantly increased by viewing smart mobile devices. Tear film break-up time significantly decreased from 5.09 ± 1.52 seconds to 4.63 ± 1.34 seconds (p = 0.003). However, total ocular wavefront aberration was unchanged. Visual fatigue and discomfort were significantly induced by viewing smart mobile devices, even though the devices were equipped with state-of-the-art display technology. © 2017 The Korean Ophthalmological Society

  19. Clinical observation of vitamin B12 eye drops for vision fatigue caused by visual display terminals

    Directory of Open Access Journals (Sweden)

    Qiang Guo

    2016-07-01

    Full Text Available AIM: To investigate the clinical effect of vitamin B12 eye drops for vision fatigue caused by visual display terminals(VDT. METHODS: Totally 50 patients(100 eyeswith vision fatigue caused by VDT were averagely divided into two groups. The control group were treated with normal saline,the treatment group were treated with vitamin B12 eye drops,3 times per day, one drop each time, continuous for 60d. Accommodative parameters and Schirmer Ⅰtest were measured and analyzed before and after treatment. RESULTS:After treatment, the results of Schirmer Ⅰtest, accommodative amplitude and accommodative facility of the treatment group were higher than those of the control group(all PPCONCLUSION: Vitamin B12 eye drops can lessen symptoms of dry eye, improve accommodative function and treat vision fatigue caused by VDT.

  20. The window of visibility: A psychological theory of fidelity in time-sampled visual motion displays

    Science.gov (United States)

    Watson, A. B.; Ahumada, A. J., Jr.; Farrell, J. E.

    1983-01-01

    Many visual displays, such as movies and television, rely upon sampling in the time domain. The spatiotemporal frequency spectra for some simple moving images are derived and illustrations of how these spectra are altered by sampling in the time domain are provided. A simple model of the human perceiver which predicts the critical sample rate required to render sampled and continuous moving images indistinguishable is constructed. The rate is shown to depend upon the spatial and temporal acuity of the observer, and upon the velocity and spatial frequency content of the image. Several predictions of this model are tested and confirmed. The model is offered as an explanation of many of the phenomena known as apparent motion. Finally, the implications of the model for computer-generated imagery are discussed.

  1. Development of a standard methodology for optimizing remote visual display for nuclear-maintenance tasks

    International Nuclear Information System (INIS)

    Clarke, M.M.; Garin, J.; Preston-Anderson, A.

    1981-01-01

    The aim of the present study is to develop a methodology for optimizing remote viewing systems for a fuel recycle facility (HEF) being designed at Oak Ridge National Laboratory (ORNL). An important feature of this design involves the Remotex concept: advanced servo-controlled master/slave manipulators, with remote television viewing, will totally replace direct human contact with the radioactive environment. Therefore, the design of optimal viewing conditions is a critical component of the overall man/machine system. A methodology has been developed for optimizing remote visual displays for nuclear maintenance tasks. The usefulness of this approach has been demonstrated by preliminary specification of optimal closed circuit TV systems for such tasks

  2. MediaCommons for cultural heritage: Applied mixed media visualization storytelling for high resolution collaborative cyberarchaeological displays

    KAUST Repository

    Mangan, John

    2013-10-01

    Archaeology is a discipline that studies time through an understanding of space and objects in that space; archaeology is ultimately, therefore, an intersection where the visualization of space and the visualization of time meet. Archaeology has long utilized visualization as a technique to analyze and disseminate information; however, comprehensive and collaborative analysis and storytelling with this visual data has always been limited by the capacity of the systems, which create and display it. To present the most complete narrative of the past, one must seek the \\'big picture\\' by assembling the disparate pieces of data, which reflect the lives of the humans we study. This paper presents a framework for the visualization of and interaction with rich data collections in high resolution, networked, tiled-display environments, called the MediaCommons Framework. © 2013 IEEE.

  3. An Examination of the Relationship between Visual Fatigue Symptoms with Flicker Value Variations in Video Display Terminal Users

    Directory of Open Access Journals (Sweden)

    Ehsanollah Habibi

    2015-01-01

    Full Text Available In most sensitive occupations such as nuclear, military and chemical industries closed circuit systems and visual display terminals (VDTs are used to carefully control and assess sensitive processes. Visual fatigue is one of the factors decreasing accuracy and concentration in operators causing faulty perception. This study aimed to find out a relationship between visual fatigue symptoms (VFS of Flicker value variations in video display terminal (VDT operators. This cross-sectional study, conducted in 2011, aimed to examine visual fatigue and determine the relationship between its symptoms and visual flicker value changes in 248 operators of VDTs in several occupations. The materials used in this study were a visual fatigue questionnaire of VDTs and a VFM-90.1 device. Visual fatigue was measured in two stages (prior to beginning to work and 60 min later. The data were analyzed by SPSS11.5, using descriptive statistics, paired t-test, simple and multiple linear regressions, correlation and recognition coefficients. Then regression equations of changes in flicker value depending on the changes in the main domains and the changes in final score before the questionnaire were obtained. Paired t-test indicated significant differences in the mean score of visual fatigue symptoms and the mean score of flicker value between the two stages, respectively (P ≤ 0.001. Simple and multiple regressions of flicker value variations, for the last visual fatigue changes in questionnaire score and the four main domains of the questionnaire were obtained R2 = 0.851 and R2 = 0.853, respectively. Correlation coefficient in the above tests indicated reverse and significant relationships among flicker value changes with changes in questionnaire score and visual fatigue symptoms. Diagnosing the first symptoms of visual fatigue could be an appropriate warning for VDTs operators in sensitive occupations to react suitably, in behavior and management, to control or treat

  4. Comparison of the effects of mobile technology AAC apps on programming visual scene displays.

    Science.gov (United States)

    Caron, Jessica; Light, Janice; Davidoff, Beth E; Drager, Kathryn D R

    2017-12-01

    Parents and professionals who work with individuals who use augmentative and alternative communication (AAC) face tremendous time pressures, especially when programming vocabulary in AAC technologies. System design (from programming functions to layout options) necessitates a range of skills related to operational competence and can impose intensive training demands for communication partners. In fact, some AAC applications impose considerable learning demands, which can lead to increased time to complete the same programming tasks. A within-subject design was used to investigate the comparative effects of three visual scene display AAC apps (GoTalk Now, AutisMate, EasyVSD) on the programming times for three off-line programming activities, by adults who were novices to programming AAC apps. The results indicated all participants were able to create scenes and add hotspots during off-line programming tasks with minimal self-guided training. The AAC app that had the least number of programming steps, EasyVSD, resulted in the fastest completion times across the three programming tasks. These results suggest that by simplifying the operational requirements of AAC apps the programming time is reduced, which may allow partners to better support individuals who use AAC.

  5. The Effect of Visual Display Properties and Gain Presentation Mode on the Perceived Naturalness of Virtual Walking Speeds

    DEFF Research Database (Denmark)

    Nilsson, Niels Chr.; Serafin, Stefania; Nordahl, Rolf

    2015-01-01

    Individuals tend to find realistic walking speeds too slow when relying on treadmill walking or Walking-In-Place (WIP) techniques for virtual travel. This paper details three studies investigating the effects of visual display properties and gain presentation mode on the perceived naturalness of ...

  6. Visual search in ecological and non-ecological displays: evidence for a non-monotonic effect of complexity on performance.

    Science.gov (United States)

    Chassy, Philippe; Gobet, Fernand

    2013-01-01

    Considerable research has been carried out on visual search, with single or multiple targets. However, most studies have used artificial stimuli with low ecological validity. In addition, little is known about the effects of target complexity and expertise in visual search. Here, we investigate visual search in three conditions of complexity (detecting a king, detecting a check, and detecting a checkmate) with chess players of two levels of expertise (novices and club players). Results show that the influence of target complexity depends on level of structure of the visual display. Different functional relationships were found between artificial (random chess positions) and ecologically valid (game positions) stimuli: With artificial, but not with ecologically valid stimuli, a "pop out" effect was present when a target was visually more complex than distractors but could be captured by a memory chunk. This suggests that caution should be exercised when generalising from experiments using artificial stimuli with low ecological validity to real-life stimuli.

  7. Visual search in ecological and non-ecological displays: evidence for a non-monotonic effect of complexity on performance.

    Directory of Open Access Journals (Sweden)

    Philippe Chassy

    Full Text Available Considerable research has been carried out on visual search, with single or multiple targets. However, most studies have used artificial stimuli with low ecological validity. In addition, little is known about the effects of target complexity and expertise in visual search. Here, we investigate visual search in three conditions of complexity (detecting a king, detecting a check, and detecting a checkmate with chess players of two levels of expertise (novices and club players. Results show that the influence of target complexity depends on level of structure of the visual display. Different functional relationships were found between artificial (random chess positions and ecologically valid (game positions stimuli: With artificial, but not with ecologically valid stimuli, a "pop out" effect was present when a target was visually more complex than distractors but could be captured by a memory chunk. This suggests that caution should be exercised when generalising from experiments using artificial stimuli with low ecological validity to real-life stimuli.

  8. Integrating Visualization Applications, such as ParaView, into HEP Software Frameworks for In-situ Event Displays

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, A. L. [Fermilab; Kowalkowski, J. B. [Fermilab; Jones, C. D. [Fermilab

    2017-11-22

    ParaView is a high performance visualization application not widely used in High Energy Physics (HEP). It is a long standing open source project led by Kitware and involves several Department of Energy (DOE) and Department of Defense (DOD) laboratories. Futhermore, it has been adopted by many DOE supercomputing centers and other sites. ParaView is unique in speed and efficiency by using state-of-the-art techniques developed by the academic visualization community that are often not found in applications written by the HEP community. In-situ visualization of events, where event details are visualized during processing/analysis, is a common task for experiment software frameworks. Kitware supplies Catalyst, a library that enables scientific software to serve visualization objects to client ParaView viewers yielding a real-time event display. Connecting ParaView to the Fermilab art framework will be described and the capabilities it brings discussed.

  9. Integrating Visualization Applications, such as ParaView, into HEP Software Frameworks for In-situ Event Displays

    Science.gov (United States)

    Lyon, A. L.; Kowalkowski, J. B.; Jones, C. D.

    2017-10-01

    ParaView is a high performance visualization application not widely used in High Energy Physics (HEP). It is a long standing open source project led by Kitware and involves several Department of Energy (DOE) and Department of Defense (DOD) laboratories. Futhermore, it has been adopted by many DOE supercomputing centers and other sites. ParaView is unique in speed and efficiency by using state-of-the-art techniques developed by the academic visualization community that are often not found in applications written by the HEP community. In-situ visualization of events, where event details are visualized during processing/analysis, is a common task for experiment software frameworks. Kitware supplies Catalyst, a library that enables scientific software to serve visualization objects to client ParaView viewers yielding a real-time event display. Connecting ParaView to the Fermilab art framework will be described and the capabilities it brings discussed.

  10. The impact of home care nurses' numeracy and graph literacy on comprehension of visual display information: implications for dashboard design.

    Science.gov (United States)

    Dowding, Dawn; Merrill, Jacqueline A; Onorato, Nicole; Barrón, Yolanda; Rosati, Robert J; Russell, David

    2018-02-01

    To explore home care nurses' numeracy and graph literacy and their relationship to comprehension of visualized data. A multifactorial experimental design using online survey software. Nurses were recruited from 2 Medicare-certified home health agencies. Numeracy and graph literacy were measured using validated scales. Nurses were randomized to 1 of 4 experimental conditions. Each condition displayed data for 1 of 4 quality indicators, in 1 of 4 different visualized formats (bar graph, line graph, spider graph, table). A mixed linear model measured the impact of numeracy, graph literacy, and display format on data understanding. In all, 195 nurses took part in the study. They were slightly more numerate and graph literate than the general population. Overall, nurses understood information presented in bar graphs most easily (88% correct), followed by tables (81% correct), line graphs (77% correct), and spider graphs (41% correct). Individuals with low numeracy and low graph literacy had poorer comprehension of information displayed across all formats. High graph literacy appeared to enhance comprehension of data regardless of numeracy capabilities. Clinical dashboards are increasingly used to provide information to clinicians in visualized format, under the assumption that visual display reduces cognitive workload. Results of this study suggest that nurses' comprehension of visualized information is influenced by their numeracy, graph literacy, and the display format of the data. Individual differences in numeracy and graph literacy skills need to be taken into account when designing dashboard technology. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  11. Systems and Methods for Data Visualization Using Three-Dimensional Displays

    Science.gov (United States)

    Djorgovski, Stanislav G. (Inventor); Donalek, Ciro (Inventor); Davidoff, Scott (Inventor); Estrada, Vicente (Inventor)

    2017-01-01

    Data visualization systems and methods for generating 3D visualizations of a multidimensional data space are described. In one embodiment a 3D data visualization application directs a processing system to: load a set of multidimensional data points into a visualization table; create representations of a set of 3D objects corresponding to the set of data points; receive mappings of data dimensions to visualization attributes; determine the visualization attributes of the set of 3D objects based upon the selected mappings of data dimensions to 3D object attributes; update a visibility dimension in the visualization table for each of the plurality of 3D object to reflect the visibility of each 3D object based upon the selected mappings of data dimensions to visualization attributes; and interactively render 3D data visualizations of the 3D objects within the virtual space from viewpoints determined based upon received user input.

  12. Work with visual display units and musculoskeletal disorders: A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Matteo Riccò

    2016-12-01

    Full Text Available Background: Epidemiological studies have shown that employees working with visual display units (VDU are more likely to complain about musculoskeletal disorders (MSDs. The aim of this study has been to evaluate associations among MSDs and individuals and work-related factors. Material and Methods: A total of 1032 VDU workers were assessed about their personal (i.e., age, working history, smoking history, physical activity and work-related factors (i.e., predominant job tasks performed, work posture. Work environment was evaluated regarding fulfillment of the standard ISO 9241-5:1998. The investigation required a direct observation of participants (in order to accurately assess the prevalence of MSDs and workstations. Adjusted odds ratios (ORa were calculated by means of the logistic regression model. Results: Prevalence of MSDs was relatively high (53%. In general, MSDs were significantly associated with female sex (OR = 2.832, 95% confidence interval (CI: 2.178–3.683, age ≥ 50 years old (OR = 2.231, 95% CI: 1.236–4.026, longer exposure to VDU, both as working history (10–14 years: OR = 1.934, 95% CI: 1.301–2.875; ≥ 15 years: OR = 2.223, 95% CI: 1.510–3.271 and working time (30–39 h/week: OR = 1.537, 95% CI: 1.087–2.273. Inappropriate workstation design was confirmed by the multivariate analysis as a risk factor for MSDs (ORa = 2.375, 95% CI: 1.124–5.018. Conclusions: Musculoskeletal disorders were significantly associated with individual factors as well as characteristics of work environment. An appropriate design of workstations may significantly reduce their prevalence amongst VDU workers. Med Pr 2016;67(6:707–719

  13. Personal risk factors for carpal tunnel syndrome in female visual display unit workers

    Directory of Open Access Journals (Sweden)

    Matteo Riccò

    2016-12-01

    Full Text Available Objectives: Carpal tunnel syndrome (CTS is the most common nerve entrapment syndrome, which since the beginning of the seventies has been linked to the keyboard and visual display unit (VDU. The objective of this study was to investigate the prevalence and personal factors associated with CTS in female VDU workers in Italy. Material and Methods: Participants in this study were female adult subjects, working ≥ 20 h/week (N = 631, mean age 38.14±7.81 years, mean working age 12.9±7.24 years. Signs and symptoms were collected during compulsory occupational medical surveillance. The binary logistic regression was used to estimate adjusted odds ratios for the factors of interest. Results: Diagnosis of CTS was reported in 48 cases (7.6%, 11 of them or 1.7% after a surgical correction for the incidence of 5.94/1000 person-years. In general, signs and symptoms of CTS were associated with the following demographic factors: previous trauma of upper limb (adjusted odds ratio (ORa = 8.093, 95% confidence interval (CI: 2.347–27.904, history (> 5 years of oral contraceptives therapy/hormone replacement therapy (ORa = 3.77, 95% CI: 1.701–8.354 and cervical spine signs/symptoms (ORa = 4.565, 95% CI: 2.281–9.136. Conclusions: The prevalence of CTS was similar to the estimates for the general population of Italy. Among personal risk factors, hormone therapy, previous trauma of the upper limb and signs/symptoms of the cervical spine appeared to be associated with a higher risk of CTS syndrome. Eventually, the results reinforce interpretation of CTS in VDU workers as a work-related musculoskeletal disorder rather than a classical occupational disease. Int J Occup Med Environ Health 2016;29(6:927–936

  14. Effects of radiation emitted from visual display terminals on the oral health status

    International Nuclear Information System (INIS)

    Kazem, H.H.

    2008-01-01

    This study was designed to investigate the effects of exposure to radiation emitted from visual display terminals (VDTs) on the oral health status; a cross sectional study was carried out on 100 participants both males and females with age ranging between 22- 40 years working in various places in Cairo. They were divided into two groups; the first consists of 50 subjects working in front of VDTs eight hours min. daily, min. 5 days/ week, 2 years or more, and the other group 50 subjects working away from any VDTs. Both groups were subjected to both oral and dental examinations, including soft tissues assessment by using gingival index (GI) and hard tissues assessment by using decayed, missed, filled (DMF) index. Saliva analysis was done including ph analysis by ph meter cyberscan 500 and trace elements analysis by ion chromatography and salivary immunoglobulin A (sIgA) analysis by ELISA, body temperature by using digital thermometer. The values were compared between both groups and also between before and after exposure in the exposed group. The results demonstrated that the difference in the mean values of either GI or DMF or ph or anions and cations or sIgA levels between exposed and non exposed groups or even between before and after exposure in the exposed group was found to be statistically insignificant. On the other hand there were significant changes in the mean values of body temperature between exposed and non-exposed group and also between before and after exposure in the exposed group. Accordingly, within the limits of this study we can conclude that radiation emitted from VDTs affects body temperature, but do not have any effect on oral health including; hard or soft tissues or salivary components. This might be explained by the radiation with very low energy emitted from VDTs

  15. Lacrimal hypofunction as a new mechanism of dry eye in visual display terminal users.

    Directory of Open Access Journals (Sweden)

    Shigeru Nakamura

    Full Text Available BACKGROUND: Dry eye has shown a marked increase due to visual display terminal (VDT use. It remains unclear whether reduced blinking while focusing can have a direct deleterious impact on the lacrimal gland function. To address this issue that potentially affects the life quality, we conducted a large-scale epidemiological study of VDT users and an animal study. METHODOLOGY/PRINCIPAL FINDINGS: Cross sectional survey carried out in Japan. A total of 1025 office workers who use VDT were enrolled. The association between VDT work duration and changes in tear film status, precorneal tear stability, lipid layer status and tear secretion were analyzed. For the animal model study, the rat VDT user model, placing rats onto a balance swing in combination with exposure to an evaporative environment was used to analyze lacrimal gland function. There was no positive relationship between VDT working duration and change in tear film stability and lipid layer status. The odds ratio for decrease in Schirmer score, index of tear secretion, were significantly increased with VDT working year (P = 0.012 and time (P = 0.005. The rat VDT user model, showed chronic reduction of tear secretion and was accompanied by an impairment of the lacrimal gland function and morphology. This dysfunction was recovered when rats were moved to resting conditions without the swing. CONCLUSIONS/SIGNIFICANCE: These data suggest that lacrimal gland hypofunction is associated with VDT use and may be a critical mechanism for VDT-associated dry eye. We believe this to be the first mechanistic link to the pathogenesis of dry eye in office workers.

  16. [Effects of nootropic agents on visual functions and lacrimal antioxidative activity in patients with primary open-angle glaucoma].

    Science.gov (United States)

    Davydova, N G; Kuznetsova, T P; Borisova, S A; Abdulkadyrova, M Zh

    2006-01-01

    The paper presents the results of an investigation of the effect of the nootropic agents pantogam and nooclerine on visual functions in patients with primary open-angle glaucoma. These agents have been found to have a beneficial effect on the functional activity of the retina and optic nerve, light sensitivity, hemo- and hydrodynamics of the eye.

  17. Target cuing in visual search: the effects of conformality and display location on the allocation of visual attention.

    Science.gov (United States)

    Yeh, M; Wickens, C D; Seagull, F J

    1999-12-01

    Two experiments were performed to examine how frame of reference (world-referenced vs. screen-referenced) and target expectancy can modulate the effects of target cuing in directing attention for see-through helmet-mounted displays (HMDs). In the first experiment, the degree of world referencing was varied by the spatial accuracy of the cue; in the second, the degree of world referencing was varied more radically between a world-referenced HMD and a hand-held display. Participants were asked to detect, identify, and give azimuth information for targets hidden in terrain presented in the far domain (i.e., the world) while performing a monitoring task in the near domain (i.e., the display). The results of both experiments revealed a cost-benefit trade-off for cuing such that the presence of cuing aided the target detection task for expected targets but drew attention away from the presence of unexpected targets in the environment. Analyses support the observation that this effect can be mediated by the display: The world-referenced display reduced the cost of cognitive tunneling relative to the screen-referenced display in Experiment 1; this cost was further reduced in Experiment 2 when participants were using a hand-held display. Potential applications of this research include important design guidelines and specifications for automated target recognition systems as well as any terrain-and-targeting display system in which superimposed symbology is included, specifically in assessing the costs and benefits of attentional cuing and the means by which this information is displayed.

  18. P1-7: Modern Display Technology in Vision Science: Assessment of OLED and LCD Monitors for Visual Experiments

    Directory of Open Access Journals (Sweden)

    Tobias Elze

    2012-10-01

    Full Text Available For many decades, cathode ray tube (CRT monitors have been the dominant display technology in vision science. However, in recent years, most manufacturers stopped their CRT production lines, which enforces the application of alternative display technology in the field of vision science. Here, we analyze liquid crystal displays (LCDs and organic light-emitting diode (OLED monitors for their applicability in vision science experiments. Based on extensive measurements of their photometric output, we compare these technologies and contrast them with classical CRT monitors. Vision scientists aim to accurately present both static and dynamic stimuli on their display devices. As for the presentation of static stimuli, we demonstrate an increased accuracy for LCD and OLED devices compared to CRT monitors, because the former exhibit a higher degree of independence of neighboring pixels. As for dynamic presentations, both CRTs and OLEDs outperform LCD devices in terms of accuracy, because dynamic presentations on LCDs require a reorientation of the liquid crystal molecules, so that successive frames in time depend on each other. Together with widely unknown and uncontrolled technical artifacts, these properties of LCDs may impair visual experiments that require high temporal precision. Therefore, OLED monitors are more suitable for vision science experiments with respect to both their static and their temporal characteristics. However, for certain applications in visual neuroscience, the low duty cycle of some OLED devices may introduce frequencies to the photometric output which fall within the window of visibility of neurons in the visual cortex and therefore interfere with single unit recordings.

  19. Visualizing time: how linguistic metaphors are incorporated into displaying instruments in the process of interpreting time-varying signals

    Science.gov (United States)

    Garcia-Belmonte, Germà

    2017-06-01

    Spatial visualization is a well-established topic of education research that has allowed improving science and engineering students' skills on spatial relations. Connections have been established between visualization as a comprehension tool and instruction in several scientific fields. Learning about dynamic processes mainly relies upon static spatial representations or images. Visualization of time is inherently problematic because time can be conceptualized in terms of two opposite conceptual metaphors based on spatial relations as inferred from conventional linguistic patterns. The situation is particularly demanding when time-varying signals are recorded using displaying electronic instruments, and the image should be properly interpreted. This work deals with the interplay between linguistic metaphors, visual thinking and scientific instrument mediation in the process of interpreting time-varying signals displayed by electronic instruments. The analysis draws on a simplified version of a communication system as example of practical signal recording and image visualization in a physics and engineering laboratory experience. Instrumentation delivers meaningful signal representations because it is designed to incorporate a specific and culturally favored time view. It is suggested that difficulties in interpreting time-varying signals are linked with the existing dual perception of conflicting time metaphors. The activation of specific space-time conceptual mapping might allow for a proper signal interpretation. Instruments play then a central role as visualization mediators by yielding an image that matches specific perception abilities and practical purposes. Here I have identified two ways of understanding time as used in different trajectories through which students are located. Interestingly specific displaying instruments belonging to different cultural traditions incorporate contrasting time views. One of them sees time in terms of a dynamic metaphor

  20. A depth-based head-mounted visual display to aid navigation in partially sighted individuals.

    Directory of Open Access Journals (Sweden)

    Stephen L Hicks

    Full Text Available Independent navigation for blind individuals can be extremely difficult due to the inability to recognise and avoid obstacles. Assistive techniques such as white canes, guide dogs, and sensory substitution provide a degree of situational awareness by relying on touch or hearing but as yet there are no techniques that attempt to make use of any residual vision that the individual is likely to retain. Residual vision can restricted to the awareness of the orientation of a light source, and hence any information presented on a wearable display would have to limited and unambiguous. For improved situational awareness, i.e. for the detection of obstacles, displaying the size and position of nearby objects, rather than including finer surface details may be sufficient. To test whether a depth-based display could be used to navigate a small obstacle course, we built a real-time head-mounted display with a depth camera and software to detect the distance to nearby objects. Distance was represented as brightness on a low-resolution display positioned close to the eyes without the benefit focussing optics. A set of sighted participants were monitored as they learned to use this display to navigate the course. All were able to do so, and time and velocity rapidly improved with practise with no increase in the number of collisions. In a second experiment a cohort of severely sight-impaired individuals of varying aetiologies performed a search task using a similar low-resolution head-mounted display. The majority of participants were able to use the display to respond to objects in their central and peripheral fields at a similar rate to sighted controls. We conclude that the skill to use a depth-based display for obstacle avoidance can be rapidly acquired and the simplified nature of the display may appropriate for the development of an aid for sight-impaired individuals.

  1. A Depth-Based Head-Mounted Visual Display to Aid Navigation in Partially Sighted Individuals

    Science.gov (United States)

    Hicks, Stephen L.; Wilson, Iain; Muhammed, Louwai; Worsfold, John; Downes, Susan M.; Kennard, Christopher

    2013-01-01

    Independent navigation for blind individuals can be extremely difficult due to the inability to recognise and avoid obstacles. Assistive techniques such as white canes, guide dogs, and sensory substitution provide a degree of situational awareness by relying on touch or hearing but as yet there are no techniques that attempt to make use of any residual vision that the individual is likely to retain. Residual vision can restricted to the awareness of the orientation of a light source, and hence any information presented on a wearable display would have to limited and unambiguous. For improved situational awareness, i.e. for the detection of obstacles, displaying the size and position of nearby objects, rather than including finer surface details may be sufficient. To test whether a depth-based display could be used to navigate a small obstacle course, we built a real-time head-mounted display with a depth camera and software to detect the distance to nearby objects. Distance was represented as brightness on a low-resolution display positioned close to the eyes without the benefit focussing optics. A set of sighted participants were monitored as they learned to use this display to navigate the course. All were able to do so, and time and velocity rapidly improved with practise with no increase in the number of collisions. In a second experiment a cohort of severely sight-impaired individuals of varying aetiologies performed a search task using a similar low-resolution head-mounted display. The majority of participants were able to use the display to respond to objects in their central and peripheral fields at a similar rate to sighted controls. We conclude that the skill to use a depth-based display for obstacle avoidance can be rapidly acquired and the simplified nature of the display may appropriate for the development of an aid for sight-impaired individuals. PMID:23844067

  2. Identifying Secondary-School Students' Difficulties When Reading Visual Representations Displayed in Physics Simulations

    Science.gov (United States)

    López, Víctor; Pintó, Roser

    2017-01-01

    Computer simulations are often considered effective educational tools, since their visual and communicative power enable students to better understand physical systems and phenomena. However, previous studies have found that when students read visual representations some reading difficulties can arise, especially when these are complex or dynamic…

  3. Impact of format and content of visual display of data on comprehension, choice and preference: a systematic review.

    Science.gov (United States)

    Hildon, Zoe; Allwood, Dominique; Black, Nick

    2012-02-01

    Displays comparing the performance of healthcare providers are largely based on commonsense. To review the literature on the impact of compositional format and content of quantitative data displays on people's comprehension, choice and preference. Ovid databases, expert recommendations and snowballing techniques. Evaluations of the impact of different formats (bar charts, tables and pictographs) and content (ordering, explanatory visual cues, etc.) of quantitative data displays meeting defined quality criteria. Data extraction Type of decision; decision-making domains; audiences; formats; content; methodology; findings. Most of the 30 studies used quantitative (n= 26) methods with patients or public groups (n= 28) rather than with professionals (n= 2). Bar charts were the most frequent format, followed by pictographs and tables. As regards format, tables and pictographs appeared better understood than bar charts despite the latter being preferred. Although accessible to less numerate and older populations, pictographs tended to lead to more risk avoidance. Tables appeared accessible to all. Aspects of content enhancing the impact of data displays included giving visual explanatory cues and contextual information while still attempting simplicity ('less is more'); ordering data; consistency. Icons rather than numbers were more user-friendly but could lead to over-estimation of risk. Uncertainty was not widely understood, nor well represented. Though heterogeneous and limited in scope, there is sufficient research evidence to inform the presentation of quantitative data that compares the performance of healthcare providers. The impact of new formats, such as funnel plots, needs to be evaluated.

  4. Obstacle Detection Display for Visually Impaired: Coding of Direction, Distance, and Height on a Vibrotactile Waist Band

    Directory of Open Access Journals (Sweden)

    Jan B. F. van Erp

    2017-10-01

    Full Text Available Electronic travel aids (ETAs can potentially increase the safety and comfort of blind users by detecting and displaying obstacles outside the range of the white cane. In a series of experiments, we aim to balance the amount of information displayed and the comprehensibility of the information taking into account the risk of information overload. In Experiment 1, we investigate perception of compound signals displayed on a tactile vest while walking. The results confirm that the threat of information overload is clear and present. Tactile coding parameters that are sufficiently discriminable in isolation may not be so in compound signals and while walking and using the white cane. Horizontal tactor location is a strong coding parameter, and temporal pattern is the preferred secondary coding parameter. Vertical location is also possible as coding parameter but it requires additional tactors and makes the display hardware more complex and expensive and less user friendly. In Experiment 2, we investigate how we can off-load the tactile modality by mitigating part of the information to an auditory display. Off-loading the tactile modality through auditory presentation is possible, but this off-loading is limited and may result in a new threat of auditory overload. In addition, taxing the auditory channel may in turn interfere with other auditory cues from the environment. In Experiment 3, we off-load the tactile sense by reducing the amount of displayed information using several filter rules. The resulting design was evaluated in Experiment 4 with visually impaired users. Although they acknowledge the potential of the display, the added of the ETA as a whole also depends on its sensor and object recognition capabilities. We recommend to use not more than two coding parameters in a tactile compound message and apply filter rules to reduce the amount of obstacles to be displayed in an obstacle avoidance ETA.

  5. Quantification of Interference and Detectability Properties of Visual Stimuli for Optimal Display Design.

    Science.gov (United States)

    1986-01-31

    an independent datum) in a four-dimensional information hyperspace whose axes are *4 s. P H T InL W IP I ’ir1. H~~ 5. interpretable as 2D visual...presented that the 2D receptive-field profiles of simple cells in mammalian visual cortex are well described by members of this optimal 2D f ilter family...quantal volumes of information hyperspace . Such an ensemble of 2D neural receptive fields in visual cortex could locally embed coarse polar mappings

  6. The effects of virtual reality displays on visual attention and detection of signals performance for main control room training

    International Nuclear Information System (INIS)

    Lin Shiaufeng; Lin Chiuhsiang Joe; Wang Rouwen; Yang Lichen; Yang Chihwei; Cheng Tsungchieh; Wang Jyhgang

    2011-01-01

    The nuclear power plant (NPP) mainly serve the purpose to provide low-cost and stable electricity for the people, but this purpose must be dependent upon the premise of 'safety first.' The reason for this is that the occurrence of nuclear power plant accidents could cause catastrophic damage to the people, property, society, and the environment. Therefore, training in superior and high reliability system is very important in accident prevention. In recent years, the Virtual Reality (VR) technology advances very fast as well as the technology for e-learning environment. VR systems have been applied for education, safety training of NPP and flying simulators. In particular, VR is an interactive and reactive technology; it allows users to interact and navigate with objects in the virtual environment. Development of VR and simulation techniques contributes to an accurate and immersive training environment for NPP operators. Main Control Room (MCR) training simulator based on VR is a more cost effective and efficient alternative to traditional simulator based training methods. The VR simulation for MCR training is a complex task. Since VR not only reinforces the visual presentation of the training materials but also provides ways to interact with the training system, it becomes more flexible and possibly more powerful in the training system. In the VR training system, the MCR operators may use just one display to view the wide range of the real world displays. The field of view (FOV) will be different from the real MCR environment in which many displays exist for the operators to view. Thus operator's immersion and visual attention will be reduced. This is the problem of MCR virtual training compared with the traditional simulator based training systems. Therefore, improving the operator's visual attention and the detection of signals in VR training system is a very important issue. This investigation intends to contribute in assessing benefits of visual attention and

  7. Influence of lateral discomfort on the stability of traffic flow based on visual angle car-following model

    Science.gov (United States)

    Zheng, Liang; Zhong, Shiquan; Jin, Peter J.; Ma, Shoufeng

    2012-12-01

    Due to the poor road markings and irregular driving behaviors, not every vehicle is positioned in the center of the lane. The deviation from the center can cause discomfort to drivers in the neighboring lane, which is referred to as lateral discomfort (or lateral friction). Such lateral discomfort can be incorporated into the driver stimulus-response framework by considering the visual angle and its changing rate from the psychological viewpoint. In this study, a two-lane visual angle based car-following model is proposed and its stability condition is obtained through linear stability theory. Further derivations indicate that the neutral stability line of the model is asymmetry and four factors including the vehicle width and length, the lateral separation and the sensitivity regarding the changing rate of visual angle have large impacts on the stability of traffic flow. Numerical simulations further verify these theoretical results, and demonstrate that the behaviors of diverging, merging and lane changing can break the original steady state and cause traffic fluctuations. However, these fluctuations may be alleviated to some extent by reducing the lateral discomfort.

  8. Effect of visualization display colour on polyp conspicuity at virtual colonoscopy

    International Nuclear Information System (INIS)

    Burling, D.; Moore, A.; Gupta, A.; East, J.; Tam, E.; Pickhardt, P.J.; Marshall, M.; Taylor, S.A.

    2008-01-01

    Aim: To investigate the effect of different colour three-dimensional (3D) displays on polyp detection at virtual colonoscopy (VC). Methods: Five VC trained observers were shown 'brief flashes' (lasting 0.2 s) of 125 3D endoluminal image snap-shots, repeated for each of six display colours (750 images total). One hundred images contained a single polyp (diameter range 5-42 mm) and 25 contained no polyp ('normal'). Images were reviewed in random order over five reading sessions, readers recording either normality or presence and location of a polyp. Multilevel logistic regression was used to examine any influence of colour on polyp detection stratified according to polyp size (medium 5-9 mm/large ≥10 mm). The kappa statistic was used to assess effect of colour on observer agreement. Results: Individual reader polyp detection rates ranged between 75-94%. Compared to the default pink 'soft tissue' display, the odds of polyp detection were 0.65 (CI 0.41,1.01) for green, 0.82 (0.53,1.30) for blue, 1 (0.63,1.59) for red, 1.12 (0.7,1.79) for monochrome, and 1.15 for yellow (0.72,1.84). Overall, there was no significant difference between the displays (p = 0.11). Including normal cases, there was no overall difference in correct case classification between the six colours (p = 0.44). The odds of detecting large versus medium polyps was significantly greater for 3/5 observers; odds ratio (OR) 2.84-10.1, although unaffected by display colour (p = 0.3). Conclusion: The background colour display generally has a minimal effect on polyp detection at VC, although green should be avoided

  9. Visuo-perceptual capabilities predict sensitivity for coinciding auditory and visual transients in multi-element displays.

    Science.gov (United States)

    Meyerhoff, Hauke S; Gehrer, Nina A

    2017-01-01

    In order to obtain a coherent representation of the outside world, auditory and visual information are integrated during human information processing. There is remarkable variance among observers in the capability to integrate auditory and visual information. Here, we propose that visuo-perceptual capabilities predict detection performance for audiovisually coinciding transients in multi-element displays due to severe capacity limitations in audiovisual integration. In the reported experiment, we employed an individual differences approach in order to investigate this hypothesis. Therefore, we measured performance in a useful-field-of-view task that captures detection performance for briefly presented stimuli across a large perceptual field. Furthermore, we measured sensitivity for visual direction changes that coincide with tones within the same participants. Our results show that individual differences in visuo-perceptual capabilities predicted sensitivity for the presence of audiovisually synchronous events among competing visual stimuli. To ensure that this correlation does not stem from superordinate factors, we also tested performance in an unrelated working memory task. Performance in this task was independent of sensitivity for the presence of audiovisually synchronous events. Our findings strengthen the proposed link between visuo-perceptual capabilities and audiovisual integration. The results also suggest that basic visuo-perceptual capabilities provide the basis for the subsequent integration of auditory and visual information.

  10. Preliminary investigation of visual attention to human figures in photographs: potential considerations for the design of aided AAC visual scene displays.

    Science.gov (United States)

    Wilkinson, Krista M; Light, Janice

    2011-12-01

    Many individuals with complex communication needs may benefit from visual aided augmentative and alternative communication systems. In visual scene displays (VSDs), language concepts are embedded into a photograph of a naturalistic event. Humans play a central role in communication development and might be important elements in VSDs. However, many VSDs omit human figures. In this study, the authors sought to describe the distribution of visual attention to humans in naturalistic scenes as compared with other elements. Nineteen college students observed 8 photographs in which a human figure appeared near 1 or more items that might be expected to compete for visual attention (such as a Christmas tree or a table loaded with food). Eye-tracking technology allowed precise recording of participants' gaze. The fixation duration over a 7-s viewing period and latency to view elements in the photograph were measured. Participants fixated on the human figures more rapidly and for longer than expected based on the size of these figures, regardless of the other elements in the scene. Human figures attract attention in a photograph even when presented alongside other attractive distracters. Results suggest that humans may be a powerful means to attract visual attention to key elements in VSDs.

  11. Effects of Symbol Brightness Cueing on Attention During a Visual Search of a Cockpit Display of Traffic Information

    Science.gov (United States)

    Johnson, Walter W.; Liao, Min-Ju; Granada, Stacie

    2003-01-01

    This study investigated visual search performance for target aircraft symbols on a Cockpit Display of Traffic Information (CDTI). Of primary interest was the influence of target brightness (intensity) and highlighting validity (search directions) on the ability to detect a target aircraft among distractor aircraft. Target aircraft were distinguished by an airspace course that conflicted with Ownship (that is, the participant's aircraft). The display could present all (homogeneous) bright aircraft, all (homogeneous) dim aircraft, or mixed bright and dim aircraft, with the target aircraft being either bright or dim. In the mixed intensity condition, participants may or may not have been instructed whether the target was bright or dim. Results indicated that highlighting validity facilitated better detection times. However, instead of bright targets being detected faster, dim targets were found to be detected more slowly in the mixed intensity display than in the homogeneous display. This relative slowness may be due to a delay in confirming the dim aircraft to be a target when it it was among brighter distractor aircraft. This hypothesis will be tested in future research. Funding for this work was provided by the Advanced Air Transportation Technologies Project of NASA's Airspace Operation Systems Program.

  12. Bicolored display of Miconia albicans fruits: Evaluating visual and physiological functions of fruit colors.

    Science.gov (United States)

    de Camargo, Maria Gabriela G; Schaefer, H Martin; Habermann, Gustavo; Cazetta, Eliana; Soares, Natalia Costa; Morellato, Leonor Patrícia C

    2015-09-01

    Most bird-dispersed fruits are green when unripe and become colored and conspicuous when ripe, signaling that fruits are ready to be consumed and dispersed. The color pattern for fruits of Miconia albicans (Melastomataceae), however, is the opposite, with reddish unripe and green ripe fruits. We (1) verified the maintenance over time of its bicolored display, (2) tested the communicative function of unripe fruits, (3) tested the photoprotective role of anthocyanins in unripe fruits, and (4) verified whether green ripe fruits can assimilate carbon. Using a paired experiment, we tested whether detection of ripe fruits was higher on infructescences with unripe and ripe fruits compared with infructescences with only ripe fruits. We also measured and compared gas exchange, chlorophyll a fluorescence, and heat dissipation of covered (to prevent anthocyanin synthesis) and uncovered ripe and unripe fruits. Although the bicolored display was maintained over time, unripe fruits had no influence on bird detection and removal of ripe fruits. Ripe and unripe fruits did not assimilate CO2, but they respired instead. Since the communicative function of unripe fruits was not confirmed, seed dispersers are unlikely to select the display with bicolored fruits. Because of the absence of photosynthetic activity in ripe and unripe fruits and enhanced photoprotective mechanisms in ripe fruits rather than in unripe fruits, we could not confirm the photoprotective role of anthocyanins in unripe fruits. As an alternative hypothesis, we suggest that the bicolored fruit display could be an adaptation to diversify seed dispersal vectors instead of restricting dispersal to birds and that anthocyanins in unripe fruits may have a defense role against pathogens. © 2015 Botanical Society of America.

  13. Information provided to the operator via visual display screens: Optimization of alarm signals

    International Nuclear Information System (INIS)

    Seisdedos, A.

    1983-01-01

    Present-day computers can be used for a range of applications, one of which is the alarm system for a power plant. Generally speaking, the number of alarms generated is excessive in relation to the amount of data that the operator can handle. Furthermore, the display screens become overloaded with signals, as a result of which they become less effective and the operator loses track of the real status of the plant. It is, therefore, necessary to optimize the number of alarms as well as the number of display screens to be incorporated in the system. One way of bringing about this optimization is to establish degrees of priority for the alarms in order to exclude from the display any signals which do not call for immediate action by the operator, although a case-by-case study cannot be entirely avoided. In addition, other criteria are formulated with a view to reducing the number of signals displayed and meeting the need and desirability to program on one and the same computer a large package of graphic signals providing a complete overview of the plant. It is also expedient to have, alongside the above system, a conventional alarm system, providing redundancy and support, which is also optimized and in which the number of signals is considerably less than the number handled by the computerized alarm system. The requirements which are being set in the wake of the Three Mile Island incident call for a combination of functions and instruments in order to make optimum use of each of them. (author)

  14. 'tomo_display' and 'vol_tools': IDL VM Packages for Tomography Data Reconstruction, Processing, and Visualization

    Science.gov (United States)

    Rivers, M. L.; Gualda, G. A.

