Sample records for display earth remote

  1. Remote earth sensing experiments

    Energy Technology Data Exchange (ETDEWEB)

    Trifonov, Yu V


    Description of data devices for deriving multi-spectral measuring television measurement data of middle and high resolution through use of second generation Meteor-type satellites. Options for developing a permanent and active remote sensing system in USSR are discussed. It is noted that the present experiment is an important step in that direction. Design and structural data for this particular device and its application in the experiment are covered.

  2. Remote Software Application and Display Development (United States)

    Sanders, Brandon T.


    The era of the shuttle program has come to an end, but only to give rise to newer and more exciting projects. Now is the time of the Orion spacecraft, a work of art designed to exceed all previous endeavors of man. NASA is exiting the time of exploration and is entering a new period, a period of pioneering. With this new mission, many of NASAs organizations must undergo a great deal of change and development to support the Orion missions. The Spaceport Command and Control System (SCCS) is the new system that will provide NASA the ability to launch rockets into orbit and thus control Orion and other spacecraft as the goal of populating Mars becomes ever increasingly tangible. Since the previous control system, Launch Processing System (LPS), was primarily designed to launch the shuttles, SCCS was needed as Kennedy Space Center (KSC) reorganized to a multiuser spaceport for commercial flights, providing a more versatile control over rockets. Within SCCS, is the Launch Control System (LCS), which is the remote software behind the command and monitoring of flight and ground system hardware. This internship at KSC has involved two main components in LCS, including Remote Software Application and Display development. The display environment provides a graphical user interface for an operator to view and see if any cautions are raised, while the remote applications are the backbone that communicate with hardware, and then relay the data back to the displays. These elements go hand in hand as they provide monitoring and control over hardware and software alike from the safety of the Launch Control Center. The remote software applications are written in Application Control Language (ACL), which must undergo unit testing to ensure data integrity. This paper describes both the implementation and writing of unit tests in ACL code for remote software applications, as well as the building of remote displays to be used in the Launch Control Center (LCC).

  3. Remote handling recognition and display device

    International Nuclear Information System (INIS)

    Kimura, Motohiko.


    Purpose: To surely recognize the movements of remote handling equipments in a reactor by the use of a device in a simple structure. Constitution: A light emission surface and a light reception surface are provided, for example, putting therebetween a hook of a nob of a control rod as a remote control equipment. Depending on the position of the hook, there are two possible cases where the light can not arrive the light reception surface inhibited by the hook and where the light can be received not inhibited by the hook. By visually monitoring the presence or absence of the light reception from the outside of the reactor, the movement of the nob for the control rod can be recognized. Optical fibers connect the optical source with the light emission surface, and the light reception surface with the display surface. (Ikeda, J.)

  4. Software Development for Remote Control and Firing Room Displays (United States)

    Zambrano Pena, Jessica


    The Launch Control System (LCS) developed at NASA's Kennedy Space Center (KSC) will be used to launch future spacecraft. Two of the many components of this system are the Application Control Language (ACL) and remote displays. ACL is a high level domain specific language that is used to write remote control applications for LCS. Remote displays are graphical user interfaces (GUIs) developed to display vehicle and Ground Support Equipment (GSE) data, they also provide the ability to send commands to control GSE and the vehicle. The remote displays and the control applications have many facets and this internship experience dealt with several of them.

  5. Remote Sensing and the Earth. (United States)

    Brosius, Craig A.; And Others

    This document is designed to help senior high school students study remote sensing technology and techniques in relation to the environmental sciences. It discusses the acquisition, analysis, and use of ecological remote data. Material is divided into three sections and an appendix. Section One is an overview of the basics of remote sensing.…

  6. Wired World-Wide Web Interactive Remote Event Display

    Energy Technology Data Exchange (ETDEWEB)

    De Groot, Nicolo


    WIRED (World-Wide Web Interactive Remote Event Display) is a framework, written in the Java{trademark} language, for building High Energy Physics event displays. An event display based on the WIRED framework enables users of a HEP collaboration to visualize and analyze events remotely using ordinary WWW browsers, on any type of machine. In addition, event displays using WIRED may provide the general public with access to the research of high energy physics. The recent introduction of the object-oriented Java{trademark} language enables the transfer of machine independent code across the Internet, to be safely executed by a Java enhanced WWW browser. We have employed this technology to create a remote event display in WWW. The combined Java-WWW technology hence assures a world wide availability of such an event display, an always up-to-date program and a platform independent implementation, which is easy to use and to install.

  7. Nuclear reactors in remote earth

    International Nuclear Information System (INIS)

    Garzon, L.; Cavero, A.


    Same basic geological principles along with other facts, have allowed us to establish the existence in the remote past (Between 2.5 and 4 x 10''9 years ago) of the uranium deposits and/or uranium mineralized volumes, which be-have as nuclear reactors. A simplified neutronic diffusion model have allowed us to describe the main characteristics of such systems. The obtained results indicate that this phenomenon was a rather frequent fact. (Author) 7 refs

  8. Remote Collaboration With Mixed Reality Displays

    DEFF Research Database (Denmark)

    Müller, Jens; Rädle, Roman; Reiterer, Harald


    HCI research has demonstrated Mixed Reality (MR) as being beneficial for co-located collaborative work. For remote collaboration, however, the collaborators' visual contexts do not coincide due to their individual physical environments. The problem becomes apparent when collaborators refer...... to physical landmarks in their individual environments to guide each other's attention. In an experimental study with 16 dyads, we investigated how the provisioning of shared virtual landmarks (SVLs) influences communication behavior and user experience. A quantitative analysis revealed that participants used...

  9. Super computer displays future of the earth

    International Nuclear Information System (INIS)

    Yokokawa, Mitsuo; Tani, Keiji


    Science and Technology Agency has promoted a project of estimation of the earth environment fluctuation since Fiscal 1997. As one of series, it is developing a very high speed parallel computer 'the earth 'simulator' with 5TFLOPS of effective performance (40TFLOPS of peak performance). Abstract of the hardware, basic software and application software is explained. Hardware is constructed by a distributed memory type parallel computer and single-stage crossbars network. Main storage capacity is 10 TB. The basic software consisted of hierarchical structure with operating system, compiler, operation and management software. In the earth simulator, 640 nodes are connected by magnetic disk units, so that input/output of calculation is parallel processor, the most important development item. The earth simulator project is developing a software, NJR (NASDA-JAMSTEC-RIST) program, which is atmosphere and ocean large circulation joint model library system. An example of analysis showed a global distribution of rain a day in the earth. (S.Y.)

  10. Current NASA Earth Remote Sensing Observations (United States)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; hide


    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.

  11. Simulation of CIFF (Centralized IFF) remote control displays (United States)

    Tucker, D. L.; Leibowitz, L. M.


    This report presents the software simulation of the Remote-Control-Display (RCS) proposed to be used in the Centralized IFF (CIFF) system. A description of the simulation programs along with simulated menu formats are presented. A sample listing of the simulation programs and a brief description of the program operation are also included.

  12. Remote parallel rendering for high-resolution tiled display walls

    KAUST Repository

    Nachbaur, Daniel


    © 2014 IEEE. We present a complete, robust and simple to use hardware and software stack delivering remote parallel rendering of complex geometrical and volumetric models to high resolution tiled display walls in a production environment. We describe the setup and configuration, present preliminary benchmarks showing interactive framerates, and describe our contributions for a seamless integration of all the software components.

  13. Remote parallel rendering for high-resolution tiled display walls

    KAUST Repository

    Nachbaur, Daniel; Dumusc, Raphael; Bilgili, Ahmet; Hernando, Juan; Eilemann, Stefan


    © 2014 IEEE. We present a complete, robust and simple to use hardware and software stack delivering remote parallel rendering of complex geometrical and volumetric models to high resolution tiled display walls in a production environment. We describe the setup and configuration, present preliminary benchmarks showing interactive framerates, and describe our contributions for a seamless integration of all the software components.

  14. Immersive vision assisted remote teleoperation using head mounted displays

    International Nuclear Information System (INIS)

    Vakkapatla, Veerendrababu; Singh, Ashutosh Pratap; Rakesh, V.; Rajagopalan, C.; Murugan, S.; Sai Baba, M.


    Handling and inspection of irradiated material is inevitable in nuclear industry. Hot cells are shielded radiation containment chambers equipped with master slave manipulators that facilitates remote handling. The existing methods using viewing windows and cameras for viewing the contents of hot cell to manipulate the radioactive elements have problems such as optical distortion, limited distance teleoperation, limited field of view that lead to inefficient operation. This paper presents a method of achieving immersive teleoperation to operate the master slave manipulator in hot cells by exploiting the advanced tracking and display capabilities of head mounted display devices. (author)

  15. WIRED — World Wide Web interactive remote event display (United States)

    Ballaminut, A.; Colonello, C.; Dönszelmann, M.; van Herwijnen, E.; Köper, D.; Korhonen, J.; Litmaath, M.; Perl, J.; Theodorou, A.; Whiteson, D.; Wolff, E.


    WIRED ( is a framework, written in Java, to build High Energy Physics event displays that can be used across the network. To guarantee portability across all platforms, WIRED is implemented in the Java language and uses the Swing user interface component set. It can be used as a stand-alone application or as an applet inside a WWW browser. The graphical user interface allows for multiple views and for multiple controls acting on those views. A detector tree control is available to toggle the visibility of parts of the events and detector geometry. XML (Extensible Markup Language), RMI (Remote Method Invocation) and CORBA loaders can be used to load event data as well as geometry data, and to connect to FORTRAN, C, C++ and Java reconstruction programs. Non-linear and non-Cartesian projections (e.g., fisheye, ρ- φ, ρ- Z, φ- Z) provide special views to get a better understanding of events. A special Java interpreter allows physicists to write small scripts to interact with their data and its display. WIRED has grown to be a framework in use and under development in several HEP experiments (ATLAS, CHORUS, DELPHI, LHCb, BaBar, D0 and ZEUS). WIRED event displays have also proven to be useful to explain High Energy Physics to the general public. Both CERN, in its traveling exhibition and MicroCosm, and RAL, during its open days, have displays set up.

  16. RFI and Remote Sensing of the Earth from Space (United States)

    Le Vine, D. M.; Johnson, J. T.; Piepmeier, J.


    Passive microwave remote sensing of the Earth from space provides information essential for understanding the Earth's environment and its evolution. Parameters such as soil moisture, sea surface temperature and salinity, and profiles of atmospheric temperature and humidity are measured at frequencies determined by the physics (e.g. sensitivity to changes in desired parameters) and by the availability of suitable spectrum free from interference. Interference from manmade sources (radio frequency interference) is an impediment that in many cases limits the potential for accurate measurements from space. A review is presented here of the frequencies employed in passive microwave remote sensing of the Earth from space and the associated experience with RFI.

  17. WIRED World Wide Web Interactive Remote Event Display

    CERN Document Server

    Ballaminut, A; Dönszelmann, M; Van Herwijnen, Eric; Köper, D; Korhonen, J; Litmaath, M; Perl, J; Theodorou, A; Whiteson, D; Wolff, E


    WIRED is a framework, written in Java, to build High Energy Physics event displays that can be used across the network. To guarantee portability across all platforms, WIRED is implemented in the Java language and uses the Swing user interface component set. It can be used as a stand-alone application or as an applet inside a WWW browser. The graphical user interface allows for multiple views and for multiple controls acting on those views. A detector tree control is available to toggle the visibility of parts of the events and detector geometry. XML (Extensible Markup Language), RMI (Remote Method Invocation) and CORBA loaders can be used to load event data as well as geometry data, and to connect to FORTRAN, C, C++ and Java reconstruction programs. Non-linear and non-Cartesian projections (e.g. fish-eye, rho-phi, rho-Z, phi-Z) provide special views to get a better understanding of events. WIRED has grown to be a framework in use and under development in several HEP experiments (ATLAS, CHORUS, DELPHI, LHCb, B...

  18. Data Fusion for Earth Science Remote Sensing (United States)

    Braverman, Amy


    Beginning in 2004, NASA has supported the development of an international network of ground-based remote sensing installations for the measurement of greenhouse gas columns. This collaboration has been successful and is currently used in both carbon cycle investigations and in the efforts to validate the GOSAT space-based column observations of CO2 and CH4. With the support of a grant, this research group has established a network of ground-based column observations that provide an essential link between the satellite observations of CO2, CO, and CH4 and the extensive global in situ surface network. The Total Carbon Column Observing Network (TCCON) was established in 2004. At the time of this report seven sites, employing modern instrumentation, were operational or were expected to be shortly. TCCON is expected to expand. In addition to providing the most direct means of tying the in situ and remote sensing data sets together, TCCON provides a means of testing the retrieval algorithms of SCIAMACHY and GOSAT over the broadest variation in atmospheric state. TCCON provides a critically maintained and long timescale record for identification of temporal drift and spatial bias in the calibration of the space-based sensors. Finally, the global observations from TCCON are improving our understanding of how to use column observations to provide robust estimates of surface exchange of C02 and CH4 in advance of the launch of OCO and GOSAT. TCCON data are being used to better understand the impact of both regional fluxes and long-range transport on gradients in the C02 column. Such knowledge is essential for identifying the tools required to best use the space-based observations. The technical approach and methodology of retrieving greenhouse gas columns from near-IR solar spectra, data quality and process control are described. Additionally, the impact of and relevance to NASA of TCCON and satellite validation and carbon science are addressed.

  19. J-Earth: An Essential Resource for Terrestrial Remote Sensing and Data Analysis (United States)

    Dunn, S.; Rupp, J.; Cheeseman, S.; Christensen, P. R.; Prashad, L. C.; Dickenshied, S.; Anwar, S.; Noss, D.; Murray, K.


    There is a need for a software tool that has the ability to display and analyze various types of earth science and social data through a simple, user-friendly interface. The J-Earth software tool has been designed to be easily accessible for download and intuitive use, regardless of the technical background of the user base. This tool does not require courses or text books to learn to use, yet is powerful enough to allow a more general community of users to perform complex data analysis. Professions that will benefit from this tool range from geologists, geographers, and climatologists to sociologists, economists, and ecologists as well as policy makers. J-Earth was developed by the Arizona State University Mars Space Flight Facility as part of the JMARS (Java Mission-planning and Analysis for Remote Sensing) suite of open-source tools. The program is a Geographic Information Systems (GIS) application used for viewing and processing satellite and airborne remote sensing data. While the functionality of JMARS has historically focused on the research needs of the planetary science community, J-Earth has been designed for a much broader Earth-based user audience. NASA instrument products accessible within J-Earth include data from ASTER, GOES, Landsat, MODIS, and TIMS. While J-Earth contains exceptionally comprehensive and high resolution satellite-derived data and imagery, this tool also includes many socioeconomic data products from projects lead by international organizations and universities. Datasets used in J-Earth take the form of grids, rasters, remote sensor "stamps", maps, and shapefiles. Some highly demanded global datasets available within J-Earth include five levels of administrative/political boundaries, climate data for current conditions as well as models for future climates, population counts and densities, land cover/land use, and poverty indicators. While this application does share the same powerful functionality of JMARS, J-Earth's apperance is

  20. Magnetoseismology ground-based remote sensing of Earth's magnetosphere

    CERN Document Server

    Menk, Frederick W


    Written by a researcher at the forefront of the field, this first comprehensive account of magnetoseismology conveys the physics behind these movements and waves, and explains how to detect and investigate them. Along the way, it describes the principles as applied to remote sensing of near-Earth space and related remote sensing techniques, while also comparing and intercalibrating magnetoseismology with other techniques. The example applications include advanced data analysis techniques that may find wider used in areas ranging from geophysics to medical imaging, and remote sensing using radar systems that are of relevance to defense surveillance systems. As a result, the book not only reviews the status quo, but also anticipates new developments. With many figures and illustrations, some in full color, plus additional computational codes for analysis and evaluation. Aimed at graduate readers, the text assumes knowledge of electromagnetism and physical processes at degree level, but introductory chapters wil...

  1. A wide range gamma monitor with digital display for remote monitoring

    International Nuclear Information System (INIS)

    Risbud, V.H.; Thiagarajan, A.; Gangadharan, P.


    A wide range gamma monitor designed for remote monitoring in nuclear facilities is described. The instrument consists of two GM detectors and pre-amplifiers connected by a long coaxial cable to the power supply, scalers and timers and display devices. Automatic selection of detectors range of exposure rate and display (nixie) are achieved with this set up, radiation levels in active areas can easily be displayed in the control room. Other advantages are also pointed out. (A.K.)

  2. Integrated visualization of remote sensing data using Google Earth (United States)

    Castella, M.; Rigo, T.; Argemi, O.; Bech, J.; Pineda, N.; Vilaclara, E.


    The need for advanced visualization tools for meteorological data has lead in the last years to the development of sophisticated software packages either by observing systems manufacturers or by third-party solution providers. For example, manufacturers of remote sensing systems such as weather radars or lightning detection systems include zoom, product selection, archive access capabilities, as well as quantitative tools for data analysis, as standard features which are highly appreciated in weather surveillance or post-event case study analysis. However, the fact that each manufacturer has its own visualization system and data formats hampers the usability and integration of different data sources. In this context, Google Earth (GE) offers the possibility of combining several graphical information types in a unique visualization system which can be easily accessed by users. The Meteorological Service of Catalonia (SMC) has been evaluating the use of GE as a visualization platform for surveillance tasks in adverse weather events. First experiences are related to the integration in real-time of remote sensing data: radar, lightning, and satellite. The tool shows the animation of the combined products in the last hour, giving a good picture of the meteorological situation. One of the main advantages of this product is that is easy to be installed in many computers and does not need high computational requirements. Besides this, the capability of GE provides information about the most affected areas by heavy rain or other weather phenomena. On the opposite, the main disadvantage is that the product offers only qualitative information, and quantitative data is only available though the graphical display (i.e. trough color scales but not associated to physical values that can be accessed by users easily). The procedure developed to run in real time is divided in three parts. First of all, a crontab file launches different applications, depending on the data type

  3. Remote sensing image fusion in the context of Digital Earth

    International Nuclear Information System (INIS)

    Pohl, C


    The increase in the number of operational Earth observation satellites gives remote sensing image fusion a new boost. As a powerful tool to integrate images from different sensors it enables multi-scale, multi-temporal and multi-source information extraction. Image fusion aims at providing results that cannot be obtained from a single data source alone. Instead it enables feature and information mining of higher reliability and availability. The process required to prepare remote sensing images for image fusion comprises most of the necessary steps to feed the database of Digital Earth. The virtual representation of the planet uses data and information that is referenced and corrected to suit interpretation and decision-making. The same pre-requisite is valid for image fusion, the outcome of which can directly flow into a geographical information system. The assessment and description of the quality of the results remains critical. Depending on the application and information to be extracted from multi-source images different approaches are necessary. This paper describes the process of image fusion based on a fusion and classification experiment, explains the necessary quality measures involved and shows with this example which criteria have to be considered if the results of image fusion are going to be used in Digital Earth

  4. Satellite Data for All? Review of Google Earth Engine for Archaeological Remote Sensing

    Directory of Open Access Journals (Sweden)

    Omar A. Alcover Firpi


    Full Text Available A review of Google Earth Engine for archaeological remote sensing using satellite data. GEE is a freely accessible software option for processing remotely sensed data, part of the larger Google suite of products.

  5. Development of a standard methodology for optimizing remote visual display for nuclear maintenance tasks (United States)

    Clarke, M. M.; Garin, J.; Prestonanderson, A.

    A fuel recycle facility being designed at Oak Ridge National Laboratory involves the Remotex concept: advanced servo-controlled master/slave manipulators, with remote television viewing, will totally replace direct human contact with the radioactive environment. The design of optimal viewing conditions is a critical component of the overall man/machine system. A methodology was developed for optimizing remote visual displays for nuclear maintenance tasks. The usefulness of this approach was demonstrated by preliminary specification of optimal closed circuit TV systems for such tasks.

  6. Infrared remote sensing of Earth degassing - Ground study

    Directory of Open Access Journals (Sweden)

    P. Strobl


    Full Text Available Geodynamical processes e.g., volcanoes, often cause degassing at the Earth surface. The geogas emanates via mineral springs, water mofettes, or dry mofettes. It is assumed that the emerging gas influences the temperature of the spring or mofette water, respectively and the surface temperature of the soil at and around the dry gas vents. This causes a thermal anomaly in comparison to the close vicinity. Under specific conditions this effect should be extractable from remotely acquired infrared images allowing detection, mapping and monitoring of gas vents/springs within large areas and short times. This article describes preparatory investigations for which emanating Earth gas was simulated by leading compressed air into the ground and releasing it in some depth via a metal lance. The thermal effect at the surface was observed from a nearby thermovision camera in summer and winter under varying meteorological conditions. A procedure was developed to reliably identify gas release areas within the recorded thermal images of the scene. The investigations are aiming at studies to be performed later in the Western Bohemia (Czech Republic earthquake swarm region where especially CO2 of magmatic origin from European SubContinental Mantle (ESCM emanates.

  7. Virtual network computing: cross-platform remote display and collaboration software. (United States)

    Konerding, D E


    VNC (Virtual Network Computing) is a computer program written to address the problem of cross-platform remote desktop/application display. VNC uses a client/server model in which an image of the desktop of the server is transmitted to the client and displayed. The client collects mouse and keyboard input from the user and transmits them back to the server. The VNC client and server can run on Windows 95/98/NT, MacOS, and Unix (including Linux) operating systems. VNC is multi-user on Unix machines (any number of servers can be run are unrelated to the primary display of the computer), while it is effectively single-user on Macintosh and Windows machines (only one server can be run, displaying the contents of the primary display of the server). The VNC servers can be configured to allow more than one client to connect at one time, effectively allowing collaboration through the shared desktop. I describe the function of VNC, provide details of installation, describe how it achieves its goal, and evaluate the use of VNC for molecular modelling. VNC is an extremely useful tool for collaboration, instruction, software development, and debugging of graphical programs with remote users.

  8. Development of a standard methodology for optimizing remote visual display for nuclear-maintenance tasks

    International Nuclear Information System (INIS)

    Clarke, M.M.; Garin, J.; Preston-Anderson, A.


    The aim of the present study is to develop a methodology for optimizing remote viewing systems for a fuel recycle facility (HEF) being designed at Oak Ridge National Laboratory (ORNL). An important feature of this design involves the Remotex concept: advanced servo-controlled master/slave manipulators, with remote television viewing, will totally replace direct human contact with the radioactive environment. Therefore, the design of optimal viewing conditions is a critical component of the overall man/machine system. A methodology has been developed for optimizing remote visual displays for nuclear maintenance tasks. The usefulness of this approach has been demonstrated by preliminary specification of optimal closed circuit TV systems for such tasks

  9. NASA Laser Remote Sensing Technology Needs for Earth Science in the Next Decade and Beyond (United States)

    Trait, David M.; Neff, Jon M.; Valinia, Azita


    In late 2005 the NASA Earth Science Technology Office convened a working group to review decadal-term technology needs for Earth science active optical remote sensing objectives. The outcome from this effort is intended to guide future NASA investments in laser remote sensing technologies. This paper summarizes the working group findings and places them in context with the conclusions of the National Research Council assessment of Earth science needs, completed in 2007.

  10. Earth and atmospheric remote sensing; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991 (United States)

    Curran, Robert J. (Editor); Smith, James A. (Editor); Watson, Ken (Editor)


    The papers presented in this volume address the technical aspects of earth and atmospheric remote sensing. Topics discussed include spaceborne and ground-based applications of laser remote sensing, advanced applications of lasers in remote sensing, laser ranging applications, data analysis and systems for biospheric processes, measurements for biospheric processes, and remote sensing for geology and geophysics. Papers are presented on a space-qualified laser transmitter for lidar applications, solid state lasers for planetary exploration, automated band selection for multispectral meteorological applications, aerospace remote sensing of natural water organics, and remote sensing of volcanic ash hazards to aircraft.

  11. The Rise of GNSS Reflectometry for Earth Remote Sensing (United States)

    Zuffada, Cinzia; Li, Zhijin; Nghiem, Son V.; Lowe, Steve; Shah, Rashmi; Clarizia, Maria Paola; Cardellach, Estel


    The Global Navigation Satellite System (GNSS) reflectometry, i.e. GNSS-R, is a novel remote-sensing technique first published in that uses GNSS signals reflected from the Earth's surface to infer its surface properties such as sea surface height (SSH), ocean winds, sea-ice coverage, vegetation, wetlands and soil moisture, to name a few. This communication discusses the scientific value of GNSS-R to (a) furthering our understanding of ocean mesoscale circulation toward scales finer than those that existing nadir altimeters can resolve, and (b) mapping vegetated wetlands, an emerging application that might open up new avenues to map and monitor the planet's wetlands for methane emission assessments. Such applications are expected to be demonstrated by the availability of data from GEROS-ISS, an ESA experiment currently in phase A, and CyGNSS [3], a NASA mission currently in development. In particular, the paper details the expected error characteristics and the role of filtering played in the assimilation of these data to reduce the altimetric error (when averaging many measurements).

  12. Visualizing Earth and Planetary Remote Sensing Data Using JMARS (United States)

    Dickenshied, S.; Christensen, P. R.; Carter, S.; Anwar, S.; Noss, D.


    JMARS (Java Mission-planning and Analysis for Remote Sensing) is a free geospatial application developed by the Mars Space Flight Facility at Arizona State University. Originally written as a mission planning tool for the THEMIS instrument on board the MARS Odyssey Spacecraft, it was released as an analysis tool to the general public in 2003. Since then it has expanded to be used for mission planning and scientific data analysis by additional NASA missions to Mars, the Moon, and Vesta, and it has come to be used by scientists, researchers and students of all ages from more than 40 countries around the world. The public version of JMARS now also includes remote sensing data for Mercury, Venus, Earth, the Moon, Mars, and a number of the moons of Jupiter and Saturn. Additional datasets for asteroids and other smaller bodies are being added as they becomes available and time permits. JMARS fuses data from different instruments in a geographical context. One core strength of JMARS is that it provides access to geospatially registered data via a consistent interface. Such data include global images (graphical and numeric), local mosaics, individual instrument images, spectra, and vector-oriented data. By hosting these products, users are able to avoid searching for, downloading, decoding, and projecting data on their own using a disparate set of tools and procedures. The JMARS team processes, indexes, and reorganizes data to make it quickly and easily accessible in a consistent manner. JMARS leverages many open-source technologies and tools to accomplish these data preparation steps. In addition to visualizing multiple datasets in context with one another, JMARS allows a user to find data products from differing missions that intersect the same geographical location, time range, or observational parameters. Any number of georegistered datasets can then be viewed or analyzed simultaneously with one another. A user can easily create a mosaic of graphic data, plot numeric

  13. Remote Sensing of shallow sea floor for digital earth environment

    International Nuclear Information System (INIS)

    Yahya, N N; Hashim, M; Ahmad, S


    Understanding the sea floor biodiversity requires spatial information that can be acquired from remote sensing satellite data. Species volume, spatial patterns and species coverage are some of the information that can be derived. Current approaches for mapping sea bottom type have evolved from field observation, visual interpretation from aerial photography, mapping from remote sensing satellite data along with field survey and hydrograhic chart. Remote sensing offers most versatile technique to map sea bottom type up to a certain scale. This paper reviews the technical characteristics of signal and light interference within marine features, space and remote sensing satellite. In addition, related image processing techniques that are applicable to remote sensing satellite data for sea bottom type digital mapping is also presented. The sea bottom type can be differentiated by classification method using appropriate spectral bands of satellite data. In order to verify the existence of particular sea bottom type, field observations need to be carried out with proper technique and equipment

  14. Space-Based Remote Sensing of the Earth: A Report to the Congress (United States)


    The commercialization of the LANDSAT Satellites, remote sensing research and development as applied to the Earth and its atmosphere as studied by NASA and NOAA is presented. Major gaps in the knowledge of the Earth and its atmosphere are identified and a series of space based measurement objectives are derived. The near-term space observations programs of the United States and other countries are detailed. The start is presented of the planning process to develop an integrated national program for research and development in Earth remote sensing for the remainder of this century and the many existing and proposed satellite and sensor systems that the program may include are described.

  15. Atmospheric correction of Earth-observation remote sensing images

    Indian Academy of Sciences (India)

    In earth observation, the atmospheric particles contaminate severely, through absorption and scattering, the reflected electromagnetic signal from the earth surface. It will be greatly beneficial for land surface characterization if we can remove these atmospheric effects from imagery and retrieve surface reflectance that ...

  16. BiFS-based approaches to remote display for mobile thin clients (United States)

    Mitrea, M.; Simoens, P.; Joveski, B.; Marshall, J.; Taguengayte, A.; Prêteux, F.; Dhoed, B.


    Under the framework of the FP-7 European MobiThin project, the present study addresses the issue of remote display representation for mobile thin client. The main issue is to design a compressing algorithm for heterogeneous content (text, graphics, image and video) with low-complex decoding. As a first step in this direction, we propose a novel software architecture, based on BiFS - Binary Format for Scenes (MPEG-4 Part 11). On the server side, the graphical content is parsed, converted and binary encoded into the BiFS format. This content is then streamed to the terminal, where it is played on a simple MPEG player. The viability of this solution is validated by comparing it to the most intensively used wired solutions, e.g. VNC - Virtual Network Computing.

  17. Earth Remote Sensing for Weather Forecasting and Disaster Applications (United States)

    Molthan, Andrew; Bell, Jordan; Case, Jonathan; Cole, Tony; Elmer, Nicholas; McGrath, Kevin; Schultz, Lori; Zavodsky, Brad


    NASA's constellation of current missions provide several opportunities to apply satellite remote sensing observations to weather forecasting and disaster response applications. Examples include: Using NASA's Terra and Aqua MODIS, and the NASA/NOAA Suomi-NPP VIIRS missions to prepare weather forecasters for capabilities of GOES-R; Incorporating other NASA remote sensing assets for improving aspects of numerical weather prediction; Using NASA, NOAA, and international partner resources (e.g. ESA/Sentinel Series); and commercial platforms (high-res, or UAV) to support disaster mapping.

  18. Apollo 16 landing site: Summary of earth based remote sensing data, part W (United States)

    Zisk, S. H.; Masursky, H.; Milton, D. J.; Schaber, G. G.; Shorthill, R. W.; Thompson, T. W.


    Infrared and radar studies of the Apollo 16 landing site are summarized. Correlations and comparisons between earth based remote sensing data, IR observations, and other data are discussed in detail. Remote sensing studies were devoted to solving two problems: (1) determining the physical difference between Cayley and Descartes geologic units near the landing site; and (2) determining the nature of the bright unit of Descartes mountain material.

  19. Remote sensing in agriculture. [using Earth Resources Technology Satellite photography (United States)

    Downs, S. W., Jr.


    Some examples are presented of the use of remote sensing in cultivated crops, forestry, and range management. Areas of concern include: the determination of crop areas and types, prediction of yield, and detection of disease; the determination of forest areas and types, timber volume estimation, detection of insect and disease attack, and forest fires; and the determination of range conditions and inventory, and livestock inventory. Articles in the literature are summarized and specific examples of work being performed at the Marshall Space Flight Center are given. Primarily, aerial photographs and photo-like ERTS images are considered.

  20. InP HEMT Integrated Circuits for Submillimeter Wave Radiometers in Earth Remote Sensing (United States)

    Deal, William R.; Chattopadhyay, Goutam


    The operating frequency of InP integrated circuits has pushed well into the Submillimeter Wave frequency band, with amplification reported as high as 670 GHz. This paper provides an overview of current performance and potential application of InP HEMT to Submillimeter Wave radiometers for earth remote sensing.

  1. Research of generalized wavelet transformations of Haar correctness in remote sensing of the Earth (United States)

    Kazaryan, Maretta; Shakhramanyan, Mihail; Nedkov, Roumen; Richter, Andrey; Borisova, Denitsa; Stankova, Nataliya; Ivanova, Iva; Zaharinova, Mariana


    In this paper, Haar's generalized wavelet functions are applied to the problem of ecological monitoring by the method of remote sensing of the Earth. We study generalized Haar wavelet series and suggest the use of Tikhonov's regularization method for investigating them for correctness. In the solution of this problem, an important role is played by classes of functions that were introduced and described in detail by I.M. Sobol for studying multidimensional quadrature formulas and it contains functions with rapidly convergent series of wavelet Haar. A theorem on the stability and uniform convergence of the regularized summation function of the generalized wavelet-Haar series of a function from this class with approximate coefficients is proved. The article also examines the problem of using orthogonal transformations in Earth remote sensing technologies for environmental monitoring. Remote sensing of the Earth allows to receive from spacecrafts information of medium, high spatial resolution and to conduct hyperspectral measurements. Spacecrafts have tens or hundreds of spectral channels. To process the images, the device of discrete orthogonal transforms, and namely, wavelet transforms, was used. The aim of the work is to apply the regularization method in one of the problems associated with remote sensing of the Earth and subsequently to process the satellite images through discrete orthogonal transformations, in particular, generalized Haar wavelet transforms. General methods of research. In this paper, Tikhonov's regularization method, the elements of mathematical analysis, the theory of discrete orthogonal transformations, and methods for decoding of satellite images are used. Scientific novelty. The task of processing of archival satellite snapshots (images), in particular, signal filtering, was investigated from the point of view of an incorrectly posed problem. The regularization parameters for discrete orthogonal transformations were determined.

  2. Development of a remote data acquisition and graphic display system for the sodium rigs

    International Nuclear Information System (INIS)

    Rajendran, A.; Sylvia, J.I.; Swaminathan, K.


    This paper describes the development of a Remote Data Acquisition System for Sodium Rigs. Seven data loggers, an alarm monitor and a PLC are geographically distributed in two sodium rigs over a distance of 500 m. A serial data highway based on RS485 transceivers has been constructed to remotely acquire data from these stations. The field stations are connected to the data highway in a multi drop fashion. A PC/AT computer on the same bus remotely acquires and monitors the data from the field stations. (author). 3 refs., 2 figs

  3. Assessing the Interdisciplinary Use of Socioeconomic and Remote Sensing Data in the Earth Sciences (United States)

    Chen, R. S.; Downs, R. R.; Schumacher, J.


    Remotely sensed data are widely used in Earth science research and applications not just to improve understanding of natural systems but also to elucidate interactions between natural and human systems and to model and predict human impacts on the environment, whether planned or unplanned. It is therefore often necessary for both remote sensing and socioeconomic data to be used together in both Earth science and social science research, for example in modeling past, present, and future land cover change, in assessing societal vulnerability to geophysical and climatological hazards, in measuring the human health impacts of air and water pollution, or in developing improved approaches to managing water, ecological, and other resources. The NASA Socioeconomic Data and Applications Center (SEDAC) was established as part of the Earth Observing System Data and Information System (EOSDIS) to facilitate access to and use of socioeconomic data in conjunction with remote sensing data in both research and applications. SEDAC provides access both to socioeconomic data that have been transformed into forms more readily usable by Earth scientists and other users, and to integrated datasets that incorporate both socioeconomic and remote sensing data. SEDAC data have been cited in at least 2,000 scientific papers covering a wide range of scientific disciplines and problem areas. In many cases, SEDAC data are cited in these papers along with other remote sensing datasets available from NASA or other sources. However, such citations do not necessarily indicate significant, integrated use of SEDAC and remote sensing data. To assess the level and type of integrated data use, we analyze a selection of recent SEDAC data citations in Earth science journals to characterize the ways in which SEDAC data have been used in the underlying research project and the paper itself. Papers were selected based on the presence of a SEDAC data citation and one or more keywords related to a remote

  4. EarthTutor: An Interactive Intelligent Tutoring System for Remote Sensing (United States)

    Bell, A. M.; Parton, K.; Smith, E.


    Earth science classes in colleges and high schools use a variety of satellite image processing software to teach earth science and remote sensing principles. However, current tutorials for image processing software are often paper-based or lecture-based and do not take advantage of the full potential of the computer context to teach, immerse, and stimulate students. We present EarthTutor, an adaptive, interactive Intelligent Tutoring System (ITS) being built for NASA (National Aeronautics and Space Administration) that is integrated directly with an image processing application. The system aims to foster the use of satellite imagery in classrooms and encourage inquiry-based, hands-on earth science scientific study by providing students with an engaging imagery analysis learning environment. EarthTutor's software is available as a plug-in to ImageJ, a free image processing system developed by the NIH (National Institute of Health). Since it is written in Java, it can be run on almost any platform and also as an applet from the Web. Labs developed for EarthTutor combine lesson content (such as HTML web pages) with interactive activities and questions. In each lab the student learns to measure, calibrate, color, slice, plot and otherwise process and analyze earth science imagery. During the activities, EarthTutor monitors students closely as they work, which allows it to provide immediate feedback that is customized to a particular student's needs. As the student moves through the labs, EarthTutor assesses the student, and tailors the presentation of the content to a student's demonstrated skill level. EarthTutor's adaptive approach is based on emerging Artificial Intelligence (AI) research. Bayesian networks are employed to model a student's proficiency with different earth science and image processing concepts. Agent behaviors are used to track the student's progress through activities and provide guidance when a student encounters difficulty. Through individual

  5. False Negatives for Remote Life Detection on Ocean-Bearing Planets: Lessons from the Early Earth. (United States)

    Reinhard, Christopher T; Olson, Stephanie L; Schwieterman, Edward W; Lyons, Timothy W


    Ocean-atmosphere chemistry on Earth has undergone dramatic evolutionary changes throughout its long history, with potentially significant ramifications for the emergence and long-term stability of atmospheric biosignatures. Though a great deal of work has centered on refining our understanding of false positives for remote life detection, much less attention has been paid to the possibility of false negatives, that is, cryptic biospheres that are widespread and active on a planet's surface but are ultimately undetectable or difficult to detect in the composition of a planet's atmosphere. Here, we summarize recent developments from geochemical proxy records and Earth system models that provide insight into the long-term evolution of the most readily detectable potential biosignature gases on Earth-oxygen (O 2 ), ozone (O 3 ), and methane (CH 4 ). We suggest that the canonical O 2 -CH 4 disequilibrium biosignature would perhaps have been challenging to detect remotely during Earth's ∼4.5-billion-year history and that in general atmospheric O 2 /O 3 levels have been a poor proxy for the presence of Earth's biosphere for all but the last ∼500 million years. We further suggest that detecting atmospheric CH 4 would have been problematic for most of the last ∼2.5 billion years of Earth's history. More broadly, we stress that internal oceanic recycling of biosignature gases will often render surface biospheres on ocean-bearing silicate worlds cryptic, with the implication that the planets most conducive to the development and maintenance of a pervasive biosphere will often be challenging to characterize via conventional atmospheric biosignatures. Key Words: Biosignatures-Oxygen-Methane-Ozone-Exoplanets-Planetary habitability. Astrobiology 17, 287-297.

  6. A system for tracking braille readers using a Wii Remote and a refreshable braille display. (United States)

    Aranyanak, Inthraporn; Reilly, Ronan G


    This article describes a cheap and easy-to-use finger-tracking system for studying braille reading. It provides improved spatial and temporal resolution over the current available solutions and can be used with either a refreshable braille display or braille-embossed paper. In conjunction with a refreshable braille display, the tracking system has the unique capacity to implement display-change paradigms derived from sighted reading research. This will allow researchers to probe skilled braille reading in significantly more depth than has heretofore been possible.

  7. A technique of the structural-tectonic elevations prediction using Earth remote sensing data (United States)

    Tishaev, I. V.; Zatserkovnyi, V. I.; Yagorlytska, K. P.


    We consider an approach of using methods of Earth remote sensing data (RSD) classification for solving tasks of exploration geology and geophysics. Information obtained from the remote sensing data gives a possibility to clarify the structure of investigated areas and to determine neotectonic elevations, which act as certain indicators of promising areas with hydra-carbons contents. Reasonability of using such methods of RSD classification is based on connection between deep structure of surface resources (structural-tectonic setting) with current landscape, character of hydrologic network, geo-morphological, geo-botanical and other features. The advantage of Bayes classificator is not only in determination of object belonging to certain class, but also in calculation of probability of such belonging. For the formulated task this lets to forecast a presence of structural-tectonic elevations, which are potentially promising areas for hydra-carbons contents, using a formali! zed quantitative criterion. contents.


    Directory of Open Access Journals (Sweden)

    N. A. Arkhipova


    Full Text Available The article scopes the hardware and software of the information system for pre-contractual real-time analysis of requests feasibility for supplying of Earth remote sensing data, which is an integral part of the Belarusian Space System for Earth Remote Sensing. The main purpose of the development of this information system is the creation of computer-aided system for real-time analysis of customers’ requests feasibility by using the resources of two space vehicles. This system is a decision support system in the pre-contractual phase on the everyday business practice. This automation activity is solved using multicriteria optimization approaches. The created information system allows to speed-up calculations and increase its quality as well as to augment the precision of assessment of space images acquisition by including the resources of two satellites during the requested period of time. This system has passed the evaluation test for both satellites and may be further used as the base for real-time analysis of requests feasibility taking into account the resources of several space vehicles.

  9. Remote sensing of earth resources: list of UK groups and individuals engaged in remote sensing, with a brief account of their activities and facilities

    Energy Technology Data Exchange (ETDEWEB)


    This book gives details of some 250 organizations that use some means of remote sensing for earth surveys. It includes sections on water and marine resources, and appendices covering facilities for education and training and manufactures and suppliers of equipment and services.

  10. Thermal Remote Sensing of Lava Lakes on Io and Earth (Invited) (United States)

    Davies, A. G.; Keszthelyi, L. P.; McEwen, A. S.


    Volcanology has been transformed by remote sensing. For decades, Earth's volcanoes have been studied in the infrared by a wide variety of instruments on spacecraft at widely varying spectral, spatial and temporal resolutions, for which techniques have been developed to interpret and understand ongoing volcanic eruptions. The study of volcanism on Io, the only Solar System body besides Earth known to have ongoing, high temperature, silicate-based effusive and explosive volcanic eruptions, requires new remote sensing techniques. The extraordinary volcanism allows us to examine Io's interior and composition from the material erupted onto the surface. For Io, the biggest question in the wake of NASA's Galileo mission concerns the eruption temperature of Io's dominant silicate lavas [1,2]. Constraining eruption temperature constrains magma composition, in turn a reflection of the composition, physical state and tidal heating within Io. However, the extraction of lava eruption temperature from remote sensing data is difficult. Detector saturation is likely except when the hot material fills a tiny fraction of a resolution element, unless instruments are designed for this objective. High temperature lava surfaces cool rapidly, so remote observations can miss the peak temperature. Observations at different wavelengths must be acquired nearly simultaneously to derive accurate temperatures of very hot and dynamic sources [3]. Uncertainties regarding hot lava emissivity [4] also reduce the confidence in derived temperatures. From studying thermal emission data from different styles of volcanic activity on Earth by remote sensing in conjunction with contemporaneous observations on the ground, it is found that only certain styles of volcanic activity are suitable for deriving liquid lava temperatures [3]. Active lava lakes are particularly useful, especially during a phase of lava fountaining. Examination and analysis of FLIR data obtained at the Erta'Ale (Ethiopia) basaltic

  11. Dissemination of Earth Remote Sensing Data for Use in the NOAA/NWS Damage Assessment Toolkit (United States)

    Molthan, Andrew; Burks, Jason; Camp, Parks; McGrath, Kevin; Bell, Jordan


    The National Weather Service has developed the Damage Assessment Toolkit (DAT), an application for smartphones and tablets that allows for the collection, geolocation, and aggregation of various damage indicators that are collected during storm surveys. The DAT supports the often labor-intensive process where meteorologists venture into the storm-affected area, allowing them to acquire geotagged photos of the observed damage while also assigning estimated EF-scale categories based upon their observations. Once the data are collected, the DAT infrastructure aggregates the observations into a server that allows other meteorologists to perform quality control and other analysis steps before completing their survey and making the resulting data available to the public. In addition to in-person observations, Earth remote sensing from operational, polar-orbiting satellites can support the damage assessment process by identifying portions of damage tracks that may be missed due to road limitations, access to private property, or time constraints. Products resulting from change detection techniques can identify damage to vegetation and the land surface, aiding in the survey process. In addition, higher resolution commercial imagery can corroborate ground-based surveys by examining higher-resolution commercial imagery. As part of an ongoing collaboration, NASA and NOAA are working to integrate near real-time Earth remote sensing observations into the NOAA/NWS Damage Assessment Toolkit. This presentation will highlight recent developments in a streamlined approach for disseminating Earth remote sensing data via web mapping services and a new menu interface that has been integrated within the DAT. A review of current and future products will be provided, including products derived from MODIS and VIIRS for preliminary track identification, along with conduits for higher-resolution Landsat, ASTER, and commercial imagery as they become available. In addition to tornado damage

  12. Topographic Information Requirements and Computer-Graphic Display Techniques for Nap-of-the-Earth Flight. (United States)


    of- at Battle Positions sight to target when unmask Concealment of Approach Map j Routes ! I i. 16 ... ’ FUNCTION: IASb SELECT AERIAL select special overlays for temporary display and to remove them for clutter avoidance. In addition to these graphic presentation roles , the

  13. Defining the Application Readiness of Products when Developing Earth Observing Remote Sensing Data Products (United States)

    Escobar, V. M.


    Satellite remote sensing technology has contributed to the transformation of multiple earth science domains, putting space observations at the forefront of innovation in Earth Science. With new satellite missions being launched every year, new types of Earth Science data are being incorporated into science models and decision-making systems in a broad array of organizations. These applications help hazard mitigation and decision-making in government, private, and civic institutions working to reduce its impact on human wellbeing. Policy guidance and knowledge of product maturity can influence mission design as well as development of product applications in user organizations. Ensuring that satellite missions serve both the scientific and user communities without becoming unfocused and overly expensive is a critical outcome from engagement of user communities. Tracking the applications and product maturity help improve the use of data. NASA's Applications Readiness Levels reduce cost and increase the confidence in applications. ARLs help identify areas where NASA products are most useful while allowing the user to leverage products in early development as well as those ready for operational uses. By considering the needs of the user community early on in the mission-design process, agencies can use ARLs to ensure that satellites meet the needs of multiple constituencies and the development of products are integrated into user organizations organically. ARLs and user integration provide a perspective on the maturity and readiness of a products ability to influence policy and decision-making. This paper describes the mission application development process at NASA and within the Earth Science Directorate. We present the successes and challenges faced by NASA data users and explain how ARLs helps link NASA science to the appropriate policies and decision frameworks. The methods presented here can be adapted to other programs and institutions seeking to rapidly move

  14. Classification of Volcanic Eruptions on Io and Earth Using Low-Resolution Remote Sensing Data (United States)

    Davies, A. G.; Keszthelyi, L. P.


    Two bodies in the Solar System exhibit high-temperature active volcanism: Earth and Io. While there are important differences in the eruptions on Earth and Io, in low-spatial-resolution data (corresponding to the bulk of available and foreseeable data of Io), similar styles of effusive and explosive volcanism yield similar thermal flux densities. For example, a square metre of an active pahoehoe flow on Io looks very similar to a square metre of an active pahoehoe flow on Earth. If, from observed thermal emission as a function of wavelength and change in thermal emission with time, the eruption style of an ionian volcano can be constrained, estimates of volumetric fluxes can be made and compared with terrestrial volcanoes using techniques derived for analysing terrestrial remotely-sensed data. In this way we find that ionian volcanoes fundamentally differ from their terrestrial counterparts only in areal extent, with Io volcanoes covering larger areas, with higher volumetric flux. Io outbursts eruptions have enormous implied volumetric fluxes, and may scale with terrestrial flood basalt eruptions. Even with the low-spatial resolution data available it is possible to sometimes constrain and classify eruption style both on Io and Earth from the integrated thermal emission spectrum. Plotting 2 and 5 m fluxes reveals the evolution of individual eruptions of different styles, as well as the relative intensity of eruptions, allowing comparison to be made from individual eruptions on both planets. Analyses like this can be used for interpretation of low-resolution data until the next mission to the jovian system. For a number of Io volcanoes (including Pele, Prometheus, Amirani, Zamama, Culann, Tohil and Tvashtar) we do have high/moderate resolution imagery to aid determination of eruption mode from analyses based only on low spatial-resolution data.

  15. Surface biosignatures of exo-earths: remote detection of extraterrestrial life. (United States)

    Hegde, Siddharth; Paulino-Lima, Ivan G; Kent, Ryan; Kaltenegger, Lisa; Rothschild, Lynn


    Exoplanet discovery has made remarkable progress, with the first rocky planets having been detected in the central star's liquid water habitable zone. The remote sensing techniques used to characterize such planets for potential habitability and life rely solely on our understanding of life on Earth. The vegetation red edge from terrestrial land plants is often used as a direct signature of life, but it occupies only a small niche in the environmental parameter space that binds life on present-day Earth and has been widespread for only about 460 My. To more fully exploit the diversity of the one example of life known, we measured the spectral characteristics of 137 microorganisms containing a range of pigments, including ones isolated from Earth's most extreme environments. Our database covers the visible and near-infrared to the short-wavelength infrared (0.35-2.5 µm) portions of the electromagnetic spectrum and is made freely available from Our results show how the reflectance properties are dominated by the absorption of light by pigments in the visible portion and by strong absorptions by the cellular water of hydration in the infrared (up to 2.5 µm) portion of the spectrum. Our spectral library provides a broader and more realistic guide based on Earth life for the search for surface features of extraterrestrial life. The library, when used as inputs for modeling disk-integrated spectra of exoplanets, in preparation for the next generation of space- and ground-based instruments, will increase the chances of detecting life.

  16. Earth Resources: A continuing bibliography with indexes, issue 2. [remote sensors and data acquisition techniques (United States)


    Reports, articles, and other documents announced between April and June 1974 in Scientific and Technical Aerospace Reports (STAR), and International Aerospace Abstracts (IAA) are cited. Documents related to the identification and evaluation by means of sensors in spacecraft and aircraft of vegetation, minerals, and other natural resources, and the techniques and potentialities of surveying and keeping up-to-date inventories of such riches are included along with studies of such natural phenomena as earthquakes, volcanoes, ocean currents, and magnetic fields; and such cultural phenomena as cities, transportation networks, and irrigation systems. The components and use of remote sensing and geophysical instrumentation, their subsystems, observational procedures, signature and analyses and interpretive techniques for gathering data are, described. All reports generated under NASA's Earth Resources Survey Program for the time period covered are included.


