WorldWideScience

Sample records for displacement velocity acceleration

  1. Analysis of the dynamics of a nutating body. [numerical analysis of displacement, velocity, and acceleration of point on mechanical drives

    Anderson, W. J.

    1974-01-01

    The equations for the displacement, velocity, and acceleration of a point in a nutating body are developed. These are used to derive equations for the inertial moment developed by a nutating body of arbitrary shape. Calculations made for a previously designed nutating plate transmission indicate that that device is severely speed limited because of the very high magnitude inertial moment.

  2. Low-velocity superconducting accelerating structures

    Delayen, J.R.

    1990-01-01

    The present paper reviews the status of RF superconductivity as applied to low-velocity accelerating properties. Heavy-ion accelerators must accelerate efficiently particles which travel at a velocity much smaller than that of light particles, whose velocity changes along accelerator, and also different particles which have different velocity profiles. Heavy-ion superconducting accelerators operate at frequencies which are lower than high-energy superconducting accelerators. The present paper first discusses the basic features of heavy-ion superconducting structures and linacs. Design choices are then addressed focusing on structure geometry, materials, frequency, phase control, and focusing. The report also gives an outline of the status of superconducting booster projects currently under way at the Argonne National Laboratory, SUNY Stony Brook, Weizmann Institute, University of Washington, Florida State, Saclay, Kansas State, Daresbury, Japanese Atomic Energy Research Institute, Legnaro, Bombay, Sao Paulo, ANU (Canberra), and Munich. Recent developments and future prospects are also described. (N.K.) 68 refs

  3. Comparison of high group velocity accelerating structures

    Farkas, Z.D.; Wilson, P.B.

    1987-02-01

    It is well known that waveguides with no perturbations have phase velocities greater than the velocity of light c. If the waveguide dimensions are chosen so that the phase velocity is only moderately greater than c, only small perturbations are required to reduce the phase velocity to be synchronous with a high energy particle bunch. Such a lightly loaded accelerator structure will have smaller longitudinal and transverse wake potentials and hence will lead to lower emittance growth in an accelerated beam. Since these structures are lightly loaded, their group velocities are only slightly less than c and not in the order of 0.01c, as is the case for the standard disk-loaded structures. To ascertain that the peak and average power requirements for these structures are not prohibitive, we examine the elastance and the Q for several traveling wave structures: phase slip structures, bellows-like structures, and lightly loaded disk-loaded structures

  4. Design and analysis of fractional order seismic transducer for displacement and acceleration measurements

    Veeraian, Parthasarathi; Gandhi, Uma; Mangalanathan, Umapathy

    2018-04-01

    Seismic transducers are widely used for measurement of displacement, velocity, and acceleration. This paper presents the design of seismic transducer in the fractional domain for the measurement of displacement and acceleration. The fractional order transfer function for seismic displacement and acceleration transducer are derived using Grünwald-Letnikov derivative. Frequency response analysis of fractional order seismic displacement transducer (FOSDT) and fractional order seismic acceleration transducer (FOSAT) are carried out for different damping ratio with the different fractional order, and the maximum dynamic measurement range is identified. The results demonstrate that fractional order seismic transducer has increased dynamic measurement range and less phase distortion as compared to the conventional seismic transducer even with a lower damping ratio. Time response of FOSDT and FOSAT are derived analytically in terms of Mittag-Leffler function, the effect of fractional behavior in the time domain is evaluated from the impulse and step response. The fractional order system is found to have significantly reduced overshoot as compared to the conventional transducer. The fractional order seismic transducer design proposed in this paper is illustrated with a design example for FOSDT and FOSAT. Finally, an electrical equivalent of FOSDT and FOSAT is considered, and its frequency response is found to be in close agreement with the proposed fractional order seismic transducer.

  5. Angular velocity and centripetal acceleration relationship

    Monteiro, Martín; Cabeza, Cecilia; Marti, Arturo C.; Vogt, Patrik; Kuhn, Jochen

    2014-05-01

    During the last few years, the growing boom of smartphones has given rise to a considerable number of applications exploiting the functionality of the sensors incorporated in these devices. A sector that has unexpectedly taken advantage of the power of these tools is physics teaching, as reflected in several recent papers. In effect, the use of smartphones has been proposed in several physics experiments spanning mechanics, electromagnetism, optics, oscillations, and waves, among other subjects. Although mechanical experiments have received considerable attention, most of them are based on the use of the accelerometer. An aspect that has received less attention is the use of rotation sensors or gyroscopes. An additional advance in the use of these devices is given by the possibility of obtaining data using the accelerometer and the gyroscope simultaneously. The aim of this paper is to consider the relation between the centripetal acceleration and the angular velocity. Instead of using a formal laboratory setup, in this experiment a smartphone is attached to the floor of a merry-go-round, found in many playgrounds. Several experiments were performed with the roundabout rotating in both directions and with the smart-phone at different distances from the center. The coherence of the measurements is shown.

  6. Measuring Velocity and Acceleration Using Doppler Shift of a ...

    to be used to measure its velocity and acceleration. We also apply this method, as an example here, to spectral lines of the blue-shifted jet in micro-quasar SS433 and discuss the intricacies of these measurements. Key words. Doppler effect—measuring velocity and acceleration of the source— jet in SS433. 1. Introduction.

  7. Exceptional Ground Accelerations and Velocities Caused by Earthquakes

    Anderson, John

    2008-01-17

    This project aims to understand the characteristics of the free-field strong-motion records that have yielded the 100 largest peak accelerations and the 100 largest peak velocities recorded to date. The peak is defined as the maximum magnitude of the acceleration or velocity vector during the strong shaking. This compilation includes 35 records with peak acceleration greater than gravity, and 41 records with peak velocities greater than 100 cm/s. The results represent an estimated 150,000 instrument-years of strong-motion recordings. The mean horizontal acceleration or velocity, as used for the NGA ground motion models, is typically 0.76 times the magnitude of this vector peak. Accelerations in the top 100 come from earthquakes as small as magnitude 5, while velocities in the top 100 all come from earthquakes with magnitude 6 or larger. Records are dominated by crustal earthquakes with thrust, oblique-thrust, or strike-slip mechanisms. Normal faulting mechanisms in crustal earthquakes constitute under 5% of the records in the databases searched, and an even smaller percentage of the exceptional records. All NEHRP site categories have contributed exceptional records, in proportions similar to the extent that they are represented in the larger database.

  8. Superconducting accelerating structures for very low velocity ion beams

    Xu, J.; Shepard, K.W.; Ostroumov, P.N.; Fuerst, J.D.; Waldschmidt, G.; /Argonne; Gonin, I.V.; /Fermilab

    2008-01-01

    This paper presents designs for four types of very-low-velocity superconducting accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006 < v/c < 0.06. Superconducting TEM-class cavities have been widely applied to CW acceleration of ion beams. SC linacs can be formed as an array of independently-phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the US and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front-end of such linacs, particularly for the post-acceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008 < {beta} = v/c < 0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  9. Accelerated radial Fourier-velocity encoding using compressed sensing

    Hilbert, Fabian; Han, Dietbert

    2014-01-01

    Purpose:Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. Materials and Methods:We imaged the femoral artery of healthy volunteers with ECG - triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Results:Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6 - fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Conclusion: Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity

  10. Accelerated radial Fourier-velocity encoding using compressed sensing

    Hilbert, Fabian; Han, Dietbert [Wuerzburg Univ. (Germany). Inst. of Radiology; Wech, Tobias; Koestler, Herbert [Wuerzburg Univ. (Germany). Inst. of Radiology; Wuerzburg Univ. (Germany). Comprehensive Heart Failure Center (CHFC)

    2014-10-01

    Purpose:Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. Materials and Methods:We imaged the femoral artery of healthy volunteers with ECG - triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Results:Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6 - fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Conclusion: Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity

  11. Accelerated radial Fourier-velocity encoding using compressed sensing.

    Hilbert, Fabian; Wech, Tobias; Hahn, Dietbert; Köstler, Herbert

    2014-09-01

    Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. We imaged the femoral artery of healthy volunteers with ECG-triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6-fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity distribution in vessels in the order of the voxel size. Thus

  12. Photochemical Acceleration of DNA Strand Displacement by Using Ultrafast DNA Photo-crosslinking.

    Nakamura, Shigetaka; Hashimoto, Hirokazu; Kobayashi, Satoshi; Fujimoto, Kenzo

    2017-10-18

    DNA strand displacement is an essential reaction in genetic recombination, biological processes, and DNA nanotechnology. In particular, various DNA nanodevices enable complicated calculations. However, it takes time before the output is obtained, so acceleration of DNA strand displacement is required for a rapid-response DNA nanodevice. Herein, DNA strand displacement by using DNA photo-crosslinking to accelerate this displacement is evaluated. The DNA photo-crosslinking of 3-cyanovinylcarbazole ( CNV K) was accelerated at least 20 times, showing a faster DNA strand displacement. The rate of photo-crosslinking is a key factor and the rate of DNA strand displacement is accelerated through ultrafast photo-crosslinking. The rate of DNA strand displacement was regulated by photoirradiation energy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fabrication and characterization of wide band AE sensors for quantitative detection of displacement and velocity

    Kim, Byung G.; Kim, Young Hwan

    1992-01-01

    Acoustic emission sensors to show a flat response for displacement and velocity of a specimen surface in a wide frequency were fabricated. The sensors were conical sensors employing conical type piezoelectric elements and a PVDF sensor employing PVDF piezoelctric polymer. The transient outputs of the sensors due to step-like forces and their sensitivity spectrum were measured. The results were compared with the theoretical displacement and velocity signals calculated using Green's function and a simulated ramp force. The sensor outputs and the theoretical signals were consistent with each other. The sensors showed flat sensitivity spectra in the wide frequency range. The present work showed that conical PZT sensors are suited for the direct measurement of vertical displacement, and PVDF sensors for that of the vertical velocity of a plate surface.

  14. Superconducting accelerating structures for very low velocity ion beams

    J. Xu

    2008-03-01

    Full Text Available This paper presents designs for four types of very-low-velocity superconducting (SC accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006acceleration of ion beams. SC linacs can be formed as an array of independently phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the U.S. and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front end of such linacs, particularly for the postacceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008<β=v/c<0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication, and processing have increased SC cavity gradients by a factor of 3–4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  15. Beyond velocity and acceleration: jerk, snap and higher derivatives

    Eager, David; Pendrill, Ann-Marie; Reistad, Nina

    2016-11-01

    The higher derivatives of motion are rarely discussed in the teaching of classical mechanics of rigid bodies; nevertheless, we experience the effect not only of acceleration, but also of jerk and snap. In this paper we will discuss the third and higher order derivatives of displacement with respect to time, using the trampolines and theme park roller coasters to illustrate this concept. We will also discuss the effects on the human body of different types of acceleration, jerk, snap and higher derivatives, and how they can be used in physics education to further enhance the learning and thus the understanding of classical mechanics concepts.

  16. Automatic annotation of head velocity and acceleration in Anvil

    Jongejan, Bart

    2012-01-01

    We describe an automatic face tracker plugin for the ANVIL annotation tool. The face tracker produces data for velocity and for acceleration in two dimensions. We compare the annotations generated by the face tracking algorithm with independently made manual annotations for head movements....... The annotations are a useful supplement to manual annotations and may help human annotators to quickly and reliably determine onset of head movements and to suggest which kind of head movement is taking place....

  17. Considerations on Velocities and Accelerations in Higher Pairs Mechanisms

    Florina-Carmen Ciornei

    2015-12-01

    Full Text Available The paper proposes a method for finding the velocities and accelerations in the pairs from a mechanism with higher pairs in the case when the curvature radii of the curves achieving the higher pair are finite. There are obtained the characteristic equations of the motion in the higher pair for the case that one of the curves has zero curvature radius, condition characteristic to the knife edge follower. The relations are required to justify the difference between the particular cases of knife edge follower and flat face follower. The methodology is exemplified through an actual example.

  18. Growth of binary solid solution single crystals and calculation of melt surface displacement velocity

    Agamaliyev, Z.A.; Tahirov, V.I.; Hasanov, Z.Y.; Quliyev, A.F.

    2007-01-01

    A binary solid solution single crystal growth method has been worked out. Cylinder feeding alloy with complex content distribution and truncated cone crucible are used. Second component distribution coefficient is more than unit. Content distribution along grown crystal is found by solving continuity equation. After reaching dynamic equilibrium state second component concentration in grown crystal is saturated the value of which is less than the average ona in the feeding alloy. Using the method Ge-Si perfect single crystals has been grown. Calculation method of melt surface displacement velocity has been offered as well

  19. On Drift Effects in Velocity and Displacement of Greek Uncorrected Digital Strong Motion Data

    Skarlatoudis, A.; Margaris, B.

    2005-12-01

    Fifty years after the first installation of analog accelerographs, digital instruments recording the strong-motion came in operation. Their advantages comparing to the analog ones are obvious and they have been described in detail in several works. Nevertheless it has been pointed out that velocity and displacement values derived from several accelerograms, recorded in various strong earthquakes worldwide (e.g. 1999 Chi-Chi, Taiwan, Hector Mine, 2002 Denali) by digital instruments, are plagued by drifts when only a simple baseline correction derived from the pre-event portion of the record is removed. In Greece a significant number of accelerographic networks and arrays have been deployed covering the whole area. Digital accelerographs now constitute a significant part of the National Strong Motion network of the country. Detailed analyses of the data processing of accelerograms recorded by digital instruments exhibited that the same drifts exist in the Greek strong motion database. In this work, a methodology proposed and described in various articles (Boore, 2001; 2003; 2005) for removing the aforementioned drifts of the accelerograms is applied. It is also attempted a careful look of the nature of the drifts for understanding the noise characteristics relative to the signal. The intrinsic behaviour of signal to noise ratio is crucial for the adequacy of baseline corrections applied on digital uncorrected accelerograms. Velocities and displacements of the uncorrected and corrected accelerograms are compared and the drift effects in the Fourier and response spectra are presented.

  20. Accelerated and Decelerated Flows in a Circular Pipe : 1st Report, Velocity Profile and Friction Coefficient

    Kurokawa, Junichi; Morikawa, Masahiro

    1986-01-01

    In order to determine the flow characteristics of a transient flow in a circular pipe, an accelerated and a decelerated flow are studied, and effects of acceleration upon the formation of a velocity profile, transition and a friction coefficient are determined for a wide range of accelerations. The results of the accelerated flow show that there are two patterns in the formation of a sectional velocity profile and transition, one of which is observed when the acceleration is relatively large ...

  1. Displacement length and velocity of tagged logs in the tagliamento river

    Diego Ravazzolo

    2013-09-01

    Full Text Available Large wood enhance the dynamics of geomorphic processes in river systems, increases the morphological complexity of the channel bed, and provides habitats for fish and invertebrates. On the other side, if transported during high-magnitude events, large wood pieces can increase flood risks in sensitive places such as bridges and narrow cross sections prone to outbank flows. However, the dynamics and mobility of logs in rivers is poorly understood, especially in wide gravel-bed rivers. Recent studies have employed fixed video cameras to assess logs velocity, but little evidence is still available about travel length during flood events of different magnitude. This study was conducted in a valley reach of the Tagliamento river, located in the North East of Italy. The Tagliamento river is approximately 800 m wide in the study area, and is characterized by relatively high natural conditions and complex fluvial dynamics. Log mobility have been studied from June 2010 to October 2011, a period characterized by a relatively high magnitude flood in November 2010. Log mobility and displacement during floods have been measured by implanting active radio transmitters (RFID in 113 logs and GPS track devices in 42 logs. The first devices allow to recover the log after flood events by using a portable antenna, and to derive the displacement length over the monitoring period, whereas the second devices allows to calculate instantaneous (1 sec and average log velocity of moving logs. Recovery rate of logs equipped with RFID and GPS was about 50% and 60%, respectively. A preliminary analysis of the data collected indicates that there is a positive relationship between displacement length and the peak of flood events, as well as a positive relationship between log velocity and the flood magnitude. Also, a critical flow rate over which logs stranded on active bars can be transported has been identified. The ability to predict wood mobility in gravel-bed rivers could

  2. Option pricing: Stock price, stock velocity and the acceleration Lagrangian

    Baaquie, Belal E.; Du, Xin; Bhanap, Jitendra

    2014-12-01

    The industry standard Black-Scholes option pricing formula is based on the current value of the underlying security and other fixed parameters of the model. The Black-Scholes formula, with a fixed volatility, cannot match the market's option price; instead, it has come to be used as a formula for generating the option price, once the so called implied volatility of the option is provided as additional input. The implied volatility not only is an entire surface, depending on the strike price and maturity of the option, but also depends on calendar time, changing from day to day. The point of view adopted in this paper is that the instantaneous rate of return of the security carries part of the information that is provided by implied volatility, and with a few (time-independent) parameters required for a complete pricing formula. An option pricing formula is developed that is based on knowing the value of both the current price and rate of return of the underlying security which in physics is called velocity. Using an acceleration Lagrangian model based on the formalism of quantum mathematics, we derive the pricing formula for European call options. The implied volatility of the market can be generated by our pricing formula. Our option price is applied to foreign exchange rates and equities and the accuracy is compared with Black-Scholes pricing formula and with the market price.

  3. Investigating Efficiency of Time Domain Curve fitters Versus Filtering for Rectification of Displacement Histories Reconstructed from Acceleration Measurements

    Sichani, Mahdi Teimouri; Brincker, Rune

    2008-01-01

    Computing displacements of a structure from its measured accelerations has been major concern of some fields of engineering such as earthquake engineering. In vibration engineering also displacements are preferred to acceleration histories occasionally i.e. in the determination of forces applied...... on a structure. In brief the major problem that accompanies reconstruction of true displacement from acceleration record is the unreal drift observed in the double integrated acceleration. Purpose of the present work is to address source of the problem, introduce its treatments, show how they work and compare...

  4. Geomagnetic displacement of the electron beam in the LIU-30 accelerator

    Rakityanskij, S.A.

    1987-01-01

    An influence of weak lateral magnetic field upon the motion of the intense electron beam inside a linear cylindrical vacuum channel is numerically explored. The problem is solved in the framework of a simple model with a thread-like beam. It also takes into account the charge and current of the image, induced in conducting surface of the vacuum tube. The dependence of the beam displacement from axis, caused by the lateral magnetic field, on the energy and on the degree of nonuniformity of the longitudinal focusing field is explored. A calculation of the beam displacement for the LIU-30 accelerating structure is performed. It is shown by this example that the earth magnetic field may cause a significant displacement. It is also shown that a smoothing away of the longitudinal field nonuniformities reduces the displacement by some times. A conclusion about advisability of orientation of the short accelerators along the geomagnetic lines and about indispensability of a removal of geomagnetic field in beginning parts of the long mashines is made

  5. A new state-of-the-art tool to investigate rock friction under extreme slip velocities and accelerations: SHIVA

    Niemeijer, André; di Toro, Giulio; Nielsen, Stefan; Scarlato, Piergiorgio; Romeo, Gianni; di Stefano, Giuseppe; Smith, Steven; di Felice, Fabio; Mariano, Sofia

    2010-05-01

    Despite considerable effort over the past several decades, the mechanics of earthquakes rupture remain largely unknown. In order to complement fault drilling projects and field and seismological observations, recent friction experiments strive to reproduce as closely as possible in-situ (natural) conditions of slip velocity and acceleration on intact and fault rocks. In this contribution, we present a novel state-of-the-art experimental rotary shear apparatus (SHIVA or Slow to HIgh Velocity Apparatus) capable of shearing samples at sliding velocities up to 10 m/s, accelerations of ~ 40 m/s2 and normal stresses up to 50 MPa. In comparison with existing high speed friction machines, this apparatus extends the range of sliding velocities, normal stresses, sample size and, more importantly, accelerations. The apparatus consists of a pair of brushless electric motors (a low velocity motor, 10-6-10-3 m/s, power 5 kW, and a high velocity motor, 10-3 - 10 m/s, power 270 kW), that are connected by a gear system that allows a switch between motors without loss of velocity and force. The motors drive a rotary shaft which clamps ring-shaped samples (diameter 40- 50 mm). On the other side of the rotary shaft, a stationary shaft holds the other half of the sample assembly. The shaft is held stationary by a pair of stainless steel arms, one of which is attached to the side of the concrete-filled base where torque is measured by a tension cell. Axial force (maximum 37 kN) is applied on this side by a piston-cylinder couple with an arm to increase the force. The entire machine measures by 3.5 by 1.2 meters and weighs 3700 kg. We aim to perform experiments on rock samples of a variety of compositions using slip velocities and accelerations that simulate slip velocity functions that occur during earthquakes. In addition, we plan to develop a pore fluid system and a pressure vessel in order to perform experiments that include the physical-chemical processes that occur during slow

  6. On norm equivalence between the displacement and velocity vectors for free linear dynamical systems

    Ludwig Kohaupt

    2015-12-01

    Full Text Available As the main new result, under certain hypotheses, for free vibration problems, the norm equivalence of the displacement vector $ y(t $ and the velocity vector $ \\dot{y}(t $ is proven. The pertinent inequalities are applied to derive some two-sided bounds on $ y(t $ and $ \\dot{y}(t $ that are known so far only for the state vector $ x(t=[y^T(t, \\dot{y}^T(t]^T $. Sufficient algebraic conditions are given such that norm equivalence between $ y(t $ and $ \\dot{y}(t $ holds, respectively, does not hold, as the case may be. Numerical examples illustrate the results for vibration problems of n degrees of freedom with $ n \\in \\{ 1, 2, 3, 4, 5 \\} $ by computing the mentioned algebraic conditions and by plotting the graphs of $ y(t $ and $ \\dot{y}(t $. Some notations and definitions of References Kohaupt (2008b, 2011 are necessary and are therefore recapitulated. The paper is of interest to Mathematicians and Engineers.

  7. Generation of the auroral electron velocity distribution by stochastic acceleration

    Bryant, D.A.; Cook, A.C.; Wang, Z.-S.; Angelis, U. de.

    1990-07-01

    In a further development of the wave theory of the aurora, it is demonstrated, using a Monte-Carlo numerical model, that the characteristic peak in the auroral electron velocity distribution can be generated stochastically through resonant interactions between an initially monotonic distribution and lower-hybrid electrostatic turbulence. The principal requirement is that the velocity spectrum of resonant waves has a sharp cut-off at high velocity. It is then shown that a cut-off is expected as a natural consequence of the difference between the phase and group velocities of lower-hybrid waves. The possibility is considered that a second peak, sometimes observed at lower velocities, is due to the same statistical mechanism, arising from the damping of waves of low phase velocity. An enhancement of wave intensity is found at higher velocities, where momentum flows preferentially from electrons to waves. The relation between the wave theory and the currently prevailing potential-difference theory emerges clearly from the analysis. (author)

  8. The roles of time and displacement in velocity-dependent volumetric strain of fault zones

    Beeler, N.M.; Tullis, T.E.

    1997-01-01

    The relationship between measured friction??A and volumetric strain during frictional sliding was determined using a rate and state variable dependent friction constitutive equation, a common work balance relating friction and volume change, and two types of experimental faults: initially bare surfaces of Westerly granite and rock surfaces separated by a 1 mm layer of derivative of fault normal displacement with respect shear displacement, d??n ld??s. An implication of this relationship is that the rate dependence of d??n ld??s contributes to the rate dependence of ??A. Experiments show changes in sliding velocity lead to changes in both fault strength and volume. Analysis of data with the rate and state equations combined with the work balance relationship preclude the conventional interpretation of the direct effect in the rate and state variable constitutive equations. Consideration of a model bare surface fault consisting of an undeformable indentor sliding on a deformable surface reveals a serious flaw in the work balance relationship if volume change is time-dependent. For the model, at zero slip rate indentation creep under the normal load leads to time-dependent strengthening of the fault surface but, according to the work balance relationship, no work is done because compaction or dilatancy can only be induced by shearing. Additional tests on initially bare surfaces and gouges show that fault normal strain in experiments is time-dependent, consistent with the model. This time-dependent fault normal strain, which is not accounted for in the work balance relationship, explains the inconsistency between the constitutive equations and the work balance. For initially bare surface faults, all rate dependence of volume change is due to time dependence. Similar results are found for gouge. We conclude that ??A reflects the frictional resistance that results in shear heating, and no correction needs to be made for the volume changes. The result that time

  9. Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow.

    Holzner, M; Morales, V L; Willmann, M; Dentz, M

    2015-07-01

    Intermittency of Lagrangian velocity and acceleration is a key to understanding transport in complex systems ranging from fluid turbulence to flow in porous media. High-resolution optical particle tracking in a three-dimensional (3D) porous medium provides detailed 3D information on Lagrangian velocities and accelerations. We find sharp transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity, superlinear evolution of particle dispersion, and double-peak behavior in the propagators. The velocity distribution is quantified in terms of pore geometry and flow connectivity, which forms the basis for a continuous-time random-walk model that sheds light on the observed Lagrangian flow and transport behaviors.

  10. Variation in angular velocity and angular acceleration of a particle in rectilinear motion

    Mashood, K K; Singh, V A

    2012-01-01

    We discuss the angular velocity and angular acceleration associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a straight line. We present some details of our observations. A formal derivation of ω and α is presented which reveals ‘surprising’ and non-intuitive aspects, namely non-monotonic behaviour with an associated extremum. The special case of constant velocity is studied and we find that angular acceleration associated with it also has an extremum. We discuss a plausible source of difficulty. (paper)

  11. Apparent Dependence of Rate- and State-Dependent Friction Parameters on Loading Velocity and Cumulative Displacement Inferred from Large-Scale Biaxial Friction Experiments

    Urata, Yumi; Yamashita, Futoshi; Fukuyama, Eiichi; Noda, Hiroyuki; Mizoguchi, Kazuo

    2017-06-01

    We investigated the constitutive parameters in the rate- and state-dependent friction (RSF) law by conducting numerical simulations, using the friction data from large-scale biaxial rock friction experiments for Indian metagabbro. The sliding surface area was 1.5 m long and 0.5 m wide, slid for 400 s under a normal stress of 1.33 MPa at a loading velocity of either 0.1 or 1.0 mm/s. During the experiments, many stick-slips were observed and those features were as follows. (1) The friction drop and recurrence time of the stick-slip events increased with cumulative slip displacement in an experiment before which the gouges on the surface were removed, but they became almost constant throughout an experiment conducted after several experiments without gouge removal. (2) The friction drop was larger and the recurrence time was shorter in the experiments with faster loading velocity. We applied a one-degree-of-freedom spring-slider model with mass to estimate the RSF parameters by fitting the stick-slip intervals and slip-weakening curves measured based on spring force and acceleration of the specimens. We developed an efficient algorithm for the numerical time integration, and we conducted forward modeling for evolution parameters ( b) and the state-evolution distances (L_{{c}}), keeping the direct effect parameter ( a) constant. We then identified the confident range of b and L_{{c}} values. Comparison between the results of the experiments and our simulations suggests that both b and L_{{c}} increase as the cumulative slip displacement increases, and b increases and L_{{c}} decreases as the loading velocity increases. Conventional RSF laws could not explain the large-scale friction data, and more complex state evolution laws are needed.

  12. Displacement measurements in the cryogenically cooled dipoles of the new CERN-LHC particle accelerator

    Inaudi, D; Scandale, Walter; Pérez, J G; Billan, J; Redaelli, S

    2001-01-01

    The LHC will use the most advanced superconducting magnet and accelerator technologies ever employed. One of the main challenges in this new machine resides in the design and production of the superconducting dipoles used to steer the particles around the 27 km underground tunnel. These so-called cryodipoles are composed of an external vacuum tube and an insert, appropriately named the cold mass, that contains the particle tubes, the superconducting coil and will be cooled using superfluid helium to 1.9 K. The particle beam must be placed inside the magnetic field with a submillimeter accuracy; this requires in turn that the relative displacements between the vacuum tube and the cold-mass must be monitored with accuracy. Due to the extreme condition environmental conditions (the displacement measurement must be made in vacuum and between two points with a temperature difference of more than 200 degrees C) no adequate existing monitoring system was found for this application. It was therefore decided to develo...

  13. Direct measurement of the image displacement instability in a linear induction accelerator

    Burris-Mog, T. J.; Ekdahl, C. A.; Moir, D. C.

    2017-06-01

    The image displacement instability (IDI) has been measured on the 20 MeV Axis I of the dual axis radiographic hydrodynamic test facility and compared to theory. A 0.23 kA electron beam was accelerated across 64 gaps in a low solenoid focusing field, and the position of the beam centroid was measured to 34.3 meters downstream from the cathode. One beam dynamics code was used to model the IDI from first principles, while another code characterized the effects of the resistive wall instability and the beam break-up (BBU) instability. Although the BBU instability was not found to influence the IDI, it appears that the IDI influences the BBU. Because the BBU theory does not fully account for the dependence on beam position for coupling to cavity transverse magnetic modes, the effect of the IDI is missing from the BBU theory. This becomes of particular concern to users of linear induction accelerators operating in or near low magnetic guide fields tunes.

  14. Direct measurement of the image displacement instability in a linear induction accelerator

    T. J. Burris-Mog

    2017-06-01

    Full Text Available The image displacement instability (IDI has been measured on the 20 MeV Axis I of the dual axis radiographic hydrodynamic test facility and compared to theory. A 0.23 kA electron beam was accelerated across 64 gaps in a low solenoid focusing field, and the position of the beam centroid was measured to 34.3 meters downstream from the cathode. One beam dynamics code was used to model the IDI from first principles, while another code characterized the effects of the resistive wall instability and the beam break-up (BBU instability. Although the BBU instability was not found to influence the IDI, it appears that the IDI influences the BBU. Because the BBU theory does not fully account for the dependence on beam position for coupling to cavity transverse magnetic modes, the effect of the IDI is missing from the BBU theory. This becomes of particular concern to users of linear induction accelerators operating in or near low magnetic guide fields tunes.

  15. Acceleration mechanism of vertical displacement event and its amelioration in tokamak disruptions

    Nakamura, Yukiharu; Yoshino, Ryuji; Pomphrey, N.; Jardin, S.C.

    1996-01-01

    Vertical displacement events (VDEs), which are frequently observed in disruptive discharges of elongated tokamaks, are investigated using the Tokamak Simulation Code. We show that disruption events such as a sudden plasma pressure drop (β p collapse) and the subsequent plasma current quench (I p quench) can accelerate VDEs due to the adverse destabilizing effect of the resistive shell, which has previously been thought to stabilize VDEs. In a tokamak with a surrounding shell which is asymmetric with respect to the geometric midplane, the I p quench also causes an additional VDE acceleration due to the vertical imbalance of the attractive force. While the shell-geometry characterizes the VDE dynamics, the growth rate of VDEs depends strongly on the magnitude of the β p collapse, the speed of the I p quench and the n-index of the plasma equilibrium just before the disruption. An amelioration of I p quench-induced VDEs was experimentally established in the JT-60U tokamak by optimizing the vertical location of the plasma just prior to the disruption. The JT-60U vacuum vessel is shown to be suitable for preventing the β p collapse-induced VDE. (author)

  16. Reactive Balance Control in Response to Perturbation in Unilateral Stance: Interaction Effects of Direction, Displacement and Velocity on Compensatory Neuromuscular and Kinematic Responses

    Freyler, Kathrin; Gollhofer, Albert; Colin, Ralf; Brüderlin, Uli; Ritzmann, Ramona

    2015-01-01

    Unexpected sudden perturbations challenge postural equilibrium and require reactive compensation. This study aimed to assess interaction effects of the direction, displacement and velocity of perturbations on electromyographic (EMG) activity, centre of pressure (COP) displacement and joint kinematics to detect neuromuscular characteristics (phasic and segmental) and kinematic strategies of compensatory reactions in an unilateral balance paradigm. In 20 subjects, COP displacement and velocity, ankle, knee and hip joint excursions and EMG during short (SLR), medium (MLR) and long latency response (LLR) of four shank and five thigh muscles were analysed during random surface translations varying in direction (anterior-posterior (sagittal plane), medial-lateral (frontal plane)), displacement (2 vs. 3cm) and velocity (0.11 vs. 0.18m/s) of perturbation when balancing on one leg on a movable platform. Phases: SLR and MLR were scaled to increased velocity (Pjoints compensated for both increasing displacement and velocity in all directions (Pjoint deflections were particularly sensitive to increasing displacement in the sagittal (Pjoint deflections to increasing velocity in the frontal plane (P<0.05). COP measures increased with increasing perturbation velocity and displacement (P<0.05). Interaction effects indicate that compensatory responses are based on complex processes, including different postural strategies characterised by phasic and segmental specifications, precisely adjusted to the type of balance disturbance. To regain balance after surface translation, muscles of the distal segment govern the quick regain of equilibrium; the muscles of the proximal limb serve as delayed stabilisers after a balance disturbance. Further, a kinematic distinction regarding the compensation for balance disturbance indicated different plane- and segment-specific sensitivities with respect to the determinants displacement and velocity. PMID:26678061

  17. Velocity Distribution in a Room Ventilated by Displacement Ventilation and Wall-Mounted Air Terminal Devices

    Nielsen, Peter Vilhelm

    2000-01-01

    The article describes experiments with wall-mounted air terminal devices. The airflow from an air terminal device influences the occupants' thermal comfort and, therefore, it is important to develop an expression for this flow in the occupied zone. The velocity at the floor is influenced...... by the flow rate to the room, the temperature difference and the type of diffuser. The flow is stratified at Archimedes numbers larger than four. The article gives expressions for the velocity distribution close to the floor. It is shown that openings between obstacles placed directly on the floor generate...... a flow similar to the air movement in front of a diffuser, and expressions for the velocity distribution in that situation are also given in the article....

  18. Velocity Distribution in the Flow from a Wall-Mounted Diffuser in Rooms with Displacement Ventilation

    Nielsen, Peter V.

    The paper describes experiments with wall-mounted air terminal devices. The airflow from an air terminal device will influence the thermal comfort of the occupants and it is therefore important to develop an expression for this flow. The velocity at the floor is influenced by the flow rate...

  19. Direct and precise measurement of displacement and velocity of flexible web in roll-to-roll manufacturing systems

    Kang, Dongwoo; Lee, Eonseok; Choi, Young-Man; Lee, Taik-Min; Kim, Duk Young; Kim, Dongmin

    2013-01-01

    Interest in the production of printed electronics using a roll-to-roll system has gradually increased due to its low mass-production costs and compatibility with flexible substrate. To improve the accuracy of roll-to-roll manufacturing systems, the movement of the web needs to be measured precisely in advance. In this paper, a novel measurement method is developed to measure the displacement and velocity of the web precisely and directly. The proposed algorithm is based on the traditional single field encoder principle, and the scale grating has been replaced with a printed grating on the web. Because a printed grating cannot be as accurate as a scale grating in a traditional encoder, there will inevitably be variations in pitch and line-width, and the motion of the web should be measured even though there are variations in pitch and line-width in the printed grating patterns. For this reason, the developed algorithm includes a precise method of estimating the variations in pitch. In addtion, a method of correcting the Lissajous curve is presented for precision phase interpolation to improve measurement accuracy by correcting Lissajous circle to unit circle. The performance of the developed method is evaluated by simulation and experiment. In the experiment, the displacement error was less than 2.5 μm and the velocity error of 1σ was about 0.25%, while the grating scale moved 30 mm

  20. Direct and precise measurement of displacement and velocity of flexible web in roll-to-roll manufacturing systems

    Kang, Dongwoo; Lee, Eonseok; Choi, Young-Man; Lee, Taik-Min [Advanced Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Duk Young [Nano-Opto-Mechatronics Lab., Dept. of Mechanical Eng., KAIST, 335 Gwahangno, Yuseong-Gu, Daejeon 305-701 (Korea, Republic of); Kim, Dongmin [Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of)

    2013-12-15

    Interest in the production of printed electronics using a roll-to-roll system has gradually increased due to its low mass-production costs and compatibility with flexible substrate. To improve the accuracy of roll-to-roll manufacturing systems, the movement of the web needs to be measured precisely in advance. In this paper, a novel measurement method is developed to measure the displacement and velocity of the web precisely and directly. The proposed algorithm is based on the traditional single field encoder principle, and the scale grating has been replaced with a printed grating on the web. Because a printed grating cannot be as accurate as a scale grating in a traditional encoder, there will inevitably be variations in pitch and line-width, and the motion of the web should be measured even though there are variations in pitch and line-width in the printed grating patterns. For this reason, the developed algorithm includes a precise method of estimating the variations in pitch. In addtion, a method of correcting the Lissajous curve is presented for precision phase interpolation to improve measurement accuracy by correcting Lissajous circle to unit circle. The performance of the developed method is evaluated by simulation and experiment. In the experiment, the displacement error was less than 2.5 μm and the velocity error of 1σ was about 0.25%, while the grating scale moved 30 mm.

  1. A combined method to calculate co-seismic displacements through strong motion acceleration baseline correction

    Zhan, W.; Sun, Y.

    2015-12-01

    High frequency strong motion data, especially near field acceleration data, have been recorded widely through different observation station systems among the world. Due to tilting and a lot other reasons, recordings from these seismometers usually have baseline drift problems when big earthquake happens. It is hard to obtain a reasonable and precision co-seismic displacement through simply double integration. Here presents a combined method using wavelet transform and several simple liner procedures. Owning to the lack of dense high rate GNSS data in most of region of the world, we did not contain GNSS data in this method first but consider it as an evaluating mark of our results. This semi-automatic method unpacks a raw signal into two portions, a summation of high ranks and a low ranks summation using a cubic B-spline wavelet decomposition procedure. Independent liner treatments are processed against these two summations, which are then composed together to recover useable and reasonable result. We use data of 2008 Wenchuan earthquake and choose stations with a near GPS recording to validate this method. Nearly all of them have compatible co-seismic displacements when compared with GPS stations or field survey. Since seismometer stations and GNSS stations from observation systems in China are sometimes quite far from each other, we also test this method with some other earthquakes (1999 Chi-Chi earthquake and 2011 Tohoku earthquake). And for 2011 Tohoku earthquake, we will introduce GPS recordings to this combined method since the existence of a dense GNSS systems in Japan.

  2. Equivalence of velocity-level and acceleration-level redundancy-resolution of manipulators

    Cai Binghuang; Zhang Yunong

    2009-01-01

    The equivalence of velocity-level and acceleration-level redundancy resolution of robot manipulators is investigated in this Letter. Theoretical analysis based on gradient-descent method and computer simulations based on PUMA560 robot manipulator both demonstrate the equivalence of redundancy-resolution schemes at different levels.

  3. An analytical model for displacement velocity of liquid film on a hot vertical surface

    Yoshioka, Keisuke; Hasegawa, Shu

    1975-01-01

    The downward progress of the advancing front of a liquid film streaming down a heated vertical surface, as it would occur in emergency core cooling, is much slower than in the case of ordinary streaming down along a heated surface already wetted with the liquid. A two-dimensional heat conduction model is developed for evaluating this velocity of the liquid front, which takes account of the heat removal by ordinary flow boiling mechanism. In the analysis, the maximum heat flux and the calefaction temperature are taken up as parameters in addition to the initial dry heated wall temperature, the flow rate and the velocity of downward progress of the liquid front. The temperature profile is calculated for various combinations of these parameters. Two criteria are proposed for choosing the most suitable combination of the parameters. One is to reject solutions that represent an oscillating wall temperature distribution, and the second criterion requires that the length of the zone of violent boiling immediately following the liquid front should not be longer than about 1 mm, this value being determined from comparisons made between experiment and calculation. Application of the above two criteria resulted in reasonable values obtained for the calefaction temperature and the maximum heat flux, and the velocity of the liquid front derived therefrom showed good agreement with experiment. (auth.)

  4. On the importance of effective convergence velocity of synthetic acceleration methods in neutron transport

    Coppa, G.G.M.; Ravetto, P.; Colombo, V.

    1996-01-01

    The present work concerns some aspects of the optimization of the synthesis acceleration techniques in neutron transport. The importance of non-asymptotic convergence velocity as a theoretical means to characterize and optimize acceleration methods is discussed in detail for isotropic as well as highly anisotropic scattering cases; this shows the innacuracy of results based only on the usual asyptotic analysis. A detailed study of convergence velocity behaviour for space discretized schemes and multidimensional problems is also presented. Finally, various kinds of theoretical-evaluated convergence velocities are reported to study the effective behaviour of some modifications of the classic DSA technique recently proposed to face its loss of effectiveness and optimize performances when dealing with highly anisotropic scattering; comparisons with results of already assessed DSA modification techniques are reported for various scattering cross-section configurations. (Author)

  5. PIV measurements of velocities and accelerations under breaking waves on a slope

    Vested, Malene Hovgaard; Carstensen, Stefan; Christensen, Erik Damgaard

    2017-01-01

    waves. In this study, we have investigated the wave kinematics under steep and breaking waves on a laboratory beach with a slope of 1/25. The velocity field was measured by use of Particle Image Velocimetry (PIV) at a sample rate of 96Hz. The high sample rate allowed for the accelerations...... to be determined directly from the sampled velocities. It was found that both velocities and accelerations differ from the ones predicted from common wave theories such as streamfunction theory. This was especially evident at the top part of the wave close to the surface. This was not surprising, since...... the breaking event is a highly non-linear process. The results presented here may facilitate computations of the impact force on offshore structures and furthermore be used for validation of CFD models while altogether shedding light on the mechanisms behind breaking waves....

  6. Combined effects of Mass and Velocity on forward displacement and phenomenological ratings: a functional measurement approach to the Momentum metaphor

    Michel-Ange Amorim

    2010-01-01

    Full Text Available Representational Momentum (RepMo refers to the phenomenon that the vanishing position of a moving target is perceived as displaced ahead in the direction of movement. Originally taken to reflect a strict internalization of physical momentum, the finding that the target implied mass did not have an effect led to its subsequent reinterpretation as a second-order isomorphism between mental representations and principles of the physical world. However, very few studies have addressed the effects of mass on RepMo, and consistent replications of the null effect are lacking. The extent of motor engagement of the observers in RepMo tasks has, on the other hand, been suggested to determine the occurrence of the phenomenon; however, no systematic investigations were made of the degree to which it might modulate the effect of target mass. In the present work, we use Information Integration Theory to study the joint effects of different motor responses, target velocity and target mass on RepMo, and also of velocity and target mass on rating responses. Outcomes point not only to an effect of mass on RepMo, as to a differential effect of response modality on kinematic (e.g., velocity and dynamic (e.g., mass variables. Comparisons of patterns of mislocalisation with phenomenological ratings suggest that simplification of physical principles, rather than strict internalization or isomorphism per se, might underlie RepMo.

  7. Force, acceleration and velocity during trampoline jumps—a challenging assignment

    Pendrill, Ann-Marie; Ouattara, Lassana

    2017-11-01

    Bouncing on a trampoline lets the jumper experience the interplay between weightlessness and large forces on the body, as the motion changes between free fall and large acceleration in contact with the trampoline bed. In this work, several groups of students were asked to draw graphs of elevation, velocity and acceleration as a function of time, for two full jumps of the 2012 Olympic gold medal trampoline routine by Rosannagh MacLennan. We hoped that earlier kinaesthetic experiences of trampoline bouncing would help students make connections between the mathematical descriptions of elevation, velocity and acceleration, which is known to be challenging. However, very few of the student responses made reference to personal experiences of forces during bouncing. Most of the responses could be grouped into a few categories, which are presented and discussed in the paper. Although the time dependence of elevation was drawn relatively correctly in most cases, many of the graphs of velocity and acceleration display a lack of understanding of the relation between these different aspects of motion.

  8. Phase velocity of nonlinear plasma waves in the laser beat-wave accelerator

    Spence, W.L.

    1985-01-01

    The suggested plasma-laser accelerator is an attempt to achieve a very high energy gradient by resonantly exciting a longitudinal wave traveling at close to the speed of light in cold plasma by means of the beat-wave generated by the transverse fields in two laser beams. Previous calculations to all orders in v/sub z/ have been done essentially from the laboratory frame point of view and have treated the plasma wave as having sharply defined phase velocity equal to the speed of light. However a high energy particle beam undergoing acceleration sees the plasma wave from a nearly light-like frame of reference and hence is very sensitive to small deviations in its phase velocity. Here the authors introduce a calculational scheme that includes all orders in v/sub z/ and in the plasma density, and additionally takes into account the influence of plasma nonlinearities on the wave's phase velocity. The main assumption is that the laser frequencies are very large compared to the plasma frequency - under which they are able to in essence formally sum up all orders of forward Raman scattering. They find that the nonlinear plasma wave does not have simply a single phase velocity - it is really a superposition of many - but that the beat-wave which drives it is usefully described by a non-local effective phase velocity function

  9. Velocity & displacement-dependent damper: A novel passive shock absorber inspired by the semi-active control

    Nie, Shida; Zhuang, Ye; Wang, Yong; Guo, Konghui

    2018-01-01

    The performance of velocity & displacement-dependent damper (VDD), inspired by the semi-active control, is analyzed. The main differences among passive, displacement-dependent and semi-active dampers are compared on their damping properties. Valve assemblies of VDD are modelled to get an insight into its working principle. The mechanical structure composed by four valve assemblies helps to enable VDD to approach the performance by those semi-active control dampers. The valve structure parameters are determined by the suggested two-step process. Hydraulic model of the damper is built with AMEsim. Simulation result of F-V curves, which is similar to those of semi-active control damper, demonstrates that VDD could achieve the similar performance of semi-active control damper. The performance of a quarter vehicle model employing VDD is analyzed and compared with semi-active suspension. Simulation results show that VDD could perform as good as a semi-active control damper. In addition, no add-on hardware or energy consumption is needed for VDD to achieve the remarkable performance.

  10. Acceleration to high velocities and heating by impact using Nike KrF laser

    Karasik, Max; Weaver, J. L.; Velikovich, A. L.; Zalesak, S. T.; Bates, J. W.; Obenschain, S. P.; Schmitt, A. J.; Aglitskiy, Y.; Watari, T.; Arikawa, Y.; Sakaiya, T.; Murakami, M.; Azechi, H.; Oh, J.

    2010-01-01

    The Nike krypton fluoride laser [S. P. Obenschain, S. E. Bodner, D. Colombant, et al., Phys. Plasmas 3, 2098 (1996)] is used to accelerate planar plastic foils to velocities that for the first time reach 1000 km/s. Collision of the highly accelerated deuterated polystyrene foil with a stationary target produces ∼Gbar shock pressures and results in heating of the foil to thermonuclear temperatures. The impact conditions are diagnosed using DD fusion neutron yield, with ∼10 6 neutrons produced during the collision. Time-of-flight neutron detectors are used to measure the ion temperature upon impact, which reaches 2-3 keV.

  11. Acceleration to high velocities and heating by impact using Nike KrF lasera)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Watari, T.; Arikawa, Y.; Sakaiya, T.; Oh, J.; Velikovich, A. L.; Zalesak, S. T.; Bates, J. W.; Obenschain, S. P.; Schmitt, A. J.; Murakami, M.; Azechi, H.

    2010-05-01

    The Nike krypton fluoride laser [S. P. Obenschain, S. E. Bodner, D. Colombant, et al., Phys. Plasmas 3, 2098 (1996)] is used to accelerate planar plastic foils to velocities that for the first time reach 1000 km/s. Collision of the highly accelerated deuterated polystyrene foil with a stationary target produces ˜Gbar shock pressures and results in heating of the foil to thermonuclear temperatures. The impact conditions are diagnosed using DD fusion neutron yield, with ˜106 neutrons produced during the collision. Time-of-flight neutron detectors are used to measure the ion temperature upon impact, which reaches 2-3 keV.

  12. Reactive Balance Control in Response to Perturbation in Unilateral Stance: Interaction Effects of Direction, Displacement and Velocity on Compensatory Neuromuscular and Kinematic Responses.