    2009-05-01

    One of the challenges in tomography is the availability of suitable software for image processing and analysis in 3D. We present here 'tomo_display' and 'vol_tools', two packages created in IDL that enable reconstruction, processing, and visualization of tomographic data. They complement in many ways the capabilities offered by Blob3D (Ketcham 2005 - Geosphere, 1: 32-41, DOI: 10.1130/GES00001.1) and, in combination, allow users without programming knowledge to perform all steps necessary to obtain qualitative and quantitative information using tomographic data. The package 'tomo_display' was created and is maintained by Mark Rivers. It allows the user to: (1) preprocess and reconstruct parallel beam tomographic data, including removal of anomalous pixels, ring artifact reduction, and automated determination of the rotation center, (2) visualization of both raw and reconstructed data, either as individual frames, or as a series of sequential frames. The package 'vol_tools' consists of a series of small programs created and maintained by Guilherme Gualda to perform specific tasks not included in other packages. Existing modules include simple tools for cropping volumes, generating histograms of intensity, sample volume measurement (useful for porous samples like pumice), and computation of volume differences (for differential absorption tomography). The module 'vol_animate' can be used to generate 3D animations using rendered isosurfaces around objects. Both packages use the same NetCDF format '.volume' files created using code written by Mark Rivers. Currently, only 16-bit integer volumes are created and read by the packages, but floating point and 8-bit data can easily be stored in the NetCDF format as well. A simple GUI to convert sequences of tiffs into '.volume' files is available within 'vol_tools'. Both 'tomo_display' and 'vol_tools' include options to (1) generate onscreen output that allows for dynamic visualization in 3D, (2) save sequences of tiffs to disk

  15. Multi-Mission Simulation and Visualization for Real-Time Telemetry Display, Playback and EDL Event Reconstruction

    Science.gov (United States)

    Pomerantz, M. I.; Lim, C.; Myint, S.; Woodward, G.; Balaram, J.; Kuo, C.

    2012-01-01

    he Jet Propulsion Laboratory's Entry, Descent and Landing (EDL) Reconstruction Task has developed a software system that provides mission operations personnel and analysts with a real time telemetry-based live display, playback and post-EDL reconstruction capability that leverages the existing high-fidelity, physics-based simulation framework and modern game engine-derived 3D visualization system developed in the JPL Dynamics and Real Time Simulation (DARTS) Lab. Developed as a multi-mission solution, the EDL Telemetry Visualization (ETV) system has been used for a variety of projects including NASA's Mars Science Laboratory (MSL), NASA'S Low Density Supersonic Decelerator (LDSD) and JPL's MoonRise Lunar sample return proposal.

  16. Expansion of the visual angle of a car rear-view image via an image mosaic algorithm

    Science.gov (United States)

    Wu, Zhuangwen; Zhu, Liangrong; Sun, Xincheng

    2015-05-01

    The rear-view image system is one of the active safety devices in cars and is widely applied in all types of vehicles and traffic safety areas. However, studies made by both domestic and foreign researchers were based on a single image capture device while reversing, so a blind area still remained to drivers. Even if multiple cameras were used to expand the visual angle of the car's rear-view image in some studies, the blind area remained because different source images were not mosaicked together. To acquire an expanded visual angle of a car rear-view image, two charge-coupled device cameras with optical axes angled at 30 deg were mounted below the left and right fenders of a car in three light conditions-sunny outdoors, cloudy outdoors, and an underground garage-to capture rear-view heterologous images of the car. Then these rear-view heterologous images were rapidly registered through the scale invariant feature transform algorithm. Combined with the random sample consensus algorithm, the two heterologous images were finally mosaicked using the linear weighted gradated in-and-out fusion algorithm, and a seamless and visual-angle-expanded rear-view image was acquired. The four-index test results showed that the algorithms can mosaic rear-view images well in the underground garage condition, where the average rate of correct matching was the lowest among the three conditions. The rear-view image mosaic algorithm presented had the best information preservation, the shortest computation time and the most complete preservation of the image detail features compared to the mean value method (MVM) and segmental fusion method (SFM), and it was also able to perform better in real time and provided more comprehensive image details than MVM and SFM. In addition, it had the most complete image preservation from source images among the three algorithms. The method introduced by this paper provided the basis for researching the expansion of the visual angle of a car rear

  17. Real-time intraoperative visualization of myocardial circulation using augmented reality temperature display.

    Science.gov (United States)

    Szabó, Zoltán; Berg, Sören; Sjökvist, Stefan; Gustafsson, Torbjörn; Carleberg, Per; Uppsäll, Magnus; Wren, Joakim; Ahn, Henrik; Smedby, Örjan

    2013-02-01

    For direct visualization of myocardial ischemia during cardiac surgery, we tested the feasibility of presenting infrared (IR) tissue temperature maps in situ during surgery. A new augmented reality (AR) system, consisting of an IR camera and an integrated projector having identical optical axes, was used, with a high resolution IR camera as control. The hearts of five pigs were exposed and an elastic band placed around the middle of the left anterior descending coronary artery to induce ischemia. A proximally placed ultrasound Doppler probe confirmed reduction of flow. Two periods of complete ischemia and reperfusion were studied in each heart. There was a significant decrease in IR-measured temperature distal to the occlusion, with subsequent return to baseline temperatures after reperfusion (baseline 36.9 ± 0.60 (mean ± SD) versus ischemia 34.1 ± 1.66 versus reperfusion 37.4 ± 0.48; p manipulation of the coronary blood flow, and showed concentrically arranged penumbra zones during ischemia. Surface myocardial temperature changes could be assessed quantitatively and visualized in situ during ischemia and subsequent reperfusion. This method shows potential as a rapid and simple way of following myocardial perfusion during cardiac surgery. The dynamics in the penumbra zone could potentially be used for visualizing the effect of therapy on intraoperative ischemia during cardiac surgery.

  18. Dark focus of accommodation as dependent and independent variables in visual display technology

    Science.gov (United States)

    Jones, Sherrie; Kennedy, Robert; Harm, Deborah

    1992-01-01

    When independent stimuli are available for accommodation, as in the dark or under low contrast conditions, the lens seeks its resting position. Individual differences in resting positions are reliable, under autonomic control, and can change with visual task demands. We hypothesized that motion sickness in a flight simulator might result in dark focus changes. Method: Subjects received training flights in three different Navy flight simulators. Two were helicopter simulators entailed CRT presentation using infinity optics, one involved a dome presentation of a computer graphic visual projection system. Results: In all three experiments there were significant differences between dark focus activity before and after simulator exposure when comparisons were made between sick and not-sick pilot subjects. In two of these experiments, the average shift in dark focus for the sick subjects was toward increased myopia when each subject was compared to his own baseline. In the third experiment, the group showed an average shift outward of small amount and the subjects who were sick showed significantly less outward movement than those who were symptom free. Conclusions: Although the relationship is not a simple one, dark focus changes in simulator sickness imply parasympathetic activity. Because changes can occur in relation to endogenous and exogenous events, such measurement may have useful applications as dependent measures in studies of visually coupled systems, virtual reality systems, and space adaptation syndrome.

  19. Effects of Visual Display on Joint Excursions Used to Play Virtual Dodgeball

    Science.gov (United States)

    France, Christopher R; Applegate, Megan E; Leitkam, Samuel T; Pidcoe, Peter E; Walkowski, Stevan

    2016-01-01

    Background Virtual reality (VR) interventions hold great potential for rehabilitation as commercial systems are becoming more affordable and can be easily applied to both clinical and home settings. Objective In this study, we sought to determine how differences in the VR display type can influence motor behavior, cognitive load, and participant engagement. Methods Movement patterns of 17 healthy young adults (8 female, 9 male) were examined during games of Virtual Dodgeball presented on a three-dimensional television (3DTV) and a head-mounted display (HMD). The participant’s avatar was presented from a third-person perspective on a 3DTV and from a first-person perspective on an HMD. Results Examination of motor behavior revealed significantly greater excursions of the knee (P=.003), hip (PVirtual Dodgeball. Because VR use within rehabilitation settings is often designed to help restore movement following orthopedic or neurologic injury, these findings provide an important caveat regarding the need to consider the potential influence of presentation format and perspective on motor behavior. PMID:27634561

  20. Designing visual displays and system models for safe reactor operations based on the user's perspective of the system

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.

    1995-01-01

    Most designers are not schooled in the area of human-interaction psychology and therefore tend to rely on the traditional ergonomic aspects of human factors when designing complex human-interactive workstations related to reactor operations. They do not take into account the differences in user information processing behavior and how these behaviors may affect individual and team performance when accessing visual displays or utilizing system models in process and control room areas. Unfortunately, by ignoring the importance of the integration of the user interface at the information process level, the result can be sub-optimization and inherently error- and failure-prone systems. Therefore, to minimize or eliminate failures in human-interactive systems, it is essential that the designers understand how each user's processing characteristics affects how the user gathers information, and how the user communicates the information to the designer and other users. A different type of approach in achieving this understanding is Neuro Linguistic Programming (NLP). The material presented in this paper is based on two studies involving the design of visual displays, NLP, and the user's perspective model of a reactor system. The studies involve the methodology known as NLP, and its use in expanding design choices from the user's ''model of the world,'' in the areas of virtual reality, workstation design, team structure, decision and learning style patterns, safety operations, pattern recognition, and much, much more

  1. Designing visual displays and system models for safe reactor operations based on the user`s perspective of the system

    Energy Technology Data Exchange (ETDEWEB)

    Brown-VanHoozer, S.A.

    1995-12-31

    Most designers are not schooled in the area of human-interaction psychology and therefore tend to rely on the traditional ergonomic aspects of human factors when designing complex human-interactive workstations related to reactor operations. They do not take into account the differences in user information processing behavior and how these behaviors may affect individual and team performance when accessing visual displays or utilizing system models in process and control room areas. Unfortunately, by ignoring the importance of the integration of the user interface at the information process level, the result can be sub-optimization and inherently error- and failure-prone systems. Therefore, to minimize or eliminate failures in human-interactive systems, it is essential that the designers understand how each user`s processing characteristics affects how the user gathers information, and how the user communicates the information to the designer and other users. A different type of approach in achieving this understanding is Neuro Linguistic Programming (NLP). The material presented in this paper is based on two studies involving the design of visual displays, NLP, and the user`s perspective model of a reactor system. The studies involve the methodology known as NLP, and its use in expanding design choices from the user`s ``model of the world,`` in the areas of virtual reality, workstation design, team structure, decision and learning style patterns, safety operations, pattern recognition, and much, much more.

  2. Foreshortened tiles in paths converging on an observer viewing a picture: elevation and visual angle ratio determine perceived size.

    Science.gov (United States)

    Juricevic, Igor; Kennedy, John M; Abramov, Izabella

    2009-02-01

    Observers were shown wide-angle pictures of tiles on a ground plane and were asked about the aspect ratios of the tiles. The observers viewed the pictures from a fixed center of projection. Some of the tiles were in a path coming straight toward the observer. In one picture, the path came from the center of the picture, and in two others the path came from the left side of the picture (one from 30 degrees and one from 45 degrees to the left of the center, from the observer's point of view). The apparent aspect ratios were a function of the elevations of the tiles and the ratios of visual angles of the sides of the tiles. Judgments were identical for all three paths. The local slant of the picture surface was not a significant factor.

  3. Remembering from any angle: The flexibility of visual perspective during retrieval

    Science.gov (United States)

    Rice, Heather J.; Rubin, David C.

    2010-01-01

    When recalling autobiographical memories, individuals often experience visual images associated with the event. These images can be constructed from two different perspectives: first person, in which the event is visualized from the viewpoint experienced at encoding, or third person, in which the event is visualized from an external vantage point. Using a novel technique to measure visual perspective, we examined where the external vantage point is situated in third-person images. Individuals in two studies were asked to recall either 10 or 15 events from their lives and describe the perspectives they experienced. Wide variation in spatial locations was observed within third-person perspectives, with the location of these perspectives depending on the event being recalled. Results suggest remembering from an external viewpoint may be more common than previous studies have demonstrated. PMID:21109466

  4. Real-Time Knee Adduction Moment Feedback for Gait Retraining Through Visual and Tactile Displays

    KAUST Repository

    Wheeler, Jason W.

    2011-01-01

    The external knee adduction moment (KAM) measured during gait is an indicator of tibiofemoral joint osteoarthritis progression and various strategies have been proposed to lower it. Gait retraining has been shown to be an effective, noninvasive approach for lowering the KAM. We present a new gait retraining approach in which the KAM is fed back to subjects in real-time during ambulation. A study was conducted in which 16 healthy subjects learned to alter gait patterns to lower the KAM through visual or tactile (vibration) feedback. Participants converged on a comfortable gait in just a few minutes by using the feedback to iterate on various kinematic modifications. All subjects adopted altered gait patterns with lower KAM compared with normal ambulation (average reduction of 20.7%). Tactile and visual feedbacks were equally effective for real-time training, although subjects using tactile feedback took longer to converge on an acceptable gait. This study shows that real-time feedback of the KAM can greatly increase the effectiveness and efficiency of subject-specific gait retraining compared with conventional methods. © 2011 American Society of Mechanical Engineers.

  5. A New Approach to Measure Contact Angle and Evaporation Rate with Flow Visualization in a Sessile Drop

    Science.gov (United States)

    Zhang, Nengli; Chao, David F.

    1999-01-01

    The contact angle and the spreading process of sessile droplet are very crucial in many technological processes, such as painting and coating, material processing, film-cooling applications, lubrication, and boiling. Additionally, as it is well known that the surface free energy of polymers cannot be directly, measured for their elastic and viscous restraints. The measurements of liquid contact angle on the polymer surfaces become extremely important to evaluate the surface free energy of polymers through indirect methods linked with the contact angle data. Due to the occurrence of liquid evaporation is inevitable, the effects of evaporation on the contact angle and the spreading become very important for more complete understanding of these processes. It is of interest to note that evaporation can induce Marangoni-Benard convection in sessile drops. However, the impacts of the inside convection on the wetting and spreading processes are not clear. The experimental methods used by previous investigators cannot simultaneously measure the spreading process and visualize the convection inside. Based on the laser shadowgraphic system used by the present author, a very simple optical procedure has been developed to measure the contact angle, the spreading speed, the evaporation rate, and to visualize inside convection of a sessile drop simultaneously. Two CCD cameras were used to synchronously record the real-time diameter of the sessile drop, which is essential for determination of both spreading speed and evaporation rate, and the shadowgraphic image magnified by the sessile drop acting as a thin plano-convex lens. From the shadowgraph, the inside convection of the drop can be observed if any and the image outer diameter, which linked to the drop profile, can be measured. Simple equations have been derived to calculate the drop profile, including the instantaneous contact angle, height, and volume of the sessile drop, as well as the evaporation rate. The influence of

  6. Visual Benefits in Apparent Motion Displays: Automatically Driven Spatial and Temporal Anticipation Are Partially Dissociated.

    Directory of Open Access Journals (Sweden)

    Merle-Marie Ahrens

    Full Text Available Many behaviourally relevant sensory events such as motion stimuli and speech have an intrinsic spatio-temporal structure. This will engage intentional and most likely unintentional (automatic prediction mechanisms enhancing the perception of upcoming stimuli in the event stream. Here we sought to probe the anticipatory processes that are automatically driven by rhythmic input streams in terms of their spatial and temporal components. To this end, we employed an apparent visual motion paradigm testing the effects of pre-target motion on lateralized visual target discrimination. The motion stimuli either moved towards or away from peripheral target positions (valid vs. invalid spatial motion cueing at a rhythmic or arrhythmic pace (valid vs. invalid temporal motion cueing. Crucially, we emphasized automatic motion-induced anticipatory processes by rendering the motion stimuli non-predictive of upcoming target position (by design and task-irrelevant (by instruction, and by creating instead endogenous (orthogonal expectations using symbolic cueing. Our data revealed that the apparent motion cues automatically engaged both spatial and temporal anticipatory processes, but that these processes were dissociated. We further found evidence for lateralisation of anticipatory temporal but not spatial processes. This indicates that distinct mechanisms may drive automatic spatial and temporal extrapolation of upcoming events from rhythmic event streams. This contrasts with previous findings that instead suggest an interaction between spatial and temporal attention processes when endogenously driven. Our results further highlight the need for isolating intentional from unintentional processes for better understanding the various anticipatory mechanisms engaged in processing behaviourally relevant stimuli with predictable spatio-temporal structure such as motion and speech.

  7. Neural Activity Associated with Visual Search for Line Drawings on AAC Displays: An Exploration of the Use of fMRI.

    Science.gov (United States)

    Wilkinson, Krista M; Dennis, Nancy A; Webb, Christina E; Therrien, Mari; Stradtman, Megan; Farmer, Jacquelyn; Leach, Raevynn; Warrenfeltz, Megan; Zeuner, Courtney

    2015-01-01

    Visual aided augmentative and alternative communication (AAC) consists of books or technologies that contain visual symbols to supplement spoken language. A common observation concerning some forms of aided AAC is that message preparation can be frustratingly slow. We explored the uses of fMRI to examine the neural correlates of visual search for line drawings on AAC displays in 18 college students under two experimental conditions. Under one condition, the location of the icons remained stable and participants were able to learn the spatial layout of the display. Under the other condition, constant shuffling of the locations of the icons prevented participants from learning the layout, impeding rapid search. Brain activation was contrasted under these conditions. Rapid search in the stable display was associated with greater activation of cortical and subcortical regions associated with memory, motor learning, and dorsal visual pathways compared to the search in the unpredictable display. Rapid search for line drawings on stable AAC displays involves not just the conceptual knowledge of the symbol meaning but also the integration of motor, memory, and visual-spatial knowledge about the display layout. Further research must study individuals who use AAC, as well as the functional effect of interventions that promote knowledge about array layout.

  8. Organization principles in visual working memory: Evidence from sequential stimulus display.

    Science.gov (United States)

    Gao, Zaifeng; Gao, Qiyang; Tang, Ning; Shui, Rende; Shen, Mowei

    2016-01-01

    Although the mechanisms of visual working memory (VWM) have been studied extensively in recent years, the active property of VWM has received less attention. In the current study, we examined how VWM integrates sequentially presented stimuli by focusing on the role of Gestalt principles, which are important organizing principles in perceptual integration. We manipulated the level of Gestalt cues among three or four sequentially presented objects that were memorized. The Gestalt principle could not emerge unless all the objects appeared together. We distinguished two hypotheses: a perception-alike hypothesis and an encoding-specificity hypothesis. The former predicts that the Gestalt cue will play a role in information integration within VWM; the latter predicts that the Gestalt cue will not operate within VWM. In four experiments, we demonstrated that collinearity (Experiment 1) and closure (Experiment 2) cues significantly improved VWM performance, and this facilitation was not affected by the testing manner (Experiment 3) or by adding extra colors to the memorized objects (Experiment 4). Finally, we re-established the Gestalt cue benefit with similarity cues (Experiment 5). These findings together suggest that VWM realizes and uses potential Gestalt principles within the stored representations, supporting a perception-alike hypothesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Integrated visualization of multi-angle bioluminescence imaging and micro CT

    NARCIS (Netherlands)

    Kok, P.; Dijkstra, J.; Botha, C.P.; Post, F.H.; Kaijzel, E.; Que, I.; Löwik, C.W.G.M.; Reiber, J.H.C.; Lelieveldt, B.P.F.

    2007-01-01

    This paper explores new methods to visualize and fuse multi-2D bioluminescence imaging (BLI) data with structural imaging modalities such as micro CT and MR. A geometric, back-projection-based 3D reconstruction for superficial lesions from multi-2D BLI data is presented, enabling a coarse estimate

  10. Musculoskeletal disorders among visual display terminal users in a telecommunications company.

    Science.gov (United States)

    Hales, T R; Sauter, S L; Peterson, M R; Fine, L J; Putz-Anderson, V; Schleifer, L R; Ochs, T T; Bernard, B P

    1994-10-01

    The relationship between workplace factors and work-related upper extremity musculoskeletal disorders (UE disorders) was assessed in a cross-sectional study of 533 telecommunication employees utilizing video display terminals (VDTs). Cases of UE disorders were defined using symptom questionnaires and physical examinations. Data on demographics, individual factors (medical conditions and recreational activities), work organization and practices, and psychosocial aspects of work, including electronic performance monitoring (EPM), were obtained by questionnaire. Associations between workplace factors and UE disorders were assessed by multiple logistic models generated for each of the four UE areas (neck, shoulder, elbow, hand/wrists). One-hundred and eleven (22%) participants met our case definition for UE disorders. Probable tendon-related disorders were the most common (15% of participants). Probable nerve entrapment syndromes were found in 4% of participants. The hand/wrist was the area most affected, 12% of participants. The following variables had associations in the final models (p < 0.05) with at least one of the four UE disorders, although the strength of these associations were modest. Non-white race, a diagnosis of a thyroid condition (self-reported) use of bifocals at work, and seven psychosocial variables (fear of being replaced by computers, increasing work pressure, surges in workload, routine work lacking decision-making opportunities, high information processing demands, jobs which required a variety of tasks and lack of a production standard) were associated with UE disorders. This study indicates that work-related UE musculoskeletal disorders are relatively common among telecommunication workers who use VDTs, and adds to the evidence that the psychosocial work environment is related to the occurrence of these disorders.

  11. [A visual displayer for publishing radiologic images on the World Wide Web].

    Science.gov (United States)

    Setti, E; Musumeci, R

    2000-05-01

    To present a software suitable for publication of medical images on the World Wide Web and compatible with both the DICOM and other popular formats like GIF and JPEG. DICOM viewer is a Java applet, written in Java 1.0. The tool offers the capability to publish medical images, to modify brightness and contrast (windowing) and to magnify the picture (magnification lens). Information related to the image is available for consultation only for DICOM images. The viewer was tested with many DICOM files, generated by our PACS or downloaded from Internet. It works well with the DICOM 3.0 file format, but correct functioning is not granted for previous releases. The software was compatible with all the most popular Web browsers (MS Internet Explorer 3.0 or newer, Netscape Navigator 4.5 or newer, Sun and HotJava) and it works well in Windows, Sun Solaris. Macintosh, Windows CE. A 512 kb image (a standard MR image) requires about 5 seconds to be shown on an Intel Pentium II PC with 32 Mbyte RAM connected on a 10 Mbit/s Ethernet network. About 3 seconds are needed to download the file and about 2 seconds to display the image. Windowing and zooming are quick enough. The applet allows to publish DICOM medical images directly on the World Wide Web, without converting them into another graphical format. Moreover, it supplies some image processing tools common in the radiological environment. The viewer characteristics make it suitable for preparing teaching radiology sites or clinical files on the Web. The viewer's performance is somewhat poor, particularly on the Internet. Better performances are achieved on local area network (intranet). To improve performance, we will introduce file compression and rewrite the software in Java 1.1. The software is available from the author free of charge.

  12. Brewster angle microscopy. A new method of visualizing the spreading of Meibomian lipids.

    Science.gov (United States)

    Kaercher, T; Hönig, D; Möbius, D

    The spreading behaviour of the Meibomian lipids is important for the integrity of the whole tear film. This paper presents the application of Brewster Angle Microscopy (BAM) for the observation of the spreading process in vitro. Meibomian gland secretions were studied in a Langmuir trough. The secretion was characterized by an extremely rapid continuous spreading, suggesting that enough material would be available to recover the superficial lipid layer of the tears between the blinks of the eye. This new technique provides important information on how the normal tear film works and how tear substitutes might act.

  13. Visual disability in newly diagnosed primary open angle glaucoma (POAG) patients in a tertiary hospital in Nigeria.

    Science.gov (United States)

    Awoyesuku, E A; Ejimadu, C S

    2012-01-01

    Glaucoma remains the second leading cause of blindness worldwide and the highes cause of irreversible blindness worldwide. In N Glaucoma accounts for 16% of blindness and primary open angle glaucoma is the most prevalent clinical type. The aim of this study is to assess the visual disability resulting from glaucoma in newly diagnosed POAG patients in University of Port Harcourt Teaching Hospital. This is a retrospective study of newly diagnosed glaucoma patients referred from the general ophthalmology clinic to the glaucoma clinic over a 12 month period (January-December 2010). All patients had a glaucoma workup includin Snellen distant visual acuity, slit lamp examination, Goldman applanation tonometry, gonioscopy, dilated fundoscopy with +78 diopter lens as well as perimetry. All examinations were carried out by both authors. Patients with other co-morbidities such as cataract and retinal/macular pathologies were excluded from the study. A total of 98 patients were reviewed. The were 34 males and 27 females, giving a male to female ratio of 1.3:1. The average age was 54.2 years and most patients (>80%) were in the 40-59 year age group. Of the 98 patients reviewed, 62.2% had POAG. 30 patients were-blind by distant visual acuity criteria while 45 patients were blind by central visual field criteria. POAG is the most prevalent clinical subtype of glaucoma in Nigeria and sub-Saharan Africa Paucity of symptoms in early stages of the disease at late presentation is a characteristic finding in our clinic environment. Our study showed that POAG in our environment is associated with marked visual disability at the time of presentation.

  14. The space - time - cube and the display of large movement data sets: the link between visualization strategies and cartographic design guidelines

    DEFF Research Database (Denmark)

    Kveladze, Irma; Kraak, Menno-Jan

    2011-01-01

    of interactive visual data exploration is Shneiderman’s (1996) ‘Information Seeking mantra’. It consists of three major phases: overview first, zoom/filter, followed by details on demand. The overview level considers the study and display of the general context of the dataset. It specifies the relationships...... proposes a conceptual framework based visualization strategies and design guidelines to support the display. The Visualization strategy represents a workflow that tries to organize and support the process of data visualization. The workflow depends on the data type, data complexity and the user task...... one should not only consider the nature of the data, but also the purpose of the particular phase of the workflow. To verify the above approach the visualization strategies and design guidelines are applied in a different use cases. The cases include: • The annotated space-time path A travel log...

  15. Shape Perception in 3-D Scatterplots Using Constant Visual Angle Glyphs

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2012-01-01

    When viewing 3-D scatterplots in immersive virtual environments, one commonly encountered problem is the presence of clutter, which obscures the view of any structures of interest in the visualization. In order to solve this problem, we propose to render the 3-D glyphs such that they always cover...... the prospect of dealing with clutter, but also the prospect of allowing for a better perception of the continuous shapes of structures in 3-D scatterplots. In a formal user evaluation of CVA glyphs, the results indicate that such glyphs do allow for better perception of shapes in 3-D scatterplots compared...... to regular perspective glyphs, especially when a large amount of clutter is present. Furthermore, our evaluation revealed that perception of structures in 3-D scatterplots is significantly affected by the volumetric density of the glyphs in the plot....

  16. Study on visual image information detection of external angle weld based on arc welding robot

    Science.gov (United States)

    Liu, Xiaorui; Liu, Nansheng; Sheng, Wei; Hu, Xian; Ai, Xiaopu; Wei, Yiqing

    2009-11-01

    Nowadays, the chief development trend in modern welding technology is welding automation and welding intelligence. External angle weld has a certain proportion in mechanical manufacture industries. In the real-time welding process, due to hot deformation and the fixture of workpieces used frequently, torch will detach welding orbit causes deviation, which will affect welding quality. Therefore, elimination weld deviation is the key to the weld automatic tracking system. In this paper, the authors use the self-developed structured light vision sensor system which has significant advantage compared with arc sensors to capture real-time weld images. In the project of VC++6.0 real-time weld image processing, after binaryzation with threshold value seventy, 3*1 median filter, thinning, obtain weld main stripe. Then, using the extraction algorithm this paper proposed to obtain weld feature points, and compute position of weld. Experiment result verified that the extraction algorithm can locate feature points rapidly and compute the weld deviation accurately.

  17. Changes in retinal nerve fibre layer, optic nerve head morphology, and visual field after acute primary angle closure.

    Science.gov (United States)

    Sng, C C A; See, J S L; Ngo, C S; Singh, M; Chan, Y-H; Aquino, M C; Tan, A M; Shabana, N; Chew, P T K

    2011-05-01

    To determine and correlate the long-term changes in retinal nerve fibre layer (RNFL) thickness, optic nerve head (ONH) morphology, and visual fields after a single episode of acute primary angle closure (APAC). This was a cross-sectional comparative study of patients at National University Hospital (Singapore) from 2000 to 2006 after an episode of unilateral APAC. The peripapillary and macular RNFL were measured using Stratus optical coherence tomography (OCT) and ONH configuration was assessed using Heidelberg Retina Tomography (HRT)-III. Humphrey perimetry was also performed, and the presence of disc pallor was noted. APAC eyes were compared with fellow eyes as matched controls. Twenty-five patients were assessed at a median of 33 months (range, 11-85 months) after APAC. OCT showed that there was a reduction in the peripapillary and outer macular RNFL thickness in APAC eyes compared with controls. Humphrey perimetry revealed significantly reduced mean deviation (P=0.006) and increased pattern standard deviation (P=0.045) in APAC eyes compared with controls. HRT-III showed no difference in mean rim area, rim volume, or cup-disc ratio between APAC eyes and controls. Disc pallor was present in nine APAC eyes (36%) but was absent in fellow eyes (P=0.002), and was associated with peripapillary RNFL thinning, visual field loss, and an increased interval between the onset of symptoms and normalization of intraocular pressure (P=0.023). APAC results in peripapillary and outer macular RNFL loss, visual field defects, and optic disc pallor, even in cases in which the ONH configuration remains unchanged.

  18. Association of Myopic Deformation of Optic Disc with Visual Field Progression in Paired Eyes with Open-Angle Glaucoma.

    Directory of Open Access Journals (Sweden)

    Yu Sawada

    Full Text Available The influence of myopia on glaucoma progression remains unknown, possibly because of the multifactorial nature of glaucoma and difficulty in assessing a solo contribution of myopia. The purpose of this study is to investigate the association of myopia with visual field (VF progression in glaucoma using a paired-eye design to minimize the influence of confounding systemic factors that are diverse among individuals.This retrospective study evaluated 144 eyes of 72 subjects with open-angle glaucoma, with similar intra-ocular pressure between paired eyes, spherical equivalent (SE ≤ -2 diopter (D, and axial length ≥ 24 mm. Paired eyes with faster and slower VF progression were grouped separately, according to the global VF progression rate assessed by automated pointwise linear regression analysis. The SE, axial length, tilt ratio and torsion angle of optic discs, Bruch's membrane (BM opening area, and gamma zone parapapillary atrophy (PPA width were compared between the two groups. Factors associated with faster VF progression were determined by logistic regression analysis.The mean follow-up duration was 8.9 ± 4.4 years. The mean value of SE and axial length were -6.31 ± 1.88 D and 26.05 ± 1.12 mm, respectively. The mean global visual field progression rate was -0.32 ± 0.38 dB/y. Tilt ratio, BM opening area, and gamma zone PPA width were significantly greater in the eyes with faster VF progression than those with slower progression. In multivariate analysis, these factors were significantly associated with faster VF progression (all P < 0.05, while SE and axial length were not associated with it.In myopic glaucoma subjects, tilt of the optic disc and temporal shifting and enlargement of the BM opening were associated with faster rate of VF progression between paired eyes. This suggests that myopia influences VF progression in glaucomatous eyes via optic disc deformations rather than via refractive error itself.

  19. Relationship between consecutive deterioration of mean deviation value and progression of visual field defect in open-angle glaucoma

    Directory of Open Access Journals (Sweden)

    Naito T

    2015-11-01

    Full Text Available Tomoko Naito,1 Keiji Yoshikawa,2 Shiro Mizoue,3 Mami Nanno,4 Tairo Kimura,5 Hirotaka Suzumura,6 Ryuji Takeda,7 Fumio Shiraga1 1Department of Ophthalmology, Okayama University Graduate School of Medicine, Okayama, 2Yoshikawa Eye Clinic, Tokyo, 3Department of Ophthalmology, Ehime University Graduate School of Medicine, Ehime, 4Kagurazaka Minamino Eye Clinic, 5Ueno Eye Clinic, 6Suzumura Eye Clinic, Tokyo, 7Department of Agriculture, Kinki University, Nara, Japan Purpose: To analyze the relationship between consecutive deterioration of mean deviation (MD value and glaucomatous visual field (VF progression in open-angle glaucoma (OAG, including primary OAG and normal tension glaucoma.Patients and methods: The subjects of the study were patients undergoing treatment for OAG who had performed VF tests at least 10 times with a Humphrey field analyzer (SITA standard, C30-2 program. The VF progression was defined by a significantly negative MD slope (MD slope worsening at the final VF test during the follow-up period. The relationship between the MD slope worsening and the consecutive deterioration of MD value were retrospectively analyzed.Results: A total of 165 eyes of 165 patients were included in the analysis. Significant progression of VF defects was observed in 72 eyes of 72 patients (43.6%, while no significant progression was evident in 93 eyes of 93 patients (56.4%. There was significant relationship between the frequency of consecutive deterioration of MD value and MD slope worsening (P<0.0001, Cochran–Armitage trend test. A significant association was observed for MD slope worsening in the eyes with three (odds ratio: 2.1, P=0.0224 and four (odds ratio: 3.6, P=0.0008 consecutive deterioration of MD value in multiple logistic regression analysis, but no significant association in the eyes with two consecutive deterioration (odds ratio: 1.1, P=0.8282. The eyes with VF progression had significantly lower intraocular pressure reduction rate (P<0

  20. An Evaluation of an LCD Display With 240 Hz Frame Rate for Visual Psychophysics Experiments.

    Science.gov (United States)

    Shi, Lin

    2017-01-01

    Recently, a few LCD displays with 240 Hz frame rate have appeared on the market. I evaluated a LCD display with 240 Hz frame rate in terms of its temporal characteristics, progression between frames, and chromatic characteristics. The display showed (a) accurate frame durations at millisecond level, (b) gradual transition between adjacent frames, and (c) acceptable chromatic characteristics.

  1. Comparison of capacity for diagnosis and visuality of auditory ossicles at different scanning angles in the computed tomography of temporal bone

    International Nuclear Information System (INIS)

    Ogura, Akio; Nakayama, Yoshiki

    1992-01-01

    Computed tomographic (CT) scanning has made significant contributions to the diagnosis and evaluation of temporal bone lesions by the thin-section, high-resolution techniques. However, these techniques involve greater radiation exposure to the lens of patients. A mean was thus sought for reducing the radiation exposure at different scanning angles such as +15 degrees and -10 degrees to the Reid's base line. Purposes of this study were to measure radiation exposure to the lens using the two tomographic planes and to compare the ability to visualize auditory ossicles and labyrinthine structures. Visual evaluation of tomographic images on auditory ossicles was made by blinded methods using four rankings by six radiologists. The statistical significance of the intergroup difference in the visualization of tomographic planes was assessed for a significance level of 0.01. Thermoluminescent dosimeter chips were placed on the cornea of tissue equivalent to the skull phantom to evaluate radiation exposure for two separate tomographic planes. As the result, tomographic plane at an angle of -10 degrees to Reid's base line allowed better visualization than the other plane for the malleus, incus, facial nerve canal, and tuba auditiva (p<0.01). Scannings at an angle of -10 degrees to Reid's base line reduced radiation exposure to approximately one-fiftieth (1/50) that with the scans at the other angle. (author)

  2. Accurate Characterization of Winter Precipitation Using Multi-Angle Snowflake Camera, Visual Hull, Advanced Scattering Methods and Polarimetric Radar

    Directory of Open Access Journals (Sweden)

    Branislav M. Notaroš

    2016-06-01

    Full Text Available This article proposes and presents a novel approach to the characterization of winter precipitation and modeling of radar observables through a synergistic use of advanced optical disdrometers for microphysical and geometrical measurements of ice and snow particles (in particular, a multi-angle snowflake camera—MASC, image processing methodology, advanced method-of-moments scattering computations, and state-of-the-art polarimetric radars. The article also describes the newly built and established MASCRAD (MASC + Radar in-situ measurement site, under the umbrella of CSU-CHILL Radar, as well as the MASCRAD project and 2014/2015 winter campaign. We apply a visual hull method to reconstruct 3D shapes of ice particles based on high-resolution MASC images, and perform “particle-by-particle” scattering computations to obtain polarimetric radar observables. The article also presents and discusses selected illustrative observation data, results, and analyses for three cases with widely-differing meteorological settings that involve contrasting hydrometeor forms. Illustrative results of scattering calculations based on MASC images captured during these events, in comparison with radar data, as well as selected comparative studies of snow habits from MASC, 2D video-disdrometer, and CHILL radar data, are presented, along with the analysis of microphysical characteristics of particles. In the longer term, this work has potential to significantly improve the radar-based quantitative winter-precipitation estimation.

  3. ACCURACY EVALUATION OF THE OBJECT LOCATION VISUALIZATION FOR GEO-INFORMATION AND DISPLAY SYSTEMS OF MANNED AIRCRAFTS NAVIGATION COMPLEXES

    Directory of Open Access Journals (Sweden)

    M. O. Kostishin

    2014-01-01

    Full Text Available The paper deals with the issue of accuracy estimating for the object location display in the geographic information systems and display systems of manned aircrafts navigation complexes. Application features of liquid crystal screens with a different number of vertical and horizontal pixels are considered at displaying of geographic information data on different scales. Estimation display of navigation parameters values on board the aircraft is done in two ways: a numeric value is directly displayed on the screen of multi-color indicator, and a silhouette of the object is formed on the screen on a substrate background, which is a graphical representation of area map in the flight zone. Various scales of area digital map display currently used in the aviation industry have been considered. Calculation results of one pixel scale interval, depending on the specifications of liquid crystal screen and zoom of the map display area on the multifunction digital display, are given. The paper contains experimental results of the accuracy evaluation for area position display of the aircraft based on the data from the satellite navigation system and inertial navigation system, obtained during the flight program run of the real object. On the basis of these calculations a family of graphs was created for precision error display of the object reference point position using the onboard indicators with liquid crystal screen with different screen resolutions (6 "×8", 7.2 "×9.6", 9"×12" for two map display scales (1:0 , 25 km, 1-2 km. These dependency graphs can be used both to assess the error value of object area position display in existing navigation systems and to calculate the error value in upgrading facilities.

  4. Head up versus head down: the costs of imprecision, unreliability, and visual clutter on cue effectiveness for display signaling.

    Science.gov (United States)

    Yeh, Michelle; Merlo, James L; Wickens, Christopher D; Brandenburg, David L

    2003-01-01

    We conducted 2 experiments to investigate the clutter-scan trade-off between the cost of increasing clutter by overlaying complex information onto the forward field of view using a helmet-mounted display (HMD) and the cost of scanning when presenting this information on a handheld display. In the first experiment, this trade-off was examined in terms of the spatial accuracy of target cuing data in a relatively sparse display; in the second, the spatial accuracy of the cue was varied more radically in an information-rich display. Participants were asked to detect and identify targets hidden in the far domain while performing a monitoring task in the near domain using either an HMD or a handheld display. The results revealed that on a sparse display, the reduced scanning from the HMD presentation of cuing out-weighed the costs of clutter for cued targets, regardless of cue precision, but no benefit was found for uncued targets. When the HMD displayed task-irrelevant information, however, target detection was hindered by the extraneous clutter in the forward field of view relative to the handheld display condition, and this cost of clutter increased as the amount of data that needed to be inspected increased. Potential applications of this research include the development of design considerations for head-up displays for aviation and military applications.

  5. Pilot Performance in Simulated Aerial Refueling as a Function of Tanker Model Complexity and Visual Display Field-of-View

    Science.gov (United States)

    1979-05-01

    modd. 450 WIndow 1 - O window display (A-10) 440) Window 2 - Throt window display (F-4) m0 Window 3 - Fll FOY [ I Fkmw. 10. Study I (A-0fFO4): Mean...Night austere. Wimdow I - One-window d41qy (A-1 0). Window 2 - Three- window display (F-4). Window 3 -’ Full FOV.i *p< .10. **p <.0s. 11 1r J" 4.00 0...siz~e vertically about 1 2 degrees. V. CONCLUSIONS The results fronm the refueling task generally indicate that the three- window display was far

  6. Primary angle-closure glaucomas disturb regional spontaneous brain activity in the visual pathway: an fMRI study

    Directory of Open Access Journals (Sweden)

    Chen W

    2017-05-01

    Full Text Available Wei Chen, Li Zhang, Yong-gen Xu, Kai Zhu, Man Luo Department of Ophthalmology, Shaoxing People’s Hospital, Shaoxing, Zhejiang, People’s Republic of China Objective: To explore the underlying regional brain activity deficits in the visual cortex in patients with primary angle-closure glaucoma (PACG relative to normal controls (NCs using regional homogeneity (ReHo method, and its relationship with behavioral performances. Patients: Twenty PACG patients (10 females, 10 males; mean age ± standard deviation [SD]: 54.42±9.46 years and 20 age-, and sex status-matched NCs (10 females, 10 males; mean age ± SD: 53.75±9.16 years were included in this study. Measurements and results: Compared with NCs, patients with PACG showed significant atrophic peripapillary retinal nerve fiber layer (pRNFL and neuroretinal rim area, increased optic disk cup-to-disc ratio (CDR and optic disk volume (P<0.05, higher ReHo value in the left fusiform gyrus, left cerebellum anterior lobe, right frontal-temporal space, and right insula, and lower ReHo value in the bilateral middle occipital gyrus, left claustrum, and right paracentral lobule lobe. The receiver operating characteristic analysis revealed these different areas with high value of area under curve, and high degree of sensitivity and specificity. The mean beta values of these different areas were extracted. In PACG, the duration of disease showed a negative correlation with the mean beta value of left cerebellum anterior lobe (r=-0.453, P=0.045 and a positive correlation with right middle occipital gyrus (r=0.586, P=0.007; left middle occipital gyrus showed positive correlations with duration of disease (r=0.562, P=0.01 and left pRNFL (r=0.49, P=0.028; left claustrum had a positive correlation with left CDR (r=0.515, P=0.02; and right paracentral lobule lobe demonstrated a positive correlation with left pRNFL (r=0.623, P=0.003. Conclusion: PACG is involved in abnormal spontaneous brain activity in multiple

  7. Effects of Multimodal Displays About Threat Location on Target Acquisition and Attention to Visual and Auditory Communications

    National Research Council Canada - National Science Library

    Glumm, Monica M; Kehring, Kathy L; White, Timothy L

    2007-01-01

    This laboratory experiment examined the effects of paired sensory cues that indicate the location of targets on target acquisition performance, the recall of information presented in concurrent visual...