    Directory of Open Access Journals (Sweden)

    A. N. Grigoriev


    Full Text Available Subject of Research. Research findings of the specific application of space-based optical-electronic and radar means for the Earth remote sensing are considered. The subject matter of the study is the current planning of objects survey on the underlying surface in order to increase the effectiveness of sensing system due to the rational use of its resources. Method. New concept of a group object, stochastic swath and stochastic length of the route is introduced. The overview of models for single, group objects and their parameters is given. The criterion for the existence of the group object based on two single objects is formulated. The method for group objects formation while current survey planning has been developed and its description is presented. The method comprises several processing stages for data about objects with the calculation of new parameters, the stochastic characteristics of space means and validates the spatial size of the object value of the stochastic swath and stochastic length of the route. The strict mathematical description of techniques for model creation of a group object based on data about a single object and onboard special complex facilities in difficult conditions of registration of spatial data is given. Main Results. The developed method is implemented on the basis of modern geographic information system in the form of a software tool layout with advanced tools of processing and analysis of spatial data in vector format. Experimental studies of the forming method for the group of objects were carried out on a different real object environment using the parameters of modern national systems of the Earth remote sensing detailed observation Canopus-B and Resurs-P. Practical Relevance. The proposed models and method are focused on practical implementation using vector spatial data models and modern geoinformation technologies. Practical value lies in the reduction in the amount of consumable resources by means of


    Directory of Open Access Journals (Sweden)

    A. N. Grigoriev


    Full Text Available The paper deals with technologies of ground secondary processing of heterogeneous multispectral data. The factors of heterogeneous data include uneven illumination of objects on the Earth surface caused by different properties of the relief. A procedure for the image restoration of spectral channels by means of terrain distortion compensation is developed. The object matter of this paper is to improve the quality of the results during image restoration of areas with large and medium landforms. Methods. Researches are based on the elements of the digital image processing theory, statistical processing of the observation results and the theory of multi-dimensional arrays. Main Results. The author has introduced operations on multidimensional arrays: concatenation and elementwise division. Extended model description for input data about the area is given. The model contains all necessary data for image restoration. Correction method for multispectral data radiometric distortions of the Earth remote sensing has been developed. The method consists of two phases: construction of empirical dependences for spectral reflectance on the relief properties and restoration of spectral images according to semiempirical data. Practical Relevance. Research novelty lies in developme nt of the application theory of multidimensional arrays with respect to the processing of multispectral data, together with data on the topography and terrain objects. The results are usable for development of radiometric data correction tools. Processing is performed on the basis of a digital terrain model without carrying out ground works connected with research of the objects reflective properties.

  19. [Study on the modeling of earth-atmosphere coupling over rugged scenes for hyperspectral remote sensing]. (United States)

    Zhao, Hui-Jie; Jiang, Cheng; Jia, Guo-Rui


    Adjacency effects may introduce errors in the quantitative applications of hyperspectral remote sensing, of which the significant item is the earth-atmosphere coupling radiance. However, the surrounding relief and shadow induce strong changes in hyperspectral images acquired from rugged terrain, which is not accurate to describe the spectral characteristics. Furthermore, the radiative coupling process between the earth and the atmosphere is more complex over the rugged scenes. In order to meet the requirements of real-time processing in data simulation, an equivalent reflectance of background was developed by taking into account the topography and the geometry between surroundings and targets based on the radiative transfer process. The contributions of the coupling to the signal at sensor level were then evaluated. This approach was integrated to the sensor-level radiance simulation model and then validated through simulating a set of actual radiance data. The results show that the visual effect of simulated images is consistent with that of observed images. It was also shown that the spectral similarity is improved over rugged scenes. In addition, the model precision is maintained at the same level over flat scenes.

  20. Data-intensive multispectral remote sensing of the nighttime Earth for environmental monitoring and emergency response

    International Nuclear Information System (INIS)

    Zhizhin, M; Poyda, A; Velikhov, V; Novikov, A; Polyakov, A


    All Most of the remote sensing applications rely on the daytime visible and infrared images of the Earth surface. Increase in the number of satellites, their spatial resolution as well as the number of the simultaneously observed spectral bands ensure a steady growth of the data volumes and computational complexity in the remote sensing sciences. Recent advance in the night time remote sensing is related to the enhanced sensitivity of the on-board instruments and to the unique opportunity to observe “pure” emitters in visible infrared spectra without contamination from solar heat and reflected light. A candidate set of the night-time emitters observable from the low-orbiting and geostationary satellites include steady state and temporal changes in the city and traffic electric lights, fishing boats, high-temperature industrial objects such as steel mills, oil cracking refineries and power plants, forest and agricultural fires, gas flares, volcanic eruptions and similar catastrophic events. Current satellite instruments can detect at night 10 times more of such objects compared to daytime. We will present a new data-intensive workflow of the night time remote sensing algorithms for map-reduce processing of visible and infrared images from the multispectral radiometers flown by the modern NOAA/NASA Suomi NPP and the USGS Landsat 8 satellites. Similar radiometers are installed on the new generation of the US geostationary GOES-R satellite to be launched in 2016. The new set of algorithms allows us to detect with confidence and track the abrupt changes and long-term trends in the energy of city lights, number of fishing boats, as well as the size, geometry, temperature of gas flares and to estimate monthly and early flared gas volumes by site or by country. For real-time analysis of the night time multispectral satellite images with global coverage we need gigabit network, petabyte data storage and parallel compute cluster with more than 20 nodes. To meet the

  1. Partnering and teamwork to create content for spherical display systems to enhance public literacy in earth system and ocean sciences (United States)

    Beaulieu, S. E.; Patterson, K.; Joyce, K.; Silva, T.; Madin, K.; Spargo, A.; Brickley, A.; Emery, M.


    Spherical display systems, also known as digital globes, are technologies that, in person or online, can be used to help visualize global datasets and earth system processes. Using the InterRidge Global Database of Active Submarine Hydrothermal Vent Fields and imagery from deep-sea vehicles, we are creating content for spherical display systems to educate and excite the public about dynamic geophysical and biological processes and exploration in the deep ocean. The 'Global Viewport for Virtual Exploration of Deep-Sea Hydrothermal Vents' is a collaboration between the Woods Hole Oceanographic Institution and the Ocean Explorium at New Bedford Seaport, hosting a Magic Planet and Science On a Sphere (SOS), respectively. The main activities in the first year of our project were geared towards team building and content development. Here we will highlight the partnering and teamwork involved in creating and testing the effectiveness of our new content. Our core team is composed of a lead scientist, educators at both institutions, graphic artists, and a professional evaluator. The new content addresses key principles of Earth Science Literacy and Ocean Literacy. We will share the collaborative, iterative process by which we developed two educational pieces, 'Life without sunlight' and 'Smoke and fire underwater' - each focusing on a different set of 3 literacy principles. We will share how we conducted our front-end and formative evaluations and how we focused on 2 NSF Informal Education Impact Categories for our evaluation questionnaire for the public. Each educational piece is being produced as a stand-alone movie and as an interactive, docent-led presentation integrating a number of other datasets available from NOAA's SOS Users Network. The proximity of our two institutions enables a unique evaluation of the learning attained with a stand-alone spherical display vs. live presentations with an SOS.

  2. Earth Observation from the International Space Station -Remote Sensing in Schools- (United States)

    Schultz, Johannes; Rienow, Andreas; Graw, Valerie; Heinemann, Sascha; Selg, Fabian; Menz, Gunter


    Since spring 2014, the NASA High Definition Earth Viewing (HDEV) mission at the International Space Station (ISS) is online. HDEV consists of four cameras mounted at ESA's Columbus laboratory and is recording the earth 24/7. The educational project 'Columbus Eye - Live-Imagery from the ISS in Schools' has published a learning portal for earth observation from the ISS ( Besides a video live stream, the portal contains an archive providing spectacular footage, web-GIS and an observatory with interactive materials for school lessons. Columbus Eye is carried out by the University of Bonn and funded by the German Aerospace Center (DLR) Space Administration. Pupils should be motivated to work with the footage in order to learn about patterns and processes of the coupled human-environment system like volcano eruptions or deforestation. The material is developed on the experiences of the FIS (German abbreviation for "Remote Sensing in Schools") project and its learning portal ( Based on the ISS videos three different teaching material types are developed. The simplest teaching type are provided by worksheets, which have a low degree of interactivity. Alongside a short didactical commentary for teachers is included. Additionally, videos, ancillary information, maps, and instructions for interactive school experiments are provided. The observatory contains the second type of the Columbus Eye teaching materials. It requires a high degree of self-organisation and responsibility of the pupils. Thus, the observatory provides the opportunity for pupils to freely construct their own hypotheses based on a spatial analysis tool similar to those provided by commercial software. The third type are comprehensive learning and teaching modules with a high degree of interactivity, including background information, interactive animations, quizzes and different analysis tools (e.g. change detection, classification, polygon or NDVI

  3. Observing the Earth from an Astronaut's View - Applied Remote Sensing in Schools (United States)

    Rienow, Andreas; Hodam, Henryk; Menz, Gunter; Kerstin, Voß


    Since spring 2014, NASA conducts the High Definition Earth Viewing (HDEV) mission at the International Space Station (ISS). HDEV consists of four cameras mounted at ESA's Columbus laboratory. They continuously observe our earth in three different perspectives. Hence, they provide not only footage showing the Sun and the Moon rising and setting but also regular images of landscapes that are difficult to access, such as mountain ranges, deserts, and tropical rainforests. The German educational project "Columbus Eye", which is executed by the University of Bonn and is funded by the German Aerospace Center (DLR), aims at the implementation of the HDEV imagery and videos in a teaching portal: Pupils should be motivated to work with the footage in order to learn about pattern and processes of the coupled human-environment system like volcano eruptions or deforestation. The material is developed on the experiences of the FIS (German abbreviation for "Remote Sensing in Schools") project and its learning portal ( Recognizing that in-depth use of satellite imagery can only be achieved by the means of computer aided learning methods, a sizeable number of e-Learning contents in German and English have been created throughout the last 7 years since FIS' kickoff. The talk presents the educational valorization of ISS and satellite borne imagery data as well as their interactive implementation for teachers and pupils in both learning portals. It will be shown which possibilities the topic of earth observation from space holds ready for teaching the regular STEM curricula. A report of first experiences of a nationwide road show accompanying the mission of the ESA astronaut Alexander Gerst will be given. Among others it involved an event during which pupils from a secondary school in North Rhine-Westphalia have talked to the astronaut via ham radio. Accordingly, the presentation addresses the question of how synergies of human

  4. A GI Proposal to Display ECG Digital Signals Wirelessly Real-time Transmitted onto a Remote PC

    Directory of Open Access Journals (Sweden)

    Marius Corneliu Rosu


    Full Text Available The sensors, as wireless communication system, comply the 7-layer model Open Systems Interconnection (OSI. In this paper, a point-to-point transmission model was used. The ECG signal is transmitted from the Router Sensor (RS to an end Coordinator Node (CN plugged-in to the laptop via USB port; RS acquires ECG signal in analogical mode, and is also responsible with sampling, quantization and sending it wirelessly direct to CN. The distance between RS and CN is a single-hop transmission, and does not exceed the range of the XBeeS2Pro transceivers. The communication protocol is ZigBee. Remote viewing of the transmitted signal is performed on a Graphical Interface (GI written under MATLAB, after the signal has been digitized; the choice of MATLAB was motivated by future developments. Particular aspects will be highlighted, so that the reader to be edified about the results obtained during laboratory experiments. Recording demonstrate that the purpose exposed in title has been reached: Direct link in Real-Time was established, and the digital ECG signal received is reconstituted accurately on MATLAB GI; signal received on laptop is compared with the analog signal displayed on oscilloscope.

  5. Developments in Earth Observation data reception, dissemination and archival at National Remote Sensing Agency (United States)

    Radhakrishnan, K.; Manjunath, A. S.; Kumar, Anil


    With the rapid advancement in remote sensing technology and corresponding applications, the Earth Observation Ground Segment has undergone a significant change at NRSA. From dedicated data acquisition and processing systems, we have realized multi-mission data acquisition quick look and browse systems and also multi-mission integrated information management systems. Front end of data reception station has been upgraded to handle wider bandwidth and data rates up to 320 Mbps for near future missions such as the Radar Imaging Satellite (RISAT). Antenna, feed, down converters and RF chain have been upgraded. To cater to multi-mission scenario mission independent, fully configurable demodulator/bit synchs have been deployed. For handling data acquisition in multi-satellite scenario where in data from 5 to 6 remote sensing satellites are to be received almost simultaneously, automation of operations has been incorporated towards station configuration to avoid manual errors. From media-based data handling, there has been a shift towards net centric data handling among the various work centers such as user order processing, data processing systems, special processing systems, data quality evaluation, and product quality control work centers. The turn around time for dissemination of user desired data products has been improved from two weeks to one day. Presently a state of the art integrated environment has been envisaged which will bring down the turn around time for the supply of data products significantly. Automation has been incorporated at both data acquisition and data processing to improve the product throughput. Presently NRSA is catering to a demand of about 30,000 data products per annum and in the next two years it is aimed to reach a level of 50,000 products per annum by realizing the integrated multi-mission ground system for earth observation (IMGEOS). This will significantly modify the entire data production and dissemination chain so that data can be

  6. Stratospheric platforms: a novel technological support for Earth observation and remote sensing applications (United States)

    Dovis, Fabio; Lo Presti, Letizia; Magli, Enrico; Mulassano, Paolo; Olmo, Gabriella


    The international community agrees that the new technology based on the use of Unmanned Air Vehicles High Altitude Very long Endurance (UAV-HAVE) could play an important role for the development of remote sensing and telecommunication applications. A UAV-HAVE vehicle can be described as a low- cost flying infrastructure (compared with satellites) optimized for long endurance operations at an altitude of about 20 km. Due to such features, its role is similar to satellites, with the major advantages of being less expensive, more flexible, movable on demand, and suitable for a larger class of applications. According to this background, Politecnico di Torino is involved as coordinator in an important project named HeliNet, that represent one of the main activities in Europe in the field of stratospheric platforms, and is concerned with the development of a network of UAV-HAVE aircraft. A key point of this project is the feasibility study for the provision of several services, namely traffic monitoring, environmental surveillance, broadband communications and navigation. This paper reports preliminary results on the HeliNet imaging system and its remote sensing applications. In fact, many environmental surveillance services (e.g. regional public services for agriculture, hydrology, fire protection, and more) require very high-resolution imaging, and can be offered at a lower cost if operated by a shared platform. The philosophy behind the HeliNet project seems to be particularly suitable to manage such missions. In particular, we present a system- level study of possible imaging payloads to be mounted on- board of a stratospheric platform to collect Earth observation data. Firstly, we address optical payloads such as multispectral and/or hyperspectral ones, which are a very short-term objective of the project. Secondly, as an example of mid-term on-board payload, we examine the possibility to carry on the platform a light-SAR system. For both types of payload, we show

  7. Remote just-in-time telementored trauma ultrasound: a double-factorial randomized controlled trial examining fluid detection and remote knobology control through an ultrasound graphic user interface display. (United States)

    Kirkpatrick, Andrew W; McKee, Ian; McKee, Jessica L; Ma, Irene; McBeth, Paul B; Roberts, Derek J; Wurster, Charles L; Parfitt, Robbie; Ball, Chad G; Oberg, Scott; Sevcik, William; Hamilton, Douglas R


    Remote-telementored ultrasound involves novice examiners being remotely guided by experts using informatic-technologies. However, requiring a novice to perform ultrasound is a cognitively demanding task exacerbated by unfamiliarity with ultrasound-machine controls. We incorporated a randomized evaluation of using remote control of the ultrasound functionality (knobology) within a study in which the images generated by distant naive examiners were viewed on an ultrasound graphic user interface (GUI) display viewed on laptop computers by mentors in different cities. Fire-fighters in Edmonton (101) were remotely mentored from Calgary (n = 65), Nanaimo (n = 19), and Memphis (n = 17) to examine an ultrasound phantom randomized to contain free fluid or not. Remote mentors (2 surgeons, 1 internist, and 1 ED physician) were randomly assigned to use GUI knobology control during mentoring (GUIK+/GUIK-). Remote-telementored ultrasound was feasible in all cases. Overall accuracy for fluid detection was 97% (confidence interval = 91 to 99%) with 3 false negatives (FNs). Positive/negative likelihood ratios were infinity/0.0625. One FN occurred with the GUIK+ and 2 without (GUIK-). There were no statistical test performance differences in either group (GUIK+ and GUIK-). Ultrasound-naive 1st responders can be remotely mentored with high accuracy, although providing basic remote control of the knobology did not affect outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. High-performance technology for indexing of high volumes of Earth remote sensing data (United States)

    Strotov, Valery V.; Taganov, Alexander I.; Kolesenkov, Aleksandr N.; Kostrov, Boris V.


    The present paper has suggested a technology for search, indexing, cataloging and distribution of aerospace images on the basis of geo-information approach, cluster and spectral analysis. It has considered information and algorithmic support of the system. Functional circuit of the system and structure of the geographical data base have been developed on the basis of the geographical online portal technology. Taking into account heterogeneity of information obtained from various sources it is reasonable to apply a geoinformation platform that allows analyzing space location of objects and territories and executing complex processing of information. Geoinformation platform is based on cartographic fundamentals with the uniform coordinate system, the geographical data base, a set of algorithms and program modules for execution of various tasks. The technology for adding by particular users and companies of images taken by means of professional and amateur devices and also processed by various software tools to the array system has been suggested. Complex usage of visual and instrumental approaches allows significantly expanding an application area of Earth remote sensing data. Development and implementation of new algorithms based on the complex usage of new methods for processing of structured and unstructured data of high volumes will increase periodicity and rate of data updating. The paper has shown that application of original algorithms for search, indexing and cataloging of aerospace images will provide an easy access to information spread by hundreds of suppliers and allow increasing an access rate to aerospace images up to 5 times in comparison with current analogues.

  9. Global land ice measurements from space (GLIMS): remote sensing and GIS investigations of the Earth's cryosphere (United States)

    Bishop, Michael P.; Olsenholler, Jeffrey A.; Shroder, John F.; Barry, Roger G.; Rasup, Bruce H.; Bush, Andrew B. G.; Copland, Luke; Dwyer, John L.; Fountain, Andrew G.; Haeberli, Wilfried; Kääb, Andreas; Paul, Frank; Hall, Dorothy K.; Kargel, Jeffrey S.; Molnia, Bruce F.; Trabant, Dennis C.; Wessels, Rick L.


    Concerns over greenhouse‐gas forcing and global temperatures have initiated research into understanding climate forcing and associated Earth‐system responses. A significant component is the Earth's cryosphere, as glacier‐related, feedback mechanisms govern atmospheric, hydrospheric and lithospheric response. Predicting the human and natural dimensions of climate‐induced environmental change requires global, regional and local information about ice‐mass distribution, volumes, and fluctuations. The Global Land‐Ice Measurements from Space (GLIMS) project is specifically designed to produce and augment baseline information to facilitate glacier‐change studies. This requires addressing numerous issues, including the generation of topographic information, anisotropic‐reflectance correction of satellite imagery, data fusion and spatial analysis, and GIS‐based modeling. Field and satellite investigations indicate that many small glaciers and glaciers in temperate regions are downwasting and retreating, although detailed mapping and assessment are still required to ascertain regional and global patterns of ice‐mass variations. Such remote sensing/GIS studies, coupled with field investigations, are vital for producing baseline information on glacier changes, and improving our understanding of the complex linkages between atmospheric, lithospheric, and glaciological processes.

  10. Learning More About Our Earth: An Exploration of NASA's Contributions to Earth Science Through Remote Sensing Technologies (United States)

    Lindsay, Francis


    NASA is commonly known for its pioneering work in space exploration and the technological advancements that made access to space possible. NASA is now increasingly known for the agency's research and technologies that support the Earth sciences. This is a presentation focusing on NASA's Earth science efforts told mostly through the technological innovations NASA uses to achieve a greater understanding of the Earth, making it possible to explore the Earth as a system. Enabling this science is NASA's fleet of over two dozen Earth science spacecraft, supported by aircraft, ships and ground observations. NASA's Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. With the launching of the three flagship satellite missions, Terra, Aqua and Aura, beginning in 1999, NASA's initial Mission to Planet Earth made it possible to measure aspects of the environment that touch the lives of every person around the world. NASA harnessing the unique space-based platform means, fortunately, no planet is better studied than the one we actually live on.

  11. Remote Sensing of Forest Cover in Boreal Zones of the Earth (United States)

    Sedykh, V. N.


    historically formed ecological properties of the forest. Constantly updated information will permit the regulation of human pressure on forests to ensure that there is no reduction in their role in the biosphere processes of carbon accumulation and release. Satellite monitoring within identified landscape requires initial quantitative information about forest, about other biotic components of landscapes, and about their abiotic environment determined through both ground-based measurements and remote sensing. Thus, a kind of passport should be kept for each landscape as a starting point for subsequent updating of remote sensing monitoring of forests and their habitats and the assessment of their changes. Implementation of such monitoring across the entire boreal zone of the Earth is possible on the basis of geographical and genetic typology of forest and phyto-geomorphological method of aerospace image interpretation. Both approaches are based on the use of relationships between topography and vegetation, and were successfully applied by the author to aerospace monitoring of the forest cover of West Siberian Plain.

  12. World pendulum-a distributed remotely controlled laboratory (RCL) to measure the Earth's gravitational acceleration depending on geographical latitude

    International Nuclear Information System (INIS)

    Groeber, S; Vetter, M; Eckert, B; Jodl, H-J


    We suggest that different string pendulums are positioned at different locations on Earth and measure at each place the gravitational acceleration (accuracy Δg ∼ 0.01 m s -2 ). Each pendulum can be remotely controlled via the internet by a computer located somewhere on Earth. The theoretical part describes the physical origin of this phenomenon g(ψ), that the Earth's effective gravitational acceleration g depends on the angle of latitude ψ. Then, we present all necessary formula to deduce g(ψ) from oscillations of a string pendulum. The technical part explains tips and tricks to realize such an apparatus to measure all necessary values with sufficient accuracy. In addition, we justify the precise dimensions of a physical pendulum such that the formula for a mathematical pendulum is applicable to determine g(ψ) without introducing errors. To conclude, we describe the internet version-the string pendulum as a remotely controlled laboratory. The teaching relevance and educational value will be discussed in detail at the end of this paper including global experimenting, using the internet and communication techniques in teaching and new ways of teaching and learning methods

  13. Radiophysical methods of diagnostics the Earth's ionosphere and the underlying earth's surface by remote sensing in the short-wave range of radio waves (United States)

    Belov, S. Yu.; Belova, I. N.


    Monitoring of the earth's surface by remote sensing in the short-wave band can provide quick identification of some characteristics of natural systems. This band range allows one to diagnose subsurface aspects of the earth, as the scattering parameter is affected by irregularities in the dielectric permittivity of subsurface structures. This method based on the organization of the monitoring probe may detect changes in these environments, for example, to assess seismic hazard, hazardous natural phenomena such as earthquakes, as well as some man-made hazards and etc. The problem of measuring and accounting for the scattering power of the earth's surface in the short-range of radio waves is important for a number of purposes, such as diagnosing properties of the medium, which is of interest for geological, environmental studies. In this paper, we propose a new method for estimating the parameters of incoherent signal/noise ratio. The paper presents the results of comparison of the measurement method from the point of view of their admissible relative analytical errors. The new method is suggested. Analysis of analytical error of estimation of this parameter allowed to recommend new method instead of standard method. A comparative analysis and shows that the analytical (relative) accuracy of the determination of this parameter new method on the order exceeds the widely-used standard method.

  14. Innovative Approaches to Remote Sensing in NASA's Earth System Science Pathfinder (ESSP) Program (United States)

    Peri, Frank; Volz, Stephen


    NASA's Earth Venture class (EV) of mission are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as missions-of-opportunity (MoO). To ensure the success of EV, the management approach of each element is tailored according to the specific needs of the element.

  15. Artificial intelligence applications concepts for the remote sensing and earth science community (United States)

    Campbell, W. J.; Roelofs, L. H.


    The following potential applications of AI to the study of earth science are described: (1) intelligent data management systems; (2) intelligent processing and understanding of spatial data; and (3) automated systems which perform tasks that currently require large amounts of time by scientists and engineers to complete. An example is provided of how an intelligent information system might operate to support an earth science project.

  16. Remote sensing of a near-Earth neutral line during the 5 October 2000 substorm

    Directory of Open Access Journals (Sweden)

    D. Nagata


    Full Text Available In this paper we examined the continuous motions of a near-Earth neutral line during the recovery phase of the 5 October 2000 substorm. Estimation was based on the PSBL ion beam model proposed by Onsager (1991 and the Geotail observations. Estimated distances from the Earth ranged from 20 to 60 RE and retreated tailward at velocities of 250 and 300 km/s. This event initiated with the arrival of solar wind discontinuity. Simultaneous observations of electromagnetic field and electrons indicate the existence of earthward propagating waves associated with field-aligned currents. Based on these observations, we suggest that the source of the PSBL ion beams was the retreating near-Earth neutral line formed by the compression of the magnetosphere. Two scenarios of near-Earth neutral line motion in the tail dynamics are also proposed. One is the formation of plural neutral lines to create a long plasmoid. The other is the oscillation of one neutral line between the near-Earth region and the mid-tail stagnant plasmoid.

  17. Ultraviolet excitation of remote phosphor with symmetrical illumination used in dual-sided liquid-crystal display. (United States)

    Huang, Hsin-Tao; Tsai, Chuang-Chuang; Huang, Yi-Pai


    The UV-excited flat lighting (UFL) technique differs from conventional fluorescent lamp or LED illumination. It involves using a remote phosphor film to convert the wavelength of UV light to visible light, achieving high brightness and planar and uniform illumination. In particular, UFL can accomplish compact size, low power consumption, and symmetrical dual-sided illumination. Additionally, UFL utilizes a thermal radiation mechanism to release the large amount of heat that is generated upon illumination without thermal accumulation. These characteristics of the UFL technique can motivate a wide range of lighting applications in thin-film transistor LCD backlighting or general lighting.

  18. Remote and direct plasma regions for low-temperature growth of carbon nanotubes on glass substrates for display applications

    International Nuclear Information System (INIS)

    Tabatabaei, M K; Ghafouri fard, H; Koohsorkhi, J; Khatami, S; Mohajerzadeh, S


    A novel method for growing carbon nanotubes (CNTs) on glass substrates is introduced in this study. A two-stage plasma was used to achieve low-temperature and vertically aligned CNTs. Ni deposited on indium tin oxide/glass substrate was used as the catalyst and hydrogen and acetylene were used as gas feeds. In this investigation a new technique was developed to grow vertically aligned CNTs at temperatures below 400 deg. C while CNT growth by plasma-enhanced chemical vapour deposition required high temperatures. Low-temperature growth of vertically aligned CNTs was suitable for the fabrication of micro-lens and self-oriented displays on glass substrates. Also, we have reported a new configuration for CNT-based display by means of controlling the refractive index of liquid crystal around the CNT by applying a proper voltage to the top and bottom array.

  19. Remote Earth Terminals in the Health, Education, Telecommunications Network. Satellite Technology Demonstration, Technical Report No. 0423. (United States)

    Braunstein, Jean; And Others

    The major purpose of the Health, Education, Telecommunications experiment was to demonstrate the feasibility of distributing video materials to a large number of low-cost earth terminals located in rural areas. The receivers are of two types: one-way video receivers for the reception of video programs, and two-way voice/data terminals which permit…

  20. Earth-Atmospheric Coupling Prior to Strong Earthquakes Analyzed by IR Remote Sensing Data (United States)

    Freund, F.; Ouzounov, D.


    Earth-atmosphere interactions during major earthquakes (M>5) are the subject of this study. A mechanism has recently been proposed to account for the appearance of hole-type electronic charge carriers in rocks subjected to transient stress [Freund, 2000]. If such charge carriers are activated in the crust prior to large earthquakes, the predictable consequences are: injection of currents into the rocks, low frequency electromagnetic emission, changes in ground potentials, corona discharges with attendant light emission from high points at the surface of the Earth, and possibly an enhanced emission in the 8-12 μ m region similar to the thermal emission observed during laboratory rock deformation experiments [Geng et al., 1999]. Using data from MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission & Reflection radiometer) onboard NASA's TERRA satellite launched in Dec. 1999 we have begun analyzing vertical atmospheric profiles, land surface and kinetic temperatures. We looked for correlations between atmospheric dynamics and solid Earth processes prior to the Jan. 13, 2001 earthquake in El Salvador (M=7.6) and the Jan. 26, 2001 Gujarat earth-quake in India (M=7.7). With MODIS covering the entire Earth every 1-2 days in 36 wavelength bands (20 visible and 16 infrared) at different spatial resolutions (250 m, 500 m, and 1 km) we find evidence for a thermal anomaly pattern related to the pre-seismic activity. We also find evidence for changes in the aerosol content and atmospheric instability parameters, possibly due to changes in the ground potential that cause ion emission and lead to the formation of a thin near-ground aerosol layer. We analyze the aerosol content, atmospheric pressure, moisture profile and lifted index.

  1. On preventing the destructive influence of the ionosphere on the resolution of a microwave trans-ionospheric radar system during remote Earth probing

    International Nuclear Information System (INIS)

    Shtejnshleger, V.B.; Dzenkevich, A.V.; Manakov, V.Yu.; Misezhnikov, G.S.


    The results presented testify to the efficiency of the proposed two-dimensional adaptive compensation of dispersion and fluctuation ionospheric distortions of signals from space radar station with synthesized equipment (RSE) of USW range waves. This creates a prerequisite for remote probing of the Earth using trans-ionospheric RSE of USW range wave, possessing an increased capability of penetrating through the plant mantle and upper layer of the Earth surface [ru

  2. Remote sensing of local structure of the quasi-perpendicular Earth's bow shock by using field-aligned beams

    Directory of Open Access Journals (Sweden)

    B. Miao


    Full Text Available Field-aligned ion beams (FABs originate at the quasi-perpendicular Earth's bow shock and constitute an important ion population in the foreshock region. The bulk velocity of these FABs depends significantly on the shock normal angle, which is the angle between shock normal and upstream interplanetary magnetic field (IMF. This dependency may therefore be taken as an indicator of the local structure of the shock. Applying the direct reflection model to Cluster measurements, we have developed a method that uses proton FABs in the foreshock region for remote sensing of the local shock structure. The comparison of the model results with the multi-spacecraft observations of FAB events shows very good agreement in terms of wave amplitude and frequency of surface waves at the shock front.

  3. Remote Sensing Data Analytics for Planetary Science with PlanetServer/EarthServer (United States)

    Rossi, Angelo Pio; Figuera, Ramiro Marco; Flahaut, Jessica; Martinot, Melissa; Misev, Dimitar; Baumann, Peter; Pham Huu, Bang; Besse, Sebastien


    Planetary Science datasets, beyond the change in the last two decades from physical volumes to internet-accessible archives, still face the problem of large-scale processing and analytics (e.g. Rossi et al., 2014, Gaddis and Hare, 2015). PlanetServer, the Planetary Science Data Service of the EC-funded EarthServer-2 project (#654367) tackles the planetary Big Data analytics problem with an array database approach (Baumann et al., 2014). It is developed to serve a large amount of calibrated, map-projected planetary data online, mainly through Open Geospatial Consortium (OGC) Web Coverage Processing Service (WCPS) (e.g. Rossi et al., 2014; Oosthoek et al., 2013; Cantini et al., 2014). The focus of the H2020 evolution of PlanetServer is still on complex multidimensional data, particularly hyperspectral imaging and topographic cubes and imagery. In addition to hyperspectral and topographic from Mars (Rossi et al., 2014), the use of WCPS is applied to diverse datasets on the Moon, as well as Mercury. Other Solar System Bodies are going to be progressively available. Derived parameters such as summary products and indices can be produced through WCPS queries, as well as derived imagery colour combination products, dynamically generated and accessed also through OGC Web Coverage Service (WCS). Scientific questions translated into queries can be posed to a large number of individual coverages (data products), locally, regionally or globally. The new PlanetServer system uses the the Open Source Nasa WorldWind (e.g. Hogan, 2011) virtual globe as visualisation engine, and the array database Rasdaman Community Edition as core server component. Analytical tools and client components of relevance for multiple communities and disciplines are shared across service such as the Earth Observation and Marine Data Services of EarthServer. The Planetary Science Data Service of EarthServer is accessible on All its code base is going to be available on GitHub, on

  4. High Efficiency, 100 mJ per pulse, Nd:YAG Oscillator Optimized for Space-Based Earth and Planetary Remote Sensing (United States)

    Coyle, D. Barry; Stysley, Paul R.; Poulios, Demetrios; Fredrickson, Robert M.; Kay, Richard B.; Cory, Kenneth C.


    We report on a newly solid state laser transmitter, designed and packaged for Earth and planetary space-based remote sensing applications for high efficiency, low part count, high pulse energy scalability/stability, and long life. Finally, we have completed a long term operational test which surpassed 2 Billion pulses with no measured decay in pulse energy.

  5. Earth

    CERN Document Server

    Carter, Jason


    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  6. Applications of Earth Remote Sensing for Identifying Tornado and Severe Weather Damage (United States)

    Schultz, Lori; Molthan, Andrew; Burks, Jason E.; Bell, Jordan; McGrath, Kevin; Cole, Tony


    NASA SPoRT (Short-term Prediction Research and Transition Center) provided MODIS (Moderate Resolution Imaging Spectrometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) imagery to WFOs (Weather Forecast Offices) in Alabama to support April 27th, 2011 damage assessments across the state. SPoRT was awarded a NASA Applied Science: Disasters Feasibility award to investigate the applicability of including remote sensing imagery and derived products into the NOAA/NWS (National Oceanic and Atmospheric Administration/National Weather System) Damage Assessment Toolkit (DAT). Proposal team was awarded the 3-year proposal to implement a web mapping service and associate data feeds from the USGS (U.S. Geological Survey) to provide satellite imagery and derived products directly to the NWS thru the DAT. In the United States, NOAA/NWS is charged with performing damage assessments when storm or tornado damage is suspected after a severe weather event. This has led to the development of the Damage Assessment Toolkit (DAT), an application for smartphones, tablets and web browsers that allows for the collection, geo-location, and aggregation of various damage indicators collected during storm surveys.

  7. NASA's Earth Science Use of Commercially Availiable Remote Sensing Datasets: Cover Image (United States)

    Underwood, Lauren W.; Goward, Samuel N.; Fearon, Matthew G.; Fletcher, Rose; Garvin, Jim; Hurtt, George


    The cover image incorporates high resolution stereo pairs acquired from the DigitalGlobe(R) QuickBird sensor. It shows a digital elevation model of Meteor Crater, Arizona at approximately 1.3 meter point-spacing. Image analysts used the Leica Photogrammetry Suite to produce the DEM. The outside portion was computed from two QuickBird panchromatic scenes acquired October 2006, while an Optech laser scan dataset was used for the crater s interior elevations. The crater s terrain model and image drape were created in a NASA Constellation Program project focused on simulating lunar surface environments for prototyping and testing lunar surface mission analysis and planning tools. This work exemplifies NASA s Scientific Data Purchase legacy and commercial high resolution imagery applications, as scientists use commercial high resolution data to examine lunar analog Earth landscapes for advanced planning and trade studies for future lunar surface activities. Other applications include landscape dynamics related to volcanism, hydrologic events, climate change, and ice movement.

  8. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems (United States)

    Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Kokaly, Raymond F.; Sutley, Steve J.; Dalton, J. Brad; McDougal, Robert R.; Gent, Carol A.


    Imaging spectroscopy is a tool that can be used to spectrally identify and spatially map materials based on their specific chemical bonds. Spectroscopic analysis requires significantly more sophistication than has been employed in conventional broadband remote sensing analysis. We describe a new system that is effective at material identification and mapping: a set of algorithms within an expert system decision‐making framework that we call Tetracorder. The expertise in the system has been derived from scientific knowledge of spectral identification. The expert system rules are implemented in a decision tree where multiple algorithms are applied to spectral analysis, additional expert rules and algorithms can be applied based on initial results, and more decisions are made until spectral analysis is complete. Because certain spectral features are indicative of specific chemical bonds in materials, the system can accurately identify and map those materials. In this paper we describe the framework of the decision making process used for spectral identification, describe specific spectral feature analysis algorithms, and give examples of what analyses and types of maps are possible with imaging spectroscopy data. We also present the expert system rules that describe which diagnostic spectral features are used in the decision making process for a set of spectra of minerals and other common materials. We demonstrate the applications of Tetracorder to identify and map surface minerals, to detect sources of acid rock drainage, and to map vegetation species, ice, melting snow, water, and water pollution, all with one set of expert system rules. Mineral mapping can aid in geologic mapping and fault detection and can provide a better understanding of weathering, mineralization, hydrothermal alteration, and other geologic processes. Environmental site assessment, such as mapping source areas of acid mine drainage, has resulted in the acceleration of site cleanup, saving

  9. Enhancement of the Earth Science and Remote Sensing Group's Website and Related Projects (United States)

    Coffin, Ashley; Vanderbloemen, Lisa


    The major problem addressed throughout the term was the need to update the group's current website, as it was outdated and required streamlining and modernization. The old Gateway to Astronaut Photography of the Earth website had multiple components, many of which involved searches through expansive databases. The amount of work required to update the website was large and due to a desired release date, assistance was needed to help build new pages and to transfer old information. Additionally, one of the tools listed on the website called Image Detective had been underutilized in the past. It was important to address why the public was not using the tool and how it could potentially become more of a resource for the team. In order to help with updating the website, it was necessary to first learn HTML. After assisting with small edits, I began creating new pages. I utilized the "view page source" and "developer" tools in the internet browser to observe how other websites created their features and to test changes without editing the code. I then edited the code to create an interactive feature on the new page. For the Image Detective Page I began an evaluation of the current page. I also asked my fellow interns and friends at my University to offer their input. I took all of the opinions into account and wrote up a document regarding my recommendations. The recommendations will be considered as I help to improve the Image Detective page for the updated website. In addition to the website, other projects included the need for additional, and updated image collections, along with various project requests. The image collections have been used by educators in the classroom and the impact crater collection was highly requested. The glaciers collection focused mostly on South American glaciers and needed to include more of the earth's many glaciers. The collections had not been updated or created due to the fact that related imagery had not been catalogued. The process

  10. Interactions of Vegetation and Climate: Remote Observations, Earth System Models, and the Amazon Forest (United States)

    Quetin, Gregory R.

    The natural composition of terrestrial ecosystems can be shaped by climate to take advantage of local environmental conditions. Ecosystem functioning, e.g. interaction between photosynthesis and temperature, can also acclimate to different climatological states. The combination of these two factors thus determines ecological-climate interactions. The ecosystem functioning also plays a key role in predicting the carbon cycle, hydrological cycle, terrestrial surface energy balance, and the feedbacks in the climate system. Predicting the response of the Earth's biosphere to global warming requires the ability to mechanistically represent the processes controlling ecosystem functioning through photosynthesis, respiration, and water use. The physical environment in a place shapes the vegetation there, but vegetation also has the potential to shape the environment, e.g. increased photosynthesis and transpiration moisten the atmosphere. These two-way ecoclimate interactions create the potential for feedbacks between vegetation at the physical environment that depend on the vegetation and the climate of a place, and can change throughout the year. In Chapter 1, we derive a global empirical map of the sensitivity of vegetation to climate using the response of satellite-observed greenness to interannual variations in temperature and precipitation. We infer mechanisms constraining ecosystem functioning by analyzing how the sensitivity of vegetation to climate varies across climate space. Our analysis yields empirical evidence for multiple physical and biological mediators of the sensitivity of vegetation to climate at large spatial scales. In hot and wet locations, vegetation is greener in warmer years despite temperatures likely exceeding thermally optimum conditions. However, sunlight generally increases during warmer years, suggesting that the increased stress from higher atmospheric water demand is offset by higher rates of photosynthesis. The sensitivity of vegetation

  11. The common principles established to expert's preparation by a remote methods in the Earth sciences field, and their decision (United States)

    Kudzh, S.; Trofimov, S.

    Modern socially economic situation in the country and in an education system is those, that traditional forms of getting education and training model cannot satisfy all needs for the educational services usually concentrated in the big cities, and so - the increased interest to new, progressive specialities has received the development in electronic - training systems. The attitude to education on the part of the states, the governments, societies has changed also. Education began to be considered as the major factor of economic growth and social development of the countries, the decision of some global problems connected to survival of mankind. In this connection, recently development and practical introduction of technologies of remote and open education are conducted in the different countries, the especial attention is given to the systems, capable to comprise, transfer and analyze huge streams of information. The experience which has been saved up by foreign colleagues, shows, that the sanction of this technological conflict lays, generally, in sphere of creation of a wide network of remote training, and, in narrow, both quality and quantity of a substantial part, also it is necessary not to forget about a choice of electronic-training systems with their reference to various areas. And an occurrence of the computer equipment in the user's end, development of existing ways and means of data transmission, functional expansion of already existing and creation of absolutely new hardware-software complexes, and many other things has begun occurrence of new scientific directions in such basic area of sciences as the Earth - science. (These are geoinformation systems, research of natural resources by space methods, organization and technology of data protection in geoinformation systems etc.) Clearly, that new specialities impose the certain conditions for preparation of experts, and, carrying out the analysis of already existing electronic training systems in the

  12. Remote Sounding of the Earth's Atmospheric Limb From a Micro-Satellite Platform: a Feasibility Study of the ALTIUS Mission (United States)

    Vrancken, D.; Paijmans, B.; Fussen, D.; Neefs, E.; Loodts, N.; Dekemper, E.; Vahellemont, F.; Devos, L.; Moelans, W.; Nevejans, D.; Schroeven-Deceuninck, H.; Bernaerts, D.; Zender, J.


    There is more and more interest in the understanding and the monitoring of the physics and chemistry of the Earth's atmosphere and its impact on the climate change. Currently a significantly high number of sounders provide the required data to monitor the changes in atmosphere composition, but a dramatic drop in operational atmosphere monitoring missions is expected around 2010. This drop is mainly visible in sounders capable of a high vertical resolution. Currently, instruments on ENVISAT and METOP provide relevant data but this is envisaged to be insufficient to ensure full spatial and temporal coverage and redundancy in the measurement data set. ALTIUS (Atmospheric Limb Tracker for the Investigation of the Upcoming Stratosphere) is a remote sounding experiment proposed by the Belgian Institute for Space Aeronomy (BIRA/IASB) for which a feasibility study was initiated with BELSPO (Belgian Science Policy) and ESA support. The main objective of this study phase was to establish a mission concept, to define the required payload and to establish a satellite platform design. The study was led by the BIRA/IASB team and performed in close collaboration with OIP (payload developer) and Verhaert Space (spacecraft developer). The mission scenario includes bright limb observations in basically all directions, solar occultations around the terminator passages and star occultations during eclipse. These observation modes allow imaging the atmosphere with a high vertical resolution. The spacecraft will be operated in a 10:00 sun-synchronous orbit at an altitude of 695 km, allowing a 3-day revisit time. The envisaged payload for the ALTIUS mission is an imaging spectrometer, observing in the UV, the VIS and the NIR spectral ranges. For each spectral range, an AOTF (Acousto-Optical Tunable Filter) will permit to perform observations of selectable small wavelength domains. A typical set of 10 wavelengths will be recorded within 1 second. The different operational modes impose a

  13. Application of Earth Sciencés Technology in Mapping the of Brazilian Coast: Localization, Analysis & Monitoring of the Archaeological Sites with Remote Sensing & LiDAR (United States)

    Thompson Alves de Souza, Carlos Eduardo

    Application of Earth Sciencés Technology in Mapping the of Brazilian Coast: Localization, Analysis & Monitoring of the Archaeological Sites with Remote Sensing & LiDAR Carlos Eduardo Thompson Alves de Souza Archaeologist Member of the European Association of Archaeologists B.A.Archaeology MA.Remote Sensing Abstract The Archaeological Research in Urban Environment with the Air Light Detection and Ranging is problematic for the Overlay Layers mixed with contexts concerning the Interpretation of Archaeological Data. However, in the Underwater Archaeology the results are excellent. This paper considers the application of Remote Sensing and Air Light Detection and Ranging (LIDAR) as separate things as well as Land Archaeology and the Underwater Archaeology. European Archaeologists know very little about Brazil and the article presents an Overview of Research in Brazil with Remote Sensing in Archaeology and Light Detection and Ranging in Land Archaeology and Underwater Archaeology, because Brazil has Continental Dimensions. Braziliańs Methodology for Location, Analysis and Monitoring of Archaeological Sites is necessarily more Complex and Innovative and therefore can serve as a New Paradigm for other archaeologists involved in the Advanced Management Heritage.

  14. On the division of contribution of the atmosphere and ocean in the radiation of the earth for the tasks of remote sensing and climate (United States)

    Sushkevich, T. A.; Strelkov, S. A.; Maksakova, S. V.


    We are talking about the national achievements of the world level in theory of radiation transfer in the system atmosphere-oceans and about the modern scientific potential developing in Russia, which adequately provides a methodological basis for theoretical and computational studies of radiation processes and radiation fields in the natural environments with the use of supercomputers and massively parallel processing for problems of remote sensing and the climate of Earth. A model of the radiation field in system "clouds cover the atmosphere-ocean" to the separation of the contributions of clouds, atmosphere and ocean.

  15. Disseminated Museum Displays and Participation of Students from Underrepresented Populations in Polar Research: Education and Outreach for Joint Projects in GPS and Seismology Solid Earth Science Community (United States)

    Eriksson, S. C.; Wilson, T. J.; Anandakrishnan, S.; Aster, R. C.; Johns, B.; Anderson, K.; Taber, J.


    Two Antarctic projects developed by solid earth scientists in the GPS and seismology communities have rich education and outreach activities focused on disseminating information gleaned from this research and on including students from underrepresented groups. Members of the UNAVCO and IRIS research consortia along with international partners from Australia, Canada, Chile, Germany, Italy, New Zealand and the U.K. aim to deploy an ambitious GPS/seismic network to observe the Antarctic glaciological and geologic system using a multidisciplinary and internationally coordinated approach. The second project supports this network. UNAVCO and IRIS are designing and building a reliable power and communication system for autonomous polar station operation which use the latest power and communication technologies for ease of deployment and reliable multi-year operation in severe polar environments. This project will disseminate research results through an IPY/POLENET web-based museum style display based on the next-generation "Museum Lite" capability primarily supported by IRIS. "Museum Lite" uses a standard PC, touch-screen monitor, and standard Internet browsers to exploit the scalability and access of the Internet and to provide customizable content in an interactive setting. The unit is suitable for research departments, public schools, and an assortment of public venues, and can provide wide access to real-time geophysical data, ongoing research, and general information. The POLENET group will work with members of the two consortia to provide content about the project and polar science in general. One unit is to be installed at Barrow's Ilisagvit College through the Barrow Arctic Science Consortium, one at McMurdo Station in Antarctica, and two at other sites to be determined (likely in New Zealand/Australia and in the U.S.). In January, 2006, Museum Lite exhibit was installed at the Amundsen-Scott South Pole Station. Evaluation of this prototype is underway. These

  16. Utilizing remote sensing data for modeling water and heat regimes of the Black Earth Region territory of the European Russia (United States)

    Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Volkova, Elena; Uspensky, Sergey


    At present physical-mathematical modeling processes of water and heat exchange between vegetation covered land surfaces and atmosphere is the most appropriate method to describe peculiarities of water and heat regime formation for large territories. The developed model of such processes (Land Surface Model, LSM) is intended for calculation evaporation, transpiration by vegetation, soil water content and other water and heat regime characteristics, as well as distributions of the soil temperature and humidity in depth utilizing remote sensing data from satellites on land surface and meteorological conditions. The model parameters and input variables are the soil and vegetation characteristics and the meteorological characteristics, correspondingly. Their values have been determined from ground-based observations or satellite-based measurements by radiometers AVHRR/NOAA, MODIS/EOS Terra and Aqua, SEVIRI/Meteosat-9, -10. The case study has been carried out for the part of the agricultural Central Black Earth region with coordinates 49.5 deg. - 54 deg. N, 31 deg. - 43 deg. E and a total area of 227,300 km2 located in the steppe-forest zone of the European Russia for years 2009-2012 vegetation seasons. From AVHRR data there have been derived the estimates of three types of land surface temperature (LST): land surface skin temperature Tsg, air-foliage temperature Ta and efficient radiation temperature Ts.eff, emissivity E, normalized vegetation index NDVI, vegetation cover fraction B, leaf area index LAI, cloudiness and precipitation. From MODIS data the estimates of LST Tls, E, NDVI and LAI have been obtained. The SEVIRI data have been used to build the estimates of Tls, Ta, E, LAI and precipitation. Previously developed method and technology of above AVHRR-derived estimates have been improved and adapted to the study area. To check the reliability of the Ts.eff and Ta estimations for named seasons the error statistics of their definitions has been analyzed through

  17. A Concept for Differential Absorption Lidar and Radar Remote Sensing of the Earth's Atmosphere and Ocean from NRHO Orbit (United States)

    Hu, Y.; Marshak, A.; Omar, A.; Lin, B.; Baize, R.


    We propose a concept that will put microwave and laser transmitters on the Deep Space Gateway platform for measurements of the Earth's atmosphere and ocean. Receivers will be placed on the ground, buoys, Argo floats, and cube satellites.

  18. The development of machine technology processing for earth resource survey (United States)

    Landgrebe, D. A.


    The following technologies are considered for automatic processing of earth resources data: (1) registration of multispectral and multitemporal images, (2) digital image display systems, (3) data system parameter effects on satellite remote sensing systems, and (4) data compression techniques based on spectral redundancy. The importance of proper spectral band and compression algorithm selections is pointed out.