    Kathrin Freyler

    Full Text Available Unexpected sudden perturbations challenge postural equilibrium and require reactive compensation. This study aimed to assess interaction effects of the direction, displacement and velocity of perturbations on electromyographic (EMG activity, centre of pressure (COP displacement and joint kinematics to detect neuromuscular characteristics (phasic and segmental and kinematic strategies of compensatory reactions in an unilateral balance paradigm. In 20 subjects, COP displacement and velocity, ankle, knee and hip joint excursions and EMG during short (SLR, medium (MLR and long latency response (LLR of four shank and five thigh muscles were analysed during random surface translations varying in direction (anterior-posterior (sagittal plane, medial-lateral (frontal plane, displacement (2 vs. 3 cm and velocity (0.11 vs. 0.18 m/s of perturbation when balancing on one leg on a movable platform. Phases: SLR and MLR were scaled to increased velocity (P<0.05; LLR was scaled to increased displacement (P<0.05. Segments: phasic interrelationships were accompanied by segmental distinctions: distal muscles were used for fast compensation in SLR (P<0.05 and proximal muscles to stabilise in LLR (P<0.05. Kinematics: ankle joints compensated for both increasing displacement and velocity in all directions (P<0.05, whereas knee joint deflections were particularly sensitive to increasing displacement in the sagittal (P<0.05 and hip joint deflections to increasing velocity in the frontal plane (P<0.05. COP measures increased with increasing perturbation velocity and displacement (P<0.05. Interaction effects indicate that compensatory responses are based on complex processes, including different postural strategies characterised by phasic and segmental specifications, precisely adjusted to the type of balance disturbance. To regain balance after surface translation, muscles of the distal segment govern the quick regain of equilibrium; the muscles of the proximal limb

  13. Near-Horizon Geodesics for Astrophysical and Idealised Black Holes: Coordinate Velocity and Coordinate Acceleration

    Petarpa Boonserm

    2018-05-01

    Full Text Available Geodesics (by definition have an intrinsic 4-acceleration zero. However, when expressed in terms of coordinates, the coordinate acceleration d 2 x i / d t 2 can very easily be non-zero, and the coordinate velocity d x i / d t can behave unexpectedly. The situation becomes extremely delicate in the near-horizon limit—for both astrophysical and idealised black holes—where an inappropriate choice of coordinates can quite easily lead to significant confusion. We shall carefully explore the relative merits of horizon-penetrating versus horizon-non-penetrating coordinates, arguing that in the near-horizon limit the coordinate acceleration d 2 x i / d t 2 is best interpreted in terms of horizon-penetrating coordinates.

  14. Superconducting accelerating structure for particle velocities from 0.12 to 0.23 c

    Shepard, K.W.; Zinkann, G.P.

    1983-01-01

    A split-ring resonator has been designed for an optimum particle velocity #betta# = v/c = 0.16 and a frequency of 145.5 MHz. The ratio of peak-surface electric field to effective accelerating field in the resonator has been reduced 20% from the value obtained in previously developed split-ring resonators. The improved design results from the use of elliptically-sectioned loading arms and drift tubes, which have been enlarged to reduce peak-surface fields and also shaped to eliminate beam-steering effects in the resonator. All fabrication problems presented by the more-complex geometry have been solved, and a prototype superconducting niobium resonator has been completed. An accelerating field of 3.3 MV/m at 4 watts rf input has been so far achieved, corresponding to an effective accelerating potential of 1.17 MV per resonator

  15. Fourier-based integration of quasi-periodic gait accelerations for drift-free displacement estimation using inertial sensors.

    Sabatini, Angelo Maria; Ligorio, Gabriele; Mannini, Andrea

    2015-11-23

    In biomechanical studies Optical Motion Capture Systems (OMCS) are considered the gold standard for determining the orientation and the position (pose) of an object in a global reference frame. However, the use of OMCS can be difficult, which has prompted research on alternative sensing technologies, such as body-worn inertial sensors. We developed a drift-free method to estimate the three-dimensional (3D) displacement of a body part during cyclical motions using body-worn inertial sensors. We performed the Fourier analysis of the stride-by-stride estimates of the linear acceleration, which were obtained by transposing the specific forces measured by the tri-axial accelerometer into the global frame using a quaternion-based orientation estimation algorithm and detecting when each stride began using a gait-segmentation algorithm. The time integration was performed analytically using the Fourier series coefficients; the inverse Fourier series was then taken for reconstructing the displacement over each single stride. The displacement traces were concatenated and spline-interpolated to obtain the entire trace. The method was applied to estimate the motion of the lower trunk of healthy subjects that walked on a treadmill and it was validated using OMCS reference 3D displacement data; different approaches were tested for transposing the measured specific force into the global frame, segmenting the gait and performing time integration (numerically and analytically). The width of the limits of agreements were computed between each tested method and the OMCS reference method for each anatomical direction: Medio-Lateral (ML), VerTical (VT) and Antero-Posterior (AP); using the proposed method, it was observed that the vertical component of displacement (VT) was within ±4 mm (±1.96 standard deviation) of OMCS data and each component of horizontal displacement (ML and AP) was within ±9 mm of OMCS data. Fourier harmonic analysis was applied to model stride-by-stride linear

  16. Slip Ratio Estimation and Regenerative Brake Control for Decelerating Electric Vehicles without Detection of Vehicle Velocity and Acceleration

    Suzuki, Toru; Fujimoto, Hiroshi

    In slip ratio control systems, it is necessary to detect the vehicle velocity in order to obtain the slip ratio. However, it is very difficult to measure this velocity directly. We have proposed slip ratio estimation and control methods that do not require the vehicle velocity with acceleration. In this paper, the slip ratio estimation and control methods are proposed without detecting the vehicle velocity and acceleration when it is decelerating. We carried out simulations and experiments by using an electric vehicle to verify the effectiveness of the proposed method.

  17. Acceleration to High Velocities and Heating by Impact Using Nike KrF laser

    Karasik, Max

    2009-11-01

    Shock ignition, impact ignition, as well as higher intensity conventional hot spot ignition designs reduce driver energy requirement by pushing the envelope in laser intensity and target implosion velocities. This talk will describe experiments that for the first time reach target velocities in the range of 700 -- 1000 km/s. The highly accelerated planar foils of deuterated polystyrene, some with bromine doping, are made to collide with a witness foil to produce extreme shock pressures and result in heating of matter to thermonuclear temperatures. Target acceleration and collision are diagnosed using large field of view monochromatic x-ray imaging with backlighting as well as bremsstrahlung self-emission. The impact conditions are diagnosed using DD fusion neutron yield, with over 10^6 neutrons produced during the collision. Time-of-flight neutron detectors are used to measure the ion temperature upon impact, which reaches 2 -- 3 keV. The experiments are performed on the Nike facility, reconfigured specifically for high intensity operation. The short wavelength and high illumination uniformity of Nike KrF laser uniquely enable access to this new parameter regime. Intensities of (0.4 -- 1.2) x 10^15 W/cm^2 and pulse durations of 0.4 -- 2 ns were utilized. Modeling of the target acceleration, collision, and neutron production is performed using the FAST3D radiation hydrodynamics code with a non-LTE radiation model. Work is supported by US Department of Energy.

  18. Sialic acid accelerates the electrophoretic velocity of injured dorsal root ganglion neurons

    Chen-xu Li

    2015-01-01

    Full Text Available Peripheral nerve injury has been shown to result in ectopic spontaneous discharges on soma and injured sites of sensory neurons, thereby inducing neuropathic pain. With the increase of membrane proteins on soma and injured site neurons, the negatively charged sialic acids bind to the external domains of membrane proteins, resulting in an increase of this charge. We therefore speculate that the electrophoretic velocity of injured neurons may be faster than non-injured neurons. The present study established rat models of neuropathic pain via chronic constriction injury. Results of the cell electrophoresis test revealed that the electrophoretic velocity of injured neuronal cells was faster than that of non-injured (control cells. We then treated cells with divalent cations of Ca 2+ and organic compounds with positive charges, polylysine to counteract the negatively charged sialic acids, or neuraminidase to specifically remove sialic acids from the membrane surface of injured neurons. All three treatments significantly reduced the electrophoretic velocity of injured neuronal cells. These findings suggest that enhanced sialic acids on injured neurons may accelerate the electrophoretic velocity of injured neurons.

  19. The PDF of fluid particle acceleration in turbulent flow with underlying normal distribution of velocity fluctuations

    Aringazin, A.K.; Mazhitov, M.I.

    2003-01-01

    We describe a formal procedure to obtain and specify the general form of a marginal distribution for the Lagrangian acceleration of fluid particle in developed turbulent flow using Langevin type equation and the assumption that velocity fluctuation u follows a normal distribution with zero mean, in accord to the Heisenberg-Yaglom picture. For a particular representation, β=exp[u], of the fluctuating parameter β, we reproduce the underlying log-normal distribution and the associated marginal distribution, which was found to be in a very good agreement with the new experimental data by Crawford, Mordant, and Bodenschatz on the acceleration statistics. We discuss on arising possibilities to make refinements of the log-normal model

  20. Value of coronary stenotic flow velocity acceleration on the prediction of long-term improvement in functional status after angioplasty

    Albertal, M.; Regar, E.; Piek, J. J.; van Langenhove, G.; Carlier, S. G.; Thury, A.; Sianos, G.; Boersma, E.; de Bruyne, B.; di Mario, C.; Serruys, P. W.

    2001-01-01

    The coronary flow velocity acceleration at the stenotic site (SVA), defined as a > or = 50% increase in resting stenotic velocity when compared with the reference segment, has been shown to be highly sensitive and specific for the diagnosis of a hemodynamically significant stenosis. In this study,

  1. Railgun accelerators for launching 0.1-g payloads at velocities greater than 150 km/s

    Hawke, R.S.

    1979-01-01

    The promise of an abundant energy supply has inspired many approaches to controlling thermal nuclear fusion. One approach to initiating fusion is to use a hypervelocity projectile to impact a deuterium--tritium (DT) pellet. For this purpose, magnetic accelerators have been propsed for accelerating macroparticles to velocities greater than 100 km/s. This paper summarizes a portion of a study that assesses the feasibility of accelerating a 0.1-g payload to a velocity of 150 km/s or more. In that study it was concluded that magnetic-gradient and railgun accelerators could achieve the goal. The critical factors that limit the design and operation of railgun accelerators are discussed. These factors are combined with a simulation code to assess potential railgun performance in this regime

  2. SIMULATION TOOL OF VELOCITY AND TEMPERATURE PROFILES IN THE ACCELERATED COOLING PROCESS OF HEAVY PLATES

    Antônio Adel dos Santos

    2014-10-01

    Full Text Available The aim of this paper was to develop and apply mathematical models for determining the velocity and temperature profiles of heavy plates processed by accelerated cooling at Usiminas’ Plate Mill in Ipatinga. The development was based on the mathematical/numerical representation of physical phenomena occurring in the processing line. Production data from 3334 plates processed in the Plate Mill were used for validating the models. A user-friendly simulation tool was developed within the Visual Basic framework, taking into account all steel grades produced, the configuration parameters of the production line and these models. With the aid of this tool the thermal profile through the plate thickness for any steel grade and dimensions can be generated, which allows the tuning of online process control models. The simulation tool has been very useful for the development of new steel grades, since the process variables can be related to the thermal profile, which affects the mechanical properties of the steels.

  3. Anomalous resistivity due to low-frequency turbulence. [of collisionless plasma with limited acceleration of high velocity runaway electrons

    Rowland, H. L.; Palmadesso, P. J.

    1983-01-01

    Large amplitude ion cyclotron waves have been observed on auroral field lines. In the presence of an electric field parallel to the ambient magnetic field these waves prevent the acceleration of the bulk of the plasma electrons leading to the formation of a runaway tail. It is shown that low-frequency turbulence can also limit the acceleration of high-velocity runaway electrons via pitch angle scattering at the anomalous Doppler resonance.

  4. Concordance and reproducibility between M-mode, tissue Doppler imaging, and two-dimensional strain imaging in the assessment of mitral annular displacement and velocity in patients with various heart conditions

    de Knegt, Martina Chantal; Biering-Sorensen, Tor; Sogaard, Peter

    2014-01-01

    AIMS: Mitral annular (MA) displacement reflects longitudinal left ventricular (LV) deformation and systolic velocity measurements reflect the rate of contraction; both are valuable in the diagnosis and prognosis of cardiac disease. The aim of this study was to test the agreement and reproducibility...... between motion mode (M-mode), colour tissue Doppler imaging (TDI), and two-dimensional strain imaging (2DSI) when measuring MA displacement and systolic velocity. METHODS AND RESULTS: Using GE Healthcare Vivid 7 and E9 and Echopac BT11 software, MA displacement and velocity measurements by 2DSI, TDI...

  5. On excitation and radiation of detector moving in vacuum with acceleration or moving rectilinearly with superluminal velocity in a medium

    Ginzburg, V.L.; Frolov, V.P.

    1986-01-01

    The problem of excitation of a detector moving in vacuum with constant acceleration is being discussed in recent years. It is noted in the paper that this excitation and radiation associated with it are similar to those taking place in the range of anomalous Doppler effect occurring during motion of the detector with constant superluminal velocity in medium

  6. Low velocity floor level displacement ventilation systems: Technology assessment. Sistemi di distribuzione dell'aria a pavimento a bassa velocita': Vecchie e nuove conoscenze

    Borjesson, J.A.; Bertomeu, L.; Marchetti, F.

    1992-12-01

    Although the concept of floor level air displacement ventilation is not in fact truly innovative given that it has already been tried during the 1980's, this paper shows that the combination of the advantageous natural cooling air circulation dynamics inherent in this method, combined with modern air diffusion equipment, offers interesting opportunities for energy conservation. The thermodynamics/air flow analysis indicates that from 20 to 40% energy savings can be obtained, in addition to reduced ventilation system operating times, with the effective application of low velocity floor level displacement air distribution systems as compared with conventional ventilation systems using the air mixing concept. It is shown how this innovative air cooling/recirculation technique is particularly suitable for conditions characterized by high air infiltration, high heating load and low indoor air pollution.

  7. Optimal Acceleration-Velocity-Bounded Trajectory Planning in Dynamic Crowd Simulation

    Fu Yue-wen

    2014-01-01

    Full Text Available Creating complex and realistic crowd behaviors, such as pedestrian navigation behavior with dynamic obstacles, is a difficult and time consuming task. In this paper, we study one special type of crowd which is composed of urgent individuals, normal individuals, and normal groups. We use three steps to construct the crowd simulation in dynamic environment. The first one is that the urgent individuals move forward along a given path around dynamic obstacles and other crowd members. An optimal acceleration-velocity-bounded trajectory planning method is utilized to model their behaviors, which ensures that the durations of the generated trajectories are minimal and the urgent individuals are collision-free with dynamic obstacles (e.g., dynamic vehicles. In the second step, a pushing model is adopted to simulate the interactions between urgent members and normal ones, which ensures that the computational cost of the optimal trajectory planning is acceptable. The third step is obligated to imitate the interactions among normal members using collision avoidance behavior and flocking behavior. Various simulation results demonstrate that these three steps give realistic crowd phenomenon just like the real world.

  8. Modeling Nonlinear Change via Latent Change and Latent Acceleration Frameworks: Examining Velocity and Acceleration of Growth Trajectories

    Grimm, Kevin; Zhang, Zhiyong; Hamagami, Fumiaki; Mazzocco, Michele

    2013-01-01

    We propose the use of the latent change and latent acceleration frameworks for modeling nonlinear growth in structural equation models. Moving to these frameworks allows for the direct identification of "rates of change" and "acceleration" in latent growth curves--information available indirectly through traditional growth…

  9. Optimizing pulse shaping and zooming for acceleration to high velocities and fusion neutron production on the Nike laser

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.; Watari, T.

    2010-11-01

    We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al., Phys. Plasmas 17, 056317 (2010) ], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce extreme shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is shaping the driving pulse to minimize shock heating of the accelerated target and using the focal zoom capability of Nike to achieve higher densities and velocities. Spectroscopic measurements of electron temperature achieved upon impact will complement the neutron time-of-flight ion temperature measurement. Work is supported by US DOE and Office of Naval Research.

  10. Use of zooming and pulseshaping for acceleration to high velocities and fusion neutron production on the Nike laser

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Kehne, D. M.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.

    2011-10-01

    We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al, Phys. Plasmas 17, 056317(2010)], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce ~ 1 Gbar shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is using the focal zoom capability of Nike and shaping the driving pulse to minimize shock heating of the accelerated target to achieve higher densities and velocities. In-flight target density is inferred from target heating upon collision via DD neutron time-of-flight ion temperature measurement. Work is supported by US DOE (NNSA) and Office of Naval Research. SAIC

  11. Damage Based Analysis (DBA): Theory, Derivation and Practical Application - Using Both an Acceleration and Pseudo-Velocity Approach

    Grillo, Vince

    2016-01-01

    The objective of this presentation is to give a brief overview of the theory behind the (DBA) method, an overview of the derivation and a practical application of the theory using the Python computer language. The Theory and Derivation will use both Acceleration and Pseudo Velocity methods to derive a series of equations for processing by Python. We will take the results and compare both Acceleration and Pseudo Velocity methods and discuss implementation of the Python functions. Also, we will discuss the efficiency of the methods and the amount of computer time required for the solution. In conclusion, (DBA) offers a powerful method to evaluate the amount of energy imparted into a system in the form of both Amplitude and Duration during qualification testing and flight environments. Many forms of steady state and transient vibratory motion can be characterized using this technique. (DBA) provides a more robust alternative to traditional methods such Power Spectral Density (PSD) using a Maximax approach.

  12. Role of awareness in head-neck acceleration in low velocity rear-end impacts.

    Kumar, S; Narayan, Y; Amell, T

    2000-03-01

    Fourteen normal healthy seated and restrained young adults were delivered rear-end impacts of four intensities of acceleration. The chair was delivered a regulated and controlled pneumatic blow using a 30 cm cylinder to cause an acceleration of 0.5, 0.9, 1.1 and 1.4g. The accelerated chair was stopped suddenly by impacting the stopper at the other end of the 2 m long friction reduced track. In one set of trials, subjects were informed about the impending impact and in the other they were blindfolded and provided with loud auditory input to eliminate cues of the impact. The accelerations of the chair, shoulder and head of the participating subjects were measured triaxially and compared between levels of acceleration and expectation. The multiple analyses of variance revealed that the peak acceleration was significantly affected by the gender (P < 0.01), intensity of impact (P < 0.001), and expectation (P < 0.0001). The accelerations were significantly different in different axes (P < 0.001). A significant two-way interaction between acceleration and expectation (P < 0.03), and expectation and axes of acceleration (P < 0.02) would imply that awareness of the impending impact serves to significantly reduce the level of accelerations of head and neck.

  13. Estimating the angular velocity of a rigid body moving in the plane from tangential and centripetal acceleration measurements

    Cardou, Philippe; Angeles, Jorge

    2008-01-01

    Two methods are available for the estimation of the angular velocity of a rigid body from point-acceleration measurements: (i) the time-integration of the angular acceleration and (ii) the square-rooting of the centripetal acceleration. The inaccuracy of the first method is due mainly to the accumulation of the error on the angular acceleration throughout the time-integration process, which does not prevent that it be used successfully in crash tests with dummies, since these experiments never last more than one second. On the other hand, the error resulting from the second method is stable through time, but becomes inaccurate whenever the rigid body angular velocity approaches zero, which occurs in many applications. In order to take advantage of the complementarity of these two methods, a fusion of their estimates is proposed. To this end, the accelerometer measurements are modeled as exact signals contaminated with bias errors and Gaussian white noise. The relations between the variables at stake are written in the form of a nonlinear state-space system in which the angular velocity and the angular acceleration are state variables. Consequently, a minimum-variance-error estimate of the state vector is obtained by means of extended Kalman filtering. The performance of the proposed estimation method is assessed by means of simulation. Apparently, the resulting estimation method is more robust than the existing accelerometer-only methods and competitive with gyroscope measurements. Moreover, it allows the identification and the compensation of any bias error in the accelerometer measurements, which is a significant advantage over gyroscopes

  14. The Differential Effects of Position, Velocity, and Acceleration Feedback on Motivation Over Time

    Watola, Daniel J

    2005-01-01

    .... Simple effects analyses indicated that participants' indicators of task motivation increased over time in the accelerating performance profile, but decreased over time in the decelerating performance profile...

  15. Acceleration of a solid-density plasma projectile to ultrahigh velocities by a short-pulse ultraviolet laser

    Badziak, J.; Jablonski, S. [Institute of Plasma Physics and Laser Microfusion, Euratom Association, 01-497 Warsaw (Poland)

    2011-08-15

    It is shown by means of particle-in-cell simulations that a high-fluence ({>=}1 GJ/cm{sup 2}) solid-density plasma projectile can be accelerated up to sub-relativistic velocities by radiation pressure of an ultraviolet (UV) picosecond laser pulse of moderate values of dimensionless laser amplitude a{sub 0}{approx}10. The efficiency of acceleration by the UV laser is significantly higher than in the case of long-wavelength ({lambda} {approx} 1 {mu}m) driver of a comparable value of a{sub 0}, and the motion of the projectile is fairly well described by the ''Light Sail'' acceleration model.

  16. Titanium K-Shell X-Ray Production from High Velocity Wire Arrays Implosions on the 20-MA Z Accelerator

    Apruzese, J.P.; Beg, F.N.; Clark, R.C.; Coverdale, C.A.; Davis, J.; Deeney, C.; Douglas, M.R.; Nash, T.J.; Ruiz-Comacho, J.; Spielman, R.B.; Struve, K.W.; Thornhill, J.W.; Whitney, K.G.

    1999-01-01

    The advent of the 20-MA Z accelerator [R.B. Spielman, C. Deeney, G.A. Chandler, et al., Phys. Plasmas 5, 2105, (1997)] has enabled implosions of large diameter, high-wire-number arrays of titanium to begin testing Z-pinch K-shell scaling theories. The 2-cm long titanium arrays, which were mounted on a 40-mm diameter, produced between 75±15 to 125±20 kJ of K-shell x-rays. Mass scans indicate that, as predicted, higher velocity implosions in the series produced higher x-ray yields. Spectroscopic analyses indicate that these high velocity implosions achieved peak electron temperatures from 2.7±0.1 to 3.2±0.2 keV and obtained a K-shell emission mass participation of up to 12%

  17. Charge and velocity resolution of Cerenkov counters in a beam of accelerated heavy nuclei

    Cantin, M.; Goret, P.; Jorrand, J.; Jouan, R.; Juliusson, E.; Koch, L.; Maubras, Y.; Mestreau, P.; Petrou, N.; Rio, Y.; Soutoul, A.; Cawood, P.; Linney, A.

    1975-01-01

    The response of various Cerenkov radiators to oxygen and nitrogen nuclei with energies ranging between 2.1GeV/n and 300MeV/n is presented. The velocity and charge resolutions are analyzed in relation to the possible use of these counters for chemical and isotopic analysis of the primary cosmic ray nuclei [fr

  18. Probability distributions of bed load particle velocities, accelerations, hop distances, and travel times informed by Jaynes's principle of maximum entropy

    Furbish, David; Schmeeckle, Mark; Schumer, Rina; Fathel, Siobhan

    2016-01-01

    We describe the most likely forms of the probability distributions of bed load particle velocities, accelerations, hop distances, and travel times, in a manner that formally appeals to inferential statistics while honoring mechanical and kinematic constraints imposed by equilibrium transport conditions. The analysis is based on E. Jaynes's elaboration of the implications of the similarity between the Gibbs entropy in statistical mechanics and the Shannon entropy in information theory. By maximizing the information entropy of a distribution subject to known constraints on its moments, our choice of the form of the distribution is unbiased. The analysis suggests that particle velocities and travel times are exponentially distributed and that particle accelerations follow a Laplace distribution with zero mean. Particle hop distances, viewed alone, ought to be distributed exponentially. However, the covariance between hop distances and travel times precludes this result. Instead, the covariance structure suggests that hop distances follow a Weibull distribution. These distributions are consistent with high-resolution measurements obtained from high-speed imaging of bed load particle motions. The analysis brings us closer to choosing distributions based on our mechanical insight.

  19. The role of ECoG magnitude and phase in decoding position, velocity and acceleration during continuous motor behavior

    Jiri eHammer

    2013-11-01

    Full Text Available In neuronal population signals, including the electroencephalogram (EEG and electrocorticogram (ECoG, the low-frequency component (LFC is particularly informative about motor behavior and can be used for decoding movement parameters for brain-machine interface (BMI applications. An idea previously expressed, but as of yet not quantitatively tested, is that it is the LFC phase that is the main source of decodable information. To test this issue, we analyzed human ECoG recorded during a game-like, one-dimensional, continuous motor task with a novel decoding method suitable for unfolding magnitude and phase explicitly into a complex-valued, time-frequency signal representation, enabling quantification of the decodable information within the temporal, spatial and frequency domains and allowing disambiguation of the phase contribution from that of the spectral magnitude. The decoding accuracy based only on phase information was substantially (at least 2 fold and significantly higher than that based only on magnitudes for position, velocity and acceleration. The frequency profile of movement-related information in the ECoG data matched well with the frequency profile expected when assuming a close time-domain correlate of movement velocity in the ECoG, e.g., a (noisy copy of hand velocity. No such match was observed with the frequency profiles expected when assuming a copy of either hand position or acceleration. There was also no indication of additional magnitude-based mechanisms encoding movement information in the LFC range. Thus, our study contributes to elucidating the nature of the informative low-frequency component of motor cortical population activity and may hence contribute to improve decoding strategies and BMI performance.

  20. An improved phase-control system for superconducting low-velocity accelerating structures

    Bogaty, J.M.; Clifft, B.E.; Shepard, K.W.; Zinkann, G.P.

    1989-01-01

    Microphonic fluctuations in the rf eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the rf phase. The tuning system must handle a reactive power proportional to the product of the tuning range and the rf energy content of the resonant cavity. The accelerating field level of many of the SC cavities forming the ATLAS linac has been limited by the rf power capacity of the presently used PIN-diode based fast-tuner. A new system has been developed, utilizing PIN diodes operating immersed in liquid nitrogen, with the diodes controlled by a high-voltage VMOS FET driver. The system has operated at reactive power levels above 20 KVA, a factor of four increase over an earlier design. 7 refs., 2 figs

  1. An improved phase-controlled system for superconducting low-velocity accelerating structures

    Bogaty, J.M.; Clifft, B.E.; Shepard, K.W.; Zinkann, G.P.

    1989-01-01

    Microphonic fluctuations in the RF eigenfrequency of supeconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the tuning range and the RF energy content of the resonant cavity. The accelerating field level of many of the SC cavities forming the ATLAS linac has been limited by the RF power capacity of the presently used PIN-diode based fast-tuner. A new system has been developed, utilizing PIN diodes operating immersed in liquid nitrogen, with the diodes controlled by a high-voltage VMOS FET driver. The system has operated at reactive power levels above 20 KVA, a factor of four increase over an earlier design. 7 refs., 2 figs

  2. An improved phase-control system for superconducting low-velocity accelerating structures

    Bogaty, J.M.; Clifft, B.E.; Shepard, K.W.; Zinkann, G.P.

    1989-01-01

    Microphonic fluctuations in the rf eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the rf phase. The tuning system must handle a reactive power proportional to the product of the tuning range and the rf energy content of the resonant cavity. The accelerating field level of many of the SC cavities forming the ATLAS linac has been limited by the rf power capacity of the presently used PIN-diode based fast-tuner. A new system has been developed, utilizing PIN diodes operating immersed in liquid nitrogen, with the diodes controlled by a high-voltage VMOS FET driver. The system has operated at reactive power levels above 20 KVA, a factor of four increase over an earlier design. 7 refs., 2 figs.

  3. Accelerated time-resolved three-dimensional MR velocity mapping of blood flow patterns in the aorta using SENSE and k-t BLAST

    Stadlbauer, Andreas; Riet, Wilma van der; Crelier, Gerard; Salomonowitz, Erich

    2010-01-01

    Purpose: To assess the feasibility and potential limitations of the acceleration techniques SENSE and k-t BLAST for time-resolved three-dimensional (3D) velocity mapping of aortic blood flow. Furthermore, to quantify differences in peak velocity versus heart phase curves. Materials and methods: Time-resolved 3D blood flow patterns were investigated in eleven volunteers and two patients suffering from aortic diseases with accelerated PC-MR sequences either in combination with SENSE (R = 2) or k-t BLAST (6-fold). Both sequences showed similar data acquisition times and hence acceleration efficiency. Flow-field streamlines were calculated and visualized using the GTFlow software tool in order to reconstruct 3D aortic blood flow patterns. Differences between the peak velocities from single-slice PC-MRI experiments using SENSE 2 and k-t BLAST 6 were calculated for the whole cardiac cycle and averaged for all volunteers. Results: Reconstruction of 3D flow patterns in volunteers revealed attenuations in blood flow dynamics for k-t BLAST 6 compared to SENSE 2 in terms of 3D streamlines showing fewer and less distinct vortices and reduction in peak velocity, which is caused by temporal blurring. Solely by time-resolved 3D MR velocity mapping in combination with SENSE detected pathologic blood flow patterns in patients with aortic diseases. For volunteers, we found a broadening and flattering of the peak velocity versus heart phase diagram between the two acceleration techniques, which is an evidence for the temporal blurring of the k-t BLAST approach. Conclusion: We demonstrated the feasibility of SENSE and detected potential limitations of k-t BLAST when used for time-resolved 3D velocity mapping. The effects of higher k-t BLAST acceleration factors have to be considered for application in 3D velocity mapping.

  4. Accelerators

    CERN. Geneva

    2001-01-01

    The talk summarizes the principles of particle acceleration and addresses problems related to storage rings like LEP and LHC. Special emphasis will be given to orbit stability, long term stability of the particle motion, collective effects and synchrotron radiation.

  5. High- and Low-Order Overtaking-Ability Affordances: Drivers Rely on the Maximum Velocity and Acceleration of Their Cars to Perform Overtaking Maneuvers.

    Basilio, Numa; Morice, Antoine H P; Marti, Geoffrey; Montagne, Gilles

    2015-08-01

    The aim of this study was to answer the question, Do drivers take into account the action boundaries of their car when overtaking? The Morice et al. affordance-based approach to visually guided overtaking suggests that the "overtake-ability" affordance can be formalized as the ratio of the "minimum satisfying velocity" (MSV) of the maneuver to the maximum velocity (V(max)) of the driven car. In this definition, however, the maximum acceleration (A(max)) of the vehicle is ignored. We hypothesize that drivers may be sensitive to an affordance redefined with the ratio of the "minimum satisfying acceleration" (MSA) to the A(max) of the car. Two groups of nine drivers drove cars differing in their A(max). They were instructed to attempt overtaking maneuvers in 25 situations resulting from the combination of five MSA and five MSV values. When overtaking frequency was expressed as a function of MSV and MSA, maneuvers were found to be initiated differently for the two groups. However, when expressed as a function of MSV/V(max) and MSA/A(max), overtaking frequency was quite similar for both groups. Finally, a multiple regression coefficient analysis demonstrated that overtaking decisions are fully explained by a composite variable comprising MSA/A(max) and the time required to reach MSV. Drivers reliably decide whether overtaking is safe (or not) by using low- and high-order variables taking into account their car's maximum velocity and acceleration, respectively, as predicted by "affordance-based control" theory. Potential applications include the design of overtaking assistance, which should exploit the MSA/A(max) variables in order to suggest perceptually relevant overtaking solutions. © 2015, Human Factors and Ergonomics Society.

  6. Accelerator experiments with soft protons and hyper-velocity dust particles: application to ongoing projects of future X-ray missions

    Perinati, E.; Diebold, S.; Kendziorra, E.

    2012-01-01

    and hyper-velocity dust particles off X-ray mirror shells. These activities have been identified as a goal in the context of a number of ongoing space projects in order to assess the risk posed by environmental radiation and dust and qualify the adopted instrumentation with respect to possible damage...... or performance degradation. In this paper we focus on tests for the Silicon Drift Detectors (SDDs) used aboard the LOFT space mission. We use the Van de Graaff accelerators at the University of T\\"ubingen and at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg, for soft proton and hyper...

  7. On the phase velocity of plasma waves in a self-modulated laser wake-field accelerator

    Andreev, N. E.; Kirsanov, V. I.; Sakharov, A. S.; van Amersfoort, P. W.; Goloviznin, V. V.

    1996-01-01

    The properties of the wake field excited by a flattop laser pulse with a sharp leading edge and a power below the critical one for relativistic self-focusing are studied analytically and numerically with emphasis on the phase velocity of the plasma wave. The paraxial model describing modulation of

  8. Displacement ventilation

    Kosonen, Risto; Melikov, Arsen Krikor; Mundt, Elisabeth

    The aim of this Guidebook is to give the state-of-the art knowledge of the displacement ventilation technology, and to simplify and improve the practical design procedure. The Guidebook discusses methods of total volume ventilation by mixing ventilation and displacement ventilation and it gives...... insights of the performance of the displacement ventilation. It also shows practical case studies in some typical applications and the latest research findings to create good local micro-climatic conditions....

  9. Methodology of Accelerated Life-Time Tests For Stirling-Type "Bae-Co"-Made Cryocoolers Against Displacer-Blockage by Cryo-Pollutant Deposits

    Getmanits, Vladimir

    2000-01-01

    ...: The contractor will investigate techniques for accelerated testing of cryocooler technology. During this phase of the effort the contractor will perform a detailed design of the equipment needed to conduct accelerated testing...

  10. Displacement Ventilation

    Nielsen, Peter Vilhelm

    Displacement ventilation is an interesting new type of air distribution principle which should be considered in connection with design of comfort ventilation in both smal1 and large spaces. Research activities on displacement ventilation are large all over the world and new knowledge of design...... methods appears continuously. This book gives an easy introduction to the basis of displacement ventilation and the chapters are written in the order which is used in a design procedure. The main text is extended by five appendices which show some of the new research activities taking place at Aalborg...

  11. Vascular aging processes accelerate following a cubic kinetic: pulse wave velocity as an objective counterpart that time, as we age, goes by faster

    Gabutti L

    2018-02-01

    Full Text Available Luca Gabutti, Rosaria Del Giorno Department of Internal Medicine and Nephrology, Bellinzona Regional Hospital, Bellinzona, SwitzerlandArterial stiffness is a marker of vascular aging and is considered to be the most reliable parameter expressing, like an integral in mathematics, the cumulative consequences, on the vascular wall, of degenerative and adaptive changes occurring throughout life.1 The efficiency of the reparative processes, the cardiovascular risk factors (CVRF, and early life and genetic determinants, all play a relevant role.1 Among CVRF, the acceleration in arterial stiffness progression related to age is mainly influenced by hypertension.1 A pathological acceleration translates into the concept of early vascular aging, a concept that can be quantified calculating the gap between the subject’s chronological (estimated on the basis of the epidemiological data obtained in the normal population and effective vascular age.2 Data of subpopulations without active risk factors for accelerated vascular aging can be found mainly in three large epidemiological studies, performed respectively in Portugal,3 Argentina,4 and seven different European countries (Belgium, Czech Republic, France, Greece, Italy, the Netherlands, and UK gathered in a collaborative investigation.5 Those doing this secondary analysis were aware of the limitation related to the use of cross-sectional data to extrapolate longitudinal changes, and their aims were combining the abovementioned epidemiological data concerning the normal population to calculate with the highest possible accuracy 1 the age-related increase in acceleration of the pulse wave velocity (PWV and to estimate both 2 the age-specific relative amount of time equivalent to that necessary to progress 1 year in vascular age at 20, and 3 the cumulative relative age calculated in year equivalents. 

  12. Non-Gaussian Velocity Distributions in Solar Flares from Extreme Ultraviolet Lines: A Possible Diagnostic of Ion Acceleration

    Jeffrey, Natasha L. S.; Fletcher, Lyndsay; Labrosse, Nicolas

    2017-01-01

    In a solar flare, a large fraction of the magnetic energy released is converted rapidly to the kinetic energy of non-thermal particles and bulk plasma motion. This will likely result in non-equilibrium particle distributions and turbulent plasma conditions. We investigate this by analyzing the profiles of high temperature extreme ultraviolet emission lines from a major flare (SOL2014-03-29T17:44) observed by the EUV Imaging Spectrometer (EIS) on Hinode . We find that in many locations the line profiles are non-Gaussian, consistent with a kappa distribution of emitting ions with properties that vary in space and time. At the flare footpoints, close to sites of hard X-ray emission from non-thermal electrons, the κ index for the Fe xvi 262.976 Å line at 3 MK takes values of 3–5. In the corona, close to a low-energy HXR source, the Fe xxiii 263.760 Å line at 15 MK shows κ values of typically 4–7. The observed trends in the κ parameter show that we are most likely detecting the properties of the ion population rather than any instrumental effects. We calculate that a non-thermal ion population could exist if locally accelerated on timescales ≤0.1 s. However, observations of net redshifts in the lines also imply the presence of plasma downflows, which could lead to bulk turbulence, with increased non-Gaussianity in cooler regions. Both interpretations have important implications for theories of solar flare particle acceleration.

  13. Displacement Ventilation

    Bjørn, Erik; Mattsson, Magnus; Sandberg, Mats

    Full-scale experiments were made in a displacement ventilated room with two breathing thermal manikins to study the effect of movements and breathing on the vertical contaminant distribution, and on the personal exposure of occupants. Concentrations were measured with tracer gas equipment...

  14. Development of a High Precision Displacement Measurement System by Fusing a Low Cost RTK-GPS Sensor and a Force Feedback Accelerometer for Infrastructure Monitoring.

    Koo, Gunhee; Kim, Kiyoung; Chung, Jun Yeon; Choi, Jaemook; Kwon, Nam-Yeol; Kang, Doo-Young; Sohn, Hoon

    2017-11-28

    A displacement measurement system fusing a low cost real-time kinematic global positioning system (RTK-GPS) receiver and a force feedback accelerometer is proposed for infrastructure monitoring. The proposed system is composed of a sensor module, a base module and a computation module. The sensor module consists of a RTK-GPS rover and a force feedback accelerometer, and is installed on a target structure like conventional RTK-GPS sensors. The base module is placed on a rigid ground away from the target structure similar to conventional RTK-GPS bases, and transmits observation messages to the sensor module. Then, the initial acceleration, velocity and displacement responses measured by the sensor module are transmitted to the computation module located at a central monitoring facility. Finally, high precision and high sampling rate displacement, velocity, and acceleration are estimated by fusing the acceleration from the accelerometer, the velocity from the GPS rover, and the displacement from RTK-GPS. Note that the proposed displacement measurement system can measure 3-axis acceleration, velocity as well as displacement in real time. In terms of displacement, the proposed measurement system can estimate dynamic and pseudo-static displacement with a root-mean-square error of 2 mm and a sampling rate of up to 100 Hz. The performance of the proposed system is validated under sinusoidal, random and steady-state vibrations. Field tests were performed on the Yeongjong Grand Bridge and Yi Sun-sin Bridge in Korea, and the Xihoumen Bridge in China to compare the performance of the proposed system with a commercial RTK-GPS sensor and other data fusion techniques.

  15. Development of a High Precision Displacement Measurement System by Fusing a Low Cost RTK-GPS Sensor and a Force Feedback Accelerometer for Infrastructure Monitoring

    Gunhee Koo

    2017-11-01

    Full Text Available A displacement measurement system fusing a low cost real-time kinematic global positioning system (RTK-GPS receiver and a force feedback accelerometer is proposed for infrastructure monitoring. The proposed system is composed of a sensor module, a base module and a computation module. The sensor module consists of a RTK-GPS rover and a force feedback accelerometer, and is installed on a target structure like conventional RTK-GPS sensors. The base module is placed on a rigid ground away from the target structure similar to conventional RTK-GPS bases, and transmits observation messages to the sensor module. Then, the initial acceleration, velocity and displacement responses measured by the sensor module are transmitted to the computation module located at a central monitoring facility. Finally, high precision and high sampling rate displacement, velocity, and acceleration are estimated by fusing the acceleration from the accelerometer, the velocity from the GPS rover, and the displacement from RTK-GPS. Note that the proposed displacement measurement system can measure 3-axis acceleration, velocity as well as displacement in real time. In terms of displacement, the proposed measurement system can estimate dynamic and pseudo-static displacement with a root-mean-square error of 2 mm and a sampling rate of up to 100 Hz. The performance of the proposed system is validated under sinusoidal, random and steady-state vibrations. Field tests were performed on the Yeongjong Grand Bridge and Yi Sun-sin Bridge in Korea, and the Xihoumen Bridge in China to compare the performance of the proposed system with a commercial RTK-GPS sensor and other data fusion techniques.

  16. Particle displacement tracking for PIV

    Wernet, Mark P.

    1990-01-01

    A new Particle Imaging Velocimetry (PIV) data acquisition and analysis system, which is an order of magnitude faster than any previously proposed system has been constructed and tested. The new Particle Displacement Tracing (PDT) system is an all electronic technique employing a video camera and a large memory buffer frame-grabber board. Using a simple encoding scheme, a time sequence of single exposure images are time coded into a single image and then processed to track particle displacements and determine velocity vectors. Application of the PDT technique to a counter-rotating vortex flow produced over 1100 velocity vectors in 110 seconds when processed on an 80386 PC.

  17. Displacing use

    Kelly, Janet; Matthews, Ben

    2014-01-01

    -centred design process. We identified alternative design-relevant relationships between people and devices that are not specifically tied to the functions/uses of the devices, e.g. relationships between the healthcare professional and the device, between doctors and patients, and between patients and their own......This paper critically discusses the concept of use in design, suggesting that relevant relationships other than use are sometimes obscured by the usercentredness of design processes. We present a design case from the medical device domain that displaced the concept of use from the centre of a human...

  18. Seismic velocities within the sedimentary succession of the Canada Basin and southern Alpha-Mendeleev Ridge, Arctic Ocean: evidence for accelerated porosity reduction?

    Shimeld, John; Li, Qingmou; Chian, Deping; Lebedeva-Ivanova, Nina; Jackson, Ruth; Mosher, David; Hutchinson, Deborah R.

    2016-01-01

    favourably with borehole data for Miocene turbidites in the eastern Gulf of Mexico. The station-specific results also indicate that Quaternary sediments coarsen towards the Beaufort-Mackenzie and Banks Island margins in a manner that is consistent with the variable history of Laurentide Ice Sheet advance documented for these margins. Lithological factors do not fully account for the elevated velocity–depth trends that are associated with the southwestern Canada Basin and the Alpha-Mendeleev magnetic domain. Accelerated porosity reduction due to elevated palaeo-heat flow is inferred for these regions, which may be related to the underlying crustal types or possibly volcanic intrusion of the sedimentary succession. Beyond exploring the variation of an important physical property in the Arctic Ocean basin, this study provides comparative reference for global studies of seismic velocity, burial history, sedimentary compaction, seismic inversion and overpressure prediction, particularly in mudrock-dominated successions.

  19. LeRC rail accelerators: test designs and diagnostic techniques

    Zana, L.M.; Kerslake, W.R.; Sturman, J.C.; Wang, S.Y.; Terdan, F.F.

    1984-01-01

    The feasibility of using rail accelerators for various in-space and to-space propulsion applications was investigated. A 1 meter, 24 sq mm bore accelerator was designed with the goal of demonstrating projectile velocities of 15 km/sec using a peak current of 200 kA. A second rail accelerator, 1 meter long with a 156.25 sq mm bore, was designed with clear polycarbonate sidewalls to permit visual observation of the plasma arc. A study of available diagnostic techniques and their application to the rail accelerator is presented. Specific topics of discussion include the use of interferometry and spectroscopy to examine the plasma armature as well as the use of optical sensors to measure rail displacement during acceleration. Standard diagnostics such as current and voltage measurements are also discussed. 15 references

  20. RTX Correction Accuracy and Real-Time Data Processing of the New Integrated SeismoGeodetic System with Real-Time Acceleration and Displacement Measurements for Earthquake Characterization Based on High-Rate Seismic and GPS Data

    Zimakov, L. G.; Raczka, J.; Barrientos, S. E.

    2016-12-01

    We will discuss and show the results obtained from an integrated SeismoGeodetic System, model SG160-09, installed in the Chile (Chilean National Network), Italy (University of Naples Network), and California. The SG160-09 provides the user high rate GNSS and accelerometer data, full epoch-by-epoch measurement integrity and the ability to create combined GNSS and accelerometer high-rate (200Hz) displacement time series in real-time. The SG160-09 combines seismic recording with GNSS geodetic measurement in a single compact, ruggedized case. The system includes a low-power, 220-channel GNSS receiver powered by the latest Trimble-precise Maxwell™6 technology and supports tracking GPS, GLONASS and Galileo signals. The receiver incorporates on-board GNSS point positioning using Real-Time Precise Point Positioning (PPP) technology with satellite clock and orbit corrections delivered over IP networks. The seismic recording includes an ANSS Class A, force balance accelerometer with the latest, low power, 24-bit A/D converter, producing high-resolution seismic data. The SG160-09 processor acquires and packetizes both seismic and geodetic data and transmits it to the central station using an advanced, error-correction protocol providing data integrity between the field and the processing center. The SG160-09 has been installed in three seismic stations in different geographic locations with different Trimble global reference stations coverage The hardware includes the SG160-09 system, external Zephyr Geodetic-2 GNSS antenna, both radio and high-speed Internet communication media. Both acceleration and displacement data was transmitted in real-time to the centralized Data Acquisition Centers for real-time data processing. Command/Control of the field station and real-time GNSS position correction are provided via the Pivot platform. Data from the SG160-09 system was used for seismic event characterization along with data from traditional seismic and geodetic stations

  1. Field Installation and Real-Time Data Processing of the New Integrated SeismoGeodetic System with Real-Time Acceleration and Displacement Measurements for Earthquake Characterization Based on High-Rate Seismic and GPS Data

    Zimakov, Leonid; Jackson, Michael; Passmore, Paul; Raczka, Jared; Alvarez, Marcos; Barrientos, Sergio

    2015-04-01

    We will discuss and show the results obtained from an integrated SeismoGeodetic System, model SG160-09, installed in the Chilean National Network. The SG160-09 provides the user high rate GNSS and accelerometer data, full epoch-by-epoch measurement integrity and, using the Trimble Pivot™ SeismoGeodetic App, the ability to create combined GNSS and accelerometer high-rate (200Hz) displacement time series in real-time. The SG160-09 combines seismic recording with GNSS geodetic measurement in a single compact, ruggedized package. The system includes a low-power, 220-channel GNSS receiver powered by the latest Trimble-precise Maxwell™6 technology and supports tracking GPS, GLONASS and Galileo signals. The receiver incorporates on-board GNSS point positioning using Real-Time Precise Point Positioning (PPP) technology with satellite clock and orbit corrections delivered over IP networks. The seismic recording element includes an ANSS Class A, force balance triaxial accelerometer with the latest, low power, 24-bit A/D converter, which produces high-resolution seismic data. The SG160-09 processor acquires and packetizes both seismic and geodetic data and transmits it to the central station using an advanced, error-correction protocol with back fill capability providing data integrity between the field and the processing center. The SG160-09 has been installed in the seismic station close to the area of the Iquique earthquake of April 1, 2014, in northern Chile, a seismically prone area at the current time. The hardware includes the SG160-09 system, external Zephyr Geodetic-2 GNSS antenna, and high-speed Internet communication media. Both acceleration and displacement data was transmitted in real-time to the National Seismological Center in Santiago for real-time data processing using Earthworm / Early Bird software. Command/Control of the field station and real-time GNSS position correction are provided via the Pivot software suite. Data from the SG160-09 system was

  2. Optic-microwave mixing velocimeter for superhigh velocity measurement

    Weng Jidong; Wang Xiang; Tao Tianjiong; Liu Cangli; Tan Hua

    2011-01-01

    The phenomenon that a light beam reflected off a moving object experiences a Doppler shift in its frequency underlies practical interferometric techniques for remote velocity measurements, such as velocity interferometer system for any reflector (VISAR), displacement interferometer system for any reflector (DISAR), and photonic Doppler velocimetry (PDV). While VISAR velocimeters are often bewildered by the fringe loss upon high-acceleration dynamic process diagnosis, the optic-fiber velocimeters such as DISAR and PDV, on the other hand, are puzzled by high velocity measurement over 10 km/s, due to the demand for the high bandwidth digitizer. Here, we describe a new optic-microwave mixing velocimeter (OMV) for super-high velocity measurements. By using currently available commercial microwave products, we have constructed a simple, compact, and reliable OMV device, and have successfully obtained, with a digitizer of bandwidth 6 GH only, the precise velocity history of an aluminum flyer plate being accelerated up to 11.2 km/s in a three stage gas-gun experiment.