  8. Using Eye-Tracking Data and Mouse Cursor Location To Examine Visual Alerting in a Multi-Display Environment

    Science.gov (United States)

    2014-07-23

    displays. Border alerts were similar in width and colour but surrounded the entire perimeter of the display. Secondary task The secondary task...cognitive processes. Cognitive Psychology , 8, 441-480. Li, G., Wang, W., Li, S., Cheng, B., & Green, P. (2014). Effectiveness of flashing brake and hazard...T., Engbert, R., & Henderson, J. (2010). CRISP: A computational model of fixation durations in scene viewing. Psychological Review, 117(2), 382-405

  9. Breath-hold monitoring and visual feedback for radiotherapy using a charge-coupled device camera and a head-mounted display. System development and feasibility

    International Nuclear Information System (INIS)

    Yoshitake, Tadamasa; Nakamura, Katsumasa; Shioyama, Yoshiyuki

    2008-01-01

    The aim of this study was to present the technical aspects of the breath-hold technique with respiratory monitoring and visual feedback and to evaluate the feasibility of this system in healthy volunteers. To monitor respiration, the vertical position of the fiducial marker placed on the patient's abdomen was tracked by a machine vision system with a charge-coupled device camera. A monocular head-mounted display was used to provide the patient with visual feedback about the breathing trace. Five healthy male volunteers were enrolled in this study. They held their breath at the end-inspiration and the end-expiration phases. They performed five repetitions of the same type of 15-s breath-holds with and without a head-mounted display, respectively. A standard deviation of five mean positions of the fiducial marker during a 15-s breath-hold in each breath-hold type was used as the reproducibility value of breath-hold. All five volunteers well tolerated the breath-hold maneuver. For the inspiration breath-hold, the standard deviations with and without visual feedback were 1.74 mm and 0.84 mm, respectively (P=0.20). For the expiration breath-hold, the standard deviations with and without visual feedback were 0.63 mm and 0.96 mm, respectively (P=0.025). Our newly developed system might help the patient achieve improved breath-hold reproducibility. (author)

  10. Effects of Visual Communication Tool and Separable Status Display on Team Performance and Subjective Workload in Air Battle Management

    National Research Council Canada - National Science Library

    Schwartz, Daniel; Knott, Benjamin A; Galster, Scott M

    2008-01-01

    ... ambient cabin noise while performing several visual and manual tasks. The purpose of this study is to compare team performance and subjective workload on a simulated AWACS scenario, for two conditions of communication...

  11. Soldier-Robot Team Communication: An Investigation of Exogenous Orienting Visual Display Cues and Robot Reporting Preferences

    Science.gov (United States)

    2018-02-12

    MMC is sending and/or receiving information through multiple sensory systems (e.g., seeing text information that is also presented auditorily). In...have shown that the decay of information in visual working memory can be gradual. Further, the capacity for storing visual images is larger compared...to auditory working memory . Therefore, the larger working memory storage, in addition to the chunking of information, might explain the Soldiers

  12. Developmental memory capacity resources of typical children retrieving picture communication symbols using direct selection and visual linear scanning with fixed communication displays.

    Science.gov (United States)

    Wagner, Barry T; Jackson, Heather M

    2006-02-01

    This study examined the cognitive demands of 2 selection techniques in augmentative and alternative communication (AAC), direct selection, and visual linear scanning, by determining the memory retrieval abilities of typically developing children when presented with fixed communication displays. One hundred twenty typical children from kindergarten, 1st, and 3rd grades were randomly assigned to either a direct selection or visual linear scanning group. Memory retrieval was assessed through word span using Picture Communication Symbols (PCSs). Participants were presented various numbers and arrays of PCSs and asked to retrieve them by placing identical graphic symbols on fixed communication displays with grid layouts. The results revealed that participants were able to retrieve more PCSs during direct selection than scanning. Additionally, 3rd-grade children retrieved more PCSs than kindergarten and 1st-grade children. An analysis on the type of errors during retrieval indicated that children were more successful at retrieving the correct PCSs than the designated location of those symbols on fixed communication displays. AAC practitioners should consider using direct selection over scanning whenever possible and account for anticipatory monitoring and pulses when scanning is used in the service delivery of children with little or no functional speech. Also, researchers should continue to investigate AAC selection techniques in relationship to working memory resources.

  13. Impact of the motion and visual complexity of the background on players' performance in video game-like displays.

    Science.gov (United States)

    Caroux, Loïc; Le Bigot, Ludovic; Vibert, Nicolas

    2013-01-01

    The visual interfaces of virtual environments such as video games often show scenes where objects are superimposed on a moving background. Three experiments were designed to better understand the impact of the complexity and/or overall motion of two types of visual backgrounds often used in video games on the detection and use of superimposed, stationary items. The impact of background complexity and motion was assessed during two typical video game tasks: a relatively complex visual search task and a classic, less demanding shooting task. Background motion impaired participants' performance only when they performed the shooting game task, and only when the simplest of the two backgrounds was used. In contrast, and independently of background motion, performance on both tasks was impaired when the complexity of the background increased. Eye movement recordings demonstrated that most of the findings reflected the impact of low-level features of the two backgrounds on gaze control.

  14. The benefit obtained from visually displayed text from an automatic speech recognizer during listening to speech presented in noise

    NARCIS (Netherlands)

    Zekveld, A.A.; Kramer, S.E.; Kessens, J.M.; Vlaming, M.S.M.G.; Houtgast, T.

    2008-01-01

    OBJECTIVES: The aim of this study was to evaluate the benefit that listeners obtain from visually presented output from an automatic speech recognition (ASR) system during listening to speech in noise. DESIGN: Auditory-alone and audiovisual speech reception thresholds (SRTs) were measured. The SRT

  15. Effects of Multimodal Displays About Threat Location on Target Acquisition and Attention to Visual and Auditory Communications

    Science.gov (United States)

    2007-04-01

    Pillalamarri, Stachowiak , and Lattin (2005) presented target location information in plus and minus degrees (e.g., “Target -- minus 15 degrees”) no...Aberdeen Proving Ground, MD, 2006. 30 Haas, E. C.; Pillalamarri, R. S.; Stachowiak , C. C.; Lattin, M. A. Audio Cues to Assist Visual Search in

  16. Using Visual Scene Displays as Communication Support Options for People with Chronic, Severe Aphasia: A Summary of AAC Research and Future Research Directions.

    Science.gov (United States)

    Beukelman, David R; Hux, Karen; Dietz, Aimee; McKelvey, Miechelle; Weissling, Kristy

    2015-01-01

    Research about the effectiveness of communicative supports and advances in photographic technology has prompted changes in the way speech-language pathologists design and implement interventions for people with aphasia. The purpose of this paper is to describe the use of photographic images as a basis for developing communication supports for people with chronic aphasia secondary to sudden-onset events due to cerebrovascular accidents (strokes). Topics include the evolution of AAC-based supports as they relate to people with aphasia, the development and key features of visual scene displays (VSDs), and future directions concerning the incorporation of photographs into communication supports for people with chronic and severe aphasia.

  17. A visual test based on a freeware software for quantifying and displaying night-vision disturbances: study in subjects after alcohol consumption.

    Science.gov (United States)

    Castro, José J; Ortiz, Carolina; Pozo, Antonio M; Anera, Rosario G; Soler, Margarita

    2014-05-07

    In this work, we propose the Halo test, a simple visual test based on a freeware software for quantifying and displaying night-vision disturbances perceived by subjects under different experimental conditions, more precisely studying the influence of the alcohol consumption on visual function. In the Halo test, viewed on a monitor, the subject's task consists of detecting luminous peripheral stimuli around a central high-luminance stimulus over a dark background. The test, performed by subjects before and after consuming alcoholic drinks, which deteriorate visual performance, evaluates the influence that alcohol consumption exerts on the visual-discrimination capacity under low illumination conditions. Measurements were made monocularly and binocularly. Pupil size was also measured in both conditions (pre/post). Additionally, we used a double-pass device to measure objectively the optical-quality of the eye and corroborate the results from the Halo test. We found a significant deterioration of the discrimination capacity after alcohol consumption, indicating that the higher the breath-alcohol content, the greater the deterioration of the visual-discrimination capacity. After alcohol intake, the graphical results showed a greater area of undetected peripheral stimuli around the central high-luminance stimulus. An enlargement of the pupil was also observed and the optical quality of the eye was deteriorated after alcohol consumption. A greater influence of halos and other night-vision disturbances were reported with the Halo test after alcohol consumption. The Halo freeware software constitutes a positive contribution for evaluating nighttime visual performance in clinical applications, such as reported here, but also in patients after refractive surgery (where halos are present) or for monitoring (time course) some ocular pathologies under pharmacological treatment.

  18. Radiation visualization in virtual reality: A comparison of flat and topographic map types, presented on four different display technologies

    International Nuclear Information System (INIS)

    Nystad, Espen; Sebok, Angelia

    2005-08-01

    HWR-734 describes an experiment performed to compare different types of VR display technologies and their effects on learning. In the study, two different ways of presenting radiation information were compared. One was a flat radiation map with different colours for different levels of radiation. The other was a topographic map, where radiation levels were distinguished both by colour and by the elevation of the map. The efficiency of the maps for learning radiation information, and subjective preferences was assessed. The results indicated that the maps were each suited for different kinds of use. It is recommended to follow up this study with further investigation of radiation map efficiency. (Author)

  19. The Effect of Programmable Tactile Displays on Spatial Learning Skills in Children and Adolescents of Different Visual Disability.

    Science.gov (United States)

    Leo, Fabrizio; Cocchi, Elena; Brayda, Luca

    2017-07-01

    Vision loss has severe impacts on physical, social and emotional well-being. The education of blind children poses issues as many scholar disciplines (e.g., geometry, mathematics) are normally taught by heavily relying on vision. Touch-based assistive technologies are potential tools to provide graphical contents to blind users, improving learning possibilities and social inclusion. Raised-lines drawings are still the golden standard, but stimuli cannot be reconfigured or adapted and the blind person constantly requires assistance. Although much research concerns technological development, little work concerned the assessment of programmable tactile graphics, in educative and rehabilitative contexts. Here we designed, on programmable tactile displays, tests aimed at assessing spatial memory skills and shapes recognition abilities. Tests involved a group of blind and a group of low vision children and adolescents in a four-week longitudinal schedule. After establishing subject-specific difficulty levels, we observed a significant enhancement of performance across sessions and for both groups. Learning effects were comparable to raised paper control tests: however, our setup required minimal external assistance. Overall, our results demonstrate that programmable maps are an effective way to display graphical contents in educative/rehabilitative contexts. They can be at least as effective as traditional paper tests yet providing superior flexibility and versatility.

  20. Typical Toddlers' Participation in “Just-in-Time” Programming of Vocabulary for Visual Scene Display Augmentative and Alternative Communication Apps on Mobile Technology: A Descriptive Study

    Science.gov (United States)

    Drager, Kathryn; Light, Janice; Caron, Jessica Gosnell

    2017-01-01

    Purpose Augmentative and alternative communication (AAC) promotes communicative participation and language development for young children with complex communication needs. However, the motor, linguistic, and cognitive demands of many AAC technologies restrict young children's operational use of and influence over these technologies. The purpose of the current study is to better understand young children's participation in programming vocabulary “just in time” on an AAC application with minimized demands. Method A descriptive study was implemented to highlight the participation of 10 typically developing toddlers (M age: 16 months, range: 10–22 months) in just-in-time vocabulary programming in an AAC app with visual scene displays. Results All 10 toddlers participated in some capacity in adding new visual scene displays and vocabulary to the app just in time. Differences in participation across steps were observed, suggesting variation in the developmental demands of controls involved in vocabulary programming. Conclusions Results from the current study provide clinical insights toward involving young children in AAC programming just in time and steps that may allow for more independent participation or require more scaffolding. Technology designed to minimize motor, cognitive, and linguistic demands may allow children to participate in programming devices at a younger age. PMID:28586825

  1. Typical Toddlers' Participation in "Just-in-Time" Programming of Vocabulary for Visual Scene Display Augmentative and Alternative Communication Apps on Mobile Technology: A Descriptive Study.

    Science.gov (United States)

    Holyfield, Christine; Drager, Kathryn; Light, Janice; Caron, Jessica Gosnell

    2017-08-15

    Augmentative and alternative communication (AAC) promotes communicative participation and language development for young children with complex communication needs. However, the motor, linguistic, and cognitive demands of many AAC technologies restrict young children's operational use of and influence over these technologies. The purpose of the current study is to better understand young children's participation in programming vocabulary "just in time" on an AAC application with minimized demands. A descriptive study was implemented to highlight the participation of 10 typically developing toddlers (M age: 16 months, range: 10-22 months) in just-in-time vocabulary programming in an AAC app with visual scene displays. All 10 toddlers participated in some capacity in adding new visual scene displays and vocabulary to the app just in time. Differences in participation across steps were observed, suggesting variation in the developmental demands of controls involved in vocabulary programming. Results from the current study provide clinical insights toward involving young children in AAC programming just in time and steps that may allow for more independent participation or require more scaffolding. Technology designed to minimize motor, cognitive, and linguistic demands may allow children to participate in programming devices at a younger age.

  2. The p53 codon 72 PRO/PRO genotype may be associated with initial central visual field defects in caucasians with primary open angle glaucoma.

    Directory of Open Access Journals (Sweden)

    Janey L Wiggs

    Full Text Available Loss of vision in glaucoma is due to apoptotic retinal ganglion cell loss. While p53 modulates apoptosis, gene association studies between p53 variants and glaucoma have been inconsistent. In this study we evaluate the association between a p53 variant functionally known to influence apoptosis (codon 72 Pro/Arg and the subset of primary open angle glaucoma (POAG patients with early loss of central visual field.Genotypes for the p53 codon 72 polymorphism (Pro/Arg were obtained for 264 POAG patients and 400 controls from the U.S. and in replication studies for 308 POAG patients and 178 controls from Australia (GIST. The glaucoma patients were divided into two groups according to location of initial visual field defect (either paracentral or peripheral. All cases and controls were Caucasian with European ancestry.The p53-PRO/PRO genotype was more frequent in the U.S. POAG patients with early visual field defects in the paracentral regions compared with those in the peripheral regions or control group (p=2.7 × 10(-5. We replicated this finding in the GIST cohort (p  =7.3 × 10(-3, and in the pooled sample (p=6.6 × 10(-7 and in a meta-analysis of both the US and GIST datasets (1.3 × 10(-6, OR 2.17 (1.58-2.98 for the PRO allele.These results suggest that the p53 codon 72 PRO/PRO genotype is potentially associated with early paracentral visual field defects in primary open-angle glaucoma patients.

  3. Microlaser-based three-dimensional display

    Science.gov (United States)

    Takeuchi, Eric B.; Bergstedt, Robert; Hargis, David E.; Higley, Paul D.

    1999-08-01

    Three dimensional (3D) displays are critical for viewing complex multi-dimensional information and for viewing representations of the three dimensional real world. A teaming arrangement between Laser Power Corporation (LPC) and Specialty Devices, Inc. (SDI) has led to the feasibility demonstration of a directly-viewed three dimensional volumetric display. LPC has developed red, green, and blue (RGB) diode pumped solid state microlaser display technology for use as a high resolution, high brightness display engine for the three dimensional display. Concurrently, SDI has developed a unique technology for viewing high resolution three dimensional volumetric images without external viewing aids (eye wear). When coupled to LPC's display engine, the resultant all solid state three dimensional display presets a true, physical three dimensionality which is directly viewable from all angles by multiple viewers without additional viewing equipment (eye wear). The resultant volumetric display will further enable applications such as the 'virtual sandbox,' visualization of radar and sonar data, air traffic control, remote surgery and diagnostics, and CAD workstations.

  4. Visual display of reservoir parameters affecting enhanced oil recovery. Final report, September 29, 1993--September 28, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Wood, J.R.

    1997-05-01

    The Pioneer Anticline, 25 miles southwest of Bakersfield, California, which has yielded oil since 1926, was the subject of a three-year study aimed at recovering more oil. A team from Michigan Technological University of Houghton, Michigan (MTU), and Digital Petrophysics, Inc. of Bakersfield, California (DPI), undertook the study as part of the Department of Energy`s Advanced Extraction and Process Technology Program. The program provides support for projects which cross-cut geoscience and engineering research in order to develop innovative technologies for increasing the recovery of some of the estimated 340 billion barrels of in-place oil remaining in U.S. reservoirs. In recent years, low prices and declining production have increased the likelihood that oil fields will be prematurely abandoned, locking away large volumes of unrecovered oil. The major companies have sold many of their fields to smaller operators in an attempt to concentrate their efforts on fewer {open_quotes}core{close_quotes} properties and on overseas exploration. As a result, small companies with fewer resources at their disposal are becoming responsible for an ever-increasing share of U.S. production. The goal of the MTU-DPI project was to make small independent producers who are inheriting old fields from the majors aware that high technology computer software is now available at relatively low cost. In this project, a suite of relatively inexpensive, PC-based software packages, including a commercial database, a multimedia presentation manager, several well-log analysis program, a mapping and cross-section program, and 2-D and 3-D visualization programs, were tested and evaluated on Pioneer Anticline in the southern San Joaquin Valley of California. These relatively inexpensive, commercially available PC-based programs can be assembled into a compatible package for a fraction of the cost of a workstation program with similar capabilities.

  5. Large-visual-angle microstructure inspired from quantitative design of Morpho butterflies' lamellae deviation using the FDTD/PSO method.

    Science.gov (United States)

    Wang, Wanlin; Zhang, Wang; Chen, Weixin; Gu, Jiajun; Liu, Qinglei; Deng, Tao; Zhang, Di

    2013-01-15

    The wide angular range of the treelike structure in Morpho butterfly scales was investigated by finite-difference time-domain (FDTD)/particle-swarm-optimization (PSO) analysis. Using the FDTD method, different parameters in the Morpho butterflies' treelike structure were studied and their contributions to the angular dependence were analyzed. Then a wide angular range was realized by the PSO method from quantitatively designing the lamellae deviation (Δy), which was a crucial parameter with angular range. The field map of the wide-range reflection in a large area was given to confirm the wide angular range. The tristimulus values and corresponding color coordinates for various viewing directions were calculated to confirm the blue color in different observation angles. The wide angular range realized by the FDTD/PSO method will assist us in understanding the scientific principles involved and also in designing artificial optical materials.

  6. CORRELATION BETWEEN STRUCTURAL RETINAL NERVE FIBRE LAYER THICKNESS AND FUNCTIONAL VISUAL FIELD LOSS IN PRIMARY OPEN ANGLE GLAUCOMA

    Directory of Open Access Journals (Sweden)

    A. Arun

    2015-04-01

    Full Text Available Background: Glaucoma is characterized by progressive degeneration of retinal ganglion cells and their axons that leads to nerve fiber layer loss, optic disc cupping, and consecutive glaucomatous visual field changes. Study is done in Department of ophthalmology, S.V.R.R Government General Hospital, S.V.Medical College Tirupati. A total of 52 eyes of 29 patients were included in the study. Mean age of the patients included in the study is 64.14+/- 11.43 years. Majority were male patients (68.96%. Female patients were only 31.04%.

  7. A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study

    Directory of Open Access Journals (Sweden)

    Yasushi Kitaoka

    2018-01-01

    Full Text Available Purpose. The Glaucoma Stereo Analysis Study, a cross-sectional multicenter collaborative study, used a stereo fundus camera (nonmyd WX to assess various morphological parameters of the optic nerve head (ONH in glaucoma patients. We compared the associations of each parameter between the visual field loss progression group and no-progression group. Methods. The study included 187 eyes of 187 patients with primary open-angle glaucoma or normal-tension glaucoma. We divided the mean deviation (MD slope values of all patients into the progression group (<−0.3 dB/year and no-progression group (≧−0.3 dB/year. ONH morphological parameters were calculated with prototype analysis software. The correlations between glaucomatous visual field progression and patient characteristics or each ONH parameter were analyzed with Spearman’s rank correlation coefficient. Results. The MD slope averages in the progression group and no-progression group were −0.58 ± 0.28 dB/year and 0.05 ± 0.26 dB/year, respectively. Among disc parameters, vertical disc width (diameter, disc area, cup area, and cup volume in the progression group were significantly less than those in the no-progression group. Logistic regression analysis revealed a significant association between the visual field progression and disc area (odds ratio 0.49/mm2 disc area. Conclusion. A smaller disc area may be associated with more rapid glaucomatous visual field progression.

  8. Do People Take Stimulus Correlations into Account in Visual Search (Open Source)

    Science.gov (United States)

    2016-03-10

    contribute to bridging the gap between artificial and natural visual search tasks. Introduction Visual target detection in displays consisting of multiple...on an invisible circle centered at the fixation cross, with a radius of 3.2 degrees of visual angle. On each trial, the first stimulus was placed at

  9. Polyplanar optic display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.; Biscardi, C.; Brewster, C.; DeSanto, L. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology; Beiser, L. [Leo Beiser Inc., Flushing, NY (United States)

    1997-07-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 100 milliwatt green solid state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, the authors discuss the electronic interfacing to the DLP{trademark} chip, the opto-mechanical design and viewing angle characteristics.

  10. Auditory Display

    DEFF Research Database (Denmark)

    volume. The conference's topics include auditory exploration of data via sonification and audification; real time monitoring of multivariate date; sound in immersive interfaces and teleoperation; perceptual issues in auditory display; sound in generalized computer interfaces; technologies supporting...... auditory display creation; data handling for auditory display systems; applications of auditory display....

  11. Comparative studies of RNFL thickness measured by OCT with global index of visual fields in patients with ocular hypertension and early open angle glaucoma

    Directory of Open Access Journals (Sweden)

    Sergios Taliantzis

    2009-06-01

    Full Text Available Sergios Taliantzis, Dimitris Papaconstantinou, Chrysanthi Koutsandrea, Michalis Moschos, Michalis Apostolopoulos, Gerasimos GeorgopoulosAthens University Medical School, Department of Ophthalmology, Athens, GreecePurpose: To compare the functional changes in visual fields with optical coherence tomography (OCT findings in patients with ocular hypertension, open angle glaucoma, and suspected glaucoma. In addition, our purpose is to evaluate the correlation of global indices with the structural glaucomatous defect, to assess their statistical importance in all the groups of our study, and to estimate their validity to the clinical practice.Methods: One hundred sixty nine eyes (140 patients were enrolled. The patients were classified in three groups. Group 1 consisted of 54 eyes with ocular hypertension, group 2 of 42 eyes with preperimetric glaucoma, and group 3 of 73 eyes with chronic open angle glaucoma. All of them underwent ophthalmic examination according to a prefixed protocol, OCT exam (Stratus 3000 for retinal nerve fiber layer (RNFL thickness measurement with fast RNFL thickness protocol and visual fields (VF examination with Octopus perimeter (G2 program, central 30–2 threshold strategy. Pearson correlation was calculated between RNFL thickness and global index of VF.Results: A moderate correlation between RNFL thickness and indices mean sensitivity (MS, mean defect (MD and loss variance (LV of VF (0.547, -0.582, -0.527, respectively; P < 0.001 was observed for all patients. Correlations of the ocular hypertension and preperimetric groups are weak. Correlation of RNFL thickness with global indices becomes stronger as the structural alterations become deeper in OCT exam. Correlation of RNFL thickness with the global index of VF, in respective segments around optic disk was also calculated and was found significant in the nasal, inferior, superior, and temporal segments.Conclusion: RNFL average thickness is not a reliable index for early

  12. Effect of mobile technology featuring visual scene displays and just-in-time programming on communication turns by preadolescent and adolescent beginning communicators.

    Science.gov (United States)

    Holyfield, Christine; Caron, Jessica Gosnell; Drager, Kathryn; Light, Janice

    2018-03-05

    Visual scene displays (VSDs) and just-in-time programming supports are augmentative and alternative communication (AAC) technology features with theoretical benefits for beginning communicators of all ages. The goal of the current study was to evaluate the effects of a communication application (app) on mobile technology that supported the just-in-time programming of VSDs on the communication of preadolescents and adolescents who were beginning communicators. A single-subject multiple-baseline across participant design was employed to evaluate the effect of the AAC app with VSDs programmed just-in-time by the researcher on the communication turns expressed by five preadolescents and adolescents (9-18 years old) who were beginning communicators. All five participants demonstrated marked increases in the frequency of their communication turns after the onset intervention. Just-in-time programming support and VSDs are two features that may positively impact communication for beginning communicators in preadolescence and adolescence. Apps with these features allow partners to quickly and easily capture photos of meaningful and motivating events and provide them immediately as VSDs with relevant vocabulary to support communication in response to beginning communicators' interests.

  13. Autostereoscopic video display with motion parallax

    Science.gov (United States)

    Hines, Stephen P.

    1997-05-01

    Described, is the HinesLab '3DTV,' a 3-dimensional video display which provides true stereo 3-D images, without glasses. Multiple viewers can move in front of the display, seeing true stereo images with motion parallax. Applications include 3-D video arcade games, avionics, engineering workstations, scientific visualization, video phones, and 3-D television. The display is built around a single liquid crystal panel, on which multiple images are projected to a screen where they form the 3-D image. The relationships of objects are confirmed in three dimensional space as the viewer moves through the viewing positions. The HinesLab autostereoscopic technology is transparent to the user. The 3DTV display can be produced economically because it uses a single display panel and conventional optics. The primary advantage of this technique is its simplicity. CGI images are supplied to the monitor with a single video board. Three- dimensional television can be broadcast by a single unmodified television station (NTSC, PAL, SECAM, HDTV, etc.), and recorded and replayed in 3-D with a VCR. From 4 - 21 eye positions can be created, with a range of resolution and viewing angles, limited only by currently available liquid- crystal display technology.

  14. Displays in scintigraphy

    International Nuclear Information System (INIS)

    Todd-Pokropek, A.E.; Pizer, S.M.

    1977-01-01

    Displays have several functions: to transmit images, to permit interaction, to quantitate features and to provide records. The main characteristics of displays used for image transmission are their resolution, dynamic range, signal-to-noise ratio and uniformity. Considerations of visual acuity suggest that the display element size should be much less than the data element size, and in current practice at least 256X256 for a gamma camera image. The dynamic range for image transmission should be such that at least 64 levels of grey (or equivalent) are displayed. Scanner displays are also considered, and in particular, the requirements of a whole-body camera are examined. A number of display systems and devices are presented including a 'new' heated object colour display system. Interaction with displays is considered, including background subtraction, contrast enhancement, position indication and region-of-interest generation. Such systems lead to methods of quantitation, which imply knowledge of the expected distributions. Methods for intercomparing displays are considered. Polaroid displays, which have for so long dominated the field, are in the process of being replaced by stored image displays, now that large cheap memories exist which give an equivalent image quality. The impact of this in nuclear medicine is yet to be seen, but a major effect will be to enable true quantitation. (author)

  15. Display Parameters and Requirements

    Science.gov (United States)

    Bahadur, Birendra

    The following sections are included: * INTRODUCTION * HUMAN FACTORS * Anthropometry * Sensory * Cognitive * Discussions * THE HUMAN VISUAL SYSTEM - CAPABILITIES AND LIMITATIONS * Cornea * Pupil and Iris * Lens * Vitreous Humor * Retina * RODS - NIGHT VISION * CONES - DAY VISION * RODS AND CONES - TWILIGHT VISION * VISUAL PIGMENTS * MACULA * BLOOD * CHOROID COAT * Visual Signal Processing * Pathways to the Brain * Spatial Vision * Temporal Vision * Colour Vision * Colour Blindness * DICHROMATISM * Protanopia * Deuteranopia * Tritanopia * ANOMALOUS TRICHROMATISM * Protanomaly * Deuteranomaly * Tritanomaly * CONE MONOCHROMATISM * ROD MONOCHROMATISM * Using Colour Effectively * COLOUR MIXTURES AND THE CHROMATICITY DIAGRAM * Colour Matching Functions and Chromaticity Co-ordinates * CIE 1931 Colour Space * CIE PRIMARIES * CIE COLOUR MATCHING FUNCTIONS AND CHROMATICITY CO-ORDINATES * METHODS FOR DETERMINING TRISTIMULUS VALUES AND COLOUR CO-ORDINATES * Spectral Power Distribution Method * Filter Method * CIE 1931 CHROMATICITY DIAGRAM * ADDITIVE COLOUR MIXTURE * CIE 1976 Chromaticity Diagram * CIE Uniform Colour Spaces and Colour Difference Formulae * CIELUV OR L*u*v* * CIELAB OR L*a*b* * CIE COLOUR DIFFERENCE FORMULAE * Colour Temperature and CIE Standard Illuminants and source * RADIOMETRIC AND PHOTOMETRIC QUANTITIES * Photopic (Vλ and Scotopic (Vλ') Luminous Efficiency Function * Photometric and Radiometric Flux * Luminous and Radiant Intensities * Incidence: Illuminance and Irradiance * Exitance or Emittance (M) * Luminance and Radiance * ERGONOMIC REQUIREMENTS OF DISPLAYS * ELECTRO-OPTICAL PARAMETERS AND REQUIREMENTS * Contrast and Contrast Ratio * Luminance and Brightness * Colour Contrast and Chromaticity * Glare * Other Aspects of Legibility * SHAPE AND SIZE OF CHARACTERS * DEFECTS AND BLEMISHES * FLICKER AND DISTORTION * ANGLE OF VIEW * Switching Speed * Threshold and Threshold Characteristic * Measurement Techniques For Electro-optical Parameters * RADIOMETRIC

  16. Polymer Dispersed Liquid Crystal Displays

    Science.gov (United States)

    Doane, J. William

    The following sections are included: * INTRODUCTION AND HISTORICAL DEVELOPMENT * PDLC MATERIALS PREPARATION * Polymerization induced phase separation (PIPS) * Thermally induced phase separation (TIPS) * Solvent induced phase separation (SIPS) * Encapsulation (NCAP) * RESPONSE VOLTAGE * Dielectric and resistive effects * Radial configuration * Bipolar configuration * Other director configurations * RESPONSE TIME * DISPLAY CONTRAST * Light scattering and index matching * Incorporation of dyes * Contrast measurements * PDLC DISPLAY DEVICES AND INNOVATIONS * Reflective direct view displays * Large-scale, flexible displays * Switchable windows * Projection displays * High definition spatial light modulator * Haze-free PDLC shutters: wide angle view displays * ENVIRONMENTAL STABILITY * ACKNOWLEDGEMENTS * REFERENCES

  17. Investigating the usefulness of a cluster-based trend analysis to detect visual field progression in patients with open-angle glaucoma.

    Science.gov (United States)

    Aoki, Shuichiro; Murata, Hiroshi; Fujino, Yuri; Matsuura, Masato; Miki, Atsuya; Tanito, Masaki; Mizoue, Shiro; Mori, Kazuhiko; Suzuki, Katsuyoshi; Yamashita, Takehiro; Kashiwagi, Kenji; Hirasawa, Kazunori; Shoji, Nobuyuki; Asaoka, Ryo

    2017-12-01

    To investigate the usefulness of the Octopus (Haag-Streit) EyeSuite's cluster trend analysis in glaucoma. Ten visual fields (VFs) with the Humphrey Field Analyzer (Carl Zeiss Meditec), spanning 7.7 years on average were obtained from 728 eyes of 475 primary open angle glaucoma patients. Mean total deviation (mTD) trend analysis and EyeSuite's cluster trend analysis were performed on various series of VFs (from 1st to 10th: VF1-10 to 6th to 10th: VF6-10). The results of the cluster-based trend analysis, based on different lengths of VF series, were compared against mTD trend analysis. Cluster-based trend analysis and mTD trend analysis results were significantly associated in all clusters and with all lengths of VF series. Between 21.2% and 45.9% (depending on VF series length and location) of clusters were deemed to progress when the mTD trend analysis suggested no progression. On the other hand, 4.8% of eyes were observed to progress using the mTD trend analysis when cluster trend analysis suggested no progression in any two (or more) clusters. Whole field trend analysis can miss local VF progression. Cluster trend analysis appears as robust as mTD trend analysis and useful to assess both sectorial and whole field progression. Cluster-based trend analyses, in particular the definition of two or more progressing cluster, may help clinicians to detect glaucomatous progression in a timelier manner than using a whole field trend analysis, without significantly compromising specificity. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. More than the Verbal Stimulus Matters: Visual Attention in Language Assessment for People with Aphasia Using Multiple-Choice Image Displays

    Science.gov (United States)

    Heuer, Sabine; Ivanova, Maria V.; Hallowell, Brooke

    2017-01-01

    Purpose: Language comprehension in people with aphasia (PWA) is frequently evaluated using multiple-choice displays: PWA are asked to choose the image that best corresponds to the verbal stimulus in a display. When a nontarget image is selected, comprehension failure is assumed. However, stimulus-driven factors unrelated to linguistic…

  19. A comparison of the sensitivity of EQ-5D, SF-6D and TTO utility values to changes in vision and perceived visual function in patients with primary open-angle glaucoma

    Directory of Open Access Journals (Sweden)

    Bozzani Fiammetta Maria

    2012-08-01

    Full Text Available Abstract Background Economic viability of treatments for primary open-angle glaucoma (POAG should be assessed objectively to prioritise health care interventions. This study aims to identify the methods for eliciting utility values (UVs most sensitive to differences in visual field and visual functioning in patients with POAG. As a secondary objective, the dimensions of generic health-related and vision-related quality of life most affected by progressive vision loss will be identified. Methods A total of 132 POAG patients were recruited. Three sets of utility values (EuroQoL EQ-5D, Short Form SF-6D, Time Trade Off and a measure of perceived visual functioning from the National Eye Institute Visual Function Questionnaire (VFQ-25 were elicited during face-to-face interviews. The sensitivity of UVs to differences in the binocular visual field, visual acuity and visual functioning measures was analysed using non-parametric statistical methods. Results Median utilities were similar across Integrated Visual Field score quartiles for EQ-5D (P = 0.08 whereas SF-6D and Time-Trade-Off UVs significantly decreased (p = 0.01 and p = 0.001, respectively. The VFQ-25 score varied across Integrated Visual Field and binocular visual acuity groups and was associated with all three UVs (P ≤ 0.001; most of its vision-specific sub-scales were associated with the vision markers. The most affected dimension was driving. A relationship with vision markers was found for the physical component of SF-36 and not for any dimension of EQ-5D. Conclusions The Time-Trade-Off was more sensitive than EQ-5D and SF-6D to changes in vision and visual functioning associated with glaucoma progression but could not measure quality of life changes in the mildest disease stages.

  20. Projection displays

    Science.gov (United States)

    Chiu, George L.; Yang, Kei H.

    1998-08-01

    Projection display in today's market is dominated by cathode ray tubes (CRTs). Further progress in this mature CRT projector technology will be slow and evolutionary. Liquid crystal based projection displays have gained rapid acceptance in the business market. New technologies are being developed on several fronts: (1) active matrix built from polysilicon or single crystal silicon; (2) electro- optic materials using ferroelectric liquid crystal, polymer dispersed liquid crystals or other liquid crystal modes, (3) micromechanical-based transducers such as digital micromirror devices, and grating light valves, (4) high resolution displays to SXGA and beyond, and (5) high brightness. This article reviews the projection displays from a transducer technology perspective along with a discussion of markets and trends.

  1. 3D display system using monocular multiview displays

    Science.gov (United States)

    Sakamoto, Kunio; Saruta, Kazuki; Takeda, Kazutoki

    2002-05-01

    A 3D head mounted display (HMD) system is useful for constructing a virtual space. The authors have researched the virtual-reality systems connected with computer networks for real-time remote control and developed a low-priced real-time 3D display for building these systems. We developed a 3D HMD system using monocular multi-view displays. The 3D displaying technique of this monocular multi-view display is based on the concept of the super multi-view proposed by Kajiki at TAO (Telecommunications Advancement Organization of Japan) in 1996. Our 3D HMD has two monocular multi-view displays (used as a visual display unit) in order to display a picture to the left eye and the right eye. The left and right images are a pair of stereoscopic images for the left and right eyes, then stereoscopic 3D images are observed.

  2. Scoliosis angle

    International Nuclear Information System (INIS)

    Marklund, T.

    1978-01-01

    The most commonly used methods of assessing the scoliotic deviation measure angles that are not clearly defined in relation to the anatomy of the patient. In order to give an anatomic basis for such measurements it is proposed to define the scoliotic deviation as the deviation the vertebral column makes with the sagittal plane. Both the Cobb and the Ferguson angles may be based on this definition. The present methods of measurement are then attempts to measure these angles. If the plane of these angles is parallel to the film, the measurement will be correct. Errors in the measurements may be incurred by the projection. A hypothetical projection, called a 'rectified orthogonal projection', is presented, which correctly represents all scoliotic angles in accordance with these principles. It can be constructed in practice with the aid of a computer and by performing measurements on two projections of the vertebral column; a scoliotic curve can be represented independent of the kyphosis and lordosis. (Auth.)

  3. The Latest Earth and Space Data Visualizations Are Used to Engage Learners Around the World through Diverse Educational Platforms with NOAA's Publicly Available Catalogs from Science On a Sphere and NOAA View and State-of-the Art Display Technology

    Science.gov (United States)

    McDougall, C.; Peddicord, H.; Russell, E. L.; Hackathorn, E. J.; Pisut, D.; MacIntosh, E.

    2016-12-01

    NOAA's data visualization education and technology platforms, Science On a Sphere and NOAA View, are providing content for innovative and diverse educational platforms worldwide. Science On a Sphere (SOS) is a system composed of a large-scale spherical display and a curated data catalog. SOS displays are on exhibit in more than 140 locations in 26 countries and 29 US states that reach at least 35 million people every year. Additionally, the continuously updated data catalog, consisting of over 500 visualizations accompanied by descriptions, videos, and related content, is publicly available for download. This catalog is used by a wide variety of users including planetariums, other spherical displays, and teachers. To further broaden the impact of SOS, SOS Explorer, a flat screen version of SOS that can be used in schools and museums has over 100 of the SOS datasets and enables students and other users dig into the data in ways that aren't possible with SOS. Another resource from NOAA, NOAA View, is an easy-to-use portal to NOAA's vast data archives including historical datasets that go back to 1880 and models for ocean, atmosphere, land, cryosphere, climate and weather. NOAA View provides hundreds of data variables within a single interface, allowing the user to browse, interrogate, and download resources from NOAA's vast archives. And, through story maps, users can see how data can be used to understand our planet and improve our lives. Together, these provide invaluable resources to educators and technology pioneers. Both NOAA View and the SOS data catalog enable educators, students and communicators to easily ingest complex and often, stunning visualizations. The visualizations are available in formats that can be incorporated into a number of different display technologies to maximize their use. Although making the visualizations available to users is a technological hurdle, an equally large hurdle is making them understandable by viewers. In this presentation

  4. Comparative Analysis of Virtual 3-D Visual Display Systems Contributions to Cross-Functional Team Collaboration in a Product Design Review Environment

    Science.gov (United States)

    1998-01-01

    microchip. This technology researched by Texas Instruments is referred to as a Digital Micromirror Device (DMD) (Burdea & Coiffet, 1994). It has the...Digital Micromirror Device DOD Department of Defense FOV Field of View HDTV High-definition television HMD Head Mounted Display IR Infrared LAN

  5. Display hardware

    International Nuclear Information System (INIS)

    Myers, D.R.

    1983-01-01

    To appreciate the limitations and possibilities of computer graphics it is necessary to have some acquaintance with the available technology. The aim of this chapter is to mention briefly the different display types and their 'ball-park' price ranges. It must be stressed that prices change rapidly, and so those quoted here are only intended to give an idea of the cost at the time of writing.

  6. Comparing the Effect of Audio and Visual Notifications on Workspace Awareness using Head-Mounted Displays for Remote Collaboration in Augmented Reality

    NARCIS (Netherlands)

    Cidota, M.A.; Lukosch, S.G.; Datcu, D.; Lukosch, H.K.

    2016-01-01

    In many fields of activity, working in teams is necessary for completing tasks in a proper manner and often requires visual context-related information to be exchanged between team members. In such a collaborative environment, awareness of other people’s activity is an important feature of

  7. Visual Neurons in the Superior Colliculus Innervated by Islet2+ or Islet2− Retinal Ganglion Cells Display Distinct Tuning Properties

    Directory of Open Access Journals (Sweden)

    Rachel B. Kay

    2017-10-01

    Full Text Available Throughout the visual system, different subtypes of neurons are tuned to distinct aspects of the visual scene, establishing parallel circuits. Defining the mechanisms by which such tuning arises has been a long-standing challenge for neuroscience. To investigate this, we have focused on the retina’s projection to the superior colliculus (SC, where multiple visual neuron subtypes have been described. The SC receives inputs from a variety of retinal ganglion cell (RGC subtypes; however, which RGCs drive the tuning of different SC neurons remains unclear. Here, we pursued a genetic approach that allowed us to determine the tuning properties of neurons innervated by molecularly defined subpopulations of RGCs. In homozygous Islet2-EphA3 knock-in (Isl2EA3/EA3 mice, Isl2+ and Isl2− RGCs project to non-overlapping sub-regions of the SC. Based on molecular and anatomic data, we show that significantly more Isl2− RGCs are direction-selective (DS in comparison with Isl2+ RGCs. Targeted recordings of visual responses from each SC sub-region in Isl2EA3/EA3 mice revealed that Isl2− RGC-innervated neurons were significantly more DS than those innervated by Isl2+ RGCs. Axis-selective (AS neurons were found in both sub-regions, though AS neurons innervated by Isl2+ RGCs were more tightly tuned. Despite this segregation, DS and AS neurons innervated by Isl2+ or Isl2− RGCs did not differ in their spatial summation or spatial frequency (SF tuning. Further, we did not observe alterations in receptive field (RF size or structure of SC neurons innervated by Isl2+ or Isl2− RGCs. Together, these data show that innervation by Isl2+ and Isl2− RGCs results in distinct tuning in the SC and set the stage for future studies investigating the mechanisms by which these circuits are built.

  8. Digital Holography Display (2)

    Science.gov (United States)

    Lee, Cheok Peng; Asundi, A.; Yu, Yang; Xiao, Zhen Zhong

    This paper describes the extension work from the last Digital Holography Projector System. From the developed works shows that, some unforeseen factors have created the difficulties for the system alignment. Such factors are the DMD frame rate, light source and diffractive zero order. It is really the challenging development works to achieve the virtual 3D model display on the high speed rotation screen. The three most key factors are emphasizing: 1) The display device's frame rate; 2) The light source orientation angle; and 3) The zero order filtering optic. 1) This device's is the digital micro mirror, in short is DMD. It is the high speed switching device has developed by the most recent technology. The switching frame rate can go up as high as 291fps. At first, the 8 bits depth file must be digitalized and stored for DMD onboard Ram. The digitalized data are transmitting from the PC USB to DMD onboard Ram. Instead of the data are downloading directly from the PC to DVI or VGA during display, this downloading method cause slower down the display speed, which is the common frame rate of 30 Hz. Next, the onboard Ram data then transfer to the DMD mirror's for display, at the 8 bits 291 fps speed. At this frame rate, the display 2D image can almost cover for 10 of out of the 360 0 in 1 revolution. 2) This laser light source must be installed such that free for orientated in any arbitrary angle from 220 to 450. Which is normalized to the DMD mirrors and the brief sketch show on figure (a). The purpose of orientated the light source is ensure that multi diffractive order would be reflected straight from the mirrors. (This multi diffractive order is the phenomenon of the digital micro mirror's characteristic). This mean, the reconstruct images would be followed the DMD normalized direction reflected up to fibre conduit. Moreover, this orientated method install of the laser light source is making space for other optical lenses or device driver/controller. Because, all

  9. A comparison of the suitability of cathode ray tube (CRT) and liquid crystal display (LCD) monitors as visual stimulators in mfERG diagnostics.