  19. Inverted stream channels in the Western Desert of Egypt: Synergistic remote, field observations and laboratory analysis on Earth with applications to Mars (United States)

    Zaki, Abdallah S.; Pain, Colin F.; Edgett, Kenneth S.; Giegengack, Robert


    Inverted relief landforms occur in numerous regions on Mars, ranging in age from Noachian to more recent Amazonian periods (channel features on Earth form, and the geologic records they preserve in arid settings, can yield insights into the development of inverted landforms on Mars. Inverted channel landforms in the Western Desert of Egypt are well represented across an area of ∼27,000 km2. We investigated inverted channel features at seven sites using remotely-sensed data, field observations, and lab analysis. Inverted channel features in the Western Desert record fluvial environments of differing scales and ages. They developed mainly via inversion of cemented valley floor sediment, but there is a possibility that inverted fluvial landforms in the Dakhla Depression might have been buried, lithified, and exhumed. A few examples, in the southeastern part of the Western Desert, record, instead, a resistance to erosion caused by surface armouring of uncemented valley floor sediment. We show that the grain-size distribution for investigated and reviewed inverted channels is highly variable, with boulders that are commonly 0.35 - 1 m in size; large particles provide high porosity that influences the cementation mechanism. The studied inverted channel sediments are mainly cemented with ferricrete, calcrete, gypcrete, and silcrete. Inverted channels are valuable for the reconstruction of paleoclimate cycles or episodes on Earth and Mars; observations from the Western Desert, when offered as analogs, add to the growing list of Earth examples that provide suites of observables relevant to reconstruction of paleoenvironmental conditions on Mars.

  20. NASA Citizen Science for Earth Systems Program: fusing public participation and remote sensing to improve our understanding of the planet (United States)

    Whitehurst, A.; Murphy, K. J.


    The objectives of the NASA Citizen Science for Earth Systems Program (CSESP) include both the evaluation of using citizen science data in NASA Earth science related research and engaging the public in Earth systems science. Announced in 2016, 16 projects were funded for a one year prototype phase, with the possibility of renewal for 3 years pending a competitive evaluation. The current projects fall into the categories of atmospheric composition (5), biodiversity and conservation (5), and surface hydrology/water and energy cycle (6). Out of the 16, 8 of the projects include the development and/or implementation of low cost sensors to facilitate data collection. This presentation provides an overview of the NASA CSESP program to both highlight the diversity of innovative projects being funded and to share information with future program applicants.

  1. Global-scale Observations of the Limb and Disk (GOLD) Mission -Ultraviolet Remote Sensing of Earth's Space Environment from Geostationary Orbit (United States)

    Burns, A. G.; Eastes, R.


    The GOLD mission of opportunity will fly a far ultraviolet imaging spectrograph in geostationary (GEO) orbit as a hosted payload. The mission is scheduled for launch in late January 2018 on SES-14, a commercial communications satellite that will be stationed over eastern South America at 47.5 degrees west longitude. GOLD is on schedule to be the first NASA science mission to fly as a hosted payload on a commercial communications satellite. The GOLD imager has two identical channels. Each channel can scan the full disk at a 30 minute cadence, making spectral images of Earth's UV emission from 132 to 162 nm, as well as make a measurement on the Earth's limb. Remote sensing techniques that have been proven on previous Low Earth Orbit (LEO) missions will be used to derive fundamental parameters for the neutral and ionized space environment. Parameters that will be derived include composition (O/N2 ratio) and temperature of the neutral atmosphere on the dayside disk. On the nightside, peak electron densities will be obtained in the low latitude ionosphere. Many of the algorithms developed for the mission are extensions of ones used on previous earth and planetary missions, with modifications for observations from geostationary orbit. All the algorithms have been tested using simulated observations based on the actual instrument performance. From geostationary orbit, GOLD can repeatedly image the same geographic locations over most of the hemisphere at a cadence comparable to that of the T-I system (order of an hour). Such time resolution and spatial coverage will allow the mission to track the changes due to geomagnetic storms, variations in solar extreme ultraviolet radiation, and forcing from the lower atmosphere. In addition to providing a new perspective by being able to repeatedly remotely sense the same hemisphere at a high cadence, GOLD's simultaneous measurements of not only composition but also temperatures across the disk will provide a valuable, new parameter

  2. Remote sensing of local structure of the quasi-perpendicular Earth's bow shock by using field-aligned beams

    Directory of Open Access Journals (Sweden)

    B. Miao


    Full Text Available Field-aligned ion beams (FABs originate at the quasi-perpendicular Earth's bow shock and constitute an important ion population in the foreshock region. The bulk velocity of these FABs depends significantly on the shock normal angle, which is the angle between shock normal and upstream interplanetary magnetic field (IMF. This dependency may therefore be taken as an indicator of the local structure of the shock. Applying the direct reflection model to Cluster measurements, we have developed a method that uses proton FABs in the foreshock region for remote sensing of the local shock structure. The comparison of the model results with the multi-spacecraft observations of FAB events shows very good agreement in terms of wave amplitude and frequency of surface waves at the shock front.

  3. History of Alibek Glacier based on Earth remote sensing images, bioindication and cosmogenic isopotes (14С and 10Be

    Directory of Open Access Journals (Sweden)

    I. S. Bushueva


    Full Text Available In this article we present the reconstruction of fluctuations of Alibek valley glacier situated in the Teberda valley, Western Caucasus. The former positions of glacier of the past 120 years were reconstructed basing on the old photographs of 1904, 1921, remote sensing data of 1955, 1987, 2007, 2008 and 2012, plans created in 20th century. Since the middle of 20th century Alibek Glacier decreased by 650 m in length and by 0,67 km2 in area and its tongue has risen by 110 m.

  4. Automatic Ship Detection in Remote Sensing Images from Google Earth of Complex Scenes Based on Multiscale Rotation Dense Feature Pyramid Networks

    Directory of Open Access Journals (Sweden)

    Xue Yang


    Full Text Available Ship detection has been playing a significant role in the field of remote sensing for a long time, but it is still full of challenges. The main limitations of traditional ship detection methods usually lie in the complexity of application scenarios, the difficulty of intensive object detection, and the redundancy of the detection region. In order to solve these problems above, we propose a framework called Rotation Dense Feature Pyramid Networks (R-DFPN which can effectively detect ships in different scenes including ocean and port. Specifically, we put forward the Dense Feature Pyramid Network (DFPN, which is aimed at solving problems resulting from the narrow width of the ship. Compared with previous multiscale detectors such as Feature Pyramid Network (FPN, DFPN builds high-level semantic feature-maps for all scales by means of dense connections, through which feature propagation is enhanced and feature reuse is encouraged. Additionally, in the case of ship rotation and dense arrangement, we design a rotation anchor strategy to predict the minimum circumscribed rectangle of the object so as to reduce the redundant detection region and improve the recall. Furthermore, we also propose multiscale region of interest (ROI Align for the purpose of maintaining the completeness of the semantic and spatial information. Experiments based on remote sensing images from Google Earth for ship detection show that our detection method based on R-DFPN representation has state-of-the-art performance.

  5. A Self-Calibrating Runoff and Streamflow Remote Sensing Model for Ungauged Basins Using Open-Access Earth Observation Data

    Directory of Open Access Journals (Sweden)

    Ate Poortinga


    Full Text Available Due to increasing pressures on water resources, there is a need to monitor regional water resource availability in a spatially and temporally explicit manner. However, for many parts of the world, there is insufficient data to quantify stream flow or ground water infiltration rates. We present the results of a pixel-based water balance formulation to partition rainfall into evapotranspiration, surface water runoff and potential ground water infiltration. The method leverages remote sensing derived estimates of precipitation, evapotranspiration, soil moisture, Leaf Area Index, and a single F coefficient to distinguish between runoff and storage changes. The study produced significant correlations between the remote sensing method and field based measurements of river flow in two Vietnamese river basins. For the Ca basin, we found R2 values ranging from 0.88–0.97 and Nash–Sutcliffe efficiency (NSE values varying between 0.44–0.88. The R2 for the Red River varied between 0.87–0.93 and NSE values between 0.61 and 0.79. Based on these findings, we conclude that the method allows for a fast and cost-effective way to map water resource availability in basins with no gauges or monitoring infrastructure, without the need for application of sophisticated hydrological models or resource-intensive data.

  6. Use of IRI to Model the Effect of Ionosphere Emission on Earth Remote Sensing at L-Band (United States)

    Abraham, Saji; LeVine, David M.


    Microwave remote sensing in the window at 1.413 GHz (L-band) set aside for passive use only is important for monitoring sea surface salinity and soil moisture. These parameters are important for understanding ocean dynamics and energy exchange between the surface and atmosphere, and both NASA and ESA plan to launch satellite sensors to monitor these parameters at L-band (Aquarius, Hydros and SMOS). The ionosphere is an important source of error for passive remote sensing at this frequency. In addition to Faraday rotation, emission from the ionosphere is also a potential source of error at L-band. As an aid for correcting for emission, a regression model is presented that relates ionosphere emission to the integrated electron density (TEC). The goal is to use TEC from sources such as TOPEX, JASON or GPS to obtain estimates of emission over the oceans where the electron density profiles needed to compute emission are not available. In addition, data will also be presented to evaluate the use of the IRI for computing emission over the ocean.

  7. Combined ground-based and satellite remote sensing of atmospheric aerosol and Earth surface in the Antarctic (United States)

    Chaikovsky, Anatoli; Korol, Michail; Malinka, A.; Zege, E.; Katsev, I.; Prikhach, A.; Denisov, S.; Dick, V.; Goloub, P.; Blarel, L.; Chaikovskaya, L.; Lapyonok, A.; Podvin, T.; Denishchik-Nelubina, N.; Fedarenka, A.; Svidinsky, V.


    The paper presents lecture materials given at the Nineteenth International Conference and School on Quantum Electronics "Laser Physics and Applications" (19th ICSQE) in 2016, Sozopol, Bulgaria and contains the results of the 10-year research of Belarusian Antarctic expeditions to study the atmospheric aerosol and Earth surface in Antarctica. The works focus on the studying variability and trends of aerosol, cloud and snow characteristics in the Antarctic and the links of these processes with the long range transport of atmospheric pollutants and climate changes.

  8. Investigating the Potential Range Expansion of the Vector Mosquito Aedes aegypti in Mexico with NASA Earth Science Remote Sensing Results (United States)

    Crosson, W. L.; Eisen, L.; Estes, M. G.; Estes, S. M.; Hayden, M.; Lozano-Fuentes, S.; Monaghan, A. J.; Moreno Madriñán, M. J.; Ochoa, C.; Quattrochi, D.; Tapia, B.; Welsh-Rodriguez, C. M.


    In tropical and sub-tropical regions, the mosquito Aedes aegypti is the major vector for the virus causing dengue, a serious public health issue in these areas. Through ongoing NSF- and NASA-funded studies, field surveys of Aedes aegypti and an integrated modeling approach are being used to improve our understanding of the potential range of the mosquito to expand toward heavily populated high elevation areas such as Mexico City under various climate change and socio-economic scenarios. This work serves three primary objectives: (1) Employ NASA remotely-sensed data to supplement the environmental monitoring and modeling component of the project. These data -- for example, surface temperature, precipitation, vegetation indices, soil moisture and elevation -- are critical for understanding the habitat necessary for mosquito survival and abundance; (2) Implement training sessions to instruct scientists and students from Mexico and the U.S. on how to use remote sensing and implement the NASA SERVIR Regional Visualization and Monitoring System; (3) Employ the SERVIR framework to optimize the dissemination of key project results in order to increase their societal relevance and benefits in developing climate adaptation strategies. Field surveys of larval, pupal and adult Aedes aegypti, as well as detailed physical and social household characteristics, were conducted in the summers of 2011and 2012 at geographic scales from the household to the community along a transect from sea level to 2400 m ASL. These data are being used in models to estimate Aedes aegypti habitat suitability. In 2011, Aedes aegypti were identified at an elevation of over 2150 m in Puebla, the highest elevation at which this species has been observed.

  9. Introduction to remote sensing

    CERN Document Server

    Cracknell, Arthur P


    Addressing the need for updated information in remote sensing, Introduction to Remote Sensing, Second Edition provides a full and authoritative introduction for scientists who need to know the scope, potential, and limitations in the field. The authors discuss the physical principles of common remote sensing systems and examine the processing, interpretation, and applications of data. This new edition features updated and expanded material, including greater coverage of applications from across earth, environmental, atmospheric, and oceanographic sciences. Illustrated with remotely sensed colo

  10. Earth Observation and Life Cycle Assessment in Support of a Sustainable and Innovative Water Sector. RESEWAM-O, Remote Sensing for Water Management Optimisation (United States)

    Lopez-Baeza, Ernesto


    facilitate their decision whether the necessary expenditure and investment would be worthwhile and rewarding. In this paper, RESEWAM-O will show the use of current remote sensing technology and Earth Observation data and products to identify sensitive areas and evaluate their potential productivity in different parts of the world, namely Spain, Brazil, Colombia, Iran. The methodology is being developed to be compatible and continued real-time with the close forthcoming ESA Sentinel missions, mainly Sentinel-3, within the joint ESA/EU Copernicus Programme. Soil moisture is also monitored with the current ESA (SMOS, Soil Moisture and Ocean Salinity) and NASA (SMAP, Soil Moisture Active and Passive) missions. Complementary to Earth Observation, life cycle thinking perspective seems to be the correct approach to drive sustainability within the different human activities, also addressing the potential burdens on environment. The Life Cycle Assessment (LCA) methodology and its holistic perspective are useful tools to support both the screening and decision making procedures. With the aim of incorporating LCA to the RESEWAM-O's methodology, a first analysis has been carried out to identify the water and carbon footprints due to different organic agricultural practices over two organic vineyards of the Utiel-Requena Plateau natural region, Valencia (Spain), during the years 2014 and 2015. A cradle-to-gate analysis, from the raw material extraction up to the grapes production, was carried out using primary data (furnished by the wineries) and literature information (peer-review and database). LCA results were used to evaluate the environmental repercussions associated with different agricultural practices (e.g. manure spreading and the use of other fertilizer), as a consequence of the reduced rain abundance, and support the wineries in the decision making procedure by helping to identify operationally inefficient practices and quantify the environmental benefits of moving towards

  11. Remote vehicle survey tool

    International Nuclear Information System (INIS)

    Armstrong, G.A.; Burks, B.L.; Kress, R.L.; Wagner, D.G.; Ward, C.R.


    The Remote Vehicle Survey Tool (RVS7) is a color graphical display tool for viewing remotely acquired scientific data. The RVST displays the data in the form of a color two-dimensional world model map. The world model map allows movement of the remote vehicle to be tracked by the operator and the data from sensors to be graphically depicted in the interface. Linear and logarithmic meters, dual channel oscilloscopes, and directional compasses are used to display sensor information. The RVST is user-configurable by the use of ASCII text files. The operator can configure the RVST to work with any remote data acquisition system and teleoperated or autonomous vehicle. The modular design of the RVST and its ability to be quickly configured for varying system requirements make the RVST ideal for remote scientific data display in all environmental restoration and waste management programs

  12. An earth remote sensing satellite- 1 Synthetic Aperture Radar Mosaic of the Tanana River Basin in Alaska (United States)

    Wivell, Charles E.; Olmsted, Coert; Steinwand, Daniel R.; Taylor, Christopher


    Because the pixel location in a line of Synthetic Aperture Radar (SAR) image data is directly related to the distance the pixel is from the radar, terrain elevations cause large displacement errors in the geo-referenced location of the pixel. This is especially true for radar systems with small angles between the nadir and look vectors. Thus, to geo-register a SAR image accurately, the terrain of the area must be taken into account. (Curlander et al., 1987; Kwok et al., 1987, Schreier et al., 1990; Wivell et al., 1992). As part of the 1992 National Aeronautics and Space Administration's Earth Observing System Version 0 activities, a prototype SAR geocod-. ing and terrain correction system was developed at the US. Geological Survey's (USGS) E~os Data Center (EDC) in Sioux Falls, South Dakota. Using this system with 3-arc-second digital elevation models (DEMs) mosaicked at the ED^ Alaska Field Office, 21 ERS-I s.4~ scenes acquired at the Alaska SAR Facility were automatically geocoded, terrain corrected, and mosaicked. The geo-registered scenes were mosaicked using a simple concatenation.

  13. 3D display system using monocular multiview displays (United States)

    Sakamoto, Kunio; Saruta, Kazuki; Takeda, Kazutoki


    A 3D head mounted display (HMD) system is useful for constructing a virtual space. The authors have researched the virtual-reality systems connected with computer networks for real-time remote control and developed a low-priced real-time 3D display for building these systems. We developed a 3D HMD system using monocular multi-view displays. The 3D displaying technique of this monocular multi-view display is based on the concept of the super multi-view proposed by Kajiki at TAO (Telecommunications Advancement Organization of Japan) in 1996. Our 3D HMD has two monocular multi-view displays (used as a visual display unit) in order to display a picture to the left eye and the right eye. The left and right images are a pair of stereoscopic images for the left and right eyes, then stereoscopic 3D images are observed.

  14. Use of a GCM to Explore Sampling Issues in Connection with Satellite Remote Sensing of the Earth Radiation Budget (United States)

    Fowler, Laura D.; Wielicki, Bruce A.; Randall, David A.; Branson, Mark D.; Gibson, Gary G.; Denn, Fredrick M.


    Collocated in time and space, top-of-the-atmosphere measurements of the Earth radiation budget (ERB) and cloudiness from passive scanning radiometers, and lidar- and radar-in-space measurements of multilayered cloud systems, are the required combination to improve our understanding of the role of clouds and radiation in climate. Experiments to fly multiple satellites "in formation" to measure simultaneously the radiative and optical properties of overlapping cloud systems are being designed. Because satellites carrying ERB experiments and satellites carrying lidars- or radars-in space have different orbital characteristics, the number of simultaneous measurements of radiation and clouds is reduced relative to the number of measurements made by each satellite independently. Monthly averaged coincident observations of radiation and cloudiness are biased when compared against more frequently sampled observations due, in particular, to the undersampling of their diurnal cycle, Using the Colorado State University General Circulation Model (CSU GCM), the goal of this study is to measure the impact of using simultaneous observations from the Earth Observing System (EOS) platform and companion satellites flying lidars or radars on monthly averaged diagnostics of longwave radiation, cloudiness, and its cloud optical properties. To do so, the hourly varying geographical distributions of coincident locations between the afternoon EOS (EOS-PM) orbit and the orbit of the ICESAT satellite set to fly at the altitude of 600 km, and between the EOS PM orbit and the orbits of the PICASSO satellite proposed to fly at the altitudes of 485 km (PICA485) or 705 km (PICA705), are simulated in the CSU GCM for a 60-month time period starting at the idealistic July 1, 2001, launch date. Monthly averaged diagnostics of the top-of-the-atmosphere, atmospheric, and surface longwave radiation budgets and clouds accumulated over grid boxes corresponding to satellite overpasses are compared against

  15. Integrated Display & Environmental Awareness System (United States)

    National Aeronautics and Space Administration — The goal of this project is the development of a head mounted display for use in operations here on Earth and in Space. The technology would provide various means of...

  16. Accessing Both Halves of the Brain to Make Climate Decisions: How Community-Sourced Media, Earth Remote Sensing Data, and Creative Placemaking Art Can Cultivate Change (United States)

    Drapkin, J. K.; Wagner, L.


    Decision-making, science tells us, accesses multiple parts of the brain: both logic and data as well as memory and emotion. It is this mix of signals that propels individuals and communities to act. Founded in 2012, ISeeChange is the nation's first community crowdsourced climate and weather journal that empowers users to document environmental changes with others and discuss the impacts over time. Our neighborhood investigation methodology includes residents documenting their personal experiences alongside collected data, Earth remote sensing data, and local artists interpreting community questions and experiences into place-based public art in the neighborhood to inspire a culture of resilience and climate literacy. ISeeChange connects the public with national media, scientists, and data tools that support community dialogue and enable collaborative science and journalism investigations about our changing environment. Our groundbreaking environmental reporting platform—available online and through a mobile app—personalizes and tracks climate change from the perspective of every day experiences, bringing Eearth science home and into the placesspaces people know best and trust most- their own communities Our session will focus on our newest neighborhood pilot program in New Orleans, furthering the climate resilience, green infrastructure, and creative placemaking efforts of the Trust for Public Land, the City of New Orleans, and other resilience community partners.

  17. An integrated modeling system for estimating glacier and snow melt driven streamflow from remote sensing and earth system data products in the Himalayas (United States)

    Brown, M. E.; Racoviteanu, A. E.; Tarboton, D. G.; Gupta, A. Sen; Nigro, J.; Policelli, F.; Habib, S.; Tokay, M.; Shrestha, M. S.; Bajracharya, S.; Hummel, P.; Gray, M.; Duda, P.; Zaitchik, B.; Mahat, V.; Artan, G.; Tokar, S.


    Quantification of the contribution of the hydrologic components (snow, ice and rain) to river discharge in the Hindu Kush Himalayan (HKH) region is important for decision-making in water sensitive sectors, and for water resources management and flood risk reduction. In this area, access to and monitoring of the glaciers and their melt outflow is challenging due to difficult access, thus modeling based on remote sensing offers the potential for providing information to improve water resources management and decision making. This paper describes an integrated modeling system developed using downscaled NASA satellite based and earth system data products coupled with in-situ hydrologic data to assess the contribution of snow and glaciers to the flows of the rivers in the HKH region. Snow and glacier melt was estimated using the Utah Energy Balance (UEB) model, further enhanced to accommodate glacier ice melt over clean and debris-covered tongues, then meltwater was input into the USGS Geospatial Stream Flow Model (GeoSFM). The two model components were integrated into Better Assessment Science Integrating point and Nonpoint Sources modeling framework (BASINS) as a user-friendly open source system and was made available to countries in high Asia. Here we present a case study from the Langtang Khola watershed in the monsoon-influenced Nepal Himalaya, used to validate our energy balance approach and to test the applicability of our modeling system. The snow and glacier melt model predicts that for the eight years used for model evaluation (October 2003-September 2010), the total surface water input over the basin was 9.43 m, originating as 62% from glacier melt, 30% from snowmelt and 8% from rainfall. Measured streamflow for those years were 5.02 m, reflecting a runoff coefficient of 0.53. GeoSFM simulated streamflow was 5.31 m indicating reasonable correspondence between measured and model confirming the capability of the integrated system to provide a quantification of

  18. Remotely Triggered Earthquakes Recorded by EarthScope's Transportable Array and Regional Seismic Networks: A Case Study Of Four Large Earthquakes (United States)

    Velasco, A. A.; Cerda, I.; Linville, L.; Kilb, D. L.; Pankow, K. L.


    Changes in field stress required to trigger earthquakes have been classified in two basic ways: static and dynamic triggering. Static triggering occurs when an earthquake that releases accumulated strain along a fault stress loads a nearby fault. Dynamic triggering occurs when an earthquake is induced by the passing of seismic waves from a large mainshock located at least two or more fault lengths from the epicenter of the main shock. We investigate details of dynamic triggering using data collected from EarthScope's USArray and regional seismic networks located in the United States. Triggered events are identified using an optimized automated detector based on the ratio of short term to long term average (Antelope software). Following the automated processing, the flagged waveforms are individually analyzed, in both the time and frequency domains, to determine if the increased detection rates correspond to local earthquakes (i.e., potentially remotely triggered aftershocks). Here, we show results using this automated schema applied to data from four large, but characteristically different, earthquakes -- Chile (Mw 8.8 2010), Tokoku-Oki (Mw 9.0 2011), Baja California (Mw 7.2 2010) and Wells Nevada (Mw 6.0 2008). For each of our four mainshocks, the number of detections within the 10 hour time windows span a large range (1 to over 200) and statistically >20% of the waveforms show evidence of anomalous signals following the mainshock. The results will help provide for a better understanding of the physical mechanisms involved in dynamic earthquake triggering and will help identify zones in the continental U.S. that may be more susceptible to dynamic earthquake triggering.

  19. Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars. (United States)

    Kasting, James F; Kopparapu, Ravikumar; Ramirez, Ramses M; Harman, Chester E


    The habitable zone (HZ) around a star is typically defined as the region where a rocky planet can maintain liquid water on its surface. That definition is appropriate, because this allows for the possibility that carbon-based, photosynthetic life exists on the planet in sufficient abundance to modify the planet's atmosphere in a way that might be remotely detected. Exactly what conditions are needed, however, to maintain liquid water remains a topic for debate. In the past, modelers have restricted themselves to water-rich planets with CO2 and H2O as the only important greenhouse gases. More recently, some researchers have suggested broadening the definition to include arid, "Dune" planets on the inner edge and planets with captured H2 atmospheres on the outer edge, thereby greatly increasing the HZ width. Such planets could exist, but we demonstrate that an inner edge limit of 0.59 AU or less is physically unrealistic. We further argue that conservative HZ definitions should be used for designing future space-based telescopes, but that optimistic definitions may be useful in interpreting the data from such missions. In terms of effective solar flux, S(eff), the recently recalculated HZ boundaries are: recent Venus--1.78; runaway greenhouse--1.04; moist greenhouse--1.01; maximum greenhouse--0.35; and early Mars--0.32. Based on a combination of different HZ definitions, the frequency of potentially Earth-like planets around late K and M stars observed by Kepler is in the range of 0.4-0.5.

  20. An Integrated Modeling System for Estimating Glacier and Snow Melt Driven Streamflow from Remote Sensing and Earth System Data Products in the Himalayas (United States)

    Brown, M. E.; Racoviteanu, A. E.; Tarboton, D. G.; Sen Gupta, A.; Nigro, J.; Policelli, F.; Habib, S.; Tokay, M.; Shrestha, M. S.; Bajracharya, S.


    Quantification of the contribution of the hydrologic components (snow, ice and rain) to river discharge in the Hindu Kush Himalayan (HKH) region is important for decision-making in water sensitive sectors, and for water resources management and flood risk reduction. In this area, access to and monitoring of the glaciers and their melt outflow is challenging due to difficult access, thus modeling based on remote sensing offers the potential for providing information to improve water resources management and decision making. This paper describes an integrated modeling system developed using downscaled NASA satellite based and earth system data products coupled with in-situ hydrologic data to assess the contribution of snow and glaciers to the flows of the rivers in the HKH region. Snow and glacier melt was estimated using the Utah Energy Balance (UEB) model, further enhanced to accommodate glacier ice melt over clean and debris-covered tongues, then meltwater was input into the USGS Geospatial Stream Flow Model (Geo- SFM). The two model components were integrated into Better Assessment Science Integrating point and Nonpoint Sources modeling framework (BASINS) as a user-friendly open source system and was made available to countries in high Asia. Here we present a case study from the Langtang Khola watershed in the monsoon-influenced Nepal Himalaya, used to validate our energy balance approach and to test the applicability of our modeling system. The snow and glacier melt model predicts that for the eight years used for model evaluation (October 2003-September 2010), the total surface water input over the basin was 9.43 m, originating as 62% from glacier melt, 30% from snowmelt and 8% from rainfall. Measured streamflow for those years were 5.02 m, reflecting a runoff coefficient of 0.53. GeoSFM simulated streamflow was 5.31 m indicating reasonable correspondence between measured and model confirming the capability of the integrated system to provide a quantification

  1. Remote Tactile Displays for Future Soldiers

    National Research Council Canada - National Science Library

    Gilson, Richard D; Redden, Elizabeth S; Elliott, Linda R


    ... of communication to the individual warfighter. Previously, the results from these evaluations were distributed as technical reports, meeting presentations, and live demonstrations spanning the past several years...

  2. Advanced Remote Sensing Research (United States)

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna


    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  3. Functional displays

    International Nuclear Information System (INIS)

    Angelis De, F.; Haentjens, J.


    The Functional Displays are directly derived from the Man-Machine Design key document: Function-Based Task Analysis. The presentation defines and describes the goals-means structure of the plant function along with applicable control volumes and parameters of interest. The purpose of the subject is to show, through an example of a preliminary design, what the main parts of a function are. (3 figs.)

  4. Display hardware

    International Nuclear Information System (INIS)

    Myers, D.R.


    To appreciate the limitations and possibilities of computer graphics it is necessary to have some acquaintance with the available technology. The aim of this chapter is to mention briefly the different display types and their 'ball-park' price ranges. It must be stressed that prices change rapidly, and so those quoted here are only intended to give an idea of the cost at the time of writing.

  5. Web Extensible Display Manager

    Energy Technology Data Exchange (ETDEWEB)

    Slominski, Ryan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Larrieu, Theodore L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)


    Jefferson Lab's Web Extensible Display Manager (WEDM) allows staff to access EDM control system screens from a web browser in remote offices and from mobile devices. Native browser technologies are leveraged to avoid installing and managing software on remote clients such as browser plugins, tunnel applications, or an EDM environment. Since standard network ports are used firewall exceptions are minimized. To avoid security concerns from remote users modifying a control system, WEDM exposes read-only access and basic web authentication can be used to further restrict access. Updates of monitored EPICS channels are delivered via a Web Socket using a web gateway. The software translates EDM description files (denoted with the edl suffix) to HTML with Scalable Vector Graphics (SVG) following the EDM's edl file vector drawing rules to create faithful screen renderings. The WEDM server parses edl files and creates the HTML equivalent in real-time allowing existing screens to work without modification. Alternatively, the familiar drag and drop EDM screen creation tool can be used to create optimized screens sized specifically for smart phones and then rendered by WEDM.

  6. Digital Earth - A sustainable Earth (United States)



    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  7. Remote Sensing of Aerosol Backscatter and Earth Surface Targets By Use of An Airborne Focused Continuous Wave CO2 Doppler Lidar Over Western North America (United States)

    Jarzembski, Maurice A.; Srivastava, Vandana; Goodman, H. Michael (Technical Monitor)


    Airborne lidar systems are used to determine wind velocity and to measure aerosol or cloud backscatter variability. Atmospheric aerosols, being affected by local and regional sources, show tremendous variability. Continuous wave (cw) lidar can obtain detailed aerosol loading with unprecedented high resolution (3 sec) and sensitivity (1 mg/cubic meter) as was done during the 1995 NASA Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission over western North America and the Pacific Ocean. Backscatter variability was measured at a 9.1 micron wavelength cw focused CO2 Doppler lidar for approximately 52 flight hours, covering an equivalent horizontal distance of approximately 30,000 km in the troposphere. Some quasi-vertical backscatter profiles were also obtained during various ascents and descents at altitudes that ranged from approximately 0.1 to 12 km. Similarities and differences for aerosol loading over land and ocean were observed. Mid-tropospheric aerosol backscatter background mode was approximately 6 x 10(exp -11)/ms/r, consistent with previous lidar datasets. While these atmospheric measurements were made, the lidar also retrieved a distinct backscatter signal from the Earth's surface from the unfocused part of the focused cw lidar beam during aircraft rolls. Atmospheric backscatter can be highly variable both spatially and temporally, whereas, Earth-surface backscatter is relatively much less variant and can be quite predictable. Therefore, routine atmospheric backscatter measurements by an airborne lidar also give Earth surface backscatter which can allow for investigating the Earth terrain. In the case where the Earth's surface backscatter is coming from a well-known and fairly uniform region, then it can potentially offer lidar calibration opportunities during flight. These Earth surface measurements over varying Californian terrain during the mission were compared with laboratory backscatter measurements using the same lidar of various

  8. Remote sensing of the earth's surface; Proceedings of the Symposium 2, Topical Meeting, and Workshop I of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988 (United States)

    Salomonson, V. V. (Editor); Walter, L. S. (Editor); Maetzler, C. (Editor); Rott, H. (Editor)


    The present conference discusses topics in the spaceborne study of the earth's surface, crust, and lithosphere, recent results from SPOT and Landsat TM investigations, and microwave observations of snowpack and soil properties. Attention is given to airborne and satellite-borne gravimetry, stereoviewing from space, TM studies of volcanism and tectonism in central Mexico, remote sensing of volcanoes, the uses of SPOT in forest management, the tectonics of the central Andes, and the application of VLBI to crustal movement studies. Also discussed are Landsat TM band ratios for soil investigations, snow dielectric measurements, the microwave radiometry of snow, microwave signatures of bare soil, the estimation of Alpine snow properties from Landsat TM data, and an experimental study of vegetable canopy microwave emissions.

  9. Earth and Space Science Electronic Theater: State-of-the-Art Visualization from the Latest Remote Sensing Observations. High Definition Television on the SMM IMAX Screen with Ultra High Performance Projector (United States)

    Hasler, A. F.; Starr, David (Technical Monitor)


    Fritz Hasler (NASA/Goddard) will demonstrate the latest Blue Marble Digital Earth technology. We will fly in from space through Terra, Landsat 7, to 1 m Ikonos "Spy Satellite" data to Washington, NYC, Chicago, and LA. You will see animations using the new 1 km global datasets from the EOS Terra satellite. Spectacular new animations from Terra, Landsat 7, and SeaWiFS will be presented. See the latest animations of the super hurricanes like, Floyd, Luis, and Mitch, from GOES & TRMM. See movies assembled using new low cost HDTV nonlinear editing equipment that is revolutionizing the way we communicate scientific results. See climate change in action with Global Land & Ocean productivity changes over the last 20 years. Remote sensing observations of ocean SST, height, winds, color, and El Nino from GOES, AVHRR, SSMI & SeaWiFS are put in context with atmospheric and ocean simulations. Compare symmetrical equatorial eddies observed by GOES with the simulations.

  10. Remote RemoteRemoteRemote sensing potential for sensing ...

    African Journals Online (AJOL)

    Remote RemoteRemoteRemote sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing p. A Ngie, F Ahmed, K Abutaleb ...

  11. Remote sensing and avian influenza: A review of image processing methods for extracting key variables affecting avian influenza virus survival in water from Earth Observation satellites (United States)

    Tran, Annelise; Goutard, Flavie; Chamaillé, Lise; Baghdadi, Nicolas; Lo Seen, Danny


    Recent studies have highlighted the potential role of water in the transmission of avian influenza (AI) viruses and the existence of often interacting variables that determine the survival rate of these viruses in water; the two main variables are temperature and salinity. Remote sensing has been used to map and monitor water bodies for several decades. In this paper, we review satellite image analysis methods used for water detection and characterization, focusing on the main variables that influence AI virus survival in water. Optical and radar imagery are useful for detecting water bodies at different spatial and temporal scales. Methods to monitor the temperature of large water surfaces are also available. Current methods for estimating other relevant water variables such as salinity, pH, turbidity and water depth are not presently considered to be effective.

  12. Studying the Earth from space (United States)



    Space age technology contains a key to increased knowledge about the Earth's resources; this key is remote sensing detecting the nature or condition of something without actually touching it. An early and still most useful form of remote sensing is photography which records the

  13. Introduction to remote sensing

    CERN Document Server

    Campbell, James B


    A leading text for undergraduate- and graduate-level courses, this book introduces widely used forms of remote sensing imagery and their applications in plant sciences, hydrology, earth sciences, and land use analysis. The text provides comprehensive coverage of principal topics and serves as a framework for organizing the vast amount of remote sensing information available on the Web. Including case studies and review questions, the book's four sections and 21 chapters are carefully designed as independent units that instructors can select from as needed for their courses. Illustrations in

  14. Radar Remote Sensing (United States)

    Rosen, Paul A.


    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  15. Group Dynamics in Long -term blind endeavors on Earth as an analog for Remote Space Missions (Lewis & Clark Expedition, 1803 - 1806, Dynamic Analysis) (United States)

    Allner, M.; Rygalov, V.; Reilly, J.

    In 1803 President Thomas Jefferson set fourth a military expedition led by Captains newline M Lewis and W Clark L C Expedition on an exploration to learn more about the large territory of land the U S had just purchased from France Cavan 1991 Their mission was to find a direct water route to the Pacific Ocean for the purpose of commerce and further industrial development Edwards 1999 Looking back at the events of this exploration there are many similarities to the experiences future human space explorers will face as we look to colonize the Moon and travel to Mars and beyond NASA Vision for Space Exploration 2004 - The L C Expedition lasted almost three years and involved a crew of 43 men traveling up the Missouri River to explore the unknown lands and a possible water route to the Pacific Ocean newline - The expedition took place far away from customary comfortable environments known to European settlers in early 18th century newline - The expedition involved a remotely confined high-perceived risk environment with high levels of uncertainty providing stresses and every day challenges for the crew newline - Supplies brought on the mission were limited mainly a mass weight issue rather than cost therefore the discovery and use of environmental resources In-Situ Resource Utilization approach including info-resources to mitigate uncertainty was necessary for crew survival The environments astronauts will encounter in space and on the Moon and Mars due to high risk and uncertainty will be in many aspects similar

  16. ISS EarthKam: Taking Photos of the Earth from Space (United States)

    Haste, Turtle


    NASA is involved in a project involving the International Space Station (ISS) and an Earth-focused camera called EarthKam, where schools, and ultimately students, are allowed to remotely program the EarthKAM to take images. Here the author describes how EarthKam was used to help middle school students learn about biomes and develop their…

  17. Remote Research

    CERN Document Server

    Tulathimutte, Tony


    Remote studies allow you to recruit subjects quickly, cheaply, and immediately, and give you the opportunity to observe users as they behave naturally in their own environment. In Remote Research, Nate Bolt and Tony Tulathimutte teach you how to design and conduct remote research studies, top to bottom, with little more than a phone and a laptop.

  18. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F


    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  19. On Flare-CME Characteristics from Sun to Earth Combining Remote-Sensing Image Data with In Situ Measurements Supported by Modeling (United States)

    Temmer, Manuela; Thalmann, Julia K.; Dissauer, Karin; Veronig, Astrid M.; Tschernitz, Johannes; Hinterreiter, Jürgen; Rodriguez, Luciano


    We analyze the well-observed flare and coronal mass ejection (CME) from 1 October 2011 (SOL2011-10-01T09:18) covering the complete chain of effects - from Sun to Earth - to better understand the dynamic evolution of the CME and its embedded magnetic field. We study in detail the solar surface and atmosphere associated with the flare and CME using the Solar Dynamics Observatory (SDO) and ground-based instruments. We also track the CME signature off-limb with combined extreme ultraviolet (EUV) and white-light data from the Solar Terrestrial Relations Observatory (STEREO). By applying the graduated cylindrical shell (GCS) reconstruction method and total mass to stereoscopic STEREO-SOHO ( Solar and Heliospheric Observatory) coronagraph data, we track the temporal and spatial evolution of the CME in the interplanetary space and derive its geometry and 3D mass. We combine the GCS and Lundquist model results to derive the axial flux and helicity of the magnetic cloud (MC) from in situ measurements from Wind. This is compared to nonlinear force-free (NLFF) model results, as well as to the reconnected magnetic flux derived from the flare ribbons (flare reconnection flux) and the magnetic flux encompassed by the associated dimming (dimming flux). We find that magnetic reconnection processes were already ongoing before the start of the impulsive flare phase, adding magnetic flux to the flux rope before its final eruption. The dimming flux increases by more than 25% after the end of the flare, indicating that magnetic flux is still added to the flux rope after eruption. Hence, the derived flare reconnection flux is most probably a lower limit for estimating the magnetic flux within the flux rope. We find that the magnetic helicity and axial magnetic flux are lower in the interplanetary space by ˜ 50% and 75%, respectively, possibly indicating an erosion process. A CME mass increase of 10% is observed over a range of {˜} 4 - 20 R_{⊙}. The temporal evolution of the CME

  20. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen


    Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish for an integ......Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish...... for an integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  1. Three Dimensional Spherical Display Systems and McIDAS: Tools for Science, Education and Outreach (United States)

    Kohrs, R.; Mooney, M. E.


    The Space Science and Engineering Center (SSEC) and Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin are now using a 3D spherical display system and their Man computer Data Access System (McIDAS)-X and McIDAS-V as outreach tools to demonstrate how scientists and forecasters utilize satellite imagery to monitor weather and climate. Our outreach program displays orbits and data coverage of geostationary and polar satellites and demonstrates how each is beneficial for the remote sensing of Earth. Global composites of visible, infrared and water vapor images illustrate how satellite instruments collect data from different bands of the electromagnetic spectrum to monitor global weather patterns 24 hours a day. Captivating animations on spherical display systems are proving to be much more intuitive than traditional 2D displays, enabling audiences to view satellites orbiting above real-time weather systems circulating the entire globe. Complimenting the 3D spherical display system are the UNIX-based McIDAS-X and Java-based McIDAS-V software packages. McIDAS is used to composite the real-time global satellite data and create other weather related derived products. Client and server techniques used by these software packages provide the opportunity to continually update the real-time content on our globe. The enhanced functionality of McIDAS-V extends our outreach program by allowing in-depth interactive 4-dimensional views of the imagery previously viewed on the 3D spherical display system. An important goal of our outreach program is the promotion of remote sensing research and technology at SSEC and CIMSS. The 3D spherical display system has quickly become a popular tool to convey societal benefits of these endeavors. Audiences of all ages instinctively relate to recent weather events which keeps them engaged in spherical display presentations. McIDAS facilitates further exploration of the science behind the weather

  2. Mississippi Sound Remote Sensing Study (United States)

    Atwell, B. H.


    The Mississippi Sound Remote Sensing Study was initiated as part of the research program of the NASA Earth Resources Laboratory. The objective of this study is development of remote sensing techniques to study near-shore marine waters. Included within this general objective are the following: (1) evaluate existing techniques and instruments used for remote measurement of parameters of interest within these waters; (2) develop methods for interpretation of state-of-the-art remote sensing data which are most meaningful to an understanding of processes taking place within near-shore waters; (3) define hardware development requirements and/or system specifications; (4) develop a system combining data from remote and surface measurements which will most efficiently assess conditions in near-shore waters; (5) conduct projects in coordination with appropriate operating agencies to demonstrate applicability of this research to environmental and economic problems.

  3. European display scene (United States)

    Bartlett, Christopher T.


    The manufacture of Flat Panel Displays (FPDs) is dominated by Far Eastern sources, particularly in Active Matrix Liquid Crystal Displays (AMLCD) and Plasma. The United States has a very powerful capability in micro-displays. It is not well known that Europe has a very active research capability which has lead to many innovations in display technology. In addition there is a capability in display manufacturing of organic technologies as well as the licensed build of Japanese or Korean designs. Finally, Europe has a display systems capability in military products which is world class.

  4. Handbook of display technology

    CERN Document Server

    Castellano, Joseph A


    This book presents a comprehensive review of technical and commercial aspects of display technology. It provides design engineers with the information needed to select proper technology for new products. The book focuses on flat, thin displays such as light-emitting diodes, plasma display panels, and liquid crystal displays, but it also includes material on cathode ray tubes. Displays include a large number of products from televisions, auto dashboards, radios, and household appliances, to gasoline pumps, heart monitors, microwave ovens, and more.For more information on display tech

  5. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix; Gregson, James; Wetzstein, Gordon; Raskar, Ramesh; Heidrich, Wolfgang


    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  6. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix


    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  7. Liquid crystal display

    International Nuclear Information System (INIS)

    Takami, K.


    An improved liquid crystal display device is described which can display letters, numerals and other necessary patterns in the night time using a minimized amount of radioactive material. To achieve this a self-luminous light source is placed in a limited region corresponding to a specific display area. (U.K.)

  8. Liquid Crystal Airborne Display (United States)


    Cum.nings, J. P., et al., Properties and Limitations oe Liquid Crystals for Aircraft Displays, Honeywell Corporate Researc ."I Center, Final Report HR-72...basic module could be used to build displays for both the commercial and military! 157- marhecs, and so would establi sh a broad and sizable market ... market for the display becomes a reality; therein lies, f TABLE 16 THE COURSE OF FUTURE DISPLAY DEVELOPMENT Today 1976-77 1980 1985 Display Size 2" 1 3.2

  9. Displays in scintigraphy

    International Nuclear Information System (INIS)

    Todd-Pokropek, A.E.; Pizer, S.M.


    Displays have several functions: to transmit images, to permit interaction, to quantitate features and to provide records. The main characteristics of displays used for image transmission are their resolution, dynamic range, signal-to-noise ratio and uniformity. Considerations of visual acuity suggest that the display element size should be much less than the data element size, and in current practice at least 256X256 for a gamma camera image. The dynamic range for image transmission should be such that at least 64 levels of grey (or equivalent) are displayed. Scanner displays are also considered, and in particular, the requirements of a whole-body camera are examined. A number of display systems and devices are presented including a 'new' heated object colour display system. Interaction with displays is considered, including background subtraction, contrast enhancement, position indication and region-of-interest generation. Such systems lead to methods of quantitation, which imply knowledge of the expected distributions. Methods for intercomparing displays are considered. Polaroid displays, which have for so long dominated the field, are in the process of being replaced by stored image displays, now that large cheap memories exist which give an equivalent image quality. The impact of this in nuclear medicine is yet to be seen, but a major effect will be to enable true quantitation. (author)

  10. Digital Earth – A sustainable Earth

    International Nuclear Information System (INIS)



    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth

  11. OLED displays and lighting

    CERN Document Server

    Koden, Mitsuhiro


    Organic light-emitting diodes (OLEDs) have emerged as the leading technology for the new display and lighting market. OLEDs are solid-state devices composed of thin films of organic molecules that create light with the application of electricity. OLEDs can provide brighter, crisper displays on electronic devices and use less power than conventional light-emitting diodes (LEDs) or liquid crystal displays (LCDs) used today. This book covers both the fundamentals and practical applications of flat and flexible OLEDs.

  12. Scalable Resolution Display Walls

    KAUST Repository

    Leigh, Jason; Johnson, Andrew; Renambot, Luc; Peterka, Tom; Jeong, Byungil; Sandin, Daniel J.; Talandis, Jonas; Jagodic, Ratko; Nam, Sungwon; Hur, Hyejung; Sun, Yiwen


    This article will describe the progress since 2000 on research and development in 2-D and 3-D scalable resolution display walls that are built from tiling individual lower resolution flat panel displays. The article will describe approaches and trends in display hardware construction, middleware architecture, and user-interaction design. The article will also highlight examples of use cases and the benefits the technology has brought to their respective disciplines. © 1963-2012 IEEE.

  13. JAVA Stereo Display Toolkit (United States)

    Edmonds, Karina


    This toolkit provides a common interface for displaying graphical user interface (GUI) components in stereo using either specialized stereo display hardware (e.g., liquid crystal shutter or polarized glasses) or anaglyph display (red/blue glasses) on standard workstation displays. An application using this toolkit will work without modification in either environment, allowing stereo software to reach a wider audience without sacrificing high-quality display on dedicated hardware. The toolkit is written in Java for use with the Swing GUI Toolkit and has cross-platform compatibility. It hooks into the graphics system, allowing any standard Swing component to be displayed in stereo. It uses the OpenGL graphics library to control the stereo hardware and to perform the rendering. It also supports anaglyph and special stereo hardware using the same API (application-program interface), and has the ability to simulate color stereo in anaglyph mode by combining the red band of the left image with the green/blue bands of the right image. This is a low-level toolkit that accomplishes simply the display of components (including the JadeDisplay image display component). It does not include higher-level functions such as disparity adjustment, 3D cursor, or overlays all of which can be built using this toolkit.

  14. Displays and simulators (United States)

    Mohon, N.

    A 'simulator' is defined as a machine which imitates the behavior of a real system in a very precise manner. The major components of a simulator and their interaction are outlined in brief form, taking into account the major components of an aircraft flight simulator. Particular attention is given to the visual display portion of the simulator, the basic components of the display, their interactions, and their characteristics. Real image displays are considered along with virtual image displays, and image generators. Attention is given to an advanced simulator for pilot training, a holographic pancake window, a scan laser image generator, the construction of an infrared target simulator, and the Apollo Command Module Simulator.

  15. Earth Science Informatics - Overview (United States)

    Ramapriyan, H. K.


    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  16. Displays enabling mobile multimedia (United States)

    Kimmel, Jyrki


    With the rapid advances in telecommunications networks, mobile multimedia delivery to handsets is now a reality. While a truly immersive multimedia experience is still far ahead in the mobile world, significant advances have been made in the constituent audio-visual technologies to make this become possible. One of the critical components in multimedia delivery is the mobile handset display. While such alternatives as headset-style near-to-eye displays, autostereoscopic displays, mini-projectors, and roll-out flexible displays can deliver either a larger virtual screen size than the pocketable dimensions of the mobile device can offer, or an added degree of immersion by adding the illusion of the third dimension in the viewing experience, there are still challenges in the full deployment of such displays in real-life mobile communication terminals. Meanwhile, direct-view display technologies have developed steadily, and can provide a development platform for an even better viewing experience for multimedia in the near future. The paper presents an overview of the mobile display technology space with an emphasis on the advances and potential in developing direct-view displays further to meet the goal of enabling multimedia in the mobile domain.

  17. Variable acuity remote viewing system flight demonstration (United States)

    Fisher, R. W.


    The Variable Acuity Remote Viewing System (VARVS), originally developed under contract to the Navy (ONR) as a laboratory brassboard, was modified for flight demonstration. The VARVS system was originally conceived as a technique which could circumvent the acuity/field of view/bandwidth tradeoffs that exists in remote viewing to provide a nearly eye limited display in both field of view (160 deg) and resolution (2 min arc) while utilizing conventional TV sensing, transmission, and display equipment. The modifications for flight demonstration consisted of modifying the sensor so it could be installed and flow in a Piper PA20 aircraft, equipped for remote control and modifying the display equipment so it could be integrated with the NASA Research RPB (RPRV) remote control cockpit.

  18. Visual merchandising window display

    Directory of Open Access Journals (Sweden)

    Opris (Cas. Stanila M.


    Full Text Available Window display plays a major part in the selling strategies; it does not only include the simple display of goods, nowadays it is a form of art, also having the purpose of sustaining the brand image. This article wants to reveal the tools that are essential in creating a fabulous window display. Being a window designer is not an easy job, you have to always think ahead trends, to have a sense of colour, to know how to use light to attract customers in the store after only one glance at the window. The big store window displays are theatre scenes: with expensive backgrounds, special effects and high fashion mannequins. The final role of the displays is to convince customers to enter the store and trigger the purchasing act which is the final goal of the retail activity.

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 5 .... Atmospheric correction of Earth-observation remote sensing images by Monte Carlo method ... Decision tree approach for classification of remotely sensed satellite data ... Analysis of carbon dioxide, water vapour and energy fluxes over an Indian ...

  20. Photogrammetry - Remote Sensing and Geoinformation (United States)

    Lazaridou, M. A.; Patmio, E. N.


    Earth and its environment are studied by different scientific disciplines as geosciences, science of engineering, social sciences, geography, etc. The study of the above, beyond pure scientific interest, is useful for the practical needs of man. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS) is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. Therefore, according to this definition, photogrammetry and remote sensing can support studies of the above disciplines for acquisition of geoinformation. This paper concerns basic concepts of geosciences (geomorphology, geology, hydrology etc), and the fundamentals of photogrammetry-remote sensing, in order to aid the understanding of the relationship between photogrammetry-remote sensing and geoinformation and also structure curriculum in a brief, concise and coherent way. This curriculum can represent an appropriate research and educational outline and help to disseminate knowledge in various directions and levels. It resulted from our research and educational experience in graduate and post-graduate level (post-graduate studies relative to the protection of environment and protection of monuments and historical centers) in the Lab. of Photogrammetry - Remote Sensing in Civil Engineering Faculty of Aristotle University of Thessaloniki.