  3. Measuring displacement signal with an accelerometer

    Han, Sang Bo

    2010-01-01

    An effective and simple way to reconstruct displacement signal from a measured acceleration signal is proposed in this paper. To reconstruct displacement signal by means of double-integrating the time domain acceleration signal, the Nyquist frequency of the digital sampling of the acceleration signal should be much higher than the highest frequency component of the signal. On the other hand, to reconstruct displacement signal by taking the inverse Fourier transform, the magnitude of the significant frequency components of the Fourier transform of the acceleration signal should be greater than the 6 dB increment line along the frequency axis. With a predetermined resolution in time and frequency domain, determined by the sampling rate to measure and record the original signal, reconstructing high-frequency signals in the time domain and reconstructing low-frequency signals in the frequency domain will produce biased errors. Furthermore, because of the DC components inevitably included in the sampling process, low-frequency components of the signals are overestimated when displacement signals are reconstructed from the Fourier transform of the acceleration signal. The proposed method utilizes curve-fitting around the significant frequency components of the Fourier transform of the acceleration signal before it is inverse-Fourier transformed. Curve-fitting around the dominant frequency components provides much better results than simply ignoring the insignificant frequency components of the signal

  4. Acceleration theorems

    Palmer, R.

    1994-06-01

    Electromagnetic fields can be separated into near and far components. Near fields are extensions of static fields. They do not radiate, and they fall off more rapidly from a source than far fields. Near fields can accelerate particles, but the ratio of acceleration to source fields at a distance R, is always less than R/λ or 1, whichever is smaller. Far fields can be represented as sums of plane parallel, transversely polarized waves that travel at the velocity of light. A single such wave in a vacuum cannot give continuous acceleration, and it is shown that no sums of such waves can give net first order acceleration. This theorem is proven in three different ways; each method showing a different aspect of the situation

  5. Fast Fermi acceleration in the plasma sheet boundary layer

    Wu, C.S.; Lui, A.T.Y.

    1989-01-01

    A longstanding question in the field of magnetospheric physics is the source of the energetic particles which are commonly observed along the plasma sheet boundary layer (PSBL). Several models have been suggested for the acceleration of these particles. We suggest a means by which the fast Fermi acceleration mechanism [Wu, 1984] can accelerate electrons at the plasma sheet and perhaps account for some of the observations. We propose the following: A localized hydromagnetic disturbance propagating through the tail lobe region impinges upon the PSBL deforming it and displacing it in towards the central plasma sheet. The boundary layer can then act like a moving magnetic mirror. If the disturbance is propagating nearly perpendicular to the layer then its velocity projected parallel to the layer (and the magnetic field) can be very large resulting in significant acceleration of reflected particles. copyright American Geophysical Union 1989

  6. Job Displacement and Crime

    Bennett, Patrick; Ouazad, Amine

    We use a detailed employer-employee data set matched with detailed crime information (timing of crime, fines, convictions, crime type) to estimate the impact of job loss on an individual's probability to commit crime. We focus on job losses due to displacement, i.e. job losses in firms losing...... a substantial share of their workers, for workers with at least three years of tenure. Displaced workers are more likely to commit offenses leading to conviction (probation, prison terms) for property crimes and for alcohol-related traffic violations in the two years following displacement. We find no evidence...... that displaced workers' propensity to commit crime is higher than non-displaced workers before the displacement event; but it is significantly higher afterwards. Displacement impacts crime over and above what is explained by earnings losses and weeks of unemployment following displacement....

  7. Job Displacement and Crime

    Bennett, Patrick; Ouazad, Amine

    theory of crime. Marital dissolution is more likely post-displacement, and we find small intra-family externalities of adult displacement on younger family members’ crime. The impact of displacement on crime is stronger in municipalities with higher capital and labor income inequalities....

  8. Acceleration Characteristics of a Rock Slide Using the Particle Image Velocimetry Technique

    Guoqing Chen

    2016-01-01

    Full Text Available The Particle Image Velocimetry (PIV technique with high precision and spatial resolution is a suitable sensor for flow field experiments. In this paper, the PIV technology was used to monitor the development of a displacement field, velocity field and acceleration field of a rock slide. It was found that the peak acceleration of the sliding surface appeared earlier than the peak acceleration of the sliding body. The characteristics of the rock slide including the short failure time, high velocities, and large accelerations indicate that the sliding forces and energy release rate of the slope are high. The deformation field showed that the sliding body was sliding outwards along the sliding surface while the sliding bed moved in an opposite direction. Moving upwards at the top of the sliding bed can be one of the warning signs for rock slide failure.

  9. High brightness electron accelerator

    Sheffield, R.L.; Carlsten, B.E.; Young, L.M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of accelerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electrons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electrons as the electrons enter the first cavity. 5 figs

  10. Pre-failure behaviour of an unstable limestone cliff from displacement and seismic data

    J.-L. Got

    2010-04-01

    Full Text Available We monitored the displacement and seismic activity of an unstable vertical rock slice in a natural limestone cliff of the southeast Vercors massif, southeast France, during the months preceding its collapse. Displacement measurements showed an average acceleration of the movement of its top, with clear increases in the displacement velocity and in the discrete seismic event production rate during periods where temperature falls, with more activity when rainfall or frost occurs. Crises of discrete seismic events produce high amplitudes in periodograms, but do not change the high frequency base noise level rate. We infer that these crises express the critical crack growth induced by water weakening (from water vapor condensation or rain of the rock strength rather than to a rapid change in applied stresses. Seismic noise analysis showed a steady increase in the high frequency base noise level and the emergence of spectral modes in the signal recorded by the sensor installed on the unstable rock slice during the weeks preceding the collapse. High frequency seismic noise base level seems to represent subcritical crack growth. It is a smooth and robust parameter whose variations are related to generalized changes in the rupture process. Drop of the seismic noise amplitude was concomitant with the emergence of spectral modes – that are compatible with high-order eigenmodes of the unstable rock slice – during the later stages of its instability. Seismic noise analysis, especially high frequency base noise level analysis may complement that of inverse displacement velocity in early-warning approaches when strong displacement fluctuations occur.

  11. A displacement based FE formulation for steady state problems

    Yu, Y.

    2005-01-01

    In this thesis a new displacement based formulation is developed for elasto-plastic deformations in steady state problems. In this formulation the displacements are the primary variables, which is in contrast to the more common formulations in terms of the velocities as the primary variables. In a

  12. Displacement data assimilation

    Rosenthal, W. Steven [Pacific Northwest Laboratory, Richland, WA 99354 (United States); Venkataramani, Shankar [Department of Mathematics and Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721 (United States); Mariano, Arthur J. [Rosenstiel School of Marine & Atmospheric Science, University of Miami, Miami, FL 33149 (United States); Restrepo, Juan M., E-mail: restrepo@math.oregonstate.edu [Department of Mathematics, Oregon State University, Corvallis, OR 97331 (United States)

    2017-02-01

    We show that modifying a Bayesian data assimilation scheme by incorporating kinematically-consistent displacement corrections produces a scheme that is demonstrably better at estimating partially observed state vectors in a setting where feature information is important. While the displacement transformation is generic, here we implement it within an ensemble Kalman Filter framework and demonstrate its effectiveness in tracking stochastically perturbed vortices.

  13. Displacer Diameter Effect in Displacer Pulse Tube Refrigerator

    Zhu, Shaowei

    2017-12-01

    Gas driving displacer pulse tube refrigerators are one of the work recovery type of pulse tube refrigerators whose theoretical efficiency is the same as Stirling refrigerators'. Its cooling power is from the displacement of the displacer. Displace diameter, rod diameter and pressure drop of the regenerator influence the displacement, which are investigated by numerical simulation. It is shown that the displacement ratio of the displacer over the piston is almost not affected by the displacer diameter at the same rod diameter ratio, or displacer with different diameters almost has the same performance.

  14. An application of the baseline correction technique for correcting distorted seismic acceleration time histories

    Lee, Gyu Mahn; Kim, Jong Wook; Jeoung, Kyeong Hoon; Kim, Tae Wan; Park, Keun Bae; Kim, Keung Koo

    2008-03-01

    Three kinds of baseline correction techniques named as 'Newmark', 'Zero-VD' and 'Newmark and Zero-VD' were introduced to correct the distorted physical characteristics of a seismic time history accelogram. The corrected seismic accelerations and distorted raw acceleration showed an identical response spectra in frequency domains, but showed various time history profiles in velocity and displacement domains. The referred correction techniques were programmed with UNIX-HP Fortran. The verification of the baseline corrected seismic data in terms of frequency response spectrum were performed by ANSYS of a commerical FEM software

  15. Wakeless triple soliton accelerator

    Mima, K.; Ohsuga, T.; Takabe, H.; Nishihara, K.; Tajima, T.; Zaidman, E.; Horton, W.

    1986-09-01

    We introduce and analyze the concept of a wakeless triple soliton accelerator in a plasma fiber. Under appropriate conditions the triple soliton with two electromagnetic and one electrostatic waves in the beat-wave resonance propagates with velocity c leaving no plasma wake behind, while the phase velocity of the electrostatic wave is made also c in the fiber

  16. Visual Processing of Object Velocity and Acceleration

    1994-02-04

    A failure of motion deblurring in the human visual system. Investigative Opthalmology and Visual Sciences (Suppl),34, 1230 Watamaniuk, S.N.J. and...McKee, S.P. Why is a trajectory more detectable in noise than correlated signal dots? Investigative Opthalmology and Visual Sciences (Suppl),34, 1364

  17. Superhilac real-time velocity measurements

    Feinberg, B.; Meaney, D.; Thatcher, R.; Timossi, C.

    1987-03-01

    Phase probes have been placed in several external beam lines at the LBL heavy ion linear accelerator (SuperHILAC) to provide non-destructive velocity measurements independent of the ion being accelerated. The existing system has been improved to provide the following features: a display refresh rate better than twice per second, a sensitive pseudo-correlation technique to pick out the signal from the noise, simultaneous measurements of up to four ion velocities when more than one beam is being accelerated, and a touch-screen operator interface. These improvements allow the system to be used as a routine tuning aid and beam velocity monitor

  18. Converging-barrel plasma accelerator

    Paine, T.O.

    1971-01-01

    The invention comprises a device for generating and accelerating plasma to extremely high velocity, while focusing the plasma to a decreasing cross section for attaining a very dense high-velocity plasma burst capable of causing nuclear fusion reactions. A converging coaxial accelerator-electrode configuration is employed with ''high-pressure'' gas injection in controlled amounts to achieve acceleration by deflagration and focusing by the shaped electromagnetic fields. (U.S.)

  19. Water displacement mercury pump

    Nielsen, M.G.

    1984-04-20

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  20. Emittance growth rates for displaced beams

    Anderson, O.A.

    1993-05-01

    Emittance growth rates have been previously analyzed for nonuniform beams in linear channels and for initially uniform mismatched beams in nonlinear channels. These studies were for centered beams. Additional emittance growth can arise in cases where the beam is initially displaced. The purpose of this study is to obtain growth rates for displaced beams. This work differs from studies involving random displacement of electrodes. Our analysis assumes instead that the focusing system is perfectly aligned but that the beam is initially displaced with respect to the equilibrium axis. If the focusing force is slightly nonlinear, we find a gradual transfer of the potential energy of beam displacement into kinetic energy associated with emittance growth. We present explicit results for the emittance growth distance as a function of the nonlinearity of the channel. These results will have practical importance for designers of accelerators and transport systems when setting realistic tolerances for initial beam alignment. These tolerances will depend on the nonlinearity and the length of the system

  1. Laser acceleration

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  2. Laser acceleration

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-01-01

    The fundamental idea of LaserWakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wake fields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ∼ c and ultra fastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nano materials is also emerging.

  3. Internal Displacement: Livelihood saving responses

    Deborah Hines

    2001-01-01

    Deborah Hines explores how to assist the internally displaced and those prone to displacement. She considers the major causes of internal displacement, making the case for a more comprehensive set of policy and operational actions in response to situations of internal displacement. Development (2001) 44, 34–39. doi:10.1057/palgrave.development.1110289

  4. Displacement compressors - acceptance tests

    International Organization for Standardization. Geneva

    1996-01-01

    ISO 1217:2009 specifies methods for acceptance tests regarding volume rate of flow and power requirements of displacement compressors. It also specifies methods for testing liquid-ring type compressors and the operating and testing conditions which apply when a full performance test is specified.

  5. Piezoelectric displacement in ceramics

    Stewart, M.; Cain, M.; Gee, M.

    1999-01-01

    This Good Practice Guide is intended to aid a user to perform displacement measurements on piezoelectric ceramic materials such as PZT (lead zirconium titanate) in either monolithic or multilayer form. The various measurement issues that the user must consider are addressed, and good measurement practise is described for the four most suitable methods. (author)

  6. Online Wavelet Complementary velocity Estimator.

    Righettini, Paolo; Strada, Roberto; KhademOlama, Ehsan; Valilou, Shirin

    2018-02-01

    In this paper, we have proposed a new online Wavelet Complementary velocity Estimator (WCE) over position and acceleration data gathered from an electro hydraulic servo shaking table. This is a batch estimator type that is based on the wavelet filter banks which extract the high and low resolution of data. The proposed complementary estimator combines these two resolutions of velocities which acquired from numerical differentiation and integration of the position and acceleration sensors by considering a fixed moving horizon window as input to wavelet filter. Because of using wavelet filters, it can be implemented in a parallel procedure. By this method the numerical velocity is estimated without having high noise of differentiators, integration drifting bias and with less delay which is suitable for active vibration control in high precision Mechatronics systems by Direct Velocity Feedback (DVF) methods. This method allows us to make velocity sensors with less mechanically moving parts which makes it suitable for fast miniature structures. We have compared this method with Kalman and Butterworth filters over stability, delay and benchmarked them by their long time velocity integration for getting back the initial position data. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Introducing a novel gravitation-based high-velocity compaction analysis method for pharmaceutical powders.

    Tanner, Timo; Antikainen, Osmo; Ehlers, Henrik; Yliruusi, Jouko

    2017-06-30

    With modern tableting machines large amounts of tablets are produced with high output. Consequently, methods to examine powder compression in a high-velocity setting are in demand. In the present study, a novel gravitation-based method was developed to examine powder compression. A steel bar is dropped on a punch to compress microcrystalline cellulose and starch samples inside the die. The distance of the bar is being read by a high-accuracy laser displacement sensor which provides a reliable distance-time plot for the bar movement. In-die height and density of the compact can be seen directly from this data, which can be examined further to obtain information on velocity, acceleration and energy distribution during compression. The energy consumed in compact formation could also be seen. Despite the high vertical compression speed, the method was proven to be cost-efficient, accurate and reproducible. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments

    Chang, Jefferson C.; Lockner, David A.; Reches, Z.

    2012-01-01

    After nucleation, a large earthquake propagates as an expanding rupture front along a fault. This front activates countless fault patches that slip by consuming energy stored in Earth’s crust. We simulated the slip of a fault patch by rapidly loading an experimental fault with energy stored in a spinning flywheel. The spontaneous evolution of strength, acceleration, and velocity indicates that our experiments are proxies of fault-patch behavior during earthquakes of moment magnitude (Mw) = 4 to 8. We show that seismically determined earthquake parameters (e.g., displacement, velocity, magnitude, or fracture energy) can be used to estimate the intensity of the energy release during an earthquake. Our experiments further indicate that high acceleration imposed by the earthquake’s rupture front quickens dynamic weakening by intense wear of the fault zone.

  9. Unlimited Relativistic Shock Surfing Acceleration

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  10. Optimized Method for Knee Displacement Measurement in Vehicle Sled Crash Test

    Sun Hang

    2017-01-01

    Full Text Available This paper provides an optimized method for measuring dummy’s knee displacement in vehicle sled crash test. The proposed method utilizes completely new elements for measurement, which are acceleration and angular velocity of dummy’s pelvis, as well as the rotational angle of its femur. Compared with the traditional measurement only using camera-based high-speed motion image analysis, the optimized one can not only maintain the measuring accuracy, but also avoid the disturbance caused by dummy movement, dashboard blocking and knee deformation during the crash. An experiment is made to verify the accuracy of the proposed method, which eliminates the strong dependence on single target tracing in traditional method. Moreover, it is very appropriate for calculating the penetration depth to the dashboard.

  11. On virtual displacement and virtual work in Lagrangian dynamics

    Ray, Subhankar; Shamanna, J

    2006-01-01

    The confusion and ambiguity encountered by students in understanding virtual displacement and virtual work is discussed in this paper. A definition of virtual displacement is presented that allows one to express them explicitly for holonomic (velocity independent), non-holonomic (velocity dependent), scleronomous (time independent) and rheonomous (time dependent) constraints. It is observed that for holonomic, scleronomous constraints, the virtual displacements are the displacements allowed by the constraints. However, this is not so for a general class of constraints. For simple physical systems, it is shown that the work done by the constraint forces on virtual displacements is zero. This motivates Lagrange's extension of d'Alembert's principle to a system of particles in constrained motion. However, a similar zero work principle does not hold for the allowed displacements. It is also demonstrated that d'Alembert's principle of zero virtual work is necessary for the solvability of a constrained mechanical problem. We identify this special class of constraints, physically realized and solvable, as the ideal constraints. The concept of virtual displacement and the principle of zero virtual work by constraint forces are central to both Lagrange's method of undetermined multipliers and Lagrange's equations in generalized coordinates

  12. Particle acceleration by plasma waves

    Joshi, C.

    2006-01-01

    In an advanced particle accelerator particles are driven near by light velocity through ionized gas. Such plasma devices are compact, cost efficient and usable in many fields. Examples are given in detail. (GL)

  13. Commissioning the GTA accelerator

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Connolly, R.; Weiss, R.; Saadatmand, K.

    1992-01-01

    The Ground Test Accelerator (GTA) is being used to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H - beam and then neutralizing it. The goal is to produce a 24 MeV, 50 mA device with a 2% duty factor. Specific features of the GTA -- injector, beam optics, rf linac structures, diagnostics, control and rf power systems are described. The first four steps in commissioning have been completed. The RFQ predicted and measured performances are in good agreement; however, the transmission is lower than specifications. Input emittance is larger than design specifications and increases the effects of image charge and multipoles. Displacement of steering magnets in either the horizontal or vertical plane caused beam displacements in both planes. It is suspected that quadrupole rotation is the cause of the coupled motion. 9 figs., 5 tabs., 11 refs

  14. Traumatic displacement of stomach - a case report.

    Janardhanan, Joshima; Tarvadi, Pratik Vijay; Manipady, Shahnavaz; Shetty, Mahabalesh; Somashekar, C

    2014-01-01

    These days we have fast paced traffic on our roads to help us keep up with our fast paced life. But every boon has a down side and our high velocity traffic is no exception. Here is a case report of a blunt abdominal injury following a road traffic accident. Externally the deceased had only a few grazed abrasions on the forehead and right forearm. But on internal examination of abdomen, it was noticed that the left hemi-diaphragm was torn and the stomach and intestines were found displaced into the left thoracic cavity. Copyright © 2013 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  15. Collective ion acceleration

    Godfrey, B.B.; Faehl, R.J.; Newberger, B.S.; Shanahan, W.R.; Thode, L.E.

    1977-01-01

    Progress achieved in the understanding and development of collective ion acceleration is presented. Extensive analytic and computational studies of slow cyclotron wave growth on an electron beam in a helix amplifier were performed. Research included precise determination of linear coupling between beam and helix, suppression of undesired transients and end effects, and two-dimensional simulations of wave growth in physically realizable systems. Electrostatic well depths produced exceed requirements for the Autoresonant Ion Acceleration feasibility experiment. Acceleration of test ions to modest energies in the troughs of such waves was also demonstrated. Smaller efforts were devoted to alternative acceleration mechanisms. Langmuir wave phase velocity in Converging Guide Acceleration was calculated as a function of the ratio of electron beam current to space-charge limiting current. A new collective acceleration approach, in which cyclotron wave phase velocity is varied by modulation of electron beam voltage, is proposed. Acceleration by traveling Virtual Cathode or Localized Pinch was considered, but appears less promising. In support of this research, fundamental investigations of beam propagation in evacuated waveguides, of nonneutral beam linear eigenmodes, and of beam stability were carried out. Several computer programs were developed or enhanced. Plans for future work are discussed

  16. Control rod displacement

    Nakazato, S.

    1987-01-01

    This patent describes a nuclear reactor including a core, cylindrical control rods, a single support means supporting the control rods from their upper ends in spaced apart positions and movable for displacing the control rods in their longitudinal direction between a first end position in which the control rods are fully inserted into the core and a second end position in which the control rods are retracted from the core, and guide means contacting discrete regions of the outer surface of each control rod at least when the control rods are in the vicinity of the second end position. The control rods are supported by the support means for longitudinal movement without rotation into and out of the core relative to the guide means to thereby cause the outer surface of the control rods to experience wear as a result of sliding contact with the guide means. The support means are so arranged with respect to the core and the guide means that it is incapable of rotation relative to the guide means. The improvement comprises displacement means being operatively coupled to a respective one of the control rods for periodically rotating the control rod in a single angular direction through an angle selected to change the locations on the outer surfaces of the control rods at which the control rods are contacted by the guide means during subsequent longitudinal movement of the control rods

  17. Calculation of projectile velocity in an electromagnetic mass driver

    Ikuta, K.

    1986-08-01

    The formula for the velocity increase of a projectile accelerated by the single z-pinch between the cylindrical electrodes is established. This formula enables one to consider the necessary stages in the cylindrical electrode array of the accelerator for a required velocity. (author)

  18. Velocity spectrum for the Iranian plateau

    Bastami, Morteza; Soghrat, M. R.

    2018-01-01

    Peak ground acceleration (PGA) and spectral acceleration values have been proposed in most building codes/guidelines, unlike spectral velocity (SV) and peak ground velocity (PGV). Recent studies have demonstrated the importance of spectral velocity and peak ground velocity in the design of long period structures (e.g., pipelines, tunnels, tanks, and high-rise buildings) and evaluation of seismic vulnerability in underground structures. The current study was undertaken to develop a velocity spectrum and for estimation of PGV. In order to determine these parameters, 398 three-component accelerograms recorded by the Building and Housing Research Center (BHRC) were used. The moment magnitude (Mw) in the selected database was 4.1 to 7.3, and the events occurred after 1977. In the database, the average shear-wave velocity at 0 to 30 m in depth (Vs30) was available for only 217 records; thus, the site class for the remaining was estimated using empirical methods. Because of the importance of the velocity spectrum at low frequencies, the signal-to-noise ratio of 2 was chosen for determination of the low and high frequency to include a wider range of frequency content. This value can produce conservative results. After estimation of the shape of the velocity design spectrum, the PGV was also estimated for the region under study by finding the correlation between PGV and spectral acceleration at the period of 1 s.

  19. Can Accelerators Accelerate Learning?

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-01-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  20. Can Accelerators Accelerate Learning?

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  1. Displaced Sense: Displacement, Religion and Sense-making

    Naidu, Maheshvari

    2016-01-01

    Whether formally categorized as refugees or not, displaced migrants experience varying degrees of vulnerability in relation to where they find themselves displaced. The internally displaced furthermore squat invisibly and outside the boundaries of the legal framework and incentive structures accorded to those classified as 'refugee'. They are thus arguably, by and large, left to source sustaining solutions for themselves. This article works through the theoretical prism of sense-making theory...

  2. Displacing the Patient

    Pors, Anja Svejgaard

    as an affective care recipient, as a citizen with rights and as an individual need-oriented user on the one hand. On the other hand, the goal of patient satisfaction also deploys market perceptions of patients as homogeneous target groups to which information can be standardised. In the latter (market orientation......), the patient is also a resource for organizational development and a customer with consumer behavior. Overall, the strategy presents an information-pursuing patient figure making it possible to streamline the organization's care orientation on market conditions. In contrast to Annemarie Mol’s dichotomy of care......The analysis is based on an empirical study of a hospital’s communication strategy entitled: 'The Perspective of the Patient'. The paper asks how the strategy organizes communication work as situated displacements of the patient. Based on methodological elements from situational analysis (Clarke...

  3. Feature displacement interpolation

    Nielsen, Mads; Andresen, Per Rønsholt

    1998-01-01

    Given a sparse set of feature matches, we want to compute an interpolated dense displacement map. The application may be stereo disparity computation, flow computation, or non-rigid medical registration. Also estimation of missing image data, may be phrased in this framework. Since the features...... often are very sparse, the interpolation model becomes crucial. We show that a maximum likelihood estimation based on the covariance properties (Kriging) show properties more expedient than methods such as Gaussian interpolation or Tikhonov regularizations, also including scale......-selection. The computational complexities are identical. We apply the maximum likelihood interpolation to growth analysis of the mandibular bone. Here, the features used are the crest-lines of the object surface....

  4. Strategies for displacing oil

    Rao, Vikram; Gupta, Raghubir

    2015-03-01

    Oil currently holds a monopoly on transportation fuels. Until recently biofuels were seen as the means to break this stranglehold. They will still have a part to play, but the lead role has been handed to natural gas, almost solely due to the increased availability of shale gas. The spread between oil and gas prices, unprecedented in its scale and duration, will cause a secular shift away from oil as a raw material. In the transport fuel sector, natural gas will gain traction first in the displacement of diesel fuel. Substantial innovation is occurring in the methods of producing liquid fuel from shale gas at the well site, in particular in the development of small scale distributed processes. In some cases, the financing of such small-scale plants may require new business models.

  5. Thirty years of development-induced displacement in China

    François Dubé

    2016-01-01

    Full Text Available To accelerate the process of poverty reduction in its poorer regions, China decided in 2001 to implement a national programme of displacement of populations living in areas considered environmentally fragile. But these programmes were hardly a novelty for China, and the record of previous such attempts has been far from positive.

  6. Summary of ionizing and displacive irradiation fields in various facilities

    Zinkle, S.J.; Greenwood, L.R.

    1993-01-01

    Calculations have been performed to estimate the ionizing and displacive irradiation fields that will occur in ceramics during irradiation in accelerators and fission and fusion reactors. A useful measure of the relative strength of ionizing vs. displasive radiation is the ratio of the absorbed ionizing dose to the displacement damage dose, which in the case of ion irradiation is equal to the ratio of the electronic stopping power to the nuclear stopping power. In ceramics such as Al 2 O 3 , this ratio is about 20 at a fusion reactor first wall, and has a typical value of about 100 in a fusion reactor blanket region and in mixed spectrum reactors such as HFIR. Particle accelerator sources typically have much higher ionizing to displacive radiation ratios, ranging from about 2000 for 1 MeV protons to >10,000 for 1 MeV electrons

  7. Displacement Parameter Inversion for a Novel Electromagnetic Underground Displacement Sensor

    Nanying Shentu

    2014-05-01

    Full Text Available Underground displacement monitoring is an effective method to explore deep into rock and soil masses for execution of subsurface displacement measurements. It is not only an important means of geological hazards prediction and forecasting, but also a forefront, hot and sophisticated subject in current geological disaster monitoring. In previous research, the authors had designed a novel electromagnetic underground horizontal displacement sensor (called the H-type sensor by combining basic electromagnetic induction principles with modern sensing techniques and established a mutual voltage measurement theoretical model called the Equation-based Equivalent Loop Approach (EELA. Based on that work, this paper presents an underground displacement inversion approach named “EELA forward modeling-approximate inversion method”. Combining the EELA forward simulation approach with the approximate optimization inversion theory, it can deduce the underground horizontal displacement through parameter inversion of the H-type sensor. Comprehensive and comparative studies have been conducted between the experimentally measured and theoretically inversed values of horizontal displacement under counterpart conditions. The results show when the measured horizontal displacements are in the 0–100 mm range, the horizontal displacement inversion discrepancy is generally tested to be less than 3 mm under varied tilt angles and initial axial distances conditions, which indicates that our proposed parameter inversion method can predict underground horizontal displacement measurements effectively and robustly for the H-type sensor and the technique is applicable for practical geo-engineering applications.

  8. Measuring vulnerability to disaster displacement

    Brink, Susan A.; Khazai, Bijan; Power, Christopher; Wenzel, Friedemann

    2015-04-01

    Large scale disasters can cause devastating impacts in terms of population displacement. Between 2008 and 2013, on average 27 million people were displaced annually by disasters (Yonetani 2014). After large events such as hurricane Katrina or the Port-au-Prince earthquake, images of inadequate public shelter and concerns about large scale and often inequitable migration have been broadcast around the world. Population displacement can often be one of the most devastating and visible impacts of a natural disaster. Despite the importance of population displacement in disaster events, measures to understand the socio-economic vulnerability of a community often use broad metrics to estimate the total socio-economic risk of an event rather than focusing on the specific impacts that a community faces in a disaster. Population displacement is complex and multi-causal with the physical impact of a disaster interacting with vulnerability arising from the response, environmental issues (e.g., weather), cultural concerns (e.g., expectations of adequate shelter), and many individual factors (e.g., mobility, risk perception). In addition to the complexity of the causes, population displacement is difficult to measure because of the wide variety of different terms and definitions and its multi-dimensional nature. When we speak of severe population displacement, we may refer to a large number of displaced people, an extended length of displacement or associated difficulties such as poor shelter quality, risk of violence and crime in shelter communities, discrimination in aid, a lack of access to employment or other difficulties that can be associated with large scale population displacement. We have completed a thorough review of the literature on disaster population displacement. Research has been conducted on historic events to understand the types of negative impacts associated with population displacement and also the vulnerability of different groups to these impacts. We

  9. Plasma accelerators

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  10. Climate change velocity underestimates climate change exposure in mountainous regions

    Solomon Z. Dobrowski; Sean A. Parks

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not...

  11. Linear Accelerators

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics

  12. Laser wakefield acceleration

    Esarey, E.; Ting, A.; Sprangle, P.

    1989-01-01

    The laser wakefield accelerator (LWFA) is a novel plasma based electron acceleration scheme which utilizes a relativistic optical guiding mechanism for laser pulse propagation. In the LWFA, a short, high power, single frequency laser pulse is propagated through a plasma. As the laser pulse propagates, its radial and axial ponderomotive forces nonresonantly generate large amplitude plasma waves (wakefields) with a phase velocity equal to the group velocity of the pulse. A properly phased electron bunch may then be accelerated by the axial wakefield and focused by the transverse wakefield. Optical guiding of the laser pulse in the plasma is necessary in order to achieve high energies in a single stage of acceleration. At sufficiently high laser powers, optical guiding may be achieved through relativistic effects associated with the plasma electrons. Preliminary analysis indicates that this scheme may overcome some of the difficulties present in the plasma beat wave accelerator and in the plasma wakefield accelerator. Analytical and numerical calculations are presented which study both laser pulse propagation within a plasma as well as the subsequent generation of large amplitude plasma waves. In addition, the generation of large amplitude plasma waves in regimes where the plasma waves become highly nonlinear is examined

  13. MRI of displaced meniscal fragments

    Dunoski, Brian; Zbojniewicz, Andrew M.; Laor, Tal

    2012-01-01

    A torn meniscus frequently requires surgical fixation or debridement as definitive treatment. Meniscal tears with associated fragment displacement, such as bucket handle and flap tears, can be difficult to recognize and accurately describe on MRI, and displaced fragments can be challenging to identify at surgery. A displaced meniscal fragment can be obscured by synovium or be in a location not usually evaluated at arthroscopy. We present a pictorial essay of meniscal tears with displaced fragments in patients referred to a pediatric hospital in order to increase recognition and accurate interpretation by the radiologist, who in turn can help assist the surgeon in planning appropriate therapy. (orig.)

  14. MRI of displaced meniscal fragments

    Dunoski, Brian [University of Cincinnati College of Medicine, Department of Radiology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); Children' s Hospital of Michigan, Department of Radiology, Detroit, MI (United States); Zbojniewicz, Andrew M.; Laor, Tal [University of Cincinnati College of Medicine, Department of Radiology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States)

    2012-01-15

    A torn meniscus frequently requires surgical fixation or debridement as definitive treatment. Meniscal tears with associated fragment displacement, such as bucket handle and flap tears, can be difficult to recognize and accurately describe on MRI, and displaced fragments can be challenging to identify at surgery. A displaced meniscal fragment can be obscured by synovium or be in a location not usually evaluated at arthroscopy. We present a pictorial essay of meniscal tears with displaced fragments in patients referred to a pediatric hospital in order to increase recognition and accurate interpretation by the radiologist, who in turn can help assist the surgeon in planning appropriate therapy. (orig.)

  15. Speed, Acceleration, and Velocity: Level II, Unit 9, Lesson 1; Force, Mass, and Distance: Lesson 2; Types of Motion and Rest: Lesson 3; Electricity and Magnetism: Lesson 4; Electrical, Magnetic, and Gravitational Fields: Lesson 5; The Conservation and Conversion of Matter and Energy: Lesson 6; Simple Machines and Work: Lesson 7; Gas Laws: Lesson 8; Principles of Heat Engines: Lesson 9; Sound and Sound Waves: Lesson 10; Light Waves and Particles: Lesson 11; Program. A High.....

    Manpower Administration (DOL), Washington, DC. Job Corps.

    This self-study program for high-school level contains lessons on: Speed, Acceleration, and Velocity; Force, Mass, and Distance; Types of Motion and Rest; Electricity and Magnetism; Electrical, Magnetic, and Gravitational Fields; The Conservation and Conversion of Matter and Energy; Simple Machines and Work; Gas Laws; Principles of Heat Engines;…

  16. High-velocity frictional properties of gabbro

    Tsutsumi, Akito; Shimamoto, Toshihiko

    High-velocity friction experiments have been performed on a pair of hollow-cylindrical specimens of gabbro initially at room temperature, at slip rates from 7.5 mm/s to 1.8 m/s, with total circumferential displacements of 125 to 174 m, and at normal stresses to 5 MPa, using a rotary-shear high-speed friction testing machine. Steady-state friction increases slightly with increasing slip rate at slip rates to about 100 mm/s (velocity strengthening) and it decreases markedly with increasing slip rate at higher velocities (velocity weakening). Steady-state friction in the velocity weakening regime is lower for the non-melting case than the frictional melting case, due perhaps to severe thermal fracturing. A very large peak friction is always recognized upon the initiation of visible frictional melting, presumably owing to the welding of fault surfaces upon the solidification of melt patches. Frictional properties thus change dramatically with increasing displacement at high velocities, and such a non-linear effect must be incorporated into the analysis of earthquake initiation processes.

  17. Accelerator Service

    Champelovier, Y.; Ferrari, M.; Gardon, A.; Hadinger, G.; Martin, J.; Plantier, A.

    1998-01-01

    Since the cessation of the operation of hydrogen cluster accelerator in July 1996, four electrostatic accelerators were in operation and used by the peri-nuclear teams working in multidisciplinary collaborations. These are the 4 MV Van de Graaff accelerator, 2,5 MV Van de Graaff accelerator, 400 kV ion implanter as well as the 120 kV isotope separator

  18. Displacement cascades in diatomic materials

    Parkin, D.M.; Coulter, C.A.

    1981-01-01

    A new function, the specified-projectile displacement function p/sub ijk/ (E), is introduced to describe displacement cascades in polyatomic materials. This function describes the specific collision events that produce displacements and hence adds new information not previously available. Calculations of p/sub ijk/ (E) for MgO, Al 2 O 3 and TaO are presented and discussed. Results show that the parameters that have the largest effect on displacement collision events are the PKA energy and the mass ratio of the atom types in the material. It is further shown that the microscopic nature of the displacement events changes over the entire recoil energy range relevant to fusion neutron spectra and that these changes are different in materials whose mass ratio is near one than in those where it is far from one

  19. Characterization of the elastic displacement demand: Case study - Sofia city

    Paskaleva, I.; Kouteva, M.; Vaccari, F.; Panza, G.F.

    2008-02-01

    The results of the study on the seismic site response in a part of the metropolitan Sofia are discussed. The neo-deterministic seismic hazard assessment procedure has been used to compute realistic synthetic waveforms considering four earthquake scenarios, with magnitudes M = 3.7, M = 6.3 and M = 7.0. Source and site specific ground motion time histories are computed along three investigated cross sections, making use of the hybrid approach, combining the modal summation technique and the finite differences scheme. Displacement and acceleration response spectra are considered. These results are validated against the design elastic displacement response spectra and displacement demand, recommended in Eurocode 8. The elastic response design spectrum from the standard pseudo-acceleration, versus natural period, Tn, format is converted to the Sa - Sd format. The elastic displacement response spectra and displacement demand are discussed with respect to the earthquake magnitude, the seismic source-to-site distance, seismic source mechanism, and the local geological site conditions. (author)

  20. Earthquake damage to underground facilities and earthquake related displacement fields

    Pratt, H.R.; Stephenson, D.E.; Zandt, G.; Bouchon, M.; Hustrulid, W.A.

    1982-01-01

    The potential seismic risk for an underground facility is considered in the evaluation of its location and design. The possible damage resulting from either large-scale displacements or high accelerations should be considered in evaluating potential sites of underground facilities. Scattered through the available literature are statements to the effect that below a few hundred meters shaking and damage in mines is less than at the surface; however, data for decreased damage underground have not been completely reported or explained. In order to assess the seismic risk for an underground facility, a data base was established and analyzed to evaluate the potential for seismic disturbance. Substantial damage to underground facilities is usually the result of displacements primarily along pre-existing faults and fractures, or at the surface entrance to these facilities. Evidence of this comes from both earthquakes as a function of depth is important in the evaluation of the hazard to underground facilities. To evaluate potential displacements due to seismic effects of block motions along pre-existing or induced fractures, the displacement fields surrounding two types of faults were investigated. Analytical models were used to determine relative displacements of shafts and near-surface displacement of large rock masses. Numerical methods were used to determine the displacement fields associated with pure strike-slip and vertical normal faults. Results are presented as displacements for various fault lengths as a function of depth and distance. This provides input to determine potential displacements in terms of depth and distance for underground facilities, important for assessing potential sites and design parameters

  1. Airflow and Temperature Distribution in Rooms with Displacement Ventilation

    Jacobsen, T. V.

    This thesis deals with air flow and temperature distribution in a room ventilated by the displacement principle. The characteristic features of the ventilation system are treated in the whole room but main emphasis is laid on the analysis of the stratified flow region in front of the inlet device....... After a prefatory description of the background and the fundamentals of displacement ventilation the objectives of the current study are specified. The subsequent sections describe the measurements of velocity and temperature profiles carried out in a full scale test room. Based on experimental data...... of measured data is of crucial importance. Qualitatively satisfactory results do not ensure quantitative agreement....

  2. The effect of bubble acceleration on the liquid film thickness in micro tubes

    Han, Youngbae, E-mail: bhan@feslab.t.u-tokyo.ac.j [Department of Mechanical Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656 (Japan); Shikazono, Naoki, E-mail: shika@feslab.t.u-tokyo.ac.j [Department of Mechanical Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2010-08-15

    Liquid film thickness is an important parameter for predicting boiling heat transfer in micro tubes. In the previous study (), liquid film thickness under the steady condition was investigated and an empirical correlation for the initial liquid film thickness based on capillary number, Reynolds number and Weber number was proposed. However, under flow boiling conditions, bubble velocity is not constant but accelerated due to evaporation. It is necessary to consider this bubble acceleration effect on the liquid film thickness, since it affects viscous, surface tension and inertia forces in the momentum equation. In addition, viscous boundary layer develops, and it may also affect the liquid film thickness. In the present study, the effect of bubble acceleration is investigated. Laser focus displacement meter is used to measure the liquid film thickness. Ethanol, water and FC-40 are used as working fluids. Circular tubes with three different inner diameters, D = 0.5, 0.7 and 1.0 mm, are used. The increase of liquid film thickness with capillary number is restricted by the bubble acceleration. Finally, an empirical correlation is proposed for the liquid film thickness of accelerated flows in terms of capillary number and Bond number based on the bubble acceleration.

  3. The effect of bubble acceleration on the liquid film thickness in micro tubes

    Han, Youngbae; Shikazono, Naoki

    2010-01-01

    Liquid film thickness is an important parameter for predicting boiling heat transfer in micro tubes. In the previous study (), liquid film thickness under the steady condition was investigated and an empirical correlation for the initial liquid film thickness based on capillary number, Reynolds number and Weber number was proposed. However, under flow boiling conditions, bubble velocity is not constant but accelerated due to evaporation. It is necessary to consider this bubble acceleration effect on the liquid film thickness, since it affects viscous, surface tension and inertia forces in the momentum equation. In addition, viscous boundary layer develops, and it may also affect the liquid film thickness. In the present study, the effect of bubble acceleration is investigated. Laser focus displacement meter is used to measure the liquid film thickness. Ethanol, water and FC-40 are used as working fluids. Circular tubes with three different inner diameters, D = 0.5, 0.7 and 1.0 mm, are used. The increase of liquid film thickness with capillary number is restricted by the bubble acceleration. Finally, an empirical correlation is proposed for the liquid film thickness of accelerated flows in terms of capillary number and Bond number based on the bubble acceleration.

  4. Magnetic linear accelerator (MAGLAC) for hypervelocity acceleration in impact fusion (IF)

    Chen, K.W.

    1980-01-01

    This paper presents considerations on the design of a magnetic linear accelerator suitable as driver for impact fusion. We argue that the proposed approach offers an attractive option to accelerate macroscopic matter to centiluminal velocity suitable for fusion applications. The design goal is to attain a velocity approaching 200 km/sec. Recent results in suitable target design suggest that a velocity in the range of 40-100 km/sec might be sufficient to include fusion. An accelerator in this velocity range can be constructed with current-day technology. We present both design and practical engineering considerations. Future work are outlined and recommended. (orig.)

  5. Laser beam accelerator

    Tajima, T.; Dawson, J.M.

    1981-01-01

    Parallel intense photon (laser, microwave, etc.) beams /omega/sub //0, k/sub 0/ and /omega/sub //1, k/sub 1/ shone on a plasma with frequency separation equal to the plasma frequency /omega/sub //p is capable of accelerating plasma electrons to high energies in large flux. The photon beat excites through the forward Raman scattering large amplitude plasmons whose phase velocity is equal to (/omega/ /sub 0/-/omega/sub //1)/(k/sub 0/-k/sub 1/), close to c in an underdense plasma. The multiple forward Raman instability produces smaller and smaller frequency and group velocity of photons; thus the photons slow down in the plasma by emitting accelerated electrons (inverse Cherenkov process). 6 refs

  6. Acceleration of microparticle

    Shibata, H

    2002-01-01

    A microparticle (dust) ion source has been installed at the high voltage terminal of the 3.75 MV single ended Van de Graaff electrostatic accelerator and a beam line for microparticle experiments has been build at High Fluence Irradiation Facility (HIT) of Research Center for Nuclear Science and Technology, the University of Tokyo. Microparticle acceleration has been successful in obtaining expected velocities of 1-20 km/s or more for micron or submicron sized particles. Development of in situ dust detectors and analyzers on board satellites and spacecraft in the expected mass and velocity range of micrometeoroids and investigation of hypervelocity impact phenomena by using time of flight mass spectrometry, impact flash or luminescence measurement and scanning electron or laser microscope observation for metals, ceramics, polymers and semiconductors bombarded by micron-sized particles were started three years ago. (author)

  7. Small Displacement Detection of Biological Signals Using the Cyclic Frequency Method

    Dan Zhang

    2015-01-01

    Full Text Available A new signal processing method called the Cyclic Frequency method is proposed for small displacement detection of vital signals such as heart rate and respiration using the CW radar method. We have presented experimental results of small displacement detection to confirm the validity of the method. The displacement amplitude 2.5 mm can be detected with a propagation frequency of 24.15 GHz. We may increase the propagation frequency for smaller displacement amplitude or target velocity.

  8. Future accelerators (?)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  9. Displacement sensing system and method

    VunKannon, Jr., Robert S

    2006-08-08

    A displacement sensing system and method addresses demanding requirements for high precision sensing of displacement of a shaft, for use typically in a linear electro-dynamic machine, having low failure rates over multi-year unattended operation in hostile environments. Applications include outer space travel by spacecraft having high-temperature, sealed environments without opportunity for servicing over many years of operation. The displacement sensing system uses a three coil sensor configuration, including a reference and sense coils, to provide a pair of ratio-metric signals, which are inputted into a synchronous comparison circuit, which is synchronously processed for a resultant displacement determination. The pair of ratio-metric signals are similarly affected by environmental conditions so that the comparison circuit is able to subtract or nullify environmental conditions that would otherwise cause changes in accuracy to occur.

  10. Displacement functions for diatomic materials

    Panrkin, D.M.; Coulter, C.A.

    1979-01-01

    An extension of the methods of Lindhard et at. was used to calculate the total displacement function n/sub ij/(E) for a number of diatomic materials, where n/sub ij/(E) is defined to be the average number of atoms of type j which are displaced from their sites in a displacement cascade initiated by a PKA of type i and energy E. From the n/sub ij/(E) one can calculate the fraction n/sub ij/(E) of the displacements produced by a type i PKA with energy E which are of type j. Values of the n/sub ij/ for MgO, CaO, Al 2 O 3 , and TaO are presented. It is shown that for diatomic materials with mass ratios reasonably near one (e.g., MgO, Al 2 O 3 ) and equal displacement thresholds for the two species the n/sub ij/ become independent of the PKA type i at energies only a few times threshold. However, for larger mass ratios the n/sub ij/ do not become independent of i until much larger, energies are reached - e.g. > 10 5 eV for TaO. In addition, it is found that the n/sub ij/ depend sensitively on the displacement thresholds, with very dramatic charges occuring when the two thresholds become significantly different from one another

  11. Time varying behavior of the loudspeaker suspension: Displacement level dependency

    Agerkvist, Finn T.; Pedersen, Bo Rohde

    2009-01-01

    The compliance of the loudspeaker suspension is known to depend on the recent excitation level history. Previous investigations have shown that the electrical power as well as displacement and velocity plays a role. In this paper the hypothesis that the changes in compliance are caused mainly...... by how much the suspension has been stretched, i.e. the maximum displacement, is investigated. For this purpose the changes in compliance are measured when exposing the speaker to different levels and types of electrical excitation signals, as well as mechanical excitation only. For sinusoidal excitation...... the change in compliance is shown to depend primarily on maximum displacement. But for square pulse excitation the duration of the excitation also plays an important role...

  12. Contaminant Distribution Around Persons in Rooms Ventilated by Displacement Ventilation

    Brohus, Henrik; Nielsen, Peter V.

    An optimal design of the ventilation system needs a proper prediction of the velocity, temperature and contaminant distribution in the room. Traditionally this is done either by the use of simplified models or by a somewhat more comprehensive CFD-simulation. Common to both methods is usually...... the lack of consideration for the persons present in the room. This paper deals with some of the effects of persons present in a displacement ventilated room, especially the effect on the contaminant distribution....

  13. Nerve conduction velocity

    ... this page: //medlineplus.gov/ency/article/003927.htm Nerve conduction velocity To use the sharing features on this page, please enable JavaScript. Nerve conduction velocity (NCV) is a test to see ...

  14. Paintball velocity as a function of distance traveled

    Pat Chiarawongse

    2008-06-01

    Full Text Available The relationship between the distance a paintball travels through air and its velocity is investigated by firing a paintball into a ballistic pendulum from a range of distances. The motion of the pendulum was filmed and analyzed by using video analysis software. The velocity of the paintball on impact was calculated from the maximum horizontal displacement of the pendulum. It is shown that the velocity of a paintball decreases exponentially with distance traveled, as expected. The average muzzle velocity of the paint balls is found with an estimate of the drag coefficient.

  15. Paintball velocity as a function of distance traveled

    Pat Chiarawongse

    2008-06-01

    Full Text Available The relationship between the distance a paintball travels through air and its velocity is investigated by firing a paintball into a ballistic pendulum from a range of distances. The motion of the pendulum was filmed and analyzed by using video analysis software. The velocity of the paintball on impact was calculated from the maximum horizontal displacement of the pendulum. It is shown that the velocity of a paintball decreases exponentially with distance traveled, as expected. The average muzzle velocity of the paint balls is found with an estimate of the drag coefficient

  16. A thermal modelling of displacement cascades in uranium dioxide

    Martin, G., E-mail: guillaume.martin@cea.fr [CEA – DEN/DEC/SESC/LLCC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France); Garcia, P.; Sabathier, C. [CEA – DEN/DEC/SESC/LLCC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France); Devynck, F.; Krack, M. [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Maillard, S. [CEA – DEN/DEC/SESC/LLCC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France)

    2014-05-01

    The space and time dependent temperature distribution was studied in uranium dioxide during displacement cascades simulated by classical molecular dynamics (MD). The energy for each simulated radiation event ranged between 0.2 keV and 20 keV in cells at initial temperatures of 700 K or 1400 K. Spheres into which atomic velocities were rescaled (thermal spikes) have also been simulated by MD to simulate the thermal excitation induced by displacement cascades. Equipartition of energy was shown to occur in displacement cascades, half of the kinetic energy of the primary knock-on atom being converted after a few tenths of picoseconds into potential energy. The kinetic and potential parts of the system energy are however subjected to little variations during dedicated thermal spike simulations. This is probably due to the velocity rescaling process, which impacts a large number of atoms in this case and would drive the system away from a dynamical equilibrium. This result makes questionable MD simulations of thermal spikes carried out up to now (early 2014). The thermal history of cascades was compared to the heat equation solution of a punctual thermal excitation in UO{sub 2}. The maximum volume brought to a temperature above the melting temperature during the simulated cascade events is well reproduced by this simple model. This volume eventually constitutes a relevant estimate of the volume affected by a displacement cascade in UO{sub 2}. This definition of the cascade volume could also make sense in other materials, like iron.