    Science.gov (United States)

    Kaltwasser, Christoph; Horn, Folkert K; Kremers, Jan; Juenemann, Anselm

    2009-06-01

    The aim of this study was to determine up to which extent the specific characteristics of cathode ray tube (CRT) and liquid crystal display (LCD) monitors influence the retinal biosignal when used as stimulators in ocular electrophysiology. In a conventional CRT monitor, each pixel lights up only for a duration of a few milliseconds during each frame. In contrast, liquid crystal displays are quasi-static, i.e. each pixel has a constant luminance during the whole length of the frame, but lights up only with a certain delay after the trigger. These different display characteristics may affect the mfERG signal. The temporal and spatial luminance distributions of a CRT and an LCD monitor were measured in white flashes. The total amount of emitted light was calculated by integration of the intensity versus time curves. By means of an mfERG recording system (RETIsystem, Roland Consult, Brandenburg, Germany) first-order kernel (FOK) mfERG signals were computed and then analysed using customized MATLAB (TheMathWorks, Natick, MA, USA) software. With the two stimulator monitors, differences in the mfERG signal were observed. The latencies of mfERG responses recorded with the LCD monitor were significantly increased by 7.1 ms for N1 and 9.5 ms for P1 compared to the CRT. Due to a higher luminance, the N1 amplitude was significantly higher by approx. 2 dB in measurements with the LCD monitor while no significant difference could be detected with regard to the more contrast sensitive P1 amplitude. When using LCD monitors as stimulators the increase in latencies and differences in the luminance versus time profile must be taken into account. Prior to clinical application, the establishment of guidelines for the use of LCD monitors is recommended.

  10. Augmenting digital displays with computation

    Science.gov (United States)

    Liu, Jing

    As we inevitably step deeper and deeper into a world connected via the Internet, more and more information will be exchanged digitally. Displays are the interface between digital information and each individual. Naturally, one fundamental goal of displays is to reproduce information as realistically as possible since humans still care a lot about what happens in the real world. Human eyes are the receiving end of such information exchange; therefore it is impossible to study displays without studying the human visual system. In fact, the design of displays is rather closely coupled with what human eyes are capable of perceiving. For example, we are less interested in building displays that emit light in the invisible spectrum. This dissertation explores how we can augment displays with computation, which takes both display hardware and the human visual system into consideration. Four novel projects on display technologies are included in this dissertation: First, we propose a software-based approach to driving multiview autostereoscopic displays. Our display algorithm can dynamically assign views to hardware display zones based on multiple observers' current head positions, substantially reducing crosstalk and stereo inversion. Second, we present a dense projector array that creates a seamless 3D viewing experience for multiple viewers. We smoothly interpolate the set of viewer heights and distances on a per-vertex basis across the arrays field of view, reducing image distortion, crosstalk, and artifacts from tracking errors. Third, we propose a method for high dynamic range display calibration that takes into account the variation of the chrominance error over luminance. We propose a data structure for enabling efficient representation and querying of the calibration function, which also allows user-guided balancing between memory consumption and the amount of computation. Fourth, we present user studies that demonstrate that the ˜ 60 Hz critical flicker fusion

  11. Interactive visibility retargeting in VR using conformal visualization.

    Science.gov (United States)

    Petkov, Kaloian; Papadopoulos, Charilaos; Zhang, Min; Kaufman, Arie E; Gu, Xianfeng David

    2012-07-01

    In Virtual Reality, immersive systems such as the CAVE provide an important tool for the collaborative exploration of large 3D data. Unlike head-mounted displays, these systems are often only partially immersive due to space, access, or cost constraints. The resulting loss of visual information becomes a major obstacle for critical tasks that need to utilize the users' entire field of vision. We have developed a conformal visualization technique that establishes a conformal mapping between the full 360° field of view and the display geometry of a given visualization system. The mapping is provably angle-preserving and has the desirable property of preserving shapes locally, which is important for identifying shape-based features in the visual data. We apply the conformal visualization to both forward and backward rendering pipelines in a variety of retargeting scenarios, including CAVEs and angled arrangements of flat panel displays. In contrast to image-based retargeting approaches, our technique constructs accurate stereoscopic images that are free of resampling artifacts. Our user study shows that on the visual polyp detection task in Immersive Virtual Colonoscopy, conformal visualization leads to improved sensitivity at comparable examination times against the traditional rendering approach. We also develop a novel user interface based on the interactive recreation of the conformal mapping and the real-time regeneration of the view direction correspondence.

  12. Interactive displays in medical art

    Science.gov (United States)

    Mcconathy, Deirdre Alla; Doyle, Michael

    1989-01-01

    Medical illustration is a field of visual communication with a long history. Traditional medical illustrations are static, 2-D, printed images; highly realistic depictions of the gross morphology of anatomical structures. Today medicine requires the visualization of structures and processes that have never before been seen. Complex 3-D spatial relationships require interpretation from 2-D diagnostic imagery. Pictures that move in real time have become clinical and research tools for physicians. Medical illustrators are involved with the development of interactive visual displays for three different, but not discrete, functions: as educational materials, as clinical and research tools, and as data bases of standard imagery used to produce visuals. The production of interactive displays in the medical arts is examined.

  13. Flatbed-type 3D display systems using integral imaging method

    Science.gov (United States)

    Hirayama, Yuzo; Nagatani, Hiroyuki; Saishu, Tatsuo; Fukushima, Rieko; Taira, Kazuki

    2006-10-01

    We have developed prototypes of flatbed-type autostereoscopic display systems using one-dimensional integral imaging method. The integral imaging system reproduces light beams similar of those produced by a real object. Our display architecture is suitable for flatbed configurations because it has a large margin for viewing distance and angle and has continuous motion parallax. We have applied our technology to 15.4-inch displays. We realized horizontal resolution of 480 with 12 parallaxes due to adoption of mosaic pixel arrangement of the display panel. It allows viewers to see high quality autostereoscopic images. Viewing the display from angle allows the viewer to experience 3-D images that stand out several centimeters from the surface of the display. Mixed reality of virtual 3-D objects and real objects are also realized on a flatbed display. In seeking reproduction of natural 3-D images on the flatbed display, we developed proprietary software. The fast playback of the CG movie contents and real-time interaction are realized with the aid of a graphics card. Realization of the safety 3-D images to the human beings is very important. Therefore, we have measured the effects on the visual function and evaluated the biological effects. For example, the accommodation and convergence were measured at the same time. The various biological effects are also measured before and after the task of watching 3-D images. We have found that our displays show better results than those to a conventional stereoscopic display. The new technology opens up new areas of application for 3-D displays, including arcade games, e-learning, simulations of buildings and landscapes, and even 3-D menus in restaurants.

  14. Nuclear Medicine Image Display. Chapter 14

    International Nuclear Information System (INIS)

    Bergmann, H.

    2014-01-01

    The final step in a medical imaging procedure is to display the image(s) on a suitable display system where it is presented to the medical specialist for diagnostic interpretation. The display of hard copy images on X ray film or photographic film has largely been replaced today by soft copy image display systems with cathode ray tube (CRT) or liquid crystal display (LCD) monitors as the image rendering device. Soft copy display requires a high quality display monitor and a certain amount of image processing to optimize the image both with respect to the properties of the display device and to some psychophysiological properties of the human visual system. A soft copy display system, therefore, consists of a display workstation providing some basic image processing functions and the display monitor as the intrinsic display device. Display devices of lower quality may be used during intermediate steps of the acquisition and analysis of a patient study. Display monitors with a quality suitable for diagnostic reading by the specialist medical doctor are called primary devices, also known as diagnostic devices. Monitors with lower quality but good enough to be used for positioning, processing of studies, presentation of images in the wards, etc. are referred to as secondary devices or clinical devices. Nuclear medicine images can be adequately displayed even for diagnostic purposes on secondary devices. However, the increasing use of X ray images on which to report jointly with images from nuclear medicine studies, such as those generated by dual modality imaging, notably by positron emission tomography (PET)/computed tomography (CT) and single photon emission computed tomography (SPECT)/CT, requires display devices capable of visualizing high resolution grey scale images at diagnostic quality, i.e. primary display devices. Both grey scale and colour display devices are used, the latter playing an important role in the display of processed nuclear medicine images and

  15. Circular displays: control/display arrangements and stereotype strength with eight different display locations.

    Science.gov (United States)

    Chan, Alan H S; Hoffmann, Errol R

    2015-01-01

    Two experiments are reported that were designed to investigate control/display arrangements having high stereotype strengths when using circular displays. Eight display locations relative to the operator and control were tested with rotational and translational controls situated on different planes according to the Frame of Reference Transformation Tool (FORT) model of Wickens et al. (2010). (Left. No, Right! Development of the Frame of Reference Transformation Tool (FORT), Proceedings of the Human Factors and Ergonomics Society 54th Annual Meeting, 54: 1022-1026). In many cases, there was little effect of display locations, indicating the importance of the Worringham and Beringer (1998. Directional stimulus-response compatibility: a test of three alternative principles. Ergonomics, 41(6), 864-880) Visual Field principle and an extension of this principle for rotary controls (Hoffmann and Chan (2013). The Worringham and Beringer 'visual field' principle for rotary controls. Ergonomics, 56(10), 1620-1624). The initial indicator position (12, 3, 6 and 9 o'clock) had a major effect on control/display stereotype strength for many of the six controls tested. Best display/control arrangements are listed for each of the different control types (rotational and translational) and for the planes on which they are mounted. Data have application where a circular display is used due to limited display panel space and applies to space-craft, robotics operators, hospital equipment and home appliances. Practitioner Summary: Circular displays are often used when there is limited space available on a control panel. Display/control arrangements having high stereotype strength are listed for four initial indicator positions. These arrangements are best for design purposes.

  16. Immersive Visualization of the Solid Earth

    Science.gov (United States)

    Kreylos, O.; Kellogg, L. H.

    2017-12-01

    Immersive visualization using virtual reality (VR) display technology offers unique benefits for the visual analysis of complex three-dimensional data such as tomographic images of the mantle and higher-dimensional data such as computational geodynamics models of mantle convection or even planetary dynamos. Unlike "traditional" visualization, which has to project 3D scalar data or vectors onto a 2D screen for display, VR can display 3D data in a pseudo-holographic (head-tracked stereoscopic) form, and does therefore not suffer the distortions of relative positions, sizes, distances, and angles that are inherent in 2D projection and interfere with interpretation. As a result, researchers can apply their spatial reasoning skills to 3D data in the same way they can to real objects or environments, as well as to complex objects like vector fields. 3D Visualizer is an application to visualize 3D volumetric data, such as results from mantle convection simulations or seismic tomography reconstructions, using VR display technology and a strong focus on interactive exploration. Unlike other visualization software, 3D Visualizer does not present static visualizations, such as a set of cross-sections at pre-selected positions and orientations, but instead lets users ask questions of their data, for example by dragging a cross-section through the data's domain with their hands and seeing data mapped onto that cross-section in real time, or by touching a point inside the data domain, and immediately seeing an isosurface connecting all points having the same data value as the touched point. Combined with tools allowing 3D measurements of positions, distances, and angles, and with annotation tools that allow free-hand sketching directly in 3D data space, the outcome of using 3D Visualizer is not primarily a set of pictures, but derived data to be used for subsequent analysis. 3D Visualizer works best in virtual reality, either in high-end facility-scale environments such as CAVEs

  17. Drag and drop display & builder

    Energy Technology Data Exchange (ETDEWEB)

    Bolshakov, Timofei B.; Petrov, Andrey D.; /Fermilab

    2007-12-01

    The Drag and Drop (DnD) Display & Builder is a component-oriented system that allows users to create visual representations of data received from data acquisition systems. It is an upgrade of a Synoptic Display mechanism used at Fermilab since 2002. Components can be graphically arranged and logically interconnected in the web-startable Project Builder. Projects can be either lightweight AJAX- and SVG-based web pages, or they can be started as Java applications. The new version was initiated as a response to discussions between the LHC Controls Group and Fermilab.

  18. Repercusión del trabajo con pantallas de visualización de datos en la salud de los obreros Impact of visual display in computer use on the occupational health

    Directory of Open Access Journals (Sweden)

    Lourdes M. Moreno Pérez

    2007-12-01

    Full Text Available Las pantallas de visualización de datos son unidades periféricas de salida que permiten la visualización de la información, el personal humano las utiliza de diferentes maneras. Con el objetivo de determinar existencia de alteraciones de salud se realizó un estudio a 52 operadores de pantallas que laboran de forma continua con estos equipos. Se encontró que la mayor incidencia de trastornos referidos por los obreros fueron los oculares (48,07 %; la cefalea (con 25 %, y la ansiedad (19,23 %. Se investigó, además, las condiciones ergonómicas de sus centros laborales, y se detectaron deficiencias en 100 % de los obreros estudiados; el exceso de ruido fue la condición más negativa reportada.Computer displays are peripheral output units that allow visualizing data and the human resources use them in different ways. With the objective of finding out health problems related to this issue, 52 computer operators, who work permanently with these pieces of equipment, were studied. It was found that the greates incidental problems were occular disorders (48.07 %, headache (25 % and anxiety (19.23 %. Besides, the ergonomic conditons in their workplaces were also studied and the results showed deficiencies in 100 % of them. Excessive noise was the most negative reported condition.

  19. Head Mounted Display with a Roof Mirror Array Fold

    Science.gov (United States)

    Olczak, Eugene (Inventor)

    2014-01-01

    The present invention includes a head mounted display (HMD) worn by a user. The HMD includes a display projecting an image through an optical lens. The HMD also includes a one-dimensional retro reflective array receiving the image through the optical lens at a first angle with respect to the display and deflecting the image at a second angle different than the first angle with respect to the display. The one-dimensional retro reflective array reflects the image in order to project the image onto an eye of the user.

  20. Study on the visibility of an electroluminescent display for automobiles; Jidoshayo EL display no shininsei

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, N.; Harada, M.; Idogaki, T. [Denso Corp., Aichi (Japan)

    1997-10-01

    This report explores the visibility of an Electroluminescent (EL) display for automotive use. Displays for automobiles are exposed to the direct rays of the sun and forced to operate in wide temperature range. Therefore, luminous flux density by the lighting on EL display panel and operating environment temperature must be considered for the visibility evaluation. Sensory evaluation on the visibility and physical measurements such as contrast, chromaticity difference in accordance with the viewing angle change indicate that the visibility of the EL display for automobiles is advantageous over other displays. 6 refs., 11 figs., 1 tab.

  1. Game engines and immersive displays

    Science.gov (United States)

    Chang, Benjamin; Destefano, Marc

    2014-02-01

    While virtual reality and digital games share many core technologies, the programming environments, toolkits, and workflows for developing games and VR environments are often distinct. VR toolkits designed for applications in visualization and simulation often have a different feature set or design philosophy than game engines, while popular game engines often lack support for VR hardware. Extending a game engine to support systems such as the CAVE gives developers a unified development environment and the ability to easily port projects, but involves challenges beyond just adding stereo 3D visuals. In this paper we outline the issues involved in adapting a game engine for use with an immersive display system including stereoscopy, tracking, and clustering, and present example implementation details using Unity3D. We discuss application development and workflow approaches including camera management, rendering synchronization, GUI design, and issues specific to Unity3D, and present examples of projects created for a multi-wall, clustered, stereoscopic display.

  2. Pilot Preferences on Displayed Aircraft Control Variables

    Science.gov (United States)

    Trujillo, Anna C.; Gregory, Irene M.

    2013-01-01

    The experiments described here explored how pilots want available maneuver authority information transmitted and how this information affects pilots before and after an aircraft failure. The aircraft dynamic variables relative to flight performance were narrowed to energy management variables. A survey was conducted to determine what these variables should be. Survey results indicated that bank angle, vertical velocity, and airspeed were the preferred variables. Based on this, two displays were designed to inform the pilot of available maneuver envelope expressed as bank angle, vertical velocity, and airspeed. These displays were used in an experiment involving control surface failures. Results indicate the displayed limitations in bank angle, vertical velocity, and airspeed were helpful to the pilots during aircraft surface failures. However, the additional information did lead to a slight increase in workload, a small decrease in perceived aircraft flying qualities, and no effect on aircraft situation awareness.

  3. GridOrbit public display

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Tabard, Aurélien; Bardram, Jakob

    2010-01-01

    We introduce GridOrbit, a public awareness display that visualizes the activity of a community grid used in a biology laboratory. This community grid executes bioin-formatics algorithms and relies on users to donate CPU cycles to the grid. The goal of GridOrbit is to create a shared awareness about...... people comment on projects. Our work explores the usage of interactive technologies as enablers for the appropriation of an otherwise invisible infrastructure....

  4. Sizing up visualizations

    DEFF Research Database (Denmark)

    Jakobsen, Mikkel Rønne; Hornbæk, Kasper

    2011-01-01

    Whereas the literature is clear on the benefits of large displays and visualizations, little is known about their combination, that is, how display size affect the usability of visualizations. We describe a controlled experiment where 19 participants used focus+context, overview+detail, and zoomi...

  5. Expert system controlled image display

    International Nuclear Information System (INIS)

    Swett, H.A.; Fisher, P.; Mutalik, P.

    1988-01-01

    Conventional medical expert systems deliver advice as text (a diagnosis, list, recommendation, or discussion). This may be quite useful in some areas of medical decision making but has distinct limitations in such a visually oriented discipline as diagnostic imaging, where decisions often depend on pattern recognition and the appreciation of subtle morphologic features. We are developing an expert system that displays groups of images as part of its intelligent output. This system uses a rule-based strategy to select images for display. They may be displayed because they share a common feature, cluster of features, or clinical history. Such a system may be useful as a diagnostic aid or for continuing medical education. It is likely to have particular value in the setting of picture archiving and communication systems

  6. Laser-driven polyplanar optic display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.; Biscardi, C.; Brewster, C.; DeSanto, L. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology; Beiser, L. [Leo Beiser Inc., Flushing, NY (United States)

    1998-01-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte-black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 200 milliwatt green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, the authors discuss the DLP chip, the optomechanical design and viewing angle characteristics.

  7. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen

    2005-01-01

    for an integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  8. Visualization of hyperspectral imagery

    NARCIS (Netherlands)

    Hogervorst, M.A.; Bijl, P.; Toet, A.

    2007-01-01

    We developed four new techniques to visualize hyper spectral image data for man-in-the-loop target detection. The methods respectively: (1) display the subsequent bands as a movie (“movie”), (2) map the data onto three channels and display these as a colour image (“colour”), (3) display the

  9. Display device-adapted video quality-of-experience assessment

    Science.gov (United States)

    Rehman, Abdul; Zeng, Kai; Wang, Zhou

    2015-03-01

    Today's viewers consume video content from a variety of connected devices, including smart phones, tablets, notebooks, TVs, and PCs. This imposes significant challenges for managing video traffic efficiently to ensure an acceptable quality-of-experience (QoE) for the end users as the perceptual quality of video content strongly depends on the properties of the display device and the viewing conditions. State-of-the-art full-reference objective video quality assessment algorithms do not take into account the combined impact of display device properties, viewing conditions, and video resolution while performing video quality assessment. We performed a subjective study in order to understand the impact of aforementioned factors on perceptual video QoE. We also propose a full reference video QoE measure, named SSIMplus, that provides real-time prediction of the perceptual quality of a video based on human visual system behaviors, video content characteristics (such as spatial and temporal complexity, and video resolution), display device properties (such as screen size, resolution, and brightness), and viewing conditions (such as viewing distance and angle). Experimental results have shown that the proposed algorithm outperforms state-of-the-art video quality measures in terms of accuracy and speed.

  10. Assessment of OLED displays for vision research

    Science.gov (United States)

    Cooper, Emily A.; Jiang, Haomiao; Vildavski, Vladimir; Farrell, Joyce E.; Norcia, Anthony M.

    2013-01-01

    Vision researchers rely on visual display technology for the presentation of stimuli to human and nonhuman observers. Verifying that the desired and displayed visual patterns match along dimensions such as luminance, spectrum, and spatial and temporal frequency is an essential part of developing controlled experiments. With cathode-ray tubes (CRTs) becoming virtually unavailable on the commercial market, it is useful to determine the characteristics of newly available displays based on organic light emitting diode (OLED) panels to determine how well they may serve to produce visual stimuli. This report describes a series of measurements summarizing the properties of images displayed on two commercially available OLED displays: the Sony Trimaster EL BVM-F250 and PVM-2541. The results show that the OLED displays have large contrast ratios, wide color gamuts, and precise, well-behaved temporal responses. Correct adjustment of the settings on both models produced luminance nonlinearities that were well predicted by a power function (“gamma correction”). Both displays have adjustable pixel independence and can be set to have little to no spatial pixel interactions. OLED displays appear to be a suitable, or even preferable, option for many vision research applications. PMID:24155345

  11. LHCb Event display

    CERN Document Server

    Trisovic, Ana

    2014-01-01

    The LHCb Event Display was made for educational purposes at the European Organization for Nuclear Research, CERN in Geneva, Switzerland. The project was implemented as a stand-alone application using C++ and ROOT, a framework developed by CERN for data analysis. This paper outlines the development and architecture of the application in detail, as well as the motivation for the development and the goals of the exercise. The application focuses on the visualization of events recorded by the LHCb detector, where an event represents a set of charged particle tracks in one proton-proton collision. Every particle track is coloured by its type and can be selected to see its essential information such as mass and momentum. The application allows students to save this information and calculate the invariant mass for any pair of particles. Furthermore, the students can use additional calculating tools in the application and build up a histogram of these invariant masses. The goal for the students is to find a $D^0$ par...

  12. Rapid Discoloration of Aged Beef Muscles after Short-Term/Extreme Temperature Abuse during Retail Display.

    Science.gov (United States)

    Kim, Hyun-Wook; Setyabrata, Derico; Choi, Yun-Sang; Kim, Yuan H Brad

    2016-01-01

    The objective of this study was to evaluate the effects of a short-term/extreme temperature abuse (STA) on color characteristics and oxidative stability of aged beef muscles during simulated retail display. Two beef muscles (longissimus lumborum, LL and semitendinosus, ST) were aged for 7 (A7), 14 (A14), 21 (A21), and 28 d (A28), and further displayed at 2℃ for 7 d. The STA was induced by placing steak samples at 20℃ for 1 h on the 4th d of display. Instrumental and visual color evaluations, ferric ion reducing capacity (FRC) and 2-thiobarbituric acid reactive substances (TBARS) assay were performed. Initially, redness, yellowness and hue angle of all beef muscles were similar, regardless of aging time before display (p>0.05). An increase in postmortem aging time increased lipid oxidation and caused a rapid discoloration after STA during display (pretail display. Thus, developing a specific post-harvest strategy to control quality attributes in retail levels for different muscle types and aging conditions would be required.

  13. Handbook of display technology

    CERN Document Server

    Castellano, Joseph A

    1992-01-01

    This book presents a comprehensive review of technical and commercial aspects of display technology. It provides design engineers with the information needed to select proper technology for new products. The book focuses on flat, thin displays such as light-emitting diodes, plasma display panels, and liquid crystal displays, but it also includes material on cathode ray tubes. Displays include a large number of products from televisions, auto dashboards, radios, and household appliances, to gasoline pumps, heart monitors, microwave ovens, and more.For more information on display tech

  14. Correlação e correspondência topográfica entre espessura da camada de fibras nervosas da retina e campo visual no glaucoma primário de ângulo aberto Correlation and topographic match between nerve fiber layer thickness and visual field in primary open angle glaucoma

    Directory of Open Access Journals (Sweden)

    Paula Boturão de Almeida

    2001-04-01

    classificados como discretos: SF e SN. Nos olhos classificados como moderados: SF e SI. Nos olhos classificados como graves: MD e SN; MD e EM; MD e S; CPSD e EM. 4- DN t e TD t; DN s e TD ni; DN i e TD ns. 5- Encontramos correspondência positiva (+ em 36 olhos (51,43% dos casos e correspondência negativa (- em 34 olhos (48,57% dos casos. Conclusões: Concluiu-se que houve poucas correlações significantes entre esses dois exames, e que as existentes foram muito fracas. Conclui-se, também, que houve correspondência topográfica, na análise dos setores mais comprometidos, em 51,43% dos casos.Purpose: To determine the relationship between nerve fiber layer thickness detected by scanning laser polarimetry (GDx and visual field function measured by automated conventional white-on-white perimetry. Methods: 82 eyes of 48 open angle glaucoma patients were studied. The following correlations were inves-tigated: 1- Correlation between mean sensitivity of 4 quadrants plus the fixation point, in dBs, and the mean of the nerve fiber layer thickness of the correspondent retina, in micra. 2- Correlation between mean sensitivity of 4 quadrants plus the fixation point, in dBs, and the mean of the nerve fiber layer thickness of the correspondent retina, in micra, in the patients classified according to the amount of visual field loss. 3- Correlation between the global indices of visual field and the numeric indices of GDx. 4- Correlation between the mean of "total deviation" of visual field and the "deviation from normal" of GDx. 5- Topographic match between visual field and retinal nerve fiber layer thickness changes. Statistical analysis was performed using the Spearmann coeficient correlation test. Results: We observed a very poor correlation regarding: 1- total GDx and VF total; superior GDx and nasal inferior VF; inferior GDx and nasal superior VF; nasal GDx and temporal VF; superior GDx and inferior VF; inferior GDx and superior VF. 2- inferior GDx and nasal superior VF (severe eyes

  15. Virtual environment display for a 3D audio room simulation

    Science.gov (United States)

    Chapin, William L.; Foster, Scott

    1992-06-01

    Recent developments in virtual 3D audio and synthetic aural environments have produced a complex acoustical room simulation. The acoustical simulation models a room with walls, ceiling, and floor of selected sound reflecting/absorbing characteristics and unlimited independent localizable sound sources. This non-visual acoustic simulation, implemented with 4 audio ConvolvotronsTM by Crystal River Engineering and coupled to the listener with a Poihemus IsotrakTM, tracking the listener's head position and orientation, and stereo headphones returning binaural sound, is quite compelling to most listeners with eyes closed. This immersive effect should be reinforced when properly integrated into a full, multi-sensory virtual environment presentation. This paper discusses the design of an interactive, visual virtual environment, complementing the acoustic model and specified to: 1) allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; 2) reinforce the listener's feeling of telepresence into the acoustical environment with visual and proprioceptive sensations; 3) enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and 4) serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations. The installed system implements a head-coupled, wide-angle, stereo-optic tracker/viewer and multi-computer simulation control. The portable demonstration system implements a head-mounted wide-angle, stereo-optic display, separate head and pointer electro-magnetic position trackers, a heterogeneous parallel graphics processing system, and object oriented C++ program code.

  16. RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS

    Energy Technology Data Exchange (ETDEWEB)

    McClintock, B. H. [University of Southern Queensland, Toowoomba, 4350 (Australia); Norton, A. A. [HEPL, Stanford University, Palo Alto, CA 94305 (United States); Li, J., E-mail: u1049686@umail.usq.edu.au, E-mail: aanorton@stanford.edu, E-mail: jli@igpp.ucla.edu [Department of Earth, Planetary, and Space Sciences, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2014-12-20

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude of umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators.

  17. RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS

    International Nuclear Information System (INIS)

    McClintock, B. H.; Norton, A. A.; Li, J.

    2014-01-01

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude of umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators

  18. High-immersion three-dimensional display of the numerical computer model

    Science.gov (United States)

    Xing, Shujun; Yu, Xunbo; Zhao, Tianqi; Cai, Yuanfa; Chen, Duo; Chen, Zhidong; Sang, Xinzhu

    2013-08-01

    High-immersion three-dimensional (3D) displays making them valuable tools for many applications, such as designing and constructing desired building houses, industrial architecture design, aeronautics, scientific research, entertainment, media advertisement, military areas and so on. However, most technologies provide 3D display in the front of screens which are in parallel with the walls, and the sense of immersion is decreased. To get the right multi-view stereo ground image, cameras' photosensitive surface should be parallax to the public focus plane and the cameras' optical axes should be offset to the center of public focus plane both atvertical direction and horizontal direction. It is very common to use virtual cameras, which is an ideal pinhole camera to display 3D model in computer system. We can use virtual cameras to simulate the shooting method of multi-view ground based stereo image. Here, two virtual shooting methods for ground based high-immersion 3D display are presented. The position of virtual camera is determined by the people's eye position in the real world. When the observer stand in the circumcircle of 3D ground display, offset perspective projection virtual cameras is used. If the observer stands out the circumcircle of 3D ground display, offset perspective projection virtual cameras and the orthogonal projection virtual cameras are adopted. In this paper, we mainly discussed the parameter setting of virtual cameras. The Near Clip Plane parameter setting is the main point in the first method, while the rotation angle of virtual cameras is the main point in the second method. In order to validate the results, we use the D3D and OpenGL to render scenes of different viewpoints and generate a stereoscopic image. A realistic visualization system for 3D models is constructed and demonstrated for viewing horizontally, which provides high-immersion 3D visualization. The displayed 3D scenes are compared with the real objects in the real world.

  19. Car Gestures - Advisory warning using additional steering wheel angles.

    Science.gov (United States)

    Maag, Christian; Schneider, Norbert; Lübbeke, Thomas; Weisswange, Thomas H; Goerick, Christian

    2015-10-01

    Advisory warning systems (AWS) notify the driver about upcoming hazards. This is in contrast to the majority of currently deployed advanced driver assistance systems (ADAS) that manage emergency situations. The target of this study is to investigate the effectiveness, acceptance, and controllability of a specific kind of AWS that uses the haptic information channel for warning the driver. This could be beneficial, as alternatives for using the visual modality can help to reduce the risk of visual overload. The driving simulator study (N=24) compared an AWS based on additional steering wheel angle control (Car Gestures) with a visual warning presented in a simulated head-up display (HUD). Both types of warning were activated 3.5s before the hazard object was reached. An additional condition of unassisted driving completed the experimental design. The subjects encountered potential hazards in a variety of urban situations (e.g. a pedestrian standing on the curbs). For the investigated situations, subjective ratings show that a majority of drivers prefer visual warnings over haptic information via gestures. An analysis of driving behavior indicates that both warning approaches guide the vehicle away from the potential hazard. Whereas gestures lead to a faster lateral driving reaction (compared to HUD warnings), the visual warnings result in a greater safety benefit (measured by the minimum distance to the hazard object). A controllability study with gestures in the wrong direction (i.e. leading toward the hazard object) shows that drivers are able to cope with wrong haptic warnings and safety is not reduced compared to unassisted driving as well as compared to (correct) haptic gestures and visual warnings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix

    2014-06-22

    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  1. Information Visualization

    OpenAIRE

    Díaz Baños, Carlos José; Andreasson, Erik

    2012-01-01

    Reasoning graphs are one of many ways to visualize information. It is very hard to understand certain type of information when it is presented in text or in tables with a huge amount of numbers. It is easier to present it graphically. People can have a general idea of the information and if it is necessary to see the details, it is possible to have a way to add more information to the graphical display. A graphical visualization is able to compress the information, which represented in text c...

  2. White constancy method for mobile displays

    Science.gov (United States)

    Yum, Ji Young; Park, Hyun Hee; Jang, Seul Ki; Lee, Jae Hyang; Kim, Jong Ho; Yi, Ji Young; Lee, Min Woo

    2014-03-01

    In these days, consumer's needs for image quality of mobile devices are increasing as smartphone is widely used. For example, colors may be perceived differently when displayed contents under different illuminants. Displayed white in incandescent lamp is perceived as bluish, while same content in LED light is perceived as yellowish. When changed in perceived white under illuminant environment, image quality would be degraded. Objective of the proposed white constancy method is restricted to maintain consistent output colors regardless of the illuminants utilized. Human visual experiments are performed to analyze viewers'perceptual constancy. Participants are asked to choose the displayed white in a variety of illuminants. Relationship between the illuminants and the selected colors with white are modeled by mapping function based on the results of human visual experiments. White constancy values for image control are determined on the predesigned functions. Experimental results indicate that propsed method yields better image quality by keeping the display white.

  3. Cytoplasmic bacteriophage display system

    Science.gov (United States)

    Studier, F. William; Rosenberg, Alan H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest.

  4. Processing Decoded Video for LCD-LED Backlight Display

    DEFF Research Database (Denmark)

    Nadernejad, Ehsan

    The quality of digital images and video signal on visual media such as TV screens and LCD displays is affected by two main factors; the display technology and compression standards. Accurate knowledge about the characteristics of display and the video signal can be utilized to develop advanced...

  5. Reflective Cholesteric Liquid Crystal Displays.

    Science.gov (United States)

    Lu, Zhijian

    Reflective cholesteric displays have two states at zero field, a Bragg reflecting planar texture and a weakly scattering focal conic texture. The performance of such a display depends on the stability and optical property of these textures. In this dissertation, various surface alignment layers are studied in order to optimize display performance and to understand physical and optical properties. Results show that non-homogeneous alignment layers fracture the planar texture and produce a multidomain structure as well as stabilize the focal conic texture. In the multidomain structure, the orientations of helical axes are distributed about the normal of the display cell, resulting in a wide viewing angle. The reflecting properties of the multidomain planar texture are quantitatively modeled using Berreman's 4 x 4 formalism. A gaussian type function adequately describe the helical axis orientation distribution. When the alignment condition is varied from tangential to homeotropic, the orientation of the helical axes becomes more broadly distributed. Reflective displays with high contrast ratios and wide viewing angles are achieved by using tilted or homeotropic alignment layers. The switching mechanism between the two stable textures of the reflective displays is of great importance not only for designing drive scheme but also for understanding the fundamental dynamics of the texture transitions. Planar texture can be transformed into focal conic texture directly by applying a relatively low field. The transition from focal conic to planar texture can only be realized by first switching the cholesteric liquid crystals into the homeotropic texture and then allowing the homeotropic texture to relax to the planar texture. In the relaxation, a transient planar texture with pitch, {K_{33 }over K_{22}}P_ {o} is observed by using optical reflection measurement. The transition time from the homeotropic texture to the transient planar texture is on the order of 1 ms and is

  6. Large High Resolution Displays for Co-Located Collaborative Sensemaking: Display Usage and Territoriality

    Energy Technology Data Exchange (ETDEWEB)

    Bradel, Lauren; Endert, Alexander; Koch, Kristen; Andrews, Christopher; North, Chris

    2013-08-01

    Large, high-resolution vertical displays carry the potential to increase the accuracy of collaborative sensemaking, given correctly designed visual analytics tools. From an exploratory user study using a fictional textual intelligence analysis task, we investigated how users interact with the display to construct spatial schemas and externalize information, as well as how they establish shared and private territories. We investigated the space management strategies of users partitioned by type of tool philosophy followed (visualization- or text-centric). We classified the types of territorial behavior exhibited in terms of how the users interacted with information on the display (integrated or independent workspaces). Next, we examined how territorial behavior impacted the common ground between the pairs of users. Finally, we offer design suggestions for building future co-located collaborative visual analytics tools specifically for use on large, high-resolution vertical displays.

  7. Immersive Visual Data Analysis For Geoscience Using Commodity VR Hardware

    Science.gov (United States)

    Kreylos, O.; Kellogg, L. H.

    2017-12-01

    Immersive visualization using virtual reality (VR) display technology offers tremendous benefits for the visual analysis of complex three-dimensional data like those commonly obtained from geophysical and geological observations and models. Unlike "traditional" visualization, which has to project 3D data onto a 2D screen for display, VR can side-step this projection and display 3D data directly, in a pseudo-holographic (head-tracked stereoscopic) form, and does therefore not suffer the distortions of relative positions, sizes, distances, and angles that are inherent in 2D projection. As a result, researchers can apply their spatial reasoning skills to virtual data in the same way they can to real objects or environments. The UC Davis W.M. Keck Center for Active Visualization in the Earth Sciences (KeckCAVES, http://keckcaves.org) has been developing VR methods for data analysis since 2005, but the high cost of VR displays has been preventing large-scale deployment and adoption of KeckCAVES technology. The recent emergence of high-quality commodity VR, spearheaded by the Oculus Rift and HTC Vive, has fundamentally changed the field. With KeckCAVES' foundational VR operating system, Vrui, now running natively on the HTC Vive, all KeckCAVES visualization software, including 3D Visualizer, LiDAR Viewer, Crusta, Nanotech Construction Kit, and ProtoShop, are now available to small labs, single researchers, and even home users. LiDAR Viewer and Crusta have been used for rapid response to geologic events including earthquakes and landslides, to visualize the impacts of sealevel rise, to investigate reconstructed paleooceanographic masses, and for exploration of the surface of Mars. The Nanotech Construction Kit is being used to explore the phases of carbon in Earth's deep interior, while ProtoShop can be used to construct and investigate protein structures.

  8. Effect of display location on control-display stereotype strength for translational and rotational controls with linear displays.

    Science.gov (United States)

    Chan, Alan H S; Hoffmann, Errol R

    2015-01-01

    Experiments were designed to investigate the effects of control type and display location, relative to the operator, on the strength of control/display stereotypes. The Worringham and Beringer Visual Field principle and an extension of this principle for rotary controls (Hoffmann E.R., and Chan A.H.S. 2013). "The Worringham and Beringer 'Visual Field' Principle for Rotary Controls. Ergonomics." 56 (10): 1620-1624) indicated that, for a number of different control types (rotary and lever) on different planes, there should be no significant effect of the display location relative to the seated operator. Past data were surveyed and stereotype strengths listed. Experiments filled gaps where data are not available. Six different control types and seven display locations were used, as in the Frame of Reference Transformation Tool (FORT) model of Wickens et al. (Wickens, C.D., Keller, J.W., and Small, R.L. (2010). "Left. No, Right! Development of the Frame of Reference Transformation Tool (FORT)." Proceedings of the Human Factors and Ergonomics Society 54th Annual Meeting September 2010, 54: 1022-1026). Control/display arrangements with high stereotype strengths were evaluated yielding data for designers of complex control/display arrangements where the control and display are in different planes and for where the operator is moving. It was found possible to predict display/control arrangements with high stereotype strength, based on past data. Practitioner Summary: Controls and displays in complex arrangements need to have high compatibility. These experiments provide arrangements for six different controls (rotary and translational) and seven different display locations relative to the operator.

  9. Conceptual design of industrial process displays.

    Science.gov (United States)

    Pedersen, C R; Lind, M

    1999-11-01

    Today, process displays used in industry are often designed on the basis of piping and instrumentation diagrams without any method of ensuring that the needs of the operators are fulfilled. Therefore, a method for a systematic approach to the design of process displays is needed. This paper discusses aspects of process display design taking into account both the designer's and the operator's points of view. Three aspects are emphasized: the operator tasks, the display content and the display form. The distinction between these three aspects is the basis for proposing an outline for a display design method that matches the industrial practice of modular plant design and satisfies the needs of reusability of display design solutions. The main considerations in display design in the industry are to specify the operator's activities in detail, to extract the information the operators need from the plant design specification and documentation, and finally to present this information. The form of the display is selected from existing standardized display elements such as trend curves, mimic diagrams, ecological interfaces, etc. Further knowledge is required to invent new display elements. That is, knowledge about basic visual means of presenting information and how humans perceive and interpret these means and combinations. This knowledge is required in the systematic selection of graphical items for a given display content. The industrial part of the method is first illustrated in the paper by a simple example from a plant with batch processes. Later the method is applied to develop a supervisory display for a condenser system in a nuclear power plant. The differences between the continuous plant domain of power production and the batch processes from the example are analysed and broad categories of display types are proposed. The problems involved in specification and invention of a supervisory display are analysed and conclusions from these problems are made. It is

  10. Tactile displays for navigation and orientation : perception and behaviour

    NARCIS (Netherlands)

    Erp, J.B.F. van

    2007-01-01

    Perceiving and understanding information of, for example, a visual navigation display may be difficult for people with a visual challenge or in situations where the user's visual sense and cognitive resources are heavily loaded. Developing information presentation schemes that reduce the threat of

  11. OLED displays and lighting

    CERN Document Server

    Koden, Mitsuhiro

    2017-01-01

    Organic light-emitting diodes (OLEDs) have emerged as the leading technology for the new display and lighting market. OLEDs are solid-state devices composed of thin films of organic molecules that create light with the application of electricity. OLEDs can provide brighter, crisper displays on electronic devices and use less power than conventional light-emitting diodes (LEDs) or liquid crystal displays (LCDs) used today. This book covers both the fundamentals and practical applications of flat and flexible OLEDs.

  12. Scalable Resolution Display Walls

    KAUST Repository

    Leigh, Jason

    2013-01-01

    This article will describe the progress since 2000 on research and development in 2-D and 3-D scalable resolution display walls that are built from tiling individual lower resolution flat panel displays. The article will describe approaches and trends in display hardware construction, middleware architecture, and user-interaction design. The article will also highlight examples of use cases and the benefits the technology has brought to their respective disciplines. © 1963-2012 IEEE.

  13. An Icon-Based Synoptic Visualization of Fully Polarimetric Radar Data

    Directory of Open Access Journals (Sweden)

    Iain H. Woodhouse

    2012-03-01

    Full Text Available The visualization of fully polarimetric radar data is hindered by traditional remote sensing methodologies for displaying data due to the large number of parameters per pixel in such data, and the non-scalar nature of variables such as phase difference. In this paper, a new method is described that uses icons instead of image pixels to represent the image data so that polarimetric properties and geographic context can be visualized together. The icons are parameterized using the alpha-entropy decomposition of polarimetric data. The resulting image allows the following five variables to be displayed simultaneously: unpolarized power, alpha angle, polarimetric entropy, anisotropy and orientation angle. Examples are given for both airborne and laboratory-based imaging.

  14. JAVA Stereo Display Toolkit

    Science.gov (United States)

    Edmonds, Karina

    2008-01-01

    This toolkit provides a common interface for displaying graphical user interface (GUI) components in stereo using either specialized stereo display hardware (e.g., liquid crystal shutter or polarized glasses) or anaglyph display (red/blue glasses) on standard workstation displays. An application using this toolkit will work without modification in either environment, allowing stereo software to reach a wider audience without sacrificing high-quality display on dedicated hardware. The toolkit is written in Java for use with the Swing GUI Toolkit and has cross-platform compatibility. It hooks into the graphics system, allowing any standard Swing component to be displayed in stereo. It uses the OpenGL graphics library to control the stereo hardware and to perform the rendering. It also supports anaglyph and special stereo hardware using the same API (application-program interface), and has the ability to simulate color stereo in anaglyph mode by combining the red band of the left image with the green/blue bands of the right image. This is a low-level toolkit that accomplishes simply the display of components (including the JadeDisplay image display component). It does not include higher-level functions such as disparity adjustment, 3D cursor, or overlays all of which can be built using this toolkit.

  15. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  16. Visual Image Sensor Organ Replacement

    Science.gov (United States)

    Maluf, David A.

    2014-01-01

    This innovation is a system that augments human vision through a technique called "Sensing Super-position" using a Visual Instrument Sensory Organ Replacement (VISOR) device. The VISOR device translates visual and other sensors (i.e., thermal) into sounds to enable very difficult sensing tasks. Three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. Because the human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns, the translation of images into sounds reduces the risk of accidentally filtering out important clues. The VISOR device was developed to augment the current state-of-the-art head-mounted (helmet) display systems. It provides the ability to sense beyond the human visible light range, to increase human sensing resolution, to use wider angle visual perception, and to improve the ability to sense distances. It also allows compensation for movement by the human or changes in the scene being viewed.