  1. Microlaser-based displays (United States)

    Bergstedt, Robert; Fink, Charles G.; Flint, Graham W.; Hargis, David E.; Peppler, Philipp W.


    Laser Power Corporation has developed a new type of projection display, based upon microlaser technology and a novel scan architecture, which provides the foundation for bright, extremely high resolution images. A review of projection technologies is presented along with the limitations of each and the difficulties they experience in trying to generate high resolution imagery. The design of the microlaser based projector is discussed along with the advantage of this technology. High power red, green, and blue microlasers have been designed and developed specifically for use in projection displays. These sources, in combination with high resolution, high contrast modulator, produce a 24 bit color gamut, capable of supporting the full range of real world colors. The new scan architecture, which reduces the modulation rate and scan speeds required, is described. This scan architecture, along with the inherent brightness of the laser provides the fundamentals necessary to produce a 5120 by 4096 resolution display. The brightness and color uniformity of the display is excellent, allowing for tiling of the displays with far fewer artifacts than those in a traditionally tiled display. Applications for the display include simulators, command and control centers, and electronic cinema.

  2. Remote viewing. (United States)

    Scott, C


    Remote viewing is the supposed faculty which enables a percipient, sited in a closed room, to describe the perceptions of a remote agent visiting an unknown target site. To provide convincing demonstration of such a faculty poses a range of experimental and practical problems, especially if feedback to the percipient is allowed after each trial. The precautions needed are elaborate and troublesome; many potential loopholes have to be plugged and there will be strong temptations to relax standards, requiring exceptional discipline and dedication by the experimenters. Most reports of remote viewing experiments are rather superficial and do not permit assessment of the experimental procedures with confidence; in many cases there is clear evidence of particular loopholes left unclosed. Any serious appraisal of the evidence would have to go beyond the reports. Meanwhile the published evidence is far from compelling, and certainly insufficient to justify overthrow of well-established scientific principles.

  3. Geological remote sensing (United States)

    Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek


    Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.

  4. The economic value of remote sensing of earth resources from space: An ERTS overview and the value of continuity of service. Volume 7: Nonreplenishable natural resources: Minerals, fossil fuels and geothermal energy sources (United States)

    Lietzke, K. R.


    The application of remotely-sensed information to the mineral, fossil fuel, and geothermal energy extraction industry is investigated. Public and private cost savings are documented in geologic mapping activities. Benefits and capabilities accruing to the ERS system are assessed. It is shown that remote sensing aids in resource extraction, as well as the monitoring of several dynamic phenomena, including disturbed lands, reclamation, erosion, glaciation, and volcanic and seismic activity.

  5. ENERGY STAR Certified Displays (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 7.0 ENERGY STAR Program Requirements for Displays that are effective as of July 1, 2016....

  6. Improvements in data display

    International Nuclear Information System (INIS)

    Ellis, G.W.


    An analog signal processor is described in this patent for connecting a source of analog signals to a cathode ray tube display in order to extend the dynamic range of the display. This has important applications in the field of computerised X-ray tomography since significant medical information, such as tumours in soft tissue, is often represented by minimal level changes in image density. Cathode ray tube displays are limited to approximately 15 intensity levels. Thus if both strong and weak absorption of the X-rays occurs, the dynamic range of the transmitted signals will be too large to permit small variations to be examined directly on a cathode ray display. Present tomographic image reconstruction methods are capable of quantising X-ray absorption density measurements into 256 or more distinct levels and a description is given of the electronics which enables the upper and lower range of intensity levels to be independently set and continuously varied. (UK)

  7. Subsurface remote sensing

    International Nuclear Information System (INIS)

    Schweitzer, Jeffrey S.; Groves, Joel L.


    Subsurface remote sensing measurements are widely used for oil and gas exploration, for oil and gas production monitoring, and for basic studies in the earth sciences. Radiation sensors, often including small accelerator sources, are used to obtain bulk properties of the surrounding strata as well as to provide detailed elemental analyses of the rocks and fluids in rock pores. Typically, instrument packages are lowered into a borehole at the end of a long cable, that may be as long as 10 km, and two-way data and instruction telemetry allows a single radiation instrument to operate in different modes and to send the data to a surface computer. Because these boreholes are often in remote locations throughout the world, the data are frequently transmitted by satellite to various locations around the world for almost real-time analysis and incorporation with other data. The complete system approach that permits rapid and reliable data acquisition, remote analysis and transmission to those making decisions is described

  8. Gamma camera display system

    International Nuclear Information System (INIS)

    Stout, K.J.


    A gamma camera having an array of photomultipliers coupled via pulse shaping circuitry and a resistor weighting circuit to a display for forming an image of a radioactive subject is described. A linearizing circuit is coupled to the weighting circuit, the linearizing circuit including a nonlinear feedback circuit with diode coupling to the weighting circuit for linearizing the correspondence between points of the display and points of the subject. 4 Claims, 5 Drawing Figures

  9. Flexible displays, rigid designs?

    DEFF Research Database (Denmark)

    Hornbæk, Kasper


    Rapid technological progress has enabled a wide range of flexible displays for computing devices, but the user experience--which we're only beginning to understand--will be the key driver for successful designs.......Rapid technological progress has enabled a wide range of flexible displays for computing devices, but the user experience--which we're only beginning to understand--will be the key driver for successful designs....

  10. Remote sensing by satellite - Technical and operational implications for international cooperation (United States)

    Doyle, S. E.


    International cooperation in the U.S. Space Program is discussed and related to the NASA program for remote sensing of the earth. Satellite remote sensing techniques are considered along with the selection of the best sensors and wavelength bands. The technology of remote sensing satellites is considered with emphasis on the Landsat system configuration. Future aspects of remote sensing satellites are considered.

  11. Information rich display design

    International Nuclear Information System (INIS)

    Welch, Robin; Braseth, Alf Ove; Veland, Oeystein


    This paper presents the concept Information Rich Displays. The purpose of Information Rich Displays (IRDs) is to condensate prevailing information in process displays in such a way that each display format (picture) contains more relevant information for the user. Compared to traditional process control displays, this new concept allows the operator to attain key information at a glance and at the same time allows for improved monitoring of larger portions of the process. This again allows for reduced navigation between both process and trend displays and ease the cognitive demand on the operator. This concept has been created while working on designing display prototypes for the offshore petroleum production facilities of tomorrow. Offshore installations basically consist of wells, separation trains (where oil, gas and water are separated from each other), an oil tax measurement system (where oil quality is measured and the pressure increased to allow for export), gas compression (compression of gas for export) and utility systems (water treatment, chemical systems etc.). This means that an offshore control room operator has to deal with a complex process that comprises several functionally different systems. The need for a new approach to offshore display format design is in particular based on shortcomings in today's designs related to the keyhole effect, where the display format only reveals a fraction of the whole process. Furthermore, the upcoming introduction of larger off- and on-shore operation centres will increase the size and complexity of the operators' work domain. In the light of the increased demands on the operator, the proposed IRDs aim to counter the negative effects this may have on the workload. In this work we have attempted to classify the wide range of different roles an operator can have in different situations. The information content and amount being presented to the operator in a display should be viewed in context of the roles the

  12. 3D display considerations for rugged airborne environments (United States)

    Barnidge, Tracy J.; Tchon, Joseph L.


    The KC-46 is the next generation, multi-role, aerial refueling tanker aircraft being developed by Boeing for the United States Air Force. Rockwell Collins has developed the Remote Vision System (RVS) that supports aerial refueling operations under a variety of conditions. The system utilizes large-area, high-resolution 3D displays linked with remote sensors to enhance the operator's visual acuity for precise aerial refueling control. This paper reviews the design considerations, trade-offs, and other factors related to the selection and ruggedization of the 3D display technology for this military application.

  13. Designing Websites for Displaying Large Data Sets and Images on Multiple Platforms (United States)

    Anderson, A.; Wolf, V. G.; Garron, J.; Kirschner, M.


    traditional, fixed-layout website into a RWD site built on HTML5, LESS and Twitter Bootstrap. Vertex is a data portal for remotely sensed imagery of the earth, offering Synthetic Aperture Radar (SAR) data products from the global ASF archive. By using Responsive Web Design, ASF is able to provide access to a massive collection of SAR imagery and allow the user to use mobile devices and desktops to maximum advantage. ASF's Vertex web site demonstrates that with increased interface flexibility, scientists, managers and users can increase their personal effectiveness by accessing data portals from their preferred device as their science dictates.

  14. Rare earth mobility in hydrothermal ore-forming systems

    International Nuclear Information System (INIS)

    Cornell, D.H.; Schade, J.; Scheepers, R.; Watkeys, M.K.


    Rocks and ores which form by magmatic processes display a range of chondrite-normalised rare earth profiles. One REE (rare earth elements) profile feature which seems unrelated to magmatic processes is the birdwing profile, in which both heavy and light rare earths are enriched relative to the middle rare earths. Birdwing rare earth profiles are an easily identified geochemical anomaly. It is proposed that rare earth geochemistry could be applied in geochemical prospecting for ore formed by hydrothermal processes. 5 figs

  15. Dichroic Liquid Crystal Displays (United States)

    Bahadur, Birendra

    The following sections are included: * INTRODUCTION * DICHROIC DYES * Chemical Structure * Chemical and Photochemical Stability * THEORETICAL MODELLING * DEFECTS CAUSED BY PROLONGED LIGHT IRRADIATION * CHEMICAL STRUCTURE AND PHOTOSTABILITY * OTHER PARAMETERS AFFECTING PHOTOSTABILITY * CELL PREPARATION * DICHROIC PARAMETERS AND THEIR MEASUREMENTS * Order Parameter and Dichroic Ratio Of Dyes * Absorbance, Order Parameter and Dichroic Ratio Measurements * IMPACT OF DYE STRUCTURE AND LIQUID CRYSTAL HOST ON PHYSICAL PROPERTIES OF A DICHROIC MIXTURE * Order Parameter and Dichroic Ratio * EFFECT OF LENGTH OF DICHROIC DYES ON THE ORDER PARAMETER * EFFECT OF THE BREADTH OF DYE ON THE ORDER PARAMETER * EFFECT OF THE HOST ON THE ORDER PARAMETER * TEMPERATURE VARIATION OF THE ORDER PARAMETER OF DYES IN A LIQUID CRYSTAL HOST * IMPACT OF DYE CONCENTRATION ON THE ORDER PARAMETER * Temperature Range * Viscosity * Dielectric Constant and Anisotropy * Refractive Indices and Birefringence * solubility43,153-156 * Absorption Wavelength and Auxochromic Groups * Molecular Engineering of Dichroic Dyes * OPTICAL, ELECTRO-OPTICAL AND LIFE PARAMETERS * Colour And CIE Colour space120,160-166 * CIE 1931 COLOUR SPACE * CIE 1976 CHROMATICITY DIAGRAM * CIE UNIFORM COLOUR SPACES & COLOUR DIFFERENCE FORMULAE120,160-166 * Electro-Optical Parameters120 * LUMINANCE * CONTRAST AND CONTRAST RATIO * SWITCHING SPEED * Life Parameters and Failure Modes * DICHROIC MIXTURE FORMULATION * Monochrome Mixture * Black Mixture * ACHROMATIC BLACK MIXTURE FOR HEILMEIER DISPLAYS * Effect of Illuminant on Display Colour * Colour of the Field-On State * Effect of Dye Linewidth * Optimum Centroid Wavelengths * Effect of Dye Concentration * Mixture Formulation Using More Than Three Dyes * ACHROMATIC MIXTURE FOR WHITE-TAYLOR TYPE DISPLAYS * HEILMEIER DISPLAYS * Theoretical Modelling * Threshold Characteristic * Effects of Dye Concentration on Electro-optical Parameters * Effect of Cholesteric Doping * Effect of Alignment

  16. On Integrity of Flexible Displays (United States)

    Bouten, Piet C. P.

    Nowadays two display types are dominant in the display market: the bulky cathode ray tube (CRT) and liquid crystal displays (LCD). Both types use glass as substrate material. The LCD display is the dominant player for mobile applications, in for instance mobile phones and portable computers. In the development of displays and their applications a clear interest exists to replace the rigid rectangular display cells by free-shaped, curved or even roll-up cells. These types of applications require flexible displays.

  17. National Satellite Land Remote Sensing Data Archive (United States)

    Faundeen, John L.; Kelly, Francis P.; Holm, Thomas M.; Nolt, Jenna E.


    The National Satellite Land Remote Sensing Data Archive (NSLRSDA) resides at the U.S. Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center. Through the Land Remote Sensing Policy Act of 1992, the U.S. Congress directed the Department of the Interior (DOI) to establish a permanent Government archive containing satellite remote sensing data of the Earth's land surface and to make this data easily accessible and readily available. This unique DOI/USGS archive provides a comprehensive, permanent, and impartial observational record of the planet's land surface obtained throughout more than five decades of satellite remote sensing. Satellite-derived data and information products are primary sources used to detect and understand changes such as deforestation, desertification, agricultural crop vigor, water quality, invasive plant species, and certain natural hazards such as flood extent and wildfire scars.

  18. Paediatric dose display

    International Nuclear Information System (INIS)

    Griffin, D.W.; Derges, S.; Hesslewood, S.


    A compact, inexpensive unit, based on an 8085 microprocessor, has been designed for calculating doses of intravenous radioactive injections for children. It has been used successfully for over a year. The dose is calculated from the body surface area and the result displayed in MBq. The operator can obtain the required dose on a twelve character alphanumeric display by entering the age of the patient and the adult dose using a hexadecimal keyboard. Circuit description, memory map and input/output, and firmware are dealt with. (U.K.)

  19. Rare earths

    Energy Technology Data Exchange (ETDEWEB)

    Cranstone, D A


    Rare earth elements are commonly extracted from the minerals monazite, bastnaesite, and xenotine. New uses for these elements are constantly developing; they have found applications in glass polishing, television tube phosphors, high-strength low-alloy steels, magnets, catalysts, refractory ceramics, and hydrogen sponge alloys. In Canada, rare earths have been produced as byproducts of the uranium mining industry, but there was no production of rare earths in 1978 or 1979. The world sources of and markets for the rare earth elements are discussed.

  20. Remote Sensing

    Indian Academy of Sciences (India)

    up to - 0.9 p,m) and dynamic range, non-amenability to digital processing ... ing systems used in space to get the imagery of the Earth telemetered .... by the satellites and are recorded on to magnetic media using ... Let us illustrate this process.

  1. Refreshing Refreshable Braille Displays. (United States)

    Russomanno, Alexander; O'Modhrain, Sile; Gillespie, R Brent; Rodger, Matthew W M


    The increased access to books afforded to blind people via e-publishing has given them long-sought independence for both recreational and educational reading. In most cases, blind readers access materials using speech output. For some content such as highly technical texts, music, and graphics, speech is not an appropriate access modality as it does not promote deep understanding. Therefore blind braille readers often prefer electronic braille displays. But, these are prohibitively expensive. The search is on, therefore, for a low-cost refreshable display that would go beyond current technologies and deliver graphical content as well as text. And many solutions have been proposed, some of which reduce costs by restricting the number of characters that can be displayed, even down to a single braille cell. In this paper, we demonstrate that restricting tactile cues during braille reading leads to poorer performance in a letter recognition task. In particular, we show that lack of sliding contact between the fingertip and the braille reading surface results in more errors and that the number of errors increases as a function of presentation speed. These findings suggest that single cell displays which do not incorporate sliding contact are likely to be less effective for braille reading.

  2. Small - Display Cartography

    DEFF Research Database (Denmark)

    Nissen, Flemming; Hvas, Anders; Münster-Swendsen, Jørgen

    Service Communication and finally, Part IV: Concluding remarks and topics for further research on small-display cartography. Part II includes a separate Appendix D consisting of a cartographic design specification. Part III includes a separate Appendix C consisting of a schema specification, a separate...

  3. Nuclear image display controller

    International Nuclear Information System (INIS)

    Roth, D.A.


    In a nuclear imaging system the digitized x and y coordinates of gamma ray photon emission events address memory locations corresponding to the coordinates. The respective locations are incremented each time they are addressed so at the end of a selected time or event count period the locations contain digital values or raw data corresponding to the intensity of pixels comprising an image frame. The raw data for a frame is coupled to one input of an arithmetic logic unit (ALU) whose output is coupled to a display controller memory. The output of the controller memory is coupled to another ALU input with a feedback bus and is also coupled to a further signal processing circuit which includes means for converting processed data to analog video signals for television display. The ALU is selectively controlled to let raw image data pass through to the display controllor memory or alternately to add (or subtract) raw data for the last image frame developed to the raw data for preceding frames held in the display controller to thereby produce the visual effect on the television screen of an isotope flowing through anatomy

  4. Plant state display device

    International Nuclear Information System (INIS)

    Kadota, Kazuo; Ito, Toshiichiro.


    The device of the present invention conducts information processing suitable for a man to solve a problem in a plant such as a nuclear power plant incorporating a great amount of information, where safety is required and provides information to an operator. Namely, theories and rules with respect to the flow and balanced state of materials and energy upon plant start-up, and a vapor cycle of operation fluids are symbolized and displayed on the display screen of the device. Then, the display of the plant information suitable to the information processing for a man to dissolve problems is provided. Accordingly, a mechanism for analyzing a purpose of the plant is made more definite, thereby enabling to prevent an erroneous judgement of an operator and occurrence of plant troubles. In addition, a simular effect can also be expected when the theories and rules with respect to the flow and the balanced state of materials and energy and thermohydrodynamic behavior of the operation fluids in a state of after-heat removing operation during shutdown of the plant are symbolized and displayed. (I.S.)

  5. Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2002-07 (United States)

    Pearson, D.K.; Gary, R.H.; Wilson, Z.D.


    Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is particularly useful when analyzing a wide variety of spatial data such as with remote sensing and spatial analysis. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This document presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup from 2002 through 2007.

  6. NASA Information And Data System for Earth Science Data Fusion and Analytics (United States)

    National Aeronautics and Space Administration — One of the key elements of advancing our understanding of Earth system via remote sensing is integration of diverse measurements into the observing system. As remote...

  7. Savannah River Plant remote environmental monitoring system

    International Nuclear Information System (INIS)

    Schubert, J.F.


    The SRP remote environmental monitoring system consists of separations facilities stack monitors, production reactor stack monitors, twelve site perimeter monitors, river and stream monitors, a geostationary operational environmental satellite (GOES) data link, reactor cooling lake thermal monitors, meteorological tower system, Weather Information and Display (WIND) system computer, and the VANTAGE data base management system. The remote environmental monitoring system when fully implemented will provide automatic monitoring of key stack releases and automatic inclusion of these source terms in the emergency response codes

  8. Space remote sensing systems an introduction

    CERN Document Server

    Chen, H S


    Space Remote Sensing Systems: An Introduction discusses the space remote sensing system, which is a modern high-technology field developed from earth sciences, engineering, and space systems technology for environmental protection, resource monitoring, climate prediction, weather forecasting, ocean measurement, and many other applications. This book consists of 10 chapters. Chapter 1 describes the science of the atmosphere and the earth's surface. Chapter 2 discusses spaceborne radiation collector systems, while Chapter 3 focuses on space detector and CCD systems. The passive space optical rad

  9. Remote sensing of natural phenomena

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić


    Full Text Available There has always been a need to directly perceive and study the events whose extent is beyond people's possibilities. In order to get new data and to make observations and studying much more objective in comparison with past syntheses - a new method of examination called remote sensing has been adopted. The paper deals with the principles and elements of remote sensing, as well as with the basic aspects of using remote research in examining meteorological (weather parameters and the conditions of the atmosphere. The usage of satellite images is possible in all phases of the global and systematic research of different natural phenomena when airplane and satellite images of different characteristics are used and their analysis and interpretation is carried out by viewing and computer added procedures. Introduction Remote sensing of the Earth enables observing and studying global and local events that occur on it. Satellite images are nowadays used in geology, agriculture, forestry, geodesy, meteorology, spatial and urbanism planning, designing of infrastructure and other objects, protection from natural and technological catastrophes, etc. It it possible to use satellite images in all phases of global and systematic research of different natural phenomena. Basics of remote sensing Remote sensing is a method of the acquisition and interpretation of information about remote objects without making a physical contact with them. The term Daljinska detekcija is a literal translation of the English term Remote Sensing. In French it isTeledetection, in German - Fernerkundung, in Russian - дистанционие иследования. We also use terms such as: remote survailance, remote research, teledetection, remote methods, and distance research. The basic elements included in Remote Sensing are: object, electromagnetic energy, sensor, platform, image, analysis, interpretation and the information (data, fact. Usage of satellite remote research in

  10. Remote sensing science - new concepts and applications

    Energy Technology Data Exchange (ETDEWEB)

    Gerstl, S.A.; Cooke, B.J.; Henderson, B.G.; Love, S.P.; Zardecki, A.


    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The science and technology of satellite remote sensing is an emerging interdisciplinary field that is growing rapidly with many global and regional applications requiring quantitative sensing of earth`s surface features as well as its atmosphere from space. It is possible today to resolve structures on the earth`s surface as small as one meter from space. If this high spatial resolution is coupled with high spectral resolution, instant object identification can also be achieved. To interpret these spectral signatures correctly, it is necessary to perform a computational correction on the satellite imagery that removes the distorting effects of the atmosphere. This project studied such new concepts and applied innovative new approaches in remote sensing science.

  11. Virtual displays for 360-degree video (United States)

    Gilbert, Stephen; Boonsuk, Wutthigrai; Kelly, Jonathan W.


    In this paper we describe a novel approach for comparing users' spatial cognition when using different depictions of 360- degree video on a traditional 2D display. By using virtual cameras within a game engine and texture mapping of these camera feeds to an arbitrary shape, we were able to offer users a 360-degree interface composed of four 90-degree views, two 180-degree views, or one 360-degree view of the same interactive environment. An example experiment is described using these interfaces. This technique for creating alternative displays of wide-angle video facilitates the exploration of how compressed or fish-eye distortions affect spatial perception of the environment and can benefit the creation of interfaces for surveillance and remote system teleoperation.

  12. Low-cost Tools for Aerial Video Geolocation and Air Traffic Analysis for Delay Reduction Using Google Earth (United States)

    Zetterlind, V.; Pledgie, S.


    Low-cost, low-latency, robust geolocation and display of aerial video is a common need for a wide range of earth observing as well as emergency response and security applications. While hardware costs for aerial video collection systems, GPS, and inertial sensors have been decreasing, software costs for geolocation algorithms and reference imagery/DTED remain expensive and highly proprietary. As part of a Federal Small Business Innovative Research project, MosaicATM and EarthNC, Inc have developed a simple geolocation system based on the Google Earth API and Google's 'built-in' DTED and reference imagery libraries. This system geolocates aerial video based on platform and camera position, attitude, and field-of-view metadata using geometric photogrammetric principles of ray-intersection with DTED. Geolocated video can be directly rectified and viewed in the Google Earth API during processing. Work is underway to extend our geolocation code to NASA World Wind for additional flexibility and a fully open-source platform. In addition to our airborne remote sensing work, MosaicATM has developed the Surface Operations Data Analysis and Adaptation (SODAA) tool, funded by NASA Ames, which supports analysis of airport surface operations to optimize aircraft movements and reduce fuel burn and delays. As part of SODAA, MosaicATM and EarthNC, Inc have developed powerful tools to display national airspace data and time-animated 3D flight tracks in Google Earth for 4D analysis. The SODAA tool can convert raw format flight track data, FAA National Flight Data (NFD), and FAA 'Adaptation' airport surface data to a spatial database representation and then to Google Earth KML. The SODAA client provides users with a simple graphical interface through which to generate queries with a wide range of predefined and custom filters, plot results, and export for playback in Google Earth in conjunction with NFD and Adaptation overlays.

  13. Remote sensing of the biosphere (United States)


    The current state of understanding of the biosphere is reviewed, the major scientific issues to be addressed are discussed, and techniques, existing and in need of development, for the science are evaluated. It is primarily concerned with developing the scientific capabilities of remote sensing for advancing the subject. The global nature of the scientific objectives requires the use of space-based techniques. The capability to look at the Earth as a whole was developed only recently. The space program has provided the technology to study the entire Earth from artificial satellites, and thus is a primary force in approaches to planetary biology. Space technology has also permitted comparative studies of planetary atmospheres and surfaces. These studies coupled with the growing awareness of the effects that life has on the entire Earth, are opening new lines of inquiry in science.

  14. Position display device

    International Nuclear Information System (INIS)

    Nishizawa, Yukio.


    Object: To provide a device capable of easily and quickly reading mutual mounting relations of control bodies such as control rods mounted on a nuclear reactor and positions to which the control bodies are driven. Structure: A scanning circuit is provided to scan positions of controllably mounted control bodies such as control rods. Values detected by scanning the positions are converted into character signals according to the values and converted into preranked color signals. The character signals and color signals are stored in a memory circuit by synchronous signals in synchronism with the scanning in the scanning circuit. Outputs of the memory circuit are displayed by a display unit such as a color Braun tube in accordance with the synchronous signals to provide color representations according to positions to which control bodies are driven in the same positional relation as the mounting of the control bodies. (Kamimura, M.)

  15. Multichannel waveform display system

    International Nuclear Information System (INIS)

    Kolvankar, V.G.


    For any multichannel data acquisition system, a multichannel paper chart recorder undoubtedly forms an essential part of the system. When deployed on-line, it instantaneously provides, for visual inspection, hard copies of the signal waveforms on common time base at any desired sensitivity and time resolution. Within the country, only a small range of these strip chart recorder s is available, and under stringent specifications imported recorders are often procured. The cost of such recorders may range from 1 to 5 lakhs of rupees in foreign exchange. A system to provide on the oscilloscope a steady display of multichannel waveforms, refreshed from the digital data stored in the memory is developed. The merits and demerits of the display system are compared with that built around a conventional paper chart recorder. Various illustrations of multichannel seismic event data acquired at Gauribidanur seismic array station are also presented. (author). 2 figs

  16. Refrigerated display cabinets; Butikskyla

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, Per


    This report summarizes experience from SP research and assignments regarding refrigerated transport and storage of food, mainly in the retail sector. It presents the fundamentals of heat and mass transfer in display cabinets with special focus on indirect systems and secondary refrigerants. Moreover, the report includes a brief account of basic food hygiene and the related regulations. The material has been compiled for educational purposes in the Masters program at Chalmers Technical University.

  17. Helicopter Display Improvement Study (United States)


    PRESSURE INDICATOR 43 TURN A N D SLIP INDICATOR 21 ENGINE AND SDG OIL IN TEMPERATURE INDICATOR 44 COURSE INDICATOR 22 RADIO MAGNETIC COMPASS INDICATOR... compass seemed to present a problem to several H-l series pilots In that It was poorly located and should be moved. Possible locations Included...the UH-lNs standby compass . Both H/L and L/L pilots agreed that internal, white light was the best system currently in use. INDIVIDUAL DISPLAYS

  18. Remote Sensing using Signals of Opportunity


    Yertay, Alibek; Garrison, James L


    Today, there are more than eight thousand satellites in space. Therefore, Radio Frequency (RF) signals broadcast from satellites can be accessed from almost every point on the earth. There will be number of satellites available at most points on earth with different frequency bands. These satellite signals can be used for remote sensing, therefore software that visualizes footprints of satellites and shows characteristics of every satellite available at any point would be useful in determinin...

  19. Dyes for displays (United States)

    Claussen, U.


    The improvement of contrast and visibility of LCD by two different means was undertaken. The two methods are: (1) development of fluorescent dyes to increase the visibility of fluorescent activated displays (FLAD); and (2) development of dichroic dyes to increase the contrast of displays. This work was done in close cooperation with the electronic industry, where the newly synthesized dyes were tested. The targets for the chemical synthesis were selected with the help of computer model calculations. A marketable range of dyes was developed. Since the interest of the electronic industries concerning FLAD was low, the investigations were stopped. Dichroic dyes, especially black mixtures with good light fastness, order parameter, and solubility in nematic phases were developed. The application of these dyes is restricted to indoor use because of an increase of viscosity below -10 C. Applications on a technical scale, e.g., for the automotive industry, will be possible if the displays work at temperatures down to -40 C. This problem requires a complex optimization of the dye/nematic phase system.

  20. High performance visual display for HENP detectors

    International Nuclear Information System (INIS)

    McGuigan, Michael; Smith, Gordon; Spiletic, John; Fine, Valeri; Nevski, Pavel


    A high end visual display for High Energy Nuclear Physics (HENP) detectors is necessary because of the sheer size and complexity of the detector. For BNL this display will be of special interest because of STAR and ATLAS. To load, rotate, query, and debug simulation code with a modern detector simply takes too long even on a powerful work station. To visualize the HENP detectors with maximal performance we have developed software with the following characteristics. We develop a visual display of HENP detectors on BNL multiprocessor visualization server at multiple level of detail. We work with general and generic detector framework consistent with ROOT, GAUDI etc, to avoid conflicting with the many graphic development groups associated with specific detectors like STAR and ATLAS. We develop advanced OpenGL features such as transparency and polarized stereoscopy. We enable collaborative viewing of detector and events by directly running the analysis in BNL stereoscopic theatre. We construct enhanced interactive control, including the ability to slice, search and mark areas of the detector. We incorporate the ability to make a high quality still image of a view of the detector and the ability to generate animations and a fly through of the detector and output these to MPEG or VRML models. We develop data compression hardware and software so that remote interactive visualization will be possible among dispersed collaborators. We obtain real time visual display for events accumulated during simulations

  1. [Remote Slit Lamp Microscope Consultation System Based on Web]. (United States)

    Chen, Junfa; Zhuo, Yong; Liu, Zuguo; Chen, Yanping


    To realize the remote operation of the slit lamp microscope for department of ophthalmology consultation, and visual display the real-time status of remote slit lamp microscope, a remote slit lamp microscope consultation system based on B/S structure is designed and implemented. Through framing the slit lamp microscope on the website system, the realtime acquisition and transmission of remote control and image data is realized. The three dimensional model of the slit lamp microscope is established and rendered on the web by using WebGL technology. The practical application results can well show the real-time interactive of the remote consultation system.

  2. Rare earths

    International Nuclear Information System (INIS)


    The conference was held from September 12 to 13, 1984 in Jetrichovice, Czechoslovakia. The participants heard 16 papers of which 4 were inputted in INIS. These papers dealt with industrial separation processes of rare earths, the use of chemical methods of separation from the concentrate of apatite and bastnesite, the effect of the relative permittivity of solvents in the elution of rare earth elements from a cation exchanger, and the determination of the content of different rare earth elements using X-ray fluorescence analysis and atomic absorption spectroscopy. (E.S.)

  3. Handbook of Visual Display Technology

    CERN Document Server

    Cranton, Wayne; Fihn, Mark


    The Handbook of Visual Display Technology is a unique work offering a comprehensive description of the science, technology, economic and human interface factors associated with the displays industry. An invaluable compilation of information, the Handbook will serve as a single reference source with expert contributions from over 150 international display professionals and academic researchers. All classes of display device are covered including LCDs, reflective displays, flexible solutions and emissive devices such as OLEDs and plasma displays, with discussion of established principles, emergent technologies, and particular areas of application. The wide-ranging content also encompasses the fundamental science of light and vision, image manipulation, core materials and processing techniques, display driving and metrology.

  4. Book Display as Adult Service

    Directory of Open Access Journals (Sweden)

    Matthew S. Moore


    Full Text Available 無Book display as an adult service is defined as choosing and positioning adult books from the collection to increase their circulation. The author contrasts bookstore arrangement for sales versus library arrangement for access. The paper considers the library-as-a-whole as a display, examines the right size for an in-library display, and discusses mass displays, end-caps, on-shelf displays, and the Tiffany approach. The author proposes that an effective display depends on an imaginative, unifying theme, and that book displays are part of the joy of libraries.

  5. Earth Rotation (United States)

    Dickey, Jean O.


    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  6. NCAP projection displays (United States)

    Havens, John R.; Ishioka, J.; Jones, Philip J.; Lau, Aldrich; Tomita, Akira; Asano, A.; Konuma, Nobuhiro; Sato, Kazuhiko; Takemoto, Iwao


    Projectors based on polymer-eNCAPsulated liquid crystals can provide bright displays suitable for use in conference rooms with normal lighting. Contrast is generated by light scattering among the droplets, rather than by light absorption with crossed polarizers. We have demonstrated a full-color, compact projector showing 1200 ANSI lumens with 200 watts of lamp power - a light efficiency of 6 lumens/watt. This projector is based on low-voltage NCAP material, highly reflective CMOS die, and matched illumination and projection optics. We will review each of these areas and discuss the integrated system performance.

  7. Effectiveness evaluation of remote data application in hydrogeologic explorations

    Energy Technology Data Exchange (ETDEWEB)

    Burleshin, M I; Koloskova, V N


    Use of the information approach to evaluate the effectiveness of remote data in hydrogeologic cartography of Ustyurt is discussed. Space image, interval and final diagrams of hydrogeologic interpretation are represented like a communication channel. Using the information approach, quantitative evaluation is carried out, and hydrogeologic maps are compared (that, have been compiled by earth surface methods and via interpretation of remote data.

  8. The function of remote sensing in support of environmental policy


    de Leeuw, Jan; Georgiadou, P.Y.; Georgiadou, Yola; Kerle, Norman; de Gier, Alfred; Inoue, Yoshio; Ferwerda, Jelle; Smies, Maarten; Narantuya, Davaa


    Limited awareness of environmental remote sensing’s potential ability to support environmental policy development constrains the technology’s utilization. This paper reviews the potential of earth observation from the perspective of environmental policy. A literature review of “remote sensing and policy” revealed that while the number of publications in this field increased almost twice as rapidly as that of remote sensing literature as a whole (15.3 versus 8.8% yr−1), there is apparently lit...

  9. Painting Reproductions on Display

    Directory of Open Access Journals (Sweden)

    Joanna Iranowska


    Full Text Available Paintings in museums might occasionally be replaced by a photoprint mimicking the original. This article is an investigation of what constitutes a good reproduction of an artwork (oil painting that is meant to be displayed. The article discusses what the usefulness of reproductions depends on, applying the Valuation Studies approach, which means the primary concern is with the practice of valuing itself. In other words, the study focuses on how museum experts evaluate reproduc-tions of oil paintings. The article analyses three cases of displaying digitally prin-ted copies of Edvard Munch's oil paintings between 2013 and 2015 in the Munch Museum and in the National Gallery in Oslo. The study is based on a series of semi-structured interviews with the experts, working at and for the museums, that were involved in producing and exhibiting of the photoprints: curators, con-servators, museum educators, and external manufacturers. The interviews were grouped into five clusters, which I have chosen to call registers of valuing following Frank Heuts and Annemarie Mol (2013. The described valuation practices have to do with delivering experiences to the public, obtaining mimetic resemblance, solving ethical aspects, exhibitions' budget, and last but not least, with the time perspective.

  10. Unsolicited displays of insights

    DEFF Research Database (Denmark)

    Brouwer, Catherine E.


    This study is based on videorecorded interactional data from a specific type of institutional setting which consists of a variety of 'language stimulation activities' for bilingual children in Danish preschools. Bilingual children, with a variety of linguistic backgrounds, take part in these acti......This study is based on videorecorded interactional data from a specific type of institutional setting which consists of a variety of 'language stimulation activities' for bilingual children in Danish preschools. Bilingual children, with a variety of linguistic backgrounds, take part...... in these activities in small groups together with a specialized preschool teacher. One pervasive feature of this kind of data is the ongoing orientation to, and guidance from the adult towards the children on what the main business of their interaction is - what they relevantly are doing. In this light, the paper......: Unsolicited displays may lead to side sequences, they may lead to a shift in the main business of the talk, or they may be explicitly or implicitly ignored. The paper discusses whether and how these unsolicited displays of understanding then can be thought of as leading to opportunities for (language...

  11. Latest development of display technologies

    International Nuclear Information System (INIS)

    Gao Hong-Yue; Yao Qiu-Xiang; Liu Pan; Zheng Zhi-Qiang; Liu Ji-Cheng; Zheng Hua-Dong; Zeng Chao; Yu Ying-Jie; Sun Tao; Zeng Zhen-Xiang


    In this review we will focus on recent progress in the field of two-dimensional (2D) and three-dimensional (3D) display technologies. We present the current display materials and their applications, including organic light-emitting diodes (OLEDs), flexible OLEDs quantum dot light emitting diodes (QLEDs), active-matrix organic light emitting diodes (AMOLEDs), electronic paper (E-paper), curved displays, stereoscopic 3D displays, volumetric 3D displays, light field 3D displays, and holographic 3D displays. Conventional 2D display devices, such as liquid crystal devices (LCDs) often result in ambiguity in high-dimensional data images because of lacking true depth information. This review thus provides a detailed description of 3D display technologies. (topical review)

  12. The Earth Observation Technology Cluster (United States)

    Aplin, P.; Boyd, D. S.; Danson, F. M.; Donoghue, D. N. M.; Ferrier, G.; Galiatsatos, N.; Marsh, A.; Pope, A.; Ramirez, F. A.; Tate, N. J.


    The Earth Observation Technology Cluster is a knowledge exchange initiative, promoting development, understanding and communication about innovative technology used in remote sensing of the terrestrial or land surface. This initiative provides an opportunity for presentation of novel developments from, and cross-fertilisation of ideas between, the many and diverse members of the terrestrial remote sensing community. The Earth Observation Technology Cluster involves a range of knowledge exchange activities, including organisation of technical events, delivery of educational materials, publication of scientific findings and development of a coherent terrestrial EO community. The initiative as a whole covers the full range of remote sensing operation, from new platform and sensor development, through image retrieval and analysis, to data applications and environmental modelling. However, certain topical and strategic themes have been selected for detailed investigation: (1) Unpiloted Aerial Vehicles, (2) Terrestrial Laser Scanning, (3) Field-Based Fourier Transform Infra-Red Spectroscopy, (4) Hypertemporal Image Analysis, and (5) Circumpolar and Cryospheric Application. This paper presents general activities and achievements of the Earth Observation Technology Cluster, and reviews state-of-the-art developments in the five specific thematic areas.

  13. Data Quality in Remote Sensing (United States)

    Batini, C.; Blaschke, T.; Lang, S.; Albrecht, F.; Abdulmutalib, H. M.; Barsi, Á.; Szabó, G.; Kugler, Zs.


    The issue of data quality (DQ) is of growing importance in Remote Sensing (RS), due to the widespread use of digital services (incl. apps) that exploit remote sensing data. In this position paper a body of experts from the ISPRS Intercommission working group III/IVb "DQ" identifies, categorises and reasons about issues that are considered as crucial for a RS research and application agenda. This ISPRS initiative ensures to build on earlier work by other organisations such as IEEE, CEOS or GEO, in particular on the meritorious work of the Quality Assurance Framework for Earth Observation (QA4EO) which was established and endorsed by the Committee on Earth Observation Satellites (CEOS) but aims to broaden the view by including experts from computer science and particularly database science. The main activities and outcomes include: providing a taxonomy of DQ dimensions in the RS domain, achieving a global approach to DQ for heterogeneous-format RS data sets, investigate DQ dimensions in use, conceive a methodology for managing cost effective solutions on DQ in RS initiatives, and to address future challenges on RS DQ dimensions arising in the new era of the big Earth data.

  14. Use of remote sensing data in distributed hydrological models: applications in the Senegal River basin

    DEFF Research Database (Denmark)

    Sandholt, Inge; Andersen, Jens Asger; Gybkjær, Gorm


    Earth observation, remote sensing, hydrology, distributed hydrological modelling, West Africa, Senegal river basin, land cover, soil moisture, NOAA AVHRR, SPOT, Mike-she......Earth observation, remote sensing, hydrology, distributed hydrological modelling, West Africa, Senegal river basin, land cover, soil moisture, NOAA AVHRR, SPOT, Mike-she...

  15. Polymer Dispersed Liquid Crystal Displays (United States)

    Doane, J. William

    The following sections are included: * INTRODUCTION AND HISTORICAL DEVELOPMENT * PDLC MATERIALS PREPARATION * Polymerization induced phase separation (PIPS) * Thermally induced phase separation (TIPS) * Solvent induced phase separation (SIPS) * Encapsulation (NCAP) * RESPONSE VOLTAGE * Dielectric and resistive effects * Radial configuration * Bipolar configuration * Other director configurations * RESPONSE TIME * DISPLAY CONTRAST * Light scattering and index matching * Incorporation of dyes * Contrast measurements * PDLC DISPLAY DEVICES AND INNOVATIONS * Reflective direct view displays * Large-scale, flexible displays * Switchable windows * Projection displays * High definition spatial light modulator * Haze-free PDLC shutters: wide angle view displays * ENVIRONMENTAL STABILITY * ACKNOWLEDGEMENTS * REFERENCES

  16. Satellite Remote Sensing: Aerosol Measurements (United States)

    Kahn, Ralph A.


    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  17. Remote possibilities

    International Nuclear Information System (INIS)

    Fernandes, J.


    The impact that wireless communications has had for gas and oil producers was discussed. Wireless communication, which has been replacing the traditional formats of radio and telephone data networks, has proved to be cheaper, smaller, and faster than creating privately owned communication networks. With highly developed supervisory control and data acquisition systems - combined with cellular or satellite technology - information from drill sites can be online at the corporate headquarters instantaneously. Eighty percent of Canada's land mass is beyond reach of traditional wireline and wireless services. Research into advanced communications, including telecommunication and mobile applications, yielded lucrative results for service providers such as BCTel, SaskTel, Bell Mobility and AGT. The latest data transmission technology is the cellular digital packet data (CDPD) which will operate over existing cellular networks. However, unlike circuit-switched cellular, CDPD technology provides an airlink where data is secure. It will be available to the marketplace over the course of the coming year. Among other advantages, CDPD will allow producers to remotely monitor production information and downtime alarms from wells and compressor stations. It will also provide fleet operators with the means to monitor operating vital signs on rolling stock

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Monitoring of fire incidences in vegetation types and Protected Areas of India: Implications on carbon emissions ... Forest fire; forest type; Protected Area; conservation; remote sensing; AWiFS; India. ... Journal of Earth System Science | News.

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 2 ... (SVM); geographical information systems (GIS); remote sensing; Golestan province; Iran. ... Department of Watershed Management Engineering, College of Natural ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 111; Issue 3 ... support the well-known fact that oceanic eddies are distributed worldwide in the ocean. ... The classification of typical vortical features in the ocean detected in remote ...

  1. Crosstalk evaluation in stereoscopic displays

    NARCIS (Netherlands)

    Wang, L.; Teunissen, C.; Tu, Yan; Chen, Li; Zhang, P.; Zhang, T.; Heynderickx, I.E.J.


    Substantial progress in liquid-crystal display and polarization film technology has enabled several types of stereoscopic displays. Despite all progress, some image distortions still exist in these 3-D displays, of which interocular crosstalk - light leakage of the image for one eye to the other eye

  2. Evaluating the Use of Remote Sensing Data in the USAID Famine Early Warning Systems Network (United States)

    Brown, Molly E.; Brickley, Elizabeth B.


    The US Agency for International Development (USAID) s Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to food insecurity emergencies on three continents. FEWS NET uses satellite remote sensing and ground observations of rainfall and vegetation in order to provide information on drought, floods and other extreme weather events to decision makers. Previous research has presented results from a professional review questionnaire with FEWS NET expert end-users whose focus was to elicit Earth observation requirements. The review provided FEWS NET operational requirements and assessed the usefulness of additional remote sensing data. Here we analyzed 1342 food security update reports from FEWS NET. The reports consider the biophysical, socioeconomic, and contextual influences on the food security in 17 countries in Africa from 2000-2009. The objective was to evaluate the use of remote sensing information in comparison with other important factors in the evaluation of food security crises. The results show that all 17 countries use rainfall information, agricultural production statistics, food prices and food access parameters in their analysis of food security problems. The reports display large scale patterns that are strongly related to history of the FEWS NET program in each country. We found that rainfall data was used 84% of the time, remote sensing of vegetation 28% of the time, and gridded crop models 10%, reflecting the length of use of each product in the regions. More investment is needed in training personnel on remote sensing products to improve use of data products throughout the FEWS NET system.

  3. Hyperspectral remote sensing for light pollution monitoring

    Directory of Open Access Journals (Sweden)

    P. Marcoionni


    Full Text Available industries. In this paper we introduce the results from a remote sensing campaign performed in September 2001 at night time. For the first time nocturnal light pollution was measured at high spatial and spectral resolution using two airborne hyperspectral sensors, namely the Multispectral Infrared and Visible Imaging Spectrometer (MIVIS and the Visible InfraRed Scanner (VIRS-200. These imagers, generally employed for day-time Earth remote sensing, were flown over the Tuscany coast (Italy on board of a Casa 212/200 airplane from an altitude of 1.5-2.0 km. We describe the experimental activities which preceded the remote sensing campaign, the optimization of sensor configuration, and the images as far acquired. The obtained results point out the novelty of the performed measurements and highlight the need to employ advanced remote sensing techniques as a spectroscopic tool for light pollution monitoring.

  4. Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2008-09 (United States)



    Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is useful for analyzing a wide variety of spatial data. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This fact sheet presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup during 2008 and 2009. After a summary of GIS Workgroup capabilities, brief descriptions of activities by project at the local and national levels are presented. Projects are grouped by the fiscal year (October-September 2008 or 2009) the project ends and include overviews, project images, and Internet links to additional project information and related publications or articles.

  5. LHCb Event display

    CERN Document Server

    Trisovic, Ana


    The LHCb Event Display was made for educational purposes at the European Organization for Nuclear Research, CERN in Geneva, Switzerland. The project was implemented as a stand-alone application using C++ and ROOT, a framework developed by CERN for data analysis. This paper outlines the development and architecture of the application in detail, as well as the motivation for the development and the goals of the exercise. The application focuses on the visualization of events recorded by the LHCb detector, where an event represents a set of charged particle tracks in one proton-proton collision. Every particle track is coloured by its type and can be selected to see its essential information such as mass and momentum. The application allows students to save this information and calculate the invariant mass for any pair of particles. Furthermore, the students can use additional calculating tools in the application and build up a histogram of these invariant masses. The goal for the students is to find a $D^0$ par...

  6. Colorimetry for CRT displays. (United States)

    Golz, Jürgen; MacLeod, Donald I A


    We analyze the sources of error in specifying color in CRT displays. These include errors inherent in the use of the color matching functions of the CIE 1931 standard observer when only colorimetric, not radiometric, calibrations are available. We provide transformation coefficients that prove to correct the deficiencies of this observer very well. We consider four different candidate sets of cone sensitivities. Some of these differ substantially; variation among candidate cone sensitivities exceeds the variation among phosphors. Finally, the effects of the recognized forms of observer variation on the visual responses (cone excitations or cone contrasts) generated by CRT stimuli are investigated and quantitatively specified. Cone pigment polymorphism gives rise to variation of a few per cent in relative excitation by the different phosphors--a variation larger than the errors ensuing from the adoption of the CIE standard observer, though smaller than the differences between some candidate cone sensitivities. Macular pigmentation has a larger influence, affecting mainly responses to the blue phosphor. The estimated combined effect of all sources of observer variation is comparable in magnitude with the largest differences between competing cone sensitivity estimates but is not enough to disrupt very seriously the relation between the L and M cone weights and the isoluminance settings of individual observers. It is also comparable with typical instrumental colorimetric errors, but we discuss these only briefly.

  7. Display systems for NPP control

    International Nuclear Information System (INIS)

    Rozov, S.S.


    Main trends in development of display systems used as the means for image displaying in NPP control systems are considered. It is shown that colour display devices appear to be the most universal means for concentrated data presentation. Along with digital means the display systems provide for high-speed response, sufficient for operative control of executive mechanisms. A conclusion is drawn that further development of display systems will move towards creation of large colour fields (on reflection base or with multicolour gas-discharge elements)

  8. Earth observation from the manned low Earth orbit platforms (United States)

    Guo, Huadong; Dou, Changyong; Zhang, Xiaodong; Han, Chunming; Yue, Xijuan


    The manned low Earth orbit platforms (MLEOPs), e.g., the U.S. and Russia's human space vehicles, the International Space Station (ISS) and Chinese Tiangong-1 experimental space laboratory not only provide laboratories for scientific experiments in a wide range of disciplines, but also serve as exceptional platforms for remote observation of the Earth, astronomical objects and space environment. As the early orbiting platforms, the MLEOPs provide humans with revolutionary accessibility to the regions on Earth never seen before. Earth observation from MLEOPs began in early 1960s, as a part of manned space flight programs, and will continue with the ISS and upcoming Chinese Space Station. Through a series of flight missions, various and a large amount of Earth observing datasets have been acquired using handheld cameras by crewmembers as well as automated sophisticated sensors onboard these space vehicles. Utilizing these datasets many researches have been conducted, demonstrating the importance and uniqueness of studying Earth from a vantage point of MLEOPs. For example, the first, near-global scale digital elevation model (DEM) was developed from data obtained during the shuttle radar topography mission (SRTM). This review intends to provide an overview of Earth observations from MLEOPs and present applications conducted by the datasets collected by these missions. As the ISS is the most typical representative of MLEOPs, an introduction to it, including orbital characteristics, payload accommodations, and current and proposed sensors, is emphasized. The advantages and challenges of Earth observation from MLEOPs, using the ISS as an example, is also addressed. At last, a conclusive note is drawn.

  9. Measuring the Earth System in a Time of Global Environmental Change with Image Spectroscopy (United States)

    Green, Robert O.


    Measuring the Earth system in a time of global environmental change. Imaging Spectroscopy enables remote measurement. Remote Measurement determination of the properties of the Earth's surface and atmosphere through the physics, chemistry and biology of the interaction of electromagnetic energy with matter.

  10. An Update of NASA Public Health Applications Projects using Remote Sensing Data (United States)

    Estes, Sue M.; Haynes, J. A.


    Satellite earth observations present a unique vantage point of the earth s environment from space which offers a wealth of health applications for the imaginative investigator. The session will present research results of the remote sensing environmental observations of earth and health applications. This session will an overview of many of the NASA public health applications using Remote Sensing Data and will also discuss opportunities to become a research collaborator with NASA.