  17. The velocity of sound

    Beyer, R.T.

    1985-01-01

    The paper reviews the work carried out on the velocity of sound in liquid alkali metals. The experimental methods to determine the velocity measurements are described. Tables are presented of reported data on the velocity of sound in lithium, sodium, potassium, rubidium and caesium. A formula is given for alkali metals, in which the sound velocity is a function of shear viscosity, atomic mass and atomic volume. (U.K.)

  18. The species velocity of trees in Alaska

    Morrison, B. D.; Napier, J.; de Lafontaine, G.; Heath, K.; Li, B.; Hu, F.; Greenberg, J. A.

    2017-12-01

    Anthropogenic climate change has motivated interest in the paleo record to enhance our knowledge about past vegetation responses to climate change and help understand potential responses in the future. Additionally, polar regions currently experience the most rapid rates of climate change globally, prompting concern over changes in the ecological composition of high latitude ecosystems. Recent analyses have attempted to construct methods to estimate a species' ability to track climate change by computing climate velocity; a measure of the rate of climate displacement across a landscape which may indicate the speed an organism must migrate to keep pace with climate change. However, a challenge to using climate velocity in understanding range shifts is a lack of species-specificity in the velocity calculations: climate velocity does not actually use any species data in its analysis. To solve the shortcomings of climate velocity in estimating species displacement rates, we computed the "species velocity" of white spruce, green and grey alder populations across the state of Alaska from the Last Glacial Maximum (LGM) to today. Species velocity represents the rate and direction a species is required to migrate to keep pace with a changing climate following the LGM. We used a species distribution model to determine past and present white spruce and alder distributions using statistically downscaled climate data at 60m. Species velocity was then derived from the change in species distribution per year by the change in distribution over Alaska (km/yr). High velocities indicate locations where the species environmental envelope is changing drastically and must disperse rapidly to survive climate change. As a result, high velocity regions are more vulnerable to distribution shifts and higher risk of local extinction. Conversely, low species velocities indicate locations where the local climate envelope is shifting relatively slowly, reducing the stress to disperse quickly

  19. Dynamics and acceleration in linear structures

    Le Duff, J.

    1985-06-01

    Basic methods of linear acceleration are reviewed. Both cases of non relativistic and ultra relativistic particles are considered. Induction linac, radiofrequency quadrupole are mentioned. Fundamental parameters of accelerating structures are recalled; they are transit time factor, shunt impedance, quality factor and stored energy, phase velocity and group velocity, filling time, space harmonics in loaded waveguides. Energy gain in linear accelerating structures is considered through standing wave structures and travelling wave structures. Then particle dynamics in linear accelerators is studied: longitudinal motion, transverse motion and dynamics in RFQ

  20. Electromagnetic acceleration studies with augmented rails

    Maruo, T.; Fujioka, K.; Nagaoka, K.; Okamoto, A.; Ikuta, K.; Nemoto, K.

    1991-01-01

    A comparative study of electromagnetic acceleration in the rail-type accelerators with two kinds of rail geometry was carried out experimentally. The accelerators were energized by 200kJ capacitor bank and the weight of loaded projectiles was about 1.3 grams with 10mm x 10mm square bore. The attained velocity was 4.3km/s in the augmented accelerator, while it was 3.8km/s in the classical device. In this paper these differences in attained velocity are briefly discussed. A theoretical understanding of the rail erosion is also described

  1. Compact all-fiber interferometer system for shock acceleration measurement

    Zhao, Jiang; Pi, Shaohua; Hong, Guangwei; Zhao, Dong; Jia, Bo

    2013-08-01

    Acceleration measurement plays an important role in a variety of fields in science and engineering. In particular, the accurate, continuous and non-contact recording of the shock acceleration profiles of the free target surfaces is considered as a critical technique in shock physics. Various kinds of optical interferometers have been developed to monitor the motion of the surfaces of shocked targets since the 1960s, for instance, the velocity interferometer system for any reflector, the fiber optic accelerometer, the photonic Doppler velocimetry system and the displacement interferometer. However, most of such systems rely on the coherent quasi-monochromatic illumination and discrete optic elements, which are costly in setting-up and maintenance. In 1996, L. Levin et al reported an interferometric fiber-optic Doppler velocimeter with high-dynamic range, in which fiber-coupled components were used to replace the discrete optic elements. However, the fringe visibility of the Levin's system is low because of the coupled components, which greatly limits the reliability and accuracy in the shock measurement. In this paper, a compact all-fiber interferometer system for measuring the shock acceleration is developed and tested. The advantage of the system is that not only removes the non-interfering light and enhances the fringe visibility, but also reduces polarization induced signal fading and the polarization induced phase shift. Moreover, it also does not require a source of long coherence length. The system bases entirely on single-mode fiber optics and mainly consists of a polarization beam splitter, a faraday rotator, a depolarizer and a 3×3 single-mode fiber coupler which work at 1310 nm wavelength. The optical systems of the interferometer are described and the experimental results compared with a shock acceleration calibration system with a pneumatic exciter (PneuShockTM Model 9525C by The Modal Shop) are reported. In the shock acceleration test, the

  2. Acceleration of solid pellets using a plasma gun

    Buller, T.L.; Turnbull, R.J.; Kim, K.

    1979-01-01

    The use of solid pellets of hydrogen isotopes to refuel thermonuclear fusion reactors based on the tokamak configuration will require that the pellets be accelerated to high velocities. One possible method of acceleration is to interact a fast plasma from a plasma gun with the pellets. In this paper preliminary results are given on the acceleration of solid pellets with a plasma gun. The plasma-gun requirements for successful acceleration to high velocities are discussed

  3. Explosive Yield Estimation using Fourier Amplitude Spectra of Velocity Histories

    Steedman, D. W.; Bradley, C. R.

    2016-12-01

    The Source Physics Experiment (SPE) is a series of explosive shots of various size detonated at varying depths in a borehole in jointed granite. The testbed includes an extensive array of accelerometers for measuring the shock environment close-in to the explosive source. One goal of SPE is to develop greater understanding of the explosion phenomenology in all regimes: from near-source, non-linear response to the far-field linear elastic region, and connecting the analyses from the respective regimes. For example, near-field analysis typically involves review of kinematic response (i.e., acceleration, velocity and displacement) in the time domain and looks at various indicators (e.g., peaks, pulse duration) to facilitate comparison among events. Review of far-field data more often is based on study of response in the frequency domain to facilitate comparison of event magnitudes. To try to "bridge the gap" between approaches, we have developed a scaling law for Fourier amplitude spectra of near-field velocity histories that successfully collapses data from a wide range of yields (100 kg to 5000 kg) and range to sensors in jointed granite. Moreover, we show that we can apply this scaling law to data from a new event to accurately estimate the explosive yield of that event. This approach presents a new way of working with near-field data that will be more compatible with traditional methods of analysis of seismic data and should serve to facilitate end-to-end event analysis. The goal is that this new approach to data analysis will eventually result in improved methods for discrimination of event type (i.e., nuclear or chemical explosion, or earthquake) and magnitude.

  4. Electrostatic accelerators

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We ...

  5. Electrostatic accelerators

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  6. Accelerator development

    Anon.

    1975-01-01

    Because the use of accelerated heavy ions would provide many opportunities for new and important studies in nuclear physics and nuclear chemistry, as well as other disciplines, both the Chemistry and Physics Divisions are supporting the development of a heavy-ion accelerator. The design of greatest current interest includes a tandem accelerator with a terminal voltage of approximately 25 MV injecting into a linear accelerator with rf superconducting resonators. This combined accelerator facility would be capable of accelerating ions of masses ranging over the entire periodic table to an energy corresponding to approximately 10 MeV/nucleon. This approach, as compared to other concepts, has the advantages of lower construction costs, lower operating power, 100 percent duty factor, and high beam quality (good energy resolution, good timing resolution, small beam size, and small beam divergence). The included sections describe the concept of the proposed heavy-ion accelerator, and the development program aiming at: (1) investigation of the individual questions concerning the superconducting accelerating resonators; (2) construction and testing of prototype accelerator systems; and (3) search for economical solutions to engineering problems. (U.S.)

  7. Is Fibular Fracture Displacement Consistent with Tibiotalar Displacement?

    van den Bekerom, Michel P. J.; van Dijk, C. Niek

    2010-01-01

    We believed open reduction with internal fixation is required for supination-external rotation ankle fractures located at the level of the distal tibiofibular syndesmosis (Lauge-Hanssen SER II and Weber B) with 2 mm or more fibular fracture displacement. The rationale for surgery for these ankle

  8. A CMOS-MEMS clamped–clamped beam displacement amplifier for resonant switch applications

    Liu, Jia-Ren; Lu, Shih-Chuan; Tsai, Chun-Pu; Li, Wei-Chang

    2018-06-01

    This paper presents a micromechanical clamped–clamped beam (CC-beam) displacement amplifier based on a CMOS-MEMS fabrication process platform. In particular, a 2.0 MHz resonant displacement amplifier composed of two identical CC-beams coupled by a mechanical beam at locations where the two beams have mismatched velocities exhibits a larger displacement, up to 9.96×, on one beam than that of the other. The displacement amplification prevents unwanted input impacting—the structure switches only to the output but not the input—required by resonant switch-based mechanical circuits (Kim et al 2009 22nd IEEE Int. Conf. on Micro Electro Mechanical Systems; Lin et al 2009 15th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (TRANSDUCERS’09) Li et al 2013 17th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (TRANSDUCERS’13)). Compared to a single CC-beam displacement amplifier, theory predicts that the displacement amplifying CC-beam array yields a larger overall output displacement for displacement gain beyond 1.13 thanks to the preserved input driving force. A complete analytical model predicts the resultant stiffness and displacement gain of the coupled CC-beam displacement amplifier that match well with finite element analysis (FEA) prediction and measured results.

  9. Linear resonance acceleration of pellets

    Mills, R.G.

    1978-01-01

    A possible requirement for the acceleration of macroscopic pellets to velocities exceeding 10 4 meters per second implies the development of new apparatus. A satisfactory approach might be the linear resonance accelerator. Such apparatus would require the charging of pellets to very high values not yet demonstrated. The incompatibility of phase stability with radial stability in these machines may require abandoning phase stability and adopting feedback control of the accelerating voltage to accommodate statistical fluctuations in the charge to mass ratio of successive pellets

  10. Particle acceleration in modified shocks

    Drury, L.O'C.; Axford, W.I.; Summers, D.

    1982-01-01

    Efficient particle acceleration in shocks must modify the shock structure with consequent changes in the particle acceleration. This effect is studied and analytic solutions are found describing the diffusive acceleration of particles with momentum independent diffusion coefficients in hyperbolic tangent type velocity transitions. If the input particle spectrum is a delta function, the shock smoothing replaces the truncated power-law downstream particle spectrum by a more complicated form, but one which has a power-law tail at high momenta. For a cold plasma this solution can be made completely self-consistent. Some problems associated with momentum dependent diffusion coefficients are discussed. (author)

  11. Particle acceleration in modified shocks

    Drury, L.O' C. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.)); Axford, W.I. (Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau (Germany, F.R.)); Summers, D. (Memorial Univ. of Newfoundland, St. John' s (Canada))

    1982-03-01

    Efficient particle acceleration in shocks must modify the shock structure with consequent changes in the particle acceleration. This effect is studied and analytic solutions are found describing the diffusive acceleration of particles with momentum independent diffusion coefficients in hyperbolic tangent type velocity transitions. If the input particle spectrum is a delta function, the shock smoothing replaces the truncated power-law downstream particle spectrum by a more complicated form, but one which has a power-law tail at high momenta. For a cold plasma this solution can be made completely self-consistent. Some problems associated with momentum dependent diffusion coefficients are discussed.

  12. Displacement of an electric arc by a stationary transverse magnetic field to different pressures of the ionized gas

    Ramos, J.

    1987-01-01

    The displacement of a wall-stabilized electric arc by a stationary transverse magnetic field is measured to different pressures of the ionized gas. The increase of the pressure makes the heat transfer function and the mass flow velocity in the arc column to raise, and it makes the arc displacement to decrease. (author)

  13. RECIRCULATING ACCELERATION

    BERG, J.S.; GARREN, A.A.; JOHNSTONE, C.

    2000-01-01

    This paper compares various types of recirculating accelerators, outlining the advantages and disadvantages of various approaches. The accelerators are characterized according to the types of arcs they use: whether there is a single arc for the entire recirculator or there are multiple arcs, and whether the arc(s) are isochronous or non-isochronous

  14. LIBO accelerates

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  15. Fundamentals of displacement production in irradiated metals

    Doran, D.G.

    1975-09-01

    Radioinduced displacement damage in metals is described. Discussions are included on the displacement event itself, calculation of displacement rates in general, the manner in which different types of radiation interact with metals to produce displacements, the similarities and differences in the types of damage produced, the current status of computer simulations of displacement cascades, experimental evidence regarding cascades, and aspects of correlating damage produced by different types of radiation

  16. Urban displaced youth in Kabul

    Nassim Majidi

    2014-05-01

    Full Text Available Displaced young people in Kabul are waiting to see what the coming year brings for Afghanistan before making a decision as whether to move on again. This provides a window of opportunity to develop youth-sensitive programming.

  17. 187 DISPLACEMENT AND ENVIRONMENTAL PROTECTION

    Fr. Ikenga

    The national and international communities are confronted with the monumental task of ... displacement and environmental protection present a vicious cycle which today has ... Thus, issues of environmental protection viz-a-viz investment and .... out the conditions for product or process standards, the use of best available ...

  18. Accelerating Inspire

    AUTHOR|(CDS)2266999

    2017-01-01

    CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...

  19. Kalman filtering techniques for reducing variance of digital speckle displacement measurement noise

    Donghui Li; Li Guo

    2006-01-01

    @@ Target dynamics are assumed to be known in measuring digital speckle displacement. Use is made of a simple measurement equation, where measurement noise represents the effect of disturbances introduced in measurement process. From these assumptions, Kalman filter can be designed to reduce variance of measurement noise. An optical and analysis system was set up, by which object motion with constant displacement and constant velocity is experimented with to verify validity of Kalman filtering techniques for reduction of measurement noise variance.

  20. Particle acceleration near Halley's comet

    Somogyi, Antal

    1987-01-01

    Vega and Giotto space probes observed energetic ions of cometary origin near Halley's comet. The water molecules evaporating from the cometary nucleus were ionized by the solar UV radiation. These 'standing' ions were accelerated from 1 km/s to a few 1000 km/s. Present paper analyses the possible mechanisms of acceleration based on the data of TUENDE detector (constructed by CRIP, Hungary) working on board of Vega probes. The basic mechanism is the ExB Lorentz acceleration by interplanetary magnetic field and electric field induced by magnetic field frozen into solar wind plasma. It is followed by an acceleration caused by the adiabatic compression of the plasma at shock wave front. These processes can not explain the observed velocity of ions. It is shown that the second order Fermi acceleration which dissipates the ion distribution in the velocity space can lead to the observed velocities. The circumstances required to the occurrence of this process are present at the cometary environment. (D.G.) 2 figs

  1. Continuous measurements of in-bore projectile velocity

    Asay, J.R.; Konrad, C.H.; Hall, C.A.; Shahinpoor, M.

    1989-01-01

    The application of velocity interferometry to the continuous measurement of in-bore projectile velocity in a small-bore three-stage railgun is described. These measurements are useful for determining projectile acceleration and for evaluating gun performance. The launcher employed in these studies consists of a two-stage light gas gun used to inject projectiles into a railgun for additional acceleration. Results obtained for projectile velocities to 7.4 km/s with the two-stage injector are reported and potential improvements for railgun applications are discussed

  2. Accelerator development for heavy ion fusion

    Talbert, W.L. Jr.; Sawyer, G.A.

    1980-01-01

    Accelerator technology development is presented for heavy ion drivers used in inertial confinement fusion. The program includes construction of low-velocity ''test bed'' accelerator facilities, development of analytical and experimental techniques to characterize ion beam behavior, and the study of ion beam energy deposition

  3. FMIT accelerator

    Armstrong, D.D.

    1983-01-01

    A 35-MeV 100-mA cw linear accelerator is being designed by Los Alamos for use in the Fusion Materials Irradiation Test (FMIT) Facility. Essential to this program is the design, construction, and evaluation of performance of the accelerator's injector, low-energy beam transport, and radio-frequency quadrupole sections before they are shipped to the facility site. The installation and testing of some of these sections have begun as well as the testing of the rf, noninterceptive beam diagnostics, computer control, dc power, and vacuum systems. An overview of the accelerator systems and the performance to date is given

  4. Electron accelerator

    Abramyan.

    1981-01-01

    The USSR produces an electron accelerator family of a simple design powered straight from the mains. The specifications are given of accelerators ELITA-400, ELITA-3, ELT-2, TEUS-3 and RIUS-5 with maximum electron energies of 0.3 to 5 MeV, a mean power of 10 to 70 kW operating in both the pulsed and the continuous (TEUS-3) modes. Pulsed accelerators ELITA-400 and ELITA-3 and RIUS-5 in which TESLA resonance transformers are used are characterized by their compact size. (Ha)

  5. Force transmissibility versus displacement transmissibility

    Lage, Y. E.; Neves, M. M.; Maia, N. M. M.; Tcherniak, D.

    2014-10-01

    It is well-known that when a single-degree-of-freedom (sdof) system is excited by a continuous motion of the foundation, the force transmissibility, relating the force transmitted to the foundation to the applied force, equals the displacement transmissibility. Recent developments in the generalization of the transmissibility to multiple-degree-of-freedom (mdof) systems have shown that similar simple and direct relations between both types of transmissibility do not appear naturally from the definitions, as happens in the sdof case. In this paper, the authors present their studies on the conditions under which it is possible to establish a relation between force transmissibility and displacement transmissibility for mdof systems. As far as the authors are aware, such a relation is not currently found in the literature, which is justified by being based on recent developments in the transmissibility concept for mdof systems. Indeed, it does not appear naturally, but the authors observed that the needed link is present when the displacement transmissibility is obtained between the same coordinates where the applied and reaction forces are considered in the force transmissibility case; this implies that the boundary conditions are not exactly the same and instead follow some rules. This work presents a formal derivation of the explicit relation between the force and displacement transmissibilities for mdof systems, and discusses its potential and limitations. The authors show that it is possible to obtain the displacement transmissibility from measured forces, and the force transmissibility from measured displacements, opening new perspectives, for example, in the identification of applied or transmitted forces. With this novel relation, it becomes possible, for example, to estimate the force transmissibility matrix with the structure off its supports, in free boundary conditions, and without measuring the forces. As far as force identification is concerned, this

  6. Ice Velocity Mapping Using TOPS SAR Data and Offset Tracking

    Dall, Jørgen; Kusk, Anders; Nielsen, Ulrik

    2015-01-01

    Feature tracking and speckle tracking, are robust techniques to measure the velocity of glaciers and ice sheets. Displacement maps based on TOPS data may have small gaps if the bursts are not handled properly. Ice moving from one burst to a consecutive burst between two observations is not observ...

  7. Indentation of aluminium foam at low velocity

    Shi Xiaopeng

    2015-01-01

    Full Text Available The indentation behaviour of aluminium foams at low velocity (10 m/s ∼ 30 m/s was investigated both in experiments and numerical simulation in this paper. A flat-ended indenter was used and the force-displacement history was recorded. The Split Hopkinson Pressure bar was used to obtain the indentation velocity and forces in the dynamic experiments. Because of the low strength of the aluminium foam, PMMA bar was used, and the experimental data were corrected using Bacon's method. The energy absorption characteristics varying with impact velocity were then obtained. It was found that the energy absorption ability of aluminium foam gradually increases in the quasi-static regime and shows a significant increase at ∼10 m/s velocity. Numerical simulation was also conducted to investigate this process. A 3D Voronoi model was used and models with different relative densities were investigated as well as those with different failure strain. The indentation energy increases with both the relative density and failure strain. The analysis of the FE model implies that the significant change in energy absorption ability of aluminium foam in indentation at ∼10 m/s velocity may be caused by plastic wave effect.

  8. Water velocity meter

    Roberts, C. W.; Smith, D. L.

    1970-01-01

    Simple, inexpensive drag sphere velocity meter with a zero to 6 ft/sec range measures steady-state flow. When combined with appropriate data acquisition system, it is suited to applications where large numbers of simultaneous measurements are needed for current mapping or velocity profile determination.

  9. Estimation of vector velocity

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...

  10. Development of a very-low-velocity superconducting linac

    Shepard, K.W.

    1987-01-01

    Four types of superconducting accelerator structures are being developed for use in a low velocity positive-ion injector linac for the ATLAS heavy-ion accelerator. Prototypes of the first two of these have been tested. The structures are all variants of a quarter-wave line terminated with a four-gap interdigital drift-tube array. The two structure types so far tested operate at 48.5 mHz and have an active length of 10 cm (for the particle velocity - .008c type) and 16.5 cm (for the velocity - .014c type). Effective accelerating fields of 10 MV/m have been achieved with the 10 cm structure, corresponding to an effective accelerating potential of 1 MV. The 16.5 cm structure has been operated at field levels of 6 MV/m, also giving an effective potential of 1 MV. Prototypes of the remaining two resonant geometries are under construction.

  11. Development of a very-low-velocity superconducting linac

    Shepard, K.W.

    1987-01-01

    Four types of superconducting accelerator structures are being developed for use in a low velocity positive-ion injector linac for the ATLAS heavy-ion accelerator. Prototypes of the first two of these have been tested. The structures are all variants of a quarter-wave line terminated with a four-gap interdigital drift-tube array. The two structure types so far tested operate at 48.5 mHz and have an active length of 10 cm (for the particle velocity - .008c type) and 16.5 cm (for the velocity - .014c type). Effective accelerating fields of 10 MV/m have been achieved with the 10 cm structure, corresponding to an effective accelerating potential of 1 MV. The 16.5 cm structure has been operated at field levels of 6 MV/m, also giving an effective potential of 1 MV. Prototypes of the remaining two resonant geometries are under construction

  12. Beam front accelerators

    Reiser, M.

    1982-01-01

    An intense relativistic electron beam cannot propagate in a metal drift tube when the current exceeds the space charge limit. Very high charge density and electric field gradients (10 2 to 10 3 MV/m) develop at the beam front and the electrons are reflected. When a neutral gas or a plasma is present, collective acceleration of positive ions occur, and the resulting charge neutralization enables the beam to propagate. Experimental results, theoretical understanding, and schemes to achieve high ion energies by external control of the beam front velocity will be reviewed

  13. Airflow and Contaminant Distribution in Hospital Wards with a Displacement Ventililation System

    Qian, H.; Nielsen, Peter Vilhelm; Li, Y.

    2004-01-01

    Airflow and Contaminant Distribution in Hospital Wards with a Displacement Ventilalation System. The 2nd International Conference on Build Environment and Public Health, BEPH 2004, Shenzhen , China . ABSTRACT Displacement ventilation has not been considered to be an applicable system for hospital...... to accurately predict three-dimensional distribution of air velocity, temperature, and contaminant concentration in the ward. Indoor airflow in a displacement ventilation system involves a combination of different flow streams such as the gravity currents and thermal plumes. It is important to choose...... ventilation system in hospital wards. It is for this purpose that we study the performance of displacement ventilation in hospital wards as one of the steps to optimize the ventilation design. When the prospect of applying displacement ventilation system in a hospital ward is examined, it should be necessary...

  14. Pulsar velocity observations: Correlations, interpretations, and discussion

    Helfand, D.J.; Tademaru, E.

    1977-01-01

    From an examination of the current sample of 12 pulsars with measured proper motions and the z-distribution of the much larger group of over 80 sources with measured period derivatives, we develop a self-consistent picture of pulsar evolution. The apparent tendency of pulsars to move parallel to the galactic plane is explained as the result of various selection effects. A method for calculating the unmeasurable radial velocity of a pulsar is presented; it is shown that the total space velocities thus obtained are consistent with the assumption of an extreme Population I origin for pulsars which subsequently move away from the plane with a large range of velocities. The time scale for pulsar magnetic field decay is derived from dynamical considerations. A strong correlation of the original pulsar field strength with the magnitude of pulsar velocity is discussed. This results in the division of pulsars into two classes: Class A sources characterized by low space velocities, a small scale height, and low values of P 0 P 0 ; and Class B sources with a large range of velocities (up to 1000 km s -1 ), a much greater scale height, and larger values of initial field strength. It is postulated that Class A sources originate in tight binaries where their impulse acceleration at birth is insufficient to remove them from the system, while the Class B sources arise from single stars or loosely bound binaries and are accelerated to high velocities by their asymmetric radiation force. The evolutionary picture which is developed is shown to be consistent with a number of constraints imposed by supernova rates, the relative frequency of massive binaries and Class A sources, theoretical field-decay times, and the overall pulsar galactic distribution

  15. Horizontal Accelerator

    Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...

  16. Target micro-displacement measurement by a "comb" structure of intensity distribution in laser plasma propulsion

    Zheng, Z. Y.; Zhang, S. Q.; Gao, L.; Gao, H.

    2015-05-01

    A "comb" structure of beam intensity distribution is designed and achieved to measure a target displacement of micrometer level in laser plasma propulsion. Base on the "comb" structure, the target displacement generated by nanosecond laser ablation solid target is measured and discussed. It is found that the "comb" structure is more suitable for a thin film target with a velocity lower than tens of millimeters per second. Combing with a light-electric monitor, the `comb' structure can be used to measure a large range velocity.

  17. LINEAR ACCELERATOR

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  18. An interferometric velocity calibrator for 73Ge Moessbauer spectrometer

    Chow, L.; Kimble, T.

    1987-01-01

    A velocity calibrator based on a laser driven Michelson interferometer was designed for a 73 Ge Moessbauer spectrometer in the range of 100 to 500 μm/sec. The conventional method of counting the interference fringes cannot be used in this case because the displacement only spans about 3 to 15 μm and only a few fringes can be observed during one velocity sweep. The velocity calibration obtained this way was compared with the calibration obtained from 57 Fe measurement, and excellent agreement was found between the two methods. (orig.)

  19. A linear accelerator for simulated micrometeors.

    Slattery, J. C.; Becker, D. G.; Hamermesh, B.; Roy, N. L.

    1973-01-01

    Review of the theory, design parameters, and construction details of a linear accelerator designed to impart meteoric velocities to charged microparticles in the 1- to 10-micron diameter range. The described linac is of the Sloan Lawrence type and, in a significant departure from conventional accelerator practice, is adapted to single particle operation by employing a square wave driving voltage with the frequency automatically adjusted from 12.5 to 125 kHz according to the variable velocity of each injected particle. Any output velocity up to about 30 km/sec can easily be selected, with a repetition rate of approximately two particles per minute.

  20. Measurements of beat wave accelerated electrons in a toroidal plasma

    Rogers, J.H.

    1992-06-01

    Electrons are accelerated by large amplitude electron plasma waves driven by counter-propagating microwaves with a difference frequency approximately equal to the electron plasma frequency. Energetic electrons are observed only when the phase velocity of the wave is in the range 3v e ph e (v ph was varied 2v e ph e ), where v e is the electron thermal velocity, (kT e /m e ) 1/2 . As the phase velocity increases, fewer electrons are accelerated to higher velocities. The measured current contained in these accelerated electrons has the power dependence predicted by theory, but the magnitude is lower than predicted

  1. Propagation Velocity of Solid Earth Tides

    Pathak, S.

    2017-12-01

    One of the significant considerations in most of the geodetic investigations is to take into account the outcome of Solid Earth tides on the location and its consequent impact on the time series of coordinates. In this research work, the propagation velocity resulting from the Solid Earth tides between the Indian stations is computed. Mean daily coordinates for the stations have been computed by applying static precise point positioning technique for a day. The computed coordinates are used as an input for computing the tidal displacements at the stations by Gravity method along three directions at 1-minute interval for 24 hours. Further the baseline distances are computed between four Indian stations. Computation of the propagation velocity for Solid Earth tides can be done by the virtue of study of the concurrent effect of it in-between the stations of identified baseline distance along with the time consumed by the tides for reaching from one station to another. The propagation velocity helps in distinguishing the impact at any station if the consequence at a known station for a specific time-period is known. Thus, with the knowledge of propagation velocity, the spatial and temporal effects of solid earth tides can be estimated with respect to a known station. As theoretically explained, the tides generated are due to the position of celestial bodies rotating about Earth. So the need of study is to observe the correlation of propagation velocity with the rotation speed of the Earth. The propagation velocity of Solid Earth tides comes out to be in the range of 440-470 m/s. This velocity comes out to be in a good agreement with the Earth's rotation speed.

  2. Flow measurements using noise signals of axially displaced thermocouples

    Kozma, R.; Hoogenboom, J.E. (Interuniversitair Reactor Inst., Delft (Netherlands))

    1990-01-01

    Determination of the flow rate of the coolant in the cooling channels of nuclear reactors is an important aspect of core monitoring. It is usually impossible to measure the flow by flowmeters in the individual channels due to the lack of space and safety reasons. An alternative method is based on the analysis of noise signals of the available in-core detectors. In such a noise method, a transit time which characterises the propagation of thermohydraulic fluctuations (density or temperature fluctuations) in the coolant is determined from the correlation between the noise signals of axially displaced detectors. In this paper, the results of flow measurements using axially displaced thermocouples in the channel wall will be presented. The experiments have been performed in a simulated MRT-type fuel assembly located in the research reactor HOR of the Interfaculty Reactor Institute, Delft. It was found that the velocities obtained via temperature noise correlation methods are significantly larger than the area-averaged velocity in the single-phase coolant flow. Model calculations show that the observed phenomenon can be explained by effects due to the radial velocity distribution in the channel. (author).

  3. Predicting vertical jump height from bar velocity.

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-06-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.

  4. Modelling Toehold-Mediated RNA Strand Displacement

    Šulc, Petr; Ouldridge, Thomas E.; Romano, Flavio; Doye, Jonathan P.K.; Louis, Ard A.

    2015-01-01

    We study the thermodynamics and kinetics of an RNA toehold-mediated strand displacement reaction with a recently developed coarse-grained model of RNA. Strand displacement, during which a single strand displaces a different strand previously bound to a complementary substrate strand, is an essential mechanism in active nucleic acid nanotechnology and has also been hypothesized to occur in vivo. We study the rate of displacement reactions as a function of the length of the toehold and temperat...

  5. Centrifugal acceleration in the magnetotail lobes

    H. Nilsson

    2010-02-01

    Full Text Available Combined Cluster EFW and EDI measurements have shown that cold ion outflow in the magnetospheric lobes dominates the hydrogen ion outflow from the Earth's atmosphere. The ions have too low kinetic energy to be measurable with particle instruments, at least for the typical spacecraft potential of a sunlit spacecraft in the tenuous lobe plasmas outside a few RE. The measurement technique yields both density and bulk velocity, which can be combined with magnetic field measurements to estimate the centrifugal acceleration experienced by these particles. We present a quantitative estimate of the centrifugal acceleration, and the velocity change with distance which we would expect due to centrifugal acceleration. It is found that the centrifugal acceleration is on average outward with an average value of about of 5 m s−2. This is small, but acting during long transport times and over long distances the cumulative effect is significant, while still consistent with the relatively low velocities estimated using the combination of EFW and EDI data. The centrifugal acceleration should accelerate any oxygen ions in the lobes to energies observable by particle spectrometers. The data set also put constraints on the effectiveness of any other acceleration mechanisms acting in the lobes, where the total velocity increase between 5 and 19 RE geocentric distance is less than 5 km s−1.

  6. Algebraic motion of vertically displacing plasmas

    Bhattacharjee, Amitava; Pfefferle, David; Hirvijoki, Eero

    2017-10-01

    The vertical displacement of tokamak plasmas is modelled during the non-linear phase by a free-moving current-carrying rod coupled to a set of fixed conducting wires and a cylindrical conducting shell. The models capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the vacuum vessel. The plasma is assumed not to vary during the VDE such that it behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented from coming in contact with the wall due to steep effective potential barriers by the eddy currents, and will hence oscillate at Alfvénic frequencies about a given force-free position. In addition to damping oscillations, resistivity allows for the column to drift towards the vessel on slow flux penetration timescales. The initial exponential motion of the plasma, i.e. the resistive vertical instability, is succeeded by a non-linear sinking behaviour, that is shown analytically to be algebraic and decelerative. The acceleration of the plasma column often observed in experiments is thus conjectured to originate from an early sharing of toroidal current between the core, the halo plasma and the wall or from the thermal quench dynamics precipitating loss of plasma current

  7. Velocity Feedback Experiments

    Chiu Choi

    2017-02-01

    Full Text Available Transient response such as ringing in a control system can be reduced or removed by velocity feedback. It is a useful control technique that should be covered in the relevant engineering laboratory courses. We developed velocity feedback experiments using two different low cost technologies, viz., operational amplifiers and microcontrollers. These experiments can be easily integrated into laboratory courses on feedback control systems or microcontroller applications. The intent of developing these experiments was to illustrate the ringing problem and to offer effective, low cost solutions for removing such problem. In this paper the pedagogical approach for these velocity feedback experiments was described. The advantages and disadvantages of the two different implementation of velocity feedback were discussed also.

  8. The critical ionization velocity

    Raadu, M.A.

    1980-06-01

    The critical ionization velocity effect was first proposed in the context of space plasmas. This effect occurs for a neutral gas moving through a magnetized plasma and leads to rapid ionization and braking of the relative motion when a marginal velocity, 'the critical velocity', is exceeded. Laboratory experiments have clearly established the significance of the critical velocity and have provided evidence for an underlying mechanism which relies on the combined action of electron impact ionization and a collective plasma interaction heating electrons. There is experimental support for such a mechanism based on the heating of electrons by the modified two-stream instability as part of a feedback process. Several applications to space plasmas have been proposed and the possibility of space experiments has been discussed. (author)

  9. High Velocity Gas Gun

    1988-01-01

    A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.

  10. Resonant neutron-induced atomic displacements

    Elmaghraby, Elsayed K., E-mail: e.m.k.elmaghraby@gmail.com

    2017-05-01

    Highlights: • Neutron induced atomic displacements was investigated based on scattering of energy of neutron. • Model for cascade function (multiplication of displacements with increasing energy transfer) was proposed and justified. • Parameterizations for the dpa induced in all elements were performed. • Table containing all necessary parameters to calculate the displacement density induced by neutron is given. • Contribution of non resonance displacement and resonant-neutron induced displacements are distinguished. - Abstract: A model for displacement cascade function was modified to account for the continuous variation of displacement density in the material in response to neutron exposure. The model is based on the Gaussian distribution of displacement energies of atoms in a material. Analytical treatment for moderated epithermal neutron field was given in which the displacement density was divided into two terms, discrete-resonance term and continuum term. Calculation are done for all isotopes using ENDF/B VII.1 data files and temperature dependent cross section library. Weighted elemental values were reported a fitting was performed to obtain energy-dependent formula of displacement density and reduce the number of parameters. Results relevant the present specification of the cascade function are tabulated for each element to enable calculation of displacement density at any value of displacement energy in the between 5 eV and 55 eV.

  11. Electron velocity distributions near collisionless shocks

    Feldman, W.C.

    1984-01-01

    Recent studies of the amount of electron heating and of the shapes of electron velocity distributions across shocks near the earth are reviewed. It is found that electron heating increases with increasing shock strength but is always less than the ion heating. The scale length of electron heating is also less than that for the ions. Electron velocity distributions show characteristic shapes which depend on the strength of the shocks. At the weaker shocks, electron heating is mostly perpendicular to the ambient magnetic field, bar B, and results in Gaussian-shaped velocity distributions at low-to-moderate energies. At the stronger shocks, parallel heating predominates resulting in flat-topped velocity distributions. A reasonable interpretation of these results indicates that at the weaker shocks electron heating is dominated by a tendency toward conservation of the magnetic moment. At the stronger fast-mode shocks, this heating is thought to be dominated by an acceleration parallel to bar B produced by the macroscopic shock electric field followed by beam driven plasma instabilities. Some contribution to the heating at the stronger shocks from conservation of the magnetic moment and cross-field current-driven instabilities cannot be ruled out. Although the heating at slow-mode shocks is also dominated by instabilities driven by magnetic field-aligned electron beams, their acceleration mechanism is not yet established

  12. Accelerator microanalysis

    Tuniz, C.

    1997-01-01

    Particle accelerators have been developed more than sixty years ago to investigate nuclear and atomic phenomena. A major shift toward applications of accelerators in the study of materials structure and composition in inter-disciplinary projects has been witnessed in the last two decades. The Australian Nuclear Science and Technology Organisation (ANSTO) has developed advanced research programs based on the use of particle and photon beams. Atmospheric pollution problems are investigated at the 3 MV Van de Graff accelerator using ion beam analysis techniques to detect toxic elements in aerosol particles. High temperature superconductor and semiconductor materials are characterised using the recoil of iodine and other heavy ions produced at ANTARES, the 10-MV Tandem accelerator. A heavy-ion microprobe is presently being developed at ANTARES to map elemental concentrations of specific elements with micro-size resolution. An Accelerator mass Spectrometry (AMS) system has been developed at ANSTO for the ultra-sensitive detection of Carbon-14, Iodine-129 and other long-lived radioisotopes. This AMS spectrometer is a key instrument for climate change studies and international safeguards. ANSTO is also managing the Australian Synchrotron Research program based on facilities developed at the Photon Factory (Japan) and at the Advanced Photon Source (USA). Advanced projects in biology, materials chemistry, structural condensed matter and other disciplines are being promoted by a consortium involving Australian universities and research institutions. This paper will review recent advances in the use of particle accelerators, with a particular emphasis on applications developed at ANSTO and related to problems of international concern, such as global environmental change, public health and nuclear proliferation

  13. Electromagnetic device of linear displacement

    Savary, F.; Le Saulnier, G.

    1986-01-01

    The device moves a rod integral with a nuclear reactor control element. It has a grab for the rod operated by a mobil pole drive by a coil carried by a surrounding sealed casing, a second grab with fixed and mobile poles with facing surfaces shaped to limit the variation of magnetic force with distance between them, and a plunger driven by a coil to bear against another mobile pole moved by a coil. The invention proposes a device ensuring a displacement while the impact forces at the different level of the mechanism are reduced [fr

  14. Characteristics of diffusion flames with accelerated motion

    Lou Bo

    2016-01-01

    Full Text Available The aim of this work is to present an experiment to study the characteristics of a laminar diffusion flame under acceleration. A Bunsen burner (nozzle diameter 8 mm, using liquefied petroleum gas as its fuel, was ignited under acceleration. The temperature field and the diffusion flame angle of inclination were visualised with the assistance of the visual display technology incorporated in MATLAB™. Results show that the 2-d temperature field under different accelerations matched the variation in average temperatures: they both experience three variations at different time and velocity stages. The greater acceleration has a faster change in average temperature with time, due to the accumulation of combustion heat: the smaller acceleration has a higher average temperature at the same speed. No matter what acceleration was used, in time, the flame angle of inclination increased, but the growth rate decreased until an angle of 90°: this could be explained by analysis of the force distribution within the flame. It is also found that, initially, the growth rate of angle with velocity under the greater acceleration was always smaller than that at lower accelerations; it was also different in flames with uniform velocity fire conditions.

  15. Laser-driven acceleration with Bessel beam

    Imasaki, Kazuo; Li, Dazhi

    2005-01-01

    A new approach of laser-driven acceleration with Bessel beam is described. Bessel beam, in contrast to the Gaussian beam, shows diffraction-free'' characteristics in its propagation, which implies potential in laser-driven acceleration. But a normal laser, even if the Bessel beam, laser can not accelerate charged particle efficiently because the difference of velocity between the particle and photon makes cyclic acceleration and deceleration phase. We proposed a Bessel beam truncated by a set of annular slits those makes several special regions in its travelling path, where the laser field becomes very weak and the accelerated particles are possible to receive no deceleration as they undergo decelerating phase. Thus, multistage acceleration is realizable with high gradient. In a numerical computation, we have shown the potential of multistage acceleration based on a three-stage model. (author)

  16. Determination of Velocity And Acceleration of Structural Deformation ...

    This paper outlines the procedure of geodetic monitoring system of circular oil storage ... In this study, only tank 6 was used as case study scenario for the determination of ... In this study, deformation analysis by Kalman Filter technique of the ...

  17. Accelerator operations

    Anon.

    1980-01-01

    This section is concerned with the operation of both the tandem-linac system and the Dynamitron, two accelerators that are used for entirely different research. Developmental activities associated with the tandem and the Dynamitron are also treated here, but developmental activities associated with the superconducting linac are covered separately because this work is a program of technology development in its own right

  18. CNSTN Accelerator

    Habbassi, Afifa; Trabelsi, Adel

    2010-01-01

    This project give a big idea about the measurement of the linear accelerator in the CNSTN. During this work we control dose distribution for different product. For this characterisation we have to make an installation qualification ,operational qualification,performance qualification and of course for every step we have to control temperature and the dose ,even the distribution of the last one.

  19. Accelerators course

    CERN. Geneva HR-RFA; Métral, E

    2006-01-01

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges

  20. Accelerator operations

    Anon.

    1979-01-01

    Operations of the SuperHILAC, the Bevatron/Bevalac, and the 184-inch Synchrocyclotron during the period from October 1977 to September 1978 are discussed. These include ion source development, accelerator facilities, the Heavy Ion Spectrometer System, and Bevelac biomedical operations

  1. A theoretical investigation of the collective acceleration of cluster ions with accelerated potential waves

    Suzuki, Hiroshi; Enjoji, Hiroshi; Kawaguchi, Motoichi; Noritake, Toshiya

    1984-01-01

    A theoretical treatment of the acceleration of cluster ions for additional heating of fusion plasma using the trapping effect in an accelerated potential wave is described. The conceptual design of the accelerator is the same as that by Enjoji, and the potential wave used is sinusoidal. For simplicity, collisions among cluster ions and the resulting breakups are neglected. The masses of the cluster ions are specified to range from 100 m sub(D) to 1000 m sub(D) (m sub(D): mass of a deuterium atom). Theoretical treatment is carried out only for the injection velocity which coincides with the phase velocity of the applied wave at the entrance of the accelerator. An equation describing the rate for successful acceleration of ions with a certain mass is deduced for the continuous injection of cluster ions. Computation for a typical mass distribution shows that more than 70% of the injected particles are effectively accelerated. (author)

  2. Accelerator update

    Anon.

    1995-01-01

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS

  3. Accelerator update

    Anon.

    1995-09-15

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS has managed

  4. EVOLUTION OF ROTATIONAL VELOCITIES OF A-TYPE STARS

    Yang Wuming; Bi Shaolan; Tian Zhijia; Meng Xiangcun

    2013-01-01

    The equatorial velocity of A-type stars undergoes an acceleration in the first third of the main sequence (MS) stage, but the velocity decreases as if the stars were not undergoing any redistribution of angular momentum in the external layers in the last stage of the MS phase. Our calculations show that the acceleration and the decrease of the equatorial velocity can be reproduced by the evolution of the differential rotation zero-age MS model with the angular momentum transport caused by hydrodynamic instabilities during the MS stage. The acceleration results from the fact that the angular momentum stored in the interiors of the stars is transported outward. In the last stage, the core and the radiative envelope are uncoupling, and the rotation of the envelope is a quasi-solid rotation; the uncoupling and the expansion of the envelope indicate that the decrease of the equatorial velocity approximately follows the slope for the change in the equatorial velocity of the model without any redistribution of angular momentum. When the fractional age 0.3 ∼ MS ∼< 0.5, the equatorial velocity remains almost constant for stars whose central density increases with age in the early stage of the MS phase, while the velocity decreases with age for stars whose central density decreases with age in the early stage of the MS phase.

  5. Performance of ductless personalized ventilation in conjunction with displacement ventilation

    Dalewski, Mariusz; Melikov, Arsen Krikor; Vesely, Michal

    2014-01-01

    perception of the environment. The subjects could control the position of the DPV supply diffuser and the personalized air flow (air velocity). The use of DPV improved perceived air quality and thermal comfort compared to displacement ventilation alone. At 26 °C and 29 °C the percentage dissatisfied with air......, increased eye dryness sensation was reported by 30% of subjects. The personalized air flow selected by nearly 80% of the subjects at 26 °C was between 10 and 20 l/s corresponding to the target air velocity of 1.2–1.7 m/s. At 29 °C almost 90% of subjects chose a personalized air flow between 15 and 20 l/s (1...

  6. High velocity pulse biopsy device enables controllable and precise needle insertion and high yield tissue acquisition.

    Schässburger, Kai-Uwe; Paepke, Stefan; Saracco, Ariel; Azavedo, Edward; Ekström, Christina; Wiksell, Hans

    2018-02-01

    Minimally invasive biopsies are a cornerstone of breast cancer management with ultrasound being the preferred guidance modality. New developments in breast cancer management and advances in imaging technologies bring new challenges to current biopsy methodologies. A new biopsy device (NeoNavia® biopsy system, 14 G) was developed. It incorporates a pneumatic needle insertion mechanism that is intended to provide better control of needle progression and enable stepwise insertion without noticeable deformation or displacement of surrounding tissue as visualized under ultrasound. A new method of tissue acquisition was designed to achieve a sampling yield higher than standard methodologies. Needle dynamics was assessed on a specifically designed test bed and sampling performance was compared to a Magnum® biopsy instrument (Bard, Covington, GA, USA) in representative tissue models. The histological quality of samples obtained ex-vivo was evaluated. A pneumatic pulse was measured to accelerate the needle to a maximum velocity of 21.2 ± 2.5 m/s on a stroke length of 2.5 mm, achieving significantly higher acceleration, maximum velocity and power than current biopsy devices. Mean weight of samples obtained by the NeoNavia device were 3.5, 4.6, and 4.3 times higher when sampling was performed in turkey breast, calf thymus and swine pancreas, respectively, as compared to samples obtained with the Magnum instrument. Ex-vivo analysis indicates that the method of tissue acquisition has no apparent negative impact on the histopathologic quality of obtained samples. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Superconducting RF for Low-Velocity and Intermediate-Velocity Beams

    Grimm, Terry L

    2005-01-01

    Existing superconducting radio frequency (SRF) linacs are used to accelerate ions (protons through uranium) with velocities less than about 15% the speed of light, or electrons with velocities approximately equal to the speed of light. In the last ten years, prototype SRF cavities have completely covered the remaining range of velocities. They have demonstrated that SRF linacs will be capable of accelerating electrons from rest up to the speed of light, and ions from less than 1% up to the speed of light. When the Spallation Neutron Source is operational, SRF ion linacs will have covered the full range of velocities except for v/c ~ 0.15 to v/c ~ 0.5. A number of proposed projects (RIA, EURISOL) would span the latter range of velocities. Future SRF developments will have to address the trade-offs associated with a number of issues, including high gradient operation, longitudinal and transverse acceptance, microphonics, Lorentz detuning, operating temperature, cryogenic load, number of gaps or cells per cavity...

  8. Equipartitioning in linear accelerators

    Jameson, R.A.

    1982-01-01

    Emittance growth has long been a concern in linear accelerators, as has the idea that some kind of energy balance, or equipartitioning, between the degrees of freedom, would ameliorate the growth. M. Prome observed that the average transverse and longitudinal velocity spreads tend to equalize as current in the channel is increased, while the sum of the energy in the system stays nearly constant. However, only recently have we shown that an equipartitioning requirement on a bunched injected beam can indeed produce remarkably small emittance growth. The simple set of equations leading to this condition are outlined. At the same time, Hofmann has investigated collective instabilities in transported beams and has identified thresholds and regions in parameter space where instabilities occur. Evidence is presented that shows transport system boundaries to be quite accurate in computer simulations of accelerating systems. Discussed are preliminary results of efforts to design accelerators that avoid parameter regions where emittance is affected by the instabilities identified by Hofmann. These efforts suggest that other mechanisms are present. The complicated behavior of the RFQ linac in this framework also is shown

  9. Equipartitioning in linear accelerators

    Jameson, R.A.