  17. Polyplanar optical display electronics

    Science.gov (United States)

    DeSanto, Leonard; Biscardi, Cyrus

    1997-07-01

    The polyplanar optical display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid- state laser at 532 nm as its light source. To produce real- time video, the laser light is being modulated by a digital light processing (DLP) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the digital micromirror device (DMD) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD chip is operated remotely from the Texas Instruments circuit board. We discuss the operation of the DMD divorced from the light engine and the interfacing of the DMD board with various video formats including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.

  18. Polyplanar optical display electronics

    Energy Technology Data Exchange (ETDEWEB)

    DeSanto, L.; Biscardi, C. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology

    1997-07-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD{trademark} chip is operated remotely from the Texas Instruments circuit board. The authors discuss the operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with various video formats (CVBS, Y/C or S-video and RGB) including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.

  19. Count on It: Congruent Manipulative Displays

    Science.gov (United States)

    Morin, Joe; Samelson, Vicki M.

    2015-01-01

    Representations that create informative visual displays are powerful tools for communicating mathematical concepts. The National Council of Teachers of Mathematics encourages the use of manipulatives (NCTM 2000). Manipulative materials are often used to present initial representations of basic numerical principles to young children, and it is…

  20. The effects of LCD anisotropy on the visual performance of users of different ages.

    Science.gov (United States)

    Oetjen, Sophie; Ziefle, Martina

    2007-08-01

    The present study examined the visual discrimination speed and accuracy while using an LCD and a CRT display. LCDs have ergonomic advantages, but their main disadvantage is that they provide inconsistent photometric measures depending on the viewing angle (anisotropy). Independent variables were screen type (LCD and CRT), viewing angle (0 degrees, 11 degrees, 41 degrees, 50 degrees, and 56 degrees) and user's age (teenagers, young adults, and middle-aged adults). Dependent variables were speed and accuracy in a visual discrimination task and user's ratings. The results corroborated the negative impact of LCD anisotropy. Visual discrimination times were by 7.6% slower when an LCD was used instead of a CRT. Performance differences increased with increasing viewing angle for both screens, but performance decrements were larger for the LCD. Young adults showed the best visual performance, as compared with teenagers and middle-aged adults. Effects of anisotropy were found for all age groups, although the performance of middle-aged adults was affected more when extended viewing angles were adopted. LCD anisotropy is a limiting factor for visual performance, especially in work settings where fast and accurate reactions are necessary. The outcomes of this research allow ergonomic guidelines for electronic reading.

  1. The effect of beam angle in abrasive-waterjet machining

    International Nuclear Information System (INIS)

    Hashish, M.

    1989-01-01

    In the machining of materials, abrasive-waterjets are typically applied at a 90-degree angle to the surface of the workpiece. This paper presents results and observations on machining with abrasive-waterjets at angles other than 90 degrees. Previous visualization studies of the cutting process in transparent materials has shown that there are optimal angles for maximum depth of cut and kerf depth uniformity. Here, observations on the effect of angle in machining applications, such as turning, milling. linear cutting, and drilling, are addressed. The effects of variations in both the impact angle and the rake angle are investigated. Results indicate that the volume removal rate is significantly affected by these angles and that surface finish can be improved by angling the jet. However, shallow angle drilling of small holes in laminated or ceramic-coated materials requires further investigation

  2. Virtual workstation - A multimodal, stereoscopic display environment

    Science.gov (United States)

    Fisher, S. S.; McGreevy, M.; Humphries, J.; Robinett, W.

    1987-01-01

    A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed for use in a multipurpose interface environment. The system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, application scenarios, and research directions are described.

  3. Microlaser-based displays

    Science.gov (United States)

    Bergstedt, Robert; Fink, Charles G.; Flint, Graham W.; Hargis, David E.; Peppler, Philipp W.

    1997-07-01

    Laser Power Corporation has developed a new type of projection display, based upon microlaser technology and a novel scan architecture, which provides the foundation for bright, extremely high resolution images. A review of projection technologies is presented along with the limitations of each and the difficulties they experience in trying to generate high resolution imagery. The design of the microlaser based projector is discussed along with the advantage of this technology. High power red, green, and blue microlasers have been designed and developed specifically for use in projection displays. These sources, in combination with high resolution, high contrast modulator, produce a 24 bit color gamut, capable of supporting the full range of real world colors. The new scan architecture, which reduces the modulation rate and scan speeds required, is described. This scan architecture, along with the inherent brightness of the laser provides the fundamentals necessary to produce a 5120 by 4096 resolution display. The brightness and color uniformity of the display is excellent, allowing for tiling of the displays with far fewer artifacts than those in a traditionally tiled display. Applications for the display include simulators, command and control centers, and electronic cinema.

  4. Research advances on multifocal electroretinogram in primary open angle glaucoma

    Directory of Open Access Journals (Sweden)

    Feng-Fei Mo

    2013-10-01

    Full Text Available Primary open angle glaucoma is a chronic and progressive optic neuropathy. It can lead to serious damage of visual impairment, and it is an important eye disease of blindness. Multifocal electroretinogram is a new way to measure visual electrophysiology. It can measure electroretinogram of the whole visual field of many small parts in a relatively short period of time, and it can reflect the function of regional retina. It has an extremely important value for early diagnosis of primary open angle glaucoma. The research advances on multifocal electroretinogram in diagnosing primary open angle glaucoma were summarized in this paper.

  5. Small - Display Cartography

    DEFF Research Database (Denmark)

    Nissen, Flemming; Hvas, Anders; Münster-Swendsen, Jørgen

    This report comprises the work carried out in the work-package of small display cartography. The work-package has aimed at creating a general framework for the small-display cartography. A solid framework facilitates an increased use of spatial data in mobile devices - thus enabling, together...... Service Communication and finally, Part IV: Concluding remarks and topics for further research on small-display cartography. Part II includes a separate Appendix D consisting of a cartographic design specification. Part III includes a separate Appendix C consisting of a schema specification, a separate...

  6. Methods and apparatus for transparent display using scattering nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin

    2017-06-14

    Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.

  7. Exploring Shop Window Displays

    Science.gov (United States)

    Christopoulou, Martha

    2011-01-01

    Using visual resources from everyday life in art lessons can enrich students' knowledge about the creation of visual images, artifacts, and sites, and develop their critical understanding about the cultural impact of these images and their effects on people's lives. Through examining an exhibition in the windows of Selfridges department store in…

  8. Gamma camera display system

    International Nuclear Information System (INIS)

    Stout, K.J.

    1976-01-01

    A gamma camera having an array of photomultipliers coupled via pulse shaping circuitry and a resistor weighting circuit to a display for forming an image of a radioactive subject is described. A linearizing circuit is coupled to the weighting circuit, the linearizing circuit including a nonlinear feedback circuit with diode coupling to the weighting circuit for linearizing the correspondence between points of the display and points of the subject. 4 Claims, 5 Drawing Figures

  9. Small - Display Cartography

    OpenAIRE

    Nissen, Flemming; Hvas, Anders; Münster-Swendsen, Jørgen; Brodersen, Lars

    2003-01-01

    This report comprises the work carried out in the work-package of small display cartography. The work-package has aimed at creating a general framework for the small-display cartography. A solid framework facilitates an increased use of spatial data in mobile devices - thus enabling, together with the rapidly evolving positioning techniques, a new category of position-dependent, map-based services to be introduced. The report consists of the following parts: Part I: Categorization of handheld...

  10. Flexible displays, rigid designs?

    DEFF Research Database (Denmark)

    Hornbæk, Kasper

    2015-01-01

    Rapid technological progress has enabled a wide range of flexible displays for computing devices, but the user experience--which we're only beginning to understand--will be the key driver for successful designs.......Rapid technological progress has enabled a wide range of flexible displays for computing devices, but the user experience--which we're only beginning to understand--will be the key driver for successful designs....

  11. The HBN Angle

    Directory of Open Access Journals (Sweden)

    Harsh Bhagvatiprasad Dave

    2015-01-01

    Full Text Available Aim: The purpose of this study was to establish a new cephalometric measurement, named the Harsh Bhagvatiprasad Nita angle (HBN, to assess the sagittal jaw relationship with accuracy and reproducibility. Materials and Methods: Three hundred pretreatment lateral cephalograms (100 each of Class I, II, and III were taken from the Department of Orthodontics and Dentofacial Orthopedics of Rajasthan Dental College and Hospital, Jaipur (Rajasthan and were subdivided into skeletal Class I, II, and III based on ANB, Wits appraisal, and Beta angle. This angle uses 3 skeletal landmarks the "C" (apparent axis of the condyle, "M" (midpoint of the premaxilla, and "G" (center of the largest circle that is tangent to the internal inferior, anterior, and posterior surfaces of the mandibular symphysis. Results: The result of the mean and standard deviation for the HBN angle were calculated in all three skeletal groups. After using one-way analysis of variance and post-hoc multiple comparisons by using Tukey′s honestly significant difference, homogeneous subsets, receiver operating characteristics (ROC curve - to differentiate Class II with Class I, ROC curve - to differentiate Class III with Class I, Reliability analysis with interclass correlation of HBN angle with other angles, we obtained results that showed that a patient with a HBN angle 40° and 46° can be considered to have a Class I skeletal pattern. Conclusions: A new angle, the HBN angle, was developed as a diagnostic aid to evaluate the sagittal jaw relationship more consistently. HBN angle 40° and 46° can be considered to have a Class I skeletal pattern, a more acute HBN angle indicates a Class II skeletal pattern, and a more obtuse HBN angle indicates a Class III skeletal pattern.

  12. Information rich display design

    International Nuclear Information System (INIS)

    Welch, Robin; Braseth, Alf Ove; Veland, Oeystein

    2004-01-01

    This paper presents the concept Information Rich Displays. The purpose of Information Rich Displays (IRDs) is to condensate prevailing information in process displays in such a way that each display format (picture) contains more relevant information for the user. Compared to traditional process control displays, this new concept allows the operator to attain key information at a glance and at the same time allows for improved monitoring of larger portions of the process. This again allows for reduced navigation between both process and trend displays and ease the cognitive demand on the operator. This concept has been created while working on designing display prototypes for the offshore petroleum production facilities of tomorrow. Offshore installations basically consist of wells, separation trains (where oil, gas and water are separated from each other), an oil tax measurement system (where oil quality is measured and the pressure increased to allow for export), gas compression (compression of gas for export) and utility systems (water treatment, chemical systems etc.). This means that an offshore control room operator has to deal with a complex process that comprises several functionally different systems. The need for a new approach to offshore display format design is in particular based on shortcomings in today's designs related to the keyhole effect, where the display format only reveals a fraction of the whole process. Furthermore, the upcoming introduction of larger off- and on-shore operation centres will increase the size and complexity of the operators' work domain. In the light of the increased demands on the operator, the proposed IRDs aim to counter the negative effects this may have on the workload. In this work we have attempted to classify the wide range of different roles an operator can have in different situations. The information content and amount being presented to the operator in a display should be viewed in context of the roles the

  13. How Does Abundant Display Space Support Data Analysis?

    DEFF Research Database (Denmark)

    Knudsen, Søren

    This thesis explores information visualizations on large, high-resolution touch displays for analysis of massive amounts of data. The ever increasing rate at which data is collected about everything from peoples’ health, over organisations expenditures, to scientific experiments, necessitates new...... data analysis techniques. Information visualizations on large, high-resolution touch displays is a promising answer to these needs, and provide abundant display space for people to make sense of data. However, little is known about how to tailor interactive visualizations to abundant display space...... or about the benefits they might bring. The present thesis draws on the fields of human-computer interaction (HCI) and information visualization (InfoVis) to answer these questions....

  14. A new type of multiview display

    Science.gov (United States)

    Jurk, Silvio; Kuhlmey, Mathias; de la Barré, René

    2015-03-01

    The common architecture of multi-view autostereoscopic displays assigns a nominal viewing distance. The design affects the convergence of the visible rays at a nominal viewing distance where diamond shaped viewing zones are created. In contrast to this approach, the authors present a new design strategy departing from the geometric relations of common 3D display designs. They show that a beam emitted from a sub-pixel should be rendered with an individual camera direction determined by an algorithm. This algorithm also uses, besides the parameters of the display design, the desired viewing distance and the allowed increments of the camera angle. This enables very flexible designs of autostereoscopic displays. The main difference from the common multiview display is that its design approach enables a continued viewing zone without the usually diamond shaped sweet spots. The algorithm for controlling the rendering and the multiplexing is generic, as well as for integral and multiview design approaches using an image splitter raster. The paper introduces it for autostereoscopic displays with horizontal parallax.

  15. Dichroic Liquid Crystal Displays

    Science.gov (United States)

    Bahadur, Birendra

    The following sections are included: * INTRODUCTION * DICHROIC DYES * Chemical Structure * Chemical and Photochemical Stability * THEORETICAL MODELLING * DEFECTS CAUSED BY PROLONGED LIGHT IRRADIATION * CHEMICAL STRUCTURE AND PHOTOSTABILITY * OTHER PARAMETERS AFFECTING PHOTOSTABILITY * CELL PREPARATION * DICHROIC PARAMETERS AND THEIR MEASUREMENTS * Order Parameter and Dichroic Ratio Of Dyes * Absorbance, Order Parameter and Dichroic Ratio Measurements * IMPACT OF DYE STRUCTURE AND LIQUID CRYSTAL HOST ON PHYSICAL PROPERTIES OF A DICHROIC MIXTURE * Order Parameter and Dichroic Ratio * EFFECT OF LENGTH OF DICHROIC DYES ON THE ORDER PARAMETER * EFFECT OF THE BREADTH OF DYE ON THE ORDER PARAMETER * EFFECT OF THE HOST ON THE ORDER PARAMETER * TEMPERATURE VARIATION OF THE ORDER PARAMETER OF DYES IN A LIQUID CRYSTAL HOST * IMPACT OF DYE CONCENTRATION ON THE ORDER PARAMETER * Temperature Range * Viscosity * Dielectric Constant and Anisotropy * Refractive Indices and Birefringence * solubility43,153-156 * Absorption Wavelength and Auxochromic Groups * Molecular Engineering of Dichroic Dyes * OPTICAL, ELECTRO-OPTICAL AND LIFE PARAMETERS * Colour And CIE Colour space120,160-166 * CIE 1931 COLOUR SPACE * CIE 1976 CHROMATICITY DIAGRAM * CIE UNIFORM COLOUR SPACES & COLOUR DIFFERENCE FORMULAE120,160-166 * Electro-Optical Parameters120 * LUMINANCE * CONTRAST AND CONTRAST RATIO * SWITCHING SPEED * Life Parameters and Failure Modes * DICHROIC MIXTURE FORMULATION * Monochrome Mixture * Black Mixture * ACHROMATIC BLACK MIXTURE FOR HEILMEIER DISPLAYS * Effect of Illuminant on Display Colour * Colour of the Field-On State * Effect of Dye Linewidth * Optimum Centroid Wavelengths * Effect of Dye Concentration * Mixture Formulation Using More Than Three Dyes * ACHROMATIC MIXTURE FOR WHITE-TAYLOR TYPE DISPLAYS * HEILMEIER DISPLAYS * Theoretical Modelling * Threshold Characteristic * Effects of Dye Concentration on Electro-optical Parameters * Effect of Cholesteric Doping * Effect of Alignment

  16. Reading Angles in Maps

    Science.gov (United States)

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…

  17. Optimal reconstruction angles

    International Nuclear Information System (INIS)

    Cook, G.O. Jr.; Knight, L.

    1979-07-01

    The question of optimal projection angles has recently become of interest in the field of reconstruction from projections. Here, studies are concentrated on the n x n pixel space, where literative algorithms such as ART and direct matrix techniques due to Katz are considered. The best angles are determined in a Gauss--Markov statistical sense as well as with respect to a function-theoretical error bound. The possibility of making photon intensity a function of angle is also examined. Finally, the best angles to use in an ART-like algorithm are studied. A certain set of unequally spaced angles was found to be preferred in several contexts. 15 figures, 6 tables

  18. System Would Generate Virtual Heads-Up Display

    Science.gov (United States)

    Lambert, James L.

    1994-01-01

    Proposed helmet-mounted electronic display system superimposes full-color alphanumerical and/or graphical information onto observer's visual field. Displayed information projected directly onto observer's retinas, giving observer illusion of full-size computer display in foreground or background. Display stereoscopic, holographic, or in form of virtual image. Used by pilots to view navigational information while looking outside or at instruments, by security officers to view information about critical facilities while looking at visitors, or possibly even stock-exchange facilities to view desktop monitors and overhead displays simultaneously. System includes acousto-optical tunable filter (AOTF), which acts as both spectral filter and spatial light modulator.

  19. Stereo Painting Display Devices

    Science.gov (United States)

    Shafer, David

    1982-06-01

    The Spanish Surrealist artist Salvador Dali has recently perfected the art of producing two paintings which are stereo pairs. Each painting is separately quite remarkable, presenting a subject with the vivid realism and clarity for which Dali is famous. Due to the surrealistic themes of Dali's art, however, the subjects preser.ted with such naturalism only exist in his imagination. Despite this considerable obstacle to producing stereo art, Dali has managed to paint stereo pairs that display subtle differences of coloring and lighting, in addition to the essential perspective differences. These stereo paintings require a display method that will allow the viewer to experience stereo fusion, but which will not degrade the high quality of the art work. This paper gives a review of several display methods that seem promising in terms of economy, size, adjustability, and image quality.

  20. Paediatric dose display

    International Nuclear Information System (INIS)

    Griffin, D.W.; Derges, S.; Hesslewood, S.

    1984-01-01

    A compact, inexpensive unit, based on an 8085 microprocessor, has been designed for calculating doses of intravenous radioactive injections for children. It has been used successfully for over a year. The dose is calculated from the body surface area and the result displayed in MBq. The operator can obtain the required dose on a twelve character alphanumeric display by entering the age of the patient and the adult dose using a hexadecimal keyboard. Circuit description, memory map and input/output, and firmware are dealt with. (U.K.)

  1. Integration of Visual, Vestibular and Somatosensory Information for the Perception of Gravitational Vertical and Forward Self-Motion

    Directory of Open Access Journals (Sweden)

    Yuji Kasahara

    2011-10-01

    Full Text Available We investigated how human perceives forward self-motion from the information produced by the vestibular, somatosensory and visual systems. In the experiments, we manipulated vestibular and somatosensory information by changing the direction of the subject's body. The subject sat in a drum which was tilted about the pitch axis of the subject. We also manipulated the visual information by presenting optic flow of dots on the display in front of the subject. In Exp.1, the pitch of subject was fixed at a certain angle for each trial. In Exp.2, the pitch angle was changed temporally, and the acceleration of the optic flow was synchronized with the angle to simulate the flow produced by the forward self-motion of the acceleration. During the trials, the subject continuously responded the gravitational vertical. In the condition of fixed pitch angle (Exp.1, subjects' responses of the gravitational vertical almost corresponded to the real direction and were not affected by the visual stimulus. In the condition of changing pitch angle (Exp.2, the responses were close to the direction of their foot. These results suggest that, the temporal correspondence between vestibular, somatosensory and visual information is important for the perception of forward self-motion.

  2. Navigating on handheld displays: Dynamic versus Static Keyhole Navigation

    NARCIS (Netherlands)

    Mehra, S.; Werkhoven, P.; Worring, M.

    2006-01-01

    Handheld displays leave little space for the visualization and navigation of spatial layouts representing rich information spaces. The most common navigation method for handheld displays is static peephole navigation: The peephole is static and we move the spatial layout behind it (scrolling). A

  3. Evaluation of tablet computers for visual function assessment.

    Science.gov (United States)

    Bodduluri, Lakshmi; Boon, Mei Ying; Dain, Stephen J

    2017-04-01

    Recent advances in technology and the increased use of tablet computers for mobile health applications such as vision testing necessitate an understanding of the behavior of the displays of such devices, to facilitate the reproduction of existing or the development of new vision assessment tests. The purpose of this study was to investigate the physical characteristics of one model of tablet computer (iPad mini Retina display) with regard to display consistency across a set of devices (15) and their potential application as clinical vision assessment tools. Once the tablet computer was switched on, it required about 13 min to reach luminance stability, while chromaticity remained constant. The luminance output of the device remained stable until a battery level of 5%. Luminance varied from center to peripheral locations of the display and with viewing angle, whereas the chromaticity did not vary. A minimal (1%) variation in luminance was observed due to temperature, and once again chromaticity remained constant. Also, these devices showed good temporal stability of luminance and chromaticity. All 15 tablet computers showed gamma functions approximating the standard gamma (2.20) and showed similar color gamut sizes, except for the blue primary, which displayed minimal variations. The physical characteristics across the 15 devices were similar and are known, thereby facilitating the use of this model of tablet computer as visual stimulus displays.

  4. Transparent 3D display for augmented reality

    Science.gov (United States)

    Lee, Byoungho; Hong, Jisoo

    2012-11-01

    Two types of transparent three-dimensional display systems applicable for the augmented reality are demonstrated. One of them is a head-mounted-display-type implementation which utilizes the principle of the system adopting the concave floating lens to the virtual mode integral imaging. Such configuration has an advantage in that the threedimensional image can be displayed at sufficiently far distance resolving the accommodation conflict with the real world scene. Incorporating the convex half mirror, which shows a partial transparency, instead of the concave floating lens, makes it possible to implement the transparent three-dimensional display system. The other type is the projection-type implementation, which is more appropriate for the general use than the head-mounted-display-type implementation. Its imaging principle is based on the well-known reflection-type integral imaging. We realize the feature of transparent display by imposing the partial transparency to the array of concave mirror which is used for the screen of reflection-type integral imaging. Two types of configurations, relying on incoherent and coherent light sources, are both possible. For the incoherent configuration, we introduce the concave half mirror array, whereas the coherent one adopts the holographic optical element which replicates the functionality of the lenslet array. Though the projection-type implementation is beneficial than the head-mounted-display in principle, the present status of the technical advance of the spatial light modulator still does not provide the satisfactory visual quality of the displayed three-dimensional image. Hence we expect that the head-mounted-display-type and projection-type implementations will come up in the market in sequence.

  5. Drivers license display system

    Science.gov (United States)

    Prokoski, Francine J.

    1997-01-01

    Carjackings are only one of a growing class of law enforcement problems associated with increasingly violent crimes and accidents involving automobiles plays weapons, drugs and alcohol. Police traffic stops have become increasingly dangerous, with an officer having no information about a vehicle's potentially armed driver until approaching him. There are 15 million alcoholics in the US and 90 percent of them have drivers licenses. Many of them continue driving even after their licenses have ben revoked or suspended. There are thousands of unlicensed truck drivers in the country, and also thousands who routinely exceed safe operating periods without rest; often using drugs in an attempt to stay alert. MIKOS has developed the Drivers License Display Systems to reduce these and other related risks. Although every state requires the continuous display of vehicle registration information on every vehicle using public roads, no state yet requires the display of driver license information. The technology exists to provide that feature as an add-on to current vehicles for nominal cost. An initial voluntary market is expected to include: municipal, rental, and high value vehicles which are most likely to be mis-appropriated. It is anticipated that state regulations will eventually require such systems in the future, beginning with commercial vehicles, and then extending to high risk drivers and eventually all vehicles. The MIKOS system offers a dual-display approach which can be deployed now, and which will utilize all existing state licenses without requiring standardization.

  6. ATV: Image display tool

    Science.gov (United States)

    Barth, Aaron J.; Schlegel, David; Finkbeiner, Doug; Colley, Wesley; Liu, Mike; Brauher, Jim; Cunningham, Nathaniel; Perrin, Marshall; Roe, Henry; Weaver, Hal

    2014-05-01

    ATV displays and analyses astronomical images using the IDL image-processing language. It allows interactive control of the image scaling, color table, color stretch, and zoom, with support for world coordinate systems. It also does point-and-click aperture photometry, simple spectral extractions, and can produce publication-quality postscript output images.

  7. Updateable 3D Display Using Large Area Photorefractive Polymer Devices

    Science.gov (United States)

    2013-04-01

    holography , photorefractive polymers, 3D display, large area displays, 3D visualization, 3D rendering, dye-doped polymers U U U SAR 38 Charles Lee (703) 696...to improve our refreshable holographic 3D display technology by enlarging the screen size (up to 1ft x 1 ft), being able to record full parallax... Technology , vol. 6, No: 7, (2010). Presentations  Brittany Lynn et al., “Recent advancements in photorefractive holographic imaging” 9th International

  8. Photoelectric angle converter

    Science.gov (United States)

    Podzharenko, Volodymyr A.; Kulakov, Pavlo I.

    2001-06-01

    The photo-electric angle transmitter of rotation is offered, at which the output voltage is linear function of entering magnitude. In a transmitter the linear phototransducer is used on the basis of pair photo diode -- operating amplifier, which output voltage is linear function of the area of an illuminated photosensitive stratum, and modulator of a light stream of the special shape, which ensures a linear dependence of this area from an angle of rotation. The transmitter has good frequent properties and can be used for dynamic measurements of an angular velocity and angle of rotation, in systems of exact drives and systems of autocontrol.

  9. Computerized method of visual acuity testing: adaptation of the amblyopia treatment study visual acuity testing protocol.

    Science.gov (United States)

    Moke, P S; Turpin, A H; Beck, R W; Holmes, J M; Repka, M X; Birch, E E; Hertle, R W; Kraker, R T; Miller, J M; Johnson, C A

    2001-12-01

    To report a computerized method for determining visual acuity in children using the Amblyopia Treatment Study visual acuity testing protocol. A computerized visual acuity tester was developed that uses a programmed handheld device that uses the Palm operating system (Palm, Inc, Santa Clara, California). The handheld device communicates with a personal computer running a Linux operating system and 17-inch monitor. At a test distance of 3 m, single letters can be displayed from 20/800 to 20/12. A C program on the handheld device runs the Amblyopia Treatment Study visual acuity testing protocol. Using this method, visual acuity was tested in both the right and left eyes, and then the testing was repeated in 156 children age 3 to 7 years at four clinical sites. Test-retest reliability was high (r =.92 and 0.95 for and right and left eyes, respectively), with 88% of right eye retests and 94% of left eye retests within 0.1 logarithm of minimal angle of resolution (logMAR) units of the initial test. The 95% confidence interval for an acuity score was calculated to be the score +/- 0.13 logMAR units. For a change between two acuity scores, the 95% confidence interval was the difference +/- 0.19 logMAR units. We have developed a computerized method for measurement of visual acuity. Automation of the Amblyopia Treatment Study visual acuity testing protocol is an effective method of testing visual acuity in children 3 to 7 years of age.

  10. Differential effects of visual feedback on subjective visual vertical accuracy and precision.

    Directory of Open Access Journals (Sweden)

    Daniel Bjasch

    Full Text Available The brain constructs an internal estimate of the gravitational vertical by integrating multiple sensory signals. In darkness, systematic head-roll dependent errors in verticality estimates, as measured by the subjective visual vertical (SVV, occur. We hypothesized that visual feedback after each trial results in increased accuracy, as physiological adjustment errors (A-/E-effect are likely based on central computational mechanisms and investigated whether such improvements were related to adaptational shifts of perceived vertical or to a higher cognitive strategy. We asked 12 healthy human subjects to adjust a luminous arrow to vertical in various head-roll positions (0 to 120deg right-ear down, 15deg steps. After each adjustment visual feedback was provided (lights on, display of previous adjustment and of an earth-vertical cross. Control trials consisted of SVV adjustments without feedback. At head-roll angles with the largest A-effect (90, 105, and 120deg, errors were reduced significantly (p0.05 influenced. In seven subjects an additional session with two consecutive blocks (first with, then without visual feedback was completed at 90, 105 and 120deg head-roll. In these positions the error-reduction by the previous visual feedback block remained significant over the consecutive 18-24 min (post-feedback block, i.e., was still significantly (p<0.002 different from the control trials. Eleven out of 12 subjects reported having consciously added a bias to their perceived vertical based on visual feedback in order to minimize errors. We conclude that improvements of SVV accuracy by visual feedback, which remained effective after removal of feedback for ≥18 min, rather resulted from a cognitive strategy than by adapting the internal estimate of the gravitational vertical. The mechanisms behind the SVV therefore, remained stable, which is also supported by the fact that SVV precision - depending mostly on otolith input - was not affected by visual

  11. Differential Effects of Visual Feedback on Subjective Visual Vertical Accuracy and Precision

    Science.gov (United States)

    Bjasch, Daniel; Bockisch, Christopher J.; Straumann, Dominik; Tarnutzer, Alexander A.

    2012-01-01

    The brain constructs an internal estimate of the gravitational vertical by integrating multiple sensory signals. In darkness, systematic head-roll dependent errors in verticality estimates, as measured by the subjective visual vertical (SVV), occur. We hypothesized that visual feedback after each trial results in increased accuracy, as physiological adjustment errors (A−/E-effect) are likely based on central computational mechanisms and investigated whether such improvements were related to adaptational shifts of perceived vertical or to a higher cognitive strategy. We asked 12 healthy human subjects to adjust a luminous arrow to vertical in various head-roll positions (0 to 120deg right-ear down, 15deg steps). After each adjustment visual feedback was provided (lights on, display of previous adjustment and of an earth-vertical cross). Control trials consisted of SVV adjustments without feedback. At head-roll angles with the largest A-effect (90, 105, and 120deg), errors were reduced significantly (p0.05) influenced. In seven subjects an additional session with two consecutive blocks (first with, then without visual feedback) was completed at 90, 105 and 120deg head-roll. In these positions the error-reduction by the previous visual feedback block remained significant over the consecutive 18–24 min (post-feedback block), i.e., was still significantly (p<0.002) different from the control trials. Eleven out of 12 subjects reported having consciously added a bias to their perceived vertical based on visual feedback in order to minimize errors. We conclude that improvements of SVV accuracy by visual feedback, which remained effective after removal of feedback for ≥18 min, rather resulted from a cognitive strategy than by adapting the internal estimate of the gravitational vertical. The mechanisms behind the SVV therefore, remained stable, which is also supported by the fact that SVV precision – depending mostly on otolith input - was not affected by visual

  12. Complexity and Automation Displays of Air Traffic Control: Literature Review and Analysis

    National Research Council Canada - National Science Library

    Xing, Jing; Manning, Carol A

    2005-01-01

    This report reviewed a number of measures of complexity associated with visual displays and analyzed the potential to apply these methods to assess the complexity of air traffic control (ATC) displays...

  13. Angles in hyperbolic lattices

    DEFF Research Database (Denmark)

    Risager, Morten S.; Södergren, Carl Anders

    2017-01-01

    It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the den......It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior...... of the density function in both the small and large variable limits. This extends earlier results by Boca, Pasol, Popa and Zaharescu and Kelmer and Kontorovich in dimension 2 to general dimension n . Our proofs use the decay of matrix coefficients together with a number of careful estimates, and lead...

  14. OLED Display For Real Time Vision System

    Directory of Open Access Journals (Sweden)

    Sandhyalakshmi Narayanan

    2015-08-01

    Full Text Available This innovative glass design will carry an OLED based display controlled via nano Ardiuno board having Bluetooth connectivity with a Smartphone to exchange information along with onboard accelerometer. We are using a tilt angle sensor for detecting if the driver is feeling drowsy. An alcohol sensor has been used to promote the safe driving habit. The glasses will be getting latest updates about the current speed of the vehicle navigation directions nearby or approaching sign broads or services like petrol pumps. Itll also display information like incoming calls or received messages. All this information will be obtained through a Smartphone connected via Bluetooth. Also the car mileage can be monitored with help of fuel sensor as the consumption of fuel is directly related to it. Abnormalities if detected will be immediately notified in the glasses. Also the angle of the tilt angle sensor can be defined and set by the user according to his needs. Also the main idea of using OLED glasses is that it is organic thereby helps in reducing the carbon footprint and is quite slim. Therefore it can be easily mounted on the specs without making it heavy. Also they higher level of flexibility and have low power drain and energy consumption

  15. Industrial Personal Computer based Display for Nuclear Safety System

    International Nuclear Information System (INIS)

    Kim, Ji Hyeon; Kim, Aram; Jo, Jung Hee; Kim, Ki Beom; Cheon, Sung Hyun; Cho, Joo Hyun; Sohn, Se Do; Baek, Seung Min

    2014-01-01

    The safety display of nuclear system has been classified as important to safety (SIL:Safety Integrity Level 3). These days the regulatory agencies are imposing more strict safety requirements for digital safety display system. To satisfy these requirements, it is necessary to develop a safety-critical (SIL 4) grade safety display system. This paper proposes industrial personal computer based safety display system with safety grade operating system and safety grade display methods. The description consists of three parts, the background, the safety requirements and the proposed safety display system design. The hardware platform is designed using commercially available off-the-shelf processor board with back plane bus. The operating system is customized for nuclear safety display application. The display unit is designed adopting two improvement features, i.e., one is to provide two separate processors for main computer and display device using serial communication, and the other is to use Digital Visual Interface between main computer and display device. In this case the main computer uses minimized graphic functions for safety display. The display design is at the conceptual phase, and there are several open areas to be concreted for a solid system. The main purpose of this paper is to describe and suggest a methodology to develop a safety-critical display system and the descriptions are focused on the safety requirement point of view

  16. Position display device

    International Nuclear Information System (INIS)

    Nishizawa, Yukio.

    1974-01-01

    Object: To provide a device capable of easily and quickly reading mutual mounting relations of control bodies such as control rods mounted on a nuclear reactor and positions to which the control bodies are driven. Structure: A scanning circuit is provided to scan positions of controllably mounted control bodies such as control rods. Values detected by scanning the positions are converted into character signals according to the values and converted into preranked color signals. The character signals and color signals are stored in a memory circuit by synchronous signals in synchronism with the scanning in the scanning circuit. Outputs of the memory circuit are displayed by a display unit such as a color Braun tube in accordance with the synchronous signals to provide color representations according to positions to which control bodies are driven in the same positional relation as the mounting of the control bodies. (Kamimura, M.)

  17. Unsolicited displays of insights

    DEFF Research Database (Denmark)

    Brouwer, Catherine E.

    2015-01-01

    This study is based on videorecorded interactional data from a specific type of institutional setting which consists of a variety of 'language stimulation activities' for bilingual children in Danish preschools. Bilingual children, with a variety of linguistic backgrounds, take part...... in these activities in small groups together with a specialized preschool teacher. One pervasive feature of this kind of data is the ongoing orientation to, and guidance from the adult towards the children on what the main business of their interaction is - what they relevantly are doing. In this light, the paper......: Unsolicited displays may lead to side sequences, they may lead to a shift in the main business of the talk, or they may be explicitly or implicitly ignored. The paper discusses whether and how these unsolicited displays of understanding then can be thought of as leading to opportunities for (language...

  18. Long-term outcomes after acute primary angle closure of Caucasian chronic angle closure glaucoma patients.

    Science.gov (United States)

    Fea, Antonio Maria; Dallorto, Laura; Lavia, Carlo; Pignata, Giulia; Rolle, Teresa; Aung, Tin

    2017-07-19

    There is a lack of information about long-term results of chronic angle closure glaucoma following an acute primary angle closure attack in Caucasian patients. The aim of the study was to report morphological and functional long-term data of chronic angle closure eyes following a monolateral primary angle closure attack and to provide a comparison with their fellow eyes. Observational retrospective case series. Fifty-seven consecutive patients (114 eyes) underwent long-term follow-up analysis. Patients underwent ophthalmic assessment more than 5 years since the angle closure attack. Intraocular pressure, best-corrected visual acuity, angle assessment, vertical C/D ratio and standard automated perimetry were the main outcome measures. Comparisons were made between angle closure attack eyes and fellow eyes and between phakic and pseudophakic eyes. Mean follow-up time was 5.86 ± 1.19 years. A significant greater damage in the angle closure eyes compared with fellow eyes in both structural (mean C/D 0.61 ± 0.16; P APAC attack to prevent potential glaucoma damage in both APAC and fellow eye. © 2017 The Authors Clinical & Experimental Ophthalmology published by John Wiley & Sons Australia, Ltd on behalf of Royal Australian and New Zealand College of Ophthalmologists.

  19. Refrigerated display cabinets; Butikskyla

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, Per

    2000-07-01

    This report summarizes experience from SP research and assignments regarding refrigerated transport and storage of food, mainly in the retail sector. It presents the fundamentals of heat and mass transfer in display cabinets with special focus on indirect systems and secondary refrigerants. Moreover, the report includes a brief account of basic food hygiene and the related regulations. The material has been compiled for educational purposes in the Masters program at Chalmers Technical University.

  20. Three-dimensional display of the pelvic viscera using multi-sliced MR images

    International Nuclear Information System (INIS)

    Ueno, Shigeru; Suto, Yasuzo.

    1995-01-01

    Accurate reconstruction of the pelvic structure is the most important factor to obtain desirable results after anorectal surgery. Preoperative evaluation of the anatomy is indispensable for choosing an appropriate operative method in each case. To facilitate the preoperative evaluation, three dimensional images of the pelvic structure of patients with anorectal malformations were constructed by computer graphics based upon two dimensional images obtained from MR-CT. Graphic data from MR images were transferred to a graphic work station. The anorectum, bladder and sphincter musculature were displayed three-dimensionally after segmenting these organs by (1) manually regioning the area containing the specific organ and (2) thresholding the area by the T 1 intensity level. The anatomy of each type of anomaly is easily recognized by the 3-D visualization of pelvic viscera and sphincter musculature with emphasis on position and shape of the musculature although there are some difficulties to visualize soft tissue organs. The advanced programs could show the graphic images from any desirable angle quickly enough to be helpful for the simulation of the surgery. Three-dimensional display can be very useful for better understanding of each anomaly and determining the operative method prior to surgery. (author)

  1. Attention-Seeking Displays.

    Directory of Open Access Journals (Sweden)

    Szabolcs Számadó

    Full Text Available Animal communication abounds with extravagant displays. These signals are usually interpreted as costly signals of quality. However, there is another important function for these signals: to call the attention of the receiver to the signaller. While there is abundant empirical evidence to show the importance of this stage, it is not yet incorporated into standard signalling theory. Here I investigate a general model of signalling - based on a basic action-response game - that incorporates this searching stage. I show that giving attention-seeking displays and searching for them can be an ESS. This is a very general result and holds regardless whether only the high quality signallers or both high and low types give them. These signals need not be costly at the equilibrium and they need not be honest signals of any quality, as their function is not to signal quality but simply to call the attention of the potential receivers. These kind of displays are probably more common than their current weight in the literature would suggest.

  2. Appliance Displays: Accessibility Challenges and Proposed Solutions.

    Science.gov (United States)

    Fusco, Giovanni; Tekin, Ender; Giudice, Nicholas A; Coughlan, James M

    2015-10-01

    People who are blind or visually impaired face difficulties using a growing array of everyday appliances because they are equipped with inaccessible electronic displays. We report developments on our "Display Reader" smartphone app, which uses computer vision to help a user acquire a usable image of a display and have the contents read aloud, to address this problem. Drawing on feedback from past and new studies with visually impaired volunteer participants, as well as from blind accessibility experts, we have improved and simplified our user interface and have also added the ability to read seven-segment digit displays. Our system works fully automatically and in real time, and we compare it with general-purpose assistive apps such as Be My Eyes, which recruit remote sighted assistants (RSAs) to answer questions about video captured by the user. Our discussions and preliminary experiment highlight the advantages and disadvantages of fully automatic approaches compared with RSAs, and suggest possible hybrid approaches to investigate in the future.

  3. Approaches to Dynamic Decluttering of Cartographic Displays

    Energy Technology Data Exchange (ETDEWEB)

    Sorokine, Alexandre [ORNL; Tuttle, Mark A [ORNL; Bhaduri, Budhendra L [ORNL

    2008-01-01

    Most cartographers and map designers are familiar with the problem of congestion of symbols on maps and cartographic displays. Geographic objects are often clustered in some areas and at the same time the remaining map space is left virtually empty. One example of this problem is the representation of networks such as electric grids, transportation, or communication networks. The elements of the networks are typically clustered around highly populated areas while the rest of the map contains relatively few nodes, links, and other features. In this study we are investigating the applicability of several continuous geometric transformations to reduce the clutter on maps and cartographic displays. The techniques tested include map projections with customized parameters, perspective transformation of the map plane, fish-eye, and a diffusion-based algorithm for equalizing feature density. The map space is transformed so that a user can discern details in the areas with high density of the features while preserving the larger context and links between local and more general contexts. We use animation to provide the user with more visual clues and simplify comprehension of the transformed map. The study shows that the proposed techniques are useful for improving graphical efficiency of cartographic displays and produce visually appealing results. The choice of a specific decluttering method depends upon the purpose, geometric configuration of the portrayed objects, and display device resolution.

  4. Stage Cylindrical Immersive Display

    Science.gov (United States)

    Abramyan, Lucy; Norris, Jeffrey S.; Powell, Mark W.; Mittman, David S.; Shams, Khawaja S.

    2011-01-01

    Panoramic images with a wide field of view intend to provide a better understanding of an environment by placing objects of the environment on one seamless image. However, understanding the sizes and relative positions of the objects in a panorama is not intuitive and prone to errors because the field of view is unnatural to human perception. Scientists are often faced with the difficult task of interpreting the sizes and relative positions of objects in an environment when viewing an image of the environment on computer monitors or prints. A panorama can display an object that appears to be to the right of the viewer when it is, in fact, behind the viewer. This misinterpretation can be very costly, especially when the environment is remote and/or only accessible by unmanned vehicles. A 270 cylindrical display has been developed that surrounds the viewer with carefully calibrated panoramic imagery that correctly engages their natural kinesthetic senses and provides a more accurate awareness of the environment. The cylindrical immersive display offers a more natural window to the environment than a standard cubic CAVE (Cave Automatic Virtual Environment), and the geometry allows multiple collocated users to simultaneously view data and share important decision-making tasks. A CAVE is an immersive virtual reality environment that allows one or more users to absorb themselves in a virtual environment. A common CAVE setup is a room-sized cube where the cube sides act as projection planes. By nature, all cubic CAVEs face a problem with edge matching at edges and corners of the display. Modern immersive displays have found ways to minimize seams by creating very tight edges, and rely on the user to ignore the seam. One significant deficiency of flat-walled CAVEs is that the sense of orientation and perspective within the scene is broken across adjacent walls. On any single wall, parallel lines properly converge at their vanishing point as they should, and the sense of

  5. Event visualization in ATLAS

    Science.gov (United States)

    Bianchi, R. M.; Boudreau, J.; Konstantinidis, N.; Martyniuk, A. C.; Moyse, E.; Thomas, J.; Waugh, B. M.; Yallup, D. P.; ATLAS Collaboration

    2017-10-01

    At the beginning, HEP experiments made use of photographical images both to record and store experimental data and to illustrate their findings. Then the experiments evolved and needed to find ways to visualize their data. With the availability of computer graphics, software packages to display event data and the detector geometry started to be developed. Here, an overview of the usage of event display tools in HEP is presented. Then the case of the ATLAS experiment is considered in more detail and two widely used event display packages are presented, Atlantis and VP1, focusing on the software technologies they employ, as well as their strengths, differences and their usage in the experiment: from physics analysis to detector development, and from online monitoring to outreach and communication. Towards the end, the other ATLAS visualization tools will be briefly presented as well. Future development plans and improvements in the ATLAS event display packages will also be discussed.