  11. Augmenting digital displays with computation (United States)

    Liu, Jing

    As we inevitably step deeper and deeper into a world connected via the Internet, more and more information will be exchanged digitally. Displays are the interface between digital information and each individual. Naturally, one fundamental goal of displays is to reproduce information as realistically as possible since humans still care a lot about what happens in the real world. Human eyes are the receiving end of such information exchange; therefore it is impossible to study displays without studying the human visual system. In fact, the design of displays is rather closely coupled with what human eyes are capable of perceiving. For example, we are less interested in building displays that emit light in the invisible spectrum. This dissertation explores how we can augment displays with computation, which takes both display hardware and the human visual system into consideration. Four novel projects on display technologies are included in this dissertation: First, we propose a software-based approach to driving multiview autostereoscopic displays. Our display algorithm can dynamically assign views to hardware display zones based on multiple observers' current head positions, substantially reducing crosstalk and stereo inversion. Second, we present a dense projector array that creates a seamless 3D viewing experience for multiple viewers. We smoothly interpolate the set of viewer heights and distances on a per-vertex basis across the arrays field of view, reducing image distortion, crosstalk, and artifacts from tracking errors. Third, we propose a method for high dynamic range display calibration that takes into account the variation of the chrominance error over luminance. We propose a data structure for enabling efficient representation and querying of the calibration function, which also allows user-guided balancing between memory consumption and the amount of computation. Fourth, we present user studies that demonstrate that the ˜ 60 Hz critical flicker fusion

  12. Earth thermics

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, M


    The thermodynamics of the Earth are described, including terrestrial heat flow, internal temperatures and thermal history. The value of the geothermal gradient has been considered to be 3/sup 0/C/100 m but measured values are slightly different. The values of terrestrial heat flow are relatively constant and are calculated be about 2.3 x 10 to the minus 6 cal/cm/sup 2/ sec (2.3 HFU). The Earth's internal temperature can be calculated from the adiabatic temperature gradient of adiabatic expansion. Using Simon's equation No. 9, a value of 2100-2500/sup 0/C is obtained, this is much lower than it was previously thought to be. The value of 2.3 HFU can easily be obtained from this internal temperature figure.

  13. Active microwave remote sensing research program plan. Recommendations of the Earth Resources Synthetic Aperture Radar Task Force. [application areas: vegetation canopies, surface water, surface morphology, rocks and soils, and man-made structures (United States)


    A research program plan developed by the Office of Space and Terrestrial Applications to provide guidelines for a concentrated effort to improve the understanding of the measurement capabilities of active microwave imaging sensors, and to define the role of such sensors in future Earth observations programs is outlined. The focus of the planned activities is on renewable and non-renewable resources. Five general application areas are addressed: (1) vegetation canopies, (2) surface water, (3) surface morphology, (4) rocks and soils, and (5) man-made structures. Research tasks are described which, when accomplished, will clearly establish the measurement capabilities in each area, and provide the theoretical and empirical results needed to specify and justify satellite systems using imaging radar sensors for global observations.


    Directory of Open Access Journals (Sweden)

    M. A. Lazaridou


    Full Text Available Earth and its environment are studied by different scientific disciplines as geosciences, science of engineering, social sciences, geography, etc. The study of the above, beyond pure scientific interest, is useful for the practical needs of man. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. Therefore, according to this definition, photogrammetry and remote sensing can support studies of the above disciplines for acquisition of geoinformation. This paper concerns basic concepts of geosciences (geomorphology, geology, hydrology etc, and the fundamentals of photogrammetry-remote sensing, in order to aid the understanding of the relationship between photogrammetry-remote sensing and geoinformation and also structure curriculum in a brief, concise and coherent way. This curriculum can represent an appropriate research and educational outline and help to disseminate knowledge in various directions and levels. It resulted from our research and educational experience in graduate and post-graduate level (post-graduate studies relative to the protection of environment and protection of monuments and historical centers in the Lab. of Photogrammetry – Remote Sensing in Civil Engineering Faculty of Aristotle University of Thessaloniki.

  15. Display Parameters and Requirements (United States)

    Bahadur, Birendra

    The following sections are included: * INTRODUCTION * HUMAN FACTORS * Anthropometry * Sensory * Cognitive * Discussions * THE HUMAN VISUAL SYSTEM - CAPABILITIES AND LIMITATIONS * Cornea * Pupil and Iris * Lens * Vitreous Humor * Retina * RODS - NIGHT VISION * CONES - DAY VISION * RODS AND CONES - TWILIGHT VISION * VISUAL PIGMENTS * MACULA * BLOOD * CHOROID COAT * Visual Signal Processing * Pathways to the Brain * Spatial Vision * Temporal Vision * Colour Vision * Colour Blindness * DICHROMATISM * Protanopia * Deuteranopia * Tritanopia * ANOMALOUS TRICHROMATISM * Protanomaly * Deuteranomaly * Tritanomaly * CONE MONOCHROMATISM * ROD MONOCHROMATISM * Using Colour Effectively * COLOUR MIXTURES AND THE CHROMATICITY DIAGRAM * Colour Matching Functions and Chromaticity Co-ordinates * CIE 1931 Colour Space * CIE PRIMARIES * CIE COLOUR MATCHING FUNCTIONS AND CHROMATICITY CO-ORDINATES * METHODS FOR DETERMINING TRISTIMULUS VALUES AND COLOUR CO-ORDINATES * Spectral Power Distribution Method * Filter Method * CIE 1931 CHROMATICITY DIAGRAM * ADDITIVE COLOUR MIXTURE * CIE 1976 Chromaticity Diagram * CIE Uniform Colour Spaces and Colour Difference Formulae * CIELUV OR L*u*v* * CIELAB OR L*a*b* * CIE COLOUR DIFFERENCE FORMULAE * Colour Temperature and CIE Standard Illuminants and source * RADIOMETRIC AND PHOTOMETRIC QUANTITIES * Photopic (Vλ and Scotopic (Vλ') Luminous Efficiency Function * Photometric and Radiometric Flux * Luminous and Radiant Intensities * Incidence: Illuminance and Irradiance * Exitance or Emittance (M) * Luminance and Radiance * ERGONOMIC REQUIREMENTS OF DISPLAYS * ELECTRO-OPTICAL PARAMETERS AND REQUIREMENTS * Contrast and Contrast Ratio * Luminance and Brightness * Colour Contrast and Chromaticity * Glare * Other Aspects of Legibility * SHAPE AND SIZE OF CHARACTERS * DEFECTS AND BLEMISHES * FLICKER AND DISTORTION * ANGLE OF VIEW * Switching Speed * Threshold and Threshold Characteristic * Measurement Techniques For Electro-optical Parameters * RADIOMETRIC

  16. Vision based flight procedure stereo display system (United States)

    Shen, Xiaoyun; Wan, Di; Ma, Lan; He, Yuncheng


    A virtual reality flight procedure vision system is introduced in this paper. The digital flight map database is established based on the Geographic Information System (GIS) and high definitions satellite remote sensing photos. The flight approaching area database is established through computer 3D modeling system and GIS. The area texture is generated from the remote sensing photos and aerial photographs in various level of detail. According to the flight approaching procedure, the flight navigation information is linked to the database. The flight approaching area vision can be dynamic displayed according to the designed flight procedure. The flight approaching area images are rendered in 2 channels, one for left eye images and the others for right eye images. Through the polarized stereoscopic projection system, the pilots and aircrew can get the vivid 3D vision of the flight destination approaching area. Take the use of this system in pilots preflight preparation procedure, the aircrew can get more vivid information along the flight destination approaching area. This system can improve the aviator's self-confidence before he carries out the flight mission, accordingly, the flight safety is improved. This system is also useful in validate the visual flight procedure design, and it helps to the flight procedure design.

  17. Laser illuminated flat panel display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.


    A 10 inch laser illuminated flat panel Planar Optic Display (POD) screen has been constructed and tested. This POD screen technology is an entirely new concept in display technology. Although the initial display is flat and made of glass, this technology lends itself to applications where a plastic display might be wrapped around the viewer. The display screen is comprised of hundreds of planar optical waveguides where each glass waveguide represents a vertical line of resolution. A black cladding layer, having a lower index of refraction, is placed between each waveguide layer. Since the cladding makes the screen surface black, the contrast is high. The prototype display is 9 inches wide by 5 inches high and approximately I inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  18. Goddard Earth Science Data and Information Center (GES DISC) (United States)

    Kempler, Steve


    The GES DIS is one of 12 NASA Earth science data centers. The GES DISC vision is to enable researchers and educators maximize knowledge of the Earth by engaging in understanding their goals, and by leading the advancement of remote sensing information services in response to satisfying their goals. This presentation will describe the GES DISC approach, successes, challenges, and best practices.

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V S Dubey. Articles written in Journal of Earth System Science. Volume 114 Issue 5 October 2005 pp 515-522. Identification of groundwater prospective zones by using remote sensing and geoelectrical methods in Jharia and Raniganj coalfields, Dhanbad district, ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A Geetha Selvarani. Articles written in Journal of Earth System Science. Volume 125 Issue 2 March 2016 pp 311-328. Groundwater resource exploration in Salem district, Tamil Nadu using GIS and remote sensing · G Maheswaran A Geetha Selvarani K Elangovan.

  1. Applying sensor web strategies to big data earth observations

    CSIR Research Space (South Africa)

    Van Zyl, TL


    Full Text Available Earth observation data and meta-data are a central concern of the earth sciences. These data are generated by a myriad of both in-situ and remote sensors. Other sources of data include computational simulations, various ex-situ sources...

  2. Radar Images of the Earth and the World Wide Web (United States)

    Chapman, B.; Freeman, A.


    A perspective of NASA's Jet Propulsion Laboratory as a center of planetary exploration, and its involvement in studying the earth from space is given. Remote sensing, radar maps, land topography, snow cover properties, vegetation type, biomass content, moisture levels, and ocean data are items discussed related to earth orbiting satellite imaging radar. World Wide Web viewing of this content is discussed.

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Y Jaya Rao. Articles written in Journal of Earth System Science. Volume 113 Issue 1 March 2004 pp 103-116. Remote sensing of spectral signatures of tropospheric aerosols · M B Potdar S A Sharma V Y Parikh P C S Devara P E Raj Y K Tiwari R S Maheskumar K K Dani ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. G Pandithurai. Articles written in Journal of Earth System Science. Volume 113 Issue 1 March 2004 pp 103-116. Remote sensing of spectral signatures of tropospheric aerosols · M B Potdar S A Sharma V Y Parikh P C S Devara P E Raj Y K Tiwari R S Maheskumar K K Dani ...



    W. Xie; Y. Xue; L. Zhai; H. Sang


    Earth observation is the gathering of information via remote sensing technologies supplemented by earth surveying techniques, encompassing the collection, analysis and presentation of data. Remote sensing technology is playing a key role on precision agriculture. From the point of view of remote sensing and photogrammetry field, this article first took an overview of its applications on agriculture throughout past 3 decades, analyzed the advantages and disadvantages of different kind...

  6. Flat panel planar optic display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology


    A prototype 10 inch flat panel Planar Optic Display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic class sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  7. Thermal infrared remote sensing sensors, methods, applications

    CERN Document Server

    Kuenzer, Claudia


    This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techni

  8. Taiwan's second remote sensing satellite (United States)

    Chern, Jeng-Shing; Ling, Jer; Weng, Shui-Lin


    FORMOSAT-2 is Taiwan's first remote sensing satellite (RSS). It was launched on 20 May 2004 with five-year mission life and a very unique mission orbit at 891 km altitude. This orbit gives FORMOSAT-2 the daily revisit feature and the capability of imaging the Arctic and Antarctic regions due to the high enough altitude. For more than three years, FORMOSAT-2 has performed outstanding jobs and its global effectiveness is evidenced in many fields such as public education in Taiwan, Earth science and ecological niche research, preservation of the world heritages, contribution to the International Charter: space and major disasters, observation of suspected North Korea and Iranian nuclear facilities, and scientific observation of the atmospheric transient luminous events (TLEs). In order to continue the provision of earth observation images from space, the National Space Organization (NSPO) of Taiwan started to work on the second RSS from 2005. This second RSS will also be Taiwan's first indigenous satellite. Both the bus platform and remote sensing instrument (RSI) shall be designed and manufactured by NSPO and the Instrument Technology Research Center (ITRC) under the supervision of the National Applied Research Laboratories (NARL). Its onboard computer (OBC) shall use Taiwan's indigenous LEON-3 central processing unit (CPU). In order to achieve cost effective design, the commercial off the shelf (COTS) components shall be widely used. NSPO shall impose the up-screening/qualification and validation/verification processes to ensure their normal functions for proper operations in the severe space environments.

  9. Shape Displays: Spatial Interaction with Dynamic Physical Form. (United States)

    Leithinger, Daniel; Follmer, Sean; Olwal, Alex; Ishii, Hiroshi


    Shape displays are an emerging class of devices that emphasize actuation to enable rich physical interaction, complementing concepts in virtual and augmented reality. The ability to render form introduces new opportunities to touch, grasp, and manipulate dynamic physical content and tangible objects, in both nearby and remote environments. This article presents novel hardware, interaction techniques, and applications, which point to the potential for extending the ways that we traditionally interact with the physical world, empowered by digital computation.

  10. Display technologies for augmented reality (United States)

    Lee, Byoungho; Lee, Seungjae; Jang, Changwon; Hong, Jong-Young; Li, Gang


    With the virtue of rapid progress in optics, sensors, and computer science, we are witnessing that commercial products or prototypes for augmented reality (AR) are penetrating into the consumer markets. AR is spotlighted as expected to provide much more immersive and realistic experience than ordinary displays. However, there are several barriers to be overcome for successful commercialization of AR. Here, we explore challenging and important topics for AR such as image combiners, enhancement of display performance, and focus cue reproduction. Image combiners are essential to integrate virtual images with real-world. Display performance (e.g. field of view and resolution) is important for more immersive experience and focus cue reproduction may mitigate visual fatigue caused by vergence-accommodation conflict. We also demonstrate emerging technologies to overcome these issues: index-matched anisotropic crystal lens (IMACL), retinal projection displays, and 3D display with focus cues. For image combiners, a novel optical element called IMACL provides relatively wide field of view. Retinal projection displays may enhance field of view and resolution of AR displays. Focus cues could be reconstructed via multi-layer displays and holographic displays. Experimental results of our prototypes are explained.

  11. Remote sensing research in geographic education: An alternative view (United States)

    Wilson, H.; Cary, T. K.; Goward, S. N.


    It is noted that within many geography departments remote sensing is viewed as a mere technique a student should learn in order to carry out true geographic research. This view inhibits both students and faculty from investigation of remotely sensed data as a new source of geographic knowledge that may alter our understanding of the Earth. The tendency is for geographers to accept these new data and analysis techniques from engineers and mathematicians without questioning the accompanying premises. This black-box approach hinders geographic applications of the new remotely sensed data and limits the geographer's contribution to further development of remote sensing observation systems. It is suggested that geographers contribute to the development of remote sensing through pursuit of basic research. This research can be encouraged, particularly among students, by demonstrating the links between geographic theory and remotely sensed observations, encouraging a healthy skepticism concerning the current understanding of these data.

  12. Experience with Remote Job Execution

    International Nuclear Information System (INIS)

    Lynch, Vickie E.; Cobb, John W; Green, Mark L.; Kohl, James Arthur; Miller, Stephen D.; Ren, Shelly; Smith, Bradford C.; Vazhkudai, Sudharshan S.


    The Neutron Science Portal at Oak Ridge National Laboratory submits jobs to the TeraGrid for remote job execution. The TeraGrid is a network of high performance computers supported by the US National Science Foundation. There are eleven partner facilities with over a petaflop of peak computing performance and sixty petabytes of long-term storage. Globus is installed on a local machine and used for job submission. The graphical user interface is produced by java coding that reads an XML file. After submission, the status of the job is displayed in a Job Information Service window which queries globus for the status. The output folder produced in the scratch directory of the TeraGrid machine is returned to the portal with globus-url-copy command that uses the gridftp servers on the TeraGrid machines. This folder is copied from the stage-in directory of the community account to the user's results directory where the output can be plotted using the portal's visualization services. The primary problem with remote job execution is diagnosing execution problems. We have daily tests of submitting multiple remote jobs from the portal. When these jobs fail on a computer, it is difficult to diagnose the problem from the globus output. Successes and problems will be presented

  13. Testbed for remote telepresence research (United States)

    Adnan, Sarmad; Cheatham, John B., Jr.


    Teleoperated robots offer solutions to problems associated with operations in remote and unknown environments, such as space. Teleoperated robots can perform tasks related to inspection, maintenance, and retrieval. A video camera can be used to provide some assistance in teleoperations, but for fine manipulation and control, a telepresence system that gives the operator a sense of actually being at the remote location is more desirable. A telepresence system comprised of a head-tracking stereo camera system, a kinematically redundant arm, and an omnidirectional mobile robot has been developed at the mechanical engineering department at Rice University. This paper describes the design and implementation of this system, its control hardware, and software. The mobile omnidirectional robot has three independent degrees of freedom that permit independent control of translation and rotation, thereby simulating a free flying robot in a plane. The kinematically redundant robot arm has eight degrees of freedom that assist in obstacle and singularity avoidance. The on-board control computers permit control of the robot from the dual hand controllers via a radio modem system. A head-mounted display system provides the user with a stereo view from a pair of cameras attached to the mobile robotics system. The head tracking camera system moves stereo cameras mounted on a three degree of freedom platform to coordinate with the operator's head movements. This telepresence system provides a framework for research in remote telepresence, and teleoperations for space.

  14. Remote Network Access (RNA)

    National Research Council Canada - National Science Library


    .... Remote Network Access (RNA) includes or is associated with all communication devices/software, firewalls, intrusion detection systems and virus protection applications to ensure security of the OIG, DoD, Network from remote...

  15. The Crew Earth Observations Experiment: Earth System Science from the ISS (United States)

    Stefanov, William L.; Evans, Cynthia A.; Robinson, Julie A.; Wilkinson, M. Justin


    This viewgraph presentation reviews the use of Astronaut Photography (AP) as taken from the International Space Station (ISS) in Earth System Science (ESS). Included are slides showing basic remote sensing theory, data characteristics of astronaut photography, astronaut training and operations, crew Earth observations group, targeting sites and acquisition, cataloging and database, analysis and applications for ESS, image analysis of particular interest urban areas, megafans, deltas, coral reefs. There are examples of the photographs and the analysis.

  16. Remote detection system

    International Nuclear Information System (INIS)

    Nixon, K.V.; France, S.W.; Garcia, C.; Hastings, R.D.


    A newly designed remote detection system has been developed at Los Alamos that allows the collection of high-resolution gamma-ray spectra and neutron data from a remote location. The system consists of the remote unit and a command unit. The remote unit collects data in a potentially hostile environment while the operator controls the unit by either radio or wire link from a safe position. Both units are battery powered and are housed in metal carrying cases

  17. Remote sensing in operational range management programs in Western Canada (United States)

    Thompson, M. D.


    A pilot program carried out in Western Canada to test remote sensing under semi-operational conditions and display its applicability to operational range management programs was described. Four agencies were involved in the program, two in Alberta and two in Manitoba. Each had different objectives and needs for remote sensing within its range management programs, and each was generally unfamiliar with remote sensing techniques and their applications. Personnel with experience and expertise in the remote sensing and range management fields worked with the agency personnel through every phase of the pilot program. Results indicate that these agencies have found remote sensing to be a cost effective tool and will begin to utilize remote sensing in their operational work during ensuing seasons.

  18. You Be the Judge: Display. (United States)

    Koeninger, Jimmy G.

    The instructional package was developed to provide the distributive education teacher-coordinator with visual materials that can be used to supplement existing textbook offerings in the area of display (visual merchandising). Designed for use with 35mm slides of retail store displays, the package allows the student to view the slides of displays…

  19. Displays: Entering a New Dimension (United States)

    Starkman, Neal


    As display technologies prepare to welcome 3-D, the 21st-century classroom will soon bear little resemblance to anything students and teachers have ever seen. In this article, the author presents the latest innovations in the world of digital display technology. These include: (1) Touchlight, an interactive touch screen program that takes a normal…

  20. Software for graphic display systems

    International Nuclear Information System (INIS)

    Karlov, A.A.


    In this paper some aspects of graphic display systems are discussed. The design of a display subroutine library is described, with an example, and graphic dialogue software is considered primarily from the point of view of the programmer who uses a high-level language. (Auth.)

  1. Flexible Bistable Cholesteric Reflective Displays (United States)

    Yang, Deng-Ke


    Cholesteric liquid crystals (ChLCs) exhibit two stable states at zero field condition-the reflecting planar state and the nonreflecting focal conic state. ChLCs are an excellent candidate for inexpensive and rugged electronic books and papers. This paper will review the display cell structure,materials and drive schemes for flexible bistable cholesteric (Ch) reflective displays.

  2. Remote Sensing Digital Image Analysis An Introduction

    CERN Document Server

    Richards, John A


    Remote Sensing Digital Image Analysis provides the non-specialist with a treatment of the quantitative analysis of satellite and aircraft derived remotely sensed data. Since the first edition of the book there have been significant developments in the algorithms used for the processing and analysis of remote sensing imagery; nevertheless many of the fundamentals have substantially remained the same.  This new edition presents material that has retained value since those early days, along with new techniques that can be incorporated into an operational framework for the analysis of remote sensing data. The book is designed as a teaching text for the senior undergraduate and postgraduate student, and as a fundamental treatment for those engaged in research using digital image processing in remote sensing.  The presentation level is for the mathematical non-specialist.  Since the very great number of operational users of remote sensing come from the earth sciences communities, the text is pitched at a leve...

  3. An introduction to NH-A neutron earth base moisture gage

    International Nuclear Information System (INIS)

    Zhu Huaian; Jiang Yulan; Yin Xilin; Yu Peiying; Luo Pinjie


    NH-A neutron earth base moisture gage is an accurate instrument which can measure earth moisture rapidly and non-destructively and display moisture results immediately. The deviation is estimated at ±0.012g/cm

  4. Conventions for reporting and displaying overflight observations

    International Nuclear Information System (INIS)

    McFarland, B.; Murphy, J.; Simecek-Beatty, D.


    During the critical initial phases of an oil spill response, as observations and reports come in from different agencies and companies, descriptions and representations can vary widely. These apparently conflicting reports can cause unnecessary confusion, wasting valuable time and resources. As the number of open-quotes expertsclose quotes and the amount of open-quotes necessaryclose quotes information multiply, the potential for information overload also increases. Important information that needs to be presented can be lost in the flood of information that is available. For many years the National Oceanic and Atmospheric Administration (NOAA), in support of the US Coast Guard, has coordinated scientific input concerning the tracking and prediction of the transport of oil spilled in the marine environment. This role frequently involves recording visual or remote sensing observations from multiple platforms and observers, and displaying the information in a clear format, which needs to be rapidly available and unambiguous. Simple graphic products help identify conflicting views of information and allow responders to quickly build a open-quotes graphic consensusclose quotes of the situation. To this end the authors have developed in-house guidelines for presentation of crucial response information. Because correctly designed graphics can clearly and rapidly transmit large amounts of information, these guidelines focus on the graphic presentation of information. Some of these same conventions and criteria are being applied in evaluating and developing information acquisition and display tools. This poster presentation includes examples of the hardware and software used by Genwest and NOAA for the rapid display of response information

  5. Coral Bleaching Assessment Through Remote Sensing and Integrated Citizen Science (CoralBASICS): Engaging Dive Instructors on Reef Characterization in Southwest, Puerto Rico Coupled with the Analysis of Water Quality Using NASA Earth Observations (United States)

    Torres-Perez, J. L.; Armstrong, R.; Detres, Y.; Aragones-Fred, C.; Melendez, J.


    As recurrences of extreme sea water thermal events increase with climate change, the need for continuous monitoring of coral reefs becomes even more evident. Enabling properly trained members from the local communities to actively participate in scientific programs/research projects, provides for such monitoring at little cost once the citizens are properly trained and committed. Further, the possibility of obtaining high temporal resolution data with citizen scientists can provide for new venues to answer questions that may not be answered with traditional research approaches. The CoralBASICS project engages members of the local diving industry in Puerto Rico on the assessment of coastal water quality and the status of Puerto Rico's coral reefs in an age of climate change and in particular, an increase in the frequency and magnitude of coral bleaching events. The project complements remote sensing data with community-based field assessments strictly supervised by the PI's. The study focuses on training citizen scientists (dive instructors) on the collection of benthic information related to the state of coral reefs using the Reef Check (fish and invertebrates ID and substrate composition) and video transects methodologies, monitoring of coral bleaching events, and collecting of water quality data using a smartphone ocean color application. The data collected by citizen scientists complements the validation of Landsat-8 (OLI) imagery for water quality assessment. At the same time, researchers from the University of Puerto Rico conduct field assessment of the bio-optical properties of waters surrounding the coral reef study areas. Dive instructors have been collecting benthic and water quality data for the past 4 months. Initial analysis using the Coral Point Count with excel extension (CPCe) software showed a dominance of gorgonians at most sites (up to 32.8%) with hard coral cover ranging between 5.5-13.2% of the hard substrates. No coral diseases or bleaching

  6. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations. (United States)

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D


    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be


    International Nuclear Information System (INIS)



    This paper discussed the presentation of information in computer-based control rooms. Issues associated with the typical displays currently in use are discussed. It is concluded that these displays should be augmented with new displays designed to better meet the information needs of plant personnel and to minimize the need for interface management tasks (the activities personnel have to do to access and organize the information they need). Several approaches to information design are discussed, specifically addressing: (1) monitoring, detection, and situation assessment; (2) routine task performance; and (3) teamwork, crew coordination, collaborative work

  8. Flat panel display - Impurity doping technology for flat panel displays

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Toshiharu [Advanced Technology Planning, Sumitomo Eaton Nova Corporation, SBS Tower 9F, 10-1, Yoga 4-chome, Setagaya-ku, 158-0097 Tokyo (Japan)]. E-mail:


    Features of the flat panel displays (FPDs) such as liquid crystal display (LCD) and organic light emitting diode (OLED) display, etc. using low temperature poly-Si (LTPS) thin film transistors (TFTs) are briefly reviewed comparing with other FPDs. The requirements for fabricating TFTs used for high performance FPDs and system on glass (SoG) are addressed. This paper focuses on the impurity doping technology, which is one of the key technologies together with crystallization by laser annealing, formation of high quality gate insulator and gate-insulator/poly-Si interface. The issues to be solved in impurity doping technology for state of the art and future TFTs are clarified.

  9. Flat panel display - Impurity doping technology for flat panel displays

    International Nuclear Information System (INIS)

    Suzuki, Toshiharu


    Features of the flat panel displays (FPDs) such as liquid crystal display (LCD) and organic light emitting diode (OLED) display, etc. using low temperature poly-Si (LTPS) thin film transistors (TFTs) are briefly reviewed comparing with other FPDs. The requirements for fabricating TFTs used for high performance FPDs and system on glass (SoG) are addressed. This paper focuses on the impurity doping technology, which is one of the key technologies together with crystallization by laser annealing, formation of high quality gate insulator and gate-insulator/poly-Si interface. The issues to be solved in impurity doping technology for state of the art and future TFTs are clarified

  10. Children's Control/Display Stereotypes. (United States)

    Hoffmann, Errol R; Chan, Alan H S; Tai, Judy P C


    Objective The aim of this study was to determine control/display stereotypes for children of a range of ages and development of these stereotypes with age. Background Little is known about control/display stereotypes for children of different ages and the way in which these stereotypes develop with age. This study is part of a program to determine the need to design differentially for these age groups. Method We tested four groups of children with various tasks (age groups 5 to 7, 8 to 10, 11 to 13, 14 to 16), with about 30 in each group. Examples of common tasks were opening a bottle, turning on taps, and allocating numbers to keypads. More complex tasks involved rotating a control to move a display in a requested direction. Results Tasks with which different age groups were familiar showed no effect of age group. Different control/display arrangements generally showed an increase in stereotype strength with age, with dependence on the form of the control/display arrangement. Two-dimensional arrangements, with the control on the same plane as the display, had higher stereotype strength than three-dimensional arrangements for all age groups, suggesting an effect of familiarity with controls and displays with increasing age. Conclusion Children's control/display stereotypes do not differ greatly from those of adults, and hence, design for children older than 5 years of age, for control/display stereotypes, can be the same as that for adult populations. Application When designing devices for children, the relationship between controls and displays can be as for adult populations, for which there are considerable experimental data.

  11. HABEBEE: habitability of eyeball-exo-Earths. (United States)

    Angerhausen, Daniel; Sapers, Haley; Citron, Robert; Bergantini, Alexandre; Lutz, Stefanie; Queiroz, Luciano Lopes; da Rosa Alexandre, Marcelo; Araujo, Ana Carolina Vieira


    Extrasolar Earth and super-Earth planets orbiting within the habitable zone of M dwarf host stars may play a significant role in the discovery of habitable environments beyond Earth. Spectroscopic characterization of these exoplanets with respect to habitability requires the determination of habitability parameters with respect to remote sensing. The habitable zone of dwarf stars is located in close proximity to the host star, such that exoplanets orbiting within this zone will likely be tidally locked. On terrestrial planets with an icy shell, this may produce a liquid water ocean at the substellar point, one particular "Eyeball Earth" state. In this research proposal, HABEBEE: exploring the HABitability of Eyeball-Exo-Earths, we define the parameters necessary to achieve a stable icy Eyeball Earth capable of supporting life. Astronomical and geochemical research will define parameters needed to simulate potentially habitable environments on an icy Eyeball Earth planet. Biological requirements will be based on detailed studies of microbial communities within Earth analog environments. Using the interdisciplinary results of both the physical and biological teams, we will set up a simulation chamber to expose a cold- and UV-tolerant microbial community to the theoretically derived Eyeball Earth climate states, simulating the composition, atmosphere, physical parameters, and stellar irradiation. Combining the results of both studies will enable us to derive observable parameters as well as target decision guidance and feasibility analysis for upcoming astronomical platforms.

  12. National Satellite Land Remote Sensing Data Archive (United States)

    Faundeen, John L.; Longhenry, Ryan


    The National Satellite Land Remote Sensing Data Archive is managed on behalf of the Secretary of the Interior by the U.S. Geological Survey’s Earth Resources Observation and Science Center. The Land Remote Sensing Policy Act of 1992 (51 U.S.C. §601) directed the U.S. Department of the Interior to establish a permanent global archive consisting of imagery over land areas obtained from satellites orbiting the Earth. The law also directed the U.S. Department of the Interior, delegated to the U.S. Geological Survey, to ensure proper storage and preservation of imagery, and timely access for all parties. Since 2008, these images have been available at no cost to the user.


    Directory of Open Access Journals (Sweden)

    Á. Barsi


    Full Text Available The technological developments in remote sensing (RS during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS, which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users’ needs. The present paper gives the theoretic overview of the issue, besides

  14. Accuracy Dimensions in Remote Sensing (United States)

    Barsi, Á.; Kugler, Zs.; László, I.; Szabó, Gy.; Abdulmutalib, H. M.


    The technological developments in remote sensing (RS) during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS), which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users' needs. The present paper gives the theoretic overview of the issue, besides selected, practice

  15. Sulfur Earth (United States)

    de Jong, B. H.


    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  16. Design and Development of Functionally Effective Human-Machine Interfaces for Firing Room Displays (United States)

    Cho, Henry


    This project involves creating software for support equipment used on the Space Launch System (SLS). The goal is to create applications and displays that will be used to remotely operate equipment from the firing room and will continue to support the SLS launch vehicle to the extent of its program. These displays include design practices that help to convey information effectively, such as minimizing distractions at normal operating state and displaying intentional distractions during a warning or alarm state. The general practice for creating an operator display is to reduce the detail of unimportant aspects of the display and promote focus on data and dynamic information. These practices include using minimalist design, using muted tones for background colors, using a standard font at a readable text size, displaying alarms visible for immediate attention, grouping data logically, and displaying data appropriately varying on the type of data. Users of these displays are more likely to stay focused on operating for longer periods by using design practices that reduce eye strain and fatigue. Effective operator displays will improve safety by reducing human errors during operation, which will help prevent catastrophic accidents. This report entails the details of my work on developing remote displays for the Hypergolic fuel servicing system. Before developing a prototype display, the design and requirements of the system are outlined and compiled into a document. Then each subsystem has schematic representations drawn that meet the specifications detailed in the document. The schematics are then used as the outline to create display representations of each subsystem. Each display is first tested individually. Then the displays are integrated with a prototype of the master system, and they are tested in a simulated environment then retested in the real environment. Extensive testing is important to ensure the displays function reliably as intended.

  17. Stamping the Earth from space

    CERN Document Server

    Dicati, Renato


    This unique book presents a historical and philatelic survey of Earth exploration from space. It covers all areas of research in which artificial satellites have contributed in designing a new image of our planet and its environment: the atmosphere and ionosphere, the magnetic field, radiation belts and the magnetosphere, weather, remote sensing, mapping of the surface, observation of the oceans and marine environments, geodesy, and the study of life and ecological systems. Stamping the Earth from Space presents the results obtained with the thousands of satellites launched by the two former superpowers, the Soviet Union and the United States, and also those of the many missions carried out by the ESA, individual European countries, Japan, China, India, and the many emerging space nations. Beautifully illustrated, it contains almost 1100 color reproductions of philatelic items. In addition to topical stamps and thematic postal documents, the book provides an extensive review of astrophilatelic items. The most...

  18. System for remote control of underground device

    International Nuclear Information System (INIS)

    Brumleve, T.D.; Hicks, M.G.; Jones, M.O.


    A system is described for remote control of an underground device, particularly a nuclear explosive. The system includes means at the surface of the ground for transmitting a seismic signal sequence through the earth having controlled and predetermined signal characteristics for initiating a selected action in the device. Additional apparatus, located with or adjacent to the underground device, produces electrical signals in response to the seismic signals received and compares these electrical signals with the predetermined signal characteristics

  19. System for remote control of underground device (United States)

    Brumleve, T.D.; Hicks, M.G.; Jones, M.O.


    A system is described for remote control of an underground device, particularly a nuclear explosive. The system includes means at the surface of the ground for transmitting a seismic signal sequence through the earth having controlled and predetermined signal characteristics for initiating a selected action in the device. Additional apparatus, located with or adjacent to the underground device, produces electrical signals in response to the seismic signals received and compares these electrical signals with the predetermined signal characteristics.

  20. Remote sensing applications in environmental research

    CERN Document Server

    Srivastava, Prashant K; Gupta, Manika; Islam, Tanvir


    Remote Sensing Applications in Environmental Research is the basis for advanced Earth Observation (EO) datasets used in environmental monitoring and research. Now that there are a number of satellites in orbit, EO has become imperative in today's sciences, weather and natural disaster prediction. This highly interdisciplinary reference work brings together diverse studies on remote sensing and GIS, from a theoretical background to its applications, represented through various case studies and the findings of new models. The book offers a comprehensive range of contributions by well-known scientists from around the world and opens a new window for students in presenting interdisciplinary and methodological resources on the latest research. It explores various key aspects and offers state-of-the-art research in a simplified form, describing remote sensing and GIS studies for those who are new to the field, as well as for established researchers.

  1. Earth observation space programmes, SAFISY activities, strategies of international organisations, legal aspects. Volume 3

    International Nuclear Information System (INIS)


    This volume is separated in four sessions. First part is on earth observation space programmes (international earth observation projects and international collaboration, the ERS-1, SPOT and PRIRODA programmes, the first ESA earth observation polar platform and its payload, the future earth observation remote sensing techniques and concepts). The second part is on SAFISY activities (ISY programmes, education and applications, demonstrations and outreach projects). The third part is on programme and strategies of international organisations with respect to earth observation from space. The fourth part is on legal aspects of the use of satellite remote sensing data in Europe. (A.B.). refs., figs., tabs

  2. 1999 IEEE international geoscience and remote sensing symposium

    Energy Technology Data Exchange (ETDEWEB)



    The theme of IGARSS'99, ``Remote Sensing of the System Earth--A Challenge for the 21st Century,'' shows how earth observation based on satellite remote sensing can significantly contribute to the future study of the environment and the changes it is undergoing, whether from natural causes or human activities. The wide range of topics offers an interdisciplinary approach and suggests integrated techniques and theory in remote sensing are essential for modeling and understanding the environment. Topics covered include: new instrumentation and future systems; high resolution SAR/InSAR; earth system science educational initiative; data fusion; radar sensing of ice sheets; image processing techniques; clouds and ice particles; internal waves; natural hazards and disaster monitoring; advanced passive and active sensors and sensor calibration; radar assessment of rain, oil spills and natural slicks; data standards and distribution; and vegetation monitoring using BRDF approaches.

  3. Circular displays: control/display arrangements and stereotype strength with eight different display locations. (United States)

    Chan, Alan H S; Hoffmann, Errol R


    Two experiments are reported that were designed to investigate control/display arrangements having high stereotype strengths when using circular displays. Eight display locations relative to the operator and control were tested with rotational and translational controls situated on different planes according to the Frame of Reference Transformation Tool (FORT) model of Wickens et al. (2010). (Left. No, Right! Development of the Frame of Reference Transformation Tool (FORT), Proceedings of the Human Factors and Ergonomics Society 54th Annual Meeting, 54: 1022-1026). In many cases, there was little effect of display locations, indicating the importance of the Worringham and Beringer (1998. Directional stimulus-response compatibility: a test of three alternative principles. Ergonomics, 41(6), 864-880) Visual Field principle and an extension of this principle for rotary controls (Hoffmann and Chan (2013). The Worringham and Beringer 'visual field' principle for rotary controls. Ergonomics, 56(10), 1620-1624). The initial indicator position (12, 3, 6 and 9 o'clock) had a major effect on control/display stereotype strength for many of the six controls tested. Best display/control arrangements are listed for each of the different control types (rotational and translational) and for the planes on which they are mounted. Data have application where a circular display is used due to limited display panel space and applies to space-craft, robotics operators, hospital equipment and home appliances. Practitioner Summary: Circular displays are often used when there is limited space available on a control panel. Display/control arrangements having high stereotype strength are listed for four initial indicator positions. These arrangements are best for design purposes.

  4. Rare earth element concentrations and Nd isotopes in the Southeast Pacific Ocean (United States)

    Jeandel, C.; Delattre, H.; Grenier, M.; Pradoux, C.; Lacan, F.


    vertical profiles of rare earth element concentrations and Nd isotopic compositions have been measured in the remote southeast Pacific Ocean. The three stations represent contrasting environments: the oligotrophic center of the gyre (station GYR), the "transition zone" east of the South Tropical Front (station EGY), and the Peru-Chile upwelling marked by a pronounced oxygen minimum (station UPX). Rare earth concentrations display nutrient like vertical profiles except at UPX where surface waters are enriched. At this station Nd isotopic compositions are clearly more radiogenic than in the open ocean, suggesting that boundary exchange process is releasing lithogenic rare earth element from the volcanic Andes. Unexpected radiogenic values (ɛNd reaching -3.7) are also observed at 2000 m at station GYR in the Upper Circumpolar Deep Water that commonly have ɛNd values around -6. Exchange processes related to hydrothermal activity are suspected to produce this increase in ɛNd in the vicinity of the East Pacific Rise. These results provide some guidance for higher resolution studies planned in this region by the international GEOTRACES program.

  5. Color speckle in laser displays (United States)

    Kuroda, Kazuo


    At the beginning of this century, lighting technology has been shifted from discharge lamps, fluorescent lamps and electric bulbs to solid-state lighting. Current solid-state lighting is based on the light emitting diodes (LED) technology, but the laser lighting technology is developing rapidly, such as, laser cinema projectors, laser TVs, laser head-up displays, laser head mounted displays, and laser headlamps for motor vehicles. One of the main issues of laser displays is the reduction of speckle noise1). For the monochromatic laser light, speckle is random interference pattern on the image plane (retina for human observer). For laser displays, RGB (red-green-blue) lasers form speckle patterns independently, which results in random distribution of chromaticity, called color speckle2).

  6. Performance of NCAP projection displays (United States)

    Jones, Philip J.; Tomita, Akira; Wartenberg, Mark


    Prototypes of projection displays based on dispersions of liquid crystal in polymer matrices are beginning to appear. The principle of operation depends on electrically switchable light scattering. They are potentially much brighter than current cathode ray tube (CRT) or twisted nematic liquid crystal (TN LC) cell based displays. Comparisons of efficacy and efficiency show this. The contrast and brightness of such displays depend on a combination of the f- number of the projection system and the scattering characteristics of the light valve. Simplified equations can be derived to show these effects. The degree of scattering of current NCAP formulations is sufficient to produce good contrast projection displays, at convenient voltages, that are around three times brighter than TN LC projectors because of the lack of polarizers in the former.

  7. Displaying Sensed Tactile Cues with a Fingertip Haptic Device. (United States)

    Pacchierotti, Claudio; Prattichizzo, Domenico; Kuchenbecker, Katherine J


    Telerobotic systems enable humans to explore and manipulate remote environments for applications such as surgery and disaster response, but few such systems provide the operator with cutaneous feedback. This article presents a novel approach to remote cutaneous interaction; our method is compatible with any fingertip tactile sensor and any mechanical tactile display device, and it does not require a position/force or skin deformation model. Instead, it directly maps the sensed stimuli to the best possible input commands for the device's motors using a data set recorded with the tactile sensor inside the device. As a proof of concept, we considered a haptic system composed of a BioTac tactile sensor, in charge of measuring contact deformations, and a custom 3-DoF cutaneous device with a flat contact platform, in charge of applying deformations to the user's fingertip. To validate the proposed approach and discover its inherent tradeoffs, we carried out two remote tactile interaction experiments. The first one evaluated the error between the tactile sensations registered by the BioTac in a remote environment and the sensations created by the cutaneous device for six representative tactile interactions and 27 variations of the display algorithm. The normalized average errors in the best condition were 3.0 percent of the BioTac's full 12-bit scale. The second experiment evaluated human subjects' experiences for the same six remote interactions and eight algorithm variations. The average subjective rating for the best algorithm variation was 8.2 out of 10, where 10 is best.

  8. Interactive editing program using display

    International Nuclear Information System (INIS)

    Lang, I.; Ehsenski, J.; Namsraj, Yu.; Fefilov, B.V.


    A general description is given as well as principal functions are considered of 'DOSE' interactive editor program with a display involved. The program has been elaborated for TRA/1-1001 computer. This program enables one to edit and correct texts in algorithmical languages on a raster display screen as well as to provide perforated tapes for their further usage. 'DOSE' program is regarded as a basic program system for a set of TRA/1 and MINSK-32 computers

  9. Remote mechanical C line

    International Nuclear Information System (INIS)

    Nuttall, K.R.; Gardner, P.R.


    Westinghouse Hanford Company is developing a desk-top simulation based training program on the operation of the Remote Mechanical C (RMC) Line process in the Plutonium Finishing Plant on the Hanford site, Richland, Washington. Simulations display aod contioually update current values of system parameters on computer graphics of RMC line equipment. Students are able to operate a variety of controllers to maintain proper system status. Programmed faults, selectable by the course instructor, can be used to test student responses to off-normal events. Prior to operation of the simulation, students are given computer-based tutorials on the function, processes, operation, and error conditions associated with individual components. By including the capability of operating each individual component - valves, heaters, agitators, etc. - the computer-based training (CBT) lessons become an interactive training manual. From one perspective RMC represents one step in the diffusion of the well-known and well-documented simulator training activities for nuclear reactor operators to other training programs, equally critical, perhaps, but less well scrutinized in the past. Because of the slowly responding nature of the actual process, RMC can retain many of the capabilities of practice and testing in a simulated work environment while avoiding the cost of a full scale simulator and the exposure and waste developed by practice runs of the RMC line. From another perspective RMC suggests training advances even beyond the most faithful simulators. For example, by integrating CBT lessons with the simulation, RMC permits students to focus in on specific processes occurring inside chosen components. In effect, the interactive training manual is available on-line with the simulation itself. Cost are also discussed

  10. Remote Monitoring Transparency Program

    International Nuclear Information System (INIS)

    Sukhoruchkin, V.K.; Shmelev, V.M.; Roumiantsev, A.N.


    The objective of the Remote Monitoring Transparency Program is to evaluate and demonstrate the use of remote monitoring technologies to advance nonproliferation and transparency efforts that are currently being developed by Russia and the United States without compromising the national security to the participating parties. Under a lab-to-lab transparency contract between Sandia National Laboratories (SNL) and the Kurchatov Institute (KI RRC), the Kurchatov Institute will analyze technical and procedural aspects of the application of remote monitoring as a transparency measure to monitor inventories of direct- use HEU and plutonium (e.g., material recovered from dismantled nuclear weapons). A goal of this program is to assist a broad range of political and technical experts in learning more about remote monitoring technologies that could be used to implement nonproliferation, arms control, and other security and confidence building measures. Specifically, this program will: (1) begin integrating Russian technologies into remote monitoring systems; (2) develop remote monitoring procedures that will assist in the application of remote monitoring techniques to monitor inventories of HEU and Pu from dismantled nuclear weapons; and (3) conduct a workshop to review remote monitoring fundamentals, demonstrate an integrated US/Russian remote monitoring system, and discuss the impacts that remote monitoring will have on the national security of participating countries

  11. Remote sensing models and methods for image processing

    CERN Document Server

    Schowengerdt, Robert A


    Remote sensing is a technology that engages electromagnetic sensors to measure and monitor changes in the earth's surface and atmosphere. Normally this is accomplished through the use of a satellite or aircraft. This book, in its 3rd edition, seamlessly connects the art and science of earth remote sensing with the latest interpretative tools and techniques of computer-aided image processing. Newly expanded and updated, this edition delivers more of the applied scientific theory and practical results that helped the previous editions earn wide acclaim and become classroom and industry standa

  12. Suitability Evaluation for Products Generation from Multisource Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Jining Yan


    Full Text Available With the arrival of the big data era in Earth observation, the remote sensing communities have accumulated a large amount of invaluable and irreplaceable data for global monitoring. These massive remote sensing data have enabled large-area and long-term series Earth observation, and have, in particular, made standard, automated product generation more popular. However, there is more than one type of data selection for producing a certain remote sensing product; no single remote sensor can cover such a large area at one time. Therefore, we should automatically select the best data source from redundant multisource remote sensing data, or select substitute data if data is lacking, during the generation of remote sensing products. However, the current data selection strategy mainly adopts the empirical model, and has a lack of theoretical support and quantitative analysis. Hence, comprehensively considering the spectral characteristics of ground objects and spectra differences of each remote sensor, by means of spectrum simulation and correlation analysis, we propose a suitability evaluation model for product generation. The model will enable us to obtain the Production Suitability Index (PSI of each remote sensing data. In order to validate the proposed model, two typical value-added information products, NDVI and NDWI, and two similar or complementary remote sensors, Landsat-OLI and HJ1A-CCD1, were chosen, and the verification experiments were performed. Through qualitative and quantitative analysis, the experimental results were consistent with our model calculation results, and strongly proved the validity of the suitability evaluation model. The proposed production suitability evaluation model could assist with standard, automated, serialized product generation. It will play an important role in one-station, value-added information services during the big data era of Earth observation.

  13. Earth Rotation Dynamics: Review and Prospects (United States)

    Chao, Benjamin F.


    Modem space geodetic measurement of Earth rotation variations, particularly by means of the VLBI technique, has over the years allowed studies of Earth rotation dynamics to advance in ever-increasing precision, accuracy, and temporal resolution. A review will be presented on our understanding of the geophysical and climatic causes, or "excitations", for length-of-day change, polar motion, and nutations. These excitations sources come from mass transports that constantly take place in the Earth system comprised of the atmosphere, hydrosphere, cryosphere, lithosphere, mantle, and the cores. In this sense, together with other space geodetic measurements of time-variable gravity and geocenter motion, Earth rotation variations become a remote-sensing tool for the integral of all mass transports, providing valuable information about the latter on a wide range of spatial and temporal scales. Future prospects with respect to geophysical studies with even higher accuracy and resolution will be discussed.

  14. A grid portal for Earth Observation community

    International Nuclear Information System (INIS)

    Aloisio, G.; Cafaro, M.; Carteni, G.; Epicoco, I.; Quarta, G.


    Earth Observation techniques offer many powerful instruments far Earth planet study, urban development planning, military intelligence helping and so on. Tera bytes of EO and geo spatial data about lands, oceans, glaciers, cities, etc. are continuously downloaded through remote-sensing infrastructures and stored into heterogeneous, distributed repositories usually belonging to different virtual organizations. A problem-solving environment can be a viable solution to handle, coordinate and share heterogeneous and distributed resources. Moreover, grid computing is an emerging technology to salve large-scale problems in dynamic, multi-institutional Virtual Organizations coordinated by sharing resources such as high-performance computers, observation devices, data and databases aver high-speed networks, etc. In this paper we present the Italian Grid far Earth Observation (I-GEO) project, a pervasive environment based on grid technology to help the integration and processing of Earth Observation data, providing a tool to share and access data, applications and computational resources among several organizations

  15. Laurel Clark Earth Camp: Building a Framework for Teacher and Student Understanding of Earth Systems (United States)

    Colodner, D.; Buxner, S.; Schwartz, K.; Orchard, A.; Titcomb, A.; King, B.; Baldridge, A.; Thomas-Hilburn, H.; Crown, D. A.


    Laurel Clark Earth Camp is designed to inspire teachers and students to study their world through field experiences, remote sensing investigations, and hands on exploration, all of which lend context to scientific inquiry. In three different programs (for middle school students, for high school students, and for teachers) participants are challenged to understand Earth processes from the perspectives of both on-the ground inspection and from examination of satellite images, and use those multiple perspectives to determine best practices on both a societal and individual scale. Earth Camp is a field-based program that takes place both in the “natural” and built environment. Middle School Earth Camp introduces students to a variety of environmental science, engineering, technology, and societal approaches to sustainability. High School Earth Camp explores ecology and water resources from southern Arizona to eastern Utah, including a 5 day rafting trip. In both camps, students compare environmental change observed through repeat photography on the ground to changes observed from space. Students are encouraged to utilize their camp experience in considering their future course of study, career objectives, and lifestyle choices. During Earth Camp for Educators, teachers participate in a series of weekend workshops to explore relevant environmental science practices, including water quality testing, biodiversity surveys, water and light audits, and remote sensing. Teachers engage students, both in school and after school, in scientific investigations with this broad based set of tools. Earth Stories from Space is a website that will assist in developing skills and comfort in analyzing change over time and space using remotely sensed images. Through this three-year NASA funded program, participants will appreciate the importance of scale and perspective in understanding Earth systems and become inspired to make choices that protect the environment.