    1981-01-01

    Emittance growth has long been a concern in linear accelerators, as has the idea that some kind of energy balance, or equipartitioning, between the degrees of freedom, would ameliorate the growth. M. Prome observed that the average transverse and longitudinal velocity spreads tend to equalize as current in the channel is increased, while the sum of the energy in the system stays nearly constant. However, only recently have we shown that an equipartitioning requirement on a bunched injected beam can indeed produce remarkably small emittance growth. The simple set of equations leading to this condition are outlined below. At the same time, Hofmann, using powerful analytical and computational methods, has investigated collective instabilities in transported beams and has identified thresholds and regions in parameter space where instabilities occur. This is an important generalization. Work that he will present at this conference shows that the results are essentially the same in r-z coordinates for transport systems, and evidence is presented that shows transport system boundaries to be quite accurate in computer simulations of accelerating systems also. Discussed are preliminary results of efforts to design accelerators that avoid parameter regions where emittance is affected by the instabilities identified by Hofmann. These efforts suggest that other mechanisms are present. The complicated behavior of the RFQ linac in this framework also is shown

  10. Relative brain displacement and deformation during constrained mild frontal head impact.

    Feng, Y; Abney, T M; Okamoto, R J; Pless, R B; Genin, G M; Bayly, P V

    2010-12-06

    This study describes the measurement of fields of relative displacement between the brain and the skull in vivo by tagged magnetic resonance imaging and digital image analysis. Motion of the brain relative to the skull occurs during normal activity, but if the head undergoes high accelerations, the resulting large and rapid deformation of neuronal and axonal tissue can lead to long-term disability or death. Mathematical modelling and computer simulation of acceleration-induced traumatic brain injury promise to illuminate the mechanisms of axonal and neuronal pathology, but numerical studies require knowledge of boundary conditions at the brain-skull interface, material properties and experimental data for validation. The current study provides a dense set of displacement measurements in the human brain during mild frontal skull impact constrained to the sagittal plane. Although head motion is dominated by translation, these data show that the brain rotates relative to the skull. For these mild events, characterized by linear decelerations near 1.5g (g = 9.81 m s⁻²) and angular accelerations of 120-140 rad s⁻², relative brain-skull displacements of 2-3 mm are typical; regions of smaller displacements reflect the tethering effects of brain-skull connections. Strain fields exhibit significant areas with maximal principal strains of 5 per cent or greater. These displacement and strain fields illuminate the skull-brain boundary conditions, and can be used to validate simulations of brain biomechanics.

  11. Modified circular velocity law

    Djeghloul, Nazim

    2018-05-01

    A modified circular velocity law is presented for a test body orbiting around a spherically symmetric mass. This law exhibits a distance scale parameter and allows to recover both usual Newtonian behaviour for lower distances and a constant velocity limit at large scale. Application to the Galaxy predicts the known behaviour and also leads to a galactic mass in accordance with the measured visible stellar mass so that additional dark matter inside the Galaxy can be avoided. It is also shown that this circular velocity law can be embedded in a geometrical description of spacetime within the standard general relativity framework upon relaxing the usual asymptotic flatness condition. This formulation allows to redefine the introduced Newtonian scale limit in term of the central mass exclusively. Moreover, a satisfactory answer to the galactic escape speed problem can be provided indicating the possibility that one can also get rid of dark matter halo outside the Galaxy.

  12. A Numerical Method for Predicting Rayleigh Surface Wave Velocity in Anisotropic Crystals (Postprint)

    2017-09-05

    velocity, preventing the use of gradient-based optimization routines. The typical approach to solving this problem is to perform the inverse many times...is dependent on the wave velocity. However, the wave velocity is unknown at this point, which means p and v must be determined simultaneously . One way...defined as: Z=−iBA−1 (11) where A is the matrix formed by combining the displacement vectors, a into a single matrix. The inverse is guaranteed to exist

  13. Accelerating Value Creation with Accelerators

    Jonsson, Eythor Ivar

    2015-01-01

    and developing the best business ideas and support the due diligence process. Even universities are noticing that the learning experience of the action learning approach is an effective way to develop capabilities and change cultures. Accelerators related to what has historically been associated...

  14. General accelerator physics. Proceedings. Vol. 2

    Bryant, P.; Turner, S.

    1985-01-01

    This course on accelerator physics is the first in a series of two, which is planned by the CERN Accelerator School. Starting at the level of a science graduate, this course covers mainly linear theory. The topics include: transverse and longitudinal beam dynamics, insertions, coupling, transition, dynamics of radiating particles, space-charge forces, neutralization, beam profiles, luminosity calculations in colliders, longitudinal phase-space stacking, phase-displacement acceleration, transfer lines, injection and extraction. Some more advanced topics are also introduced: coherent instabilities in coasting beams, general collective phenomena, quantum lifetime, and intra-beam scattering. The seminar programme is based on two themes: firstly, the sub-systems of an accelerator and, secondly, the uses to which accelerators are put. (orig.)

  15. Shore line displacement in Oeregrundsgrepen

    Brydsten, Lars

    1999-12-01

    This report is a part of the SKB project 'SAFE' (Safety Assessment of the Final Repository of Radioactive Operational Waste). The aim of project SAFE is to update the previous safety analysis of SFR-1. The analysis is to be presented to the Swedish authorities not later than the end of 2000. SFR-1 is a facility for disposal of low and intermediate level radioactive waste and is situated in bedrock beneath the Baltic Sea, 1 km off the coast near the Forsmark nuclear power plant in Northern Uppland. The shore displacement in the Oeregrundsgrepen area is at present approximately 60 cm per 100 years and is slowly decreasing, but will still be substantial for many thousands of years. Since Oeregrundsgrepen is a relatively shallow part of the Bothnian Sea, the positive shore displacement will greatly effect the proportions of land and sea in the future. Within 2000 years (4000 AD) half of the current water area in Oeregrundsgrepen will be land and the water volume will be decreased with two thirds. At 7000 AD, the whole Oeregrundsgrepen area will be without brackish water. The effects on the landscape evolution due to shore displacement in the Oeregrundsgrepen area are illustrated in a chronological series of digital maps in Power Point format available saved on the supplied CD-rom and entitled 'Elevation.ppt '. The bedrock tectonics in the area are in two dominating directions: one northern that can be seen in the west shoreline of the island Graesoe and one in a north-westerly direction seen in the shoreline of the mainland. Many of the large basins that will be established in the area due to the shore displacement will be elongated in one of these directions. Some of the basins are relatively shallow and therefore probably will be totally filled with organic rich sediments and will form peat or bogs. Other basins, especially Graesoeraennan (the deep channel on the west side of Graesoe) are deep basins and will form a long chain of deep lakes. One of the deeper basins

  16. Shore line displacement in Oeregrundsgrepen

    Brydsten, Lars [Umeaa Univ. (Sweden). Dept. of Ecology and Environmental Science

    1999-12-15

    This report is a part of the SKB project 'SAFE' (Safety Assessment of the Final Repository of Radioactive Operational Waste). The aim of project SAFE is to update the previous safety analysis of SFR-1. The analysis is to be presented to the Swedish authorities not later than the end of 2000. SFR-1 is a facility for disposal of low and intermediate level radioactive waste and is situated in bedrock beneath the Baltic Sea, 1 km off the coast near the Forsmark nuclear power plant in Northern Uppland. The shore displacement in the Oeregrundsgrepen area is at present approximately 60 cm per 100 years and is slowly decreasing, but will still be substantial for many thousands of years. Since Oeregrundsgrepen is a relatively shallow part of the Bothnian Sea, the positive shore displacement will greatly effect the proportions of land and sea in the future. Within 2000 years (4000 AD) half of the current water area in Oeregrundsgrepen will be land and the water volume will be decreased with two thirds. At 7000 AD, the whole Oeregrundsgrepen area will be without brackish water. The effects on the landscape evolution due to shore displacement in the Oeregrundsgrepen area are illustrated in a chronological series of digital maps in Power Point format available saved on the supplied CD-rom and entitled 'Elevation.ppt '. The bedrock tectonics in the area are in two dominating directions: one northern that can be seen in the west shoreline of the island Graesoe and one in a north-westerly direction seen in the shoreline of the mainland. Many of the large basins that will be established in the area due to the shore displacement will be elongated in one of these directions. Some of the basins are relatively shallow and therefore probably will be totally filled with organic rich sediments and will form peat or bogs. Other basins, especially Graesoeraennan (the deep channel on the west side of Graesoe) are deep basins and will form a long chain of deep lakes. One

  17. Primary shield displacement and bowing

    Scott, K.V.

    1978-01-01

    The reactor primary shield is constructed of high density concrete and surrounds the reactor core. The inlet, outlet and side primary shields were constructed in-place using 2.54 cm (1 in) thick steel plates as the forms. The plates remained as an integral part of the shields. The elongation of the pressure tubes due to thermal expansion and pressurization is not moving through the inlet nozzle hardware as designed but is accommodated by outward displacement and bowing of the inlet and outlet shields. Excessive distortion of the shields may result in gas seal failures, intolerable helium gas leaks, increased argon-41 emissions, and shield cooling tube failures. The shield surveillance and testing results are presented

  18. An ion displacement membrame model.

    Hladky, S B; Harris, J D

    1967-09-01

    The usual assumption in treating the diffusion of ions in an electric field has been that the movement of each ion is independent of the movement of the others. The resulting equation for diffusion by a succession of spontaneous jumps has been well stated by Parlin and Eyring. This paper will consider one simple case in which a different assumption is reasonable. Diffusion of monovalent positive ions is considered as a series of jumps from one fixed negative site to another. The sites are assumed to be full (electrical neutrality). Interaction occurs by the displacement of one ion by another. An ion leaves a site if and only if another ion, not necessarily of the same species, attempts to occupy the same site. Flux ratios and net fluxes are given as functions of the electrical potential, concentration ratios, and number of sites encountered in crossing the membrane. Quantitative comparisons with observations of Hodgkin and Keynes are presented.

  19. Displacement Based Seismic Design Criteria

    Costello, J.F.; Hofmayer, C.; Park, Y.J.

    1999-01-01

    The USNRC has initiated a project to determine if any of the likely revisions to traditional earthquake engineering practice are relevant to seismic design of the specialized structures, systems and components of nuclear power plants and of such significance to suggest that a change in design practice might be warranted. As part of the initial phase of this study, a literature survey was conducted on the recent changes in seismic design codes/standards, on-going activities of code-writing organizations/communities, and published documents on displacement-based design methods. This paper provides a summary of recent changes in building codes and on-going activities for future codes. It also discusses some technical issues for further consideration

  20. Possible displacement of mercury's dipole

    Ng, K.H.; Beard, D.B.

    1979-01-01

    Earlier attempts to model the Hermean magnetospheric field based on a planet-centered magnetic multipole field have required the addition of a quadrupole moment to obtain a good fit to space vehicle observations. In this work we obtain an equally satisfactory fit by assuming a null quadrupole moment and least squares fitting of the displacement of the planetary dipole from the center of the planet. We find a best fit for a dipole displacement from the planet center of 0.033 R/sub m/ away from the solar direction, 0.025 R/sub m/ toward dawn in the magnetic equatorial plane, and 0.189 R/sub m/ northward along the magnetic dipole axis, where R/sub m/ is the planet radius. Therefore the presence of a magnetic quadrupole moment is not ruled out. The compressed dipole field more completely represents the field in the present work than in previous work where the intrinsic quadrupole field was not included in the magnetopause surface and field calculations. Moreover, we have corrected a programing error in previous work in the computation of dipole tilt lambda away from the sun. We find a slight increase for the planet dipole moment of 190γR/sub m/ 3 and a dipole tilt angle lambda away from the sun. We find a slight increase for the planet moment of 190γR/sub m/ 3 and a dipole tilt angle lambda of only 1.2 0 away from the sun. All other parameters are essentially unchanged

  1. Shaping the distribution of vertical velocities of antihydrogen in GBAR

    Dufour, G.; Lambrecht, A.; Reynaud, S. [CNRS, ENS, UPMC, Laboratoire Kastler-Brossel, Paris (France); Debu, P. [CEA-Saclay, Institut de Recherche sur les lois Fondamentales de l' Univers, Gif-sur-Yvette (France); Nesvizhevsky, V.V. [Institut Max von Laue-Paul Langevin, Grenoble (France); Voronin, A.Yu. [P.N. Lebedev Physical Institute, Moscow (Russian Federation)

    2014-01-15

    GBAR is a project aiming at measuring the freefall acceleration of gravity for antimatter, namely antihydrogen atoms (H). The precision of this timing experiment depends crucially on the dispersion of initial vertical velocities of the atoms as well as on the reliable control of their distribution.We propose to use a new method for shaping the distribution of the vertical velocities of H, which improves these factors simultaneously. The method is based on quantum reflection of elastically and specularly bouncing H with small initial vertical velocity on a bottom mirror disk, and absorption of atoms with large initial vertical velocities on a top rough disk.We estimate statistical and systematic uncertainties, and we show that the accuracy for measuring the free fall acceleration g of H could be pushed below 10{sup -3} under realistic experimental conditions. (orig.)

  2. Shaping the distribution of vertical velocities of antihydrogen in GBAR

    Dufour, G.; Lambrecht, A.; Nesvizhevsky, V.V.; Reynaud, S.; Voronin, A.Yu.

    2014-01-30

    GBAR is a project aiming at measuring the free fall acceleration of gravity for antimatter, namely antihydrogen atoms ($\\overline{\\mathrm{H}}$). Precision of this timing experiment depends crucially on the dispersion of initial vertical velocities of the atoms as well as on the reliable control of their distribution. We propose to use a new method for shaping the distribution of vertical velocities of $\\overline{\\mathrm{H}}$, which improves these factors simultaneously. The method is based on quantum reflection of elastically and specularly bouncing $\\overline{\\mathrm{H}}$ with small initial vertical velocity on a bottom mirror disk, and absorption of atoms with large initial vertical velocities on a top rough disk. We estimate statistical and systematic uncertainties, and show that the accuracy for measuring the free fall acceleration $\\overline{g}$ of $\\overline{\\mathrm{H}}$ could be pushed below $10^{-3}$ under realistic experimental conditions.

  3. Charged particle acceleration with plasmas

    Bravo O, A.

    1989-01-01

    Under certain conditions it is possible to create spatial charge waves (OCE) in a plasma (ionized gas) through some disturbance mechanism, the phenomenon produces electric fields of high intensity that are propagated at velocities near to a c. When charged particles are connected to such OCE they may be accelerated to very high energies in short distances. At present electric fields of approximately 10 7 V/cm have been observed. (Author). 4 refs

  4. Accelerating networks

    Smith, David M D; Onnela, Jukka-Pekka; Johnson, Neil F

    2007-01-01

    Evolving out-of-equilibrium networks have been under intense scrutiny recently. In many real-world settings the number of links added per new node is not constant but depends on the time at which the node is introduced in the system. This simple idea gives rise to the concept of accelerating networks, for which we review an existing definition and-after finding it somewhat constrictive-offer a new definition. The new definition provided here views network acceleration as a time dependent property of a given system as opposed to being a property of the specific algorithm applied to grow the network. The definition also covers both unweighted and weighted networks. As time-stamped network data becomes increasingly available, the proposed measures may be easily applied to such empirical datasets. As a simple case study we apply the concepts to study the evolution of three different instances of Wikipedia, namely, those in English, German, and Japanese, and find that the networks undergo different acceleration regimes in their evolution

  5. Displaced rocks, strong motion, and the mechanics of shallow faulting associated with the 1999 Hector Mine, California, earthquake

    Michael, Andrew J.; Ross, Stephanie L.; Stenner, Heidi D.

    2002-01-01

    The paucity of strong-motion stations near the 1999 Hector Mine earthquake makes it impossible to make instrumental studies of key questions about near-fault strong-motion patterns associated with this event. However, observations of displaced rocks allow a qualitative investigation of these problems. By observing the slope of the desert surface and the frictional coefficient between these rocks and the desert surface, we estimate the minimum horizontal acceleration needed to displace the rocks. Combining this information with observations of how many rocks were displaced in different areas near the fault, we infer the level of shaking. Given current empirical shaking attenuation relationships, the number of rocks that moved is slightly lower than expected; this implies that slightly lower than expected shaking occurred during the Hector Mine earthquake. Perhaps more importantly, stretches of the fault with 4 m of total displacement at the surface displaced few nearby rocks on 15?? slopes, suggesting that the horizontal accelerations were below 0.2g within meters of the fault scarp. This low level of shaking suggests that the shallow parts of this rupture did not produce strong accelerations. Finally, we did not observe an increased incidence of displaced rocks along the fault zone itself. This suggests that, despite observations of fault-zone-trapped waves generated by aftershocks of the Hector Mine earthquake, such waves were not an important factor in controlling peak ground acceleration during the mainshock.

  6. Tip displacement variance of manipulator to simultaneous horizontal and vertical stochastic base excitations

    Rahi, A.; Bahrami, M.; Rastegar, J.

    2002-01-01

    The tip displacement variance of an articulated robotic manipulator to simultaneous horizontal and vertical stochastic base excitation is studied. The dynamic equations for an n-links manipulator subjected to both horizontal and vertical stochastic excitations are derived by Lagrangian method and decoupled for small displacement of joints. The dynamic response covariance of the manipulator links is computed in the coordinate frame attached to the base and then the principal variance of tip displacement is determined. Finally, simulation for a two-link planner robotic manipulator under base excitation is developed. Then sensitivity of the principal variance of tip displacement and tip velocity to manipulator configuration, damping, excitation parameters and manipulator links length are investigated

  7. The Prescribed Velocity Method

    Nielsen, Peter Vilhelm

    The- velocity level in a room ventilated by jet ventilation is strongly influenced by the supply conditions. The momentum flow in the supply jets controls the air movement in the room and, therefore, it is very important that the inlet conditions and the numerical method can generate a satisfactory...

  8. Multidisc neutron velocity selector

    Rosta, L.; Zsigmond, Gy.; Farago, B.; Mezei, F.; Ban, K.; Perendi, J.

    1987-12-01

    The prototype of a velocity selector for neutron monochromatization in the 4-20 A wavelength range is presented. The theoretical background of the multidisc rotor system is given together with a description of the mechanical construction and electronic driving system. The first tests and neutron measurements prove easy handling and excellent parameters. (author) 6 refs.; 7 figs.; 2 tabs

  9. Earthquake related displacement fields near underground facilities

    Pratt, H.R.; Zandt, G.; Bouchon, M.

    1979-04-01

    Relative displacements of rock masses are evaluated in terms of geological evidence, seismological evidence, data from simulation experiments, and analytical predictive models. Numerical models have been developed to determine displacement fields as a function of depth, distance, and azimuth from an earthquake source. Computer calculations for several types of faults indicate that displacements decrease rapidly with distance from the fault, but that displacements can either increase or decrease as a function of depth depending on the type and geometry of the fault. For long shallow vertical strike-slip faults the displacement decreases markedly with depth. For square strike slip faults and for dip slip faults displacement does not decrease as markedly with depth. Geologic structure, material properties, and depth affect the seismic source spectrum. Amplification of the high frequencies of shear waves is larger by a factor of about 2 for layered geologic models than for an elastic half space

  10. Modelling toehold-mediated RNA strand displacement.

    Šulc, Petr; Ouldridge, Thomas E; Romano, Flavio; Doye, Jonathan P K; Louis, Ard A

    2015-03-10

    We study the thermodynamics and kinetics of an RNA toehold-mediated strand displacement reaction with a recently developed coarse-grained model of RNA. Strand displacement, during which a single strand displaces a different strand previously bound to a complementary substrate strand, is an essential mechanism in active nucleic acid nanotechnology and has also been hypothesized to occur in vivo. We study the rate of displacement reactions as a function of the length of the toehold and temperature and make two experimentally testable predictions: that the displacement is faster if the toehold is placed at the 5' end of the substrate; and that the displacement slows down with increasing temperature for longer toeholds. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. The Velocity Distribution of Isolated Radio Pulsars

    Arzoumanian, Z.; Chernoff, D. F.; Cordes, J. M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We infer the velocity distribution of radio pulsars based on large-scale 0.4 GHz pulsar surveys. We do so by modelling evolution of the locations, velocities, spins, and radio luminosities of pulsars; calculating pulsed flux according to a beaming model and random orientation angles of spin and beam; applying selection effects of pulsar surveys; and comparing model distributions of measurable pulsar properties with survey data using a likelihood function. The surveys analyzed have well-defined characteristics and cover approx. 95% of the sky. We maximize the likelihood in a 6-dimensional space of observables P, dot-P, DM, absolute value of b, mu, F (period, period derivative, dispersion measure, Galactic latitude, proper motion, and flux density). The models we test are described by 12 parameters that characterize a population's birth rate, luminosity, shutoff of radio emission, birth locations, and birth velocities. We infer that the radio beam luminosity (i) is comparable to the energy flux of relativistic particles in models for spin-driven magnetospheres, signifying that radio emission losses reach nearly 100% for the oldest pulsars; and (ii) scales approximately as E(exp 1/2) which, in magnetosphere models, is proportional to the voltage drop available for acceleration of particles. We find that a two-component velocity distribution with characteristic velocities of 90 km/ s and 500 km/ s is greatly preferred to any one-component distribution; this preference is largely immune to variations in other population parameters, such as the luminosity or distance scale, or the assumed spin-down law. We explore some consequences of the preferred birth velocity distribution: (1) roughly 50% of pulsars in the solar neighborhood will escape the Galaxy, while approx. 15% have velocities greater than 1000 km/ s (2) observational bias against high velocity pulsars is relatively unimportant for surveys that reach high Galactic absolute value of z distances, but is severe for

  12. Displacement measurement system for linear array detector

    Zhang Pengchong; Chen Ziyu; Shen Ji

    2011-01-01

    It presents a set of linear displacement measurement system based on encoder. The system includes displacement encoders, optical lens and read out circuit. Displacement read out unit includes linear CCD and its drive circuit, two amplifier circuits, second order Butterworth low-pass filter and the binarization circuit. The coding way is introduced, and various parts of the experimental signal waveforms are given, and finally a linear experimental test results are given. The experimental results are satisfactory. (authors)

  13. Displaced epithelium after liposuction for gynecomastia.

    McLaughlin, Cristina S; Petrey, Chris; Grant, Shawn; Ransdell, Jill S; Reynolds, Carol

    2011-08-01

    The authors describe the case of a 36-year-old man with gynecomastia who was previously treated with liposuction of the breast for cosmetic purposes. Histologic examination of a subsequent excisional biopsy revealed nests of displaced epithelial cells in adipose tissue. Epithelial cell displacement is a well-known risk of core needle biopsies and fine-needle aspirations of breast lesions. However, to the authors' knowledge, epithelial displacement in gynecomastia after liposuction, mimicking invasive ductal carcinoma, has not previously been reported.

  14. Advanced concepts for acceleration

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations

  15. Tracking speckle displacement by double Kalman filtering

    Donghui Li; Li Guo

    2006-01-01

    @@ A tracking technique using two sequentially-connected Kalman filter for tracking laser speckle displacement is presented. One Kalman filter tracks temporal speckle displacement, while another Kalman filter tracks spatial speckle displacement. The temporal Kalman filter provides a prior for the spatial Kalman filter, and the spatial Kalman filter provides measurements for the temporal Kalman filter. The contribution of a prior to estimations of the spatial Kalman filter is analyzed. An optical analysis system was set up to verify the double-Kalman-filter tracker's ability of tracking laser speckle's constant displacement.

  16. Point Coupled Displacement Sensor, Phase I

    National Aeronautics and Space Administration — Real-time displacement measurement techniques are needed to acquire aerodynamic and structural system characteristics in flight. This proposal describes the...

  17. Accelerators and the Accelerator Community

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  18. Accelerators and the Accelerator Community

    Malamud, Ernest; Sessler, Andrew

    2008-01-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process

  19. The Displaced ‘Dispositif’

    Guy Edmonds

    2017-11-01

    Full Text Available “Dispositif” is a term used in film studies since the 1970s to describe the entire system of mechanical and human factors which together bring about the cinema experience. It therefore refers to (amongst other things the space of the auditorium, the screen, the projection technology and the physiology of the spectator. Many of its qualifying components are masked from the view of participants in the system. The dispositif’s purpose is to set up the conditions for a specific type of cognitive experience, one which mirrors and extends (and in some readings, controls the experience of its participants. The Displaced Dispositif is a performance designed for the space of a cinema theatre, but featuring the projection of fragments of early silent cinema on a coeval (1910s film projector from the auditorium. The film fragments are live-scored by the sound artist, Shaun Lewin, using a combination of closely mic’d sources on the projector itself, luminance data from the projected image and EEG brainwave data recorded from participants during previous projections of the film. Displacing elements in the dispositif in this way, by shifting modalities, situating in parallel, feeding back and layering, draws attention to its hidden existence and creates the potential for a more knowing and informed participation in the cinema experience. It also serves to demonstrate the degree to which dispositifs of modern cinema spectatorship, which have morphed and proliferated since the widespread digitization of film heritage, have radically altered both the technological and experiential qualities of the medium. By integrating EEG data, the performance adds the dimension of electrophysiological experience to the long tradition within experimental cinema of artists calling attention to Cinema’s hidden structures. As well as challenging the dominance of the worldview propagated by the film industry, the performance also signals a means of re-engaging with the

  20. Displacement of cryomodule in CADS injector II

    Yuan, Jiandong; Zhang, Bin; Wang, Fengfeng; Wan, Yuqin; Sun, Guozhen; Yao, Junjie; Zhang, Juihui; He, Yuan [Chinese Academy of Sciences, Lanzhou (China). Inst. of Modern Physics

    2017-06-15

    As Cryomodule can easily reduce higher power consumption and length of an accelerator and the accelerator can be operated more continuously. The Chinese academy of sciences institute of modern physics is developing an accelerator driven subcritical system (CADS) Injector II. Cryomodules are extremely complex systems, and their design optimization is strongly dependent on the accelerator application for which they are intended.

  1. Particle acceleration in the interplanetary space

    Tverskoj, B.A.

    1983-01-01

    A review on the problem of particle acceleration in the interplanetary space is given. The main lationship attention is paid to the problem of the re/ between the impact- and turbulent acceleration when an undisturbed magnetic field forms not too small angle THETA > 10 deg with the shock wave front. The following conclusions are drawn. Particle acceleration at the shock wave front is manifested in the explicit form, if the shock wave propagates along a homogeneous (in the 11 cm range) solar wind. The criterion of such an acceleration is the exponential distribution function F approximately vsup(-ν) (v is the particle velocity and ν is the accelerated particle spectrum index) in the low energy range and the conservation of this function at considerable distances behind the front. The presence of an additional turbulent acceleration behind the front is manifested in decreasing ν down to approximately 3.5 in the low energy range and in the spectrum evolution behind the front

  2. Ring accelerators

    Gisler, G.; Faehl, R.

    1983-01-01

    We present two-dimensional simulations in (r-z) and r-theta) cylinderical geometries of imploding-liner-driven accelerators of rings of charged particles. We address issues of azimuthal and longitudinal stability of the rings. We discuss self-trapping designs in which beam injection and extraction is aided by means of external cusp fields. Our simulations are done with the 2-1/2-D particle-in-cell plasma simulation code CLINER, which combines collisionless, electromagnetic PIC capabilities with a quasi-MHD finite element package

  3. accelerating cavity

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  4. Charged particle accelerator

    Ress, T.I.; Nolde, G.V.

    1974-01-01

    A charged particle accelerator is described. It is made of an enclosure arranged for channeling a stream of charged particles along a predetermined path, and propelling means juxtaposed to said enclosure for generating therein a magnetic field moving in a predetermined direction with respect to each point of said path, the magnetic flux vector of that field being transverse to that path at every point, which gives the particles, along said path, a velocity connected to that of the mobile field by a predetermined relation. This can be applied to the fast production of chemical compounds, to the emission of neutrons and of thermal energy, and to the production of mechanical energy for propelling space ships [fr

  5. Charged particle accelerator

    Ress, T I; Nolde, G V

    1974-11-25

    A charged particle accelerator is described. It is made of an enclosure arranged for channeling a stream of charged particles along a predetermined path, and propelling means juxtaposed to the enclosure for generating a magnetic field moving in a predetermined direction with respect to each point of the path, the magnetic flux vector of that field being transverse to that path at every point, which gives the particles, along said path, a velocity connected to that of the mobile field by a predetermined relation. This can be applied to the fast production of chemical compounds, to the emission of neutrons and of thermal energy, and to the production of mechanical energy for propelling space ships.

  6. Joint kinematics and kinetics of overground accelerated running versus running on an accelerated treadmill.

    Caekenberghe, Ine Van; Segers, Veerle; Aerts, Peter; Willems, Patrick; De Clercq, Dirk

    2013-07-06

    Literature shows that running on an accelerated motorized treadmill is mechanically different from accelerated running overground. Overground, the subject has to enlarge the net anterior-posterior force impulse proportional to acceleration in order to overcome linear whole body inertia, whereas on a treadmill, this force impulse remains zero, regardless of belt acceleration. Therefore, it can be expected that changes in kinematics and joint kinetics of the human body also are proportional to acceleration overground, whereas no changes according to belt acceleration are expected on a treadmill. This study documents kinematics and joint kinetics of accelerated running overground and running on an accelerated motorized treadmill belt for 10 young healthy subjects. When accelerating overground, ground reaction forces are characterized by less braking and more propulsion, generating a more forward-oriented ground reaction force vector and a more forwardly inclined body compared with steady-state running. This change in body orientation as such is partly responsible for the changed force direction. Besides this, more pronounced hip and knee flexion at initial contact, a larger hip extension velocity, smaller knee flexion velocity and smaller initial plantarflexion velocity are associated with less braking. A larger knee extension and plantarflexion velocity result in larger propulsion. Altogether, during stance, joint moments are not significantly influenced by acceleration overground. Therefore, we suggest that the overall behaviour of the musculoskeletal system (in terms of kinematics and joint moments) during acceleration at a certain speed remains essentially identical to steady-state running at the same speed, yet acting in a different orientation. However, because acceleration implies extra mechanical work to increase the running speed, muscular effort done (in terms of power output) must be larger. This is confirmed by larger joint power generation at the level of

  7. Joint kinematics and kinetics of overground accelerated running versus running on an accelerated treadmill

    Van Caekenberghe, Ine; Segers, Veerle; Aerts, Peter; Willems, Patrick; De Clercq, Dirk

    2013-01-01

    Literature shows that running on an accelerated motorized treadmill is mechanically different from accelerated running overground. Overground, the subject has to enlarge the net anterior–posterior force impulse proportional to acceleration in order to overcome linear whole body inertia, whereas on a treadmill, this force impulse remains zero, regardless of belt acceleration. Therefore, it can be expected that changes in kinematics and joint kinetics of the human body also are proportional to acceleration overground, whereas no changes according to belt acceleration are expected on a treadmill. This study documents kinematics and joint kinetics of accelerated running overground and running on an accelerated motorized treadmill belt for 10 young healthy subjects. When accelerating overground, ground reaction forces are characterized by less braking and more propulsion, generating a more forward-oriented ground reaction force vector and a more forwardly inclined body compared with steady-state running. This change in body orientation as such is partly responsible for the changed force direction. Besides this, more pronounced hip and knee flexion at initial contact, a larger hip extension velocity, smaller knee flexion velocity and smaller initial plantarflexion velocity are associated with less braking. A larger knee extension and plantarflexion velocity result in larger propulsion. Altogether, during stance, joint moments are not significantly influenced by acceleration overground. Therefore, we suggest that the overall behaviour of the musculoskeletal system (in terms of kinematics and joint moments) during acceleration at a certain speed remains essentially identical to steady-state running at the same speed, yet acting in a different orientation. However, because acceleration implies extra mechanical work to increase the running speed, muscular effort done (in terms of power output) must be larger. This is confirmed by larger joint power generation at the level

  8. Injection and laser acceleration of ions based on the resonant surface photoionization

    Antsiferov, V.V.; Smirnov, G.I.; Telegin, G.G.

    1993-01-01

    The collective effects have been investigated of the injection and acceleration of the ion beams due to the resonant surface photoionization. The considered scheme of the laser accelerator allows to obtain positive ions with relativistic velocities. 11 refs., 2 figs

  9. Multidisk neutron velocity selectors

    Hammouda, B.

    1992-01-01

    Helical multidisk velocity selectors used for neutron scattering applications have been analyzed and tested experimentally. Design and performance considerations are discussed along with simple explanation of the basic concept. A simple progression is used for the inter-disk spacing in the 'Rosta' design. Ray tracing computer investigations are presented in order to assess the 'coverage' (how many absorbing layers are stacked along the path of 'wrong' wavelength neutrons) and the relative number of neutrons absorbed in each disk (and therefore the relative amount of gamma radiation emitted from each disk). We discuss whether a multidisk velocity selector can be operated in the 'reverse' configuration (i.e. the selector is turned by 180 0 around a vertical axis with the rotor spun in the reverse direction). Experimental tests and calibration of a multidisk selector are reported together with evidence that a multidisk selector can be operated in the 'reverse' configuration. (orig.)

  10. On the Coulomb displacement energy

    Sato, H.

    1976-01-01

    The Coulomb displacement energies of the T=1/2 mirror nuclei (A=15,17,27,29,31,33,39 and 41) are re-examined with the best available HF wave functions (the DME and the Skyrme II interaction), with the inclusion of all electromagnetic corrections. The results are compared with the experimental s.p. charge dependent energies extracted from the experimental data taking into account admixtures of core-excitation corrections with the help of present shell-model and co-existence model calculations. Although the so-called Nolen-Schiffer anomaly is not removed by these improvements, it is found that the remaining observed anomalies in the ground states of s.p. and s.h. systems can be resolved with the introduction of a simple, phenomenological charge symmetry breaking nucleon-nucleon force. This force can also account for the observed anomalies in the higher excited s.p. states, while those of the deeper s.h. states need further explanation. (Auth.)

  11. Effects of Fault Displacement on Emplacement Drifts

    Duan, F.

    2000-01-01

    The purpose of this analysis is to evaluate potential effects of fault displacement on emplacement drifts, including drip shields and waste packages emplaced in emplacement drifts. The output from this analysis not only provides data for the evaluation of long-term drift stability but also supports the Engineered Barrier System (EBS) process model report (PMR) and Disruptive Events Report currently under development. The primary scope of this analysis includes (1) examining fault displacement effects in terms of induced stresses and displacements in the rock mass surrounding an emplacement drift and (2 ) predicting fault displacement effects on the drip shield and waste package. The magnitude of the fault displacement analyzed in this analysis bounds the mean fault displacement corresponding to an annual frequency of exceedance of 10 -5 adopted for the preclosure period of the repository and also supports the postclosure performance assessment. This analysis is performed following the development plan prepared for analyzing effects of fault displacement on emplacement drifts (CRWMS M and O 2000). The analysis will begin with the identification and preparation of requirements, criteria, and inputs. A literature survey on accommodating fault displacements encountered in underground structures such as buried oil and gas pipelines will be conducted. For a given fault displacement, the least favorable scenario in term of the spatial relation of a fault to an emplacement drift is chosen, and the analysis is then performed analytically. Based on the analysis results, conclusions are made regarding the effects and consequences of fault displacement on emplacement drifts. Specifically, the analysis will discuss loads which can be induced by fault displacement on emplacement drifts, drip shield and/or waste packages during the time period of postclosure

  12. Displacement characteristics of a piezoactuator-based prototype microactuator with a hydraulic displacement amplification system

    Muralidhara; Rao, Rathnamala

    2015-01-01

    In this study, a new piezoactuator-based prototype microactuator is proposed with a hydraulic displacement amplification system. A piezoactuator is used to deflect a diaphragm which displaces a certain volume of hydraulic fluid into a smaller-diameter piston chamber, thereby amplifying the displacement at the other end of the piston. An electro-mechanical model is implemented to estimate the displacement of a multilayer piezoelectric actuator for the applied input voltage considering the hysteresis behavior. The displacement characteristics of the proposed microactuator are studied for triangular actuation voltage signal. Results of the experiments and simulation of the displacement behavior of the stacked piezoactuator and the amplified displacement of the prototype actuator were compared. Experimental results suggest that the mathematical model developed for the new piezoactuator-based prototype actuator is capable of estimating its displacement behavior accurately, within an error of 1.2%.

  13. Displacement characteristics of a piezoactuator-based prototype microactuator with a hydraulic displacement amplification system

    Muralidhara [NMAMIT, Nitte (India); Rao, Rathnamala [NITK, Surathkal (India)

    2015-11-15

    In this study, a new piezoactuator-based prototype microactuator is proposed with a hydraulic displacement amplification system. A piezoactuator is used to deflect a diaphragm which displaces a certain volume of hydraulic fluid into a smaller-diameter piston chamber, thereby amplifying the displacement at the other end of the piston. An electro-mechanical model is implemented to estimate the displacement of a multilayer piezoelectric actuator for the applied input voltage considering the hysteresis behavior. The displacement characteristics of the proposed microactuator are studied for triangular actuation voltage signal. Results of the experiments and simulation of the displacement behavior of the stacked piezoactuator and the amplified displacement of the prototype actuator were compared. Experimental results suggest that the mathematical model developed for the new piezoactuator-based prototype actuator is capable of estimating its displacement behavior accurately, within an error of 1.2%.

  14. Cosmic ray acceleration mechanisms

    Cesarsky, C.J.

    1982-09-01

    We present a brief summary of some of the most popular theories of cosmic ray acceleration: Fermi acceleration, its application to acceleration by shocks in a scattering medium, and impulsive acceleration by relativistic shocks

  15. Unlimited ion acceleration by radiation pressure.

    Bulanov, S V; Echkina, E Yu; Esirkepov, T Zh; Inovenkov, I N; Kando, M; Pegoraro, F; Korn, G

    2010-04-02

    The energy of ions accelerated by an intense electromagnetic wave in the radiation pressure dominated regime can be greatly enhanced due to a transverse expansion of a thin target. The expansion decreases the number of accelerated ions in the irradiated region resulting in an increase in the ion energy and in the ion longitudinal velocity. In the relativistic limit, the ions become phase locked with respect to the electromagnetic wave resulting in unlimited ion energy gain.

  16. Prolonged displacement may compromise resilience in Eritrean ...

    Objective: to assess the impact of prolonged displacement on the resilience of Eritrean mothers. Methods: an adapted SOC scale (short form) was administered. Complementary qualitative data were gathered from study participants' spontaneous reactions to and commentaries on the SOC scale. Results: Displaced ...

  17. Video Games, Adolescents, and the Displacement Effect

    Fisher, Carla Christine

    2012-01-01

    The displacement effect (the idea that time spent in one activity displaces time spent in other activities) was examined within the lens of adolescents' video game use and their time spent reading, doing homework, in physically active sports and activities, in creative play, and with parents and friends. Data were drawn from the Panel Study…

  18. Etiopathogenesis of abomasal displacement in cattle

    Šamanc Horea

    2003-01-01

    Full Text Available Abomasal displacement presents topographic gastropathy, where this organ has changed its position, and there is simultaneous dilatation which can vary in intensity. The incidence of this disorder in herds of high-yield dairy cows varies to a great degree (1 to 18 %. Abomasal displacement was established in herds of East-Frisian cows in 1 to 3% animals, and in Holstein cow herds in 5 to 18 % animals. The most frequent abomasal displacement is to the left (88%. There is significant seasonal variation in the incidence of abomasal displacement. About two-thirds of cases of abomasal displacement are diagnosed from October until April. The disorder appears more frequently in cows with repeated lactations. It has been established that it appears after the first calving in 27.8% cases, after the second to fifth calving in 66.7% cases, and after the sixth and seventh calving in 5.5% of the cows. The response of endocrine pancreas B-cells for insulin secretion to hyperglycaemia caused by applying an excess-glucose test is reduced in cows with left abomasal displacement, and there is constant hyperglycaemia in cows with right abomasal displacement. The excess-glucose test indicates a disrupted function of the endocrine pancreas in diseased animals. It has been determined through examinations of Aml genotypes in Holstein cow herds in connection with the appearance of abomasal displacement, that the occurrence of this disorder cannot be attributed to a genetic predisposition.

  19. Atomic displacements in bcc dilute alloys

    We present here a systematic investigation of the atomic displacements in bcc transition metal (TM) dilute alloys. We have calculated the atomic displacements in bcc (V, Cr, Fe, Nb, Mo, Ta and W) transition metals (TMs) due to 3d, 4d and 5d TMs at the substitutional site using the Kanzaki lattice static method. Wills and ...

  20. Displaced Homemakers: Vo-Tech Workshop Guide.

    Peltier, Wanda Jo

    Written for displaced homemaker programs in vocational-technical schools, this curriculum contains material designed so that instructors can prepare student manuals appropriate to almost any educational support situation for displaced homemakers. An overview provides information on special needs groups, curriculum use, and resources and sample…

  1. 40 CFR 205.153 - Engine displacement.

    2010-07-01

    ..., in accordance with American Society for Testing Materials (ASTM) E 29-67. (b) For rotary engines... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Engine displacement. 205.153 Section... TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.153 Engine displacement. (a) Engine...

  2. Study of electroosmosis-driven two-liquid displacement flow in a microcapillary

    Gan, H Y; Yang, C; Wan, S Y M; Lim, G C; Lam, Y C

    2006-01-01

    Multi-liquid flow, such as one liquid displacing another liquid, is frequently encountered in practice. This can be achieved by electroosmotic (EO) pumping, which has its own unique characteristics and advantages. This investigation is on EO-driven, two-liquid displacement flow in a microcapillary. A theoretical model was developed to take into consideration the axial step change of velocity flow fields at the time-dependent liquid/liquid interface, continuity requirement, and induced local pressure gradients. The electrical current monitoring method was employed to measure the flowrate and subsequently determine the capillary zeta potentials which are required for the model prediction. The nonlinear change of the electrical current with time under a constant applied voltage was observed during the displacement process. The theoretical and experimental results validated the hypothesis that the non-uniform zeta potential and electric field induce local pressure gradients in the two different liquids. Our experimental results indicated that the time of displacement, and thus the flow velocity, is found to be dependent on the displacing flow direction, which has hitherto not been reported in the literature. The underlying mechanisms were postulated, but demand further investigation

  3. Particle velocity measurements in laser irradiated foils using ORVIS

    Sheffield, S.A.; Fisk, G.A.

    1983-01-01

    Aluminum foils from 2- to 200-μm thick have been subjected to a Nd:YAG laser pulse of low irradiance (10 9 W/cm 2 , approx. 10 ns pulse) to produce laser-driven shocks in the foils. The particle velocity history of the foil side opposite the laser deposition was monitored with nanosecond resolution by a velocity interferometer system called ORVIS. These histories indicate a shock reverberation process accelerates the foil. Peak foil velocities can be adequately calculated using a ricket propulsion model developed from experiments at much higher irradiances. A velocity of 1 km/s was developed in a 2-μm-thick free foil in a time of 50 ns. Water-confined foils attained peak particle velocities about three times higher than those of free foils

  4. Velocity slip of gas mixtures in free jet expansions

    Cattolica, R.J.; Talbot, L.; Coe, D.

    1976-11-01

    Velocity slip in gas mixtures of argon and helium in axisymmetric free jet expansions has been measured using a grating monochromator together with a computer-controlled Fabry-Perot interferometer to observe the fluorescence excited by an electron beam. The Doppler shift between the fluorescence observed parallel and perpendicular to the centerline of the free jet was used to measure the mean velocity of a particular species along the jet centerline, employing the 4880 A line for argon and the 5016 A line for helium. By alternately tracking the parallel and perpendicular fluorescence, the Doppler shift due to the mean velocity was measured directly with an accuracy of 1 percent. Flow field surveys have been made in the initial acceleration region where the flow becomes hypersonic and in the far field region. The differences between argon and helium mean velocities (velocity slip) are in good agreement with molecular beam data and show a correlation with an inverse Knudsen number

  5. Oil/water displacement in microfluidic packed beds under weakly water-wetting conditions: competition between precursor film flow and piston-like displacement

    Tanino, Yukie; Zacarias-Hernandez, Xanat; Christensen, Magali

    2018-02-01

    Optical microscopy was used to measure depth-averaged oil distribution in a quasi-monolayer of crushed marble packed in a microfluidic channel as it was displaced by water. By calibrating the transmitted light intensity to oil thickness, we account for depth variation in the fluid distribution. Experiments reveal that oil saturation at water breakthrough decreases with increasing Darcy velocity, U_{ {w}}, between capillary numbers {Ca} = μ _{ {w}} U_{ {w}}/σ = 9× 10^{-7} and 9× 10^{-6}, where μ _{ {w}} is the dynamic viscosity of water and σ is the oil/water interfacial tension, under the conditions considered presently. In contrast, end-point (long-time) remaining oil saturation depends only weakly on U_{ {w}}. This transient dependence on velocity is attributed to the competition between precursor film flow, which controls early time invasion dynamics but is inefficient at displacing oil, and piston-like displacement, which controls ultimate oil recovery. These results demonstrate that microfluidic experiments using translucent grains and fluids are a convenient tool for quantitative investigation of sub-resolution liquid/liquid displacement in porous media.

  6. Slow, fast, and post-collapse displacements of the Mud Creek landslide in California from UAVSAR and satellite SAR analysis

    Fielding, E. J.; Handwerger, A. L.; Burgmann, R.; Liu, Z.

    2017-12-01

    Landslides display a wide variety of behaviors ranging from slow steady or seasonal motion to runaway acceleration and catastrophic failure. In some cases, a single landslide moves slowly for a period of weeks to years before it rapidly accelerates into a catastrophic failure. Measurement of the spatio-temporal patterns of landslide motion in response to changes in environmental parameters such as rainfall, snowmelt, and nearby earthquakes will help us to constrain the mechanisms that control these landslide behaviors. Here, we use synthetic aperture radar interferometry (InSAR) from satellite and airborne platforms to measure the kinematics of several landslides along the coast of Central California, including the large Mud Creek landslide near Big Sur that catastrophically collapsed in May 2017 and led to the destruction of a major highway and millions of dollars in damages. We use InSAR and pixel offset data from NASA/JPL UAVSAR, JAXA ALOS1/2, and Copernicus Sentinel 1A/B to quantify the displacement time series and 3D motion. Our data show that the Mud Creek landslide has been active for at least 2.5 years and displayed persistent motion (average rate of 10 cm/yr in LOS) with seasonal variations in velocity driven by rainfall-induced changes in pore pressure. We find that each year the landslide accelerated approximately 60-90 days after the onset of seasonal precipitation, which provides constraints on the hillslope hydrology. Before its ultimate collapse, the landslide displayed a large increase in velocity due to the above average rainfall during the 2017 water year. It appears a series of major storms in January and February 2017, some fed by atmospheric rivers, triggered a sufficient increase in pore-water pressure that led to the runaway failure. We model this behavior using a rate-and-state friction model developed to capture this range of landslide behaviors. This model will allow us to explore how different landslide properties (e.g., material

  7. Internal displacement in Colombia: Fifteen distinguishing features.

    Shultz, James M; Ceballos, Ángela Milena Gómez; Espinel, Zelde; Oliveros, Sofia Rios; Fonseca, Maria Fernanda; Florez, Luis Jorge Hernandez

    2014-01-01

    This commentary aims to delineate the distinguishing features of conflict-induced internal displacement in the nation of Colombia, South America. Even as Colombia is currently implementing a spectrum of legal, social, economic, and health programs for "victims of armed conflict," with particular focus on internally displaced persons (IDPs), the dynamics of forced migration on a mass scale within this country are little known beyond national borders.   The authors of this commentary are embarking on a global mental health research program in Bogota, Colombia to define best practices for reaching the displaced population and implementing sustainable, evidence-based screening and intervention for common mental disorders. Presenting the defining characteristics of internal displacement in Colombia provides the context for our work and, more importantly, conveys the compelling and complex nature of this humanitarian crisis. We attempt to demonstrate Colombia's unique position within the global patterning of internal displacement.

  8. Asymmetric SOL Current in Vertically Displaced Plasma

    Cabrera, J. D.; Navratil, G. A.; Hanson, J. M.