  6. Event visualization in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00211497; The ATLAS collaboration; Boudreau, Joseph; Konstantinidis, Nikolaos; Martyniuk, Alex; Moyse, Edward; Thomas, Juergen; Waugh, Ben; Yallup, David

    2017-01-01

    At the beginning, HEP experiments made use of photographical images both to record and store experimental data and to illustrate their findings. Then the experiments evolved and needed to find ways to visualize their data. With the availability of computer graphics, software packages to display event data and the detector geometry started to be developed. Here, an overview of the usage of event display tools in HEP is presented. Then the case of the ATLAS experiment is considered in more detail and two widely used event display packages are presented, Atlantis and VP1, focusing on the software technologies they employ, as well as their strengths, differences and their usage in the experiment: from physics analysis to detector development, and from online monitoring to outreach and communication. Towards the end, the other ATLAS visualization tools will be briefly presented as well. Future development plans and improvements in the ATLAS event display packages will also be discussed.

  7. Visual Ecology and the Development of Visually Guided Behavior in the Cuttlefish

    OpenAIRE

    Darmaillacq, Anne-Sophie; Mezrai, Nawel; O'Brien, Caitlin E.; Dickel, Ludovic

    2017-01-01

    International audience; Cuttlefish are highly visual animals, a fact reflected in the large size of their eyes and visual-processing centers of their brain. Adults detect their prey visually, navigate using visual cues such as landmarks or the e-vector of polarized light and display intense visual patterns during mating and agonistic encounters. Although much is known about the visual system in adult cuttlefish, few studies have investigated its development and that of visually-guided behavio...

  8. Book Display as Adult Service

    Directory of Open Access Journals (Sweden)

    Matthew S. Moore

    1997-03-01

    Full Text Available 無Book display as an adult service is defined as choosing and positioning adult books from the collection to increase their circulation. The author contrasts bookstore arrangement for sales versus library arrangement for access. The paper considers the library-as-a-whole as a display, examines the right size for an in-library display, and discusses mass displays, end-caps, on-shelf displays, and the Tiffany approach. The author proposes that an effective display depends on an imaginative, unifying theme, and that book displays are part of the joy of libraries.

  9. Virtual displays for 360-degree video

    Science.gov (United States)

    Gilbert, Stephen; Boonsuk, Wutthigrai; Kelly, Jonathan W.

    2012-03-01

    In this paper we describe a novel approach for comparing users' spatial cognition when using different depictions of 360- degree video on a traditional 2D display. By using virtual cameras within a game engine and texture mapping of these camera feeds to an arbitrary shape, we were able to offer users a 360-degree interface composed of four 90-degree views, two 180-degree views, or one 360-degree view of the same interactive environment. An example experiment is described using these interfaces. This technique for creating alternative displays of wide-angle video facilitates the exploration of how compressed or fish-eye distortions affect spatial perception of the environment and can benefit the creation of interfaces for surveillance and remote system teleoperation.

  10. Painting Reproductions on Display

    Directory of Open Access Journals (Sweden)

    Joanna Iranowska

    2017-09-01

    Full Text Available Paintings in museums might occasionally be replaced by a photoprint mimicking the original. This article is an investigation of what constitutes a good reproduction of an artwork (oil painting that is meant to be displayed. The article discusses what the usefulness of reproductions depends on, applying the Valuation Studies approach, which means the primary concern is with the practice of valuing itself. In other words, the study focuses on how museum experts evaluate reproduc-tions of oil paintings. The article analyses three cases of displaying digitally prin-ted copies of Edvard Munch's oil paintings between 2013 and 2015 in the Munch Museum and in the National Gallery in Oslo. The study is based on a series of semi-structured interviews with the experts, working at and for the museums, that were involved in producing and exhibiting of the photoprints: curators, con-servators, museum educators, and external manufacturers. The interviews were grouped into five clusters, which I have chosen to call registers of valuing following Frank Heuts and Annemarie Mol (2013. The described valuation practices have to do with delivering experiences to the public, obtaining mimetic resemblance, solving ethical aspects, exhibitions' budget, and last but not least, with the time perspective.

  11. The Application of Visual Illusion in the Visual Communication Design

    Science.gov (United States)

    Xin, Tao; You Ye, Han

    2018-03-01

    With the development of our national reform, opening up and modernization, the science and technology has also been well developed and it has been applied in every wall of life, the development of visual illusion industry is represented in the widespread use of advanced technology in it. Ultimately, the visual illusion is a phenomenon, it should be analyzed from the angles of physics and philosophy. The widespread application of visual illusion not only can improve the picture quality, but also could maximize peoples’ sense degree through the visual communication design works, expand people’s horizons and promote the diversity of visual communication design works.

  12. open angle glaucoma (poag)?

    African Journals Online (AJOL)

    there is a build up of pressure due to poor outflow of aqueous humor. The outflow obstruction could occur at the trabecular meshwork of the anterior chamber angle or subsequently in the episcleral vein due to raised venous pressure. Such build up of pressure results in glaucoma . Elevated intraocular pressure remains the ...

  13. The quadriceps angle

    DEFF Research Database (Denmark)

    Miles, James Edward; Frederiksen, Jane V.; Jensen, Bente Rona

    2012-01-01

    : Pelvic limbs from red foxes (Vulpes vulpes). METHODS: Q angles were measured on hip dysplasia (HD) and whole limb (WL) view radiographs of each limb between the acetabular rim, mid-point (Q1: patellar center, Q2: femoral trochlea), and tibial tuberosity. Errors of 0.5-2.0 mm at measurement landmarks...

  14. At Right Angles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 9. At Right Angles. Shailesh A Shirali. Information and Announcements Volume 17 Issue 9 September 2012 pp 920-920. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/017/09/0920-0920 ...

  15. The lateral angle revisited

    DEFF Research Database (Denmark)

    Morgan, Jeannie; Lynnerup, Niels; Hoppa, R.D.

    2013-01-01

    This article presents the results of a validation study of a previously published method of sex determination from the temporal bone. The purpose of this study was to evaluate the lateral angle method for the internal acoustic canal for accurately determining the sex of human skeletal remains usi...... method appears to be of minimal practical use in forensic anthropology and archeology....

  16. Small angle neutron scattering

    International Nuclear Information System (INIS)

    Gupta, Sanjay

    1982-01-01

    The technique of small angle neutron scattering was first used in Germany less than two decades ago. Since then it has developed very rapidly, and today it is regarded as one of the most powerful techniques in materials, chemical and biological research. During the last decade the combination of high flux reactors and sophisticated instrumentation has revolutionized the technique. This paper endeavours to present a brief but comprehensive review of small angle scattering of neutrons and its applications in solid state research. The domain in which small angle neutron scattering is particularly useful is delineated and some of the methods used in the analysis of data are discussed with special emphasis on recent developments. Typical small angle neutron scattering cameras are described. Finally some experimental results on heterogeneities in metallic systems (both static and dynamic studies), radiation damage in materials, superconductivity, magnetic materials and the technologically very important area of non-destructive testing are reviewed in order to illustrate the wide range of applicability of this technique to problems in solid state research. (author)

  17. Neutron small angle scattering

    International Nuclear Information System (INIS)

    Ibel, K.

    1975-01-01

    The neutron small-angle scattering system at the High-Flux Reactor in Grenoble consists of three major parts: the supply of cold neutrons via bent neutron guides; the small angle camera D11; and the data handling facilities. The camera D11 has an overall length of 80 m. The effective length of the camera is variable. The length of the collimator before the fixed sample position can be reduced by movable neutron guides; the secondary flight path of 40 m full length contains detector sites in various positions. Thus, a large domain of momentum transfers can be exploited. Scattering angles between 5.10 -4 and 0.5 rad and neutron wavelengths from 0.2 to 2.0 nm are available with the same instrument and the same relative resolution. A large-area position-sensitive detector is used which allows simultaneous recording of intensities scattered into different angles; it is a multiwire proportional chamber. 3808 elements of 1 cm 2 are arranged in a two-dimensional matrix. Future development comprises an increase of the limit in the count rate due to the electronic interface between the detector and on-line computer, actually at 5.10 4 per sec. by one order of magnitude

  18. At Right Angles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 9. At Right Angles. Shailesh A Shirali. Information and Announcements Volume 17 Issue 9 September 2012 pp 920-920. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/017/09/0920-0920 ...

  19. Angle parameter changes of phacoemulsification and combined phacotrabeculectomy for acute primary angle closure

    Directory of Open Access Journals (Sweden)

    Shi-Wei Li

    2015-08-01

    Full Text Available AIM: To evaluate the difference in angle parameters and clinical outcome following phacoemulsification and combined phacotrabeculectomy in patients with acute primary angle closure (APAC using ultrasound biomicroscopy (UBM.METHODS: Patients (n=23, 31 eyes were randomized to receive phacoemulsification or combined phacotrabeculectomy (n=24, 31 eyes. Best-corrected visual acuity (BCVA, intraocular pressure (IOP, the main complications following surgery, and indentation gonioscopy and angle parameters measured using UBM were documented preoperatively and postoperatively.RESULTS:The improvement in BCVA in the phacoemulsification group was significantly greater than in the combined group (P<0.05. IOP in the phacoemulsification group was slightly higher than in the combined group following 1wk of follow-up (P<0.05, whereas there was no significant difference between the two groups at the latter follow-up (P>0.05. Phacoemulsification alone resulted in a slight increase in the trabecular ciliary processes distance compared with the combined surgery (P<0.05, whereas the other angle parameters showed no significant difference between the groups. Complications in combined group were greater than phacoemulsification only group.CONCLUSION:Both surgeries effectively opened the drainage angle and deepened the anterior chamber, and IOP was well controlled postoperatively. However, phacoemulsification showed better efficacy in improving visual function and showed reduced complications following surgery.

  20. Current diagnosis of tumors developed in the internal auditory canal and cerebellopontine angle

    International Nuclear Information System (INIS)

    Vignaud, J.; Doyon, D.

    1988-01-01

    The introduction of CT scan and, more recently, magnetic resonance imaging, has radically changed the diagnostic approach to tumors developed in the internal auditory canal and cerebellopontine angle. CT scan with intravenous injection visualizes tumors lying in the cerebellopontine angle. Magnetic resonance imaging, especially using gadolinium, is a very accurate means for diagnosing tumors of both the auditory canal and cerebellopontine angle [fr

  1. Visual field

    Science.gov (United States)

    Perimetry; Tangent screen exam; Automated perimetry exam; Goldmann visual field exam; Humphrey visual field exam ... Confrontation visual field exam. This is a quick and basic check of the visual field. The health care provider ...

  2. Visual Impairment

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Visual Impairment KidsHealth / For Teens / Visual Impairment What's in ... with the brain, making vision impossible. What Is Visual Impairment? Many people have some type of visual ...

  3. Wired World-Wide Web Interactive Remote Event Display

    Energy Technology Data Exchange (ETDEWEB)

    De Groot, Nicolo

    2003-05-07

    WIRED (World-Wide Web Interactive Remote Event Display) is a framework, written in the Java{trademark} language, for building High Energy Physics event displays. An event display based on the WIRED framework enables users of a HEP collaboration to visualize and analyze events remotely using ordinary WWW browsers, on any type of machine. In addition, event displays using WIRED may provide the general public with access to the research of high energy physics. The recent introduction of the object-oriented Java{trademark} language enables the transfer of machine independent code across the Internet, to be safely executed by a Java enhanced WWW browser. We have employed this technology to create a remote event display in WWW. The combined Java-WWW technology hence assures a world wide availability of such an event display, an always up-to-date program and a platform independent implementation, which is easy to use and to install.

  4. Evaluation of technical design of advanced information display(III)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Woo Chang; Jung, Sung Hae; Park, Joon Yong; Kim, Nam Cheol [Kumoh National Institute of Technology, Gumi (Korea, Republic of); Park, Soon Hyuk [DNT Inc., Daejeon (Korea, Republic of)

    2005-02-15

    As the computer technology is highly developed, the mental model of computer users including NPP operators has been changed from analogue display type-based stereotype to digitalized one. Therefore, it is necessary and confident to consider the issues to evaluate system suitability of advanced information display on visual display terminal. This document is intended for providing an updated and expanded set of user-interface guidelines that meet the needs of designing digitalized information display by finding the generic guidelines involving information display design issues, and the relationship among the guidelines. The design issues and resolutions from the finding may provide the cues for the designers and evaluators of the specific man machine interfaces of digitalized devices. The Design Review Supporting System for Advanced Information Display(DReSS-AID) was developed for the practical usage of evaluators-in-field, which was implemented with Hangul version guidelines.

  5. Defense Display Strategy and Roadmaps

    National Research Council Canada - National Science Library

    Hopper, Darrel G

    2002-01-01

    ...). Continuing thrusts include a variety of Service-led programs to develop micro-displays for virtual image helmet-/rifle-mounted systems for pilots and soldiers, novel displays, materials, and basic research...

  6. Advanced auditory displays and head-mounted displays: advantages and disadvantages for monitoring by the distracted anesthesiologist.

    Science.gov (United States)

    Sanderson, Penelope M; Watson, Marcus O; Russell, Walter John; Jenkins, Simon; Liu, David; Green, Norris; Llewelyn, Kristen; Cole, Phil; Shek, Vivian; Krupenia, Stas S

    2008-06-01

    In a full-scale anesthesia simulator study we examined the relative effectiveness of advanced auditory displays for respiratory and blood pressure monitoring and of head-mounted displays (HMDs) as supplements to standard intraoperative monitoring. Participants were 16 residents and attendings. While performing a reading-based distractor task, participants supervised the activities of a resident (an actor) who they were told was junior to them. If participants detected an event that could eventually harm the simulated patient, they told the resident, pressed a button on the computer screen, and/or informed a nearby experimenter. Participants completed four 22-min anesthesia scenarios. Displays were presented in a counterbalanced order that varied across participants and included: (1) Visual (visual monitor with variable-tone pulse oximetry), (2) HMD (Visual plus HMD), (3) Audio (Visual plus auditory displays for respiratory rate, tidal volume, end-tidal CO(2), and noninvasive arterial blood pressure), and (4) Both (Visual plus HMD plus Audio). Participants detected significantly more events with Audio (mean = 90%, median = 100%, P < 0.02) and Both (mean = 92%, median = 100%, P < 0.05) but not with HMD (mean = 75%, median = 67%, ns) compared with the Visual condition (mean = 52%, median = 50%). For events detected, there was no difference in detection times across display conditions. Participants self-rated monitoring as easier in the HMD, Audio and Both conditions and their responding as faster in the HMD and Both conditions than in the Visual condition. Advanced auditory displays help the distracted anesthesiologist maintain peripheral awareness of a simulated patient's status, whereas a HMD does not significantly improve performance. Further studies should test these findings in other intraoperative contexts.

  7. Pixel cells with an arbitrary vertex angle for moire pattern reduction in contact-type multiview three-dimensional imaging systems

    Science.gov (United States)

    Son, Jung-Young; Saveljev, Vladmir V.; Kim, Dae-Sik; Kim, Kyung-Tae

    2005-02-01

    Moire patterns originated from overlapping display panel with the viewing zone forming optics are one of major factors of deteriorating the visual image quality of contact-type 3 dimensional imaging systems. An analysis showed that the visual effects of the patterns can be minimized at a specific overlapping angle between the panel and the plate. This angle is implemented by approximating each side of a pixel cell as a discrete line which is drawn along the boundaries of each pixel which lies along the side of the cell. The slope of the line is presented by as the ratio of pixel numbers in vertical and horizontal directions and equals to the tangential value of 1/2 of the angle. This method allows creating pixel cells with shapes of parallelograms and rhombs with a desired vertex angle for minimizing the moire pattern, especially in full-parallax imaging systems. The image generated reveals almost invisible moire pattern at the predefined viewing distance range.

  8. Effect of Display Color on Pilot Performance and Describing Functions

    Science.gov (United States)

    Chase, Wendell D.

    1997-01-01

    A study has been conducted with the full-spectrum, calligraphic, computer-generated display system to determine the effect of chromatic content of the visual display upon pilot performance during the landing approach maneuver. This study utilizes a new digital chromatic display system, which has previously been shown to improve the perceived fidelity of out-the-window display scenes, and presents the results of an experiment designed to determine the effects of display color content by the measurement of both vertical approach performance and pilot-describing functions. This method was selected to more fully explore the effects of visual color cues used by the pilot. Two types of landing approaches were made: dynamic and frozen range, with either a landing approach scene or a perspective array display. The landing approach scene was presented with either red runway lights and blue taxiway lights or with the colors reversed, and the perspective array with red lights, blue lights, or red and blue lights combined. The vertical performance measures obtained in this experiment indicated that the pilots performed best with the blue and red/blue displays. and worst with the red displays. The describing-function system analysis showed more variation with the red displays. The crossover frequencies were lowest with the red displays and highest with the combined red/blue displays, which provided the best overall tracking, performance. Describing-function performance measures, vertical performance measures, and pilot opinion support the hypothesis that specific colors in displays can influence the pilots' control characteristics during the final approach.

  9. Immersive BCI with SSVEP in VR head-mounted display.

    Science.gov (United States)

    Bonkon Koo; Hwan-Gon Lee; Yunjun Nam; Seungjin Choi

    2015-08-01

    In this paper we present an immersive brain computer interface (BCI) where we use a virtual reality head-mounted display (VRHMD) to invoke SSVEP responses. Compared to visual stimuli in monitor display, we demonstrate that visual stimuli in VRHMD indeed improve the user engagement for BCI. To this end, we validate our method with experiments on a VR maze game, the goal of which is to guide a ball into the destination in a 2D grid map in a 3D space, successively choosing one of four neighboring cells using SSVEP evoked by visual stimuli on neighboring cells. Experiments indicate that the averaged information transfer rate is improved by 10% for VRHMD, compared to the case in monitor display and the users feel easier to play the game with the proposed system.

  10. Web Extensible Display Manager

    Energy Technology Data Exchange (ETDEWEB)

    Slominski, Ryan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Larrieu, Theodore L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-02-01

    Jefferson Lab's Web Extensible Display Manager (WEDM) allows staff to access EDM control system screens from a web browser in remote offices and from mobile devices. Native browser technologies are leveraged to avoid installing and managing software on remote clients such as browser plugins, tunnel applications, or an EDM environment. Since standard network ports are used firewall exceptions are minimized. To avoid security concerns from remote users modifying a control system, WEDM exposes read-only access and basic web authentication can be used to further restrict access. Updates of monitored EPICS channels are delivered via a Web Socket using a web gateway. The software translates EDM description files (denoted with the edl suffix) to HTML with Scalable Vector Graphics (SVG) following the EDM's edl file vector drawing rules to create faithful screen renderings. The WEDM server parses edl files and creates the HTML equivalent in real-time allowing existing screens to work without modification. Alternatively, the familiar drag and drop EDM screen creation tool can be used to create optimized screens sized specifically for smart phones and then rendered by WEDM.

  11. Visualization of JPEG Metadata

    Science.gov (United States)

    Malik Mohamad, Kamaruddin; Deris, Mustafa Mat

    There are a lot of information embedded in JPEG image than just graphics. Visualization of its metadata would benefit digital forensic investigator to view embedded data including corrupted image where no graphics can be displayed in order to assist in evidence collection for cases such as child pornography or steganography. There are already available tools such as metadata readers, editors and extraction tools but mostly focusing on visualizing attribute information of JPEG Exif. However, none have been done to visualize metadata by consolidating markers summary, header structure, Huffman table and quantization table in a single program. In this paper, metadata visualization is done by developing a program that able to summarize all existing markers, header structure, Huffman table and quantization table in JPEG. The result shows that visualization of metadata helps viewing the hidden information within JPEG more easily.

  12. Visual and Haptic Mental Rotation

    Directory of Open Access Journals (Sweden)

    Satoshi Shioiri

    2011-10-01

    Full Text Available It is well known that visual information can be retained in several types of memory systems. Haptic information can also be retained in a memory because we can repeat a hand movement. There may be a common memory system for vision and action. On the one hand, it may be convenient to have a common system for acting with visual information. On the other hand, different modalities may have their own memory and use retained information without transforming specific to the modality. We compared memory properties of visual and haptic information. There is a phenomenon known as mental rotation, which is possibly unique to visual representation. The mental rotation is a phenomenon where reaction time increases with the angle of visual target (eg,, a letter to identify. The phenomenon is explained by the difference in time to rotate the representation of the target in the visual sytem. In this study, we compared the effect of stimulus angle on visual and haptic shape identification (two-line shapes were used. We found that a typical effect of mental rotation for the visual stimulus. However, no such effect was found for the haptic stimulus. This difference cannot be explained by the modality differences in response because similar difference was found even when haptical response was used for visual representation and visual response was used for haptic representation. These results indicate that there are independent systems for visual and haptic representations.

  13. Survey of standards for electronic image displays

    Science.gov (United States)

    Rowe, William A.

    1996-02-01

    Electronic visual displays have been evolving from the 1960's basis of cathode ray tube (CRT) technology. Now, many other technologies are also available, including both flat panels and projection displays. Standards for these displays are being developed at both the national level and the international levels. Standards activity within the United States is in its infancy and is fragmented according to the inclination of each of the standards developing organizations. The latest round of flat panel display technology was primarily developed in Japan. Initially standards arose from component vendor-to-OEM customer relationships. As a result, Japanese standards for components are the best developed. The Electronics Industries Association of Japan (EIAJ) is providing their standards to the International Electrotechnical Commission (IEC) for adoption. On the international level, professional societies such as the human factors society (hfs) and the International Organization for Standardization (ISO) have completed major standards, hfs developed the first ergonomic standard hfs-100 and the ISO has developed some sections of a broader ergonomic standard ISO 9241. This paper addresses the organization of standards activity. Active organizations and their areas of focus are identified. The major standards that have been completed or are in development are described. Finally, suggestions for improving the this standards activity are proposed.

  14. Visualization for Tracking Battlefield Events in Time and Space for C2

    National Research Council Canada - National Science Library

    Kapler, Thomas; Wright, William

    2004-01-01

    .... A novel visualization technique for displaying and tracking events, people, and equipment within a combined temporal and geospatial display has been developed into a demonstratable prototype called...

  15. Camera-based calibration techniques for seamless multiprojector displays.

    Science.gov (United States)

    Brown, Michael; Majumder, Aditi; Yang, Ruigang

    2005-01-01

    Multiprojector, large-scale displays are used in scientific visualization, virtual reality, and other visually intensive applications. In recent years, a number of camera-based computer vision techniques have been proposed to register the geometry and color of tiled projection-based display. These automated techniques use cameras to "calibrate" display geometry and photometry, computing per-projector corrective warps and intensity corrections that are necessary to produce seamless imagery across projector mosaics. These techniques replace the traditional labor-intensive manual alignment and maintenance steps, making such displays cost-effective, flexible, and accessible. In this paper, we present a survey of different camera-based geometric and photometric registration techniques reported in the literature to date. We discuss several techniques that have been proposed and demonstrated, each addressing particular display configurations and modes of operation. We overview each of these approaches and discuss their advantages and disadvantages. We examine techniques that address registration on both planar (video walls) and arbitrary display surfaces and photometric correction for different kinds of display surfaces. We conclude with a discussion of the remaining challenges and research opportunities for multiprojector displays.

  16. Transparent Solar Concentrator for Flat Panel Display

    Science.gov (United States)

    Yeh, Chia-Hung; Chang, Fuh-Yu; Young, Hong-Tsu; Hsieh, Tsung-Yen; Chang, Chia-Hsiung

    2012-06-01

    A new concept of the transparent solar concentrator for flat panel display is experimentally demonstrated without adversely affecting the visual effects. The solar concentrator is based on a solar light-guide plate with micro prisms, not only increasing the absorption area of solar energy but also enhancing the conversion efficiency. The incident light is guided by the designed solar light-guide plate according to the total internal reflection (TIR), and converted into electrical power by photovoltaic solar cells. The designed transparent solar concentrator was made and measured with high transparency, namely 94.8%. The developed solar energy system for display can store energy and supply the bias voltage to light on two light-emitting diodes (LEDs) successfully.

  17. Visualizing multi-channel networks

    DEFF Research Database (Denmark)

    Antemijczuk, Paweł; Magiera, Marta; Jørgensen, Sune Lehmann

    2014-01-01

    In this paper, we propose a visualization to illustrate social interactions, built from multiple distinct channels of communication. The visualization displays a summary of dense personal information in a compact graphical notation. The starting point is an abstract drawing of a spider’s web. Below...

  18. Unique interactive projection display screen

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.

    1997-11-01

    Projection systems continue to be the best method to produce large (1 meter and larger) displays. However, in order to produce a large display, considerable volume is typically required. The Polyplanar Optic Display (POD) is a novel type of projection display screen, which for the first time, makes it possible to produce a large projection system that is self-contained and only inches thick. In addition, this display screen is matte black in appearance allowing it to be used in high ambient light conditions. This screen is also interactive and can be remotely controlled via an infrared optical pointer resulting in mouse-like control of the display. Furthermore, this display need not be flat since it can be made curved to wrap around a viewer as well as being flexible.

  19. Program For Displaying Computed Electromagnetic Fields

    Science.gov (United States)

    Hom, Kam W.

    1995-01-01

    EM-ANIMATE computer program specialized visualization displays and animates output data on near fields and surface currents computed by electromagnetic-field program - in particular MOM3D (LAR-15074). Program based on windows and contains user-friendly, graphical interface for setting viewing options, selecting cases, manipulating files, and like. Written in FORTRAN 77. EM-ANIMATE also available as part of package, COS-10048, includes MOM3D, IRIS program computing near-field and surface-current solutions of electromagnetic-field equations.

  20. A new display stream compression standard under development in VESA

    Science.gov (United States)

    Jacobson, Natan; Thirumalai, Vijayaraghavan; Joshi, Rajan; Goel, James

    2017-09-01

    The Advanced Display Stream Compression (ADSC) codec project is in development in response to a call for technologies from the Video Electronics Standards Association (VESA). This codec targets visually lossless compression of display streams at a high compression rate (typically 6 bits/pixel) for mobile/VR/HDR applications. Functionality of the ADSC codec is described in this paper, and subjective trials results are provided using the ISO 29170-2 testing protocol.

  1. Relationship between the angle of repose and angle of internal ...

    African Journals Online (AJOL)

    Abstract. Click on the link to view the abstract. Keywords: Angle of repose, angle of internal friction, granular materials, triaxial compression machine, moisture content. Tanzania J. Agric. Sc. (1998) Vol.1 No.2, 187-194 ...

  2. Vivaldi: Visualization and validation of biomacromolecular NMR structures from the PDB

    Science.gov (United States)

    Hendrickx, Pieter M S; Gutmanas, Aleksandras; Kleywegt, Gerard J

    2013-01-01

    We describe Vivaldi (VIsualization and VALidation DIsplay; http://pdbe.org/vivaldi), a web-based service for the analysis, visualization, and validation of NMR structures in the Protein Data Bank (PDB). Vivaldi provides access to model coordinates and several types of experimental NMR data using interactive visualization tools, augmented with structural annotations and model-validation information. The service presents information about the modeled NMR ensemble, validation of experimental chemical shifts, residual dipolar couplings, distance and dihedral angle constraints, as well as validation scores based on empirical knowledge and databases. Vivaldi was designed for both expert NMR spectroscopists and casual non-expert users who wish to obtain a better grasp of the information content and quality of NMR structures in the public archive. © Proteins 2013. © 2012 Wiley Periodicals, Inc. PMID:23180575

  3. Orbit IMU alinement interpretation of onboard display data

    Science.gov (United States)

    Corson, R.

    1978-01-01

    The space shuttle inertial measurement unit (IMU) alinement algorith was examined to determine the most important alinement starpair selection criterion. Three crew displayed parameters were considered: (1) the results of the separation angle difference (SAD) check for each starpair; (2) the separation angle of each starpair; and (3) the age of each star measurement. It was determined that the SAD for each pair cannot be used to predict the IMu alinement accuracy. If the age of each star measurement is less than approximately 30 minutes, time is a relatively unimportant factor and the most important alinement pair selection criterion is the starpair separation angle. Therefore, when there are three available alinement starpairs and all measurements were taken within the last 30 minutes, the pair with the separation angle closest to 90 degrees should be selected for IMU alinement.

  4. Critical angle laser refractometer

    International Nuclear Information System (INIS)

    Castrejon-Pita, J.R.; Morales, A.; Castrejon-Garcia, R.

    2006-01-01

    A simple laser refractometer based on the detection of the critical angle for liquids is presented. The calibrated refractometer presents up to 0.000 11 of uncertainty when the refractive index is in the range between 1.300 00 and 1.340 00. The experimental setup is easy to construct and the material needed is available at most optics laboratories. The calibration method is simple and can be used in other devices. The refractive index measurements in aqueous solutions of sodium chloride were carried out to test the device and a linear dependence between the refractive index and the salt concentration was found

  5. visual symptoms among non-presbyopic video display terminal (vdt)

    African Journals Online (AJOL)

    LIVINGSTON

    effects; and stress .These effects are made worse owing to the fact the users do not work according to specified conditions for proper VDT usage such as: .... teaching and others) to the female folks. The age group 29-34yrs was more dominant among the age groups studied just as they are in the wider labor market.

  6. Sourcebook of Temporal Factors Affecting Information Transfer from Visual Displays

    Science.gov (United States)

    1981-06-01

    34real" world, especially the interfacing of ;nformation between man and machine. Few data were collected outside of the la - boratory, in the environment...conatinuouscterotios tof the ame part stheulfirstequestionsil fraised moisn "Watfhaaterisfetics ofltheug amovit stiulu pattrned responsibletforesethe montinosmton...STUDY )3FFCL r I U.- NAVY tHAtl’JI’b ANALYbIS ý.VALUA1IJN GWOUP I USACiuEC AITN: mdEL- LA -L. HUMAN ýACIORS) I USAFjiOOS/lAC bKNIUR ARMY ADVISOR I INTE.t

  7. Visually Coupled Systems (VCS): The Virtual Panoramic Display (VPD) System

    National Research Council Canada - National Science Library

    Kocian, Dean F

    1991-01-01

    .... VCS represents an advanced man-machine interface (MMI). Its potential to improve aircrew situational awareness seems enormous, but its superiority over the conventional cockpit MMI has not been established in a conclusive and rigorous fashion...

  8. Fandom on display : intimate visualities and the politics of spectacle

    NARCIS (Netherlands)

    Gerritsen, Roos

    2012-01-01

    Tamil movie fans typically manifest themselves in public space during movie releases and other special occasions. All over Tamil Nadu their fan club organizations put up billboards and posters, paint murals, and generate a plethora of images in different media. With this ‘fandom on display’ fans

  9. Scaling of misorientation angle distributions

    DEFF Research Database (Denmark)

    Hughes, D.A.; Chrzan, D.C.; Liu, Q.

    1998-01-01

    The measurement of misorientation angle distributions following different amounts of deformation in cold-rolled aluminum and nickel and compressed stainless steel is reported. The sealing of the dislocation cell boundary misorientation angle distributions is studied. Surprisingly, the distributio...

  10. Angle performance on optima MDxt

    Energy Technology Data Exchange (ETDEWEB)

    David, Jonathan; Kamenitsa, Dennis [Axcelis Technologies, Inc., 108 Cherry Hill Dr, Beverly, MA 01915 (United States)

    2012-11-06

    Angle control on medium current implanters is important due to the high angle-sensitivity of typical medium current implants, such as halo implants. On the Optima MDxt, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through six narrow slits, and any angle adjustment is made by electrostatically steering the beam, while cross-wafer beam parallelism is adjusted by changing the focus of the electrostatic parallelizing lens (P-lens). In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen prior to implant. A variety of tests were run to measure the accuracy and repeatability of Optima MDxt's angle control. SIMS profiles of a high energy, channeling sensitive condition show both the cross-wafer angle uniformity, along with the small-angle resolution of the system. Angle repeatability was quantified by running a channeling sensitive implant as a regular monitor over a seven month period and measuring the sheet resistance-to-angle sensitivity. Even though crystal cut error was not controlled for in this case, when attributing all Rs variation to angle changes, the overall angle repeatability was measured as 0.16 Degree-Sign (1{sigma}). A separate angle repeatability test involved running a series of V-curves tests over a four month period using low crystal cut wafers selected from the same boule. The results of this test showed the angle repeatability to be <0.1 Degree-Sign (1{sigma}).

  11. Variable angle correlation spectroscopy

    International Nuclear Information System (INIS)

    Lee, Y.K.; Lawrence Berkeley Lab., CA

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13 C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system

  12. Variable angle correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Kyo [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.

  13. Laser illuminated flat panel display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.

    1995-12-31

    A 10 inch laser illuminated flat panel Planar Optic Display (POD) screen has been constructed and tested. This POD screen technology is an entirely new concept in display technology. Although the initial display is flat and made of glass, this technology lends itself to applications where a plastic display might be wrapped around the viewer. The display screen is comprised of hundreds of planar optical waveguides where each glass waveguide represents a vertical line of resolution. A black cladding layer, having a lower index of refraction, is placed between each waveguide layer. Since the cladding makes the screen surface black, the contrast is high. The prototype display is 9 inches wide by 5 inches high and approximately I inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  14. Natural display mode for digital DICOM-conformant diagnostic imaging.

    Science.gov (United States)

    Peters, Klaus-Ruediger; Ramsby, Gale R

    2002-09-01

    The authors performed this study to investigate the verification of the contrast display properties defined by the digital imaging and communication in medicine (DICOM) PS (picture archiving and communication system [PACS] standard) 3.14-2001 gray-scale display function standard and their dependency on display luminance range and video signal bandwidth. Contrast sensitivity and contrast linearity of DICOM-conformant displays were measured in just-noticeable differences (JNDs) on special perceptual contrast test patterns. Measurements were obtained six times at various display settings under dark room conditions. Display luminance range and video bandwidth had a significant effect on contrast perception. The perceptual promises of the standard could be established only with displays that were calibrated to a unity contrast resolution, at which the number of displayed intensity steps was equal to the number of perceivable contrast steps (JNDs). Such display conditions provide for visual perception information at the level of single-step contrast sensitivity and full-range contrast linearity. These "natural display" conditions also help minimize the Mach banding effects that otherwise reduce contrast sensitivity and contrast linearity. Most, if not all, conventionally used digital display modalities are driven with a contrast resolution larger than 1. Such conditions reduce contrast perception when compared with natural imaging conditions. The DICOM-conformant display conditions at unity contrast resolution were characterized as the "natural display" mode, and, thus, the authors a priori recommend them as being useful for making a primary diagnosis with PACS and teleradiology and as a standard for psychophysical research and performance measurements.

  15. Simulated laparoscopy using a head-mounted display vs traditional video monitor: an assessment of performance and muscle fatigue.

    Science.gov (United States)

    Maithel, S K; Villegas, L; Stylopoulos, N; Dawson, S; Jones, D B

    2005-03-01

    The direction of visual gaze may be an important ergonomic factor that affects operative performance. We designed a study to determine whether a head-mounted display (HMD) worn by the surgeon would improve task performance and/or reduce muscle fatigue during a laparoscopic task when compared to the use of a traditional video monitor display (VMD). Surgical residents (n = 30) were enrolled in the study. A junior group, consisting of 15 postgraduate year (PGY) = 1 subjects with no previous laparoscopic experience, and a senior group, consisting of 15 PGY 4 and PGY 5 subjects with experience, completed a laparoscopic task that was repeated four times using the Computer Enhanced Laparoscopic Training System (CELTS). Groups alternated between using the HMD with the task placed in a downward frontal position and the VMD with the task at a 30 degrees lateral angle. The CELTS module assessed task completion time, depth perception, path length of instruments, response orientation, motion smoothness; the system then generated an overall score. Electromyography (EMG) was used to record sternocleidomastoid muscle activity. Display preference was surveyed. The senior residents performed better than the junior residents overall on all parameters (p < 0.05) except for motion smoothness, where there was no difference. In both groups, the HMD significantly improved motion smoothness when compared to the VMD (p < 0.05). All other parameters were equal. There was less muscle fatigue when using the VMD (p < 0.05). We found that 66% of the junior residents but only 20% of the senior residents preferred the HMD. The CELTS module demonstrated evidence of construct validity by differentiating the performances of junior and senior residents. By aligning the surgeon's visual gaze with the instruments, HMD improved smoothness of motion. Experienced residents preferred the traditional monitor display. Although the VMD produced less muscle fatigue, inexperienced residents preferred the HMD

  16. Prototyping user displays using CLIPS

    Science.gov (United States)

    Kosta, Charles P.; Miller, Ross; Krolak, Patrick; Vesty, Matt

    1990-01-01

    CLIPS is being used as an integral module of a rapid prototyping system. The prototyping system consists of a display manager for object browsing, a graph program for displaying line and bar charts, and a communications server for routing messages between modules. A CLIPS simulation of a physical model provides dynamic control of the user's display. Currently, a project is well underway to prototype the Advanced Automation System (AAS) for the Federal Aviation Administration.

  17. Evaluation of technical design of advanced information display(II)

    International Nuclear Information System (INIS)

    Cha, Woo Chang; Kang, Young Ju; Ji, Jung Hun; Jang, Sung Pil; Jung, Sung Hae; Park, Hyun Jin

    2004-02-01

    As the computer technology is highly developed, the mental model of computer users including NPP operators has been changed from analogue display type-based stereotype to digitalized one. Therefore, it is necessary and confident to consider the issues to evaluate system suitability of advanced information display on visual display terminal such as CRT. This document is intended for providing an updated and expanded set of user-interface guidelines that meet the needs of designing information display on CRT by finding the generic guidelines involving information display design issues, and the relationship among the guidelines. The design issues and resolutions from the finding may provide the cues for the designers and evaluators of the specific man machine interfaces of digitalized devices

  18. Evaluation of technical design of advanced information display(II)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Woo Chang; Kang, Young Ju; Ji, Jung Hun; Jang, Sung Pil; Jung, Sung Hae; Park, Hyun Jin [Kumoh National Univ., Gumi (Korea, Republic of)

    2004-02-15

    As the computer technology is highly developed, the mental model of computer users including NPP operators has been changed from analogue display type-based stereotype to digitalized one. Therefore, it is necessary and confident to consider the issues to evaluate system suitability of advanced information display on visual display terminal such as CRT. This document is intended for providing an updated and expanded set of user-interface guidelines that meet the needs of designing information display on CRT by finding the generic guidelines involving information display design issues, and the relationship among the guidelines. The design issues and resolutions from the finding may provide the cues for the designers and evaluators of the specific man machine interfaces of digitalized devices.

  19. Exploring new techniques for displaying complex building energy consumption data

    Energy Technology Data Exchange (ETDEWEB)

    Haberl, J. [Energy Systems Lab., Texas Engineering Experiment Station, Texas A and M Univ. System, College Station, TX (United States); Sparks, R. [Energy Systems Lab., Texas Engineering Experiment Station, Texas A and M Univ. System, College Station, TX (United States); Culp, C. [Emerson Electric Advanced Development Center, Copeland Corp., Sydney, OH (United States)

    1996-12-01

    This paper explores advanced data displays which may help building operators better understand complex energy data by enhancing the display of the data with animation (or time-sequencing). Animated displays such as the ones developed in this paper enhance the usefulness of static graphic displays because time and temperature dependent trends can be immediately seen. This is particularly useful for buildings because many of the energy consuming loads are schedule and temperature dependent. There is an increasing need for new display paradigms that can help building operators visually diagnose complex problems that may otherwise not be detected by efficient energy management and control system (EMCS) algorithms. This need becomes even more important during times of a shrinking labor pool as building operators are being asked to perform more complex control and monitoring tasks. In this paper animated displays have been developed specifically for use in viewing building energy data. Several examples are provided from a large engineering center in central Texas where the animated displays make a faulty flow meter easier to diagnose and allow the operator to visually detect simultaneous heating and cooling. (orig.)

  20. Ultra Small-Angle Neutron Scattering Study of Porous Glass

    International Nuclear Information System (INIS)

    Desai, Reshma R.; Desa, J. A. Erwin; Sen, D.; Mazumder, S.

    2011-01-01

    Compacts of silica micro-spheres prepared for different times at sintering temperatures of 640 deg. C and 740 deg. C have been studied by Ultra Small-Angle Neutron Scattering (USANS) and Scanning Electron Microscopy (SEM). Stress versus strain measurements display several breakage points related to a range of nearest neighbour coordination around each microsphere.

  1. Small angle neutron scattering

    International Nuclear Information System (INIS)

    Dasannacharya, B.A.; Goyal, P.S.

    1997-01-01

    Small angle neutron scattering (SANS) is one of the most popular neutron scattering technique both for the basic research and as a tool in the hands of applied scientist. SANS is used for studying the structure of a material on a length scale of 10 - 1000 A. SANS is a diffraction experiment that involves scattering of a monocromatic beam of neutrons in order to obtain structural information about macromolecules and heterogeneities. This paper will discuss the design of SANS spectrometers with a special emphasis on the instruments which are better suited for medium flux reactors. The design of several different types of SANS spectrometers will be given. The optimization procedures and appropriate modifications to suit the budget and the space will be discussed. As an example, the design of a SANS spectrometer at CIRUS reactor Trombay will be given. (author)

  2. Motion parallax in immersive cylindrical display systems

    Science.gov (United States)

    Filliard, N.; Reymond, G.; Kemeny, A.; Berthoz, A.

    2012-03-01

    Motion parallax is a crucial visual cue produced by translations of the observer for the perception of depth and selfmotion. Therefore, tracking the observer viewpoint has become inevitable in immersive virtual (VR) reality systems (cylindrical screens, CAVE, head mounted displays) used e.g. in automotive industry (style reviews, architecture design, ergonomics studies) or in scientific studies of visual perception. The perception of a stable and rigid world requires that this visual cue be coherent with other extra-retinal (e.g. vestibular, kinesthetic) cues signaling ego-motion. Although world stability is never questioned in real world, rendering head coupled viewpoint in VR can lead to the perception of an illusory perception of unstable environments, unless a non-unity scale factor is applied on recorded head movements. Besides, cylindrical screens are usually used with static observers due to image distortions when rendering image for viewpoints different from a sweet spot. We developed a technique to compensate in real-time these non-linear visual distortions, in an industrial VR setup, based on a cylindrical screen projection system. Additionally, to evaluate the amount of discrepancies tolerated without perceptual distortions between visual and extraretinal cues, a "motion parallax gain" between the velocity of the observer's head and that of the virtual camera was introduced in this system. The influence of this artificial gain was measured on the gait stability of free-standing participants. Results indicate that, below unity, gains significantly alter postural control. Conversely, the influence of higher gains remains limited, suggesting a certain tolerance of observers to these conditions. Parallax gain amplification is therefore proposed as a possible solution to provide a wider exploration of space to users of immersive virtual reality systems.