  16. Optical remote sensing

    CERN Document Server

    Prasad, Saurabh; Chanussot, Jocelyn


    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter


    remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and

  18. Towards Big Earth Data Analytics: The EarthServer Approach (United States)

    Baumann, Peter


    Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data whereby the term "coverage", according to ISO and OGC, is defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timeseries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The EarthServer initiative, funded by EU FP7 eInfrastructures, unites 11 partners from computer and earth sciences to establish Big Earth Data Analytics. One key ingredient is flexibility for users to ask what they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level query languages; these have proven tremendously successful on tabular and XML data, and we extend them with a central geo data structure, multi-dimensional arrays. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing code has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, an Array DBMS enabling efficient storage and retrieval of any-size, any-type multi-dimensional raster data. In the project, rasdaman is being extended with several functionality and scalability features, including: support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data

  19. Use of Openly Available Satellite Images for Remote Sensing Education (United States)

    Wang, C.-K.


    With the advent of Google Earth, Google Maps, and Microsoft Bing Maps, high resolution satellite imagery are becoming more easily accessible than ever. It have been the case that the college students may already have wealth experiences with the high resolution satellite imagery by using these software and web services prior to any formal remote sensing education. It is obvious that the remote sensing education should be adjusted to the fact that the audience are already the customers of remote sensing products (through the use of the above mentioned services). This paper reports the use of openly available satellite imagery in an introductory-level remote sensing course in the Department of Geomatics of National Cheng Kung University as a term project. From the experience learned from the fall of 2009 and 2010, it shows that this term project has effectively aroused the students' enthusiastic toward Remote Sensing.

  20. ESA remote-sensing programme - Present activities and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Plevin, J [ESA, Directorate of Planning and Future Programmes, Paris, France; Pryke, I [ESA, Directorate of Applications Programmes, Toulouse, France


    The present activities and future missions of the ESA program of spaceborne remote sensing of earth resources and environment are discussed. Program objectives have been determined to be the satisfaction of European regional needs by agricultural, land use, water resources, coastal and polar surveys, and meeting the requirements of developing nations in the areas of agricultural production, mineral exploration and disaster warning and assessment. The Earthnet system of data processing centers presently is used for the distribution of remote sensing data acquired by NASA satellites. Remote sensing experiments to be flown aboard Spacelab are the Metric Camera, to test high resolution mapping capabilities of a large format camera, and the Microwave Remote-Sensing Experiment, which operates as a two-frequency scatterometer, a synthetic aperture radar and a passive microwave radiometer. Studies carried out on the definition of future remote sensing satellite systems are described, including studies of system concepts for land applications and coastal monitoring satellites.

  1. Remote Maintenance Monitoring System - (United States)

    Department of Transportation — The Remote Maintenance and Monitoring System (RMMS) is a collection of subsystems that includes telecommunication components, hardware, and software, which serve to...

  2. Optical Remote Sensing Laboratory (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  3. Remote Systems Design & Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ


    The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.

  4. Remote docking apparatus

    International Nuclear Information System (INIS)

    Dent, T.H.; Sumpman, W.C.; Wilhelm, J.J.


    The remote docking apparatus comprises a support plate with locking devices mounted thereon. The locking devices are capable of being inserted into tubular members for suspending the support plate therefrom. A vertical member is attached to the support plate with an attachment mechanism attached to the vertical member. A remote access manipulator is capable of being attached to the attachment mechanism so that the vertical member can position the remote access manipulator so that the remote access manipulator can be initially attached to the tubular members in a well defined manner

  5. On-line data display (United States)

    Lang, Sherman Y. T.; Brooks, Martin; Gauthier, Marc; Wein, Marceli


    A data display system for embedded realtime systems has been developed for use as an operator's user interface and debugging tool. The motivation for development of the On-Line Data Display (ODD) have come from several sources. In particular the design reflects the needs of researchers developing an experimental mobile robot within our laboratory. A proliferation of specialized user interfaces revealed a need for a flexible communications and graphical data display system. At the same time the system had to be readily extensible for arbitrary graphical display formats which would be required for data visualization needs of the researchers. The system defines a communication protocol transmitting 'datagrams' between tasks executing on the realtime system and virtual devices displaying the data in a meaningful way on a graphical workstation. The communication protocol multiplexes logical channels on a single data stream. The current implementation consists of a server for the Harmony realtime operating system and an application written for the Macintosh computer. Flexibility requirements resulted in a highly modular server design, and a layered modular object- oriented design for the Macintosh part of the system. Users assign data types to specific channels at run time. Then devices are instantiated by the user and connected to channels to receive datagrams. The current suite of device types do not provide enough functionality for most users' specialized needs. Instead the system design allows the creation of new device types with modest programming effort. The protocol, design and use of the system are discussed.

  6. Remote Sensing of Ocean Color (United States)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats

  7. Underground ventilation remote monitoring and control system

    International Nuclear Information System (INIS)

    Strever, M.T.; Wallace, K.G. Jr.; McDaniel, K.H.


    This paper presents the design and installation of an underground ventilation remote monitoring and control system at the Waste Isolation Pilot Plant. This facility is designed to demonstrate safe underground disposal of U.S. defense generated transuranic nuclear waste. To improve the operability of the ventilation system, an underground remote monitoring and control system was designed and installed. The system consists of 15 air velocity sensors and 8 differential pressure sensors strategically located throughout the underground facility providing real-time data regarding the status of the ventilation system. In addition, a control system was installed on the main underground air regulators. The regulator control system gives indication of the regulator position and can be controlled either locally or remotely. The sensor output is displayed locally and at a central surface location through the site-wide Central Monitoring System (CMS). The CMS operator can review all sensor data and can remotely operate the main underground regulators. Furthermore, the Virtual Address Extension (VAX) network allows the ventilation engineer to retrieve real-time ventilation data on his personal computer located in his workstation. This paper describes the types of sensors selected, the installation of the instrumentation, and the initial operation of the remote monitoring system

  8. Multi-source remote sensing data management system

    International Nuclear Information System (INIS)

    Qin Kai; Zhao Yingjun; Lu Donghua; Zhang Donghui; Wu Wenhuan


    In this thesis, the author explored multi-source management problems of remote sensing data. The main idea is to use the mosaic dataset model, and the ways of an integreted display of image and its interpretation. Based on ArcGIS and IMINT feature knowledge platform, the author used the C# and other programming tools for development work, so as to design and implement multi-source remote sensing data management system function module which is able to simply, conveniently and efficiently manage multi-source remote sensing data. (authors)

  9. Research issues in implementing remote presence in teleoperator control (United States)

    Corker, K.; Mishkin, A. H.; Lyman, J.


    The concept of remote presence in telemanipulation is presented. A conceptual design of a prototype teleoperator system incorporating remote presence is described. The design is presented in functional terms, sensor, display, and control subsystem. An intermediate environment, in which the human operator is made to feel present, is explicated. The intermediate environment differs from the task environment due to the quantity and type of information presented to an operator and due to scaling factors protecting the operator from the hazards of the task environment. Potential benefits of remote presence systems, both for manipulation and for the study of human cognition and preception are discussed.

  10. Earth observing system - Concepts and implementation strategy (United States)

    Hartle, R. E.


    The concepts of an Earth Observing System (EOS), an information system being developed by the EOS Science and Mission Requirements Working Group for international use and planned to begin in the 1990s, are discussed. The EOS is designed to study the factors that control the earth's hydrologic cycle, biochemical cycles, and climatologic processes by combining the measurements from remote sensing instruments, in situ measurement devices, and a data and information system. Three EOS platforms are planned to be launched into low, polar, sun-synchronous orbits during the Space Station's Initial Operating Configuration, one to be provided by ESA and two by the United States.

  11. Digest of NASA earth observation sensors (United States)

    Drummond, R. R.


    A digest of technical characteristics of remote sensors and supporting technological experiments uniquely developed under NASA Applications Programs for Earth Observation Flight Missions is presented. Included are camera systems, sounders, interferometers, communications and experiments. In the text, these are grouped by types, such as television and photographic cameras, lasers and radars, radiometers, spectrometers, technology experiments, and transponder technology experiments. Coverage of the brief history of development extends from the first successful earth observation sensor aboard Explorer 7 in October, 1959, through the latest funded and flight-approved sensors under development as of October 1, 1972. A standard resume format is employed to normalize and mechanize the information presented.

  12. To 'display' or not to 'display'- that is the peptide

    CSIR Research Space (South Africa)

    Crampton, Michael C


    Full Text Available eukaryotic and prokaryotic systems but has mainly focused around phages (Etz et al, 2001), yeast (Kondo and Ueda, 2004) and bacteria (Lee et al 2003). The central variable domain of the FliC protein is dispensable and can be used for the insertion and display...


    Martin, M. D.


    The Interactive Image Display Program (IMDISP) is an interactive image display utility for the IBM Personal Computer (PC, XT and AT) and compatibles. Until recently, efforts to utilize small computer systems for display and analysis of scientific data have been hampered by the lack of sufficient data storage capacity to accomodate large image arrays. Most planetary images, for example, require nearly a megabyte of storage. The recent development of the "CDROM" (Compact Disk Read-Only Memory) storage technology makes possible the storage of up to 680 megabytes of data on a single 4.72-inch disk. IMDISP was developed for use with the CDROM storage system which is currently being evaluated by the Planetary Data System. The latest disks to be produced by the Planetary Data System are a set of three disks containing all of the images of Uranus acquired by the Voyager spacecraft. The images are in both compressed and uncompressed format. IMDISP can read the uncompressed images directly, but special software is provided to decompress the compressed images, which can not be processed directly. IMDISP can also display images stored on floppy or hard disks. A digital image is a picture converted to numerical form so that it can be stored and used in a computer. The image is divided into a matrix of small regions called picture elements, or pixels. The rows and columns of pixels are called "lines" and "samples", respectively. Each pixel has a numerical value, or DN (data number) value, quantifying the darkness or brightness of the image at that spot. In total, each pixel has an address (line number, sample number) and a DN value, which is all that the computer needs for processing. DISPLAY commands allow the IMDISP user to display all or part of an image at various positions on the display screen. The user may also zoom in and out from a point on the image defined by the cursor, and may pan around the image. To enable more or all of the original image to be displayed on the

  14. Immersive Earth: Teaching Earth and Space with inexpensive immersive technology (United States)

    Reiff, P. H.; Sumners, C.; Law, C. C.; Handron, K.


    In 1995 we pioneered "Space Update", the Digital Library for the rest of us", software that was so simple that a child could use it without a keyboard and yet would allow one-click updating of the daily earth and space science images without the dangers of having an open web browser on display. Thanks to NASA support, it allowed museums and schools to have a powerful exhibit for a tiny price. Over 40,000 disks in our series have been distributed so far to educators and the public. In 2003, with our partners we are again revolutionizing educational technology with a low-cost hardware and software solution to creating and displaying immersive content. Recently selected for funding as part of the REASoN competition, Immersive Earth is a partnership of scientists, museums, educators, and content providers. The hardware consists of a modest projector with a special fisheye lens to be used in an inflatable dome which many schools already have. This, coupled with a modest personal computer, can now easily project images and movies of earth and space, allows training students in 3-D content at a tiny fraction of the cost of a cave or fullscale dome theater. Another low-cost solution is the "Imove" system, where spherical movies can play on a personal computer, with the user changing the viewing direction with a joystick. We were the first to create immersive earth science shows, remain the leader in creating educational content that people want to see. We encourage people with "allsky" images or movies to bring it and see what it looks like inside a dome! Your content could be in our next show!

  15. Visual Attention to Radar Displays (United States)

    Moray, N.; Richards, M.; Brophy, C.


    A model is described which predicts the allocation of attention to the features of a radar display. It uses the growth of uncertainty and the probability of near collision to call the eye to a feature of the display. The main source of uncertainty is forgetting following a fixation, which is modelled as a two dimensional diffusion process. The model was used to predict information overload in intercept controllers, and preliminary validation obtained by recording eye movements of intercept controllers in simulated and live (practice) interception.

  16. Drag and drop display & builder

    Energy Technology Data Exchange (ETDEWEB)

    Bolshakov, Timofei B.; Petrov, Andrey D.; /Fermilab


    The Drag and Drop (DnD) Display & Builder is a component-oriented system that allows users to create visual representations of data received from data acquisition systems. It is an upgrade of a Synoptic Display mechanism used at Fermilab since 2002. Components can be graphically arranged and logically interconnected in the web-startable Project Builder. Projects can be either lightweight AJAX- and SVG-based web pages, or they can be started as Java applications. The new version was initiated as a response to discussions between the LHC Controls Group and Fermilab.

  17. NIST display colorimeter calibration facility (United States)

    Brown, Steven W.; Ohno, Yoshihiro


    A facility has been developed at the National Institute of Standards and Technology (NIST) to provide calibration services for color-measuring instruments to address the need for improving and certifying the measurement uncertainties of this type of instrument. While NIST has active programs in photometry, flat panel display metrology, and color and appearance measurements, these are the first services offered by NIST tailored to color-measuring instruments for displays. An overview of the facility, the calibration approach, and associated uncertainties are presented. Details of a new tunable colorimetric source and the development of new transfer standard instruments are discussed.

  18. Sensing Planet Earth - Chalmers' MOOCs on Earth observation (United States)

    Hobiger, Thomas; Stöhr, Christian; Murtagh, Donal; Forkman, Peter; Galle, Bo; Mellquist, Johan; Soja, Maciej; Berg, Anders; Carvajal, Gisela; Eriksson, Leif; Haas, Rüdiger


    An increasing number of universities around the globe produce and conduct Massive Open Online Courses (MOOCs). In the beginning of 2016, Chalmers University of Technology ran two MOOCs on the topic of Earth observations on the edX platform. Both four week long courses were at introductory level and covered topics related to solid Earth, atmosphere, biosphere, hydrosphere and cryosphere. It was discussed how one can measure and trace global change and use remote sensing tools for disaster monitoring. Research has attempted to assess the learners' motivations to participate in MOOCs, but there is a need for further case studies about motivations, opportunities and challenges for teachers engaging in MOOC development. In our presentation, we are going to report about the experiences gained from both the MOOC production and the actual course run from the instructors' perspective. After brief introduction to MOOCs in general and at Chalmers in particular, we share experiences and challenges of developing lecture and assessment material, the video production and coordination efforts between and within different actors involved in the production process. Further, we reflect upon the actual run of the course including course statistics and feedback from the learners. We discuss issues such as learner activation and engagement with the material, teacher-learner and student-student interaction as well as the scalability of different learning activities. Finally, we will present our lessons-learned and conclusions on the applicability of MOOCs in the field of Earth science teaching.

  19. An Overview on Data Mining of Nighttime Light Remote Sensing

    Directory of Open Access Journals (Sweden)

    LI Deren


    Full Text Available When observing the Earth from above at night, it is clear that the human settlement and major economic regions emit glorious light. At cloud-free nights, some remote sensing satellites can record visible radiance source, including city light, fishing boat light and fire, and these nighttime cloud-free images are remotely sensed nighttime light images. Different from daytime remote sensing, nighttime light remote sensing provides a unique perspective on human social activities, thus it has been widely used for spatial data mining of socioeconomic domains. Historically, researches on nighttime light remote sensing mostly focus on urban land cover and urban expansion mapping using DMSP/OLS imagery, but the nighttime light images are not the unique remote sensing source to do these works. Through decades of development of nighttime light product, the nighttime light remote sensing application has been extended to numerous interesting and scientific study domains such as econometrics, poverty estimation, light pollution, fishery and armed conflict. Among the application cases, it is surprising to see the Gross Domestic Production (GDP data can be corrected using the nighttime light data, and it is interesting to see mechanism of several diseases can be revealed by nighttime light images, while nighttime light are the unique remote sensing source to do the above works. As the nighttime light remote sensing has numerous applications, it is important to summarize the application of nighttime light remote sensing and its data mining fields. This paper introduced major satellite platform and sensors for observing nighttime light at first. Consequently, the paper summarized the progress of nighttime light remote sensing data mining in socioeconomic parameter estimation, urbanization monitoring, important event evaluation, environmental and healthy effects, fishery dynamic mapping, epidemiological research and natural gas flaring monitoring. Finally, future

  20. Solar Flare Aimed at Earth (United States)


    At the height of the solar cycle, the Sun is finally displaying some fireworks. This image from the Solar and Heliospheric Observatory (SOHO) shows a large solar flare from June 6, 2000 at 1424 Universal Time (10:24 AM Eastern Daylight Savings Time). Associated with the flare was a coronal mass ejection that sent a wave of fast moving charged particles straight towards Earth. (The image was acquired by the Extreme ultaviolet Imaging Telescope (EIT), one of 12 instruments aboard SOHO) Solar activity affects the Earth in several ways. The particles generated by flares can disrupt satellite communications and interfere with power transmission on the Earth's surface. Earth's climate is tied to the total energy emitted by the sun, cooling when the sun radiates less energy and warming when solar output increases. Solar radiation also produces ozone in the stratosphere, so total ozone levels tend to increase during the solar maximum. For more information about these solar flares and the SOHO mission, see NASA Science News or the SOHO home page. For more about the links between the sun and climate change, see Sunspots and the Solar Max. Image courtesy SOHO Extreme ultaviolet Imaging Telescope, ESA/NASA

  1. Hyperspectral remote sensing

    CERN Document Server

    Eismann, Michael


    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications that builds on the principles of material spectroscopy, radiative transfer, imaging spectrometry, and hyperspectral data processing. This book provides a holistic treatment that captures its multidisciplinary nature, emphasizing the physical principles of hyperspectral remote sensing.

  2. Remote actuated valve implant (United States)

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen


    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  3. Accelerometer method and apparatus for integral display and control functions (United States)

    Bozeman, Richard J., Jr.


    Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily

  4. Display Apple M7649Zm

    CERN Multimedia


    It was Designed for the Power Mac G4. This Apple studio display gives you edge-to-edge distortion-free images. With more than 16.7 million colors and 1,280 x 1,024 dpi resolution, you view brilliant and bright images on this Apple 17-inch monitor.

  5. Information retrieval and display system (United States)

    Groover, J. L.; King, W. L.


    Versatile command-driven data management system offers users, through simplified command language, a means of storing and searching data files, sorting data files into specified orders, performing simple or complex computations, effecting file updates, and printing or displaying output data. Commands are simple to use and flexible enough to meet most data management requirements.

  6. Crystal ball single event display

    International Nuclear Information System (INIS)

    Grosnick, D.; Gibson, A.; Allgower, C.; Alyea, J.; Argonne National Lab., IL


    The Single Event Display (SED) is a routine that is designed to provide information graphically about a triggered event within the Crystal Ball. The SED is written entirely in FORTRAN and uses the CERN-based HICZ graphing package. The primary display shows the amount of energy deposited in each of the NaI crystals on a Mercator-like projection of the crystals. Ten different shades and colors correspond to varying amounts of energy deposited within a crystal. Information about energy clusters is displayed on the crystal map by outlining in red the thirteen (or twelve) crystals contained within a cluster and assigning each cluster a number. Additional information about energy clusters is provided in a series of boxes containing useful data about the energy distribution among the crystals within the cluster. Other information shown on the event display include the event trigger type and data about π o 's and η's formed from pairs of clusters as found by the analyzer. A description of the major features is given, along with some information on how to install the SED into the analyzer

  7. GridOrbit public display

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Tabard, Aurélien; Bardram, Jakob


    We introduce GridOrbit, a public awareness display that visualizes the activity of a community grid used in a biology laboratory. This community grid executes bioin-formatics algorithms and relies on users to donate CPU cycles to the grid. The goal of GridOrbit is to create a shared awareness about...

  8. Interference Phenomenon with Mobile Displays (United States)

    Trantham, Kenneth


    A simple experiment is presented in which the spacing and geometric pattern of pixels in mobile displays is measured. The technique is based on optical constructive interference. While the experiment is another opportunity to demonstrate wave interference from a grating-like structure, this can also be used to demonstrate concepts of solid state…

  9. Synthetic vision display evaluation studies (United States)

    Regal, David M.; Whittington, David H.


    The goal of this research was to help us understand the display requirements for a synthetic vision system for the High Speed Civil Transport (HSCT). Four experiments were conducted to examine the effects of different levels of perceptual cue complexity in displays used by pilots in a flare and landing task. Increased levels of texture mapping of terrain and runway produced mixed results, including harder but shorter landings and a lower flare initiation altitude. Under higher workload conditions, increased texture resulted in an improvement in performance. An increase in familiar size cues did not result in improved performance. Only a small difference was found between displays using two patterns of high resolution texture mapping. The effects of increased perceptual cue complexity on performance was not as strong as would be predicted from the pilot's subjective reports or from related literature. A description of the role of a synthetic vision system in the High Speed Civil Transport is provide along with a literature review covering applied research related to perceptual cue usage in aircraft displays.

  10. Remote handling at LAMPF

    International Nuclear Information System (INIS)

    Grisham, D.L.; Lambert, J.E.


    Experimental area A at the Clinton P. Anderson Meson Physics Facility (LAMPF) encompasses a large area. Presently there are four experimental target cells along the main proton beam line that have become highly radioactive, thus dictating that all maintenance be performed remotely. The Monitor remote handling system was developed to perform in situ maintenance at any location within area A. Due to the complexity of experimental systems and confined space, conventional remote handling methods based upon hot cell and/or hot bay concepts are not workable. Contrary to conventional remote handling which require special tooling for each specifically planned operation, the Monitor concept is aimed at providing a totally flexible system capable of remotely performing general mechanical and electrical maintenance operations using standard tools. The Monitor system is described

  11. Solar active region display system (United States)

    Golightly, M.; Raben, V.; Weyland, M.


    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing

  12. Fusion of Remote Sensing and Non-Authoritative Data for Flood Disaster and Transportation Infrastructure Assessment (United States)

    Schnebele, Emily K.


    Flooding is the most frequently occurring natural hazard on Earth; with catastrophic, large scale floods causing immense damage to people, property, and the environment. Over the past 20 years, remote sensing has become the standard technique for flood identification because of its ability to offer synoptic coverage. Unfortunately, remote sensing…

  13. Remote Sensing Information Sciences Research Group, Santa Barbara Information Sciences Research Group, year 3 (United States)

    Estes, J. E.; Smith, T.; Star, J. L.


    Research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. The focus is on remote sensing and application for the Earth Observing System (Eos) and Space Station, including associated polar and co-orbiting platforms. The remote sensing research activities are being expanded, integrated, and extended into the areas of global science, georeferenced information systems, machine assissted information extraction from image data, and artificial intelligence. The accomplishments in these areas are examined.

  14. Display Sharing: An Alternative Paradigm (United States)

    Brown, Michael A.


    The current Johnson Space Center (JSC) Mission Control Center (MCC) Video Transport System (VTS) provides flight controllers and management the ability to meld raw video from various sources with telemetry to improve situational awareness. However, maintaining a separate infrastructure for video delivery and integration of video content with data adds significant complexity and cost to the system. When considering alternative architectures for a VTS, the current system's ability to share specific computer displays in their entirety to other locations, such as large projector systems, flight control rooms, and back supporting rooms throughout the facilities and centers must be incorporated into any new architecture. Internet Protocol (IP)-based systems also support video delivery and integration. IP-based systems generally have an advantage in terms of cost and maintainability. Although IP-based systems are versatile, the task of sharing a computer display from one workstation to another can be time consuming for an end-user and inconvenient to administer at a system level. The objective of this paper is to present a prototype display sharing enterprise solution. Display sharing is a system which delivers image sharing across the LAN while simultaneously managing bandwidth, supporting encryption, enabling recovery and resynchronization following a loss of signal, and, minimizing latency. Additional critical elements will include image scaling support, multi -sharing, ease of initial integration and configuration, integration with desktop window managers, collaboration tools, host and recipient controls. This goal of this paper is to summarize the various elements of an IP-based display sharing system that can be used in today's control center environment.

  15. NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing (United States)

    Chirayath, Ved


    We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and

  16. JTEC panel on display technologies in Japan (United States)

    Tannas, Lawrence E., Jr.; Glenn, William E.; Credelle, Thomas; Doane, J. William; Firester, Arthur H.; Thompson, Malcolm


    This report is one in a series of reports that describes research and development efforts in Japan in the area of display technologies. The following are included in this report: flat panel displays (technical findings, liquid crystal display development and production, large flat panel displays (FPD's), electroluminescent displays and plasma panels, infrastructure in Japan's FPD industry, market and projected sales, and new a-Si active matrix liquid crystal display (AMLCD) factory); materials for flat panel displays (liquid crystal materials, and light-emissive display materials); manufacturing and infrastructure of active matrix liquid crystal displays (manufacturing logistics and equipment); passive matrix liquid crystal displays (LCD basics, twisted nematics LCD's, supertwisted nematic LCD's, ferroelectric LCD's, and a comparison of passive matrix LCD technology); active matrix technology (basic active matrix technology, investment environment, amorphous silicon, polysilicon, and commercial products and prototypes); and projection displays (comparison of Japanese and U.S. display research, and technical evaluation of work).

  17. Ruggedized Full-Color Flexible OLED Display

    National Research Council Canada - National Science Library

    Hack, Michael


    .... The team comprised Universal Display Corporation, Princeton University, the University of Southern California, Penn State University, L3 Displays and Vitex Systems, and was led by Universal Display Corporation (PI: Michael Hack...

  18. Collaborative Approaches to Increase the Utility of Spatial Data for the Wildfire Management Community Through NASA's Applied Remote Sensing Training Program (United States)

    McCullum, A. J. K.; Schmidt, C.; Blevins, B.; Weber, K.; Schnase, J. L.; Carroll, M.; Prados, A. I.


    The utility of spatial data products and tools to assess risk and effectively manage wildfires has increased, highlighting the need for communicating information about these new capabilities to decision makers, resource managers, and community leaders. NASA's Applied Remote Sensing Training (ARSET) program works directly with agencies and policy makers to develop in-person and online training courses that teach end users how to access, visualize, and apply NASA Earth Science data in their profession. The expansion of ARSET into wildfire applications began in 2015 with a webinar and subsequent in-person training hosted in collaboration with Idaho State University's (ISU) GIS Training and Research Center (TReC). These trainings featured presentations from the USDA Forest Service's Remote Sensing Training and Applications Center, the Land Processes DAAC, Northwest Nazarene University, NASA Goddard Space Flight Center, and ISU's GIS TReC. The webinar focused on providing land managers, non-governmental organizations, and international management agencies with an overview of 1) remote sensing platforms for wildfire applications, 2) products for pre- and post-fire planning and assessment, 3) the use of terrain data, 4) new techniques and technologies such as Unmanned Aircraft Systems and the Soil Moisture Active Passive Mission (SMAP), and 5) the RECOVER Decision Support System. This training highlighted online tools that engage the wildfire community through collaborative monitoring and assessment efforts. Webinar attendance included 278 participants from 178 organizations in 42 countries and 33 US states. The majority of respondents (93%) from a post-webinar survey indicated they displayed improvement in their understanding of specific remote-sensing data products appropriate for their work needs. With collaborative efforts between federal, state, and local agencies and academic institutions, increased use of NASA Earth Observations may lead to improved near real

  19. A Remote and Virtual Synchrotron Beamline (United States)

    Jackson, J. M.; Alp, E.; Sturhahn, W.


    National facilities offer one-of-a-kind opportunities to apply state-of-the-art experimental techniques to the pressing scientific problems of today. Yet, few students are able to experience research projects at national facilities due to limited accessibility caused in part by limited involvement in the local academic institution, constrained working areas at the experimental stations, and/or travel costs. We present a virtual and remote beam-line for Earth science studies using nuclear resonant and inelastic x-ray scattering methods at Sector 3 of the Advanced Photon Source at Argonne National Laboratory. Off-site students have the capability of controlling their measurements via secure internet connections and webcams. Students can access a 'view only mode' for ease of interaction and safety-control. More experienced users have exclusive control of the experiment and can remotely change variables within the experimental setup. Students may also access the virtual aspects these experiments by simulating certain conditions with our newly developed software. We evaluate such a tool by giving "before" and "after" assignments to students at different levels. These levels include high-school students from the Pasadena and greater Los Angeles area school districts, undergraduate students from Caltech's SURF/MURF program, and graduate students at Caltech. We specifically target underrepresented groups. Our results thus far show that the capabilities offered by our remote and virtual beamline show improved knowledge and understanding of applying experimental-based studies at the synchrotron to solve problems in the Earth sciences.

  20. Development of customer information network system. Part 3. Development of power controller (customer side equipment) for advanced customer service and remote processing of conventional customer service; Juyoka joho network no kaihatsu. 3. Juyoka taio gyomu no enkaku shori to aratana juyoka service no tame no denryoku controller no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimitsu, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan)


    To offer remote processing of the conventional customer service and advanced customer service using information network, customer side equipment, power controller, was manufactured as a trial. For inspecting the power meter by remote processing, watt-hour meter placed outside was moved into house, to integrate an indoor distribution board consisting of a breaker for contract, earth leakage breaker and branch breaker by adding functions of communication, equipment monitoring and control and functions of display and operation. When detecting fault, installed CPU (central processing unit) or DSP (digital signal processor) stops its operation and each breaker keeps its state as before the fault. Thus, there is no problem for power supply. This system has a battery to maintain and operate at least the display function in the case of outage. Advanced customer service functions could be added without a large cost. To increase understanding of customers concerning electric power saving and electric power itself, consuming electric energy and current are displayed at each branch. Outage of the whole house can be avoided by the rapid detection and removal of the earth leakage branch line. 14 refs., 14 figs., 3 tabs.

  1. Atmospheric correction of Earth-observation remote sensing images ...

    Indian Academy of Sciences (India)

    The physics underlying the problem of solar radiation propagations that takes into account ... SART code (Spherical Atmosphere Radiation. Transfer) ... The use of Monte Carlo sampling ..... length because this soil is formed by clay and sand.

  2. Earth mortars and earth-lime renders

    Directory of Open Access Journals (Sweden)

    Maria Fernandes


    Full Text Available Earth surface coatings play a decorative architectural role, apart from their function as wall protection. In Portuguese vernacular architecture, earth mortars were usually applied on stone masonry, while earth renders and plasters were used on indoors surface coatings. Limestone exists only in certain areas of the country and consequently lime was not easily available everywhere, especially on granite and schist regions where stone masonry was a current building technique. In the central west coast of Portugal, the lime slaking procedure entailed slaking the quicklime mixed with earth (sandy soil, in a pit; the resulting mixture would then be combined in a mortar or plaster. This was also the procedure for manufactured adobes stabilized with lime. Adobe buildings with earth-lime renderings and plasters were also traditional in the same region, using lime putty and lime wash for final coat and decoration. Classic decoration on earth architecture from the 18th-19th century was in many countries a consequence of the François Cointeraux (1740-1830 manuals - Les Cahiers d'Architecture Rurale" (1793 - a French guide for earth architecture and building construction. This manual arrived to Portugal in the beginning of XIX century, but was never translated to Portuguese. References about decoration for earth houses were explained on this manual, as well as procedures about earth-lime renders and ornamentation of earth walls; in fact, these procedures are exactly the same as the ones used in adobe buildings in this Portuguese region. The specific purpose of the present paper is to show some cases of earth mortars, renders and plasters on stone buildings in Portugal and to explain the methods of producing earth-lime renders, and also to show some examples of rendering and coating with earth-lime in Portuguese adobe vernacular architecture.

  3. Man/machine interface for a nuclear cask remote handling control station: system design requirements

    International Nuclear Information System (INIS)

    Clarke, M.M.; Kreifeldt, J.G.; Draper, J.V.


    Design requirements are presented for a control station of a proposed semi-automated facility for remote handling of nuclear waste casks. Functional and operational man/machine interface: controls, displays, software format, station architecture, and work environment. In addition, some input is given to the design of remote sensing systems in the cask handling areas. 18 references, 9 figures, 12 tables

  4. Why Earth Science? (United States)

    Smith, Michael J.


    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  5. Computer networks for remote laboratories in physics and engineering (United States)

    Starks, Scott; Elizandro, David; Leiner, Barry M.; Wiskerchen, Michael


    This paper addresses a relatively new approach to scientific research, telescience, which is the conduct of scientific operations in locations remote from the site of central experimental activity. A testbed based on the concepts of telescience is being developed to ultimately enable scientific researchers on earth to conduct experiments onboard the Space Station. This system along with background materials are discussed.

  6. Identification of groundwater prospective zones by using remote ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 114; Issue 5. Identification of groundwater prospective zones by using remote sensing and geoelectrical methods in Jharia and Raniganj coalfields, Dhanbad district, Jharkhand state. Basudeo Rai A Tiwari V S Dubey. Volume 114 Issue 5 October 2005 pp 515-522 ...

  7. Techniques displayed at BNES conference

    International Nuclear Information System (INIS)

    Rippon, S.


    This article reviews the progress being made in remote visual examination systems. There is greatly enhanced optics available at present, in conjunction with robot systems which can transport the camera system inside pressure vessels. The technique offers cost savings over regular photographic surveys, and for some reactors has been accepted as a replacement, allowing electronic archiving of video images, and also allowing other inspections to be conducted simultaneously. Advances in other robot and manipulator applications are also described, along with a summary of the range of industrial concerns servicing this market at present

  8. Remote observing with NASA's Deep Space Network (United States)

    Kuiper, T. B. H.; Majid, W. A.; Martinez, S.; Garcia-Miro, C.; Rizzo, J. R.


    The Deep Space Network (DSN) communicates with spacecraft as far away as the boundary between the Solar System and the interstellar medium. To make this possible, large sensitive antennas at Canberra, Australia, Goldstone, California, and Madrid, Spain, provide for constant communication with interplanetary missions. We describe the procedures for radioastronomical observations using this network. Remote access to science monitor and control computers by authorized observers is provided by two-factor authentication through a gateway at the Jet Propulsion Laboratory (JPL) in Pasadena. To make such observations practical, we have devised schemes based on SSH tunnels and distributed computing. At the very minimum, one can use SSH tunnels and VNC (Virtual Network Computing, a remote desktop software suite) to control the science hosts within the DSN Flight Operations network. In this way we have controlled up to three telescopes simultaneously. However, X-window updates can be slow and there are issues involving incompatible screen sizes and multi-screen displays. Consequently, we are now developing SSH tunnel-based schemes in which instrument control and monitoring, and intense data processing, are done on-site by the remote DSN hosts while data manipulation and graphical display are done at the observer's host. We describe our approaches to various challenges, our experience with what worked well and lessons learned, and directions for future development.

  9. Our sustainable Earth

    International Nuclear Information System (INIS)

    Orbach, Raymond L


    Recent evidence demonstrates that the Earth has been warming monotonically since 1980. Transient to equilibrium temperature changes take centuries to develop, as oceans are slow to respond to atmospheric temperature changes. Atmospheric CO 2 concentrations, from ice core and observatory measurements, display consistent increases from historical averages, beginning in about 1880, and can be associated with the industrial revolution. The climactic consequences of this human dominated increase in atmospheric CO 2 define a geologic epoch that has been termed the 'Anthropocene.' The issue is whether this is a short term, relatively minor change in global climate, or an extreme deviation that lasts for thousands of years. Eight 'myths' that posit the former are examined in light of known data. The analysis strongly suggests the latter. In order to stabilize global temperatures, sharp reductions in CO 2 emissions are required: an 80% reduction beginning in 2050. Two examples of economically sustainable CO 2 emission reduction demonstrate that technological innovation has the potential to maintain our standard of living while stabilizing global temperatures.

  10. Reconfigurable Auditory-Visual Display (United States)

    Begault, Durand R. (Inventor); Anderson, Mark R. (Inventor); McClain, Bryan (Inventor); Miller, Joel D. (Inventor)


    System and method for visual and audible communication between a central operator and N mobile communicators (N greater than or equal to 2), including an operator transceiver and interface, configured to receive and display, for the operator, visually perceptible and audibly perceptible signals from each of the mobile communicators. The interface (1) presents an audible signal from each communicator as if the audible signal is received from a different location relative to the operator and (2) allows the operator to select, to assign priority to, and to display, the visual signals and the audible signals received from a specified communicator. Each communicator has an associated signal transmitter that is configured to transmit at least one of the visual signals and the audio signal associated with the communicator, where at least one of the signal transmitters includes at least one sensor that senses and transmits a sensor value representing a selected environmental or physiological parameter associated with the communicator.

  11. Game engines and immersive displays (United States)

    Chang, Benjamin; Destefano, Marc


    While virtual reality and digital games share many core technologies, the programming environments, toolkits, and workflows for developing games and VR environments are often distinct. VR toolkits designed for applications in visualization and simulation often have a different feature set or design philosophy than game engines, while popular game engines often lack support for VR hardware. Extending a game engine to support systems such as the CAVE gives developers a unified development environment and the ability to easily port projects, but involves challenges beyond just adding stereo 3D visuals. In this paper we outline the issues involved in adapting a game engine for use with an immersive display system including stereoscopy, tracking, and clustering, and present example implementation details using Unity3D. We discuss application development and workflow approaches including camera management, rendering synchronization, GUI design, and issues specific to Unity3D, and present examples of projects created for a multi-wall, clustered, stereoscopic display.

  12. The virtual environment display system (United States)

    Mcgreevy, Michael W.


    Virtual environment technology is a display and control technology that can surround a person in an interactive computer generated or computer mediated virtual environment. It has evolved at NASA-Ames since 1984 to serve NASA's missions and goals. The exciting potential of this technology, sometimes called Virtual Reality, Artificial Reality, or Cyberspace, has been recognized recently by the popular media, industry, academia, and government organizations. Much research and development will be necessary to bring it to fruition.

  13. Wearable Laser Pointer Versus Head-mounted Display for Tele-guidance Applications?

    DEFF Research Database (Denmark)

    Jalaliniya, Shahram; Pederson, Thomas; Houben, Steven


    Wearable camera and display technology allow remote collaborators to guide activities performed by human agents located elsewhere. This kind of technology augments the range of human perception and actuation. In this paper we quantitatively determine if wearable laser pointers are viable...

  14. High-quality remote interactive imaging in the operating theatre (United States)

    Grimstead, Ian J.; Avis, Nick J.; Evans, Peter L.; Bocca, Alan


    We present a high-quality display system that enables the remote access within an operating theatre of high-end medical imaging and surgical planning software. Currently, surgeons often use printouts from such software for reference during surgery; our system enables surgeons to access and review patient data in a sterile environment, viewing real-time renderings of MRI & CT data as required. Once calibrated, our system displays shades of grey in Operating Room lighting conditions (removing any gamma correction artefacts). Our system does not require any expensive display hardware, is unobtrusive to the remote workstation and works with any application without requiring additional software licenses. To extend the native 256 levels of grey supported by a standard LCD monitor, we have used the concept of "PseudoGrey" where slightly off-white shades of grey are used to extend the intensity range from 256 to 1,785 shades of grey. Remote access is facilitated by a customized version of UltraVNC, which corrects remote shades of grey for display in the Operating Room. The system is successfully deployed at Morriston Hospital, Swansea, UK, and is in daily use during Maxillofacial surgery. More formal user trials and quantitative assessments are being planned for the future.

  15. Sensing our Environment: Remote sensing in a physics classroom (United States)

    Isaacson, Sivan; Schüttler, Tobias; Cohen-Zada, Aviv L.; Blumberg, Dan G.; Girwidz, Raimund; Maman, Shimrit


    Remote sensing is defined as data acquisition of an object, deprived physical contact. Fundamentally, most remote sensing applications are referred to as the use of satellite- or aircraft-based sensor technologies to detect and classify objects mainly on Earth or other planets. In the last years there have been efforts to bring the important subject of remote sensing into schools, however, most of these attempts focused on geography disciplines - restricting to the applications of remote sensing and to a less extent the technique itself and the physics behind it. Optical remote sensing is based on physical principles and technical devices, which are very meaningful from a theoretical point of view as well as for "hands-on" teaching. Some main subjects are radiation, atom and molecular physics, spectroscopy, as well as optics and the semiconductor technology used in modern digital cameras. Thus two objectives were outlined for this project: 1) to investigate the possibilities of using remote sensing techniques in physics teaching, and 2) to identify its impact on pupil's interest in the field of natural sciences. This joint project of the DLR_School_Lab, Oberpfaffenhofen of the German Aerospace Center (DLR) and the Earth and Planetary Image Facility (EPIF) at BGU, was conducted in 2016. Thirty teenagers (ages 16-18) participated in the project and were exposed to the cutting edge methods of earth observation. The pupils on both sides participated in the project voluntarily, knowing that at least some of the project's work had to be done in their leisure time. The pupil's project started with a day at EPIF and DLR respectively, where the project task was explained to the participants and an introduction to remote sensing of vegetation was given. This was realized in lectures and in experimental workshops. During the following two months both groups took several measurements with modern optical remote sensing systems in their home region with a special focus on flora

  16. Earth-Affecting Solar Causes Observatory (EASCO): a mission at the Sun-Earth L5

    DEFF Research Database (Denmark)

    Gopalswamy, Nat; Davila, Joseph M.; Auchère, Frédéric


    Observatory (STEREO) missions, but these missions lacked some key measurements: STEREO did not have a magnetograph; SOHO did not have in-situ magnetometer. SOHO and other imagers such as the Solar Mass Ejection Imager (SMEI) located on the Sun-Earth line are also not well-suited to measure Earth-directed CMEs....... The Earth-Affecting Solar Causes Observatory (EASCO) is a proposed mission to be located at the Sun-Earth L5 that overcomes these deficiencies. The mission concept was recently studied at the Mission Design Laboratory (MDL), NASA Goddard Space Flight Center, to see how the mission can be implemented....... The study found that the scientific payload (seven remote-sensing and three in-situ instruments) can be readily accommodated and can be launched using an intermediate size vehicle; a hybrid propulsion system consisting of a Xenon ion thruster and hydrazine has been found to be adequate to place the payload...

  17. Remote sensing applications for the dam industry

    Energy Technology Data Exchange (ETDEWEB)

    Pryse-Phillips, A.; Woolgar, R. [Hatch Ltd., St. John' s, NL (Canada); Puestow, T.; Warren, S. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada). C-Core; Rogers, K. [Nalcor Energy, St. John' s, NL (Canada); Khan, A. [Government of Newfoundland and Labrador, St. Johns, NL (Canada)


    There has been an increase in the earth observation missions providing satellite imagery for operational monitoring applications. This technique has been found to be especially useful for the surveillance of large, remote areas, which is challenging to achieve in a cost-effective manner by conventional field-based or aerial means. This paper discussed the utility of satellite-based monitoring for different applications relevant to hydrology and water resources management. Emphasis was placed on the monitoring of river ice covers in near, real-time and water resources management. The paper first outlined river ice monitoring using remote sensing on the Lower Churchill River. The benefits of remote sensing over traditional survey methods for the dam industry was then outlined. Satellite image acquisition and interpretation for the Churchill River was then presented. Several images were offered. Watershed physiographic characterization using remote sensing was also described. It was concluded that satellite imagery proved to be a useful tool to develop physiographic characteristics when conducting rainfall-runoff modelling. 3 refs., 1 tab., 11 figs.

  18. Rare earths: harvesting basic research for technology

    International Nuclear Information System (INIS)

    Jagatap, B.N.


    In recent years, rare earths are increasingly becoming a versatile platform for basic research that presents enormous technological potentials. A variety of nano-sized inorganic matrices varying from oxides, phosphates, gallates and aluminates, tungstates, stannates, vanadates to fluorides doped with different lanthanide ions have been synthesized and their optical properties have been investigated in the Chemistry Group, BARC. Another interesting application is laser cooling of solids using rare earth doped glasses with potential applications in remote cooling of electronic devices. Combining the luminescence properties of rare earths with photonic crystals is yet another potent area with wide ranging applications. In this presentation we provide an overview of these developments with examples from the R and D programs of the Chemistry Group, BARC

  19. Utah's Mobile Earth Science Outreach Vehicle (United States)

    Schoessow, F. S.; Christian, L.


    Students at Utah State University's College of Natural Resources have engineered the first mobile Earth Science outreach platform capable of delivering high-tech and interactive solar-powered educational resources to the traditionally-underserved, remote communities of rural Utah. By retrofitting and modifying an industrial box-truck, this project effectively created a highly mobile and energy independent "school in a box" which seeks to help change the way that Earth science is communicated, eliminate traditional barriers, and increase science accessibility - both physically and conceptually. The project's education platform is focused on developing a more effective, sustainable, and engaging platform for presenting Earth science outreach curricula to community members of all ages in an engaging fashion. Furthermore, this project affords university students the opportunity to demonstrate innovative science communication techniques, translating vital university research into educational outreach operations aimed at doing real, measurable good for local communities.

  20. Teachers as Learners Examine Land-Use Change in the Local Environment Using Remote Sensing Imagery (United States)

    Klagges, Hope; Harbor, Jon; Shepardson, Daniel; Bell, Cheryl; Meyer, Jason; Burgess, Willie; Leuenberger, Ted


    In environmental science education, learners are exposed to earth phenomena that occur across a wide range of spatial and temporal scales. However, it is challenging for learners to grasp the significance of spatial and temporal change because they have limited perspectives of the Earth. Within the scientific community, remotely sensed imagery is…

  1. Upgraded airborne scanner for commercial remote sensing (United States)

    Chang, Sheng-Huei; Rubin, Tod D.


    Traditional commercial remote sensing has focused on the geologic market, with primary focus on mineral identification and mapping in the visible through short-wave infrared spectral regions (0.4 to 2.4 microns). Commercial remote sensing users now demand airborne scanning capabilities spanning the entire wavelength range from ultraviolet through thermal infrared (0.3 to 12 microns). This spectral range enables detection, identification, and mapping of objects and liquids on the earth's surface and gases in the air. Applications requiring this range of wavelengths include detection and mapping of oil spills, soil and water contamination, stressed vegetation, and renewable and non-renewable natural resources, and also change detection, natural hazard mitigation, emergency response, agricultural management, and urban planning. GER has designed and built a configurable scanner that acquires high resolution images in 63 selected wave bands in this broad wavelength range.

  2. Remote Assessment of Lunar Resource Potential (United States)

    Taylor, G. Jeffrey


    Assessing the resource potential of the lunar surface requires a well-planned program to determine the chemical and mineralogical composition of the Moon's surface at a range of scales. The exploration program must include remote sensing measurements (from both Earth's surface and lunar orbit), robotic in situ analysis of specific places, and eventually, human field work by trained geologists. Remote sensing data is discussed. Resource assessment requires some idea of what resources will be needed. Studies thus far have concentrated on oxygen and hydrogen production for propellant and life support, He-3 for export as fuel for nuclear fusion reactors, and use of bulk regolith for shielding and construction materials. The measurement requirements for assessing these resources are given and discussed briefly.

  3. Ten ways remote sensing can contribute to conservation (United States)

    Rose, Robert A.; Byler, Dirck; Eastman, J. Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A.; Laporte, Nadine; Leidner, Allison K.; Leimgruber, Peter; Morisette, Jeffrey T.; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C.; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara


    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners’ use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to

  4. Ten ways remote sensing can contribute to conservation. (United States)

    Rose, Robert A; Byler, Dirck; Eastman, J Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A; Laporte, Nadine; Leidner, Allison; Leimgruber, Peter; Morisette, Jeffrey; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara


    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to

  5. Remote Sensing Information Gateway (United States)

    Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.

  6. Remote handling equipment

    International Nuclear Information System (INIS)

    Clement, G.


    After a definition of intervention, problems encountered for working in an adverse environment are briefly analyzed for development of various remote handling equipments. Some examples of existing equipments are given [fr

  7. Hyperspectral remote sensing

    National Research Council Canada - National Science Library

    Eismann, Michael Theodore


    ..., and hyperspectral data processing. While there are many resources that suitably cover these areas individually and focus on specific aspects of the hyperspectral remote sensing field, this book provides a holistic treatment...

  8. The remote control system

    International Nuclear Information System (INIS)

    Jansweijer, P.P.M.


    The remote-control system is applied in order to control various signals in the car of the spectrometer at distance. The construction (hardware and software) as well as the operation of the system is described. (author). 20 figs

  9. Non-Topographic Space-Based Laser Remote Sensing (United States)

    Yu, Anthony W.; Abshire, James B.; Riris, Haris; Purucker, Michael; Janches, Diego; Getty, Stephanie; Krainak, Michael A.; Stephen, Mark A.; Chen, Jeffrey R.; Li, Steve X.; hide


    In the past 20+ years, NASA Goddard Space Flight Center (GSFC) has successfully developed and flown lidars for mapping of Mars, the Earth, Mercury and the Moon. As laser and electro-optics technologies expand and mature, more sophisticated instruments that once were thought to be too complicated for space are being considered and developed. We will present progress on several new, space-based laser instruments that are being developed at GSFC. These include lidars for remote sensing of carbon dioxide and methane on Earth for carbon cycle and global climate change; sodium resonance fluorescence lidar to measure environmental parameters of the middle and upper atmosphere on Earth and Mars and a wind lidar for Mars orbit; in situ laser instruments include remote and in-situ measurements of the magnetic fields; and a time-of-flight mass spectrometer to study the diversity and structure of nonvolatile organics in solid samples on missions to outer planetary satellites and small bodies.

  10. Australian Children's Understanding of Display Rules (United States)

    Choy, Grace


    Cultural display rules govern the manifestation of emotional expressions. In compliance with display rules, the facial expressions displayed (i.e. apparent emotion) may be incongruent with the emotion experienced (i.e. real emotion). This study investigates Australian Caucasian children's understanding of display rules. A sample of 80 four year…

  11. The case for transparent depth display

    NARCIS (Netherlands)

    Kooi, F.L.


    Purpose: The continuing developments in display technology have resulted in the ability to present increasing amounts of data on computer displays. One of the coming break-throughs is generally believed to be the introduction of '3-D displays': displays with a true sense of depth. Though these types

  12. Accessing Remote Knowledge

    DEFF Research Database (Denmark)

    Maskell, Peter


    young, single-site firms search for distant sources of complementary competences. The discussion is positioned within a comprehensive framework that allows a systematic investigation of the approaches available to firms engaged in globally extended learning. By utilizing the distinction between problem...... awareness (what remote knowledge is needed?) and source awareness (where does this knowledge reside?) the article explores the relative merits and inherent limitations of pipelines, listening posts, crowdsourcing and trade fairs to acquire knowledge and solutions from geographically and relationally remote...