    2017-10-01

    Experiments at the DIII-D tokamak demonstrate a non-monotonic relationship between measured scrape-off layer (SOL) currents and vertical displacement event (VDE) rates with SOL currents becoming largely n=1 dominant as plasma is displaced by the plasma control system (PCS) at faster rates. The DIII-D PCS is used to displace the magnetic axis 10x slower than the intrinsic growth time of similar instabilities in lower single-null plasmas. Low order (n VDE instabilities observed when vertical control is disabled. Previous inquiry shows VDE asymmetry characterized by SOL current fraction and geometric parameters of tokamak plasmas. We note that, of plasmas displaced by the PCS, short displacement time scales near the limit of the PCS temporal control appear to result in larger n=1/n=2 asymmetries. Work supported under USDOE Cooperative Agreement DE-FC02-04ER54698 and DE-FG02-04ER54761.

  9. Transverse electron resonance accelerator

    Osonka, P.L.

    1985-01-01

    Transverse (to the velocity, v-bar, of the particles to be accelerated) electron oscillations are generated in high (e.g. solid) density plasms by either an electromagnetic wave or by the field of charged particles traveling parallel to v-bar. The generating field oscillates with frequency ω = ω/sub p/, where ω/sub p/ is the plasma frequency. The plasma is confined to a sequence of microstructures with typical dimensions of d≅2πc/ω/sub p/, allowing the generating fields to penetrate. Since ω/sub p/ is now high, the time scales, T, are correspondingly reduced. The microstructures are allowed to explode after t = T, until then they are confined by ion inertia. As a result of resonance, the electric field, E, inside the microstructures can exceed the generating field E/sub L/. The generating force is proportional to E/sub L/ (as opposed to E 2 /sub L/). Phase matching of particles is possible by appropriate spacing of the microstructures or by a gas medium. The generating beam travels outside the plasma, filamentation is not a problem. The mechanism is relatively insensitive to the exact shape and position of the microstructures. This device contains features of various earlier proposed acceleration mechanisms and may be considered as the limiting case of several of those for small d, T and high E

  10. Transverse electron resonance accelerator

    Csonka, P.L.

    1985-01-01

    Transverse (to the velocity, v, of the particles to be accelerated) electron oscillations are generated in high (e.g. solid) density plasmas by either an electromagnetic wave or by the field of charged particles traveling parallel to v. The generating field oscillates with frequency ω = ω/sub p/, where ω/sub p/ is the plasma frequency. The plasma is confined to a sequence of microstructures with typical dimensions of d approx. = 2πc/ω/sub p/, allowing the generating fields to penetrate. Since ω/sub p/ is now high, the time scales, T, are correspondingly reduced. The microstructures are allowed to explode after t = T, until then they are confined by ion inertia. As a result of resonance, the electric field, E, inside the microstructures can exceed the generating field E/sub L/. The generating force is proportional to E/sub L/ (as opposed to E/sub L/ 2 ). Phase matching of particles is possible by appropriate spacing of the microstructures or by a gas medium. The generating beam travels outside the plasma, filamentation is not a problem. The mechanism is relatively insensitive to the exact shape and position of the microstructures. This device contains features of various earlier proposed acceleration mechanisms and may be considered as the limiting case of several of those for small d, T and high E

  11. Speedometer app videos to provide real-world velocity-time graph data 1: rail travel

    King, Julien

    2018-03-01

    The use of modern rail travel as a source of real-life velocity-time data to aid in the teaching of velocity and acceleration is discussed. A technique for using GPS speedometer apps to produce videos of velocity and time figures during a rail journey is described. The technique is applied to a UK rail journey, demonstrating how students can use its results to produce a velocity-time graph from which acceleration and deceleration figures can be calculated. These are compared with theoretical maximum figures, calculated from the train’s technical specification.

  12. Effect of Body Mass Index on Intrafraction Prostate Displacement Monitored by Real-Time Electromagnetic Tracking

    Butler, Wayne M.; Morris, Mallory N.; Merrick, Gregory S.; Kurko, Brian S.; Murray, Brian C.

    2012-01-01

    Purpose: To evaluate, using real-time monitoring of implanted radiofrequency transponders, the intrafraction prostate displacement of patients as a function of body mass index (BMI). Methods and Materials: The motions of Beacon radiofrequency transponders (Calypso Medical Technologies, Seattle, WA) implanted in the prostate glands of 66 men were monitored throughout the course of intensity modulated radiation therapy. Data were acquired at 10 Hz from setup to the end of treatment, but only the 1.7 million data points with a “beam on” tag were used in the analysis. There were 21 obese patients, with BMI ≥30 and 45 nonobese patients in the study. Results: Mean displacements were least in the left-right lateral direction (0.56 ± 0.24 mm) and approximately twice that magnitude in the superior-inferior and anterior-posterior directions. The net vector displacement was larger still, 1.95 ± 0.47 mm. Stratified by BMI cohort, the mean displacements per patient in the 3 Cartesian axes as well as the net vector for patients with BMI ≥30 were slightly less (<0.2 mm) but not significantly different than the corresponding values for patients with lower BMIs. As a surrogate for the magnitude of oscillatory noise, the standard deviation for displacements in all measured planes showed no significant differences in the prostate positional variability between the lower and higher BMI groups. Histograms of prostate displacements showed a lower frequency of large displacements in obese patients, and there were no significant differences in short-term and long-term velocity distributions. Conclusions: After patients were positioned accurately using implanted radiofrequency transponders, the intrafractional displacements in the lateral, superior-inferior, and anterior-posterior directions as well as the net vector displacements were smaller, but not significantly so, for obese men than for those with lower BMI.

  13. Modified Feynman ratchet with velocity-dependent fluctuations

    Jack Denur

    2004-03-01

    Full Text Available Abstract: The randomness of Brownian motion at thermodynamic equilibrium can be spontaneously broken by velocity-dependence of fluctuations, i.e., by dependence of values or probability distributions of fluctuating properties on Brownian-motional velocity. Such randomness-breaking can spontaneously obtain via interaction between Brownian-motional Doppler effects --- which manifest the required velocity-dependence --- and system geometrical asymmetry. A non random walk is thereby spontaneously superposed on Brownian motion, resulting in a systematic net drift velocity despite thermodynamic equilibrium. The time evolution of this systematic net drift velocity --- and of velocity probability density, force, and power output --- is derived for a velocity-dependent modification of Feynman's ratchet. We show that said spontaneous randomness-breaking, and consequent systematic net drift velocity, imply: bias from the Maxwellian of the system's velocity probability density, the force that tends to accelerate it, and its power output. Maximization, especially of power output, is discussed. Uncompensated decreases in total entropy, challenging the second law of thermodynamics, are thereby implied.

  14. Numerical procedure for fluid-structure interaction with structure displacements limited by a rigid obstacle

    Yakhlef O.

    2017-06-01

    Full Text Available A fixed point algorithmis proposed to solve a fluid-structure interaction problem with the supplementary constraint that the structure displacements are limited by a rigid obstacle. Fictitious domain approach with penalization is used for the fluid equations. The surface forces from the fluid acting on the structure are computed using the fluid solution in the structure domain. The continuity of the fluid and structure velocities is imposed through the penalization parameter. The constraint of non-penetration of the elastic structure into the rigid obstacle is treated weakly. A convex constrained optimization problem is solved in order to get the structure displacements. Numerical results are presented.

  15. Single-particle dynamics - RF acceleration

    Montague, B.W.

    1977-01-01

    In this paper the rf acceleration of both synchronous and non-synchronous particles is discussed and a simple linearized equation of small amplitude synchrotron oscillations is derived. Phase stability, the hamiltonian for synchrotron oscillations, oscillation amplitudes and adiabatic damping are then briefly discussed. The final sections of the paper contain a description of the basic principles of rf beam stacking in the longitudinal phase space of intersecting Storage Rings and a description of phase displacement acceleration which inspite of certain disadvantages, remains an attractive technique for proton storage rings. (B.D.)

  16. Dispersion upscaling from a pore scale characterization of Lagrangian velocities

    Turuban, Régis; de Anna, Pietro; Jiménez-Martínez, Joaquín; Tabuteau, Hervé; Méheust, Yves; Le Borgne, Tanguy

    2013-04-01

    Mixing and reactive transport are primarily controlled by the interplay between diffusion, advection and reaction at pore scale. Yet, how the distribution and spatial correlation of the velocity field at pore scale impact these processes is still an open question. Here we present an experimental investigation of the distribution and correlation of pore scale velocities and its relation with upscaled dispersion. We use a quasi two-dimensional (2D) horizontal set up, consisting of two glass plates filled with cylinders representing the grains of the porous medium : the cell is built by soft lithography technique, wich allows for full control of the system geometry. The local velocity field is quantified from particle tracking velocimetry using microspheres that are advected with the pore scale flow. Their displacement is purely advective, as the particle size is chosen large enough to avoid diffusion. We thus obtain particle trajectories as well as lagrangian velocities in the entire system. The measured velocity field shows the existence of a network of preferential flow paths in channels with high velocities, as well as very low velocity in stagnation zones, with a non Gaussian distribution. Lagrangian velocities are long range correlated in time, which implies a non-fickian scaling of the longitudinal variance of particle positions. To upscale this process we develop an effective transport model, based on correlated continous time random walk, which is entirely parametrized by the pore scale velocity distribution and correlation. The model predictions are compared with conservative tracer test data for different Peclet numbers. Furthermore, we investigate the impact of different pore geometries on the distribution and correlation of Lagrangian velocities and we discuss the link between these properties and the effective dispersion behavior.

  17. Displacement of location in illusory line motion.

    Hubbard, Timothy L; Ruppel, Susan E

    2013-05-01

    Six experiments examined displacement in memory for the location of the line in illusory line motion (ILM; appearance or disappearance of a stationary cue is followed by appearance of a stationary line that is presented all at once, but the stationary line is perceived to "unfold" or "be drawn" from the end closest to the cue to the end most distant from the cue). If ILM was induced by having a single cue appear, then memory for the location of the line was displaced toward the cue, and displacement was larger if the line was closer to the cue. If ILM was induced by having one of two previously visible cues vanish, then memory for the location of the line was displaced away from the cue that vanished. In general, the magnitude of displacement increased and then decreased as retention interval increased from 50 to 250 ms and from 250 to 450 ms, respectively. Displacement of the line (a) is consistent with a combination of a spatial averaging of the locations of the cue and the line with a relatively weaker dynamic in the direction of illusory motion, (b) might be implemented in a spreading activation network similar to networks previously suggested to implement displacement resulting from implied or apparent motion, and (c) provides constraints and challenges for theories of ILM.

  18. An induction accelerator for the Heidelberg Test Storage Ring TSR

    Ellert, C.; Habs, D.; Music, M.; Schwalm, D.; Wolf, A.; Jaeschke, E.; Kambara, T.; Sigray, P.

    1992-01-01

    An induction accelerator has been installed in the heavy ion test storage ring TSR in Heidelberg. It allows for constant acceleration or deceleration of stored coasting ion beams without affecting their velocity profile and is well suited for ion beam manipulation in cooling experiments and for measurements of velocity dependent cooling forces. The design and operation of the device and first applications to laser cooling and to measurements of laser and electron cooling forces are described. (orig.)

  19. Cyclotron Acceleration of Relativistic Electrons through Landau Resonance with Obliquely Propagating Whistler Mode Chorus Emissions

    Omura, Y.; Hsieh, Y. K.; Foster, J. C.; Erickson, P. J.; Kletzing, C.; Baker, D. N.

    2017-12-01

    A recent test particle simulation of obliquely propagating whistler mode wave-particle interaction [Hsieh and Omura, 2017] shows that the perpendicular wave electric field can play a significant role in trapping and accelerating relativistic electrons through Landau resonance. A further theoretical and numerical investigation verifies that there occurs nonlinear wave trapping of relativistic electrons by the nonlinear Lorentz force of the perpendicular wave magnetic field. An electron moving with a parallel velocity equal to the parallel phase velocity of an obliquely propagating wave basically see a stationary wave phase. Since the electron position is displaced from its gyrocenter by a distance ρ*sin(φ), where ρ is the gyroradius and φ is the gyrophase, the wave phase is modulated with the gyromotion, and the stationary wave fields as seen by the electron are expanded as series of Bessel functions Jn with phase variations n*φ. The J1 components of the wave electric and magnetic fields rotate in the right-hand direction with the gyrofrequency, and they can be in resonance with the electron undergoing the gyromotion, resulting in effective electron acceleration and pitch angle scattering. We have performed a subpacket analysis of chorus waveforms observed by the Van Allen Probes [Foster et al., 2017], and calculated the energy gain by the cyclotron acceleration through Landau resonance. We compare the efficiencies of accelerations by cyclotron and Landau resonances in typical events of rapid electron acceleration observed by the Van Allen Probes.References:[1] Hsieh, Y.-K., and Y. Omura (2017), Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere, J. Geophys. Res. Space Physics, 122, 675-694, doi:10.1002/2016JA023255.[2] Foster, J. C., P. J. Erickson, Y. Omura, D. N. Baker, C. A. Kletzing, and S. G. Claudepierre (2017), Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear

  20. Variable displacement alpha-type Stirling engine

    Homutescu, V. M.; Bălănescu, D. T.; Panaite, C. E.; Atanasiu, M. V.

    2016-08-01

    The basic design and construction of an alpha-type Stirling engine with on load variable displacement is presented. The variable displacement is obtained through a planar quadrilateral linkage with one on load movable ground link. The physico-mathematical model used for analyzing the variable displacement alpha-type Stirling engine behavior is an isothermal model that takes into account the real movement of the pistons. Performances and power adjustment capabilities of such alpha-type Stirling engine are calculated and analyzed. An exemplification through the use of the numerical simulation was performed in this regard.

  1. Examples of Vector Velocity Imaging

    Hansen, Peter M.; Pedersen, Mads M.; Hansen, Kristoffer L.

    2011-01-01

    To measure blood flow velocity in vessels with conventional ultrasound, the velocity is estimated along the direction of the emitted ultrasound wave. It is therefore impossible to obtain accurate information on blood flow velocity and direction, when the angle between blood flow and ultrasound wa...

  2. On the structure of acceleration in turbulence

    Liberzon, A.; Lüthi, B.; Holzner, M.

    2012-01-01

    Acceleration and spatial velocity gradients are obtained simultaneously in an isotropic turbulent flow via three dimensional particle tracking velocimetry. We observe two distinct populations of intense acceleration events: one in flow regions of strong strain and another in regions of strong...... vorticity. Geometrical alignments with respect to vorticity vector and to the strain eigenvectors, curvature of Lagrangian trajectories and of streamlines for total acceleration, and for its convective part, , are studied in detail. We discriminate the alignment features of total and convective acceleration...... statistics, which are genuine features of turbulent nature from those of kinematic nature. We find pronounced alignment of acceleration with vorticity. Similarly, and especially are predominantly aligned at 45°with the most stretching and compressing eigenvectors of the rate of the strain tensor...

  3. Design and Testing of a Flexible Inclinometer Probe for Model Tests of Landslide Deep Displacement Measurement.

    Zhang, Yongquan; Tang, Huiming; Li, Changdong; Lu, Guiying; Cai, Yi; Zhang, Junrong; Tan, Fulin

    2018-01-14

    The physical model test of landslides is important for studying landslide structural damage, and parameter measurement is key in this process. To meet the measurement requirements for deep displacement in landslide physical models, an automatic flexible inclinometer probe with good coupling and large deformation capacity was designed. The flexible inclinometer probe consists of several gravity acceleration sensing units that are protected and positioned by silicon encapsulation, all the units are connected to a 485-comunication bus. By sensing the two-axis tilt angle, the direction and magnitude of the displacement for a measurement unit can be calculated, then the overall displacement is accumulated according to all units, integrated from bottom to top in turn. In the conversion from angle to displacement, two spline interpolation methods are introduced to correct and resample the data; one is to interpolate the displacement after conversion, and the other is to interpolate the angle before conversion; compared with the result read from checkered paper, the latter is proved to have a better effect, with an additional condition that the displacement curve move up half the length of the unit. The flexible inclinometer is verified with respect to its principle and arrangement by a laboratory physical model test, and the test results are highly consistent with the actual deformation of the landslide model.

  4. Effects of constrained arm swing on vertical center of mass displacement during walking.

    Yang, Hyung Suk; Atkins, Lee T; Jensen, Daniel B; James, C Roger

    2015-10-01

    The purpose of this study was to determine the effects of constraining arm swing on the vertical displacement of the body's center of mass (COM) during treadmill walking and examine several common gait variables that may account for or mask differences in the body's COM motion with and without arm swing. Participants included 20 healthy individuals (10 male, 10 female; age: 27.8 ± 6.8 years). The body's COM displacement, first and second peak vertical ground reaction forces (VGRFs), and lowest VGRF during mid-stance, peak summed bilateral VGRF, lower extremity sagittal joint angles, stride length, and foot contact time were measured with and without arm swing during walking at 1.34 m/s. The body's COM displacement was greater with the arms constrained (arm swing: 4.1 ± 1.2 cm, arm constrained: 4.9 ± 1.2 cm, p reaction force data indicated that the COM displacement increased in both double limb and single limb stance. However, kinematic patterns visually appeared similar between conditions. Shortened stride length and foot contact time also were observed, although these do not seem to account for the increased COM displacement. However, a change in arm COM acceleration might have contributed to the difference. These findings indicate that a change in arm swing causes differences in vertical COM displacement, which could increase energy expenditure. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. How to avoid simulation sickness in virtual environments during user displacement

    Kemeny, A.; Colombet, F.; Denoual, T.

    2015-03-01

    Driving simulation (DS) and Virtual Reality (VR) share the same technologies for visualization and 3D vision and may use the same technics for head movement tracking. They experience also similar difficulties when rendering the displacements of the observer in virtual environments, especially when these displacements are carried out using driver commands, including steering wheels, joysticks and nomad devices. High values for transport delay, the time lag between the action and the corresponding rendering cues and/or visual-vestibular conflict, due to the discrepancies perceived by the human visual and vestibular systems when driving or displacing using a control device, induces the so-called simulation sickness. While the visual transport delay can be efficiently reduced using high frequency frame rate, the visual-vestibular conflict is inherent to VR, when not using motion platforms. In order to study the impact of displacements on simulation sickness, we have tested various driving scenarios in Renault's 5-sided ultra-high resolution CAVE. First results indicate that low speed displacements with longitudinal and lateral accelerations under a given perception thresholds are well accepted by a large number of users and relatively high values are only accepted by experienced users and induce VR induced symptoms and effects (VRISE) for novice users, with a worst case scenario corresponding to rotational displacements. These results will be used for optimization technics at Arts et Métiers ParisTech for motion sickness reduction in virtual environments for industrial, research, educational or gaming applications.

  6. Circular mode: a new scanning probe microscopy method for investigating surface properties at constant and continuous scanning velocities.

    Nasrallah, Hussein; Mazeran, Pierre-Emmanuel; Noël, Olivier

    2011-11-01

    In this paper, we introduce a novel scanning probe microscopy mode, called the circular mode, which offers expanded capabilities for surface investigations especially for measuring physical properties that require high scanning velocities and/or continuous displacement with no rest periods. To achieve these specific conditions, we have implemented a circular horizontal displacement of the probe relative to the sample plane. Thus the relative probe displacement follows a circular path rather than the conventional back and forth linear one. The circular mode offers advantages such as high and constant scanning velocities, the possibility to be combined with other classical operating modes, and a simpler calibration method of the actuators generating the relative displacement. As application examples of this mode, we report its ability to (1) investigate the influence of scanning velocity on adhesion forces, (2) measure easily and instantly the friction coefficient, and (3) generate wear tracks very rapidly for tribological investigations. © 2011 American Institute of Physics

  7. Earthquake acceleration amplification based on single microtremor test

    Jaya Syahbana, Arifan; Kurniawan, Rahmat; Soebowo, Eko

    2018-02-01

    Understanding soil dynamics is needed to understand soil behaviour, including the parameters of earthquake acceleration amplification. Many researchers now conduct single microtremor tests to obtain amplification of velocity and natural periods of soil at test sites. However, these amplification parameters are rarely used, so a method is needed to convert the velocity amplification to acceleration amplification. This paper will discuss the proposed process of changing the value of amplification. The proposed method is to integrate the time histories of the synthetic earthquake acceleration of the soil surface under the deaggregation at that location so the time histories of the velocity earthquake will be obtained. Next is to conduct a “fitting curve” between amplification by a single microtremor test with amplification of the synthetic earthquake velocity time histories. After obtaining the fitting curve time histories of velocity, differentiation will be conducted to obtain fitting curve acceleration time histories. The final step after obtaining the fitting curve is to compare the acceleration of the “fitting curve” against the histories time of the acceleration of synthetic earthquake at bedrocks to obtain single microtremor acceleration amplification factor.

  8. Displacement pile installation effects in sand

    Beijer-Lundberg, A.

    2015-01-01

    Installation effects govern the post-installation behaviour of displacement piles in sand. These effects are currently not completely understood. Suitable experimental techniques to model these installation effects include field, laboratory and experimental models. In the current thesis a

  9. Geometric interpretation of density displacements and charge ...

    Unknown

    The “geometric” interpretation of the electronic density displacements in the Hilbert space is ... an attitude is also close to the chemical thinking ..... These vectors explicitly define the corresponding ..... chain-rule for implicit functionals: p p. N p.

  10. Epitaxial growth by monolayer restricted galvanic displacement

    Vasilić Rastko

    2012-01-01

    Full Text Available The development of a new method for epitaxial growth of metals in solution by galvanic displacement of layers pre-deposited by underpotential deposition (UPD was discussed and experimentally illustrated throughout the lecture. Cyclic voltammetry (CV and scanning tunneling microscopy (STM are employed to carry out and monitor a “quasi-perfect”, two-dimensional growth of Ag on Au(111, Cu on Ag(111, and Cu on Au(111 by repetitive galvanic displacement of underpotentially deposited monolayers. A comparative study emphasizes the displacement stoichiometry as an efficient tool for thickness control during the deposition process and as a key parameter that affects the deposit morphology. The excellent quality of layers deposited by monolayer-restricted galvanic displacement is manifested by a steady UPD voltammetry and ascertained by a flat and uniform surface morphology maintained during the entire growth process.

  11. Bucky gel actuator displacement: experiment and model

    Ghamsari, A K; Zegeye, E; Woldesenbet, E; Jin, Y

    2013-01-01

    Bucky gel actuator (BGA) is a dry electroactive nanocomposite which is driven with a few volts. BGA’s remarkable features make this tri-layered actuator a potential candidate for morphing applications. However, most of these applications would require a better understanding of the effective parameters that influence the BGA displacement. In this study, various sets of experiments were designed to investigate the effect of several parameters on the maximum lateral displacement of BGA. Two input parameters, voltage and frequency, and three material/design parameters, carbon nanotube type, thickness, and weight fraction of constituents were selected. A new thickness ratio term was also introduced to study the role of individual layers on BGA displacement. A model was established to predict BGA maximum displacement based on the effect of these parameters. This model showed good agreement with reported results from the literature. In addition, an important factor in the design of BGA-based devices, lifetime, was investigated. (paper)

  12. The Chinese Export Displacement Effect Revisited

    Elleby, Christian; Yu, Wusheng; Yu, Qian

    China’s global export share has increased dramatically over the past decades. This development has prompted an empirical literature on whether Chinese exports displace those originated from elsewhere in various destination markets. In this paper we focus on the growth of China’s exports to the East...... African Community (EAC) countries and show how it has affected exports from the European Union (EU) to the EAC. Our main contribution to the literature on the displacement effect of Chinese exports is a set of total and relative displacement estimates based on different specifications of the gravity model...... where we control for country-year fixed effects so as to avoid the “gold medal mistake” of not accounting for time varying “multilateral resistance”. Our findings do not support the hypothesis that Chinese exports have displaced exports from other countries in general. Nor do they support the hypothesis...

  13. Elastic-wave generation in the evolution of displacement peaks

    Zhukov, V.P.; Boldin, A.A.

    1988-01-01

    This paper investigated the character of elastic shock wave generation and damping in irradiated materials along with the possibility of their long-range influence on the structure of the irradiated materials. Dispersion at the elastoplastic stage of atomic displacement peak development was taken into account. The three-dimensional nonlinear wave was described by an equation in the approximation of weak nonlinearity and weak spatial dispersion. Numerical modeling of the propagation of a plane shock wave in a crystal lattice was conducted. The distribution of the density and mass velocity of the material at the instant of complete damping of the plastic shock-wave component was determined. The appearance of solitary waves (solitons) at large amplitudes, localized in space, which propagate without distortion to arbitrary distances and retain their amplitude and form in interacting with one another, was investigated. Some physical consequences of the influence of solitary waves on the irradiated materials were considered

  14. Optical-fiber interferometer for velocity measurements with picosecond resolution

    Weng Jidong; Tan Hua; Wang Xiang; Ma Yun; Hu Shaolou; Wang Xiaosong

    2006-01-01

    The conventional Doppler laser-interference velocimeters are made up of traditional optical elements such as lenses and mirrors and will generally restrict its applications in multipoint velocity measurements. By transfering the light from multimode optical fiber to single-mode optical fiber and using the currently available conventional telecommunications elements, the authors have constructed a velocimeter called all-fiber displacement interferometer system for any reflector. The unique interferometer system is only made up of fibers or fiber-coupled components. The viability of this technique is demonstrated by measuring the velocity of an interface moving at velocity of 2133 m/s with 50 ps time resolution. In addition, the concept of optical-fiber mode conversion would provide a way to develop various optical-fiber sensors

  15. Sector ring accelerator ''RESATRON''

    Schwabe, E.

    1980-01-01

    Project of sector ring accelerator RESATRON is described. The curiosity of this accelerator is the second cycle of acceleration of the beam after stripping it on the foil. In such an accelerator heavy ions with a different ratio Z to A can be accelerated. (S.B.)

  16. Reliability of force-velocity relationships during deadlift high pull.

    Lu, Wei; Boyas, Sébastien; Jubeau, Marc; Rahmani, Abderrahmane

    2017-11-13

    This study aimed to evaluate the within- and between-session reliability of force, velocity and power performances and to assess the force-velocity relationship during the deadlift high pull (DHP). Nine participants performed two identical sessions of DHP with loads ranging from 30 to 70% of body mass. The force was measured by a force plate under the participants' feet. The velocity of the 'body + lifted mass' system was calculated by integrating the acceleration and the power was calculated as the product of force and velocity. The force-velocity relationships were obtained from linear regression of both mean and peak values of force and velocity. The within- and between-session reliability was evaluated by using coefficients of variation (CV) and intraclass correlation coefficients (ICC). Results showed that DHP force-velocity relationships were significantly linear (R² > 0.90, p  0.94), mean and peak velocities showed a good agreement (CV reliable and can therefore be utilised as a tool to characterise individuals' muscular profiles.

  17. Phenomenon of displacement in Arabic language

    2015-09-01

    Full Text Available Displacement is one of the characteristics of language and common phenomena in the Arabic language. Not only is this phenomenon limited to Arabic poetry and prose, but it is also broadened, so we can see examples of this in the Qur'an. Because of this phenomenon extensively in Arabic literature and also because of its essence that leads to the transmission of the elements for the first visibility to the other visibility in the sentence and sometimes had to change the grammatical role of the words, its identify helps us in a better understanding of text and the correct translation of it and protects the reader from mistakes. This paper in the descriptive analytical approach tries studying of the phenomenon of the displacement in the Arabic language and bringing its instances in Arabic poetry and prose as well as verses contained in the Holy Quran, to show that through the types and characteristics in the Arabic language and to response to several questions, including: how important is the displacement and what is its types in rhetoric, and the reasons of the displacement, and etc... Of the most important results of this study may refer to the undeniable role of the displacement as a rhetorical method to better understanding of the texts including: one of the most important reasons of the displacement in the use of language is to improve speech verbally and morally, and violation of the standard language and create a poetic atmosphere, and the recognition of the occurrence of the phenomenon of displacement in the Arabic language that uphold different interpretations remote and estimates when faced with the displacement in the text and help us to understand it and etc...

  18. Histone displacement during nucleotide excision repair

    Dinant, C.; Bartek, J.; Bekker-Jensen, S.

    2012-01-01

    Nucleotide excision repair (NER) is an important DNA repair mechanism required for cellular resistance against UV light and toxic chemicals such as those found in tobacco smoke. In living cells, NER efficiently detects and removes DNA lesions within the large nuclear macromolecular complex called...... of histone variants and histone displacement (including nucleosome sliding). Here we review current knowledge, and speculate about current unknowns, regarding those chromatin remodeling activities that physically displace histones before, during and after NER....

  19. 2014 and beyond: implications for displacement

    Aidan O’Leary

    2014-05-01

    Full Text Available 2014 marks a watershed for Afghanistan, with the withdrawal of the International Security Assistance Force after twelve years, and the very real risks this withdrawal poses to the capacity of the Afghan state to meet the many internal and external challenges faced by the country. These challenges have significant implications for displaced and returning Afghans and for the potential for displacement in the future.

  20. Lateral displacement in small angle multiple scattering

    Bichsel, H.; Hanson, K.M.; Schillaci, K.M. (Los Alamos National Lab., NM (USA))

    1982-07-01

    Values have been calculated for the average lateral displacement in small angle multiple scattering of protons with energies of several hundred MeV. The calculations incorporate the Moliere distribution which does not make the gaussian approximations of the distribution in projected angle and lateral deflections. Compared to other published data, such approximations can lead to errors in the lateral displacement of up to 10% in water.

  1. Hall effects on MHD flow past an accelerated plate

    Soundalgekar, V.M.; Ravi, S.; Hiremath, S.B.

    1980-01-01

    An exact solution of the MHD flow of an incompressible, electrically conducting, viscous fluid past a uniformly accelerated plate is presented. The velocity profiles are shown graphically and the numerical values of axial and transverse components of skin friction are tabulated. At high values of the Hall parameter, ωtau, the velocity is found to be oscillatory near the plate. (author)

  2. SOCIAL CAPITAL IN INVOLUNTARY DISPLACEMENT AND RESETTLEMENT

    Melissa Quetulio-Navarra

    2013-07-01

    Full Text Available Social capital is often seen as a substitute for lack of other types of capital amongpoor people. Because of the recognized applicability of the social capital conceptand its correlation with the different dimensions of poverty, it has been used inevaluating the adaptation and integration of involuntarily displaced individualsinto their new environment. This paper presents insights based on a review of thefindings of studies that looked into the role of social capital in conflict- anddevelopment-induced displacement contexts. Althoughboth types of displace-ments are involuntary or forced in nature, they differ in terms of the role of socialcapital regarding its main sources, the formation pattern and its determinants.Social capital studies in forced resettlement appear to be relatively small innumber and are heavily concentrated on first worldcountries and conflict- anddevelopment-induced displacements. The conduct of similar studies in developingcountries and in a disaster-induced resettlement context, the third type ofinvoluntary displacement, should generate new and relevant findings regardingthe role of social capital in resettlement communities.

  3. Regulatory RNA design through evolutionary computation and strand displacement.

    Rostain, William; Landrain, Thomas E; Rodrigo, Guillermo; Jaramillo, Alfonso

    2015-01-01

    The discovery and study of a vast number of regulatory RNAs in all kingdoms of life over the past decades has allowed the design of new synthetic RNAs that can regulate gene expression in vivo. Riboregulators, in particular, have been used to activate or repress gene expression. However, to accelerate and scale up the design process, synthetic biologists require computer-assisted design tools, without which riboregulator engineering will remain a case-by-case design process requiring expert attention. Recently, the design of RNA circuits by evolutionary computation and adapting strand displacement techniques from nanotechnology has proven to be suited to the automated generation of DNA sequences implementing regulatory RNA systems in bacteria. Herein, we present our method to carry out such evolutionary design and how to use it to create various types of riboregulators, allowing the systematic de novo design of genetic control systems in synthetic biology.

  4. Multiperiodic accelerator structures for linear particle accelerators

    Tran, D.T.

    1975-01-01

    High efficiency linear accelerator structures, comprised of a succession of cylindrical resonant cavities for acceleration, are described. Coupling annular cavities are located at the periphery, each being coupled to two adjacent cylindrical cavities. (auth)

  5. Delayless acceleration measurement method for motion control applications

    Vaeliviita, S.; Ovaska, S.J. [Helsinki University of Technology, Otaniemi (Finland). Institute of Intelligent Power Electronics

    1997-12-31

    Delayless and accurate sensing of angular acceleration can improve the performance of motion control in motor drives. Acceleration control is, however, seldom implemented in practical drive systems due to prohibitively high costs or unsatisfactory results of most acceleration measurement methods. In this paper we propose an efficient and accurate acceleration measurement method based on direct differentiation of the corresponding velocity signal. Polynomial predictive filtering is used to smooth the resulting noisy signal without delay. This type of prediction is justified by noticing that a low-degree polynomial can usually be fitted into the primary acceleration curve. No additional hardware is required to implement the procedure if the velocity signal is already available. The performance of the acceleration measurement method is evaluated by applying it to a demanding motion control application. (orig.) 12 refs.

  6. Influence of probe geometry on pitot-probe displacement in supersonic turbulent flow

    Allen, J. M.

    1975-01-01

    An experiment was conducted to determine the varying effects of six different probe-tip and support-shaft configurations on pitot tube displacement. The study was stimulated by discrepancies between supersonic wind-tunnel tests conducted by Wilson and Young (1949) and Allen (1972). Wilson (1973) had concluded that these discrepancies were caused by differences in probe geometry. It is shown that in fact, no major differences in profiles of streamwise velocity over streamwise velocity at boundary-layer edge vs normal coordinate over boundary-layer total thickness result from geometry. The true cause of the discrepancies, however, remains to be discovered.

  7. Numerical simulation and comparison of two ventilation methods for a restaurant - displacement vs mixed flow ventilation

    Chitaru, George; Berville, Charles; Dogeanu, Angel

    2018-02-01

    This paper presents a comparison between a displacement ventilation method and a mixed flow ventilation method using computational fluid dynamics (CFD) approach. The paper analyses different aspects of the two systems, like the draft effect in certain areas, the air temperatureand velocity distribution in the occupied zone. The results highlighted that the displacement ventilation system presents an advantage for the current scenario, due to the increased buoyancy driven flows caused by the interior heat sources. For the displacement ventilation case the draft effect was less prone to appear in the occupied zone but the high heat emissions from the interior sources have increased the temperature gradient in the occupied zone. Both systems have been studied in similar conditions, concentrating only on the flow patterns for each case.

  8. Hybrid method for determining the parameters of condenser microphones from measured membrane velocities and numerical calculations

    Barrera Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn

    2009-01-01

    to this problem is to measure the velocity distribution of the membrane by means of a non-contact method, such as laser vibrometry. The measured velocity distribution can be used together with a numerical formulation such as the boundary element method for estimating the microphone response and other parameters......, e.g., the acoustic center. In this work, such a hybrid method is presented and examined. The velocity distributions of a number of condenser microphones have been determined using a laser vibrometer, and these measured velocity distributions have been used for estimating microphone responses......Typically, numerical calculations of the pressure, free-field, and random-incidence response of a condenser microphone are carried out on the basis of an assumed displacement distribution of the diaphragm of the microphone; the conventional assumption is that the displacement follows a Bessel...

  9. Accelerators of atomic particles

    Sarancev, V.

    1975-01-01

    A brief survey is presented of accelerators and methods of accelerating elementary particles. The principle of collective accelerating of elementary particles is clarified and the problems are discussed of its realization. (B.S.)

  10. Turbulent acceleration of auroral electrons

    Bryant, D.A.; Cook, A.C.; Wang, Z.-S.; Angelis, U. de; Perry, C.H.

    1991-07-01

    It is shown that the characteristic peak in the auroral electron velocity distribution can be generated stochastically through resonant interactions with lower-hybrid electrostatic turbulence. The peak itself is shown to be a direct consequence of restrictions imposed on reflexion of electron velocities in the frame of reference of individual wave packets by the limitation in group velocity. A Monte-Carlo model demonstrates how the various properties of the acceleration region are reflected in the resultant electron distribution. It is shown, in particular, that the width of the peak is governed by the amplitude of the turbulence, while the amplitude of the peak reflects the column density of wave energy. Electron distributions encountered within three auroral arcs are interpreted to yield order of magnitude estimates of the amplitude and rms electric field of lower-hybrid wave packets. The velocities and frequencies of the resonant waves, the net electric field, the column density of wave energy and the electric-field energy density are also estimated. The results are found to be consistent with available electric-field measurements. A general broadening of the electron distribution caused by less systematic interactions between electrons and wave packets is shown to have a negligible effect on the peak resulting from the reflexion process; it does, though, lead to the creation of a characteristic high-energy tail. (author)

  11. Quantifying seasonal velocity at Khumbu Glacier, Nepal

    Miles, E.; Quincey, D. J.; Miles, K.; Hubbard, B. P.; Rowan, A. V.

    2017-12-01

    While the low-gradient debris-covered tongues of many Himalayan glaciers exhibit low surface velocities, quantifying ice flow and its variation through time remains a key challenge for studies aimed at determining the long-term evolution of these glaciers. Recent work has suggested that glaciers in the Everest region of Nepal may show seasonal variability in surface velocity, with ice flow peaking during the summer as monsoon precipitation provides hydrological inputs and thus drives changes in subglacial drainage efficiency. However, satellite and aerial observations of glacier velocity during the monsoon are greatly limited due to cloud cover. Those that do exist do not span the period over which the most dynamic changes occur, and consequently short-term (i.e. daily) changes in flow, as well as the evolution of ice dynamics through the monsoon period, remain poorly understood. In this study, we combine field and remote (satellite image) observations to create a multi-temporal, 3D synthesis of ice deformation rates at Khumbu Glacier, Nepal, focused on the 2017 monsoon period. We first determine net annual and seasonal surface displacements for the whole glacier based on Landsat-8 (OLI) panchromatic data (15m) processed with ImGRAFT. We integrate inclinometer observations from three boreholes drilled by the EverDrill project to determine cumulative deformation at depth, providing a 3D perspective and enabling us to assess the role of basal sliding at each site. We additionally analyze high-frequency on-glacier L1 GNSS data from three sites to characterize variability within surface deformation at sub-seasonal timescales. Finally, each dataset is validated against repeat-dGPS observations at gridded points in the vicinity of the boreholes and GNSS dataloggers. These datasets complement one another to infer thermal regime across the debris-covered ablation area of the glacier, and emphasize the seasonal and spatial variability of ice deformation for glaciers in High

  12. Simulation of electron displacement damage in a high voltage electron microscope

    Ono, Susumu; Kanaya, Koichi

    1979-01-01

    By applying the fundamental theory of the neutron cooling to the conservation law of energy and momentum, the threshold energies of incident electrons for displacing atoms are calculated and illustrated periodically for the atomic number. And the observable damage due to the secondary action of displaced atoms in the practical use of a high voltage electron microscope is described for several materials and accelerating voltages. The trajectories of incident electrons and displaced atoms in several materials are simulated by a Monte-Carlo method, using rigorous formulas of electron scattering events, i.e. elastic and inelastic scattering cross-sections, ionization loss and plasmon excitation. The simulation results are substantially agreement with experiments. (author)

  13. Formation flying for electric sails in displaced orbits. Part I: Geometrical analysis

    Wang, Wei; Mengali, Giovanni; Quarta, Alessandro A.; Yuan, Jianping

    2017-09-01

    We present a geometrical methodology for analyzing the formation flying of electric solar wind sail based spacecraft that operate in heliocentric, elliptic, displaced orbits. The spacecraft orbit is maintained by adjusting its propulsive acceleration modulus, whose value is estimated using a thrust model that takes into account a variation of the propulsive performance with the sail attitude. The properties of the relative motion of the spacecraft are studied in detail and a geometrical solution is obtained in terms of relative displaced orbital elements, assumed to be small quantities. In particular, for the small eccentricity case (i.e. for a near-circular displaced orbit), the bounds characterized by the extreme values of relative distances are analytically calculated, thus providing an useful mathematical tool for preliminary design of the spacecraft formation structure.

  14. rf coaxial couplers for high-intensity linear accelerators

    Manca, J.J.; Knapp, E.A.

    1980-02-01

    Two rf coaxial couplers that are particularly suitable for intertank connection of the disk-and-washer accelerating structure for use in high-intensity linear accelerators have been developed. These devices have very high coupling to the accelerating structure and very low rf power loss at the operating frequency, and they can be designed for any relative particle velocity β > 0.4. Focusing and monitoring devices can be located inside these couplers

  15. Transformations between inertial and linearly accelerated frames of reference

    Ashworth, D.G.

    1983-01-01

    Transformation equations between inertial and linearly accelerated frames of reference are derived and these transformation equations are shown to be compatible, where applicable, with those of special relativity. The physical nature of an accelerated frame of reference is unambiguously defined by means of an equation which relates the velocity of all points within the accelerated frame of reference to measurements made in an inertial frame of reference. (author)

  16. Plasma cluster acceleration by means of external magnetic fields

    Kracik, J.; Maloch, J.; Sobra, K.

    1975-01-01

    The electromagnetic shock tubes are used not only for shock wave creation and study but also for pulse plasma acceleration. By applying the rail acceleration the external magnetic field perpendicular to the plasma cluster velocity can be increased. In the present work is theoretically and experimentally confirmed the external magnetic field influence on the plasma cluster acceleration when the 'snow plough' model is used. (Auth.)

  17. Development of an optimal velocity selection method with velocity obstacle

    Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)

    2015-08-15

    The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.

  18. Digital PIV Measurements of Acoustic Particle Displacements in a Normal Incidence Impedance Tube

    Humphreys, William M., Jr.; Bartram, Scott M.; Parrott, Tony L.; Jones, Michael G.

    1998-01-01

    Acoustic particle displacements and velocities inside a normal incidence impedance tube have been successfully measured for a variety of pure tone sound fields using Digital Particle Image Velocimetry (DPIV). The DPIV system utilized two 600-mj Nd:YAG lasers to generate a double-pulsed light sheet synchronized with the sound field and used to illuminate a portion of the oscillatory flow inside the tube. A high resolution (1320 x 1035 pixel), 8-bit camera was used to capture double-exposed images of 2.7-micron hollow silicon dioxide tracer particles inside the tube. Classical spatial autocorrelation analysis techniques were used to ascertain the acoustic particle displacements and associated velocities for various sound field intensities and frequencies. The results show that particle displacements spanning a range of 1-60 microns can be measured for incident sound pressure levels of 100-130 dB and for frequencies spanning 500-1000 Hz. The ability to resolve 1 micron particle displacements at sound pressure levels in the 100 dB range allows the use of DPIV systems for measurement of sound fields at much lower sound pressure levels than had been previously possible. Representative impedance tube data as well as an uncertainty analysis for the measurements are presented.

  19. The electromagnetic rocket gun - a means to reach ultrahigh velocities

    Winterberg, F.

    1983-01-01

    A novel kind of electromagnetic launcher for the acceleration of multigram-size macroparticles, up to velocities required for impact fusion, is proposed. The novel launcher concept combines the efficiency of a gun with the much higher velocities attainable by a rocket. In the proposed concept a rocket-like projectile is launched inside a gun barrel, drawing its energy from a travelling magnetic wave. The travelling magnetic wave heats and ionizes the exhaust jet of the rocket. As a result, the projectile i propelled both by the recoil from the jet and the magnetic pressure of the travelling magnetic wave. In comparison to magnetic linear accelerators, accelerating either superconducting or ferromagnetic projectiles, the proposed concept has several important advantages. First, the exhaust jet is much longer than the rocket-like projectile and which permits a much longer switching time to turn on the travelling magnetic wave. Second, the proposed concept does not require superconducting projectiles, or projectiles made from expensive ferromagnetic material. Third, unlike in railgun accelerators, the projectile can be kept away from the wall, and thereby can reach much larger velocities. (orig.)

  20. Quantification of the vocal folds’ dynamic displacements

    Hernández-Montes, María del Socorro; Muñoz, Silvino; De La Torre, Manuel; Flores, Mauricio; Pérez, Carlos; Mendoza-Santoyo, Fernando

    2016-01-01

    Fast dynamic data acquisition techniques are required to investigate the motional behavior of the vocal folds (VFs) when they are subjected to a steady air-flow through the trachea. High-speed digital holographic interferometry (DHI) is a non-invasive full-field-of-view technique that has proved its usefulness to study rapid and non-repetitive object movements. Hence it is an ideal technique used here to measure VF displacements and vibration patterns at 2000 fps. Analyses from a set of 200 displacement images showed that VFs’ vibration cycles are established along their width (y) and length (x). Furthermore, the maximum deformation for the right and left VFs’ area may be quantified from these images, which in itself represents an important result in the characterization of this structure. At a controlled air pressure, VF displacements fall within the range ∼100–1740 nm, with a calculated precision and accuracy that yields a variation coefficient of 1.91%. High-speed acquisition of full-field images of VFs and their displacement quantification are on their own significant data in the study of their functional and physiological behavior since voice quality and production depend on how they vibrate, i.e. their displacement amplitude and frequency. Additionally, the use of high speed DHI avoids prolonged examinations and represents a significant scientific and technological alternative contribution in advancing the knowledge and working mechanisms of these tissues. (paper)

  1. High-displacement spiral piezoelectric actuators

    Mohammadi, F.; Kholkin, A. L.; Jadidian, B.; Safari, A.

    1999-10-01

    A high-displacement piezoelectric actuator, employing spiral geometry of a curved piezoelectric strip is described. The monolithic actuators are fabricated using a layered manufacturing technique, fused deposition of ceramics, which is capable of prototyping electroceramic components with complex shapes. The spiral actuators (2-3 cm in diameter) consisted of 4-5 turns of a lead zirconate titanate ceramic strip with an effective length up to 28 cm. The width was varied from 0.9 to 1.75 mm with a height of 3 mm. When driven by the electric field applied across the width of the spiral wall, the tip of the actuator was found to displace in both radial and tangential directions. The tangential displacement of the tip was about 210 μm under the field of 5 kV/cm. Both the displacement and resonant frequency of the spirals could be tailored by changing the effective length and wall width. The blocking force of the actuator in tangential direction was about 1 N under the field of 5 kV/cm. These properties are advantageous for high-displacement low-force applications where bimorph or monomorph actuators are currently employed.

  2. Quantification of the vocal folds’ dynamic displacements

    del Socorro Hernández-Montes, María; Muñoz, Silvino; De La Torre, Manuel; Flores, Mauricio; Pérez, Carlos; Mendoza-Santoyo, Fernando

    2016-05-01

    Fast dynamic data acquisition techniques are required to investigate the motional behavior of the vocal folds (VFs) when they are subjected to a steady air-flow through the trachea. High-speed digital holographic interferometry (DHI) is a non-invasive full-field-of-view technique that has proved its usefulness to study rapid and non-repetitive object movements. Hence it is an ideal technique used here to measure VF displacements and vibration patterns at 2000 fps. Analyses from a set of 200 displacement images showed that VFs’ vibration cycles are established along their width (y) and length (x). Furthermore, the maximum deformation for the right and left VFs’ area may be quantified from these images, which in itself represents an important result in the characterization of this structure. At a controlled air pressure, VF displacements fall within the range ~100-1740 nm, with a calculated precision and accuracy that yields a variation coefficient of 1.91%. High-speed acquisition of full-field images of VFs and their displacement quantification are on their own significant data in the study of their functional and physiological behavior since voice quality and production depend on how they vibrate, i.e. their displacement amplitude and frequency. Additionally, the use of high speed DHI avoids prolonged examinations and represents a significant scientific and technological alternative contribution in advancing the knowledge and working mechanisms of these tissues.

  3. Beam energy reduction in an acceleration gap

    Rhee, M.J.