  3. Head-Worn Displays: A Review

    Science.gov (United States)

    Cakmakci, Ozan; Rolland, Jannick

    2006-09-01

    Head-worn display design is inherently an interdisciplinary subject fusing optical engineering, optical materials, optical coatings, electronics, manufacturing techniques, user interface design, computer science, human perception, and physiology for assessing these displays. This paper summarizes the state-of-the-art in head-worn display design (HWD) and development. This review is focused on the optical engineering aspects, divided into different sections to explore principles and applications. Building on the guiding fundamentals of optical design and engineering, the principles section includes a summary of microdisplay or laser sources, the Lagrange invariant for understanding the trade-offs in optical design of HWDs, modes of image presentation (i.e., monocular, biocular, and stereo) and operational modes such as optical and video see-through. A brief summary of the human visual system pertinent to the design of HWDs is provided. Two optical design forms, namely, pupil forming and non-pupil forming are discussed. We summarize the results from previous design work using aspheric, diffractive, or holographic elements to achieve compact and lightweight systems. The applications section is organized in terms of field of view requirements and presents a reasonable collection of past designs.

  4. Flexible Bistable Cholesteric Reflective Displays

    Science.gov (United States)

    Yang, Deng-Ke

    2006-03-01

    Cholesteric liquid crystals (ChLCs) exhibit two stable states at zero field condition-the reflecting planar state and the nonreflecting focal conic state. ChLCs are an excellent candidate for inexpensive and rugged electronic books and papers. This paper will review the display cell structure,materials and drive schemes for flexible bistable cholesteric (Ch) reflective displays.

  5. Displays: Entering a New Dimension

    Science.gov (United States)

    Starkman, Neal

    2007-01-01

    As display technologies prepare to welcome 3-D, the 21st-century classroom will soon bear little resemblance to anything students and teachers have ever seen. In this article, the author presents the latest innovations in the world of digital display technology. These include: (1) Touchlight, an interactive touch screen program that takes a normal…

  6. Software for graphic display systems

    International Nuclear Information System (INIS)

    Karlov, A.A.

    1978-01-01

    In this paper some aspects of graphic display systems are discussed. The design of a display subroutine library is described, with an example, and graphic dialogue software is considered primarily from the point of view of the programmer who uses a high-level language. (Auth.)

  7. Methods of visualizing graphs

    Science.gov (United States)

    Wong, Pak C.; Mackey, Patrick S.; Perrine, Kenneth A.; Foote, Harlan P.; Thomas, James J.

    2008-12-23

    Methods for visualizing a graph by automatically drawing elements of the graph as labels are disclosed. In one embodiment, the method comprises receiving node information and edge information from an input device and/or communication interface, constructing a graph layout based at least in part on that information, wherein the edges are automatically drawn as labels, and displaying the graph on a display device according to the graph layout. In some embodiments, the nodes are automatically drawn as labels instead of, or in addition to, the label-edges.

  8. Visual Culture and Visual Literacy

    Directory of Open Access Journals (Sweden)

    Sibel Onursoy

    2017-03-01

    Full Text Available Recently visual literacy gains importance in the context of understanding the rising visual culture products, thinking about them and producing these products. The purpose of this article examines the concept of visual literacy that is the relationship with visual culture depending on the literature. Visual literacy is one of the multiple literatures that emerge from the development of information and information dissemination forms. Visual literacy is an interdisciplinary concept and associated with some areas, such as graphic design, visual arts, architectural engineering, industrial product design, visual communication and media literacy. Visual culture covers every human product, so visual products that we face in everyday life and visual realities with abundant alternatives constitute our daily life itself. Sometimes, this confusing visual understanding creates a gap between contemporary cultural richness and what can be observed.

  9. To 'display' or not to 'display'- that is the peptide

    CSIR Research Space (South Africa)

    Crampton, Michael C

    2008-11-01

    Full Text Available -6935 3. Ezaki, E., Tsukio, M., Takagi, M., and Imanaka, T. 1998. Display of heterologous gene products on the Escherichia coli cell surface as fusion proteins with flagellin. J. Ferment. Bioeng. 86: 500-503 4. Kondo, A. and Ueda, M. 2004. Yeast crll...-surface display-applications of molecular display. Appl. Microbiol. Biotechnol. 64: 28-40 5. Kuwajima, G., Asaka, J.-I., Fujiwara, T., Fujiwara, T., Nakano, K., Kondoh, E. 1988. Presentation of an antigenic determinant from hen egg-white lysozyme...

  10. INFORMATION DISPLAY: CONSIDERATIONS FOR DESIGNING COMPUTER-BASED DISPLAY SYSTEMS

    International Nuclear Information System (INIS)

    O'HARA, J.M.; PIRUS, D.; BELTRATCCHI, L.

    2004-01-01

    This paper discussed the presentation of information in computer-based control rooms. Issues associated with the typical displays currently in use are discussed. It is concluded that these displays should be augmented with new displays designed to better meet the information needs of plant personnel and to minimize the need for interface management tasks (the activities personnel have to do to access and organize the information they need). Several approaches to information design are discussed, specifically addressing: (1) monitoring, detection, and situation assessment; (2) routine task performance; and (3) teamwork, crew coordination, collaborative work

  11. Children's Control/Display Stereotypes.

    Science.gov (United States)

    Hoffmann, Errol R; Chan, Alan H S; Tai, Judy P C

    2018-02-01

    Objective The aim of this study was to determine control/display stereotypes for children of a range of ages and development of these stereotypes with age. Background Little is known about control/display stereotypes for children of different ages and the way in which these stereotypes develop with age. This study is part of a program to determine the need to design differentially for these age groups. Method We tested four groups of children with various tasks (age groups 5 to 7, 8 to 10, 11 to 13, 14 to 16), with about 30 in each group. Examples of common tasks were opening a bottle, turning on taps, and allocating numbers to keypads. More complex tasks involved rotating a control to move a display in a requested direction. Results Tasks with which different age groups were familiar showed no effect of age group. Different control/display arrangements generally showed an increase in stereotype strength with age, with dependence on the form of the control/display arrangement. Two-dimensional arrangements, with the control on the same plane as the display, had higher stereotype strength than three-dimensional arrangements for all age groups, suggesting an effect of familiarity with controls and displays with increasing age. Conclusion Children's control/display stereotypes do not differ greatly from those of adults, and hence, design for children older than 5 years of age, for control/display stereotypes, can be the same as that for adult populations. Application When designing devices for children, the relationship between controls and displays can be as for adult populations, for which there are considerable experimental data.

  12. On the Maximum Separation of Visual Binaries

    Indian Academy of Sciences (India)

    2016-01-27

    minimum) angular separation ρmax(ρmin), the corresponding apparent position angles (|ρmax , |ρmin) and the individual masses of visual binary systems. The algorithm uses Reed's formulae (1984) for the masses, and a ...

  13. Haptization of molecular dynamics simulation with thermal display

    International Nuclear Information System (INIS)

    Tamura, Yuichi; Fujiwara, Susumu; Nakamura, Hiroaki

    2010-01-01

    Thermal display, which is a type of haptic display, is effective in providing intuitive information of temperature. However, in many studies, the user has assumed a sitting position during the use of these devices. In contrast, the user generally watches 3D objects while standing and walking around in large-scale virtual reality system, In addition, in scientific visualization, the response time is very important for observing physical phenomena, especially for dynamic numerical simulation. One solution is to provide two types of thermal information: information about the rate of thermal change and information about the actual temperature. We propose a thermal display with two Peltier elements which can show above two pairs of information and the result (for example energy and temperature, as thermal information) of numerical simulation. Finally, we represent an example of visualizing and haptizing the result of molecular dynamics simulation. (author)

  14. SureTrak Probability of Impact Display

    Science.gov (United States)

    Elliott, John

    2012-01-01

    The SureTrak Probability of Impact Display software was developed for use during rocket launch operations. The software displays probability of impact information for each ship near the hazardous area during the time immediately preceding the launch of an unguided vehicle. Wallops range safety officers need to be sure that the risk to humans is below a certain threshold during each use of the Wallops Flight Facility Launch Range. Under the variable conditions that can exist at launch time, the decision to launch must be made in a timely manner to ensure a successful mission while not exceeding those risk criteria. Range safety officers need a tool that can give them the needed probability of impact information quickly, and in a format that is clearly understandable. This application is meant to fill that need. The software is a reuse of part of software developed for an earlier project: Ship Surveillance Software System (S4). The S4 project was written in C++ using Microsoft Visual Studio 6. The data structures and dialog templates from it were copied into a new application that calls the implementation of the algorithms from S4 and displays the results as needed. In the S4 software, the list of ships in the area was received from one local radar interface and from operators who entered the ship information manually. The SureTrak Probability of Impact Display application receives ship data from two local radars as well as the SureTrak system, eliminating the need for manual data entry.

  15. Comparison of various methods for estimating wave incident angles ...

    African Journals Online (AJOL)

    Five different methods were examined for their suitability in estimating the inshore wave incident angles on a nearshore zone with a complex topography. Visual observation provided preliminary estimates. Two frequency independent methods and one frequency dependent method based on current meter measurements ...

  16. Impaired Saccadic Eye Movement in Primary Open-angle Glaucoma

    DEFF Research Database (Denmark)

    Lamirel, Cédric; Milea, Dan; Cochereau, Isabelle

    2013-01-01

    PURPOSE:: Our study aimed at investigating the extent to which saccadic eye movements are disrupted in patients with primary open-angle glaucoma (POAG). This approach followed upon the discovery of differences in the eye-movement behavior of POAG patients during the exploration of complex visual...

  17. Compliance to Medical Therapy of Primary Open Angle Glaucoma in ...

    African Journals Online (AJOL)

    Background: The aim of this study was to determinethe rate of compliance to medical therapy of primary open angle glaucoma in Enugu with a view to improving patient care and reducing visual deterioration and loss from glaucoma. Method: One hundred and five patients were reviewed from the glaucoma patients who ...

  18. Presenting features ofprimary angle-closure glaucotna in patients ...

    African Journals Online (AJOL)

    underwent a full ophthalmic examination including slit- lamp examination, applanation tonometry and direct ophthalmoscopy. The best corrected visual acuity was recorded after control of the acme episode of intra-ocu- lar pressure rise. The drainage angle was assessed by means of manipulative Goldmann gonioscopy or ...

  19. M2DART: a real image rear-projection display

    Science.gov (United States)

    Best, Leonard G.; Wight, Don R.; Peppler, Philipp W.

    1999-08-01

    The Mobile Modular Display for Advanced Research and Training (M2DART) was designed and fabricated at the Air Force Research Laboratory (AFRL) Warfighter Training Research Facility. The M2DART is part of a long term development goal of AFRL to produce a display and imaging system combination with significantly improved visual acuity in a full field-of- view/field-of-regard environment. The M2DART is an eight- channel, state-of-the-art, real image, rear-projection visual display system. It is a full color, high resolution, wraparound display designed for use with single-seat cockpit simulators. Depending on the number of available image generator channels, the system allows for a wide instantaneous field-of-view, when used in conjunction with a magnetic head tracker and video router combination to provide a full field- of-regard. The display is designed to accommodate a variety of visual image generators and cockpit simulators. The system uses commercial off-the-shelf (COTS) BARCO CRT projectors to display the out-the-window (OTW) visual imagery to the pilot. The M2DART concept demonstrates that a rear-projected, real image approach is a viable means of providing full color imagery to flight simulators with improved brightness and resolution characteristics. The final design of the M2DART represents a balance between such considerations as training requirements, the number of available image generator channels, system resolution, field of view, brightness, image stability and maintainability. This paper will provide a system description, which includes design trade-off considerations, hardware configuration, screen geometry, field of view, and performance specifications.

  20. Generalization of the Euler Angles

    Science.gov (United States)

    Bauer, Frank H. (Technical Monitor); Shuster, Malcolm D.; Markley, F. Landis

    2002-01-01

    It is shown that the Euler angles can be generalized to axes other than members of an orthonormal triad. As first shown by Davenport, the three generalized Euler axes, hereafter: Davenport axes, must still satisfy the constraint that the first two and the last two axes be mutually perpendicular if these axes are to define a universal set of attitude parameters. Expressions are given which relate the generalized Euler angles, hereafter: Davenport angles, to the 3-1-3 Euler angles of an associated direction-cosine matrix. The computation of the Davenport angles from the attitude matrix and their kinematic equation are presented. The present work offers a more direct development of the Davenport angles than Davenport's original publication and offers additional results.

  1. A visual template-matching method for articulation angle measurement

    CSIR Research Space (South Africa)

    De Saxe, C

    2015-09-01

    Full Text Available and proposed sensing methods are limited either in terms of commercial feasibility or measurement accuracy. This paper investigates a vision-based system consisting of a single tractor-mounted camera, a template-matching image processing algorithm...

  2. Display characterization by eye: contrast ratio and discrimination throughout the grayscale

    Science.gov (United States)

    Gille, Jennifer; Arend, Larry; Larimer, James O.

    2004-06-01

    We have measured the ability of observers to estimate the contrast ratio (maximum white luminance / minimum black or gray) of various displays and to assess luminous discrimination over the tonescale of the display. This was done using only the computer itself and easily-distributed devices such as neutral density filters. The ultimate goal of this work is to see how much of the characterization of a display can be performed by the ordinary user in situ, in a manner that takes advantage of the unique abilities of the human visual system and measures visually important aspects of the display. We discuss the relationship among contrast ratio, tone scale, display transfer function and room lighting. These results may contribute to the development of applications that allow optimization of displays for the situated viewer / display system without instrumentation and without indirect inferences from laboratory to workplace.

  3. Moiré-reduction method for slanted-lenticular-based quasi-three-dimensional displays

    Science.gov (United States)

    Zhuang, Zhenfeng; Surman, Phil; Zhang, Lei; Rawat, Rahul; Wang, Shizheng; Zheng, Yuanjin; Sun, Xiao Wei

    2016-12-01

    In this paper we present a method for determining the preferred slanted angle for a lenticular film that minimizes moiré patterns in quasi-three-dimensional (Q3D) displays. We evaluate the preferred slanted angles of the lenticular film for the stripe-type sub-pixel structure liquid crystal display (LCD) panel. Additionally, the sub-pixels mapping algorithm of the specific angle is proposed to assign the images to either the right or left eye channel. A Q3D display prototype is built. Compared with the conventional SLF, this newly implemented Q3D display can not only eliminate moiré patterns but also provide 3D images in both portrait and landscape orientations. It is demonstrated that the developed slanted lenticular film (SLF) provides satisfactory 3D images by employing a compact structure, minimum moiré patterns and stabilized 3D contrast.

  4. Angle Performance on Optima XE

    International Nuclear Information System (INIS)

    David, Jonathan; Satoh, Shu

    2011-01-01

    Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were able to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1σ). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.

  5. Qt Quality Visualization

    OpenAIRE

    Sippola, Juha

    2013-01-01

    The idea for this Bachelor’s thesis came from Digia, which develops Qt, a cross-platform application and UI framework for software developers, together with the Qt Project, a meritocratic consensus-based open source developer community. The main objective of this thesis was to improve the visualization and communication of the Qt quality by creating a web portal to collect and display metrics on required Qt process areas, focusing on continuous integration. Raw results are available from many...

  6. Science information systems: Visualization

    Science.gov (United States)

    Wall, Ray J.

    1991-01-01

    Future programs in earth science, planetary science, and astrophysics will involve complex instruments that produce data at unprecedented rates and volumes. Current methods for data display, exploration, and discovery are inadequate. Visualization technology offers a means for the user to comprehend, explore, and examine complex data sets. The goal of this program is to increase the effectiveness and efficiency of scientists in extracting scientific information from large volumes of instrument data.

  7. Visual art and visual perception

    NARCIS (Netherlands)

    Koenderink, Jan J.

    2015-01-01

    Visual art and visual perception ‘Visual art’ has become a minor cul-de-sac orthogonal to THE ART of the museum directors and billionaire collectors. THE ART is conceptual, instead of visual. Among its cherished items are the tins of artist’s shit (Piero Manzoni, 1961, Merda d’Artista) “worth their

  8. Ten inch Planar Optic Display

    Energy Technology Data Exchange (ETDEWEB)

    Beiser, L. [Beiser (Leo) Inc., Flushing, NY (United States); Veligdan, J. [Brookhaven National Lab., Upton, NY (United States)

    1996-04-01

    A Planar Optic Display (POD) is being built and tested for suitability as a high brightness replacement for the cathode ray tube, (CRT). The POD display technology utilizes a laminated optical waveguide structure which allows a projection type of display to be constructed in a thin (I to 2 inch) housing. Inherent in the optical waveguide is a black cladding matrix which gives the display a black appearance leading to very high contrast. A Digital Micromirror Device, (DMD) from Texas Instruments is used to create video images in conjunction with a 100 milliwatt green solid state laser. An anamorphic optical system is used to inject light into the POD to form a stigmatic image. In addition to the design of the POD screen, we discuss: image formation, image projection, and optical design constraints.

  9. 10-inch planar optic display

    Science.gov (United States)

    Beiser, Leo; Veligdan, James T.

    1996-05-01

    A planar optic display (POD) is being built and tested for suitability as a high brightness replacement for the cathode ray tube, (CRT). The POD display technology utilizes a laminated optical waveguide structure which allows a projection type of display to be constructed in a thin (1 to 2 inch) housing. Inherent in the optical waveguide is a black cladding matrix which gives the display a black appearance leading to very high contrast. A digital micromirror device, (DMD) from Texas Instruments is used to create video images in conjunction with a 100 milliwatt green solid state laser. An anamorphic optical system is used to inject light into the POD to form a stigmatic image. In addition to the design of the POD screen, we discuss: image formation, image projection, and optical design constraints.

  10. Integrated Display & Environmental Awareness System

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is the development of a head mounted display for use in operations here on Earth and in Space. The technology would provide various means of...

  11. Volumetric 3D Display System with Static Screen

    Science.gov (United States)

    Geng, Jason

    2011-01-01

    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous

  12. Relationship between the Angle of Repose and Angle of Internal ...

    African Journals Online (AJOL)

    ghum and rice. The angles have a big influence on the design offlow and storage structures of ... the angles of internal friction for the same grains and same moisture contents. The data ob- tained were fed into SAS statistical software for step-wise regression analysis. A model of the ..... tion, Application and Validation of En-.

  13. Small angle neutron scattering

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  14. The Human Dimension of Battlespace Visualization: Research and Design Issues

    National Research Council Canada - National Science Library

    Barnes, Michael

    2003-01-01

    ...) and predict COA results. Specific topics covered as part of situation understanding included terrain visualization, situation displays that use symbology, techniques for abstract visualizations, and multi-media knowledge walls...

  15. A novel shape-changing haptic table-top display

    Science.gov (United States)

    Wang, Jiabin; Zhao, Lu; Liu, Yue; Wang, Yongtian; Cai, Yi

    2018-01-01

    A shape-changing table-top display with haptic feedback allows its users to perceive 3D visual and texture displays interactively. Since few existing devices are developed as accurate displays with regulatory haptic feedback, a novel attentive and immersive shape changing mechanical interface (SCMI) consisting of image processing unit and transformation unit was proposed in this paper. In order to support a precise 3D table-top display with an offset of less than 2 mm, a custommade mechanism was developed to form precise surface and regulate the feedback force. The proposed image processing unit was capable of extracting texture data from 2D picture for rendering shape-changing surface and realizing 3D modeling. The preliminary evaluation result proved the feasibility of the proposed system.

  16. Towards an assistive peripheral visual prosthesis for long-term treatment of retinitis pigmentosa: evaluating mobility performance in immersive simulations

    Science.gov (United States)

    Zapf, Marc Patrick H.; Boon, Mei-Ying; Matteucci, Paul B.; Lovell, Nigel H.; Suaning, Gregg J.

    2015-06-01

    Objective. The prospective efficacy of a future peripheral retinal prosthesis complementing residual vision to raise mobility performance in non-end stage retinitis pigmentosa (RP) was evaluated using simulated prosthetic vision (SPV). Approach. Normally sighted volunteers were fitted with a wide-angle head-mounted display and carried out mobility tasks in photorealistic virtual pedestrian scenarios. Circumvention of low-lying obstacles, path following, and navigating around static and moving pedestrians were performed either with central simulated residual vision of 10° alone or enhanced by assistive SPV in the lower and lateral peripheral visual field (VF). Three layouts of assistive vision corresponding to hypothetical electrode array layouts were compared, emphasizing higher visual acuity, a wider visual angle, or eccentricity-dependent acuity across an intermediate angle. Movement speed, task time, distance walked and collisions with the environment were analysed as performance measures. Main results. Circumvention of low-lying obstacles was improved with all tested configurations of assistive SPV. Higher-acuity assistive vision allowed for greatest improvement in walking speeds—14% above that of plain residual vision, while only wide-angle and eccentricity-dependent vision significantly reduced the number of collisions—both by 21%. Navigating around pedestrians, there were significant reductions in collisions with static pedestrians by 33% and task time by 7.7% with the higher-acuity layout. Following a path, higher-acuity assistive vision increased walking speed by 9%, and decreased collisions with stationary cars by 18%. Significance. The ability of assistive peripheral prosthetic vision to improve mobility performance in persons with constricted VFs has been demonstrated. In a prospective peripheral visual prosthesis, electrode array designs need to be carefully tailored to the scope of tasks in which a device aims to assist. We posit that maximum

  17. Flow visualization

    CERN Document Server

    Merzkirch, Wolfgang

    1974-01-01

    Flow Visualization describes the most widely used methods for visualizing flows. Flow visualization evaluates certain properties of a flow field directly accessible to visual perception. Organized into five chapters, this book first presents the methods that create a visible flow pattern that could be investigated by visual inspection, such as simple dye and density-sensitive visualization methods. It then deals with the application of electron beams and streaming birefringence. Optical methods for compressible flows, hydraulic analogy, and high-speed photography are discussed in other cha

  18. Remote handling recognition and display device

    International Nuclear Information System (INIS)

    Kimura, Motohiko.

    1979-01-01

    Purpose: To surely recognize the movements of remote handling equipments in a reactor by the use of a device in a simple structure. Constitution: A light emission surface and a light reception surface are provided, for example, putting therebetween a hook of a nob of a control rod as a remote control equipment. Depending on the position of the hook, there are two possible cases where the light can not arrive the light reception surface inhibited by the hook and where the light can be received not inhibited by the hook. By visually monitoring the presence or absence of the light reception from the outside of the reactor, the movement of the nob for the control rod can be recognized. Optical fibers connect the optical source with the light emission surface, and the light reception surface with the display surface. (Ikeda, J.)

  19. Remote access and display of neutron data

    Science.gov (United States)

    Chatterjee, A.; Mikkelson, D.; Mikkelson, R.; Hammonds, J.; Worlton, T.

    With the proliferation of high-intensity neutron sources and involvement of scientists from diverse areas, it is important to provide methods for remote access and display of data. We have developed an integrated spectral analysis workbench (ISAW) that can read, merge or combine, operate on, and visualize large arrays of data. ISAW is written in Java to allow it to run on common user workstations and to facilitate network communications. Recently, we added the ability to remotely access live data made available through a data server running on the control computer. This data server receives UDP data packets from a data sender running as part of the data-acquisition system and sends TCP data packets requested by ISAW clients running on user desktop systems.

  20. Creating Gaze Annotations in Head Mounted Displays

    DEFF Research Database (Denmark)

    Mardanbeigi, Diako; Qvarfordt, Pernilla

    2015-01-01

    To facilitate distributed communication in mobile settings, we developed GazeNote for creating and sharing gaze annotations in head mounted displays (HMDs). With gaze annotations it possible to point out objects of interest within an image and add a verbal description. To create an annota- tion......, the user simply captures an image using the HMD’s camera, looks at an object of interest in the image, and speaks out the information to be associated with the object. The gaze location is recorded and visualized with a marker. The voice is transcribed using speech recognition. Gaze annotations can...... be shared. Our study showed that users found that gaze annotations add precision and expressive- ness compared to annotations of the image as a whole...

  1. Full Parallax Integral 3D Display and Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    Byung-Gook Lee

    2015-02-01

    Full Text Available Purpose – Full parallax integral 3D display is one of the promising future displays that provide different perspectives according to viewing direction. In this paper, the authors review the recent integral 3D display and image processing techniques for improving the performance, such as viewing resolution, viewing angle, etc.Design/methodology/approach – Firstly, to improve the viewing resolution of 3D images in the integral imaging display with lenslet array, the authors present 3D integral imaging display with focused mode using the time-multiplexed display. Compared with the original integral imaging with focused mode, the authors use the electrical masks and the corresponding elemental image set. In this system, the authors can generate the resolution-improved 3D images with the n×n pixels from each lenslet by using n×n time-multiplexed display. Secondly, a new image processing technique related to the elemental image generation for 3D scenes is presented. With the information provided by the Kinect device, the array of elemental images for an integral imaging display is generated.Findings – From their first work, the authors improved the resolution of 3D images by using the time-multiplexing technique through the demonstration of the 24 inch integral imaging system. Authors’ method can be applied to a practical application. Next, the proposed method with the Kinect device can gain a competitive advantage over other methods for the capture of integral images of big 3D scenes. The main advantage of fusing the Kinect and the integral imaging concepts is the acquisition speed, and the small amount of handled data.Originality / Value – In this paper, the authors review their recent methods related to integral 3D display and image processing technique.Research type – general review.

  2. Measurement of the angle gamma

    International Nuclear Information System (INIS)

    Aleksan, R.; Sphicas, P.; Massachusetts Inst. of Tech., Cambridge, MA

    1993-12-01

    The angle γ as defined in the Wolfenstein approximation is not completely out of reach of current or proposed dedicated B experiments. This work represents but a first step in the direction of extracting the third angle of the unitarity triangle by study the feasibility of using new decay modes in a hadronic machine. (A.B.). 11 refs., 1 fig., 7 tabs

  3. Nucleation of small angle boundaries

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1996-12-01

    Full Text Available The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition...

  4. Visualization of multidimensional database

    Science.gov (United States)

    Lee, Chung

    2008-01-01

    The concept of multidimensional databases has been extensively researched and wildly used in actual database application. It plays an important role in contemporary information technology, but due to the complexity of its inner structure, the database design is a complicated process and users are having a hard time fully understanding and using the database. An effective visualization tool for higher dimensional information system helps database designers and users alike. Most visualization techniques focus on displaying dimensional data using spreadsheets and charts. This may be sufficient for the databases having three or fewer dimensions but for higher dimensions, various combinations of projection operations are needed and a full grasp of total database architecture is very difficult. This study reviews existing visualization techniques for multidimensional database and then proposes an alternate approach to visualize a database of any dimension by adopting the tool proposed by Kiviat for software engineering processes. In this diagramming method, each dimension is represented by one branch of concentric spikes. This paper documents a C++ based visualization tool with extensive use of OpenGL graphics library and GUI functions. Detailed examples of actual databases demonstrate the feasibility and effectiveness in visualizing multidimensional databases.

  5. Use of color on airport moving maps and cockpit displays of traffic information (CDTIs)

    Science.gov (United States)

    2014-06-01

    Color can be an effective method for coding visual information, making it easier to find and identify symbols on a display (Christ, 1975). However, careful consideration should be given when applying color because excessive or inappropriate use of co...

  6. Real-time Image Generation for Compressive Light Field Displays

    International Nuclear Information System (INIS)

    Wetzstein, G; Lanman, D; Hirsch, M; Raskar, R

    2013-01-01

    With the invention of integral imaging and parallax barriers in the beginning of the 20th century, glasses-free 3D displays have become feasible. Only today—more than a century later—glasses-free 3D displays are finally emerging in the consumer market. The technologies being employed in current-generation devices, however, are fundamentally the same as what was invented 100 years ago. With rapid advances in optical fabrication, digital processing power, and computational perception, a new generation of display technology is emerging: compressive displays exploring the co-design of optical elements and computational processing while taking particular characteristics of the human visual system into account. In this paper, we discuss real-time implementation strategies for emerging compressive light field displays. We consider displays composed of multiple stacked layers of light-attenuating or polarization-rotating layers, such as LCDs. The involved image generation requires iterative tomographic image synthesis. We demonstrate that, for the case of light field display, computed tomographic light field synthesis maps well to operations included in the standard graphics pipeline, facilitating efficient GPU-based implementations with real-time framerates.

  7. Next Generation Flight Displays Using HTML5

    Science.gov (United States)

    Greenwood, Brian

    2016-01-01

    The Human Integrated Vehicles and Environments (HIVE) lab at Johnson Space Center (JSC) is focused on bringing together inter-disciplinary talent to design and integrate innovative human interface technologies for next generation manned spacecraft. As part of this objective, my summer internship project centered on an ongoing investigation in to building flight displays using the HTML5 standard. Specifically, the goals of my project were to build and demo "flight-like" crew and wearable displays as well as create a webserver for live systems being developed by the Advanced Exploration Systems (AES) program. In parallel to my project, a LabVIEW application, called a display server, was created by the HIVE that uses an XTCE (XML (Extensible Markup Language) Telemetry and Command Exchange) parser and CCSDS (Consultative Committee for Space Data System) space packet decoder to translate telemetry items sent by the CFS (Core Flight Software) over User Datagram Protocol (UDP). It was the webserver's job to receive these UDP messages and send them to the displays. To accomplish this functionality, I utilized Node.js and the accompanying Express framework. On the display side, I was responsible for creating the power system (AMPS) displays. I did this by using HTML5, CSS and JavaScript to create web pages that could update and change dynamically based on the data they received from the webserver. At this point, I have not started on the commanding, being able to send back to the CFS, portion of the displays but hope to have this functionality working by the completion of my internship. I also created a way to test the webserver's functionality without the display server by making a JavaScript application that read in a comma-separate values (CSV) file and converted it to XML which was then sent over UDP. One of the major requirements of my project was to build everything using as little preexisting code as possible, which I accomplished by only using a handful of Java

  8. Response terminated displays unload selective attention.

    Science.gov (United States)

    Roper, Zachary J J; Vecera, Shaun P

    2013-01-01

    Perceptual load theory successfully replaced the early vs. late selection debate by appealing to adaptive control over the efficiency of selective attention. Early selection is observed unless perceptual load (p-Load) is sufficiently low to grant attentional "spill-over" to task-irrelevant stimuli. Many studies exploring load theory have used limited display durations that perhaps impose artificial limits on encoding processes. We extended the exposure duration in a classic p-Load task to alleviate temporal encoding demands that may otherwise tax mnemonic consolidation processes. If the load effect arises from perceptual demands alone, then freeing-up available mnemonic resources by extending the exposure duration should have little effect. The results of Experiment 1 falsify this prediction. We observed a reliable flanker effect under high p-Load, response-terminated displays. Next, we orthogonally manipulated exposure duration and task-relevance. Counter-intuitively, we found that the likelihood of observing the flanker effect under high p-Load resides with the duration of the task-relevant array, not the flanker itself. We propose that stimulus and encoding demands interact to produce the load effect. Our account clarifies how task parameters differentially impinge upon cognitive processes to produce attentional "spill-over" by appealing to visual short-term memory as an additional processing bottleneck when stimuli are briefly presented.

  9. Response terminated displays unload selective attention

    Directory of Open Access Journals (Sweden)

    Zachary Joseph Jackson Roper

    2013-12-01

    Full Text Available Perceptual load theory successfully replaced the early versus late selection debate by appealing to adaptive control over the efficiency of selective attention. Early selection is observed unless perceptual load (p-Load is sufficiently low to grant attentional ‘spill-over‘ to task-irrelevant stimuli. Many studies exploring load theory have used limited display durations that perhaps impose artificial limits on encoding processes. We extended the exposure duration in a classic p-Load task to alleviate temporal encoding demands that may otherwise tax mnemonic consolidation processes. If the load effect arises from perceptual demands alone, then freeing-up available mnemonic resources by extending the exposure duration should have little effect. The results of Experiment 1 falsify this prediction. We observed a reliable flanker effect under high p-Load, response-terminated displays. Next, we orthogonally manipulated exposure duration and task-relevance. Counter-intuitively, we found that the likelihood of observing the flanker effect under high p-Load resides with the duration of the task-relevant array, not the flanker itself. We propose that stimulus and encoding demands interact to produce the load effect. Our account clarifies how task parameters differentially impinge upon cognitive processes to produce attentional ‘spill-over’ by appealing to visual short-term memory as an additional processing bottleneck when stimuli are briefly presented.

  10. Conventions for reporting and displaying overflight observations

    International Nuclear Information System (INIS)

    McFarland, B.; Murphy, J.; Simecek-Beatty, D.

    1993-01-01

    During the critical initial phases of an oil spill response, as observations and reports come in from different agencies and companies, descriptions and representations can vary widely. These apparently conflicting reports can cause unnecessary confusion, wasting valuable time and resources. As the number of open-quotes expertsclose quotes and the amount of open-quotes necessaryclose quotes information multiply, the potential for information overload also increases. Important information that needs to be presented can be lost in the flood of information that is available. For many years the National Oceanic and Atmospheric Administration (NOAA), in support of the US Coast Guard, has coordinated scientific input concerning the tracking and prediction of the transport of oil spilled in the marine environment. This role frequently involves recording visual or remote sensing observations from multiple platforms and observers, and displaying the information in a clear format, which needs to be rapidly available and unambiguous. Simple graphic products help identify conflicting views of information and allow responders to quickly build a open-quotes graphic consensusclose quotes of the situation. To this end the authors have developed in-house guidelines for presentation of crucial response information. Because correctly designed graphics can clearly and rapidly transmit large amounts of information, these guidelines focus on the graphic presentation of information. Some of these same conventions and criteria are being applied in evaluating and developing information acquisition and display tools. This poster presentation includes examples of the hardware and software used by Genwest and NOAA for the rapid display of response information

  11. Dye and pigment-free structural colors and angle-insensitive spectrum filters

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lingjie Jay; Hollowell, Andrew E.; Wu, Yi-Kuei

    2017-01-17

    Optical spectrum filtering devices displaying minimal angle dependence or angle insensitivity are provided. The filter comprises a localized plasmonic nanoresonator assembly having a metal material layer defining at least one nanogroove and a dielectric material disposed adjacent to the metal material layer. The dielectric material is disposed within the nanogroove(s). The localized plasmonic nanoresonator assembly is configured to funnel and absorb a portion of an electromagnetic spectrum in the at least one nanogroove via localized plasmonic resonance to generate a filtered output having a predetermined range of wavelengths that displays angle insensitivity. Thus, flexible, high efficiency angle independent color filters having very small diffraction limits are provided that are particularly suitable for use as pixels for various display devices or for use in anti-counterfeiting and cryptography applications. The structures can also be used for colored print applications and the elements can be rendered as pigment-like particles.

  12. Liquid crystals beyond displays chemistry, physics, and applications

    CERN Document Server

    Li, Quan

    2012-01-01

    The chemistry, physics, and applications of liquid crystals beyond LCDs Liquid Crystals (LCs) combine order and mobility on a molecular and supramolecular level. But while these remarkable states of matter are most commonly associated with visual display technologies, they have important applications for a variety of other fields as well. Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications considers these, bringing together cutting-edge research from some of the most promising areas of LC science. Featuring contributions from respected researchers from around the globe, th

  13. Controlling Power Consumption for Displays With Backlight Dimming

    DEFF Research Database (Denmark)

    Mantel, Claire; Burini, Nino; Nadernejad, Ehsan

    2013-01-01

    Backlight dimming of Liquid Crystal Displays (LCD) is a technology which aims at saving power and improving visual quality. The evolution of energy standards and the increasing public expectations regarding power consumption have made it necessary for backlight systems to manage their power....... Such a control is challenging to implement, because for LCD displays quality and power are closely interlinked, and one cannot be modified without affecting the other. To address this issue, we present a framework for power controlled backlight dimming defining some key concepts. Two methods to obtain backlights...

  14. Cognitive considerations for helmet-mounted display design

    Science.gov (United States)

    Francis, Gregory; Rash, Clarence E.

    2010-04-01

    Helmet-mounted displays (HMDs) are designed as a tool to increase performance. To achieve this, there must be an accurate transfer of information from the HMD to the user. Ideally, an HMD would be designed to accommodate the abilities and limitations of users' cognitive processes. It is not enough for the information (whether visual, auditory, or tactual) to be displayed; the information must be perceived, attended, remembered, and organized in a way that guides appropriate decision-making, judgment, and action. Following a general overview, specific subtopics of cognition, including perception, attention, memory, knowledge, decision-making, and problem solving are explored within the context of HMDs.

  15. Ventilation and perfusion display in a single image

    International Nuclear Information System (INIS)

    Lima, J.J.P. de; Botelho, M.F.R.; Pereira, A.M.S.; Rafael, J.A.S.; Pinto, A.J.; Marques, M.A.T.; Pereira, M.C.; Baganha, M.F.; Godinho, F.

    1991-01-01

    A new method of ventilation and perfusion display onto a single image is presented. From the data on regions of interest of the lungs, three-dimensional histograms are created, containing as parameters X and Y for the position of the pixels, Z for the perfusion and colour for local ventilation. The perfusion value is supplied by sets of curves having Z proportional to the local perfusion count rate. Ventilation modulates colour. Four perspective views of the histogram are simultaneously displayed to allow visualization of the entire organ. Information about the normal ranges for both ventilation and perfusion is also provided in the histograms. (orig.)

  16. Design, Implementation and Characterization of a Quantum-Dot-Based Volumetric Display

    Science.gov (United States)

    Hirayama, Ryuji; Naruse, Makoto; Nakayama, Hirotaka; Tate, Naoya; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ohtsu, Motoichi; Ito, Tomoyoshi

    2015-02-01

    In this study, we propose and experimentally demonstrate a volumetric display system based on quantum dots (QDs) embedded in a polymer substrate. Unlike conventional volumetric displays, our system does not require electrical wiring; thus, the heretofore unavoidable issue of occlusion is resolved because irradiation by external light supplies the energy to the light-emitting voxels formed by the QDs. By exploiting the intrinsic attributes of the QDs, the system offers ultrahigh definition and a wide range of colours for volumetric displays. In this paper, we discuss the design, implementation and characterization of the proposed volumetric display's first prototype. We developed an 8 × 8 × 8 display comprising two types of QDs. This display provides multicolour three-type two-dimensional patterns when viewed from different angles. The QD-based volumetric display provides a new way to represent images and could be applied in leisure and advertising industries, among others.

  17. Super long viewing distance light homogeneous emitting three-dimensional display

    Science.gov (United States)

    Liao, Hongen

    2015-04-01

    Three-dimensional (3D) display technology has continuously been attracting public attention with the progress in today's 3D television and mature display technologies. The primary characteristics of conventional glasses-free autostereoscopic displays, such as spatial resolution, image depths, and viewing angle, are often limited due to the use of optical lenses or optical gratings. We present a 3D display using MEMS-scanning-mechanism-based light homogeneous emitting (LHE) approach and demonstrate that the display can directly generate an autostereoscopic 3D image without the need for optical lenses or gratings. The generated 3D image has the advantages of non-aberration and a high-definition spatial resolution, making it the first to exhibit animated 3D images with image depth of six meters. Our LHE 3D display approach can be used to generate a natural flat-panel 3D display with super long viewing distance and alternative real-time image update.

  18. Data visualization

    CERN Document Server

    Azzam, Tarek

    2013-01-01

    Do you communicate data and information to stakeholders? In Part 1, we introduce recent developments in the quantitative and qualitative data visualization field and provide a historical perspective on data visualization, its potential role in evaluation practice, and future directions. Part 2 delivers concrete suggestions for optimally using data visualization in evaluation, as well as suggestions for best practices in data visualization design. It focuses on specific quantitative and qualitative data visualization approaches that include data dashboards, graphic recording, and geographic information systems (GIS). Readers will get a step-by-step process for designing an effective data dashboard system for programs and organizations, and various suggestions to improve their utility.

  19. ADST ARWA Visual System Module Software Design Document

    Science.gov (United States)

    1994-08-01

    a new visual scene. The VSC also monitors peripheral devices such as Out-The- Window Display System and the Head Tracker System and sends information...Helmet Mounted Display, Out-The- Window Display , and Joystick Interface: HardwareInterfaceControl Name: Hardware Interface Control Description: Hardware...Control going to CIG, Head Tracker, Helmet Mounted Display, Out-The- Window Display , and Joystick Interface: HardwareStat Name: Hardware Status

  20. Virtual Display Design and Evaluation of Clothing: A Design Process Support System

    Science.gov (United States)

    Zhang, Xue-Fang; Huang, Ren-Qun

    2014-01-01

    This paper proposes a new computer-aided educational system for clothing visual merchandising and display. It aims to provide an operating environment that supports the various stages of display design in a user-friendly and intuitive manner. First, this paper provides a brief introduction to current software applications in the field of…

  1. A faster technique for rendering meshes in multiple display systems

    Science.gov (United States)

    Hand, Randall E.; Moorhead, Robert J., II

    2003-05-01

    Level of detail algorithms have widely been implemented in architectural VR walkthroughs and video games, but have not had widespread use in VR terrain visualization systems. This thesis explains a set of optimizations to allow most current level of detail algorithms run in the types of multiple display systems used in VR. It improves both the visual quality of the system through use of graphics hardware acceleration, and improves the framerate and running time through moifications to the computaitons that drive the algorithms. Using ROAM as a testbed, results show improvements between 10% and 100% on varying machines.

  2. Research progress on related genes for primary open angle glaucoma

    Directory of Open Access Journals (Sweden)

    Ailijiang·Aierken

    2014-04-01

    Full Text Available Primary open angle glaucoma(POAGis the main cause of blindness with visual field damage and optic nerve degeneration. In recent years, a lot of researches have been done, showing that genetic factors and gene mutation play an important role in POAG. There are more than 20 related POAG genes. Now we will review the related genes of POAG, especially the well known causative genes of MYOC, OPTN, WDR36, and CAV1/CAV2, in terms of their locations, structures, research progress, et al, and provide a reference for genetic research in primary open-angle glaucoma.

  3. Real Time Sonic Boom Display

    Science.gov (United States)

    Haering, Ed

    2014-01-01

    This presentation will provide general information about sonic boom mitigation technology to the public in order to supply information to potential partners and licensees. The technology is a combination of flight data, atmospheric data and terrain information implemented into a control room real time display for flight planning. This research is currently being performed and as such, any results and conclusions are ongoing.

  4. Evaluation of Digital Mammography Display

    National Research Council Canada - National Science Library

    Pisano, Etta

    1999-01-01

    .... We have developed a mammography workstation that is easy to use and fast. The observer studies that will determine the diagnostic accuracy and acceptability of the digital mammograms and the soft copy display are presently under way and the results will be known by the end of the year, 1999.

  5. Information retrieval and display system

    Science.gov (United States)

    Groover, J. L.; King, W. L.