  13. Remote maintenance development

    International Nuclear Information System (INIS)

    Zook, C.R.


    The concept of remote maintenance as it pertains to nuclear fuel fabrication facilities is quite unique. The future may require completely remote facilities where maintenance will be performed by hybrid manipulators/robots. These units will be capable of being preprogrammed for automatic operation or manually operated with the operator becoming a part of the closed loop control system. These robots will mesh television, computer control, and direct force feedback manual control in a usable new concept of robotics

  14. Evaluating the Use of Remote Sensing Data in the U.S. Agency for International Development Famine Early Warning Systems Network (United States)

    Brown, Molly Elizabeth; Brickley, Elizabeth B


    The U.S. Agency for International Development (USAID)'s Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to food insecurity emergencies on three continents. FEWS NET uses satellite remote sensing and ground observations of rainfall and vegetation in order to provide information on drought, floods, and other extreme weather events to decision makers. Previous research has presented results from a professional review questionnaire with FEWS NET expert end-users whose focus was to elicit Earth observation requirements. The review provided FEWS NET operational requirements and assessed the usefulness of additional remote sensing data. We analyzed 1342 food security update reports from FEWS NET. The reports consider the biophysical, socioeconomic, and contextual influences on the food security in 17 countries in Africa from 2000 to 2009. The objective was to evaluate the use of remote sensing information in comparison with other important factors in the evaluation of food security crises. The results show that all 17 countries use rainfall information, agricultural production statistics, food prices, and food access parameters in their analysis of food security problems. The reports display large-scale patterns that are strongly related to history of the FEWS NET program in each country. We found that rainfall data were used 84% of the time, remote sensing of vegetation 28% of the time, and gridded crop models 10% of the time, reflecting the length of use of each product in the regions. More investment is needed in training personnel on remote sensing products to improve use of data products throughout the FEWS NET system.

  15. Lunar remote sensing and measurements (United States)

    Moore, H.J.; Boyce, J.M.; Schaber, G.G.; Scott, D.H.


    Remote sensing and measurements of the Moon from Apollo orbiting spacecraft and Earth form a basis for extrapolation of Apollo surface data to regions of the Moon where manned and unmanned spacecraft have not been and may be used to discover target regions for future lunar exploration which will produce the highest scientific yields. Orbital remote sensing and measurements discussed include (1) relative ages and inferred absolute ages, (2) gravity, (3) magnetism, (4) chemical composition, and (5) reflection of radar waves (bistatic). Earth-based remote sensing and measurements discussed include (1) reflection of sunlight, (2) reflection and scattering of radar waves, and (3) infrared eclipse temperatures. Photographs from the Apollo missions, Lunar Orbiters, and other sources provide a fundamental source of data on the geology and topography of the Moon and a basis for comparing, correlating, and testing the remote sensing and measurements. Relative ages obtained from crater statistics and then empirically correlated with absolute ages indicate that significant lunar volcanism continued to 2.5 b.y. (billion years) ago-some 600 m.y. (million years) after the youngest volcanic rocks sampled by Apollo-and that intensive bombardment of the Moon occurred in the interval of 3.84 to 3.9 b.y. ago. Estimated fluxes of crater-producing objects during the last 50 m.y. agree fairly well with fluxes measured by the Apollo passive seismic stations. Gravity measurements obtained by observing orbiting spacecraft reveal that mare basins have mass concentrations and that the volume of material ejected from the Orientale basin is near 2 to 5 million km 3 depending on whether there has or has not been isostatic compensation, little or none of which has occurred since 3.84 b.y. ago. Isostatic compensation may have occurred in some of the old large lunar basins, but more data are needed to prove it. Steady fields of remanent magnetism were detected by the Apollo 15 and 16 subsatellites

  16. JEarth | Analytical Remote Sensing Imagery Application for Researchers and Practitioners (United States)

    Prashad, L.; Christensen, P. R.; Anwar, S.; Dickenshied, S.; Engle, E.; Noss, D.


    The ASU 100 Cities Project and the ASU Mars Space Flight Facility (MSFF) present JEarth, a set of analytical Geographic Information System (GIS) tools for viewing and processing Earth-based remote sensing imagery and vectors, including high-resolution and hyperspectral imagery such as TIMS and MASTER. JEarth is useful for a wide range of researchers and practitioners who need to access, view, and analyze remote sensing imagery. JEarth stems from existing MSFF applications: the Java application JMars (Java Mission-planning and Analysis for Remote Sensing) for viewing and analyzing remote sensing imagery and THMPROC, a web-based, interactive tool for processing imagery to create band combinations, stretches, and other imagery products. JEarth users can run the application on their desktops by installing Java-based open source software on Windows, Mac, or Linux operating systems.

  17. Use of Remote Sensing for Decision Support in Africa (United States)

    Policelli, Frederick S.


    Over the past 30 years, the scientific community has learned a great deal about the Earth as an integrated system. Much of this research has been enabled by the development of remote sensing technologies and their operation from space. Decision makers in many nations have begun to make use of remote sensing data for resource management, policy making, and sustainable development planning. This paper makes an attempt to provide a survey of the current state of the requirements and use of remote sensing for sustainable development in Africa. This activity has shown that there are not many climate data ready decision support tools already functioning in Africa. There are, however, endusers with known requirements who could benefit from remote sensing data.

  18. The Lifeworld Earth and a Modelled Earth (United States)

    Juuti, Kalle


    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  19. Nuclear Medicine Image Display. Chapter 14

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, H. [Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna (Austria)


    The final step in a medical imaging procedure is to display the image(s) on a suitable display system where it is presented to the medical specialist for diagnostic interpretation. The display of hard copy images on X ray film or photographic film has largely been replaced today by soft copy image display systems with cathode ray tube (CRT) or liquid crystal display (LCD) monitors as the image rendering device. Soft copy display requires a high quality display monitor and a certain amount of image processing to optimize the image both with respect to the properties of the display device and to some psychophysiological properties of the human visual system. A soft copy display system, therefore, consists of a display workstation providing some basic image processing functions and the display monitor as the intrinsic display device. Display devices of lower quality may be used during intermediate steps of the acquisition and analysis of a patient study. Display monitors with a quality suitable for diagnostic reading by the specialist medical doctor are called primary devices, also known as diagnostic devices. Monitors with lower quality but good enough to be used for positioning, processing of studies, presentation of images in the wards, etc. are referred to as secondary devices or clinical devices. Nuclear medicine images can be adequately displayed even for diagnostic purposes on secondary devices. However, the increasing use of X ray images on which to report jointly with images from nuclear medicine studies, such as those generated by dual modality imaging, notably by positron emission tomography (PET)/computed tomography (CT) and single photon emission computed tomography (SPECT)/CT, requires display devices capable of visualizing high resolution grey scale images at diagnostic quality, i.e. primary display devices. Both grey scale and colour display devices are used, the latter playing an important role in the display of processed nuclear medicine images and

  20. Nuclear Medicine Image Display. Chapter 14

    International Nuclear Information System (INIS)

    Bergmann, H.


    The final step in a medical imaging procedure is to display the image(s) on a suitable display system where it is presented to the medical specialist for diagnostic interpretation. The display of hard copy images on X ray film or photographic film has largely been replaced today by soft copy image display systems with cathode ray tube (CRT) or liquid crystal display (LCD) monitors as the image rendering device. Soft copy display requires a high quality display monitor and a certain amount of image processing to optimize the image both with respect to the properties of the display device and to some psychophysiological properties of the human visual system. A soft copy display system, therefore, consists of a display workstation providing some basic image processing functions and the display monitor as the intrinsic display device. Display devices of lower quality may be used during intermediate steps of the acquisition and analysis of a patient study. Display monitors with a quality suitable for diagnostic reading by the specialist medical doctor are called primary devices, also known as diagnostic devices. Monitors with lower quality but good enough to be used for positioning, processing of studies, presentation of images in the wards, etc. are referred to as secondary devices or clinical devices. Nuclear medicine images can be adequately displayed even for diagnostic purposes on secondary devices. However, the increasing use of X ray images on which to report jointly with images from nuclear medicine studies, such as those generated by dual modality imaging, notably by positron emission tomography (PET)/computed tomography (CT) and single photon emission computed tomography (SPECT)/CT, requires display devices capable of visualizing high resolution grey scale images at diagnostic quality, i.e. primary display devices. Both grey scale and colour display devices are used, the latter playing an important role in the display of processed nuclear medicine images and

  1. Display of nuclear medicine imaging studies

    International Nuclear Information System (INIS)

    Singh, B.; Kataria, S.K.; Samuel, A.M.


    Nuclear medicine imaging studies involve evaluation of a large amount of image data. Digital signal processing techniques have introduced processing algorithms that increase the information content of the display. Nuclear medicine imaging studies require interactive selection of suitable form of display and pre-display processing. Static imaging study requires pre-display processing to detect focal defects. Point operations (histogram modification) along with zoom and capability to display more than one image in one screen is essential. This album mode of display is also applicable to dynamic, MUGA and SPECT data. Isometric display or 3-D graph of the image data is helpful in some cases e.g. point spread function, flood field data. Cine display is used on a sequence of images e.g. dynamic, MUGA and SPECT imaging studies -to assess the spatial movement of tracer with time. Following methods are used at the investigator's discretion for inspection of the 3-D object. 1) Display of orthogonal projections, 2) Display of album of user selected coronal/ sagital/ transverse orthogonal slices, 3) Display of three orthogonal slices through user selected point, 4) Display of a set of orthogonal slices generated in the user-selected volume, 5) Generation and display of 3-D shaded surface. 6) Generation of volume data and display along with the 3-D shaded surface, 7) Side by side display orthogonal slices of two 3-D objects. Displaying a set of two-dimensional slices of a 3-D reconstructed object through shows all the defects but lacks the 3-D perspective. Display of shaded surface lacks the ability to show the embedded defects. Volume display -combining the 3-D surface and gray level volume data is perhaps the best form of display. This report describes these forms of display along with the theory. (author)

  2. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.


    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  3. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.


    Rare earth germanates attract close attention both as an independent class of compounds and analogues of a widely spread class of natural and synthetic minerals. The methods of rare earth germanate synthesis (solid-phase, hydrothermal) are considered. Systems on the basis of germanium and rare earth oxides, phase diagrams, phase transformations are studied. Using different chemical analysese the processes of rare earth germanate formation are investigated. IR spectra of alkali and rare earth metal germanates are presented, their comparative analysis being carried out. Crystal structures of the compounds, lattice parameters are studied. Fields of possible application of rare earth germanates are shown

  4. LMDS Lightweight Modular Display System. (United States)


    based on standard functions. This means that the cost to produce a particular display function can be met in the most economical fashion and at the same...not mean that the NTDS interface would be eliminated. What is anticipated is the use of ETHERNET at a low level of system interface, ie internal to...GENERATOR dSYMBOL GEN eCOMMUNICATION 3-2 The architecture of the unit’s (fig 3-4) input circuitry is based on a video table look-up ROM. The function

  5. Displaying Annotations for Digitised Globes (United States)

    Gede, Mátyás; Farbinger, Anna


    Thanks to the efforts of the various globe digitising projects, nowadays there are plenty of old globes that can be examined as 3D models on the computer screen. These globes usually contain a lot of interesting details that an average observer would not entirely discover for the first time. The authors developed a website that can display annotations for such digitised globes. These annotations help observers of the globe to discover all the important, interesting details. Annotations consist of a plain text title, a HTML formatted descriptive text and a corresponding polygon and are stored in KML format. The website is powered by the Cesium virtual globe engine.

  6. DP: Parameter Display Page Program

    International Nuclear Information System (INIS)

    Anderson, M.


    The Parameter Display Page program (DP) is a Motif/X11-based program to allow easily configured, dynamic device and process variable monitoring and manipulation in the EPICS environment. DP provides a tabular data format for interactive viewing and manipulation of device and process variable statistics, as well as formatted PostScript output to files and printers. DP understands and operates in two (unfortunately disjoint at this time) namespaces in the EPICS environment ''devices'' and ''process variables''. The higher level namespace of devices includes Composite and Atomic Devices registered via the Device Access server; the lower level (flat) namespace is that of normal Process Variables accessible via Channel Access

  7. Display of charged ionizing particles

    International Nuclear Information System (INIS)

    Cano S, D.; Ortiz A, M. D.; Amarillas S, L. E.; Vega C, H. R.


    The human being is exposed to sources of ionizing and non-ionizing radiation, both of natural or anthropogenic origin. None of these, except non-ionizing such as visible light and infrared radiation, can be detected by the sense of sight and touch respectively. The sun emits charged particles with speeds close to the light that interact with the atoms of the gases present in the atmosphere, producing nuclear reactions that in turn produce other particles that reach the surface of the Earth and reach the living beings. On Earth there are natural radioisotopes that, when they disintegrate, emit ionizing radiation that contributes to the dose we receive. A very old system that allows the visualization of the trajectories of the charged ionizing particles is the Fog Chamber that uses a saturated steam that when crossed by particles with mass and charge, as alpha and beta particles produce condensation centers along its path leaves a trace that can be seen. The objective of this work was to build a fog chamber using easily accessible materials. To measure the functioning of the fog chamber, cosmic rays were measured, as well as a source of natural metal uranium. The fog chamber allowed seeing the presence of traces in alcohol vapor that are produced in a random way. Introducing the uranium foil inside the fog chamber, traces of alpha particles whose energy varies from 4 to 5 MeV were observed. (Author)

  8. Remote Arrhythmia Monitoring System Developed (United States)

    York, David W.; Mackin, Michael A.; Liszka, Kathy J.; Lichter, Michael J.


    Telemedicine is taking a step forward with the efforts of team members from the NASA Glenn Research Center, the MetroHealth campus of Case Western University, and the University of Akron. The Arrhythmia Monitoring System is a completed, working test bed developed at Glenn that collects real-time electrocardiogram (ECG) signals from a mobile or homebound patient, combines these signals with global positioning system (GPS) location data, and transmits them to a remote station for display and monitoring. Approximately 300,000 Americans die every year from sudden heart attacks, which are arrhythmia cases. However, not all patients identified at risk for arrhythmias can be monitored continuously because of technological and economical limitations. Such patients, who are at moderate risk of arrhythmias, would benefit from technology that would permit long-term continuous monitoring of electrical cardiac rhythms outside the hospital environment. Embedded Web Technology developed at Glenn to remotely command and collect data from embedded systems using Web technology is the catalyst for this new telemetry system (ref. 1). In the end-to-end system architecture, ECG signals are collected from a patient using an event recorder and are transmitted to a handheld personal digital assistant (PDA) using Bluetooth, a short-range wireless technology. The PDA concurrently tracks the patient's location via a connection to a GPS receiver. A long distance link is established via a standard Internet connection over a 2.5-generation Global System for Mobile Communications/General Packet Radio Service (GSM/GPRS)1 cellular, wireless infrastructure. Then, the digital signal is transmitted to a call center for monitoring by medical professionals.

  9. Nanobody-Displaying Flagellar Nanotubes. (United States)

    Klein, Ágnes; Kovács, Mátyás; Muskotál, Adél; Jankovics, Hajnalka; Tóth, Balázs; Pósfai, Mihály; Vonderviszt, Ferenc


    In this work we addressed the problem how to fabricate self-assembling tubular nanostructures displaying target recognition functionalities. Bacterial flagellar filaments, composed of thousands of flagellin subunits, were used as scaffolds to display single-domain antibodies (nanobodies) on their surface. As a representative example, an anti-GFP nanobody was successfully inserted into the middle part of flagellin replacing the hypervariable surface-exposed D3 domain. A novel procedure was developed to select appropriate linkers required for functional internal insertion. Linkers of various lengths and conformational properties were chosen from a linker database and they were randomly attached to both ends of an anti-GFP nanobody to facilitate insertion. Functional fusion constructs capable of forming filaments on the surface of flagellin-deficient host cells were selected by magnetic microparticles covered by target GFP molecules and appropriate linkers were identified. TEM studies revealed that short filaments of 2-900 nm were formed on the cell surface. ITC and fluorescent measurements demonstrated that the fusion protein exhibited high binding affinity towards GFP. Our approach allows the development of functionalized flagellar nanotubes against a variety of important target molecules offering potential applications in biosensorics and bio-nanotechnology.

  10. Reactor power peaking information display

    International Nuclear Information System (INIS)

    Book, T.L.; Kochendarfer, R.A.


    This patent describes a system for monitoring operating conditions within a nuclear reactor. The system consists of a method for measuring the operating parameters within the nuclear reactor, including the position of axial power shaping rods and regulating control rod. It also includes a method for determining from the operating parameters the operating limits before a power peaking condition exists within the nuclear reactor, and a method for displaying the operating limits which consists of a visual display permitting the continuous monitoring of the operating conditions within the nuclear reactor as a graph of the shaping rod position vs the regulating rod position having a permissible area and a restricted area. The permissible area is further divided into a recommended operating area for steady state operation and a cursor located on the graph to indicate the present operating condition of the nuclear reactor to allow an operator to view any need for corrective action based on the movement of the cursor out of the recommended operating area and to take any corrective transient action within the permissible area

  11. Optical display for radar sensing (United States)

    Szu, Harold; Hsu, Charles; Willey, Jefferson; Landa, Joseph; Hsieh, Minder; Larsen, Louis V.; Krzywicki, Alan T.; Tran, Binh Q.; Hoekstra, Philip; Dillard, John T.; Krapels, Keith A.; Wardlaw, Michael; Chu, Kai-Dee


    Boltzmann headstone S = kB Log W turns out to be the Rosette stone for Greek physics translation optical display of the microwave sensing hieroglyphics. The LHS is the molecular entropy S measuring the degree of uniformity scattering off the sensing cross sections. The RHS is the inverse relationship (equation) predicting the Planck radiation spectral distribution parameterized by the Kelvin temperature T. Use is made of the conservation energy law of the heat capacity of Reservoir (RV) change T Δ S = -ΔE equals to the internal energy change of black box (bb) subsystem. Moreover, an irreversible thermodynamics Δ S > 0 for collision mixing toward totally larger uniformity of heat death, asserted by Boltzmann, that derived the so-called Maxwell-Boltzmann canonical probability. Given the zero boundary condition black box, Planck solved a discrete standing wave eigenstates (equation). Together with the canonical partition function (equation) an average ensemble average of all possible internal energy yielded the celebrated Planck radiation spectral (equation) where the density of states (equation). In summary, given the multispectral sensing data (equation), we applied Lagrange Constraint Neural Network (LCNN) to solve the Blind Sources Separation (BSS) for a set of equivalent bb target temperatures. From the measurements of specific value, slopes and shapes we can fit a set of Kelvin temperatures T's for each bb targets. As a result, we could apply the analytical continuation for each entropy sources along the temperature-unique Planck spectral curves always toward the RGB color temperature display for any sensing probing frequency.

  12. Simulated monitor display for CCTV

    International Nuclear Information System (INIS)

    Steele, B.J.


    Two computer programs have been developed which generate a two-dimensional graphic perspective of the video output produced by a Closed Circuit Television (CCTV) camera. Both programs were primarily written to produce a graphic display simulating the field-of-view (FOV) of a perimeter assessment system as seen on a CCTV monitor. The original program was developed for use on a Tektronix 4054 desktop computer; however, the usefulness of this graphic display program led to the development of a similar program for a Hewlett-Packard 9845B desktop computer. After entry of various input parameters, such as, camera lens and orientation, the programs automatically calculate and graphically plot the locations of various items, e.g., fences, an assessment zone, running men, and intrusion detection sensors. Numerous special effects can be generated to simulate such things as roads, interior walls, or sides of buildings. Other objects can be digitized and entered into permanent memory similar to the running men. With this type of simulated monitor perspective, proposed camera locations with respect to fences and a particular assessment zone can be rapidly evaluated without the costly time delays and expenditures associated with field evaluation

  13. NASA Earth Exchange (NEX) (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  14. Revolutionizing Remote Exploration with ANTS (United States)

    Clark, P. E.; Rilee, M. L.; Curtis, S.; Truszkowski, W.


    We are developing the Autonomous Nano-Technology Swarm (ANTS) architecture based on an insect colony analogue for the cost-effective, efficient, systematic survey of remote or inaccessible areas with multiple object targets, including planetary surface, marine, airborne, and space environments. The mission context is the exploration in the 2020s of the most compelling remaining targets in the solar system: main belt asteroids. Main belt asteroids harbor important clues to Solar System origins and evolution which are central to NASA's goals in Space Science. Asteroids are smaller than planets, but their number is far greater, and their combined surface area likely dwarfs the Earth's. An asteroid survey will dramatically increase our understanding of the local resources available for the Human Exploration and Development of Space. During the mission composition, shape, gravity, and orbit parameters could be returned to Earth for perhaps several thousand asteroids. A survey of this area will rival the great explorations that encircled this globe, opened up the New World, and laid the groundwork for the progress and challenges of the last centuries. The ANTS architecture for a main belt survey consists of a swarm of as many as a thousand or more highly specialized pico-spacecraft that form teams to survey as many as one hundred asteroids a month. Multi-level autonomy is critical for ANTS and the objective of the proposed study is to work through the implications and constraints this entails. ANTS couples biologically inspired autonomic control for basic functions to higher level artificial intelligence that together enable individual spacecraft to operate as specialized, cooperative, social agents. This revolutionary approach postulates highly advanced, but familiar, components integrated and operated in a way that uniquely transcends any evolutionary extrapolation of existing trends and enables thousand-spacecraft missions.

  15. Measuring the quality of public open space using Google Earth. (United States)

    Taylor, Bronwen T; Fernando, Peter; Bauman, Adrian E; Williamson, Anna; Craig, Jonathan C; Redman, Sally


    Proximity to public open space, such as parks and other green spaces, has considerable health benefits, and people have been shown to be more likely to use such space for physical activity if it is of high quality. This paper describes a new remote-assessment approach that makes use of Google Earth Pro (the free version of this program is Google Earth) to provide rapid and inexpensive measurement of the quality of public open space. The aim of the study was to assess the correlation between assessments of the quality of public open space using (1) the remote method (making use of Google Earth Pro) and (2) direct observation with a well-established measure of quality, the Public Open Space Tool (POST). Fifty parks selected from the southwest part of Sydney, Australia, were assessed in 2009 with the remote method (using Google Earth Pro), and scores were compared with those obtained from direct observation of the same parks using POST. The time taken to conduct the assessments using each method was also recorded. Raters for each method were blind to scores obtained from using the other method. Analyses were conducted in 2009. The Spearman correlation coefficient between the quality scores obtained for the 50 parks using the remote method and direct observation was 0.9 (pspaces without the need for in-person visits, dramatically reducing the time required for environmental audits of public open space. Copyright © 2011 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Data Mining in Earth System Science (DMESS 2011) (United States)

    Forrest M. Hoffman; J. Walter Larson; Richard Tran Mills; Bhorn-Gustaf Brooks; Auroop R. Ganguly; William Hargrove; et al


    From field-scale measurements to global climate simulations and remote sensing, the growing body of very large and long time series Earth science data are increasingly difficult to analyze, visualize, and interpret. Data mining, information theoretic, and machine learning techniques—such as cluster analysis, singular value decomposition, block entropy, Fourier and...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China. Earth Sciences Department, Faculty of Science, University of Kufa, Najaf 34003, Iraq. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China.

  18. Astronaut John Young displays drawing of Charlie Brown (United States)


    Astronaut John W. Young, Apollo 10 command module pilot, displays drawing of Charlie Brown in this color reproduction taken from the fourth telecast made by the color television camera aboard the Apollo 10 spacecraft. When this picture was made the Apollo 10 spacecraft was about half-way to the moon, or approximately 112,000 nautical miles from the earth. Charlie Brown will be the code name of the Command Module (CM) during Apollo 10 operations when the Lunar Module and CM are separated (34075); Young displays drawing of Snoopy in this reproduction taken from a television transmission. Snoopy will be the code name of the Lunar Module (LM) during Apollo 10 operations when the LM and CM are separated (34076).

  19. Recent Directions in Remote Engineering and Virtual Instrumentation

    Directory of Open Access Journals (Sweden)

    Tarek M. Sobh


    Full Text Available The 6th Remote Engineering and Virtual instrumentation Conference (REV 2009 was held at the University of Bridgeport in Bridgeport, Connecticut, USA during the period of June 22 – 25, 2009. The conference brought together engineering researchers, educators, and professionals to explore the fundamentals, future, and application of remote engineering in both industry and academia. Participants delivered papers, presented demonstrations, research posters, and shared experiences in virtual engineering. REV’09 drew more than 100 engineers, scientists and educators from around the world. Most of the participants were from Europe, but many came from Asia, North and South America, the Middle East and as far as Australia. More than 60 papers were presented on topics ranging from Telerobotics to Virtual and Remote Labs. Workshops and Tutorials drew widespread interest and exhibitors displayed their products for integrating remote engineering into academia. Poster sessions discussed topics such as Robotic Surgery and Development of Remote Labs in Physics. The general objective of REV 2009 was to discuss fundamentals, applications and experiences within the field of online engineering, both in industry and academia. The conference presentations and papers addressed several emerging trends in online engineering, remote laboratories, virtual instrumentation and educational applications of remote engineering.

  20. Our Sustainable Earth (United States)

    Orbach, Raymond L.


    Recent evidence demonstrates that the Earth has been warming monotonically since 1980. Transient to equilibrium temperature changes take centuries to develop, as the upper levels of the ocean are slow to respond to atmospheric temperature changes. Atmospheric CO2 concentrations, from ice core and observatory measurements, display consistent increases from historical averages, beginning in about 1880. They can be associated with the use of coal ecause of the spread of the industrial revolution from Great Britain to the European continent and beyond. The climactic consequence of this human-dominated increase in atmospheric CO2 has been suggested to define a geologic epoch, termed the ``Anthropocene.'' This could be a short term, relatively minor change in global climate, or an extreme deviation that lasts for thousands of years. In order to stabilize global temperatures, sharp reductions in CO2 emissions are required: an 80% reduction beginning in 2050. U.S. emissions have declined sharply recently because of market conditions leading to the substitution of natural gas for coal for electricity generation. Whether this is the best use for this resource may be questioned, but it nevertheless reduces CO2 production by 67% from a coal-fired power plant, well on the way to the 80% reduction required for global temperature stabilization. Current methods for CO2 capture and storage are not cost effective, and have been slow (if not absent) to introduce at scale. This paper describes research into some potentially economically feasible approaches: cost-effective capture and storage of CO2 from injection of flue gas into subterranean methane-saturated aquifers at the surface; fuels from sunlight without CO2 production; and large-scale electrical energy storage for intermittent (and even constant) electricity generating sources.

  1. Evaluation of force-torque displays for use with space station telerobotic activities (United States)

    Hendrich, Robert C.; Bierschwale, John M.; Manahan, Meera K.; Stuart, Mark A.; Legendre, A. Jay


    Recent experiments which addressed Space Station remote manipulation tasks found that tactile force feedback (reflecting forces and torques encountered at the end-effector through the manipulator hand controller) does not improve performance significantly. Subjective response from astronaut and non-astronaut test subjects indicated that force information, provided visually, could be useful. No research exists which specifically investigates methods of presenting force-torque information visually. This experiment was designed to evaluate seven different visual force-torque displays which were found in an informal telephone survey. The displays were prototyped in the HyperCard programming environment. In a within-subjects experiment, 14 subjects nullified forces and torques presented statically, using response buttons located at the bottom of the screen. Dependent measures included questionnaire data, errors, and response time. Subjective data generally demonstrate that subjects rated variations of pseudo-perspective displays consistently better than bar graph and digital displays. Subjects commented that the bar graph and digital displays could be used, but were not compatible with using hand controllers. Quantitative data show similar trends to the subjective data, except that the bar graph and digital displays both provided good performance, perhaps do to the mapping of response buttons to display elements. Results indicate that for this set of displays, the pseudo-perspective displays generally represent a more intuitive format for presenting force-torque information.

  2. Simulator scene display evaluation device (United States)

    Haines, R. F. (Inventor)


    An apparatus for aligning and calibrating scene displays in an aircraft simulator has a base on which all of the instruments for the aligning and calibrating are mounted. Laser directs beam at double right prism which is attached to pivoting support on base. The pivot point of the prism is located at the design eye point (DEP) of simulator during the aligning and calibrating. The objective lens in the base is movable on a track to follow the laser beam at different angles within the field of vision at the DEP. An eyepiece and a precision diopter are movable into a position behind the prism during the scene evaluation. A photometer or illuminometer is pivotable about the pivot into and out of position behind the eyepiece.

  3. Minimalism context-aware displays. (United States)

    Cai, Yang


    Despite the rapid development of cyber technologies, today we still have very limited attention and communication bandwidth to process the increasing information flow. The goal of the study is to develop a context-aware filter to match the information load with particular needs and capacities. The functions include bandwidth-resolution trade-off and user context modeling. From the empirical lab studies, it is found that the resolution of images can be reduced in order of magnitude if the viewer knows that he/she is looking for particular features. The adaptive display queue is optimized with real-time operational conditions and user's inquiry history. Instead of measuring operator's behavior directly, ubiquitous computing models are developed to anticipate user's behavior from the operational environment data. A case study of the video stream monitoring for transit security is discussed in the paper. In addition, the author addresses the future direction of coherent human-machine vision systems.

  4. Earth Observation Services (Image Processing Software) (United States)


    San Diego State University and Environmental Systems Research Institute, with other agencies, have applied satellite imaging and image processing techniques to geographic information systems (GIS) updating. The resulting images display land use and are used by a regional planning agency for applications like mapping vegetation distribution and preserving wildlife habitats. The EOCAP program provides government co-funding to encourage private investment in, and to broaden the use of NASA-developed technology for analyzing information about Earth and ocean resources.

  5. Remote connector development study

    International Nuclear Information System (INIS)

    Parazin, R.J.


    Plutonium-uranium extraction (PUREX) connectors, the most common connectors used at the Hanford site, offer a certain level of flexibility in pipe routing, process system configuration, and remote equipment/instrument replacement. However, these desirable features have inherent shortcomings like leakage, high pressure drop through the right angle bends, and a limited range of available pipe diameters that can be connect by them. Costs for construction, maintenance, and operation of PUREX connectors seem to be very high. The PUREX connector designs include a 90 degree bend in each connector. This increases the pressure drop and erosion effects. Thus, each jumper requires at least two 90 degree bends. PUREX connectors have not been practically used beyond 100 (4 in.) inner diameter. This study represents the results of a survey on the use of remote pipe-connection systems in US and foreign plants. This study also describes the interdependence between connectors, remote handling equipment, and the necessary skills of the operators

  6. Use of remote monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Fournel, E; Gouilloux, C


    Paper traces the development of remote monitoring devices, since their first appearance for safety purposes. Discusses their uses in coal mines: working and safety (definitions); sources and channels of information (transmission of information by automatic or verbal means); mine control stations; duties and responsibilities of persons in charge. Examines the contribution made by remote monitoring to management in production sector. Gives examples of assistance given to production management showing a very advantageous result on balance, by their use. The use of computers in real time and in batched mode is compared. Discusses their use in monitoring mine atmosphere. Very favorable results have already been obtained in France and abroad. The broadening scope and future of remote monitoring is considered.

  7. Mission to Planet Earth (United States)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.


    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  8. Mission to Planet Earth

    International Nuclear Information System (INIS)

    Wilson, G.S.; Backlund, P.W.


    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. 8 refs

  9. NET remote workstation

    International Nuclear Information System (INIS)

    Leinemann, K.


    The goal of this NET study was to define the functionality of a remote handling workstation and its hardware and software architecture. The remote handling workstation has to fulfill two basic functions: (1) to provide the man-machine interface (MMI), that means the interface to the control system of the maintenance equipment and to the working environment (telepresence) and (2) to provide high level (task level) supporting functions (software tools) during the maintenance work and in the preparation phase. Concerning the man-machine interface, an important module of the remote handling workstation besides the standard components of man-machine interfacing is a module for graphical scene presentation supplementing viewing by TV. The technique of integrated viewing is well known from JET BOOM and TARM control using the GBsim and KISMET software. For integration of equipment dependent MMI functions the remote handling workstation provides a special software module interface. Task level support of the operator is based on (1) spatial (geometric/kinematic) models, (2) remote handling procedure models, and (3) functional models of the equipment. These models and the related simulation modules are used for planning, programming, execution monitoring, and training. The workstation provides an intelligent handbook guiding the operator through planned procedures illustrated by animated graphical sequences. For unplanned situations decision aids are available. A central point of the architectural design was to guarantee a high flexibility with respect to hardware and software. Therefore the remote handling workstation is designed as an open system based on widely accepted standards allowing the stepwise integration of the various modules starting with the basic MMI and the spatial simulation as standard components. (orig./HP) [de

  10. Helmet-mounted display requirements: just another head-up display (HUD) or a different animal altogether? (United States)

    Newman, Richard L.; Haworth, Loran A.


    The helmet-mounted display (HMD) presents flight, navigation, and weapon information in the pilot's line of sight. The HMD was developed to allow the pilot to retain aircraft and weapon information while looking off boresight. The present study reviewed the state-of-the-art in HMDs and identified a number of issues applying to HMDs. Several are identical to head-up display (HUD) issues: symbol standardization, excessive clutter, and the need for integration with other cockpit displays and controls. Other issues are unique to the head-mounted display: symbol stabilization, inadequate definitions, undefined symbol drive laws, helmet considerations, and field-of-view (FOV) vs. resolution tradeoff requirements. Symbol stabilization is critical. In the Apache helicopter, the lack of compensation for pilot head motion creates excessive workload during hovering and nap-of-the-earth (NOE) flight. This high workload translates into excessive training requirements. At the same time, misleading symbology makes interpretation of the height of obstructions impossible. The underlying cause is the absence of design criteria for HMDs. The existing military standard does not reflect the current state of technology. In addition, there are inadequate test and evaluation guidelines. The situation parallels the situation for HUDs several years ago.

  11. Integrated Instrument Simulator Suites for Earth Science (United States)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, John; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide


    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  12. Remote Reactor Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dazeley, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dobie, Doug [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marleau, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brennan, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerling, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sumner, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sweany, Melinda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The overall goal of the WATCHMAN project is to experimentally demonstrate the potential of water Cerenkov antineutrino detectors as a tool for remote monitoring of nuclear reactors. In particular, the project seeks to field a large prototype gadolinium-doped, water-based antineutrino detector to demonstrate sensitivity to a power reactor at ~10 kilometer standoff using a kiloton scale detector. The technology under development, when fully realized at large scale, could provide remote near-real-time information about reactor existence and operational status for small operating nuclear reactors out to distances of many hundreds of kilometers.

  13. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea


    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  14. X-Windows Widget for Image Display (United States)

    Deen, Robert G.


    XvicImage is a high-performance XWindows (Motif-compliant) user interface widget for displaying images. It handles all aspects of low-level image display. The fully Motif-compliant image display widget handles the following tasks: (1) Image display, including dithering as needed (2) Zoom (3) Pan (4) Stretch (contrast enhancement, via lookup table) (5) Display of single-band or color data (6) Display of non-byte data (ints, floats) (7) Pseudocolor display (8) Full overlay support (drawing graphics on image) (9) Mouse-based panning (10) Cursor handling, shaping, and planting (disconnecting cursor from mouse) (11) Support for all user interaction events (passed to application) (12) Background loading and display of images (doesn't freeze the GUI) (13) Tiling of images.

  15. Consortium for military LCD display procurement (United States)

    Echols, Gregg


    International Display Consortium (IDC) is the joining together of display companies to combined their buying power and obtained favorable terms with a major LCD manufacturer. Consolidating the buying power and grouping the demand enables the rugged display industry of avionics, ground vehicles, and ship based display manufacturers to have unencumbered access to high performance AMLCDs while greatly reducing risk and lowering cost. With an unrestricted supply of AMLCD displays, the consortium members have total control of their risk, cost, deliveries and added value partners. Every display manufacturer desires a very close relationship with a display vender. With IDC each consortium member achieves a close relationship. Consortium members enjoy cost effective access to high performance, industry standard sized LCD panels, and modified commercial displays with 100 degree C clearing points and portrait configurations. Consortium members also enjoy proposal support, technical support and long-term support.

  16. Dimensions of Situatedness for Digital Public Displays

    Directory of Open Access Journals (Sweden)

    Rui José


    Full Text Available Public displays are often strongly situated signs deeply embedded in their physical, social, and cultural setting. Understanding how the display is coupled with on-going situations, its level of situatedness, provides a key element for the interpretation of the displays themselves but is also an element for the interpretation of place, its situated practices, and its social context. Most digital displays, however, do not achieve the same sense of situatedness that seems so natural in their nondigital counterparts. This paper investigates people’s perception of situatedness when considering the connection between public displays and their context. We have collected over 300 photos of displays and conducted a set of analysis tasks involving focus groups and structured interviews with 15 participants. The contribution is a consolidated list of situatedness dimensions that should provide a valuable resource for reasoning about situatedness in digital displays and informing the design and development of display systems.

  17. Design of special purpose equipment - remote control dozer

    International Nuclear Information System (INIS)

    Aprameyan, K.


    Operation environment in handling hot slag, radio active material, clearing/dismantling buildings and loose rocky zones pose hazards with the operation of heavy duty vehicles. Under such hazardous environment conditions, elimination of operator becomes the prime criteria. Remote control of heavy vehicles is resorted to operate the equipment in various working conditions. Radio control systems coupled with penumatic/hydraulic actuators and proportional control logics aim total control of the equipment from a distance using hand pendants. Bharat Earth Moovers Limited has successfully developed remote control system for dozers of 200hp and 300hp. (author). 3 figs

  18. Miniaturised Gravity Sensors for Remote Gravity Surveys. (United States)

    Middlemiss, R. P.; Bramsiepe, S. G.; Hough, J.; Paul, D. J.; Rowan, S.; Samarelli, A.; Hammond, G.


    Gravimetry lets us see the world from a completely different perspective. The ability to measure tiny variations in gravitational acceleration (g), allows one to see not just the Earth's gravitational pull, but the influence of smaller objects. The more accurate the gravimeter, the smaller the objects one can see. Gravimetry has applications in many different fields: from tracking magma moving under volcanoes before eruptions; to locating hidden tunnels. The top commercial gravimeters weigh tens of kg and cost at least $100,000, limiting the situations in which they can be used. By contrast, smart phones use a MEMS (microelectromechanical system) accelerometer that can measure the orientation of the device. These are not nearly sensitive or stable enough to be used for the gravimetry but they are cheap, light-weight and mass-producible. At Glasgow University we have developed a MEMS device with both the stability and sensitivity for useful gravimetric measurements. This was demonstrated by a measurement of the Earth tides - the first time this has been achieved with a MEMS sensor. A gravimeter of this size opens up the possiblility for new gravity imaging modalities. Thousands of gravimeters could be networked over a survey site, storing data on an SD card or communicating wirelessly to a remote location. These devices could also be small enough to be carried by a UAVs: airborne gravity surveys could be carried out at low altitude by mulitple UAVs, or UAVs could be used to deliver ground based gravimeters to remote or inaccessible locations.

  19. Eyes on the Earth 3D (United States)

    Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.


    Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser ( Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.

  20. Reconfigurable Full-Page Braille Displays (United States)

    Garner, H. Douglas


    Electrically actuated braille display cells of proposed type arrayed together to form full-page braille displays. Like other braille display cells, these provide changeable patterns of bumps driven by digitally recorded text stored on magnetic tapes or in solid-state electronic memories. Proposed cells contain electrorheological fluid. Viscosity of such fluid increases in strong electrostatic field.

  1. Visual Merchandising through Display: Advertising Services Occupations. (United States)

    Maurer, Nelson S.

    The increasing use of displays by businessmen is creating a demand for display workers. This demand may be met by preparing high school students to enter the field of display. Additional workers might be recruited by offering adult training programs for individuals working within the stores. For this purpose a curriculum guide has been developed…

  2. Software for Minsk-32 display station

    International Nuclear Information System (INIS)

    Belyaeva, L.M.; Gangrskaya, O.G.; Manno, I.; Fefilov, B.V.; Ehsenski, J.


    The mathematical provision is described of the Minsk-32 display station. Described is the application of editing program DOSE, assembler translator SLANG and program display-focal. Program DOSE permits to edit the texts with the aid of a rester display on Minsk-32 magnetic tape. The program system permits to use a disk monitor system

  3. Geological remote sensing signatures of terrestrial impact craters

    International Nuclear Information System (INIS)

    Garvin, J.B.; Schnetzler, C.; Grieve, R.A.F.


    Geological remote sensing techniques can be used to investigate structural, depositional, and shock metamorphic effects associated with hypervelocity impact structures, some of which may be linked to global Earth system catastrophies. Although detailed laboratory and field investigations are necessary to establish conclusive evidence of an impact origin for suspected crater landforms, the synoptic perspective provided by various remote sensing systems can often serve as a pathfinder to key deposits which can then be targetted for intensive field study. In addition, remote sensing imagery can be used as a tool in the search for impact and other catastrophic explosion landforms on the basis of localized disruption and anomaly patterns. In order to reconstruct original dimensions of large, complex impact features in isolated, inaccessible regions, remote sensing imagery can be used to make preliminary estimates in the absence of field geophysical surveys. The experienced gained from two decades of planetary remote sensing of impact craters on the terrestrial planets, as well as the techniques developed for recognizing stages of degradation and initial crater morphology, can now be applied to the problem of discovering and studying eroded impact landforms on Earth. Preliminary results of remote sensing analyses of a set of terrestrial impact features in various states of degradation, geologic settings, and for a broad range of diameters and hence energies of formation are summarized. The intention is to develop a database of remote sensing signatures for catastrophic impact landforms which can then be used in EOS-era global surveys as the basis for locating the possibly hundreds of missing impact structures

  4. Local and remote infrasound from explosive volcanism (United States)

    Matoza, R. S.; Fee, D.; LE Pichon, A.


    Explosive volcanic eruptions can inject large volumes of ash into heavily travelled air corridors and thus pose a significant societal and economic hazard. In remote volcanic regions, satellite data are sometimes the only technology available to observe volcanic eruptions and constrain ash-release parameters for aviation safety. Infrasound (acoustic waves ~0.01-20 Hz) data fill this critical observational gap, providing ground-based data for remote volcanic eruptions. Explosive volcanic eruptions are among the most powerful sources of infrasound observed on earth, with recordings routinely made at ranges of hundreds to thousands of kilometers. Advances in infrasound technology and the efficient propagation of infrasound in the atmosphere therefore greatly enhance our ability to monitor volcanoes in remote regions such as the North Pacific Ocean. Infrasound data can be exploited to detect, locate, and provide detailed chronologies of the timing of explosive volcanic eruptions for use in ash transport and dispersal models. We highlight results from case studies of multiple eruptions recorded by the International Monitoring System and dedicated regional infrasound networks (2008 Kasatochi, Alaska, USA; 2008 Okmok, Alaska, USA; 2009 Sarychev Peak, Kuriles, Russian Federation; 2010 Eyjafjallajökull, Icleand) and show how infrasound is currently used in volcano monitoring. We also present progress towards characterizing and modeling the variability in source mechanisms of infrasound from explosive eruptions using dedicated local infrasound field deployments at volcanoes Karymsky, Russian Federation and Sakurajima, Japan.

  5. Virtual synchrotron experiments for deep Earth studies (United States)

    Jackson, J. M.; Alp, E. E.; Zhao, J.; Alatas, A.; Sturhahn, W.


    National facilities offer one-of-a-kind opportunities to apply state-of-the-art experimental techniques to the pressing scientific problems of today. Yet, few students are able to experience research projects at national facilities due to limited accessibility caused in part by limited involvement in the local academic institution, constrained working areas at the experimental stations, and/or travel costs. We present a virtual and remote beam-line for deep Earth mineral physics studies using nuclear resonant and inelastic x-ray scattering methods at Sector 3 of the Advanced Photon Source at Argonne National Laboratory. Off-site students have the capability of controlling their measurements via secure internet connections and webcams. Students can access a 'view only mode' for ease of interaction and safety-control. More experienced users have exclusive control of the experiment and can remotely change variables within the experimental setup.

  6. Up Close from Afar: Using Remote Sensing To Teach the American Landscape. Pathways in Geography Series, Title No. 8. (United States)

    Baumann, Paul R., Ed.

    This teaching guide offers educators glimpses into the value of remote sensing, the process of observing and analyzing the earth from a distance. Remote sensing provides information in forms to see spatial patterns over large areas in a more realistic way than thematic maps and allows a macro-scale look at global problems. The six instructional…

  7. PresenceRemote

    DEFF Research Database (Denmark)

    Sokoler, Tomas; Svensson, Marcus Sanchez


    how these technologies can accommodate the specific challenges related to the everyday life of elderly people. In particular, using an example concept – the PresenceRemote – we will discuss how the stigma associated with being lonely, an inherent part of senior living, can be addressed by leaving room...

  8. A Remote WIRELESS Facility

    Directory of Open Access Journals (Sweden)

    Kees Uiterwijk


    Full Text Available Continuing need for available distance learning facilities has led to the development of a remote lab facility focusing on wireless technology. In the field of engineering there is a student need of gaining experience in set-up, monitoring and maintenance of 802.11A/B/G based wireless LAN environments.

  9. Remote sensing: best practice

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gareth [Sgurr Energy (Canada)


    This paper presents remote sensing best practice in the wind industry. Remote sensing is a technique whereby measurements are obtained from the interaction of laser or acoustic pulses with the atmosphere. There is a vast diversity of tools and techniques available and they offer wide scope for reducing project uncertainty and risk but best practice must take into account versatility and flexibility. It should focus on the outcome in terms of results and data. However, traceability of accuracy requires comparison with conventional instruments. The framework for the Boulder protocol is given. Overviews of the guidelines for IEA SODAR and IEA LIDAR are also mentioned. The important elements of IEC 61400-12-1, an international standard for wind turbines, are given. Bankability is defined based on the Boulder protocol and a pie chart is presented that illustrates the uncertainty area covered by remote sensing. In conclusion it can be said that remote sensing is changing perceptions about how wind energy assessments can be made.

  10. Remote RF Battery Charging

    NARCIS (Netherlands)

    Visser, H.J.; Pop, V.; Op het Veld, J.H.G.; Vullers, R.J.M.


    The design of a remote RF battery charger is discussed through the analysis and design of the subsystems of a rectenna (rectifying antenna): antenna, rectifying circuit and loaded DC-to-DC voltage (buck-boost) converter. Optimum system power generation performance is obtained by adopting a system

  11. Section summary: Remote sensing (United States)

    Belinda Arunarwati Margono


    Remote sensing is an important data source for monitoring the change of forest cover, in terms of both total removal of forest cover (deforestation), and change of canopy cover, structure and forest ecosystem services that result in forest degradation. In the context of Intergovernmental Panel on Climate Change (IPCC), forest degradation monitoring requires information...

  12. Remote Voice Detection System

    National Research Council Canada - National Science Library

    Blackmon, Fletcher A


    A device and system to remotely detect vocalizations of speech. The skin located on the throat region of a speaking person or a reflective layer on the skin on the throat region vibrates in response to vocalizations of speech by the person...

  13. Remotely controlled spray gun (United States)

    Cunningham, William C. (Inventor)


    A remotely controlled spray gun is described in which a nozzle and orifice plate are held in precise axial alignment by an alignment member, which in turn is held in alignment with the general outlet of the spray gun by insert. By this arrangement, the precise repeatability of spray patterns is insured.

  14. Assessing the Impact of Earth Radiation Pressure Acceleration on Low-Earth Orbit Satellites (United States)

    Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Kusche, Jürgen; Börger, Klaus


    The orbits of satellites are influenced by several external forces. The main non-gravitational forces besides thermospheric drag, acting on the surface of satellites, are accelerations due to the Earth and Solar Radiation Pres- sure (SRP and ERP, respectively). The sun radiates visible and infrared light reaching the satellite directly, which causes the SRP. Earth also emits and reflects the sunlight back into space, where it acts on satellites. This is known as ERP acceleration. The influence of ERP increases with decreasing distance to the Earth, and for low-earth orbit (LEO) satellites ERP must be taken into account in orbit and gravity computations. Estimating acceler- ations requires knowledge about energy emitted from the Earth, which can be derived from satellite remote sensing data, and also by considering the shape and surface material of a satellite. In this sensitivity study, we assess ERP accelerations based on different input albedo and emission fields and their modelling for the satellite missions Challenging Mini-Satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE). As input fields, monthly 1°x1° products of Clouds and the Earth's Radiant En- ergy System (CERES), L3 are considered. Albedo and emission models are generated as latitude-dependent, as well as in terms of spherical harmonics. The impact of different albedo and emission models as well as the macro model and the altitude of satellites on ERP accelerations will be discussed.

  15. Designing a better weather display (United States)

    Ware, Colin; Plumlee, Matthew


    The variables most commonly displayed on weather maps are atmospheric pressure, wind speed and direction, and surface temperature. But they are usually shown separately, not together on a single map. As a design exercise, we set the goal of finding out if it is possible to show all three variables (two 2D scalar fields and a 2D vector field) simultaneously such that values can be accurately read using keys for all variables, a reasonable level of detail is shown, and important meteorological features stand out clearly. Our solution involves employing three perceptual "channels", a color channel, a texture channel, and a motion channel in order to perceptually separate the variables and make them independently readable. We conducted an experiment to evaluate our new design both against a conventional solution, and against a glyph-based solution. The evaluation tested the abilities of novice subjects both to read values using a key, and to see meteorological patterns in the data. Our new scheme was superior especially in the representation of wind patterns using the motion channel, and it also performed well enough in the representation of pressure using the texture channel to suggest it as a viable design alternative.

  16. Irradiation from video display terminals

    International Nuclear Information System (INIS)

    Backe, S.; Hannevik, M.