    1990-01-01

    The subject of high-current accelerators has recently attracted considerable attention. The high-current beam accompanies a substantial amount of field energy in the space between the beam and the drift tube wall, as it propagates through a conducting drift tube of accelerator system. While such a beam is being accelerated in a gap, this field energy is subject to leak through the opening of the gap. The amount of energy lost in the gap is replenished by the beam at the expense of its kinetic energy. In this paper, the authors present a simple analysis of field energy loss in an acceleration gap for a relativistic beam for which beam particle velocity equals to c. It is found that the energy loss, which in turn reduces the beam kinetic energy, is ΔV = IZ 0 : the beam current times the characteristic impedance of the acceleration gap. As a result, the apparent acceleration voltage of the gap is reduced from the applied voltage by ΔV. This effect, especially for generation of high-current beam accelerated by a multigap accelerator, appears to be an important design consideration. The energy reduction mechanism and a few examples are presented

  4. Kr II laser-induced fluorescence for measuring plasma acceleration.

    Hargus, W A; Azarnia, G M; Nakles, M R

    2012-10-01

    We present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator also known as a Hall effect thruster, which has heritage as spacecraft propulsion. The 728.98 nm Kr II transition from the metastable 5d(4)D(7/2) to the 5p(4)P(5/2)(∘) state was used for the measurement of laser-induced fluorescence within the plasma discharge. From these measurements, it is possible to measure velocity as krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions may also be extracted from the fluorescence data since available hyperfine splitting data allow for the Kr II 5d(4)D(7/2)-5p(4)P(5/2)(∘) transition lineshape to be modeled. From the analysis, the fluorescence lineshape appears to be a reasonable estimate for the relatively broad ion velocity distributions. However, due to an apparent overlap of the ion creation and acceleration regions within the discharge, the distributed velocity distributions increase ion temperature determination uncertainty significantly. Using the most probable ion velocity as a representative, or characteristic, measure of the ion acceleration, overall propellant energy deposition, and effective electric fields may be calculated. With this diagnostic technique, it is possible to nonintrusively characterize the ion acceleration both within the discharge and in the plume.

  5. Control rod velocity limiter

    Cearley, J.E.; Carruth, J.C.; Dixon, R.C.; Spencer, S.S.; Zuloaga, J.A. Jr.

    1986-01-01

    This patent describes a velocity control arrangement for a reciprocable, vertically oriented control rod for use in a nuclear reactor in a fluid medium, the control rod including a drive hub secured to and extending from one end therefrom. The control device comprises: a toroidally shaped control member spaced from and coaxially positioned around the hub and secured thereto by a plurality of spaced radial webs thereby providing an annular passage for fluid intermediate the hub and the toroidal member spaced therefrom in coaxial position. The side of the control member toward the control rod has a smooth generally conical surface. The side of the control member away from the control rod is formed with a concave surface constituting a single annular groove. The device also comprises inner and outer annular vanes radially spaced from one another and spaced from the side of the control member away from the control rod and positioned coaxially around and spaced from the hub and secured thereto by spaced radial webs thereby providing an annular passage for fluid intermediate the hub and the vanes. The vanes are angled toward the control member, the outer edge of the inner vane being closer to the control member and the inner edge of the outer vane being closer to the control member. When the control rod moves in the fluid in the direction toward the drive hub the vanes direct a flow of fluid turbulence which provides greater resistance to movement of the control rod in the direction toward the drive hub than in the other direction

  6. Sound velocity of tantalum under shock compression in the 18–142 GPa range

    Xi, Feng, E-mail: xifeng@caep.cn; Jin, Ke; Cai, Lingcang, E-mail: cai-lingcang@aliyun.com; Geng, Huayun; Tan, Ye; Li, Jun [National Key Laboratory of Shock Waves and Detonation Physics, Institute of Fluid Physics, CAEP, P.O. Box 919-102 Mianyang, Sichuan 621999 (China)

    2015-05-14

    Dynamic compression experiments of tantalum (Ta) within a shock pressure range from 18–142 GPa were conducted driven by explosive, a two-stage light gas gun, and a powder gun, respectively. The time-resolved Ta/LiF (lithium fluoride) interface velocity profiles were recorded with a displacement interferometer system for any reflector. Sound velocities of Ta were obtained from the peak state time duration measurements with the step-sample technique and the direct-reverse impact technique. The uncertainty of measured sound velocities were analyzed carefully, which suggests that the symmetrical impact method with step-samples is more accurate for sound velocity measurement, and the most important parameter in this type experiment is the accurate sample/window particle velocity profile, especially the accurate peak state time duration. From these carefully analyzed sound velocity data, no evidence of a phase transition was found up to the shock melting pressure of Ta.

  7. Velocity Dispersions Across Bulge Types

    Fabricius, Maximilian; Bender, Ralf; Hopp, Ulrich; Saglia, Roberto; Drory, Niv; Fisher, David

    2010-01-01

    We present first results from a long-slit spectroscopic survey of bulge kinematics in local spiral galaxies. Our optical spectra were obtained at the Hobby-Eberly Telescope with the LRS spectrograph and have a velocity resolution of 45 km/s (σ*), which allows us to resolve the velocity dispersions in the bulge regions of most objects in our sample. We find that the velocity dispersion profiles in morphological classical bulge galaxies are always centrally peaked while the velocity dispersion of morphologically disk-like bulges stays relatively flat towards the center--once strongly barred galaxies are discarded.

  8. On linear relationship between shock velocity and particle velocity

    Dandache, H.

    1986-11-01

    We attempt to derive the linear relationship between shock velocity U s and particle velocity U p from thermodynamic considerations, taking into account an ideal gas equation of state and a Mie-Grueneisen equation of state for solids. 23 refs

  9. Ion velocities in a micro-cathode arc thruster

    Zhuang Taisen; Shashurin, Alexey; Keidar, Michael; Beilis, Isak

    2012-01-01

    Ion velocities in the plasma jet generated by the micro-cathode arc thruster are studied by means of time-of-flight method using enhanced ion detection system (EIDS). The EIDS triggers perturbations (spikes) on arc current waveform, and the larger current in the spike generates denser plasma bunches propagating along with the mainstream plasma. The EIDS utilizes double electrostatic probes rather than single probes. The average Ti ion velocity is measured to be around 2×10 4 m/s without a magnetic field. It was found that the application of a magnetic field does not change ion velocities in the interelectrode region while leads to ion acceleration in the free expanding plasma plume by a factor of about 2. Ion velocities of about 3.5×10 4 m/s were detected for the magnetic field of about 300 mT at distance of about 100–200 mm from the cathode. It is proposed that plasma is accelerated due to Lorentz force. The average thrust is calculated using the ion velocity measurements and the cathode mass consumption rate, and its increase with the magnetic field is demonstrated.

  10. Motion laws synthesis for cam mechanisms with multiple follower displacement

    Podgornyj, Yu I.; Skeeba, V. Yu; Kirillov, A. V.; Martynova, T. G.; Skeeba, P. Yu

    2018-03-01

    The research discusses the cam mechanisms design. The analysis of specialized literature indicates that the synthesis of the cam mechanisms laws of motion is currently done mainly by a standard set of acceleration curves. In some cases, the designer needs to synthesize a new acceleration law which should be task-specific and enforce a certain production step. The values of the technological loads and inertia forces loads generated by the mechanism are calculated to analyze the slay mechanism behavior in the production of closely woven fabrics. Mathematical packages MathCad and SolidWorks are used in calculations. As a result of the research, the authors propose the methodology for synthesizing the slay mechanism with multiple follower displacements for the point of contact between the reed and the fabric edge. Theoretical studies have been tested on a specific machine model (STB loom). The authors have synthesized the motion law of the filling threads beat-up mechanism for the production of strong fabrics. New basic and closing cam profiles are proposed. The results are designed to enhance the possibilities of the looms and to recommend the most efficient equipment operation modes for the producers.

  11. A two-layer model for buoyant inertial displacement flows in inclined pipes

    Etrati, Ali; Frigaard, Ian A.

    2018-02-01

    We investigate the inertial flows found in buoyant miscible displacements using a two-layer model. From displacement flow experiments in inclined pipes, it has been observed that for significant ranges of Fr and Re cos β/Fr, a two-layer, stratified flow develops with the heavier fluid moving at the bottom of the pipe. Due to significant inertial effects, thin-film/lubrication models developed for laminar, viscous flows are not effective for predicting these flows. Here we develop a displacement model that addresses this shortcoming. The complete model for the displacement flow consists of mass and momentum equations for each fluid, resulting in a set of four non-linear equations. By integrating over each layer and eliminating the pressure gradient, we reduce the system to two equations for the area and mean velocity of the heavy fluid layer. The wall and interfacial stresses appear as source terms in the reduced system. The final system of equations is solved numerically using a robust, shock-capturing scheme. The equations are stabilized to remove non-physical instabilities. A linear stability analysis is able to predict the onset of instabilities at the interface and together with numerical solution, is used to study displacement effectiveness over different parametric regimes. Backflow and instability onset predictions are made for different viscosity ratios.

  12. In Situ Observation of Hard Surrounding Rock Displacement at 2400-m-Deep Tunnels

    Feng, Xia-Ting; Yao, Zhi-Bin; Li, Shao-Jun; Wu, Shi-Yong; Yang, Cheng-Xiang; Guo, Hao-Sen; Zhong, Shan

    2018-03-01

    This paper presents the results of in situ investigation of the internal displacement of hard surrounding rock masses within deep tunnels at China's Jinping Underground Laboratory Phase II. The displacement evolution of the surrounding rock during the entire excavation processes was monitored continuously using pre-installed continuous-recording multi-point extensometers. The evolution of excavation-damaged zones and fractures in rock masses were also observed using acoustic velocity testing and digital borehole cameras, respectively. The results show four kinds of displacement behaviours of the hard surrounding rock masses during the excavation process. The displacement in the inner region of the surrounding rock was found to be greater than that of the rock masses near the tunnel's side walls in some excavation stages. This leads to a multi-modal distribution characteristic of internal displacement for hard surrounding rock masses within deep tunnels. A further analysis of the evolution information on the damages and fractures inside the surrounding rock masses reveals the effects of excavation disturbances and local geological conditions. This recognition can be used as the reference for excavation and supporting design and stability evaluations of hard-rock tunnels under high-stress conditions.

  13. Wireless Displacement Sensing of Micromachined Spiral-Coil Actuator Using Resonant Frequency Tracking

    Mohamed Sultan Mohamed Ali

    2014-07-01

    Full Text Available This paper reports a method that enables real-time displacement monitoring and control of micromachined resonant-type actuators using wireless radiofrequency (RF. The method is applied to an out-of-plane, spiral-coil microactuator based on shape-memory-alloy (SMA. The SMA spiral coil forms an inductor-capacitor resonant circuit that is excited using external RF magnetic fields to thermally actuate the coil. The actuation causes a shift in the circuit’s resonance as the coil is displaced vertically, which is wirelessly monitored through an external antenna to track the displacements. Controlled actuation and displacement monitoring using the developed method is demonstrated with the microfabricated device. The device exhibits a frequency sensitivity to displacement of 10 kHz/µm or more for a full out-of-plane travel range of 466 µm and an average actuation velocity of up to 155 µm/s. The method described permits the actuator to have a self-sensing function that is passively operated, thereby eliminating the need for separate sensors and batteries on the device, thus realizing precise control while attaining a high level of miniaturization in the device.

  14. Overtreatment of displaced midshaft clavicle fractures

    Ban, Ilija; Nowak, Jan; Virtanen, Kaisa

    2016-01-01

    Background and purpose - The best treatment for displaced clavicle fractures has been debated for decades. Operative treatment has become more common. However, several randomized trials comparing non-operative and operative treatment have not shown any compelling evidence in favor of surgery. We...... identified the preferred treatment of displaced midshaft clavicle fractures at public hospitals in 3 countries in Scandinavia. Patients and methods - A purpose-made multiple-choice questionnaire in English was sent to all public hospitals in Denmark, Sweden, and Finland. This was addressed to the orthopedic...... surgeon responsible for treatment of clavicle fractures, and completed questionnaires were obtained from 85 of 118 hospitals. Results - In the 3 countries, 69 of the 85 hospitals that responded would treat displaced clavicle fractures operatively. Clear criteria for treatment allocation were used at 58...

  15. Forced displacement and women's security in Colombia.

    Meertens, Donny

    2010-04-01

    In the protracted Colombian conflict, assistance to internally displaced persons has developed in the context of contradictory political processes. The Colombian government's launching of a transitional justice process in the midst of armed conflict has generated a complex situation displaying both conflict and post-conflict characteristics. The progressive Constitutional Court rulings on internal displacement, in particular the gender-sensitive Auto 092, constitute an attempt to bring together humanitarian interventions and transitional justice measures in a rights-based framework. However, the national government is reluctant to adopt them fully and local realities still hamper their integrated implementation. Displaced women, therefore, remain in an especially vulnerable position. This paper argues that gender-sensitive humanitarian interventions must take into account all of these complexities of scale and political process in order to make legal frameworks more effective at the local level. In these contexts, interventions should pay particular attention to strategies that contribute to transforming pre-existing gender regimes.

  16. [Management of disk displacement with condylar fracture].

    Yu, Shi-bin; Li, Zu-bing; Yang, Xue-wen; Zhao, Ji-hong; Dong, Yao-jun

    2003-07-01

    To investigate clinical features of disk displacement during the course of condylar fracture and to explore the techniques of disk reposition and suturation. 32 patients (10 females and 22 males) who had disk displacements with condylar fractures were followed up. Reduction and reposition of the dislocated disks simultaneously with fixation of fractures were performed. 7 patients underwent intermaxillary fixation with elastic bands for 1 to 2 weeks. The occlusions were satisfactory in all cases but one for the reason of ramus height loss. No TMJ symptom was found when examined 3 months post operation. Anterior disk displacements were most occurred with high condylar process fractures. Surgical reposition and suturation of disk play an important role for the later TMJ-function.

  17. Sodium Velocity Maps on Mercury

    Potter, A. E.; Killen, R. M.

    2011-01-01

    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  18. Acceleration of O+ from the cusp to the plasma sheet

    Liao, J.; Kistler, L. M.; Mouikis, C. G.; Klecker, B.; Dandouras, I.

    2015-02-01

    Heavy ions from the ionosphere that are accelerated in the cusp/cleft have been identified as a direct source for the hot plasma in the plasma sheet. However, the details of the acceleration and transport that transforms the originally cold ions into the hot plasma sheet population are not fully understood. The polar orbit of the Cluster satellites covers the main transport path of the O+ from the cusp to the plasma sheet, so Cluster is ideal for tracking its velocity changes. However, because the cusp outflow is dispersed according to its velocity as it is transported to the tail, due to the velocity filter effect, the observed changes in beam velocity over the Cluster orbit may simply be the result of the spacecraft accessing different spatial regions and not necessarily evidence of acceleration. Using the Cluster Ion Spectrometry/Composition Distribution Function instrument onboard Cluster, we compare the distribution function of streaming O+ in the tail lobes with the initial distribution function observed over the cusp and reveal that the observations of energetic streaming O+ in the lobes around -20 RE are predominantly due to the velocity filter effect during nonstorm times. During storm times, the cusp distribution is further accelerated. In the plasma sheet boundary layer, however, the average O+ distribution function is above the upper range of the outflow distributions at the same velocity during both storm and nonstorm times, indicating that acceleration has taken place. Some of the velocity increase is in the direction perpendicular to the magnetic field, indicating that the E × B velocity is enhanced. However, there is also an increase in the parallel direction, which could be due to nonadiabatic acceleration at the boundary or wave heating.

  19. Accelerators of future generation

    Kolomenskij, A.A.

    1983-01-01

    A brief review of the prospects of development of various of types accelerator over next 10 to 15 years is given. The following directions are considered: superhign energy proton accelerators and storage rings, electron-positron colliding beams, heavy ion accelerators, medium energy, high-current proton accelerators superhigh power particle beams (electrons light- and heavy ions) for inertial fusion

  20. Future accelerator technology

    Sessler, A.M.

    1986-05-01

    A general discussion is presented of the acceleration of particles. Upon this foundation is built a categorization scheme into which all accelerators can be placed. Special attention is devoted to accelerators which employ a wake-field mechanism and a restricting theorem is examined. It is shown how the theorem may be circumvented. Comments are made on various acceleration schemes

  1. Radio-frequency quadrupole linear accelerator

    Wangler, T.P.; Stokes, R.H.

    1980-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented

  2. Acceleration of superparamagnetic particles with magnetic fields

    Stange, R., E-mail: Robert.stange@tu-dresden.de; Lenk, F.; Bley, T.; Boschke, E.

    2017-04-01

    High magnetic capture efficiency in the context of Biomagnetic Separation (BMS) using superparamagnetic particles (SMPs) requires efficient mixing and high relative velocities between cellular and other targets and SMPs. For this purpose, batch processes or microfluidic systems are commonly used. Here, we analyze the characteristics of an in-house developed batch process experimental setup, the Electromagnetic Sample Mixer (ESM) described earlier. This device uses three electromagnets to increase the relative velocity between SMPs and targets. We carry out simulations of the magnetic field in the ESM and in a simpler paradigmatic setup, and thus were able to calculate the force field acting on the SMPs and to simulate their relative velocities and fluid dynamics due to SMP movement. In this way we were able to show that alternate charging of the magnets induces a double circular stream of SMPs in the ESM, resulting in high relative velocities of SMPs to the targets. Consequently, due to the conservation of momentum, the fluid experiences an acceleration induced by the SMPs. We validated our simulations by microscopic observation of the SMPs in the magnetic field, using a homemade apparatus designed to accommodate a long working-distance lens. By comparing the results of modeling this paradigmatic setup with the experimental observations, we determined that the velocities of the SMPs corresponded to the results of our simulations. - Highlights: • Investigation of a batch process setup for complex forming at Biomagnetic Separation. • Simulation of fluid flow characteristics in this Electro Magnetic Samplemixer. • Simulation of relative velocities between magnetic particles and fluid in the setup. • Simulation of fluid flow induced by the acceleration of magnet particles. • Validation of magnetic fields and flow characteristics in paradigmatic setups. • Reached relative velocity is higher than the sedimentation velocity of the particles • Alternating

  3. DNA fork displacement rates in human cells

    Kapp, L.N.; Painter, R.B.

    1981-01-01

    DNA fork displacement rates were measured in 20 human cell lines by a bromodeoxyuridine-313 nm photolysis technique. Cell lines included representatives of normal diploid, Fanconi's anemia, ataxia telangiectasia, xeroderma pigmentosum, trisomy-21 and several transformed lines. The average value for all the cell lines was 0.53 +- 0.08 μm/min. The average value for individual cell lines, however, displayed a 30% variation. Less than 10% of variation in the fork displacement rate appears to be due to the experimental technique; the remainder is probably due to true variation among the cell types and to culture conditions. (Auth.)

  4. DNA fork displacement rates in human cells

    Kapp, L.N.; Painter, R.B. (California Univ., San Francisco (USA). Lab. of Radiobiology)

    1981-11-27

    DNA fork displacement rates were measured in 20 human cell lines by a bromodeoxyuridine-313 nm photolysis technique. Cell lines included representatives of normal diploid, Fanconi's anemia, ataxia telangiectasia, xeroderma pigmentosum, trisomy-21 and several transformed lines. The average value for all the cell lines was 0.53 +- 0.08 ..mu..m/min. The average value for individual cell lines, however, displayed a 30% variation. Less than 10% of variation in the fork displacement rate appears to be due to the experimental technique; the remainder is probably due to true variation among the cell types and to culture conditions.

  5. Bucket Foundation Response Under Various Displacement Rates

    Vaitkunaite, Evelina; Nielsen, Benjaminn Nordahl; Ibsen, Lars Bo

    2016-01-01

    in a multi-bucket foundation system. The foundation model is at a scale of approximately 1:20 prototype foundation size. The tests are performed in a pressure tank with the foundation model installed in dense sand. Based on the data, the conclusion is that the bucket foundation design in a storm case should......The present testing program aims at showing the pore pressure response around a bucket foundation skirt as well as the load and displacement change due to ten different displacement rates. Research findings are useful for a numerical model calibration focusing on the design of the upwind foundation...

  6. Constant displacement rate testing at elevated temperatures

    Pepe, J.J.; Gonyea, D.C.

    1989-01-01

    A short time test has been developed which is capable of determining the long time notch sensitivity tendencies of CrMoV rotor forging materials. This test is based on Constant Displacement Rate (CDR) testing of a specific notch bar specimen at 1200 0 F at 2 mils/in/hour displacement rate. These data were correlated to conventional smooth and notch bar rupture behavior for a series of CrMoV materials with varying long time ductility tendencies. The purpose of this paper is to describe the details of this new test procedure and some of the relevant mechanics of material information generated during its development

  7. Passive Smoking in a Displacement Ventilated Room

    Bjørn, Erik; Nielsen, Peter V.

    The aim of this research is to see if the displacement ventilation principle can protect a person from exposure to passive tobacco smoking. This is done by full-scale experiments with two breathing thermal manikins, smoke visualisations, and tracer gas measurements. In some situations, exhaled...... smoke will stratify in a certain height due to the vertical temperature gradient. This horizontal layer of exhaled tobacco smoke may lead to exposure. In other situations, the smoke is mixed into the upper zone, and the passive smoker is protected to some extent by the displacement principle...

  8. Performance of displacement ventilation in practice

    Naidenov, K.; Pitchurov, G.; Langkilde, Gunnar

    2002-01-01

    This paper presents results of a field study in offices with displacement ventilation. It comprises detailed physical measurements of the thermal environment and collection of occupants´ response at 227 workplaces. The results, both physical measurements and human response, identified draught...... as the major local discomfort in the rooms with displacement ventilation. Twenty-three percent of the occupants were daily bothered by draught. In some buildings the maintenance personnel tried to improve occupants´ thermal comfort by raising the supply air temperature or office workers themselves blocked...

  9. Results from the RACE [Ring ACceleration Experiment] Compact Torus Acceleration Experiment

    Hammer, J.H.; Hartman, C.W.; Eddleman, J.L.; Kusse, B.

    1987-06-01

    RACE (Ring ACceleration Experiment) is a proof-of-principle experiment aimed at demonstrating acceleration of magnetically confined compact torus plasma rings to directed kinetic energies well in excess of their magnetic and thermal energies. In the course of the first year of operation the following have been observed: successful formation of rings in the RACE geometry; acceleration of rings with large forces, F/sub accelerate/ ∼F/sub equilibrium/ without apparent degradation of the ring structure; peak velocities of ≅2.5 x 10 8 cm/sec; acceleration efficiency of >30% at speeds of 1.5 x 10 8 cm/sec inferred from trajectory and capacitor bank data; kinetic to magnetic energy ratios ∼10 were observed. Experiments in the near future will be aimed at confirmation of the mass/energy measurements by calorimetry and direct density measurements

  10. Online Image-based Monitoring of Soft-tissue Displacements for Radiation Therapy of the Prostate

    Schlosser, Jeffrey; Salisbury, Kenneth; Hristov, Dimitre

    2012-01-01

    Purpose: Emerging prolonged, hypofractionated radiotherapy regimens rely on high-dose conformality to minimize toxicity and thus can benefit from image guidance systems that continuously monitor target position during beam delivery. To address this need we previously developed, as a potential add-on device for existing linear accelerators, a novel telerobotic ultrasound system capable of real-time, soft-tissue imaging. Expanding on this capability, the aim of this work was to develop and characterize an image-based technique for real-time detection of prostate displacements. Methods and Materials: Image processing techniques were implemented on spatially localized ultrasound images to generate two parameters representing prostate displacements in real time. In a phantom and five volunteers, soft-tissue targets were continuously imaged with a customized robotic manipulator while recording the two tissue displacement parameters (TDPs). Variations of the TDPs in the absence of tissue displacements were evaluated, as was the sensitivity of the TDPs to prostate translations and rotations. Robustness of the approach to probe force was also investigated. Results: With 95% confidence, the proposed method detected in vivo prostate displacements before they exceeded 2.3, 2.5, and 2.8 mm in anteroposterior, superoinferior, and mediolateral directions. Prostate pitch was detected before exceeding 4.7° at 95% confidence. Total system time lag averaged 173 ms, mostly limited by ultrasound acquisition rate. False positives (FPs) (FP) in the absence of displacements did not exceed 1.5 FP events per 10 min of continuous in vivo imaging time. Conclusions: The feasibility of using telerobotic ultrasound for real-time, soft-tissue–based monitoring of target displacements was confirmed in vivo. Such monitoring has the potential to detect small clinically relevant intrafractional variations of the prostate position during beam delivery.

  11. The climate velocity of the contiguous United States during the 20th century

    Solomon Z. Dobrowski; John Abatzoglou; Alan K. Swanson; Jonathan A. Greenberg; Alison R. Mynsberge; Zachary A. Holden; Michael K. Schwartz

    2013-01-01

    Rapid climate change has the potential to affect economic, social, and biological systems. A concern for species conservation is whether or not the rate of on-going climate change will exceed the rate at which species can adapt or move to suitable environments. Here we assess the climate velocity (both climate displacement rate and direction) for minimum temperature,...

  12. Introduction to vector velocity imaging

    Jensen, Jørgen Arendt; Udesen, Jesper; Hansen, Kristoffer Lindskov

    Current ultrasound scanners can only estimate the velocity along the ultrasound beam and this gives rise to the cos() factor on all velocity estimates. This is a major limitation as most vessels are close to perpendicular to the beam. Also the angle varies as a function of space and time making ...

  13. Efficiency of a variable displacement open circuit floating cup pump

    Vael, G.E.M.; Achten, P.A.J.; Brink, van den T.L.

    2009-01-01

    The Floating Cup Displacement principle is a relatively new axial piston displacement principle for hydrostatic pumps, motors and transformers. Since its origin in 2001, it has been mainly applied in fixed displacement pump prototypes. At the SICFP’05, a design for a variable displacement open

  14. Railgun armature velocity improvement, SBIR phase 2

    Thurmond, Leo E.; Bauer, David P.

    1992-08-01

    Railgun hypervelocity performance has not been repeatably demonstrated at velocities over 6 km/s. A significant performance limiting phenomena is the formation of secondary current paths in parallel with the main projectile accelerating plasma. A confined plasma armature technique was developed to prevent secondary armature formation. Confinement prevents loss of ionized material from the plasma armature and thereby prevents formation of a low rail-to-rail conductance. We controlled pressure in the confined armature via controlled venting through ports in the rails. Railgun tests with the confined armature show that sealing at the rail-confinement vessel interface is critical and difficult to achieve. Our tests show that during low seal leakage operation secondaries are prevented. However, maintaining good seal for the entire launch is very difficult.

  15. C IV BROAD ABSORPTION LINE ACCELERATION IN SLOAN DIGITAL SKY SURVEY QUASARS

    Grier, C. J.; Brandt, W. N.; Trump, J. R.; Schneider, D. P.; Sun, M.; Beatty, T. G. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Hall, P. B. [Department of Physics and Astronomy, York University, Toronto, ON M3J 1P3 (Canada); Filiz Ak, N. [Faculty of Sciences, Department of Astronomy and Space Sciences, Erciyes University, 38039 Kayseri (Turkey); Anderson, S. F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Green, Paul J. [Harvard Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Vivek, M.; Brownstein, Joel R. [Department of Physics and Astronomy, University of Utah, 115 S. 1400 E., Salt Lake City, UT 84112 (United States); Roman-Lopes, Alexandre, E-mail: grier@psu.edu [Departamento de Fisica, Facultad de Ciencias, Universidad de La Serena, Cisternas 1200, La Serena (Chile)

    2016-06-20

    We present results from the largest systematic investigation of broad absorption line (BAL) acceleration to date. We use spectra of 140 quasars from three Sloan Digital Sky Survey programs to search for global velocity offsets in BALs over timescales of ≈2.5–5.5 years in the quasar rest frame. We carefully select acceleration candidates by requiring monolithic velocity shifts over the entire BAL trough, avoiding BALs with velocity shifts that might be caused by profile variability. The C iv BALs of two quasars show velocity shifts consistent with the expected signatures of BAL acceleration, and the BAL of one quasar shows a velocity-shift signature of deceleration. In our two acceleration candidates, we see evidence that the magnitude of the acceleration is not constant over time; the magnitudes of the change in acceleration for both acceleration candidates are difficult to produce with a standard disk-wind model or via geometric projection effects. We measure upper limits to acceleration and deceleration for 76 additional BAL troughs and find that the majority of BALs are stable to within about 3% of their mean velocities. The lack of widespread acceleration/deceleration could indicate that the gas producing most BALs is located at large radii from the central black hole and/or is not currently strongly interacting with ambient material within the host galaxy along our line of sight.

  16. Global catalog of earthquake rupture velocities shows anticorrelation between stress drop and rupture velocity

    Chounet, Agnès; Vallée, Martin; Causse, Mathieu; Courboulex, Françoise

    2018-05-01

    Application of the SCARDEC method provides the apparent source time functions together with seismic moment, depth, and focal mechanism, for most of the recent earthquakes with magnitude larger than 5.6-6. Using this large dataset, we have developed a method to systematically invert for the rupture direction and average rupture velocity Vr, when unilateral rupture propagation dominates. The approach is applied to all the shallow (z earthquakes of the catalog over the 1992-2015 time period. After a careful validation process, rupture properties for a catalog of 96 earthquakes are obtained. The subsequent analysis of this catalog provides several insights about the seismic rupture process. We first report that up-dip ruptures are more abundant than down-dip ruptures for shallow subduction interface earthquakes, which can be understood as a consequence of the material contrast between the slab and the overriding crust. Rupture velocities, which are searched without any a-priori up to the maximal P wave velocity (6000-8000 m/s), are found between 1200 m/s and 4500 m/s. This observation indicates that no earthquakes propagate over long distances with rupture velocity approaching the P wave velocity. Among the 23 ruptures faster than 3100 m/s, we observe both documented supershear ruptures (e.g. the 2001 Kunlun earthquake), and undocumented ruptures that very likely include a supershear phase. We also find that the correlation of Vr with the source duration scaled to the seismic moment (Ts) is very weak. This directly implies that both Ts and Vr are anticorrelated with the stress drop Δσ. This result has implications for the assessment of the peak ground acceleration (PGA) variability. As shown by Causse and Song (2015), an anticorrelation between Δσ and Vr significantly reduces the predicted PGA variability, and brings it closer to the observed variability.

  17. Diffraction imaging and velocity analysis using oriented velocity continuation

    Decker, Luke

    2014-08-05

    We perform seismic diffraction imaging and velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image slope components using extrapolation in migration velocity in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented efficiently in the Fourier domain. Synthetic and field data experiments show that the proposed algorithm is able to detect accurate time-migration velocities by automatically measuring the flatness of events in dip-angle gathers.

  18. Multiple joint muscle function with ageing: the force-velocity and power-velocity relationships in young and older men.

    Allison, Sarah J; Brooke-Wavell, Katherine; Folland, Jonathan P

    2013-05-01

    Whilst extensive research has detailed the loss of muscle strength with ageing for isolated single joint actions, there has been little attention to power production during more functionally relevant multiple joint movements. The extent to which force or velocity are responsible for the loss in power with ageing is also equivocal. The aim of this study was to evaluate the contribution of force and velocity to the differences in power with age by comparing the force-velocity and power-velocity relationships in young and older men during a multiple joint leg press movement. Twenty-one older men (66 ± 3 years) and twenty-three young men (24 ± 2 years) completed a series of isometric (maximum and explosive) and dynamic contractions on a leg press dynamometer instrumented to record force and displacement. The force-velocity relationship was lower for the older men as reflected by their 19 % lower maximum isometric strength (p decrement in force was greater and therefore the major explanation for the attenuation of power during a functionally relevant multiple joint movement.

  19. Rotational melting in displacive quantum paraelectrics

    Martonak, R.; Tosatti, E.

    1994-06-01

    Displacive quantum paraelectrics are discussed as possible realizations of rotational quantum melting. The phenomenology of SrTiO 3 and KTaO 3 is discussed in this light. Both old and fresh theoretical work on two-dimensional lattice models for quantum paraelectricity is reviewed. (author). 73 refs, 15 figs

  20. Page | 187 DISPLACEMENT AND ENVIRONMENTAL PROTECTION

    Fr. Ikenga

    development remain one of the greatest concerns of human beings globally.4. This urbanization which most often result in conflicts, ethnic violence, communal rife and clashes, and incessant tussle for natural and artificial resources, has also contributed to the displacement of persons. * By Obinna MBANUGO, LLM, BL, ...

  1. Earthquake source model using strong motion displacement

    The strong motion displacement records available during an earthquake can be treated as the response of the earth as the a structural system to unknown forces acting at unknown locations. Thus, if the part of the earth participating in ground motion is modelled as a known finite elastic medium, one can attempt to model the ...

  2. Public policy to address displacement in Mexico

    José Ramón Cossío Díaz

    2014-11-01

    Full Text Available At hearings of the Inter-American Commission on Human Rights in November 2013 on the human rights situation in Mexico, the issue of the internally displaced in particular caught my attention, both due to its current serious level and for its potential impact in the not too distant future.

  3. Insect Wing Displacement Measurement Using Digital Holography

    Aguayo, Daniel D.; Mendoza Santoyo, Fernando; Torre I, Manuel H. de la; Caloca Mendez, Cristian I.

    2008-01-01

    Insects in flight have been studied with optical non destructive techniques with the purpose of using meaningful results in aerodynamics. With the availability of high resolution and large dynamic range CCD sensors the so called interferometric digital holographic technique was used to measure the surface displacement of in flight insect wings, such as butterflies. The wings were illuminated with a continuous wave Verdi laser at 532 nm, and observed with a CCD Pixelfly camera that acquire images at a rate of 11.5 frames per second at a resolution of 1392x1024 pixels and 12 Bit dynamic range. At this frame rate digital holograms of the wings were captured and processed in the usual manner, namely, each individual hologram is Fourier processed in order to find the amplitude and phase corresponding to the digital hologram. The wings displacement is obtained when subtraction between two digital holograms is performed for two different wings position, a feature applied to all consecutive frames recorded. The result of subtracting is seen as a wrapped phase fringe pattern directly related to the wing displacement. The experimental data for different butterfly flying conditions and exposure times are shown as wire mesh plots in a movie of the wings displacement

  4. Microbial adhesion in flow displacement systems

    Busscher, HJ; van der Mei, HC

    Flow displacement systems are superior to many other (static) systems for studying microbial adhesion to surfaces because mass transport and prevailing shear conditions can be adequately controlled and notoriously ill-defined slight rinsing steps to remove so-called "loosely adhering organisms" can

  5. Heterodyne displacement interferometer, insensitive for input polarization

    Meskers, A.J.H.; Spronck, J.W.; Munnig Schmidt, R.H.

    2014-01-01

    Periodic nonlinearity (PNL) in displacement interferometers is a systematic error source that limits measurement accuracy. The PNL of coaxial heterodyne interferometers is highly influenced by the polarization state and orientation of the source frequencies. In this Letter, we investigate this error

  6. Isolated Displaced Fracture of the Lesser Tuberosity

    publication of this report. The authors declare no competing interests. Discussion. A delay in diagnosis of a lesser tuberosity fracture may lead to significant future clinical disability (2). In one such case the patient presented with axillary nerve neuropraxia while another case reported displacement of the biceps tendon (4).

  7. Comb-drive actuators for large displacements

    Legtenberg, Rob; Legtenberg, R.; Groeneveld, A.W.; Elwenspoek, Michael Curt

    The design, fabrication and experimental results of lateral-comb-drive actuators for large displacements at low driving voltages is presented. A comparison of several suspension designs is given, and the lateral large deflection behaviour of clamped-clamped beams and a folded flexure design is

  8. Fiber-optic couplers as displacement sensors

    Baruch, Martin C.; Gerdt, David W.; Adkins, Charles M.

    2003-04-01

    We introduce the novel concept of using a fiber-optic coupler as a versatile displacement sensor. Comparatively long fiber-optic couplers, with a coupling region of approximately 10 mm, are manufactured using standard communication SM fiber and placed in a looped-back configuration. The result is a displacement sensor, which is robust and highly sensitive over a wide dynamic range. This displacement sensor resolves 1-2 μm over distances of 1-1.5 mm and is characterized by the essential absence of a 'spring constant' plaguing other strain gauge-type sensors. Consequently, it is possible to couple to extremely weak vibrations, such as the skin displacement affected by arterial heart beat pulsations. Used as a wrist-worn heartbeat monitor, the fidelity of the arterial pulse signal has been shown to be so high that it is possible to not only determine heartbeat and breathing rates, but to implement a new single-point blood pressure measurement scheme which does not squeeze the arm. In an application as a floor vibration sensor for the non-intrusive monitoring of independently living elderly, the sensor has been shown to resolve the distinct vibration spectra of different persons and different events.

  9. Displacing Media: LCD LAB Artistic Residency

    Filipe Pais

    2012-12-01

    Full Text Available This review refers to an artistic residency which took place at LCD LAB -  CAAA at Guimarães, in March, exploring a strategy for media art called Media Displacement. The text introduces the strategy very briefly and describes the residency's organization, structure, processses and the results produced.

  10. The use of a displacement device negatively affects the performance of dogs (Canis familiaris) in visible object displacement tasks.

    Müller, Corsin A; Riemer, Stefanie; Range, Friederike; Huber, Ludwig

    2014-08-01

    Visible and invisible displacement tasks have been used widely for comparative studies of animals' understanding of object permanence, with evidence accumulating that some species can solve invisible displacement tasks and, thus, reach Piagetian stage 6 of object permanence. In contrast, dogs appear to rely on associative cues, such as the location of the displacement device, during invisible displacement tasks. It remains unclear, however, whether dogs, and other species that failed in invisible displacement tasks, do so because of their inability to form a mental representation of the target object, or simply because of the involvement of a more salient but potentially misleading associative cue, the displacement device. Here we show that the use of a displacement device impairs the performance of dogs also in visible displacement tasks: their search accuracy was significantly lower when a visible displacement was performed with a displacement device, and only two of initially 42 dogs passed the sham-baiting control conditions. The negative influence of the displacement device in visible displacement tasks may be explained by strong associative cues overriding explicit information about the target object's location, reminiscent of an overshadowing effect, and/or object individuation errors as the target object is placed within the displacement device and moves along a spatiotemporally identical trajectory. Our data suggest that a comprehensive appraisal of a species' performance in object permanence tasks should include visible displacement tasks with the same displacement device used in invisible displacements, which typically has not been done in the past.

  11. Structural response of a rail acceleration

    Wang, S.Y.

    1984-01-01

    The transient response of a 0.4 by 0.6 cm rectangular bore rail accelerator was analyzed by a three dimensional finite element code. The copper rail deflected to a peak value of 0.08 mm in compression and then oscillated at an amplitude of 0.02 mm. Simultaneously the insulating side wall of glass fabric base, epoxy resin laminate (G-10) was compressed to a peak value of 0.13 mm and rebounded to a steady state in extension. Projectile pinch or blowby due to the rail extension or compression, respectively, can be identified by examining the time history of the rail displacement. The effect of blowby was most significant at the side wall characterized by mm size displacement in compression. Dynamic stress calculations indicate that the G-10 supporting material behind the rail is subjected to over 21 MPa at which the G-10 could fail if the laminate was not carefully oriented. Results for a polycarbonate resin (Lexan) side wall show much larger displacements and stresses than for G-10. The tradeoff between the transparency of Lexan and the mechanical strength of G-10 for sidewall material is obvious. Displacement calculations from the modal method are smaller than the results from the direct integration method by almost an order of magnitude, because the high frequency effect is neglected. 12 references

  12. Validation of a CFD methodology for positive displacement LVAD analysis using PIV data.

    Medvitz, Richard B; Reddy, Varun; Deutsch, Steve; Manning, Keefe B; Paterson, Eric G

    2009-11-01

    Computational fluid dynamics (CFD) is used to asses the hydrodynamic performance of a positive displacement left ventricular assist device. The computational model uses implicit large eddy simulation direct resolution of the chamber compression and modeled valve closure to reproduce the in vitro results. The computations are validated through comparisons with experimental particle image velocimetry (PIV) data. Qualitative comparisons of flow patterns, velocity fields, and wall-shear rates demonstrate a high level of agreement between the computations and experiments. Quantitatively, the PIV and CFD show similar probed velocity histories, closely matching jet velocities and comparable wall-strain rates. Overall, it has been shown that CFD can provide detailed flow field and wall-strain rate data, which is important in evaluating blood pump performance.

  13. The Relationship between Urban Sprawl and Farmland Displacement in the Pearl River Delta, China

    Shiqiang Du

    2013-12-01

    Full Text Available China is rapidly urbanizing and will inevitably face trade-offs between promoting economic growth through further urbanization and protecting fertile farmland against accelerated urban expansion. This paper presents how this dilemma is being addressed in one of the most rapidly urbanizing regions in China, the Pearl River Delta (PRD, by means of assessing urban growth and farmland dynamic, as well as their complex relationships. Land use maps derived from Landsat imagery for 1990, 2000 and 2010 show a process of accelerated urban sprawl whereby built-up lands have more than quadrupled and scattered centers have merged into megacities. Nonetheless, the land use efficiency is considerably low and is declining relative to Hong Kong and Macau with respect to urban population density. On the other hand, the spreading of urban areas on farmlands causes new farmland reclamation and accelerated deforestation in the hilly surroundings. In addition, the displaced farmlands do not ensure food production because of both reclaiming farmlands on infertile lands and diversifying farming activities from grain production to market-oriented ones. The accelerated urbanization and farmland displacement are driven by profit-oriented development strategy and ineffective land use planning. Our findings demonstrate how spatial analysis can help to investigate the integrated effects of land policies on landscape.

  14. Should tsunami simulations include a nonzero initial horizontal velocity?

    Lotto, Gabriel C.; Nava, Gabriel; Dunham, Eric M.

    2017-08-01

    Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require initial conditions on sea surface height and depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). Full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor confirm that substantial horizontal momentum is imparted to the ocean. However, almost all of that initial momentum is carried away by ocean acoustic waves, with negligible momentum imparted to the tsunami. We also compare tsunami propagation in each simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial velocity. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves from ocean acoustic and seismic waves at some final time, and backpropagating the tsunami waves to their initial state by solving the

  15. Photonic Crystal Laser-Driven Accelerator Structures

    Cowan, Benjamin M.

    2007-01-01

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques

  16. Ionization and pulse lethargy effects in inverse Cherenkov accelerators

    Sprangle, P.; Hubbard, R.F.; Hafizi, B.

    1997-01-01

    Ionization processes limit the accelerating gradient and place an upper limit on the pulse duration of the electromagnetic driver in the inverse Cherenkov accelerator (ICA). Group velocity slippage, i.e., pulse lethargy, on the other hand, imposes a lower limit on the pulse duration. These limits are obtained for two ICA configurations in which the electromagnetic driver (e.g., laser or millimeter wave source) is propagated in a waveguide that is (i) lined with a dielectric material or (ii) filled with a neutral gas. In either configuration the electromagnetic driving field is guided and has an axial electric field with phase velocity equal to the speed of light in vacuum, c. The intensity of the driver in the ICA, and therefore the acceleration gradient, is limited by tunneling and collisional ionization effects. Partial ionization of the dielectric liner or gas can lead to significant modification of the dispersive properties of the waveguide, altering the phase velocity of the accelerating field and causing particle slippage, thus disrupting the acceleration process. An additional limitation on the pulse duration is imposed since the group velocity of the driving pulse is less than c and the pulse slips behind the accelerated electrons. Hence for sufficiently short pulses the electrons outrun the pulse, terminating the acceleration. Limitations on the driver pulse duration and accelerating gradient, due to ionization and pulse lethargy, are estimated for the two ICA configurations. Maximum accelerating gradients and pulse durations are presented for a 10 μm, 1 mm, and 1 cm wavelength electromagnetic driver. The combination of ionization and pulse lethargy effects impose severe limitations on the maximum energy gain in inverse Cherenkov accelerators. copyright 1997 The American Physical Society

  17. Radial velocity asymmetries from jets with variable velocity profiles

    Cerqueira, A. H.; Vasconcelos, M. J.; Velazquez, P. F.; Raga, A. C.; De Colle, F.

    2006-01-01

    We have computed a set of 3-D numerical simulations of radiatively cooling jets including variabilities in both the ejection direction (precession) and the jet velocity (intermittence), using the Yguazu-a code. In order to investigate the effects of jet rotation on the shape of the line profiles, we also introduce an initial toroidal rotation velocity profile. Since the Yguazu-a code includes an atomic/ionic network, we are able to compute the emission coefficients for several emission lines, and we generate line profiles for the Hα, [O I]λ6300, [S II]λ6716 and [N II]λ6548 lines. Using initial parameters that are suitable for the DG Tau microjet, we show that the computed radial velocity shift for the medium-velocity component of the line profile as a function of distance from the jet axis is strikingly similar for rotating and non-rotating jet models

  18. HTR-10GT AMBs displacement sensor design

    Shi Zhengang; Zha Meisheng; Zhao Lei; Sun Zhuo

    2005-01-01

    The 10 MW high temperature gas-cooled test module reactor (HTR-10GT) with the core made of spherical fuel elements was designed and constructed by the Institute of Nuclear and New Energy Technology of Tsinghua University in China. In the HTR-10GT, turbo-compressor and generator rotors are connected by a flexible coupling. The rotors, restricted by actual instruments and working environment, must be supported without any contact and lubrication. Active magnetic bearing (AMB), known as its advantages over the conventional bearings., such as contact-free, no-lubricating and active damping vibration, is the best way to suspend and stabilize the position of rotors of HTR-10GT. Each rotor is suspended by two radial and one axial AMBs. The radial AMB's radial gap is 0.15 mm considering the gap of 0.4 mm between the compressor stator and blades in order to protect the compressor. The control system controls the rotor position to meet the required gaps between rotor and stator through windings current. All the position information concerning radial and axial AMB is generated by sensors for measuring the displacement of the levitated body. Some typical sensors, i.e. eddy current displacement sensor, capacitive displacement sensor, can provide position information, but, quite often, unsatisfactory anti-jamming, which is a key issue for AMB systems near generator and other electric devices in HTR-10GT. Therefore, a kind of new type sensor is designed to measure the radial and axial displacements and the vibration of the rotors. This paper focuses on the design characteristics of the HTR-10GT AMBs displacement sensors and introduction of the related experiments to demonstrate its performance. (authors)

  19. In situ acceleration in extragalactic radio jets

    Bicknell, G.V.; Melrose, D.B.

    1982-01-01

    We have examined the energy dissipated by large-scale turbulence in an extragalactic jet. The turbulence is driven by a shear instability which does not disrupt the jet. Fluid theory should be used to treat the evolution of the turbulence, and this allows us to estimate the rate of dissipation without detailed knowledge of the dissipation process. Dissipation occurs due to Fermi acceleration at a scale length approx.10 -3 R and that resonant acceleration plays no role. The Alfvenic component in the turbulent spectrum is dissipated by first being converted into magneto-acoustic waves. An alternative dissipation process due to formation of weak shocks is shown to be equivalent in some respects to Fermi acceleration. Dissipation in the thermal gas should not exceed that due to Fermi acceleration. The effect of Fermi acceleration, adiabatic losses, and radiative losses on an initial power-law distribution with an upper cutoff is studied. Radio emission extending to at least 100 GHz is shown to be possible, and no spectral index gradients are introduced by the acceleration. The upper cutoff can increase due to the acceleration alone or when the acceleration is balanced by radiative losses. The northern jet in NGC 315 is studied in detail. Using our model for the acceleration, we estimate a jet velocity > or approx. =5000 km s -1 with Mach number not much greater than 1, and a density -4 f -1 cm -3 at the turn-on of the jet at 6 cm, where 0.05 5 yr, and it is predicted that the radius of the jet at the turn-on point should vary with frequency either as ν/sup 2/3/ or as ν/sup 3/2/, or there may be no frequency dependence, contingent upon the details of the acceleration

  20. Standardization of the cumulative absolute velocity

    O'Hara, T.F.; Jacobson, J.P.

    1991-12-01

    EPRI NP-5930, ''A Criterion for Determining Exceedance of the Operating Basis Earthquake,'' was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set

  1. Uncertainty on PIV mean and fluctuating velocity due to bias and random errors

    Wilson, Brandon M; Smith, Barton L

    2013-01-01

    Particle image velocimetry is a powerful and flexible fluid velocity measurement tool. In spite of its widespread use, the uncertainty of PIV measurements has not been sufficiently addressed to date. The calculation and propagation of local, instantaneous uncertainties on PIV results into the measured mean and Reynolds stresses are demonstrated for four PIV error sources that impact uncertainty through the vector computation: particle image density, diameter, displacement and velocity gradients. For the purpose of this demonstration, velocity data are acquired in a rectangular jet. Hot-wire measurements are compared to PIV measurements with velocity fields computed using two PIV algorithms. Local uncertainty on the velocity mean and Reynolds stress for these algorithms are automatically estimated using a previously published method. Previous work has shown that PIV measurements can become ‘noisy’ in regions of high shear as well as regions of small displacement. This paper also demonstrates the impact of these effects by comparing PIV data to data acquired using hot-wire anemometry, which does not suffer from the same issues. It is confirmed that flow gradients, large particle images and insufficient particle image displacements can result in elevated measurements of turbulence levels. The uncertainty surface method accurately estimates the difference between hot-wire and PIV measurements for most cases. The uncertainty based on each algorithm is found to be unique, motivating the use of algorithm-specific uncertainty estimates. (paper)

  2. Experimental studies of the laser-controlled collective ion accelerator

    Destler, W.W.; Rodgers, J.; Segalov, Z.