    1977-01-01

    Versatile command-driven data management system offers users, through simplified command language, a means of storing and searching data files, sorting data files into specified orders, performing simple or complex computations, effecting file updates, and printing or displaying output data. Commands are simple to use and flexible enough to meet most data management requirements.

  6. Display Apple M7649Zm

    CERN Multimedia

    2001-01-01

    It was Designed for the Power Mac G4. This Apple studio display gives you edge-to-edge distortion-free images. With more than 16.7 million colors and 1,280 x 1,024 dpi resolution, you view brilliant and bright images on this Apple 17-inch monitor.

  7. Modern Display Technologies and Applications

    Science.gov (United States)

    1982-01-01

    laboratory models of display devices have been demonstrated, such devices are not yet being considered for produccion . It is not apparent that they will...e.g. 1,1’-diheptyl - 4,4’ bipyridil brnmide ( salt with an organic cation-); commonly used in an aqueous solution and subsequently electrochemically

  8. Book Display as Adult Service.

    Science.gov (United States)

    Moore, Matthew S.

    1997-01-01

    Defines book display as an adult service as choosing and positioning adult books from the library collection to increase their circulation. The author contrasts bookstore arrangement for sales versus library arrangement for access, including contrasting missions, genre grouping, weeding, problems, and dimensions. (Author/LRW)

  9. Graphics Display of Foreign Scripts.

    Science.gov (United States)

    Abercrombie, John R.

    1987-01-01

    Describes Graphics Project for Foreign Language Learning at the University of Pennsylvania, which has developed ways of displaying foreign scripts on microcomputers. Character design on computer screens is explained; software for graphics, printing, and language instruction is discussed; and a text editor is described that corrects optically…

  10. Crystal ball single event display

    International Nuclear Information System (INIS)

    Grosnick, D.; Gibson, A.; Allgower, C.; Alyea, J.; Argonne National Lab., IL

    1997-01-01

    The Single Event Display (SED) is a routine that is designed to provide information graphically about a triggered event within the Crystal Ball. The SED is written entirely in FORTRAN and uses the CERN-based HICZ graphing package. The primary display shows the amount of energy deposited in each of the NaI crystals on a Mercator-like projection of the crystals. Ten different shades and colors correspond to varying amounts of energy deposited within a crystal. Information about energy clusters is displayed on the crystal map by outlining in red the thirteen (or twelve) crystals contained within a cluster and assigning each cluster a number. Additional information about energy clusters is provided in a series of boxes containing useful data about the energy distribution among the crystals within the cluster. Other information shown on the event display include the event trigger type and data about π o 's and η's formed from pairs of clusters as found by the analyzer. A description of the major features is given, along with some information on how to install the SED into the analyzer

  11. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...

  12. Display Sharing: An Alternative Paradigm

    Science.gov (United States)

    Brown, Michael A.

    2010-01-01

    The current Johnson Space Center (JSC) Mission Control Center (MCC) Video Transport System (VTS) provides flight controllers and management the ability to meld raw video from various sources with telemetry to improve situational awareness. However, maintaining a separate infrastructure for video delivery and integration of video content with data adds significant complexity and cost to the system. When considering alternative architectures for a VTS, the current system's ability to share specific computer displays in their entirety to other locations, such as large projector systems, flight control rooms, and back supporting rooms throughout the facilities and centers must be incorporated into any new architecture. Internet Protocol (IP)-based systems also support video delivery and integration. IP-based systems generally have an advantage in terms of cost and maintainability. Although IP-based systems are versatile, the task of sharing a computer display from one workstation to another can be time consuming for an end-user and inconvenient to administer at a system level. The objective of this paper is to present a prototype display sharing enterprise solution. Display sharing is a system which delivers image sharing across the LAN while simultaneously managing bandwidth, supporting encryption, enabling recovery and resynchronization following a loss of signal, and, minimizing latency. Additional critical elements will include image scaling support, multi -sharing, ease of initial integration and configuration, integration with desktop window managers, collaboration tools, host and recipient controls. This goal of this paper is to summarize the various elements of an IP-based display sharing system that can be used in today's control center environment.

  13. Observations at large zenith angles

    CERN Document Server

    Schroeder, F

    2000-01-01

    Cherenkov telescope observations at zenith angles >70 deg. are capable of providing large collection areas for high energy gamma-induced air showers. In order to provide a full Monte Carlo simulation of the large zenith angle observations the air shower simulation code CORSIKA was modified to treat particles in a curved geometry. First results of studies with the stand alone telescope HEGRA CT1 are presented.

  14. Relating Standardized Visual Perception Measures to Simulator Visual System Performance

    Science.gov (United States)

    Kaiser, Mary K.; Sweet, Barbara T.

    2013-01-01

    Human vision is quantified through the use of standardized clinical vision measurements. These measurements typically include visual acuity (near and far), contrast sensitivity, color vision, stereopsis (a.k.a. stereo acuity), and visual field periphery. Simulator visual system performance is specified in terms such as brightness, contrast, color depth, color gamut, gamma, resolution, and field-of-view. How do these simulator performance characteristics relate to the perceptual experience of the pilot in the simulator? In this paper, visual acuity and contrast sensitivity will be related to simulator visual system resolution, contrast, and dynamic range; similarly, color vision will be related to color depth/color gamut. Finally, we will consider how some characteristics of human vision not typically included in current clinical assessments could be used to better inform simulator requirements (e.g., relating dynamic characteristics of human vision to update rate and other temporal display characteristics).

  15. JTEC panel on display technologies in Japan

    Science.gov (United States)

    Tannas, Lawrence E., Jr.; Glenn, William E.; Credelle, Thomas; Doane, J. William; Firester, Arthur H.; Thompson, Malcolm

    1992-01-01

    This report is one in a series of reports that describes research and development efforts in Japan in the area of display technologies. The following are included in this report: flat panel displays (technical findings, liquid crystal display development and production, large flat panel displays (FPD's), electroluminescent displays and plasma panels, infrastructure in Japan's FPD industry, market and projected sales, and new a-Si active matrix liquid crystal display (AMLCD) factory); materials for flat panel displays (liquid crystal materials, and light-emissive display materials); manufacturing and infrastructure of active matrix liquid crystal displays (manufacturing logistics and equipment); passive matrix liquid crystal displays (LCD basics, twisted nematics LCD's, supertwisted nematic LCD's, ferroelectric LCD's, and a comparison of passive matrix LCD technology); active matrix technology (basic active matrix technology, investment environment, amorphous silicon, polysilicon, and commercial products and prototypes); and projection displays (comparison of Japanese and U.S. display research, and technical evaluation of work).

  16. Ruggedized Full-Color Flexible OLED Display

    National Research Council Canada - National Science Library

    Hack, Michael

    2003-01-01

    .... The team comprised Universal Display Corporation, Princeton University, the University of Southern California, Penn State University, L3 Displays and Vitex Systems, and was led by Universal Display Corporation (PI: Michael Hack...

  17. High-definition displays for realistic simulator and trainer systems

    Science.gov (United States)

    Daniels, Reginald; Hopper, Darrel G.; Beyer, Steve; Peppler, Philipp W.

    1998-09-01

    Current flight simulators and trainers do not provide acceptable levels of visual display performance (performance that would allow ground based trainers to economically replace aircraft flying training) for many air-to-air and air-to- ground training scenarios. Ground training for pilots could be made significantly more realistic, allowing the ground-based curricula to be enlarged. The enhanced ground based training could then more readily augment actual aircraft flying (training) time. This paper presents the technology need and opportunity to create a new class of immersive simulator- trainer systems having some 210 million pixels characterized especially by a 20-20 visual acuity synthetic vision system having some 150 million pixels. The same new display technology base is needed for planned crew stations for uninhabited combat air vehicles (UCAV), advanced aircraft cockpits and mission crewstations, and for the space plane.

  18. Evaluation of force-torque displays for use with space station telerobotic activities

    Science.gov (United States)

    Hendrich, Robert C.; Bierschwale, John M.; Manahan, Meera K.; Stuart, Mark A.; Legendre, A. Jay

    1992-01-01

    Recent experiments which addressed Space Station remote manipulation tasks found that tactile force feedback (reflecting forces and torques encountered at the end-effector through the manipulator hand controller) does not improve performance significantly. Subjective response from astronaut and non-astronaut test subjects indicated that force information, provided visually, could be useful. No research exists which specifically investigates methods of presenting force-torque information visually. This experiment was designed to evaluate seven different visual force-torque displays which were found in an informal telephone survey. The displays were prototyped in the HyperCard programming environment. In a within-subjects experiment, 14 subjects nullified forces and torques presented statically, using response buttons located at the bottom of the screen. Dependent measures included questionnaire data, errors, and response time. Subjective data generally demonstrate that subjects rated variations of pseudo-perspective displays consistently better than bar graph and digital displays. Subjects commented that the bar graph and digital displays could be used, but were not compatible with using hand controllers. Quantitative data show similar trends to the subjective data, except that the bar graph and digital displays both provided good performance, perhaps do to the mapping of response buttons to display elements. Results indicate that for this set of displays, the pseudo-perspective displays generally represent a more intuitive format for presenting force-torque information.

  19. Optimization of sharp and viewing-angle-independent structural color.

    Science.gov (United States)

    Hsu, Chia Wei; Miller, Owen D; Johnson, Steven G; Soljačić, Marin

    2015-04-06

    Structural coloration produces some of the most brilliant colors in nature and has many applications. Motivated by the recently proposed transparent displays that are based on wavelength-selective scattering, here we consider the new problem of transparent structural color, where objects are transparent under omnidirectional broad-band illumination but scatter strongly with a directional narrow-band light source. Transparent structural color requires two competing properties, narrow bandwidth and broad viewing angle, that have not been demonstrated simultaneously previously. Here, we use numerical optimization to discover geometries where a sharp 7% bandwidth in scattering is achieved, yet the peak wavelength varies less than 1%, and the peak height and peak width vary less than 6% over broad viewing angles (0-90°) under a directional illumination. Our model system consists of dipole scatterers arranged into several rings; interference among the scattered waves is optimized to yield the wavelength-selective and angle-insensitive response.

  20. Evaluation of stereoscopic 3D displays for image analysis tasks

    Science.gov (United States)

    Peinsipp-Byma, E.; Rehfeld, N.; Eck, R.

    2009-02-01

    In many application domains the analysis of aerial or satellite images plays an important role. The use of stereoscopic display technologies can enhance the image analyst's ability to detect or to identify certain objects of interest, which results in a higher performance. Changing image acquisition from analog to digital techniques entailed the change of stereoscopic visualisation techniques. Recently different kinds of digital stereoscopic display techniques with affordable prices have appeared on the market. At Fraunhofer IITB usability tests were carried out to find out (1) with which kind of these commercially available stereoscopic display techniques image analysts achieve the best performance and (2) which of these techniques achieve a high acceptance. First, image analysts were interviewed to define typical image analysis tasks which were expected to be solved with a higher performance using stereoscopic display techniques. Next, observer experiments were carried out whereby image analysts had to solve defined tasks with different visualization techniques. Based on the experimental results (performance parameters and qualitative subjective evaluations of the used display techniques) two of the examined stereoscopic display technologies were found to be very good and appropriate.

  1. Display of high dynamic range images under varying viewing conditions

    Science.gov (United States)

    Borer, Tim

    2017-09-01

    Recent demonstrations of high dynamic range (HDR) television have shown that superb images are possible. With the emergence of an HDR television production standard (ITU-R Recommendation BT.2100) last year, HDR television production is poised to take off. However research to date has focused principally on HDR image display only under "dark" viewing conditions. HDR television will need to be displayed at varying brightness and under varying illumination (for example to view sport in daytime or on mobile devices). We know, from common practice with conventional TV, that the rendering intent (gamma) should change under brighter conditions, although this is poorly quantified. For HDR the need to render images under varying conditions is all the more acute. This paper seeks to explore the issues surrounding image display under varying conditions. It also describes how visual adaptation is affected by display brightness, surround illumination, screen size and viewing distance. Existing experimental results are presented and extended to try to quantify these effects. Using the experimental results it is described how HDR images may be displayed so that they are perceptually equivalent under different viewing conditions. A new interpretation of the experimental results is reported, yielding a new, luminance invariant model for the appropriate display "gamma". In this way the consistency of HDR image reproduction should be improved, thereby better maintaining "creative intent" in television.

  2. Looking forward: In-vehicle auxiliary display positioning affects carsickness.

    Science.gov (United States)

    Kuiper, Ouren X; Bos, Jelte E; Diels, Cyriel

    2018-04-01

    Carsickness is associated with a mismatch between actual and anticipated sensory signals. Occupants of automated vehicles, especially when using a display, are at higher risk of becoming carsick than drivers of conventional vehicles. This study aimed to evaluate the impact of positioning of in-vehicle displays, and subsequent available peripheral vision, on carsickness of passengers. We hypothesized that increased peripheral vision during display use would reduce carsickness. Seated in the front passenger seat 18 participants were driven a 15-min long slalom on two occasions while performing a continuous visual search-task. The display was positioned either at 1) eye-height in front of the windscreen, allowing peripheral view on the outside world, and 2) the height of the glove compartment, allowing only limited view on the outside world. Motion sickness was reported at 1-min intervals. Using a display at windscreen height resulted in less carsickness compared to a display at glove compartment height. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Comparison of Ankle Joint Visualization Between the 70° and 30° Arthroscopes: A Cadaveric Study.

    Science.gov (United States)

    Tonogai, Ichiro; Hayashi, Fumio; Tsuruo, Yoshihiro; Sairyo, Koichi

    2018-02-01

    Ankle arthroscopy is an important diagnostic and therapeutic tool. Arthroscopic ankle surgery for anterior ankle impingement or osteochondral lesions (OCLs) is mostly performed with a 30° arthroscope; however, visualization of lesions is sometimes difficult. This study sought to compare ankle joint visualization between 70° and 30° arthroscopes and clarify the effectiveness of 70° arthroscopy. Standard anterolateral and anteromedial portals were placed with 4-mm 70° or 30° angled arthroscopes in a fresh 77-year-old male cadaveric ankle. The medial ligament and surrounding tissue were dissected via a medial malleolar skin incision. Kirschner wires were inserted into the distal tibia anterior edge; 5-mm diameter OCLs were created on the medial talar gutter anteriorly, midway, and posteriorly. The talar dome and distal tibia anterior edge were visualized using both arthroscopes. The 70° arthroscope displayed the anterior edge of the distal tibia immediately in front of the arthroscope, allowing full visualization of the posterior OCL of the medial talar gutter more clearly than the 30° arthroscope. This study revealed better ankle joint visualization with the 70° arthroscope, and may enable accurate, safe, and complete debridement, especially in treatment of medial talar gutter posterior OCLs and removal of anterior distal tibial edge bony impediments. Level IV, Anatomic study.

  4. Holographic video display using digital micromirrors (Invited Paper)

    Science.gov (United States)

    Huebschman, Michael L.; Munjuluri, Bala; Hunt, Jeremy; Garner, Harold R.

    2005-04-01

    We have established that the digital micromirror device (DMD), a component of the Texas Instrument Digital Light Processing system, can be used as a holographic medium by calculating a computer-generated hologram (CGH) and projecting multiple objects at various distances with a single hologram. Like other spatial light modulators (SLM), the DMD has the dynamic capability to display holograms at video rates. Unlike other SLMs, the high reflectivity of the DMD provides the intensity necessary to project a holographic 3D scene. We have characterized many of the properties for utilizing the DMD for holography, including the grating effect of the mirror arrays, resolution, viewing angle, field of view and the number of gray levels that can be displayed by the DMD. Several techniques and algorithms that were investigated to calculate the CGH for vivid display with a DMD are discussed. Prototypes of a holographic real image projection system and a virtual image viewer are being pursued. Since a good, low cost medium for displaying holographic projections does not yet exist, we are developing a volumetric display system consisting of a series of liquid-crystal layers with sequencing electronics. Analysis of image definition, inverted image overlap, and depth of field associated with the current projection system design are also presented. Potential uses of holographic viewing systems are reviewed along with methods for overcoming the challenges of using the DMD for the next generation holographic projection system.

  5. Is visual attention automatically attracted to one's own name?

    DEFF Research Database (Denmark)

    Bundesen, C; Kyllingsbæk, Søren; Houmann, K J

    1997-01-01

    Subjects were presented with briefly exposed visual displays of words that were common first names with a length of four to six letters. In the main experiment, each display consisted of four words: two names shown in red and two shown in white. The subject's task was to report the red names (tar......, visual attention was not automatically attracted by the subject's own name....

  6. Comparative Evaluation of Display Technologies for Collaborative Design Review

    Science.gov (United States)

    2009-04-01

    kinesthetic , force, and tactile feedback using a Pinch glove, joystick, or other input devices (e.g., Dede, Salzman, & Loftmn, 1996; Werkhoven & Groen, 1998...display technologies track and update the visual scene based on an observer’s head or eye movements (Kocian & Task, 1995). These features produce a...pushed exclusively via eye movements , while involving minimal cognitive or physical effort. In some systems, a search must be accomplished using a control

  7. Development of scanning holographic display using MEMS SLM

    Science.gov (United States)

    Takaki, Yasuhiro

    2016-10-01

    Holography is an ideal three-dimensional (3D) display technique, because it produces 3D images that naturally satisfy human 3D perception including physiological and psychological factors. However, its electronic implementation is quite challenging because ultra-high resolution is required for display devices to provide sufficient screen size and viewing zone. We have developed holographic display techniques to enlarge the screen size and the viewing zone by use of microelectromechanical systems spatial light modulators (MEMS-SLMs). Because MEMS-SLMs can generate hologram patterns at a high frame rate, the time-multiplexing technique is utilized to virtually increase the resolution. Three kinds of scanning systems have been combined with MEMS-SLMs; the screen scanning system, the viewing-zone scanning system, and the 360-degree scanning system. The screen scanning system reduces the hologram size to enlarge the viewing zone and the reduced hologram patterns are scanned on the screen to increase the screen size: the color display system with a screen size of 6.2 in. and a viewing zone angle of 11° was demonstrated. The viewing-zone scanning system increases the screen size and the reduced viewing zone is scanned to enlarge the viewing zone: a screen size of 2.0 in. and a viewing zone angle of 40° were achieved. The two-channel system increased the screen size to 7.4 in. The 360-degree scanning increases the screen size and the reduced viewing zone is scanned circularly: the display system having a flat screen with a diameter of 100 mm was demonstrated, which generates 3D images viewed from any direction around the flat screen.

  8. Analysis and design of wedge projection display system based on ray retracing method.

    Science.gov (United States)

    Lee, Chang-Kun; Lee, Taewon; Sung, Hyunsik; Min, Sung-Wook

    2013-06-10

    A design method for the wedge projection display system based on the ray retracing method is proposed. To analyze the principle of image formation on the inclined surface of the wedge-shaped waveguide, the bundle of rays is retraced from an imaging point on the inclined surface to the aperture of the waveguide. In consequence of ray retracing, we obtain the incident conditions of the ray, such as the position and the angle at the aperture, which provide clues for image formation. To illuminate the image formation, the concept of the equivalent imaging point is proposed, which is the intersection where the incident rays are extended over the space regardless of the refraction and reflection in the waveguide. Since the initial value of the rays arriving at the equivalent imaging point corresponds to that of the rays converging into the imaging point on the inclined surface, the image formation can be visualized by calculating the equivalent imaging point over the entire inclined surface. Then, we can find image characteristics, such as their size and position, and their degree of blur--by analyzing the distribution of the equivalent imaging point--and design the optimized wedge projection system by attaching the prism structure at the aperture. The simulation results show the feasibility of the ray retracing analysis and characterize the numerical relation between the waveguide parameters and the aperture structure for on-axis configuration. The experimental results verify the designed system based on the proposed method.

  9. Longterm visual associations affect attentional guidance

    NARCIS (Netherlands)

    Olivers, C.N.L.

    2011-01-01

    When observers perform a visual search task, they are assumed to adopt an attentional set for what they are looking for. The present experiment investigates the influence of long-term visual memory associations on this attentional set. On each trial, observers were asked to search a display for a

  10. Classifying web pages with visual features

    NARCIS (Netherlands)

    de Boer, V.; van Someren, M.; Lupascu, T.; Filipe, J.; Cordeiro, J.

    2010-01-01

    To automatically classify and process web pages, current systems use the textual content of those pages, including both the displayed content and the underlying (HTML) code. However, a very important feature of a web page is its visual appearance. In this paper, we show that using generic visual

  11. Information, entropy and fidelity in visual communication

    Science.gov (United States)

    Huck, Friedrich O.; Fales, Carl L.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur

    1992-01-01

    This paper presents an assessment of visual communication that integrates the critical limiting factors of image gathering and display with the digital processing that is used to code and restore images. The approach focuses on two mathematical criteria, information and fidelity, and on their relationships to the entropy of the encoded data and to the visual quality of the restored image.

  12. Transparent stereoscopic display and application

    Science.gov (United States)

    Ranieri, Nicola; Seifert, Hagen; Gross, Markus

    2014-03-01

    Augmented reality has become important to our society as it can enrich the actual world with virtual information. Transparent screens offer one possibility to overlay rendered scenes with the environment, acting both as display and window. In this work, we review existing transparent back-projection screens for the use with active and passive stereo. Advantages and limitations are described and, based on these insights, a passive stereoscopic system using an anisotropic back-projection foil is proposed. To increase realism, we adapt rendered content to the viewer's position using a Kinect tracking system, which adds motion parallax to the binocular cues. A technique well known in control engineering is used to decrease latency and increase frequency of the tracker. Our transparent stereoscopic display prototype provides immersive viewing experience and is suitable for many augmented reality applications.

  13. Traffic Visualization

    DEFF Research Database (Denmark)

    Picozzi, Matteo; Verdezoto, Nervo; Pouke, Matti

    2013-01-01

    In this paper, we present a space-time visualization to provide city's decision-makers the ability to analyse and uncover important "city events" in an understandable manner for city planning activities. An interactive Web mashup visualization is presented that integrates several visualization...... techniques to give a rapid overview of traffic data. We illustrate our approach as a case study for traffic visualization systems, using datasets from the city of Oulu that can be extended to other city planning activities. We also report the feedback of real users (traffic management employees, traffic police...... officers, city planners) to support our arguments....

  14. Distributed Visualization

    Data.gov (United States)

    National Aeronautics and Space Administration — Distributed Visualization allows anyone, anywhere, to see any simulation, at any time. Development focuses on algorithms, software, data formats, data systems and...

  15. Visualization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Evaluates and improves the operational effectiveness of existing and emerging electronic warfare systems. By analyzing and visualizing simulation results...

  16. Simple virtual reality display of fetal volume ultrasound.

    Science.gov (United States)

    Tutschek, B

    2008-12-01

    Three-dimensional (3D) ultrasound volume acquisition, analysis and display of fetal structures have enhanced their visualization and greatly improved the general understanding of their anatomy and pathology. The dynamic display of volume data generally depends on proprietary software, usually supplied with the ultrasound system, and on the operator's ability to maneuver the dataset digitally. We have used relatively simple tools and an established storage, display and manipulation format to generate non-linear virtual reality object movies of prenatal images (including moving sequences and 3D-rendered views) that can be navigated easily and interactively on any current computer. This approach permits a viewing or learning experience that is superior to watching a linear movie passively. (c) 2008 ISUOG.

  17. Target acquisition with UAVs: vigilance displays and advanced cuing interfaces.

    Science.gov (United States)

    Gunn, Daniel V; Warm, Joel S; Nelson, W Todd; Bolia, Robert S; Schumsky, Donald A; Corcoran, Kevin J

    2005-01-01

    Vigilance and threat detection are critical human factors considerations in the control of unmanned aerial vehicles (UAVs). Utilizing a vigilance task in which threat detections (critical signals) led observers to perform a subsequent manual target acquisition task, this study provides information that might have important implications for both of these considerations in the design of future UAV systems. A sensory display format resulted in more threat detections, fewer false alarms, and faster target acquisition times and imposed a lighter workload than did a cognitive display format. Additionally, advanced visual, spatial-audio, and haptic cuing interfaces enhanced acquisition performance over no cuing in the target acquisition phase of the task, and they did so to a similar degree. Thus, in terms of potential applications, this research suggests that a sensory format may be the best display format for threat detection by future UAV operators, that advanced cuing interfaces may prove useful in future UAV systems, and that these interfaces are functionally interchangeable.

  18. Integrative Systems Biology Visualization with MAYDAY

    Directory of Open Access Journals (Sweden)

    Symonsy Stephan

    2010-12-01

    Full Text Available Visualization is pivotal for gaining insight in systems biology data. As the size and complexity of datasets and supplemental information increases, an efficient, integrated framework for general and specialized views is necessary. MAYDAY is an application for analysis and visualization of general ‘omics’ data. It follows a trifold approach for data visualization, consisting of flexible data preprocessing, highly customizable data perspective plots for general purpose visualization and systems based plots. Here, we introduce two new systems biology visualization tools for MAYDAY. Efficiently implemented genomic viewers allow the display of variables associated with genomic locations. Multiple variables can be viewed using our new track-based ChromeTracks tool. A functional perspective is provided by visualizing metabolic pathways either in KEGG or BioPax format. Multiple options of displaying pathway components are available, including Systems Biology Graphical Notation (SBGN glyphs. Furthermore, pathways can be viewed together with gene expression data either as heatmaps or profiles.

  19. Effects of slant angle and illumination angle on MTF estimations

    CSIR Research Space (South Africa)

    Vhengani, LM

    2012-07-01

    Full Text Available angle d(?) was not constant. It was also noted that the iris of the imaging system was in most cases adjusted during initial setups of each measurements. After each measurement, the knife-edge target was replaced with the ISO 12233 MTF target (shown....085 0.09 0.095 K:\\Working Folder\\Project_On_orbit MTF\\edgetargets\\MTF_Lab_Measurements _20120302_Edge Slant Angle (degrees) Ny qu ist MT F (c yc le/p ixe l) Data Regression -18 -16 -14 -12 -10 -8 -6 -4 -2 0.05 0.055 0.06 0...

  20. System analysis of formation and perception processes of three-dimensional images in volumetric displays

    Science.gov (United States)

    Bolshakov, Alexander; Sgibnev, Arthur

    2018-03-01

    One of the promising devices is currently a volumetric display. Volumetric displays capable to visualize complex three-dimensional information as nearly as possible to its natural – volume form without the use of special glasses. The invention and implementation of volumetric display technology will expand opportunities of information visualization in various spheres of human activity. The article attempts to structure and describe the interrelation of the essential characteristics of objects in the area of volumetric visualization. Also there is proposed a method of calculation of estimate total number of voxels perceived by observers during the 3D demonstration, generated using a volumetric display with a rotating screen. In the future, it is planned to expand the described technique and implement a system for estimation the quality of generated images, depending on the types of biplanes and their initial characteristics.

  1. Augmented reality glass-free three-dimensional display with the stereo camera

    Science.gov (United States)

    Pang, Bo; Sang, Xinzhu; Chen, Duo; Xing, Shujun; Yu, Xunbo; Yan, Binbin; Wang, Kuiru; Yu, Chongxiu

    2017-10-01

    An improved method for Augmented Reality (AR) glass-free three-dimensional (3D) display based on stereo camera used for presenting parallax contents from different angle with lenticular lens array is proposed. Compared with the previous implementation method of AR techniques based on two-dimensional (2D) panel display with only one viewpoint, the proposed method can realize glass-free 3D display of virtual objects and real scene with 32 virtual viewpoints. Accordingly, viewers can get abundant 3D stereo information from different viewing angles based on binocular parallax. Experimental results show that this improved method based on stereo camera can realize AR glass-free 3D display, and both of virtual objects and real scene have realistic and obvious stereo performance.

  2. Visualization of Uncertainty

    Science.gov (United States)

    Jones, P. W.; Strelitz, R. A.

    2012-12-01

    The output of a simulation is best comprehended through the agency and methods of visualization, but a vital component of good science is knowledge of uncertainty. While great strides have been made in the quantification of uncertainty, especially in simulation, there is still a notable gap: there is no widely accepted means of simultaneously viewing the data and the associated uncertainty in one pane. Visualization saturates the screen, using the full range of color, shadow, opacity and tricks of perspective to display even a single variable. There is no room in the visualization expert's repertoire left for uncertainty. We present a method of visualizing uncertainty without sacrificing the clarity and power of the underlying visualization that works as well in 3-D and time-varying visualizations as it does in 2-D. At its heart, it relies on a principal tenet of continuum mechanics, replacing the notion of value at a point with a more diffuse notion of density as a measure of content in a region. First, the uncertainties calculated or tabulated at each point are transformed into a piecewise continuous field of uncertainty density . We next compute a weighted Voronoi tessellation of a user specified N convex polygonal/polyhedral cells such that each cell contains the same amount of uncertainty as defined by . The problem thus devolves into minimizing . Computation of such a spatial decomposition is O(N*N ), and can be computed iteratively making it possible to update easily over time as well as faster. The polygonal mesh does not interfere with the visualization of the data and can be easily toggled on or off. In this representation, a small cell implies a great concentration of uncertainty, and conversely. The content weighted polygons are identical to the cartogram familiar to the information visualization community in the depiction of things voting results per stat. Furthermore, one can dispense with the mesh or edges entirely to be replaced by symbols or glyphs

  3. A Visual Editor in Java for View

    Science.gov (United States)

    Stansifer, Ryan

    2000-01-01

    In this project we continued the development of a visual editor in the Java programming language to create screens on which to display real-time data. The data comes from the numerous systems monitoring the operation of the space shuttle while on the ground and in space, and from the many tests of subsystems. The data can be displayed on any computer platform running a Java-enabled World Wide Web (WWW) browser and connected to the Internet. Previously a special-purpose program bad been written to display data on emulations of character-based display screens used for many years at NASA. The goal now is to display bit-mapped screens created by a visual editor. We report here on the visual editor that creates the display screens. This project continues the work we bad done previously. Previously we had followed the design of the 'beanbox,' a prototype visual editor created by Sun Microsystems. We abandoned this approach and implemented a prototype using a more direct approach. In addition, our prototype is based on newly released Java 2 graphical user interface (GUI) libraries. The result has been a visually more appealing appearance and a more robust application.

  4. Visual art and visual perception

    OpenAIRE

    Koenderink, Jan J.

    2015-01-01

    Visual art and visual perception ‘Visual art’ has become a minor cul-de-sac orthogonal to THE ART of the museum directors and billionaire collectors. THE ART is conceptual, instead of visual. Among its cherished items are the tins of artist’s shit (Piero Manzoni, 1961, Merda d’Artista) “worth their weight in gold”. I perceive a metabletic (van den Berg, 1956) parallel to philosophy transforming itself into speculative logic games, and psychology going cognitive by freeing itself from phenomen...

  5. Frequency scaling for angle gathers

    KAUST Repository

    Zuberi, M. A H

    2014-01-01

    Angle gathers provide an extra dimension to analyze the velocity after migration. Space-shift and time shift-imaging conditions are two methods used to obtain angle gathers, but both are reasonably expensive. By scaling the time-lag axis of the time-shifted images, the computational cost of the time shift imaging condition can be considerably reduced. In imaging and more so Full waveform inversion, frequencydomain Helmholtz solvers are used more often to solve for the wavefields than conventional time domain extrapolators. In such cases, we do not need to extend the image, instead we scale the frequency axis of the frequency domain image to obtain the angle gathers more efficiently. Application on synthetic data demonstrate such features.

  6. Visual PEF Reader - VIPER

    Science.gov (United States)

    Luo, Victor; Khanampornpan, Teerapat; Boehmer, Rudy A.; Kim, Rachel Y.

    2011-01-01

    This software graphically displays all pertinent information from a Predicted Events File (PEF) using the Java Swing framework, which allows for multi-platform support. The PEF is hard to weed through when looking for specific information and it is a desire for the MRO (Mars Reconn aissance Orbiter) Mission Planning & Sequencing Team (MPST) to have a different way to visualize the data. This tool will provide the team with a visual way of reviewing and error-checking the sequence product. The front end of the tool contains much of the aesthetically appealing material for viewing. The time stamp is displayed in the top left corner, and highlighted details are displayed in the bottom left corner. The time bar stretches along the top of the window, and the rest of the space is allotted for blocks and step functions. A preferences window is used to control the layout of the sections along with the ability to choose color and size of the blocks. Double-clicking on a block will show information contained within the block. Zooming into a certain level will graphically display that information as an overlay on the block itself. Other functions include using hotkeys to navigate, an option to jump to a specific time, enabling a vertical line, and double-clicking to zoom in/out. The back end involves a configuration file that allows a more experienced user to pre-define the structure of a block, a single event, or a step function. The individual will have to determine what information is important within each block and what actually defines the beginning and end of a block. This gives the user much more flexibility in terms of what the tool is searching for. In addition to the configurability, all the settings in the preferences window are saved in the configuration file as well

  7. Gestures to Intuitively Control Large Displays

    NARCIS (Netherlands)

    Fikkert, F.W.; van der Vet, P.E.; Rauwerda, H.; Breit, T.; Nijholt, Antinus; Sales Dias, M.; Gibet, S.; Wanderley, M.W.; Bastos, R.

    2009-01-01

    Large displays are highly suited to support discussions in empirical science. Such displays can display project results on a large digital surface to feed the discussion. This paper describes our approach to closely involve multidisciplinary omics scientists in the design of an intuitive display

  8. Visual Education

    DEFF Research Database (Denmark)

    Buhl, Mie; Flensborg, Ingelise

    2010-01-01

    The intrinsic breadth of various types of images creates new possibilities and challenges for visual education. The digital media have moved the boundaries between images and other kinds of modalities (e.g. writing, speech and sound) and have augmented the possibilities for integrating the functi......The intrinsic breadth of various types of images creates new possibilities and challenges for visual education. The digital media have moved the boundaries between images and other kinds of modalities (e.g. writing, speech and sound) and have augmented the possibilities for integrating...... to emerge in the interlocutory space of a global visual repertoire and diverse local interpretations. The two perspectives represent challenges for future visual education which require visual competences, not only within the arts but also within the subjects of natural sciences, social sciences, languages...

  9. Holographic 3D display using MEMS spatial light modulator

    Science.gov (United States)

    Takaki, Yasuhiro

    2012-06-01

    This paper presents a new holographic three-dimensional display technique that increases both viewing zone angle and screen size. In this study, a spatial light modulator (SLM) employing microelectromechanical systems (MEMS) technology is used for high-speed image generation. The images generated by the MEMS SLM are demagnified horizontally and magnified vertically using an anamorphic imaging system. The vertically enlarged images, which are elementary holograms, are aligned horizontally by a galvano scanner. Reconstructed images with a screen size of 4.3 in and a horizontal viewing zone angle of 15° are generated at a frame rate of 60 fps. The reconstructed images are improved by two methods: one reduces blur caused by scan and focus errors, and the other improves grayscale representation. In addition, accommodation responses of eyes to the reconstructed images are explained.

  10. Participatory visualization with Wordle.

    Science.gov (United States)

    Viégas, Fernanda B; Wattenberg, Martin; Feinberg, Jonathan

    2009-01-01

    We discuss the design and usage of "Wordle," a web-based tool for visualizing text. Wordle creates tag-cloud-like displays that give careful attention to typography, color, and composition. We describe the algorithms used to balance various aesthetic criteria and create the distinctive Wordle layouts. We then present the results of a study of Wordle usage, based both on spontaneous behaviour observed in the wild, and on a large-scale survey of Wordle users. The results suggest that Wordles have become a kind of medium of expression, and that a "participatory culture" has arisen around them.

  11. Handbook of visual communications

    CERN Document Server

    Hang, Hseuh-Ming

    1995-01-01

    Handbook of Visual Communications explores the latest developments in the field, such as model-based image coding, and provides readers with insight into possible future developments.Key Features* Displays comprehensive coverage from fundamental theory to international standards and VLSI design* Includes 518 pages of contributions from well-known experts* [please keep this feature current with the page count]* Presents state-of-the-art knowledge--the most up-to-date and accurate information on various topics in the field* Provides an extensive overview of international standards for industrial

  12. Classroom displays-Attraction or distraction? Evidence of impact on attention and learning from children with and without autism.

    Science.gov (United States)

    Hanley, Mary; Khairat, Mariam; Taylor, Korey; Wilson, Rachel; Cole-Fletcher, Rachel; Riby, Deborah M

    2017-07-01

    Paying attention is a critical first step toward learning. For children in primary school classrooms there can be many things to attend to other than the focus of a lesson, such as visual displays on classroom walls. The aim of this study was to use eye-tracking techniques to explore the impact of visual displays on attention and learning for children. Critically, we explored these issues for children developing typically and for children with autism spectrum disorder (ASD). Both groups of children watched videos of a teacher delivering classroom activities-2 of "story-time" and 2 mini lessons. Half of the videos each child saw contained high levels of classroom visual displays in the background (high visual display [HVD]) and half had none (no visual display [NVD]). Children completed worksheets after the mini lessons to measure learning. During viewing of all videos children's eye movements were recorded. The presence of visual displays had a significant impact on attention for all children, but to a greater extent for children with ASD. Visual displays also had an impact on learning from the mini lessons, whereby children had poorer learning scores in the HVD compared with the NVD lesson. Individual differences in age, verbal, nonverbal, and attention abilities were important predictors of learning, but time spent attending the visual displays in HVD was the most important predictor. This novel and timely investigation has implications for the use of classroom visual displays for all children, but particularly for children with ASD. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Temperature dependence of Brewster's angle.

    Science.gov (United States)

    Guo, Wei

    2018-01-01

    In this work, a dielectric at a finite temperature is modeled as an ensemble of identical atoms moving randomly around where they are trapped. Light reflection from the dielectric is then discussed in terms of atomic radiation. Specific calculation demonstrates that because of the atoms' thermal motion, Brewster's angle is, in principle, temperature-dependent, and the dependence is weak in the low-temperature limit. What is also found is that the Brewster's angle is nothing but a result of destructive superposition of electromagnetic radiation from the atoms.

  14. Angle independent velocity spectrum determination

    DEFF Research Database (Denmark)

    2014-01-01

    An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....

  15. Tiny incident light angle sensor

    Science.gov (United States)

    Mitrenga, D.; Schädel, M.; Winzer, A. T.; Völlmeke, S.; Preuß, K. D.; Freitag, J.; Brodersen, O.

    2017-05-01

    A novel device for detecting the intensity and the angles of incoming light is presented. The silicon chip with 1 mm edge length comprises a segmented photo diode with four active areas within the inclined surfaces of a deep etched cavity. Simple signal difference analysis of these signals allow for accurate azimuth and inclination measurement in the range of 0 to 360° and 0 to 55°, respectively. Using an artificial neural network (ANN) calibration strategy the operation range of inclination can be increased up to 85° with typical angle errors below 2°. In this report we present details on design, fabrication, signal analysis and calibration strategies.

  16. Ontology-enriched Visualization of Human Anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Pouchard, LC

    2005-12-20

    The project focuses on the problem of presenting a human anatomical 3D model associated with other types of human systemic information ranging from physiological to anatomical information while navigating the 3D model. We propose a solution that integrates a visual 3D interface and navigation features with the display of structured information contained in an ontology of anatomy where the structures of the human body are formally and semantically linked. The displayed and annotated anatomy serves as a visual entry point into a patient's anatomy, medical indicators and other information. The ontology of medical information provides labeling to the highlighted anatomical parts in the 3D display. Because of the logical organization and links between anatomical objects found in the ontology and associated 3D model, the analysis of a structure by a physician is greatly enhanced. Navigation within the 3D visualization and between this visualization and objects representing anatomical concepts within the model is also featured.

  17. The Visual Web User Interface Design in Augmented Reality Technology

    OpenAIRE

    Chouyin Hsu; Haui-Chih Shiau

    2013-01-01

    Upon the popularity of 3C devices, the visual creatures are all around us, such the online game, touch pad, video and animation. Therefore, the text-based web page will no longer satisfy users. With the popularity of webcam, digital camera, stereoscopic glasses, or head-mounted display, the user interface becomes more visual and multi-dimensional. For the consideration of 3D and visual display in the research of web user interface design, Augmented Reality technology providing the convenient ...

  18. DP: Parameter Display Page Program

    International Nuclear Information System (INIS)

    Anderson, M.

    1994-01-01

    The Parameter Display Page program (DP) is a Motif/X11-based program to allow easily configured, dynamic device and process variable monitoring and manipulation in the EPICS environment. DP provides a tabular data format for interactive viewing and manipulation of device and process variable statistics, as well as formatted PostScript output to files and printers. DP understands and operates in two (unfortunately disjoint at this time) namespaces in the EPICS environment ''devices'' and ''process variables''. The higher level namespace of devices includes Composite and Atomic Devices registered via the Device Access server; the lower level (flat) namespace is that of normal Process Variables accessible via Channel Access

  19. Display of nuclear medicine imaging studies

    International Nuclear Information System (INIS)

    Singh, B.; Kataria, S.K.; Samuel, A.M.

    2002-08-01

    Nuclear medicine imaging studies involve evaluation of a large amount of image data. Digital signal processing techniques have introduced processing algorithms that increase the information content of the display. Nuclear medicine imaging studies require interactive selection of suitable form of display and pre-display processing. Static imaging study requires pre-display processing to detect focal defects. Point operations (histogram modification) along with zoom and capability to display more than one image in one screen is essential. This album mode of display is also applicable to dynamic, MUGA and SPECT data. Isometric display or 3-D graph of the image data is helpful in some cases e.g. point spread function, flood field data. Cine display is used on a sequence of images e.g. dynamic, MUGA and SPECT imaging studies -to assess the spatial movement of tracer with time. Following methods are used at the investigator's discretion for inspection of the 3-D object. 1) Display of orthogonal projections, 2) Display of album of user selected coronal/ sagital/ transverse orthogonal slices, 3) Display of three orthogonal slices through user selected point, 4) Display of a set of orthogonal slices generated in the user-selected volume, 5) Generation and display of 3-D shaded surface. 6) Generation of volume data and display along with the 3-D shaded surface, 7) Side by side display orthogonal slices of two 3-D objects. Displaying a set of two-dimensional slices of a 3-D reconstructed object through shows all the defects but lacks the 3-D perspective. Display of shaded surface lacks the ability to show the embedded defects. Volume display -combining the 3-D surface and gray level volume data is perhaps the best form of display. This report describes these forms of display along with the theory. (author)

  20. Modeling the Subjective Quality of Highly Contrasted Videos Displayed on LCD With Local Backlight Dimming

    DEFF Research Database (Denmark)

    Mantel, Claire; Bech, Søren; Korhonen, Jari

    2015-01-01

    Local backlight dimming is a technology aiming at both saving energy and improving visual quality on television sets. As the rendition of the image is specified locally, the numerical signal corresponding to the displayed image needs to be computed through a model of the display. This simulated...... signal can then be used as input to objective quality metrics. The focus of this paper is on determining which characteristics of locally backlit displays influence quality assessment. A subjective experiment assessing the quality of highly contrasted videos displayed with various local backlight...