    Video display terminals (VDT's) are in common use by computer operators. In the last years this group of workers has expressed growing concern about their work environment and possible hazardious effects in connection with radiation emission from VDT's. Radiation types and levels of emission and possible biological effects have been the subject of research activity in Norway and in other countries. This report summarizes the various radiation types and their levels of emission from VDT's. An overview of recent epidemiological studies and animal experiments, and the conclusions given by the research groups are also presented. The conclusions drawn in this report based on the current knowledge are: Radiation, other than low frequency pulsed magnetic fields, have low and negligible emission levels and will not represent any health hazard to VDT-operator or to the foetus of pregnant operators. The biological effects of low frequency pulsed mangetic fields have been the subject of epidemiological studies and animal experiments. Epidemiological studies carried out in Canada, Finland, Sweden and Norway gave no support for any correlation between pregnancy complications and operation of VDT's. From animal experiments it has so far been impossible to assert an effect on pregnancy outcome from low frequency pulsed magnetic fields

  17. Citizenship displayed by disabled people

    Directory of Open Access Journals (Sweden)

    Eliana Prado Carlino


    Full Text Available By investigating the processes by which successful teachers become activate citizens and by listening to the diversity and richness of their life and formation stories, this work became possible. Its aim is to display some of the utterances of two Down Syndrome individuals and their active-citizenship activities. Their stories were told in the reports of two teachers when describing their personal and professional history, and were considered to be an integral part of it. Thus, some of the utterances and perceptions with which these two individuals elaborate their references, their worldview and their active-citizenship activity are evidenced in this paper. This article is based on the language conceptions of Vygotsky and Bakhtin who defend the idea that the group and the social mentality are ingrain in the individual. Hence, the history of one person reveals that of many others, since there is a deep link between the individual and the social in the formation of a subjective worldview. As a result, it can be easily seen that the utterances expressed by the participants in this research cannot be considered strictly individual because enunciation is social in nature. Despite the fact that the utterances are those of individuals, they manifest a collective reality. This demonstrates the real advantages and possibilities that deficient people get from their participation and intervention in society.

  18. CERN students display their work

    CERN Multimedia

    Anaïs Schaeffer


    The first poster session by students working on the LHC experiments, organised by the LPCC, was a great success. Showcasing the talents of over a hundred young physicists from all over the world, it was an opportunity for everyone at CERN to check out the wide range of research work being done by the new generation of physicists at CERN.   At 5.30 p.m. on Wednesday 23 March, the first poster session by CERN students took place in Restaurant No.1, where no fewer than 87 posters went on public display. The students were split into 8 groups according to their research field* and all were on hand to answer the questions of an inquisitive audience. TH Department's Michelangelo Mangano, who is head of the LHC Physics Centre at CERN (LPCC) and is responsible for the initiative, confirms that nothing was left to chance, even the choice of date: "We wanted to make the most of the general enthusiasm around the winter conferences and the meeting of the LHC Experiments Committee to present the stud...

  19. Interactive computer enhanced remote viewing system

    International Nuclear Information System (INIS)

    Smith, D.A.; Tourtellott, J.A.


    The Interactive, Computer Enhanced, Remote Viewing System (ICERVSA) is a volumetric data system designed to help the Department of Energy (DOE) improve remote operations in hazardous sites by providing reliable and accurate maps of task spaces where robots will clean up nuclear wastes. The ICERVS mission is to acquire, store, integrate and manage all the sensor data for a site and to provide the necessary tools to facilitate its visualization and interpretation. Empirical sensor data enters through the Common Interface for Sensors and after initial processing, is stored in the Volumetric Database. The data can be analyzed and displayed via a Graphic User Interface with a variety of visualization tools. Other tools permit the construction of geometric objects, such as wire frame models, to represent objects which the operator may recognize in the live TV image. A computer image can be generated that matches the viewpoint of the live TV camera at the remote site, facilitating access to site data. Lastly, the data can be gathered, processed, and transmitted in acceptable form to a robotic controller. Descriptions are given of all these components. The final phase of the ICERVS project, which has just begun, will produce a full scale system and demonstrate it at a DOE site to be selected. A task added to this Phase will adapt the ICERVS to meet the needs of the Dismantlement and Decommissioning (D and D) work at the Oak Ridge National Laboratory (ORNL)

  20. Remote sensing for water quality

    International Nuclear Information System (INIS)

    Giardino, Claudia


    The application of remote sensing to the study of lakes is begun in years 80 with the lunch of the satellites of second generation. Many experiences have indicated the contribution of remote sensing for the limnology [it

  1. Time-sensitive remote sensing

    CERN Document Server

    Lippitt, Christopher; Coulter, Lloyd


    This book documents the state of the art in the use of remote sensing to address time-sensitive information requirements. Specifically, it brings together a group of authors who are both researchers and practitioners, who work toward or are currently using remote sensing to address time-sensitive information requirements with the goal of advancing the effective use of remote sensing to supply time-sensitive information. The book addresses the theoretical implications of time-sensitivity on the remote sensing process, assessments or descriptions of methods for expediting the delivery and improving the quality of information derived from remote sensing, and describes and analyzes time-sensitive remote sensing applications, with an emphasis on lessons learned. This book is intended for remote sensing scientists, practitioners (e.g., emergency responders or administrators of emergency response agencies), and students, but will also be of use to those seeking to understand the potential of remote sensing to addres...

  2. Wind Streaks on Earth; Exploration and Interpretation (United States)

    Cohen-Zada, Aviv Lee; Blumberg, Dan G.; Maman, Shimrit


    Wind streaks, one of the most common aeolian features on planetary surfaces, are observable on the surface of the planets Earth, Mars and Venus. Due to their reflectance properties, wind streaks are distinguishable from their surroundings, and they have thus been widely studied by remote sensing since the early 1970s, particularly on Mars. In imagery, these streaks are interpreted as the presence - or lack thereof - of small loose particles on the surface deposited or eroded by wind. The existence of wind streaks serves as evidence for past or present active aeolian processes. Therefore, wind streaks are thought to represent integrative climate processes. As opposed to the comprehensive and global studies of wind streaks on Mars and Venus, wind streaks on Earth are understudied and poorly investigated, both geomorphologically and by remote sensing. The aim of this study is, thus, to fill the knowledge gap about the wind streaks on Earth by: generating a global map of Earth wind streaks from modern high-resolution remotely sensed imagery; incorporating the streaks in a geographic information system (GIS); and overlaying the GIS layers with boundary layer wind data from general circulation models (GCMs) and data from the ECMWF Reanalysis Interim project. The study defines wind streaks (and thereby distinguishes them from other aeolian features) based not only on their appearance in imagery but more importantly on their surface appearance. This effort is complemented by a focused field investigation to study wind streaks on the ground and from a variety of remotely sensed images (both optical and radar). In this way, we provide a better definition of the physical and geomorphic characteristics of wind streaks and acquire a deeper knowledge of terrestrial wind streaks as a means to better understand global and planetary climate and climate change. In a preliminary study, we detected and mapped over 2,900 wind streaks in the desert regions of Earth distributed in

  3. The effect of display movement angle, indicator type and display location on control/display stereotype strength. (United States)

    Hoffmann, Errol R; Chan, Alan H S


    Much research on stereotype strength relating display and control movements for displays moving in the vertical or horizontal directions has been reported. Here we report effects of display movement angle, where the display moves at angles (relative to the vertical) of between 0° and 180°. The experiment used six different controls, four display locations relative to the operator and three types of indicator. Indicator types were included because of the strong effects of the 'scale-side principle' that are variable with display angle. A directional indicator had higher stereotype strength than a neutral indicator, and showed an apparent reversal in control/display stereotype direction beyond an angle of 90°. However, with a neutral indicator this control reversal was not present. Practitioner Summary: The effects of display moving at angles other than the four cardinal directions, types of control, location of display and types of indicator are investigated. Indicator types (directional and neutral) have an effect on stereotype strength and may cause an apparent control reversal with change of display movement angle.

  4. Portable remote sensing image processing system; Kahangata remote sensing gazo shori system

    Energy Technology Data Exchange (ETDEWEB)

    Fujikawa, S; Uchida, K; Tanaka, S; Jingo, H [Dowa Engineering Co. Ltd., Tokyo (Japan); Hato, M [Earth Remote Sensing Data Analysis Center, Tokyo (Japan)


    Recently, geological analysis using remote sensing data has been put into practice due to data with high spectral resolution and high spatial resolution. There has been a remarkable increase in both software and hardware of personal computer. Software is independent of hardware due to Windows. It has become easy to develop softwares. Under such situation, a portable remote sensing image processing system coping with Window 95 has been developed. Using this system, basic image processing can be conducted, and present location can be displayed on the image in real time by linking with GPS. Accordingly, it is not required to bring printed images for the field works of image processing. This system can be used instead of topographic maps for overseas surveys. Microsoft Visual C++ ver. 2.0 is used for the software. 1 fig.

  5. Conceptual Design of Industrial Process Displays

    DEFF Research Database (Denmark)

    Pedersen, C.R.; Lind, Morten


    discusses aspects of process display design taking into account both the designer's and the operator's points of view. Three aspects are emphasized: the operator tasks, the display content and the display form. The distinction between these three aspects is the basis for proposing an outline for a display......Today, process displays used in industry are often designed on the basis of piping and instrumentation diagrams without any method of ensuring that the needs of the operators are fulfilled. Therefore, a method for a systematic approach to the design of process displays is needed. This paper...... by a simple example from a plant with batch processes. Later the method is applied to develop a supervisory display for a condenser system in a nuclear power plant. The differences between the continuous plant domain of power production and the batch processes from the example are analysed and broad...

  6. The application of autostereoscopic display in smart home system based on mobile devices (United States)

    Zhang, Yongjun; Ling, Zhi


    Smart home is a system to control home devices which are more and more popular in our daily life. Mobile intelligent terminals based on smart homes have been developed, make remote controlling and monitoring possible with smartphones or tablets. On the other hand, 3D stereo display technology developed rapidly in recent years. Therefore, a iPad-based smart home system adopts autostereoscopic display as the control interface is proposed to improve the userfriendliness of using experiences. In consideration of iPad's limited hardware capabilities, we introduced a 3D image synthesizing method based on parallel processing with Graphic Processing Unit (GPU) implemented it with OpenGL ES Application Programming Interface (API) library on IOS platforms for real-time autostereoscopic displaying. Compared to the traditional smart home system, the proposed system applied autostereoscopic display into smart home system's control interface enhanced the reality, user-friendliness and visual comfort of interface.

  7. Remote sensing terminology: past experience and recent needs (United States)

    Kancheva, Rumiana


    Terminology is a key issue for a better understanding among people using various languages. Terminology accuracy is essential during all phases of international cooperation. It is crucial to keep up with the latest quantitative and qualitative developments and novelties of the terminology in advanced technology fields such as aerospace science and industry. This is especially true in remote sensing and geoinformatics which develop rapidly and have wide and ever extending applications in various domains of human activity. The importance of the correct use of remote sensing terms refers not only to people working in this field but also to experts in many disciplines who handle remote sensing data and information products. The paper is devoted to terminology issues that refer to all aspects of remote sensing research and application areas. The attention is drawn on the recent needs and peculiarities of compiling specialized dictionaries in the subject area of remote sensing. Details are presented about the work in progress on the preparation of an English-Bulgarian dictionary of remote sensing terms focusing on Earth observations and geoinformation science. Our belief is that the elaboration of bilingual and multilingual dictionaries and glossaries in this spreading, most technically advanced and promising field of human expertise is of great practical importance. Any interest in cooperation and initiating of suchlike collaborative multilingual projects is welcome and highly appreciated.

  8. EAARL-B coastal topography: Fire Island, New York, pre-Hurricane Sandy, 2012: seamless (bare earth and submerged) (United States)

    Wright, C. Wayne; Kranenburg, Christine J.; Klipp, Emily S.; Troche, Rodolfo J.; Fredericks, Alexandra M.; Masessa, Melanie L.; Nagle, David B.


    These remotely sensed, geographically referenced elevation measurements of lidar-derived seamless (bare-earth and submerged) topography datasets were produced by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida.

  9. Putting the geology back into Earth models (United States)

    McCaffrey, Kenneth; Holdsworth, Robert; Imber, Jonathan; Clegg, Phillip; De Paola, Nicola; Jones, Richard; Hobbs, Richard; Holliman, Nick; Trinks, Immo

    New digital methods for data capture can now provide photorealistic, spatially precise, and geometrically accurate three-dimensional (3-D) models of rocks exposed at the Earth's surface [Xu et al., 2000; Pringle et al., 2001; Clegg et al., 2005]. These “virtual outcrops” have the potential to create a new form of laboratory-based teaching aids for geoscience students, to help address accessibility issues in fieldwork, and generally to improve public awareness of the spectacular nature of geologic exposures from remote locations worldwide.This article addresses how virtual outcrops can provide calibration, or a quantitative “reality check,” for a new generation of high-resolution predictive models for the Earth's subsurface.

  10. The earth's gravitational field

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    . But to say that gravity acts downwards is not correct. Gravity acts down, no matter where you stand on the Earth. It is better to say that on Earth gravity pulls objects towards the centre of the Earth. So no matter where you are on Earth all objects fall... pull than objects at the poles. In combination, the equatorial bulge and the effects of centrifugal force mean that sea-level gravitational acceleration increases from about 9.780 m/s² at the equator to about 9.832 m/s² at the poles, so an object...

  11. Geomagnetic field of earth

    International Nuclear Information System (INIS)

    Delipetrev, Marjan; Delipetrev, Blagoj; Panovska, Sanja


    In this paper is introduced the theory of geomagnetic field of the Earth. A homogenous and isotropic sphere is taken for a model of Earth with a bar magnet at its center as a magnetic potential. The understanding of the real origin of geomagnetic field produced from differential rotation of inner core with respect to the outer core of Earth is here presented. Special attention is given to the latest observed data of the established net of geomagnetic repeat stations in the Republic of Macedonia. Finally, the maps of elements of geomagnetic field and the equation for calculation of normal magnetic field of Earth are provided. (Author)

  12. Rare earth octacyanomolybdates(4)

    International Nuclear Information System (INIS)

    Zubritskaya, D.I.; Sergeeva, A.N.; Pisak, Yu.V.


    Optimal conditions for synthesis of rare-earth octacyanomolybdates(4) of the Ln 4 [Mo(CN) 8 ] 3 xnH 2 O composition (where Ln is a rare-earth element, other than Pr, Pm, Lu, Tb) have been worked out. The synthesis has been accomplished by neutralization with octacianomolybdic acid with rare-earth carbonates. The composition and structure of the compounds synthesized have been studied by infrared-spectroscopy. It has been established that rare-earth octacyanomolybdates(4) form three isostructural groups

  13. Capturing near-Earth asteroids around Earth (United States)

    Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.


    The list of detected near-Earth asteroids (NEAs) is constantly growing. NEAs are likely targets for resources to support space industrialization, as they may be the least expensive source of certain needed raw materials. The limited supply of precious metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating in the form of asteroids around the solar system. Precious metals make up a significant fraction NEAs by mass, and even one metallic asteroid of ˜1km size and fair enrichment in platinum-group metals would contain twice the tonnage of such metals already harvested on Earth. There are ˜1000 NEAs with a diameter of greater than 1 km. Capturing these asteroids around the Earth would expand the mining industry into an entirely new dimension. Having such resources within easy reach in Earth's orbit could provide an off-world environmentally friendly remedy for impending terrestrial shortages, especially given the need for raw materials in developing nations. In this paper, we develop and implement a conceptually simple algorithm to determine trajectory characteristics necessary to move NEAs into capture orbits around the Earth. Altered trajectories of asteroids are calculated using an ephemeris model. Only asteroids of eccentricity less than 0.1 have been studied and the model is restricted to the ecliptic plane for simplicity. We constrain the time of retrieval to be 10 years or less, based on considerations of the time to return on investment. For the heliocentric phase, constant acceleration is assumed. The acceleration required for transporting these asteroids from their undisturbed orbits to the sphere of influence of the Earth is the primary output, along with the impulse or acceleration necessary to effect capture to a bound orbit once the Earth's sphere of influence is reached. The initial guess for the constant acceleration is provided by a new estimation method, similar in spirit to Edelbaum's. Based on the

  14. Earth Science Mining Web Services (United States)

    Pham, Long; Lynnes, Christopher; Hegde, Mahabaleshwa; Graves, Sara; Ramachandran, Rahul; Maskey, Manil; Keiser, Ken


    To allow scientists further capabilities in the area of data mining and web services, the Goddard Earth Sciences Data and Information Services Center (GES DISC) and researchers at the University of Alabama in Huntsville (UAH) have developed a system to mine data at the source without the need of network transfers. The system has been constructed by linking together several pre-existing technologies: the Simple Scalable Script-based Science Processor for Measurements (S4PM), a processing engine at he GES DISC; the Algorithm Development and Mining (ADaM) system, a data mining toolkit from UAH that can be configured in a variety of ways to create customized mining processes; ActiveBPEL, a workflow execution engine based on BPEL (Business Process Execution Language); XBaya, a graphical workflow composer; and the EOS Clearinghouse (ECHO). XBaya is used to construct an analysis workflow at UAH using ADam components, which are also installed remotely at the GES DISC, wrapped as Web Services. The S4PM processing engine searches ECHO for data using space-time criteria, staging them to cache, allowing the ActiveBPEL engine to remotely orchestras the processing workflow within S4PM. As mining is completed, the output is placed in an FTP holding area for the end user. The goals are to give users control over the data they want to process, while mining data at the data source using the server's resources rather than transferring the full volume over the internet. These diverse technologies have been infused into a functioning, distributed system with only minor changes to the underlying technologies. The key to the infusion is the loosely coupled, Web-Services based architecture: All of the participating components are accessible (one way or another) through (Simple Object Access Protocol) SOAP-based Web Services.

  15. Remote maintenance development for ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Shibanuma, Kiyoshi


    This paper describes the overall ITER remote maintenance design concept developed mainly for in-vessel components such as diverters and blankets, and outlines the ITER R and D program to develop remote handling equipment and radiation hard components. Reactor structures inside the ITER cryostat must be maintained remotely due to DT operation, making remote handling technology basic to reactor design. The overall maintenance scenario and design concepts have been developed, and maintenance design feasibility, including fabrication and testing of full-scale in-vessel remote maintenance handling equipment and tool, is being verified. (author)

  16. Remote maintenance development for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Shibanuma, Kiyoshi


    This paper describes the overall ITER remote maintenance design concept developed mainly for in-vessel components such as diverters and blankets, and outlines the ITER R and D program to develop remote handling equipment and radiation hard components. Reactor structures inside the ITER cryostat must be maintained remotely due to DT operation, making remote handling technology basic to reactor design. The overall maintenance scenario and design concepts have been developed, and maintenance design feasibility, including fabrication and testing of full-scale in-vessel remote maintenance handling equipment and tool, is being verified. (author)

  17. From Big Data to Big Displays High-Performance Visualization at Blue Brain

    KAUST Repository

    Eilemann, Stefan


    Blue Brain has pushed high-performance visualization (HPV) to complement its HPC strategy since its inception in 2007. In 2011, this strategy has been accelerated to develop innovative visualization solutions through increased funding and strategic partnerships with other research institutions. We present the key elements of this HPV ecosystem, which integrates C++ visualization applications with novel collaborative display systems. We motivate how our strategy of transforming visualization engines into services enables a variety of use cases, not only for the integration with high-fidelity displays, but also to build service oriented architectures, to link into web applications and to provide remote services to Python applications.

  18. Integrating Earth System Science Data Into Tribal College and University Curricula (United States)

    Tilgner, P. J.; Perkey, D. J.


    , surface energy budgets, climate and climate change, impacts, etc. GIS and remote sensing training has focused on importing, converting and displaying data sets related to drought and fires. The Integrated Science courses at SGU, designed primarily for pre-service elementary teachers, have incorporated physical science concepts and teaching approaches presented at the TRESTE annual workshops. The content of the courses follows the PBL teaching approach and is organized around a relevant, local problem such as prairie dog control and prairie management. Concepts from Earth, life and physical sciences are included in the course design. The fall course is introduced using recent news articles on legislation to control prairie dogs. After expressing their ideas based solely on experience and emotion, students determine what knowledge they will need to write an informed opinion on the issue. One of the instructional units for the course includes instruction and practice in interpreting satellite images of the local reservation to determine impact of prairie dog towns on vegetation. Students also conduct soil studies in the disturbed areas and nearby undisturbed areas. Data is gathered on soil chemistry, soil temperatures, and surface temperatures, measured with an infrared sensor provided by the TRESTE grant. Additional topics covered in the course that contain information from the annual workshops, include prairie fires, climate and climate change, and effects of the drought on local bodies of water.

  19. World Wind 3D Earth Viewing (United States)

    Hogan, Patrick; Maxwell, Christopher; Kim, Randolph; Gaskins, Tom


    World Wind allows users to zoom from satellite altitude down to any place on Earth, leveraging high-resolution LandSat imagery and SRTM (Shuttle Radar Topography Mission) elevation data to experience Earth in visually rich 3D. In addition to Earth, World Wind can also visualize other planets, and there are already comprehensive data sets for Mars and the Earth's moon, which are as easily accessible as those of Earth. There have been more than 20 million downloads to date, and the software is being used heavily by the Department of Defense due to the code s ability to be extended and the evolution of the code courtesy of NASA and the user community. Primary features include the dynamic access to public domain imagery and its ease of use. All one needs to control World Wind is a two-button mouse. Additional guides and features can be accessed through a simplified menu. A JAVA version will be available soon. Navigation is automated with single clicks of a mouse, or by typing in any location to automatically zoom in to see it. The World Wind install package contains the necessary requirements such as the .NET runtime and managed DirectX library. World Wind can display combinations of data from a variety of sources, including Blue Marble, LandSat 7, SRTM, NASA Scientific Visualization Studio, GLOBE, and much more. A thorough list of features, the user manual, a key chart, and screen shots are available at

  20. Remote monitoring demonstration

    International Nuclear Information System (INIS)

    Caskey, Susan; Olsen, John


    The recently upgraded remote monitoring system at the Joyo Experimental Reactor uses a DCM-14 camera module and GEMINI software. The final data is compatible both with the IAEA-approved GARS review software and the ALIS software that was used for this demonstration. Features of the remote monitoring upgrade emphasized compatibility with IAEA practice. This presentation gives particular attention to the selection process for meeting network security considerations at the O'arai site. The Joyo system is different from the NNCA's ACPF system, in that it emphasizes use of IAEA standard camera technology and data acquisition and transmission software. In the demonstration itself, a temporary virtual private network (VPN) between the meeting room and the server at Sandia in Albuquerque allowed attendees to observe data stored from routine transmissions from the Joyo Fresh Fuel Storage to Sandia. Image files from a fuel movement earlier in the month showed Joyo workers and IAEA inspectors carrying out a transfer. (author)

  1. RemoteLabs Platform

    Directory of Open Access Journals (Sweden)

    Nils Crabeel


    Full Text Available This paper reports on a first step towards the implementation of a framework for remote experimentation of electric machines – the RemoteLabs platform. This project was focused on the development of two main modules: the user Web-based and the electric machines interfaces. The Web application provides the user with a front-end and interacts with the back-end – the user and experiment persistent data. The electric machines interface is implemented as a distributed client server application where the clients, launched by the Web application, interact with the server modules located in platforms physically connected the electric machines drives. Users can register and authenticate, schedule, specify and run experiments and obtain results in the form of CSV, XML and PDF files. These functionalities were successfully tested with real data, but still without including the electric machines. This inclusion is part of another project scheduled to start soon.

  2. Recruiting in remote locations

    Energy Technology Data Exchange (ETDEWEB)

    Ionel, C. [Enerflex Systems Ltd., Calgary, AB (Canada)


    This presentation provided details of Enerflex, a leading supplier of products and services to the oil and gas industry, and outlined their personnel hiring policies. Enerflex's core values include community involvement and divisional logo branding. The extensive training that is provided places an emphasis on employee empowerment. The company also places an emphasis on employee safety, diversity, and team building. Competitive salaries are offered along with generous equipment allowances and a flexible benefits program. Benefits include travel and overtime rates; health benefits; retirement savings; scholarship programs; career opportunities; and apprenticeship programs. External technical training is provided. An employee referral program has been developed, and the company's recruitment program also advertises in remote newspapers to develop career streams within remote communities. tabs., figs.

  3. Remote handling in ZEPHYR

    International Nuclear Information System (INIS)

    Andelfinger, C.; Lackner, E.; Ulrich, M.; Weber, G.; Schilling, H.B.


    A conceptual design of the ZEPHYR building is described. The listed radiation data show that remote handling devices will be necessary in most areas of the building. For difficult repair and maintenance works it is intended to transfer complete units from the experimental hall to a hot cell which provides better working conditions. The necessary crane systems and other transport means are summarized as well as suitable commercially available manipulators and observation devices. The conept of automatic devices for cutting and welding and other operations inside the vacuum vessel and the belonging position control system is sketched. Guidelines for the design of passive components are set up in order to facilitate remote operation. (orig.)

  4. Remote Ischemic Conditioning (United States)

    Heusch, Gerd; Bøtker, Hans Erik; Przyklenk, Karin; Redington, Andrew; Yellon, Derek


    In remote ischemic conditioning (RIC) brief, reversible episodes of ischemia with reperfusion in one vascular bed, tissue or organ confer a global protective phenotype and render remote tissues and organs resistant to ischemia/reperfusion injury. The peripheral stimulus can be chemical, mechanical or electrical and involves activation of peripheral sensory nerves. The signal transfer to the heart or other organs is through neuronal and humoral communications. Protection can be transferred, even across species, with plasma-derived dialysate and involves nitric oxide, stromal derived factor-1α, microRNA-144, but also other, not yet identified factors. Intracardiac signal transduction involves: adenosine, bradykinin, cytokines, and chemokines, which activate specific receptors; intracellular kinases; and mitochondrial function. RIC by repeated brief inflation/deflation of a blood pressure cuff protects against endothelial dysfunction and myocardial injury in percutaneous coronary interventions, coronary artery bypass grafting and reperfused acute myocardial infarction. RIC is safe and effective, noninvasive, easily feasible and inexpensive. PMID:25593060

  5. Water resources by orbital remote sensing: Examples of applications (United States)

    Martini, P. R. (Principal Investigator)


    Selected applications of orbital remote sensing to water resources undertaken by INPE are described. General specifications of Earth application satellites and technical characteristics of LANDSAT 1, 2, 3, and 4 subsystems are described. Spatial, temporal and spectral image attributes of water as well as methods of image analysis for applications to water resources are discussed. Selected examples are referred to flood monitoring, analysis of water suspended sediments, spatial distribution of pollutants, inventory of surface water bodies and mapping of alluvial aquifers.

  6. Nasa's Land Remote Sensing Plans for the 1980's (United States)

    Higg, H. C.; Butera, K. M.; Settle, M.


    Research since the launch of LANDSAT-1 has been primarily directed to the development of analysis techniques and to the conduct of applications studies designed to address resource information needs in the United States and in many other countries. The current measurement capabilities represented by MSS, TM, and SIR-A and B, coupled with the present level of remote sensing understanding and the state of knowledge in the discipline earth sciences, form the foundation for NASA's Land Processes Program. Science issues to be systematically addressed include: energy balance, hydrologic cycle, biogeochemical cycles, biological productivity, rock cycle, landscape development, geological and botanical associations, and land surface inventory, monitoring, and modeling. A global perspective is required for using remote sensing technology for problem solving or applications context. A successful model for this kind of activity involves joint research with a user entity where the user provides a test site and ground truth and NASA provides the remote sensing techniques to be tested.

  7. Does Market Remoteness Matter?


    Moctar, Ndiaye; Elodie, Maitre d’Hôtel; Tristan, Le Cotty


    This paper addresses the role of market remoteness in explaining maize price volatility in Burkina Faso. A model of price formation is introduced to demonstrate formally that transport costs between urban and rural markets exacerbate maize price volatility. Empirical support is provided to the proposition by exploring an unusually rich data set of monthly maize price series across 28 markets over 2004-13. The methodology relies on an autoregressive conditional heteroskedasticity model to inve...

  8. Remote entanglement distribution

    International Nuclear Information System (INIS)

    Sanders, B.C.; Gour, G.; Meyer, D.A.


    Full text: Shared bipartite entanglement is a crucial shared resource for many quantum information tasks such as teleportation, entanglement swapping, and remote state preparation. In general different nodes of a quantum network share an entanglement resource, such as ebits, that are consumed during the task. In practice, generating entangled states is expensive, but here we establish a protocol by which a quantum network requires only a single supplier of entanglement to all nodes who, by judicious measurements and classical communication, provides the nodes with a unique pair wise entangled state independent of the measurement outcome. Furthermore, we extend this result to a chain of suppliers and nodes, which enables an operational interpretation of concurrence. In the special case that the supplier shares bipartite states with two nodes, and such states are pure and maximally entangled, our protocol corresponds to entanglement swapping. However, in the practical case that initial shared entanglement between suppliers and nodes involves partially entangled or mixed states, we show that general local operations and classical communication by all parties (suppliers and nodes) yields distributions of entangled states between nodes. In general a distribution of bipartite entangled states between any two nodes will include states that do not have the same entanglement; thus we name this general process remote entanglement distribution. In our terminology entanglement swapping with partially entangled states is a particular class of remote entanglement distribution protocols. Here we identify which distributions of states that can or cannot be created by remote entanglement distribution. In particular we prove a powerful theorem that establishes an upper bound on the entanglement of formation that can be produced between two qubit nodes. We extend this result to the case of a linear chain of parties that play the roles of suppliers and nodes; this extension provides

  9. Remote maintenance development for ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Shibanuma, Kiyoshi


    This paper both describes the overall design concept of the ITER remote maintenance system, which has been developed mainly for use with in-vessel components such as divertor and blanket, and outlines of the ITER R and D program, which has been established to develop remote handling equipment/tools and radiation hard components. In ITER, the reactor structures inside cryostat have to be maintained remotely because of activation due to DT operation. Therefore, remote-handling technology is fundamental, and the reactor-structure design must be made consistent with remote maintainability. The overall maintenance scenario and design concepts of the required remote handling equipment/tools have been developed according to their maintenance classification. Technologies are also being developed to verify the feasibility of the maintenance design and include fabrication and testing of a fullscale remote-handling equipment/tools for in-vessel maintenance. (author)

  10. Colors of extreme exo-Earth environments. (United States)

    Hegde, Siddharth; Kaltenegger, Lisa


    The search for extrasolar planets has already detected rocky planets and several planetary candidates with minimum masses that are consistent with rocky planets in the habitable zone of their host stars. A low-resolution spectrum in the form of a color-color diagram of an exoplanet is likely to be one of the first post-detection quantities to be measured for the case of direct detection. In this paper, we explore potentially detectable surface features on rocky exoplanets and their connection to, and importance as, a habitat for extremophiles, as known on Earth. Extremophiles provide us with the minimum known envelope of environmental limits for life on our planet. The color of a planet reveals information on its properties, especially for surface features of rocky planets with clear atmospheres. We use filter photometry in the visible as a first step in the characterization of rocky exoplanets to prioritize targets for follow-up spectroscopy. Many surface environments on Earth have characteristic albedos and occupy a different color space in the visible waveband (0.4-0.9 μm) that can be distinguished remotely. These detectable surface features can be linked to the extreme niches that support extremophiles on Earth and provide a link between geomicrobiology and observational astronomy. This paper explores how filter photometry can serve as a first step in characterizing Earth-like exoplanets for an aerobic as well as an anaerobic atmosphere, thereby prioritizing targets to search for atmospheric biosignatures.

  11. Determine Daytime Earth's Radiation Budget from DSCOVR (United States)

    Su, W.; Thieman, M. M.; Duda, D. P.; Khlopenkov, K. V.; Liang, L.; Sun-Mack, S.; Minnis, P.; SUN, M.


    The Deep Space Climate Observatory (DSCOVR) platform provides a unique perspective for remote sensing of the Earth. With the National Institute of Standards and Technology Advanced Radiometer (NISTAR) and the Earth Polychromatic Imaging Camera (EPIC) onboard, it provides full-disk measurements of the broadband shortwave and total radiances reaching the L1 position. Because the satellite orbits around the L1 spot, it continuously observes a nearly full Earth, providing the potential to determine the daytime radiation budget of the globe at the top of the atmosphere. The NISTAR is a single-pixel instrument that measures the broadband radiance from the entire globe, while EPIC is a spectral imager with channels in the UV and visible ranges. The Level 1 NISTAR shortwave radiances are filtered radiances. To determine the daytime TOA shortwave and longwave radiative fluxes, the NISTAR measured shortwave radiances must be unfiltered first. We will describe the algorithm used to un-filter the shortwave radiances. These unfiltered NISTAR radiances are then converted to the full disk shortwave and daytime longwave fluxes, by accounting for the anisotropic characteristics of the Earth-reflected and emitted radiances. These anisotropy factors are determined by using the scene identifications determined from multiple low Earth orbit and geostationary satellites matched into the EPIC field of view. Time series of daytime radiation budget determined from NISTAR will be presented, and methodology of estimating the fluxes from the small unlit crescent of the Earth that comprises part of the field of view will also be described. The daytime shortwave and longwave fluxes from NISTAR will be compared with CERES dataset.

  12. Remote repair appliance

    International Nuclear Information System (INIS)

    Heumann, F.K.; Wilkinson, J.C.; Wooding, D.R.


    A remote appliance for supporting a tool for performing work at a work site on a substantially circular bore of a work piece and for providing video signals of the work site to a remote monitor comprises: a base plate having an inner face and an outer face; a plurality of rollers, wherein each roller is rotatably and adjustably attached to the inner face of the base plate and positioned to roll against the bore of the work piece when the base plate is positioned against the mouth of the bore such that the appliance may be rotated about the bore in a plane substantially parallel to the base plate; a tool holding means for supporting the tool, the tool holding means being adjustably attached to the outer face of the base plate such that the working end of the tool is positioned on the inner face side of the base plate; a camera for providing video signals of the work site to the remote monitor; and a camera holding means for supporting the camera on the inner face side of the base plate, the camera holding means being adjustably attached to the outer face of the base plate. In a preferred embodiment, roller guards are provided to protect the rollers from debris and a bore guard is provided to protect the bore from wear by the rollers and damage from debris. 5 figs

  13. Modular remote radiation monitor

    International Nuclear Information System (INIS)

    Lacerda, Fabio; Farias, Marcos S.; Aghina, Mauricio A.C.; Oliveira, Mauro V.


    The Modular Remote Radiation Monitor (MRRM) is a novel radiation monitor suitable for monitoring environmental exposure to ionizing radiation. It is a portable compact-size low-power microprocessor-based electronic device which provides its monitoring data to other electronic systems, physically distant from it, by means of an electronic communication channel, which can be wired or wireless according to the requirements of each application. Besides its low-power highly-integrated circuit design, the Modular Remote Radiation Monitor is presented in a modular architecture, which promotes full compliance to the technical requirements of different applications while minimizing cost, size and power consumption. Its communication capability also supports the implementation of a network of multiple radiation monitors connected to a supervisory system, capable of remotely controlling each monitor independently as well as visualizing the radiation levels from all monitors. A prototype of the MRRM, functionally equivalent to the MRA-7027 radiation monitor, was implemented and connected to a wired MODBUS network of MRA-7027 monitors, responsible for monitoring ionizing radiation inside Argonauta reactor room at Instituto de Engenharia Nuclear. Based on the highly positive experimental results obtained, further design is currently underway in order to produce a consumer version of the MRRM. (author)

  14. Basics of Antibody Phage Display Technology. (United States)

    Ledsgaard, Line; Kilstrup, Mogens; Karatt-Vellatt, Aneesh; McCafferty, John; Laustsen, Andreas H


    Antibody discovery has become increasingly important in almost all areas of modern medicine. Different antibody discovery approaches exist, but one that has gained increasing interest in the field of toxinology and antivenom research is phage display technology. In this review, the lifecycle of the M13 phage and the basics of phage display technology are presented together with important factors influencing the success rates of phage display experiments. Moreover, the pros and cons of different antigen display methods and the use of naïve versus immunized phage display antibody libraries is discussed, and selected examples from the field of antivenom research are highlighted. This review thus provides in-depth knowledge on the principles and use of phage display technology with a special focus on discovery of antibodies that target animal toxins.

  15. Three-dimensional Imaging, Visualization, and Display

    CERN Document Server

    Javidi, Bahram; Son, Jung-Young


    Three-Dimensional Imaging, Visualization, and Display describes recent developments, as well as the prospects and challenges facing 3D imaging, visualization, and display systems and devices. With the rapid advances in electronics, hardware, and software, 3D imaging techniques can now be implemented with commercially available components and can be used for many applications. This volume discusses the state-of-the-art in 3D display and visualization technologies, including binocular, multi-view, holographic, and image reproduction and capture techniques. It also covers 3D optical systems, 3D display instruments, 3D imaging applications, and details several attractive methods for producing 3D moving pictures. This book integrates the background material with new advances and applications in the field, and the available online supplement will include full color videos of 3D display systems. Three-Dimensional Imaging, Visualization, and Display is suitable for electrical engineers, computer scientists, optical e...

  16. Data display with the Q system

    International Nuclear Information System (INIS)

    Oothoudt, M.A.


    The Q data-acquisition system for PDP-11 mini-computers at the Clinton P. Anderson Meson Physics Facility (LAMPF) provides experimenters with basic tools for on-line data display. Tasks are available to plot one- and two-parameter histograms on Tektronix 4000 series storage-tube terminals. The histograms to be displayed and the display format may be selected with simple keyboard commands. A task is also available to create and display live two-parameter scatter plots for any acquired or calculated quantities. Other tasks in the system manage the display data base, list display parameters and histogram contents on hardcopy devices, and save core histograms on disk or tape for off-line analysis. 8 figures

  17. Effect of display size on visual attention. (United States)

    Chen, I-Ping; Liao, Chia-Ning; Yeh, Shih-Hao


    Attention plays an important role in the design of human-machine interfaces. However, current knowledge about attention is largely based on data obtained when using devices of moderate display size. With advancement in display technology comes the need for understanding attention behavior over a wider range of viewing sizes. The effect of display size on test participants' visual search performance was studied. The participants (N = 12) performed two types of visual search tasks, that is, parallel and serial search, under three display-size conditions (16 degrees, 32 degrees, and 60 degrees). Serial, but not parallel, search was affected by display size. In the serial task, mean reaction time for detecting a target increased with the display size.

  18. Earth System Science Education Modules (United States)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.


    The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific

  19. Interacting with Petabytes of Earth Science Data using Jupyter Notebooks, IPython Widgets and Google Earth Engine (United States)

    Erickson, T. A.; Granger, B.; Grout, J.; Corlay, S.


    The volume of Earth science data gathered from satellites, aircraft, drones, and field instruments continues to increase. For many scientific questions in the Earth sciences, managing this large volume of data is a barrier to progress, as it is difficult to explore and analyze large volumes of data using the traditional paradigm of downloading datasets to a local computer for analysis. Furthermore, methods for communicating Earth science algorithms that operate on large datasets in an easily understandable and reproducible way are needed. Here we describe a system for developing, interacting, and sharing well-documented Earth Science algorithms that combines existing software components: Jupyter Notebook: An open-source, web-based environment that supports documents that combine code and computational results with text narrative, mathematics, images, and other media. These notebooks provide an environment for interactive exploration of data and development of well documented algorithms. Jupyter Widgets / ipyleaflet: An architecture for creating interactive user interface controls (such as sliders, text boxes, etc.) in Jupyter Notebooks that communicate with Python code. This architecture includes a default set of UI controls (sliders, dropboxes, etc.) as well as APIs for building custom UI controls. The ipyleaflet project is one example that offers a custom interactive map control that allows a user to display and manipulate geographic data within the Jupyter Notebook. Google Earth Engine: A cloud-based geospatial analysis platform that provides access to petabytes of Earth science data via a Python API. The combination of Jupyter Notebooks, Jupyter Widgets, ipyleaflet, and Google Earth Engine makes it possible to explore and analyze massive Earth science datasets via a web browser, in an environment suitable for interactive exploration, teaching, and sharing. Using these environments can make Earth science analyses easier to understand and reproducible, which may


    Indian Academy of Sciences (India)

    Table of contents. EARTH FROM SPACE · Slide 2 · Earth System · Slide 4 · Global water cycle · Slide 6 · Slide 7 · Direct Observations of Recent Climate Change · Slide 9 · Slide 10 · Snow cover and Arctic sea ice are decreasing · Polar Melting & Global Heat Transport · Antarctica: Melting and Thickening · Slide 14 · Slide 15.

  1. Earth and Universe

    Energy Technology Data Exchange (ETDEWEB)

    Kosygin, Yu A


    Rocks, the age of which according to certain data exceeds considerably the recognized age of the Earth and approximates the age of the Universe, have been detected on the Earth. There is a necessity to coordinate the geological data with cosmological structures.

  2. Hands On Earth Science. (United States)

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  3. Introducing Earth's Orbital Eccentricity (United States)

    Oostra, Benjamin


    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  4. Earth System Science Project (United States)

    Rutherford, Sandra; Coffman, Margaret


    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  5. Helmet-Mounted Display Design Guide (United States)


    on openStack create menu "CSHMD" set the menuitems of "CSHMD" to "(Main Menu; References;-; Definitions;Display Criteria;Display Formats;Display Modes...34Macintosh" then put ":" into dirSep else put "V’ into dirSep put stackPathO&"Resource"&dirSep into gResPath put 0 into gXRef end openStack on

  6. Method for control-room display design

    International Nuclear Information System (INIS)

    Montmayeul, R.


    This document describes a method for control-room displays design. It can be used either for isolated display to add to an existing system either for the design of a full system of operator aids. The method is a top-down design with steps of possible iteration. The emphasis is put on display design rather than on system design; system aspects are just mentioned. Advantages of using a method are described [fr

  7. Optimizing direct response in Internet display advertising


    Aksakallı, Vural


    Internet display advertising has grown into a multi-billion dollar a year global industry and direct response campaigns account for about three-quarters of all Internet display advertising. In such campaigns, advertisers reach out to a target audience via some form of a visual advertisement (hereinafter also called “ad”) to maximize short-term sales revenue. In this study, we formulate an advertiser’s revenue maximization problem in direct response Internet display advertisement campaigns as ...

  8. Manufacturing considerations for AMLCD cockpit displays (United States)

    Luo, Fang-Chen


    AMLCD cockpit displays need to meet more stringent requirements compared with AMLCD commercial displays in areas such as environmental conditions, optical performance and device reliability. Special considerations are required for the manufacturing of AMLCD cockpit displays in each process step to address these issues. Some examples are: UV stable polarizers, wide-temperature LC material, strong LC glue seal, ESS test system, gray scale voltage EEPROM, etc.

  9. Online Display Advertising Causal Attribution and Evaluation


    Barajas Zamora, Joel


    The allocation of a given budget to online display advertising as a marketing channel has motivated the development of statistical methods to measure its effectiveness. Recent studies show that display advertising often triggers online users to search for more information on products. Eventually, many of these users convert at the advertiser’s website. A key challenge is to measure the effectiveness of display advertising when users are exposed to multiple unknown advertising channels.We deve...

  10. Statistical Arbitrage Mining for Display Advertising


    Zhang, Weinan; Wang, Jun


    We study and formulate arbitrage in display advertising. Real-Time Bidding (RTB) mimics stock spot exchanges and utilises computers to algorithmically buy display ads per impression via a real-time auction. Despite the new automation, the ad markets are still informationally inefficient due to the heavily fragmented marketplaces. Two display impressions with similar or identical effectiveness (e.g., measured by conversion or click-through rates for a targeted audience) may sell for quite diff...

  11. Design of a multisystem remote maintenance control room

    International Nuclear Information System (INIS)

    Draper, J.V.; Handel, S.J.; Kring, C.T.; Kawatsuma, S.


    The Remote Systems Development Section of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory (ORNL) and Japan's Power Reactor and Nuclear Fuel Development Corporation (PNC) recently collaborated in the development of a control room concept for remote operations. This report describes design methods and the resulting control room concept. The design project included five stages. The first was compilation of a complete function list; functions are tasks performed by operators in the control room while operating equipment located in the remote area. The second step was organization of the function list into ''function groups;'' function groups are sets of functions that operate one piece of equipment. The third stage was determination of crew size and requirements for supervision. The fourth stage was development of conceptual designs of displays and controls. The fifth stage was development of plans for placement of crew stations within the control room. 5 figs., 1 tab

  12. Some ideas about remote legal education in Ukraine

    Directory of Open Access Journals (Sweden)

    Haraberjush Ivan Fedorovych


    Full Text Available The article displays the features of remote training as an independent form in the system of higher education in Ukraine. The author also allocates the features of formation of distant learning system and considers possibilities of using this form in legal education in Ukraine. The article defines the categories of graduate lawyers for whose training the distant learning system based on the advanced information technologies is the most effective one.

  13. Energy Awareness Displays - Making the Invisible Visible

    NARCIS (Netherlands)

    Börner, Dirk


    Börner, D. (2011). Energy Awareness Displays - Making the Invisible Visible. Presentation given at the Startbijeenkomst SURFnet Innovatieregeling Duurzaamheid & ICT. May, 13, 2011, Utrecht, The Netherlands.

  14. Refreshable Braille displays using EAP actuators (United States)

    Bar-Cohen, Yoseph


    Refreshable Braille can help visually impaired persons benefit from the growing advances in computer technology. The development of such displays in a full screen form is a great challenge due to the need to pack many actuators in small area without interferences. In recent years, various displays using actuators such as piezoelectric stacks have become available in commercial form but most of them are limited to one line Braille code. Researchers in the field of electroactive polymers (EAP) investigated methods of using these materials to form full screen displays. This manuscript reviews the state of the art of producing refreshable Braille displays using EAP-based actuators.

  15. NCAP projection displays: key issues for commercialization (United States)

    Tomita, Akira; Jones, Philip J.


    Recently there has been much interest in a new polymer nematic dispersion technology, often called as NCAP, PDLC, PNLC, LCPC, etc., since projection displays using this technology have been shown to produce much brighter display images than projectors using conventional twisted nematic (TN) lightvalves. For commercializing projection displays based on this polymer nematic dispersion technology, the new materials must not only meet various electro- optic requirements, e.g., operational voltage, `off-state'' scattering angle, voltage holding ratio and hysteresis, but must also be stable over the lifetime of the product. This paper reports recent progress in the development of NCAP based projection displays and discusses some of the key commercialization issues.

  16. New ultraportable display technology and applications (United States)

    Alvelda, Phillip; Lewis, Nancy D.


    MicroDisplay devices are based on a combination of technologies rooted in the extreme integration capability of conventionally fabricated CMOS active-matrix liquid crystal display substrates. Customized diffraction grating and optical distortion correction technology for lens-system compensation allow the elimination of many lenses and systems-level components. The MicroDisplay Corporation's miniature integrated information display technology is rapidly leading to many new defense and commercial applications. There are no moving parts in MicroDisplay substrates, and the fabrication of the color generating gratings, already part of the CMOS circuit fabrication process, is effectively cost and manufacturing process-free. The entire suite of the MicroDisplay Corporation's technologies was devised to create a line of application- specific integrated circuit single-chip display systems with integrated computing, memory, and communication circuitry. Next-generation portable communication, computer, and consumer electronic devices such as truly portable monitor and TV projectors, eyeglass and head mounted displays, pagers and Personal Communication Services hand-sets, and wristwatch-mounted video phones are among the may target commercial markets for MicroDisplay technology. Defense applications range from Maintenance and Repair support, to night-vision systems, to portable projectors for mobile command and control centers.

  17. Microencapsulated Electrophoretic Films for Electronic Paper Displays (United States)

    Amundson, Karl


    Despite the dominance of liquid crystal displays, they do not perform some functions very well. While backlit liquid crystal displays can offer excellent color performance, they wash out in bright lighting and suffer from high power consumption. Reflective liquid crystal displays have limited brightness, making these devices challenging to read for long periods of time. Flexible liquid crystal displays are difficult to manufacture and keep stable. All of these attributes (long battery lifetime, bright reflective appearance, compatibility with flexible substrates) are traits that would be found in an ideal electronic paper display - an updateable substitute for paper that could be employed in electronic books, newspapers, and other applications. I will discuss technologies that are being developed for electronic-paper-like displays, and especially on particle-based technologies. A microencapsulated electrophoretic display technology is being developed at the E Ink corporation. This display film offers offer high brightness and an ink-on-paper appearance, compatibility with flexible substrates, and image stability that can lead to very low power consumption. I will present some of the physical and chemical challenges associated with making display films with high performance.

  18. Exploring interaction with 3D volumetric displays (United States)

    Grossman, Tovi; Wigdor, Daniel; Balakrishnan, Ravin


    Volumetric displays generate true volumetric 3D images by actually illuminating points in 3D space. As a result, viewing their contents is similar to viewing physical objects in the real world. These displays provide a 360 degree field of view, and do not require the user to wear hardware such as shutter glasses or head-trackers. These properties make them a promising alternative to traditional display systems for viewing imagery in 3D. Because these displays have only recently been made available commercially (e.g.,, their current use tends to be limited to non-interactive output-only display devices. To take full advantage of the unique features of these displays, however, it would be desirable if the 3D data being displayed could be directly interacted with and manipulated. We investigate interaction techniques for volumetric display interfaces, through the development of an interactive 3D geometric model building application. While this application area itself presents many interesting challenges, our focus is on the interaction techniques that are likely generalizable to interactive applications for other domains. We explore a very direct style of interaction where the user interacts with the virtual data using direct finger manipulations on and around the enclosure surrounding the displayed 3D volumetric image.

  19. Refreshable Braille Displays Using EAP Actuators (United States)

    Bar-Cohen, Yoseph


    Refreshable Braille can help visually impaired persons benefit from the growing advances in computer technology. The development of such displays in a full screen form is a great challenge due to the need to pack many actuators in small area without interferences. In recent years, various displays using actuators such as piezoelectric stacks have become available in commercial form but most of them are limited to one line Braille code. Researchers in the field of electroactive polymers (EAP) investigated methods of using these materials to form full screen displays. This manuscript reviews the state of the art of producing refreshable Braille displays using EAP-based actuators..


    Directory of Open Access Journals (Sweden)

    Ina Melati


    Full Text Available Most of ritel outlet recently using product display as a one of their best marketing strategy, the reason is quiet easy to be understood, since consumers are too easy to be teased by those kind of beautiful product display that is being displayed by the retail outlet. The good retail outlets are trying their best to design and make the very good product display, so they can attract more consumers and make them not thinking twice to visit their store and purchase lots of thing. Clearly seeing that an attractive product design is able to influence a consumer to make a buying decision.