    1989-01-01

    Detailed experimental studies of a collective acceleration experiment in which a time-sequenced laser-generated ionization channel is used to control the propagation of an intense relativistic electron beamfront are presented. Ions trapped in the potential well at the beamfront are accelerated as the velocity of the beamfront is increased in a manner controlled by the time-dependent axial extent of the ionization channel. Beamfront propagation data for two different accelerating gradients are presented, together with results of ion acceleration studies for both gradients

  3. Fractals control in particle's velocity

    Zhang Yongping; Liu Shutang; Shen Shulan

    2009-01-01

    Julia set, a fractal set of the literature of nonlinear physics, has significance for the engineering applications. For example, the fractal structure characteristics of the generalized M-J set could visually reflect the change rule of particle's velocity. According to the real world requirement, the system need show various particle's velocity in some cases. Thus, the control of the nonlinear behavior, i.e., Julia set, has attracted broad attention. In this work, an auxiliary feedback control is introduced to effectively control the Julia set that visually reflects the change rule of particle's velocity. It satisfies the performance requirement of the real world problems.

  4. Southern high-velocity stars

    Augensen, H.J.; Buscombe, W.

    1978-01-01

    Using the model of the Galaxy presented by Eggen, Lynden-Bell and Sandage (1962), plane galactic orbits have been calculated for 800 southern high-velocity stars which possess parallax, proper motion, and radial velocity data. The stars with trigonometric parallaxes were selected from Buscombe and Morris (1958), supplemented by more recent spectroscopic data. Photometric parallaxes from infrared color indices were used for bright red giants studied by Eggen (1970), and for red dwarfs for which Rodgers and Eggen (1974) determined radial velocities. A color-color diagram based on published values of (U-B) and (B-V) for most of these stars is shown. (Auth.)

  5. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  6. Measurement of pressure distributions and velocity fields of water jet intake flow

    Jeong, Eun Ho; Yoon, Sang Youl; Kwon, Seong Hoon; Chun, Ho Hwan; Kim, Mun Chan; Kim, Kyung Chun

    2002-01-01

    Waterjet propulsion system can avoid cavitation problem which is being arised conventional propeller propulsion system. The main issue of designing waterjet system is the boundary layer separation at ramp and lib of water inlet. The flow characteristics are highly depended on Jet to Velocity Ratio(JVR) as well as the intake geometry. The present study is conducted in a wind tunnel to provide accurate pressure destribution at the inlet wall and velocity field of the inlet and exit planes. Particle image velocimetry technique is used to obtain detail velocity fields. Pressure distributions and velocity field are discussed with accelerating and deaccelerating flow zones and the effect of JVR

  7. Sound Velocity in Soap Foams

    Wu Gong-Tao; Lü Yong-Jun; Liu Peng-Fei; Li Yi-Ning; Shi Qing-Fan

    2012-01-01

    The velocity of sound in soap foams at high gas volume fractions is experimentally studied by using the time difference method. It is found that the sound velocities increase with increasing bubble diameter, and asymptotically approach to the value in air when the diameter is larger than 12.5 mm. We propose a simple theoretical model for the sound propagation in a disordered foam. In this model, the attenuation of a sound wave due to the scattering of the bubble wall is equivalently described as the effect of an additional length. This simplicity reasonably reproduces the sound velocity in foams and the predicted results are in good agreement with the experiments. Further measurements indicate that the increase of frequency markedly slows down the sound velocity, whereas the latter does not display a strong dependence on the solution concentration

  8. Settling velocities in batch sedimentation

    Fricke, A.M.; Thompson, B.E.

    1982-10-01

    The sedimentation of mixtures containing one and two sizes of spherical particles (44 and 62 μm in diameter) was studied. Radioactive tracing with 57 Co was used to measure the settling velocities. The ratio of the settling velocity U of uniformly sized particles to the velocity predicted to Stokes' law U 0 was correlated to an expression of the form U/U 0 = epsilon/sup α/, where epsilon is the liquid volume fraction and α is an empirical constant, determined experimentally to be 4.85. No effect of viscosity on the ratio U/U 0 was observed as the viscosity of the liquid medium was varied from 1x10 -3 to 5x10 -3 Pa.s. The settling velocities of particles in a bimodal mixture were fit by the same correlation; the ratio U/U 0 was independent of the concentrations of different-sized particles

  9. Topology dependent epidemic spreading velocity in weighted networks

    Duan, Wei; Qiu, Xiaogang; Quax, Rick; Lees, Michael; Sloot, Peter M A

    2014-01-01

    Many diffusive processes occur on structured networks with weighted links, such as disease spread by airplane transport or information diffusion in social networks or blogs. Understanding the impact of weight-connectivity correlations on epidemic spreading in weighted networks is crucial to support decision-making on disease control and other diffusive processes. However, a real understanding of epidemic spreading velocity in weighted networks is still lacking. Here we conduct a numerical study of the velocity of a Reed–Frost epidemic spreading process in various weighted network topologies as a function of the correlations between edge weights and node degrees. We find that a positive weight-connectivity correlation leads to a faster epidemic spreading compared to an unweighted network. In contrast, we find that both uncorrelated and negatively correlated weight distributions lead to slower spreading processes. In the case of positive weight-connectivity correlations, the acceleration of spreading velocity is weak when the heterogeneity of weight distribution increases. (paper)

  10. High-velocity winds from a dwarf nova during outburst

    Cordova, F. A.; Mason, K. O.

    1982-01-01

    An ultraviolet spectrum of the dwarf nova TW Vir during an optical outburst shows shortward-shifted absorption features with edge velocities as high as 4800 km/s, about the escape velocity of a white dwarf. A comparison of this spectrum with the UV spectra of other cataclysmic variables suggests that mass loss is evident only for systems with relatively high luminosities (more than about 10 solar luminosities) and low inclination angles with respect to the observer's line of sight. The mass loss rate for cataclysmic variables is of order 10 to the -11th solar mass per yr; this is from 0.01 to 0.001 of the mass accretion rate onto the compact star in the binary. The mass loss may occur by a mechanism similar to that invoked for early-type stars, i.e., radiation absorbed in the lines accelerates the accreting gas to the high velocities observed.

  11. Fast Slip Velocity in a High-Entropy Alloy

    Rizzardi, Q.; Sparks, G.; Maaß, R.

    2018-04-01

    Due to fluctuations in nearest-neighbor distances and chemistry within the unit cell, high-entropy alloys are believed to have a much higher resistance to dislocation motion than pure crystals. Here, we investigate the coarse-grained dynamics of a number of dislocations being active during a slip event. We found that the time-resolved dynamics of slip is practically identical in Au and an Al0.3CoCrFeNi high-entropy alloy, but much faster than in Nb. Differences between the FCC-crystals are seen in the spatiotemporal velocity profile, with faster acceleration and slower velocity relaxation in the high-entropy alloy. Assessing distributions that characterize the intermittently evolving plastic flow reveals material-dependent scaling exponents for size, duration, and velocity-size distributions. The results are discussed in view of the underlying dislocation mobility.

  12. Age--velocity-dispersion relation in the solar neighborhood

    Carlberg, R.G.; Dawson, P.C.; Hsu, T.; VandenBerg, D.A.

    1985-01-01

    The age--velocity-dispersion relation for stars in the solar neighborhood is examined as an indicator of the dominant acceleration mechanism of the stars and the formation history of the local disk. Twarog's sample of F stars, for which ages and photometric distances can be determined, is combined with astrometric data to obtain tangential velocities of a set of stars with a large age range. The resulting age--velocity-dispersion relation rises fairly steeply for stars less than 6 Gyr old, thereafter becoming nearly constant with age. These data are consistent with a simple model in which no local disk is initially present, following which stars are born at a constant rate in time and heated by transient spiral waves. The corresponding age-metallicity relation complements this dynamical measure of the formation history of the disk. The use of new stellar models and a revised metallicity calibration leads to quantitative differences from previous work

  13. Development of a high velocity rain erosion test method

    Chung, Dong Teak; Jin, Doo Han [Korea University of Technology and Education, Cheonan (Korea, Republic of); Kang, Hyung [Agency for Defense Development, Daejeon (Korea, Republic of)

    2009-07-01

    The nose of a missile, flying through raining region with a supersonic speed, is subjected to the rain erosion because the nose is made of a brittle ceramic material. A simple yet very effective rain erosion test method is developed. The sabot assembly similar to the hypodermic syringe carries specific amount of water is launched by a low pressure air gun. After the stopper stop the sabot assembly by impact, the steel plunger continues moving toward to squeeze the silicon rubber in front. The pressurized silicon rubber then is squeezed through the orifice in front of the sabot at high velocity, thus, accelerates the water droplet to higher velocity. The droplet velocity up to 800m/s is successfully attained using a low pressure air gun. The ceramic specimen assembly is placed in front of the high speed water droplet and the rain erosion damage on the surface of the specimen is observed.

  14. Variation of Quench Propagation Velocities in YBCO Cables

    Härö, E.; Stenvall, A.; 10.1007/s10948-015-2976-y

    2015-01-01

    changes during the quench. Due to the large temperature margin between the operation and the current sharing temperatures, the normal zone does not propagate with the temperature front. This means that the temperature will rise in a considerably larger volume when compared to the quenched volume. Thus, the evolution of the temperature distribution below current sharing temperature Tcs after the quench onset affects the normal zone propagation velocity in HTS more than in LTS coils. This can be seen as an acceleration of the quench propagation velocities while the quench evolves when margin to Tcs is high. In this paper we scrutinize quench propagation in a stack of YBCO cables with an in-house finite element method software which solves the heat diffusion equation. We compute the longitudinal and transverse normal zone propagation velocities at various distances from the hot spot to demonstrate the distance-variation...

  15. Radio frequency focused interdigital linear accelerator

    Swenson, Donald A.; Starling, W. Joel

    2006-08-29

    An interdigital (Wideroe) linear accelerator employing drift tubes, and associated support stems that couple to both the longitudinal and support stem electromagnetic fields of the linac, creating rf quadrupole fields along the axis of the linac to provide transverse focusing for the particle beam. Each drift tube comprises two separate electrodes operating at different electrical potentials as determined by cavity rf fields. Each electrode supports two fingers, pointing towards the opposite end of the drift tube, forming a four-finger geometry that produces an rf quadrupole field distribution along its axis. The fundamental periodicity of the structure is equal to one half of the particle wavelength .beta..lamda., where .beta. is the particle velocity in units of the velocity of light and .lamda. is the free space wavelength of the rf. Particles are accelerated in the gaps between drift tubes. The particle beam is focused in regions inside the drift tubes.

  16. Conflict, displacement and health in the Middle East.

    Mowafi, Hani

    2011-01-01

    Displacement is a hallmark of modern humanitarian emergencies. Displacement itself is a traumatic event that can result in illness or death. Survivors face challenges including lack of adequate shelter, decreased access to health services, food insecurity, loss of livelihoods, social marginalisation as well as economic and sexual exploitation. Displacement takes many forms in the Middle East and the Arab World. Historical conflicts have resulted in long-term displacement of Palestinians. Internal conflicts have driven millions of Somalis and Sudanese from their homes. Iraqis have been displaced throughout the region by invasion and civil strife. In addition, large numbers of migrants transit Middle Eastern countries or live there illegally and suffer similar conditions as forcibly displaced people. Displacement in the Middle East is an urban phenomenon. Many displaced people live hidden among host country populations in poor urban neighbourhoods - often without legal status. This represents a challenge for groups attempting to access displaced populations. Furthermore, health information systems in host countries often do not collect data on displaced people, making it difficult to gather data needed to target interventions towards these vulnerable populations. The following is a discussion of the health impacts of conflict and displacement in the Middle East. A review was conducted of published literature on migration and displacement in the region. Different cases are discussed with an emphasis on the recent, large-scale and urban displacement of Iraqis to illustrate aspects of displacement in this region.

  17. Measurement of interfacial displacement of a liquid film in microchannels using laser focus displacement meter

    Hazuku, Tatsuya; Fukamachi, Norihiro; Takamasa, Tomoji; Hibiki, Takashi

    2004-01-01

    This paper presents a new method for measuring the interfacial displacement of a liquid film in microchannels using a laser focus displacement meter (LFD). The purpose of the study is to clarify the effectiveness of the new method for obtaining detailed information concerning interfacial displacement, especially in the case of a thin liquid film, in micro- and mini-channels. To prevent the tube wall signal from disturbing that of the gas-liquid interface, a fluorocarbon tube with water box was used; the refraction index of this device is same as that for water. With this method, accurate instantaneous measurements of interfacial displacement of the liquid film were achieved. The error caused by refraction of the laser beam passing through the acrylic water box and fluorocarbon tube was estimated analytically and experimentally. The formulated analytical equation can estimate the real interface displacement using measured displacement in a fluorocarbon tube of 25 μm to 2.0 mm I.D. A preliminary test using fluorocarbon tubes of 1 and 2 mm I.D. showed that the corrected interface displacement calculated by the equation agreed with real displacement within a 1% margin of error. It was also confirmed that the LFD in the system could measure a liquid film of 0.25 μm at the thinnest. We made simultaneous measurements of the interface in fluorocarbon tubes of 0.5 and 1 mm I.D. using the LFD and a high-speed video camera with a microscope. These showed that the LFD could measure the interface of a liquid film with high spatial and temporal resolution during annular, slug, and piston flow regimes. The data also clarified the existence of a thin liquid film less than 1 μm in thickness in slug and annular flow regions. (author)

  18. A case study on displacement analysis of Vasa warship

    Eshagh, Mehdi; Johansson, Filippa; Karlsson, Lenita; Horemuz, Milan

    2018-04-01

    Monitoring deformation of man-made structures is very important to prevent them from a risk of collapse and save lives. Such a process is also used for monitoring change in historical objects, which are deforming continuously with time. An example of this is the Vasa warship, which was under water for about 300 years. The ship was raised from the bottom of the sea and is kept in the Vasa museum in Stockholm. A geodetic network with points on the museum building and the ship's body has been established and measured for 12 years for monitoring the ship's deformation. The coordinate time series of each point on the ship and their uncertainties have been estimated epoch-wisely. In this paper, our goal is to statistically analyse the ship's hull movements. By fitting a quadratic polynomial to the coordinate time series of each point of the hull, its acceleration and velocity are estimated. In addition, their significance is tested by comparing them with their respective estimated errors after the fitting. Our numerical investigations show that the backside of the ship, having highest elevation and slope, has moved vertically faster than the other places by a velocity and an acceleration of about 2 mm/year and 0.1 mm/year2, respectively and this part of the ship is the weakest with a higher risk of collapse. The central parts of the ship are more stable as the ship hull is almost vertical and closer to the floor. Generally, the hull is moving towards its port and downwards

  19. Validation of color Doppler sonography for evaluating relative displacement between the flexor tendon and subsynovial connective tissue.

    Tat, Jimmy; Kociolek, Aaron M; Keir, Peter J

    2015-04-01

    A common pathologic finding in carpal tunnel syndrome is fibrosis and thickening of the subsynovial connective tissue. This finding suggests an etiology of excessive shear forces, with relative longitudinal displacement between the flexor tendon and adjacent subsynovial connective tissue. The purpose of this study was to validate color Doppler sonography for measurement of tendon displacement over time. Eight unmatched fresh frozen cadaver arms were used to evaluate color Doppler sonography for measurement of tendon displacement. The middle flexor digitorum superficialis tendon was moved through a physiologic excursion of 20 mm at 3 different tendon velocities (50, 100, and 150 mm/s). We found that color Doppler sonography provided accurate measurement of tendon displacement, with absolute errors of -0.05 mm (50 mm/s), -1.24 mm (100 mm/s), and -2.36 mm (150 mm/s) on average throughout the tendon excursion range. Evaluating relative displacement between the tendon and subsynovial connective tissue during finger flexion-extension movements also offered insight into the gliding mechanism of the subsynovial connective tissue. During flexion, we observed a curvilinear increase in relative displacement, with greater differential motion at the end range of displacement, likely due to the sequential stretch of the fibrils between successive layers of the subsynovial connective tissue. In extension, there was a linear return in relative displacement, suggesting a different unloading mechanism characterized by uniform relaxation of fibrils. We demonstrated the validity of color Doppler displacement for use in the evaluation of relative motion. Color Doppler sonography is useful in our understanding of the behavior of the subsynovial connective tissue during tendon excursion, which may elucidate the role of finger motion in the etiology of shear injury. © 2015 by the American Institute of Ultrasound in Medicine.

  20. Other people's accelerators

    Anon.

    1987-06-15

    The first report from the Washington Accelerator Conference concentrated on news from the particle physics centres. But the bulk of the Conference covered the use of accelerators in other fields, underlining this valuable spinoff from particle physics.

  1. Improved plasma accelerator

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  2. The electron accelerator Ridgetron

    Hayashizaki, N.; Hattori, T.; Odera, M.; Fujisawa, T.

    1999-01-01

    Many electron accelerators of DC or RF type have been widely used for electron beam irradiation (curing, crosslinking of polymers, sterilization of medical disposables, preservation of food, etc.). Regardless of the acceleration energy, the accelerators to be installed in industrial facilities, have to satisfy the requires of compact size, low power consumption and stable operation. The DC accelerator is realized very compact in the energy under 300 keV, however, it is large to prevent the discharge of an acceleration column in the energy over 300 keV. The RF electron accelerator Ridgetron has been developed to accelerate the continuous beam of the 0.5-10 MeV range in compact space. It is the first example as an electron accelerator incorporated a ridged RF cavity. A prototype system of final energy of 2.5 MeV has been studied to confirm the feasibility at present

  3. Unified accelerator libraries

    Malitsky, Nikolay; Talman, Richard

    1997-01-01

    A 'Universal Accelerator Libraries' (UAL) environment is described. Its purpose is to facilitate program modularity and inter-program and inter-process communication among heterogeneous programs. The goal ultimately is to facilitate model-based control of accelerators

  4. YEREVAN: Acceleration workshop

    Anon.

    1989-01-01

    Sponsored by the Yerevan Physics Institute in Armenia, a Workshop on New Methods of Charged Particle Acceleration in October near the Nor Amberd Cosmic Ray Station attracted participants from most major accelerator centres in the USSR and further afield

  5. San Francisco Accelerator Conference

    Southworth, Brian

    1991-01-01

    'Where are today's challenges in accelerator physics?' was the theme of the open session at the San Francisco meeting, the largest ever gathering of accelerator physicists and engineers

  6. Large tandem accelerators

    Jones, C.M.

    1976-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of tandem accelerators designed to operate at maximum terminal potentials in the range 14 to 30 MV. In addition, a number of older tandem accelerators are now being significantly upgraded to improve their heavy ion performance. Both of these developments have reemphasized the importance of negative heavy ion sources. The new large tandem accelerators are described, and the requirements placed on negative heavy ion source technology by these and other tandem accelerators used for the acceleration of heavy ions are discussed. First, a brief description is given of the large tandem accelerators which have been completed recently, are under construction, or are funded for construction, second, the motivation for construction of these accelerators is discussed, and last, criteria for negative ion sources for use with these accelerators are presented

  7. Vp x B acceleration

    Sugihara, Ryo.

    1987-05-01

    A unique particle acceleration by an electrostatic (ES) wave, a magnetosonic shock wave as well as an electromagnetic (EM) wave is reviewed. The principle of the acceleration is that when a charged particle is carried across an external magnetic field the charge feels a DC field (the Lorentz force) and is accelerated. The theory for the ES wave acceleration is experimentally verified thought it is semi-quantitative. The shock acceleration is extensively studied theoretically and in a particle simulation method and the application is extended to phenomena in interplanetary space. The EM wave acceleration is based on a trapping in a moving neutral sheet created by the wave magnetic field and the external magnetic field, and the particle can be accelerated indefinitely. A brief sketch on a slow-wave-structure for this acceleration will be given. (author)

  8. Accelerator-timing system

    Timmer, E.; Heine, E.

    1985-01-01

    Along the NIKHEF accelerator in Amsterdam (Netherlands), at several places a signal is needed for the sychronisation of all devices with the acceleration process. In this report, basic principles and arrangements of this timing system are described

  9. Linear accelerator: A concept

    Mutzberg, J.

    1972-01-01

    Design is proposed for inexpensive accelerometer which would work by applying pressure to fluid during acceleration. Pressure is used to move shuttle, and shuttle movement is sensed and calibrated to give acceleration readings.

  10. Remarks about the displaced spectra techniques

    Behringer, K.; Pineyro, J.

    1989-01-01

    In a recent paper a new method, called displaced spectra techniques, was presented for distinguishing between sinusoidal components and narrowband random noise contributions in otherwise random noise data. It is based on Fourier transform techniques, and uses the power spectral density (PSD) and a newly-introduced second-order displaced power spectra density (SDPSD) function. In order to distinguish between the two peak types, a validation criterion has been established. In this note, three topics are covered: a) improved numerical data for the validation criterion are given by using the refined estimation procedure of the PSD and SDPSD functions by the Welch method; b) the validation criterion requires the subtraction of the background below the peaks. A semiautomatic procedure is described; c) it was observed that peaks in the real part of the SDPSD function can be accompanied by fine structure phenomena which are unresolved in the PSD function. A few remarks are made about this problem. (author)

  11. OSPAR 30'' displacement; Esvaziamento do OSPAR 30''

    Rocha, Jose Carlos [White Martins Gases Industriais do Nordeste S.A., Recife, PE (Brazil); Souza, Antonio Geraldo de [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Crude oil pipeline OSPAR that unites Sao Francisco do Sul-SC to Araucaria-PR, with 30 inches in diameter and extension of 118 km (74 mi) was displaced in May 2004. Nitrogen at high flow rate and a pig were used to remove the crude oil, liberating the line to maintenance. Logistic restrictions prevented that the displacement followed the normal flow direction, so the option was to do the job in the reverse direction. To make viable our operation, a maneuver was performed; which we suppose was never done before in Brazil, at an intermediate pumping station, allowing a pressure reduction at the line end, maintaining it at permissible levels. Despite logistical and operational difficulties, the job was performed with success in 47 hours. (author)

  12. Lepton flavor violation with displaced vertices

    Julian Heeck

    2018-01-01

    Full Text Available If light new physics with lepton-flavor-violating couplings exists, the prime discovery channel might not be ℓ→ℓ′γ but rather ℓ→ℓ′X, where the new boson X could be an axion, majoron, familon or Z′ gauge boson. The most conservative bound then comes from ℓ→ℓ′+inv, but if the on-shell X can decay back into leptons or photons, displaced-vertex searches could give much better limits. We show that only a narrow region in parameter space allows for displaced vertices in muon decays, μ→eX,X→γγ,ee, whereas tauon decays can have much more interesting signatures.

  13. Personal Exposure in Displacement Ventilated Rooms

    Brohus, Henrik; Nielsen, Peter Vilhelm

    1996-01-01

    in the lower part of the room close to the occupant. A personal exposure model for displacement ventilated rooms is proposed. The model takes the influence of gradients and the human thermal boundary layer into account. Two new quantities describing the interaction between a person and the ventilation......Personal exposure in a displacement ventilated room is examined. The stratified flow and the considerable concentration gradients necessitate an improvement of the widely used fully mixing compartmental approach. The exposure of a seated and a standing person in proportion to the stratification...... contaminant sources, this entrainment improves the indoor air quality. Measurements of exposure due to a passive contaminant source show a significant dependence on the flow field as well as on the contaminant source location. Poor system performance is found in the case of a passive contaminant released...

  14. Neogene displacements in the Solomon Islands Arc

    Ridgway, J.

    1987-02-01

    The geology and present configuration of the Solomon Island arc can be explained in terms of the Neogene displacement of a single linear chain of islands. The central part of an original arc consisting of Bougainville, Choiseul, Santa Ysabel, Guadalcanal and San Cristobal was displaced to the northeast as a consequence of the attempted subduction of the Woodlark spreading system. Malaita arose on the northeastern side of the arc as a result of interaction between the arc and the Pacific Ocean floor and the volcanic islands of the New Georgia group formed to the southwest in response to the subduction of a spreading ridge, thus giving rise to the present double chain structure of the arc.

  15. Boron isotopic enrichment by displacement chromatography

    Mohapatra, K.K.; Bose, Arun

    2014-01-01

    10 B enriched boron is used in applications requiring high volumetric neutron absorption (absorption cross section- 3837 barn for thermal and 1 barn for 1 MeV fast neutron). It is used in fast breeder reactor (as control rod material), in neutron counter, in Boron Neutron Capture Therapy etc. Owing to very small separation factor, boron isotopic enrichment is a complex process requiring large number of separation stages. Heavy Water Board has ventured in industrial scale production of 10 B enriched boron using Exchange Distillation Process as well as Ion Displacement Chromatography Process. Ion Displacement Chromatography process is used in Boron Enrichment Plant at HWP, Manuguru. It is based on isotopic exchange between borate ions (B(OH) 4 - ) on anion exchange resin and boric acid passing through resin. The isotopic exchange takes place due to difference in zero point energy of 10 B and 11 B

  16. Heavy ion accelerators

    Schmelzer, C.

    1974-01-01

    This review of the present state of work on heavy-ion accelerators pays particular attention to the requirements for nuclear research. It is divided into the following sections: single-particle versus collective acceleration, heavy-ion accelerators, beam quality, and a status report on the UNILAC facility. Among the topics considered are the recycling cyclotron, linacs with superconducting resonators, and acceleration to the GeV/nucleon range. (8 figures, 2 tables) (U.S.)

  17. Accelerators at school

    Anon.

    1986-01-01

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required

  18. Accelerators at school

    Anon.

    1986-06-15

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required.

  19. Accelerators for Medicine

    CERN. Geneva

    2018-01-01

    This lecture will review the different applications of particle accelerators to the medical field, from cancer treatment with beams of accelerator-produced particles (photons, electrons, protons, ions and neutrons) to the generation of radioactive isotopes used in medical diagnostics, in cancer therapy and in the new domain of theragnostics. For each application will be outlined the state of the art, the potential, and the accelerator challenges to be faced to meet the increasing demand for therapeutic procedures based on accelerators.

  20. Large electrostatic accelerators

    Jones, C.M.

    1984-01-01

    The paper is divided into four parts: a discussion of the motivation for the construction of large electrostatic accelerators, a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year

  1. Particle beam accelerator

    Turner, N.L.

    1982-01-01

    A particle beam accelerator is described which has several electrodes that are selectively short circuited together synchronously with changes in the magnitude of a DC voltage applied to the accelerator. By this method a substantially constant voltage gradient is maintained along the length of the unshortened electrodes despite variations in the energy applied to the beam by the accelerator. The invention has particular application to accelerating ion beams that are implanted into semiconductor wafers. (U.K.)

  2. Superconducting accelerator technology

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  3. Applications of particle accelerators

    Barbalat, O.

    1994-01-01

    Particle accelerators are now widely used in a variety of applications for scientific research, applied physics, medicine, industrial processing, while possible utilisation in power engineering is envisaged. Earlier presentations of this subject, given at previous CERN Accelerator School sessions have been updated with papers contributed to the first European Conference on Accelerators in Applied Research and Technology (ECAART) held in September 1989 in Frankfurt and to the Second European Particle Accelerator Conference in Nice in June 1990. (orig.)

  4. Coding of Velocity Storage in the Vestibular Nuclei

    Sergei B. Yakushin

    2017-08-01

    Full Text Available Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO and vestibular-pause-saccade (VPS neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46% code horizontal component of velocity in head coordinates, while the other half (54% changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral, providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing

  5. Acceleration and volumetric strain generated by the Parkfield 2004 earthquake on the GEOS strong-motion array near Parkfield, California

    Borcherdt, Rodger D.; Johnston, Malcolm J.S.; Dietel, Christopher; Glassmoyer, Gary; Myren, Doug; Stephens, Christopher

    2004-01-01

    An integrated array of 11 General Earthquake Observation System (GEOS) stations installed near Parkfield, CA provided on scale broad-band, wide-dynamic measurements of acceleration and volumetric strain of the Parkfield earthquake (M 6.0) of September 28, 2004. Three component measurements of acceleration were obtained at each of the stations. Measurements of collocated acceleration and volumetric strain were obtained at four of the stations. Measurements of velocity at most sites were on scale only for the initial P-wave arrival. When considered in the context of the extensive set of strong-motion recordings obtained on more than 40 analog stations by the California Strong-Motion Instrumentation Program (Shakal, et al., 2004 http://www.quake.ca.gov/cisn-edc) and those on the dense array of Spudich, et al, (1988), these recordings provide an unprecedented document of the nature of the near source strong motion generated by a M 6.0 earthquake. The data set reported herein provides the most extensive set of near field broad band wide dynamic range measurements of acceleration and volumetric strain for an earthquake as large as M 6 of which the authors are aware. As a result considerable interest has been expressed in these data. This report is intended to describe the data and facilitate its use to resolve a number of scientific and engineering questions concerning earthquake rupture processes and resultant near field motions and strains. This report provides a description of the array, its scientific objectives and the strong-motion recordings obtained of the main shock. The report provides copies of the uncorrected and corrected data. Copies of the inferred velocities, displacements, and Psuedo velocity response spectra are provided. Digital versions of these recordings are accessible with information available through the internet at several locations: the National Strong-Motion Program web site (http://agram.wr.usgs.gov/), the COSMOS Virtual Data Center Web site

  6. Nuclear sizes and the Coulomb Displacement Energy

    Van der Werf, S.Y.

    1997-01-01

    Data on Coulomb Displacement Energies in the mass range A = 40 - 240 are analyzed in the deformed Liquid Drop model and in the independent particle model. Reduced half-widths of Woods-Saxon mean-field potential of the resulting neutron-excess distributions are deduced. It is argued that the Nolen-Schiffer anomaly may be lifted by allowing for a slight binding-energy dependence of the mean-field potential geometry. (author)

  7. Computer simulation of displacement cascades in copper

    Heinisch, H.L.

    1983-06-01

    More than 500 displacement cascades in copper have been generated with the computer simulation code MARLOWE over an energy range pertinent to both fission and fusion neutron spectra. Three-dimensional graphical depictions of selected cascades, as well as quantitative analysis of cascade shapes and sizes and defect densities, illustrate cascade behavior as a function of energy. With increasing energy, the transition from production of single compact damage regions to widely spaced multiple damage regions is clearly demonstrated

  8. Displaced abomasum and ketosis in dairy cows

    Stengärde, Lena

    2010-01-01

    High producing dairy cows struggle to meet energy demands and handle various transitional changes in late gestation and early lactation. Negative energy balance in early lactation is inevitable and metabolic disorders may follow as a consequence of a deep negative energy balance. This thesis studies associations between blood profiles and body condition score (BCS) in dairy cows, and displaced abomasum (DA) or clinical ketosis, and investigates risk factors for the two diseases at the herd le...

  9. Environmentally-induced displacement and human security

    Terminski, Bogumil

    2012-01-01

    We can distinguish two general causes of internal displacement worldwide: 1. the impact of threats to and ensuing decline in the level of human security below that needed for normal existence in the homeland territory, 2. administrative compulsion to leave the current place of residence. Every year, at least tens of millions of people on all continents are forced to leave their places of residence. The predominant cause is the occurrence of natural disasters, creating the most dynamic categor...

  10. The CERN Accelerator School

    2016-01-01

    Introduction to accelerator physics The CERN Accelerator School: Introduction to Accelerator Physics, which should have taken place in Istanbul, Turkey, later this year has now been relocated to Budapest, Hungary.  Further details regarding the new hotel and dates will be made available as soon as possible on a new Indico site at the end of May.

  11. Angular Acceleration without Torque?

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  12. Accelerators and Dinosaurs

    Turner, Michael Stanley

    2003-01-01

    Using naturally occuring particles on which to research might have made accelerators become extinct. But in fact, results from astrophysics have made accelerator physics even more important. Not only are accelerators used in hospitals but they are also being used to understand nature's inner workings by searching for Higgs bosons, CP violation, neutrino mass and dark matter (2 pages)

  13. Far field acceleration

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail

  14. Contactless sub-millimeter displacement measurements

    Sliepen, Guus; Jägers, Aswin P. L.; Bettonvil, Felix C. M.; Hammerschlag, Robert H.

    2008-07-01

    Weather effects on foldable domes, as used at the DOT and GREGOR, are investigated, in particular the correlation between the wind field and the stresses caused to both metal framework and tent clothing. Camera systems measure contactless the displacement of several dome points. The stresses follow from the measured deformation pattern. The cameras placed near the dome floor do not disturb telescope operations. In the set-ups of DOT and GREGOR, these cameras are up to 8 meters away from the measured points and must be able to detect displacements of less than 0.1 mm. The cameras have a FireWire (IEEE1394) interface to eliminate the need for frame grabbers. Each camera captures 15 images of 640 × 480 pixels per second. All data is processed on-site in real-time. In order to get the best estimate for the displacement within the constraints of available processing power, all image processing is done in Fourier-space, with all convolution operations being pre-computed once. A sub-pixel estimate of the peak of the correlation function is made. This enables to process the images of four cameras using only one commodity PC with a dual-core processor, and achieve an effective sensitivity of up to 0.01 mm. The deformation measurements are well correlated to the simultaneous wind measurements. The results are of high interest to upscaling the dome design (ELTs and solar telescopes).

  15. International Monetary Fund and aid displacement.

    Stuckler, David; Basu, Sanjay; McKee, Martin

    2011-01-01

    Several recent papers find evidence that global health aid is being diverted to reserves, education, military, or other sectors, and is displacing government spending. This is suggested to occur because ministers of finance have competing, possibly corrupt, priorities and deprive the health sector of resources. Studies have found that development assistance for health routed to governments has a negative impact on health spending and that similar assistance routed to private nongovernmental organizations has a positive impact. An alternative hypothesis is that World Bank and IMF macro-economic policies, which specifically advise governments to divert aid to reserves to cope with aid volatility and keep government spending low, could be causing the displacement of health aid. This article evaluates whether aid displacement was greater when countries undertook a new borrowing program from the IMF between 1996 and 2006. As found in existing studies, for each $1 of development assistance for health, about $0.37 is added to the health system. However, evaluating IMF-borrowing versus non-IMF-borrowing countries reveals that non-borrowers add about $0.45 whereas borrowers add less than $0.01 to the health system. On average, health system spending grew at about half the speed when countries were exposed to the IMF than when they were not. It is important to take account of the political economy of global health finance when interpreting data on financial flows.

  16. Overloaded CDMA Systems with Displaced Binary Signatures

    Vanhaverbeke Frederik

    2004-01-01

    Full Text Available We extend three types of overloaded CDMA systems, by displacing in time the binary signature sequences of these systems: (1 random spreading (PN, (2 multiple-OCDMA (MO, and (3 PN/OCDMA (PN/O. For each of these systems, we determine the time shifts that minimize the overall multiuser interference power. The achievable channel load with coded and uncoded data is evaluated for the conventional (without displacement and improved (with displacement systems, as well as for systems based on quasi-Welch-bound-equality (QWBE sequences, by means of several types of turbo detectors. For each system, the best performing turbo detector is selected in order to compare the performance of these systems. It is found that the improved systems substantially outperform their original counterparts. With uncoded data, (improved PN/O yields the highest acceptable channel load. For coded data, MO allows for the highest acceptable channel load over all considered systems, both for the conventional and the improved systems. In the latter case, channel loads of about 280% are achievable with a low degradation as compared to a single user system.

  17. Comparing Teaching Approaches About Maxwell's Displacement Current

    Karam, Ricardo; Coimbra, Debora; Pietrocola, Maurício

    2014-08-01

    Due to its fundamental role for the consolidation of Maxwell's equations, the displacement current is one of the most important topics of any introductory course on electromagnetism. Moreover, this episode is widely used by historians and philosophers of science as a case study to investigate several issues (e.g. the theory-experiment relationship). Despite the consensus among physics educators concerning the relevance of the topic, there are many possible ways to interpret and justify the need for the displacement current term. With the goal of understanding the didactical transposition of this topic more deeply, we investigate three of its domains: (1) The historical development of Maxwell's reasoning; (2) Different approaches to justify the term insertion in physics textbooks; and (3) Four lectures devoted to introduce the topic in undergraduate level given by four different professors. By reflecting on the differences between these three domains, significant evidence for the knowledge transformation caused by the didactization of this episode is provided. The main purpose of this comparative analysis is to assist physics educators in developing an epistemological surveillance regarding the teaching and learning of the displacement current.

  18. Accelerator mass spectrometry of 41Ca with a positive-ion source and the UNILAC accelerator

    Steinhof, A.; Henning, W.; Mueller, M.; Roeckl, E.; Schuell, D.; Korschinek, G.; Nolte, E.; Paul, M.

    1987-06-01

    We have made first tests investigating the performance characteristics of the UNILAC accelerator system at GSI, in order to explore the sensitivity achievable in accelerator mass spectrometry (AMS) of 41 Ca with high-current positive-ion sources. Positively charged Ca 3+ ions of up to about 100 micro-amperes electrical current were injected from a penning-sputter source and, after further stripping to Ca 9+ , accelerated to 14.3 MeV/nucleon. The combination of velocity-focussing accelerator and magnetic ion-beam transport system completely eliminated background from the other calcium isotopes. Full-stripping and detection of 41 Ca 20+ ions with a magnetic spectrograph provides separation from isobaric 41 K and, at present, a level of sensitivity of 41 Ca/Ca ≅ 2x10 -15 . Future improvements and implications for dating of Pleistoscene samples will be discussed. (orig.)

  19. An Adiabatic Phase-Matching Accelerator

    Lemery, Francois [DESY; Floettmann, Klaus [DESY; Piot, Philippe [Northern Illinois U.; Kaertner, Franz X. [Hamburg U.; Assmann, Ralph [DESY

    2017-12-22

    We present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that a $\\sim 200$-keV electron beam can be accelerated to an energy of $\\sim10$~MeV over $\\sim 10$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.

  20. Virtual Accelerator for Accelerator Optics Improvement

    Yan Yi Ton; Decker, Franz Josef; Ecklund, Stanley; Irwin, John; Seeman, John; Sullivan, Michael K; Turner, J L; Wienands, Ulrich

    2005-01-01

    Through determination of all quadrupole strengths and sextupole feed-downs by fitting quantities derivable from precision orbit measurement, one can establish a virtual accelerator that matches the real accelerator optics. These quantities (the phase advances, the Green's functions, and the coupling eigen-plane ellipses tilt angles and axis ratios) are obtained by analyzing turn-by-turn Beam Position Monitor (BPM) data with a model-independent analysis (MIA). Instead of trying to identify magnet errors, a limited number of quadrupoles are chosen for optimized strength adjustment to improve the virtual accelerator optics and then applied to the real accelerator accordingly. These processes have been successfully applied to PEP-II rings for beta beating fixes, phase and working tune adjustments, and linear coupling reduction to improve PEP-II luminosity.

  1. The Accelerator Reliability Forum

    Lüdeke, Andreas; Giachino, R

    2014-01-01

    A high reliability is a very important goal for most particle accelerators. The biennial Accelerator Reliability Workshop covers topics related to the design and operation of particle accelerators with a high reliability. In order to optimize the over-all reliability of an accelerator one needs to gather information on the reliability of many different subsystems. While a biennial workshop can serve as a platform for the exchange of such information, the authors aimed to provide a further channel to allow for a more timely communication: the Particle Accelerator Reliability Forum [1]. This contribution will describe the forum and advertise it’s usage in the community.

  2. Notes on Laser Acceleration

    Tajima, T.

    2008-01-01

    This note intends to motivate our effort toward the advent of new methods of particle acceleration, utilizing the fast rising laser technology. By illustrating the underlying principles in an intuitive manner and thus less jargon-clad fashion, we seek a direction in which we shall be able to properly control and harness the promise of laser acceleration. First we review the idea behind the laser wakefield. We then go on to examine ion acceleration by laser. We examine the sheath acceleration in particular and look for the future direction that allows orderly acceleration of ions in high energies

  3. Pore-scale observation and 3D simulation of wettability effects on supercritical CO2 - brine immiscible displacement in drainage

    Hu, R.; Wan, J.; Chen, Y.

    2016-12-01

    Wettability is a factor controlling the fluid-fluid displacement pattern in porous media and significantly affects the flow and transport of supercritical (sc) CO2 in geologic carbon sequestration. Using a high-pressure micromodel-microscopy system, we performed drainage experiments of scCO2 invasion into brine-saturated water-wet and intermediate-wet micromodels; we visualized the scCO2 invasion morphology at pore-scale under reservoir conditions. We also performed pore-scale numerical simulations of the Navier-Stokes equations to obtain 3D details of fluid-fluid displacement processes. Simulation results are qualitatively consistent with the experiments, showing wider scCO2 fingering, higher percentage of scCO2 and more compact displacement pattern in intermediate-wet micromodel. Through quantitative analysis based on pore-scale simulation, we found that the reduced wettability reduces the displacement front velocity, promotes the pore-filling events in the longitudinal direction, delays the breakthrough time of invading fluid, and then increases the displacement efficiency. Simulated results also show that the fluid-fluid interface area follows a unified power-law relation with scCO2 saturation, and show smaller interface area in intermediate-wet case which suppresses the mass transfer between the phases. These pore-scale results provide insights for the wettability effects on CO2 - brine immiscible displacement in geologic carbon sequestration.

  4. Velocity distribution in snow avalanches

    Nishimura, K.; Ito, Y.

    1997-12-01

    In order to investigate the detailed structure of snow avalanches, we have made snow flow experiments at the Miyanomori ski jump in Sapporo and systematic observations in the Shiai-dani, Kurobe Canyon. In the winter of 1995-1996, a new device to measure static pressures was used to estimate velocities in the snow cloud that develops above the flowing layer of avalanches. Measurements during a large avalanche in the Shiai-dani which damaged and destroyed some instruments indicate velocities increased rapidly to more than 50 m/s soon after the front. Velocities decreased gradually in the following 10 s. Velocities of the lower flowing layer were also calculated by differencing measurement of impact pressure. Both recordings in the snow cloud and in the flowing layer changed with a similar trend and suggest a close interaction between the two layers. In addition, the velocity showed a periodic change. Power spectrum analysis of the impact pressure and the static pressure depression showed a strong peak at a frequency between 4 and 6 Hz, which might imply the existence of either ordered structure or a series of surges in the flow.

  5. The FAST (FRC Acceleration Space Thruster) Experiment

    Martin, Adam; Eskridge, R.; Lee, M.; Richeson, J.; Smith, J.; Thio, Y. C. F.; Slough, J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The Field Reverse Configuration (FRC) is a magnetized plasmoid that has been developed for use in magnetic confinement fusion. Several of its properties suggest that it may also be useful as a thruster for in-space propulsion. The FRC is a compact toroid that has only poloidal field, and is characterized by a high plasma beta = (P)/(B (sup 2) /2Mu0), the ratio of plasma pressure to magnetic field pressure, so that it makes efficient use of magnetic field to confine a plasma. In an FRC thruster, plasmoids would be repetitively formed and accelerated to high velocity; velocities of = 250 km/s (Isp = 25,000s) have already been achieved in fusion experiments. The FRC is inductively formed and accelerated, and so is not subject to the problem of electrode erosion. As the plasmoid may be accelerated over an extended length, it can in principle be made very efficient. And the achievable jet powers should be scalable to the MW range. A 10 kW thruster experiment - FAST (FRC Acceleration Space Thruster) has just started at the Marshall Space Flight Center. The design of FAST and the status of construction and operation will be presented.

  6. Impurity production and acceleration in CTIX

    Buchenauer, D. [Sandia National Laboratories, MS-9161, P.O. Box 969, Livermore, CA 94550 (United States)], E-mail: dabuche@sandia.gov; Clift, W.M. [Sandia National Laboratories, MS-9161, P.O. Box 969, Livermore, CA 94550 (United States); Klauser, R.; Horton, R.D. [CTIX Group, University of California at Davis, Davis, CA 95616 (United States); Howard, S.J. [General Fusion Inc., Burnaby, BC V5A 3H4 (Canada); Brockington, S.J. [HyperV Technologies Corp., Chantilly, VA 20151 (United States); Evans, R.W.; Hwang, D.Q. [CTIX Group, University of California at Davis, Davis, CA 95616 (United States)

    2009-06-15

    The Compact Toroid Injection Experiment (CTIX) produces a high density, high velocity hydrogen plasma that maintains its configuration in free space on a MHD resistive time scale. In order to study the production and acceleration of impurities in the injector, several sets of silicon collector probes were exposed to spheromak-like CT's exiting the accelerator. Elemental analysis by Auger Electron Spectroscopy indicated the presence of O, Al, Fe, and Cu in films up to 200 A thickness (1000 CT interactions). Using a smaller number of CT interactions (10-20), implantation of Fe and Cu was measured by Auger depth profiling. The amount of impurities was found to increase with accelerating voltage and number of CT interactions while use of a solenoidal field reduced the amount. Comparison of the implanted Fe and Cu with TRIM simulations indicated that the impurities were traveling more slowly than the hydrogen CT.

  7. Enhancing proton acceleration by using composite targets

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-07-10

    Efficient laser ion acceleration requires high laser intensities, which can only be obtained by tightly focusing laser radiation. In the radiation pressure acceleration regime, where the tightly focused laser driver leads to the appearance of the fundamental limit for the maximum attainable ion energy, this limit corresponds to the laser pulse group velocity as well as to another limit connected with the transverse expansion of the accelerated foil and consequent onset of the foil transparency. These limits can be relaxed by using composite targets, consisting of a thin foil followed by a near critical density slab. Such targets provide guiding of a laser pulse inside a self-generated channel and background electrons, being snowplowed by the pulse, compensate for the transverse expansion. The use of composite targets results in a significant increase in maximum ion energy, compared to a single foil target case.

  8. Prediction of secular acceleration of axial rotation of Mars

    Barkin, Yu. V.

    2009-04-01

    northern direction to Taimyr peninsula. Thus the gravitational attraction of superfluous mass of the core (19 % from the Earth mass) causes secular asymmetric inversion tide [2] of fluids which effectively manages to be modeled by two points with variable masses. In the given work the attempt to construct a similar model of the directed secular redistribution of fluid masses of Mars from a southern hemisphere in northern is undertaken with the purpose of an explanation of observably tendencies in redistribution of masses between hemispheres and with the purpose of a prediction of the new phenomena in its rotary motion. The hypothetical assumption is made, that secular redistribution of fluid masses from a southern hemisphere in northern hemisphere of Mars mainly is determined by areocentric axis OP directed to the pole P with coordinates 570N, 820 E (as is known in this direction the centre of mass of Mars relatively the centre of a figure on 2.8 km is displaced). Material points with masses m2 and m1 settle down at poles of geocentric axis OP on a surface of Mars, and their masses change linearly in the time with velocities [5]: ṁ2 = 0.402 × 1015kg/yr and ṁ1 = 0.257 × 1015kg/yr. The given modeling characteristics correspond to prospective secular variations of coefficients of the second and third zonal harmonics of gravitational potential of Mars: J˙2= - 57.0 × 10-11 1/yr and ˙J3 = -4.94 × 10-11 1/yr, more less agreed for today with the data of observations (Dehant, private communication, 2008) [6]. Let's emphasize, that the discussed phenomena of asymmetry of hemispheres, intensity of inversion processes, and bipolarity and inversion of all structures of Mars much more expressive, than at the Earth. Therefore we in the right to expect the greater efficiency in application of geodynamic model and more significant secular effects in rotation of Mars in comparison with the Earth. The constructed model has allowed to estimate non-tidal acceleration of

  9. Displaced, Homeless and Abused: The Dynamics of Gender-Based ...

    based abuse (SPGBV) experienced by displaced Zimbabwean refugees, perpetrators of such abuses and the gender of perpetrators in South Africa. Refugee and Internally displaced persons are interchangeably used in this study. Through in-depth ...

  10. Displacement laser interferometry with sub-nanometer uncertainty

    Cosijns, S.J.A.G.

    2004-01-01

    Development in industry is asking for improved resolution and higher accuracy in mechanical measurement. Together with miniaturization the demand for sub nanometer uncertainty on dimensional metrology is increasing rapidly. Displacement laser interferometers are used widely as precision displacement

  11. Dissolved oxygen detection by galvanic displacement-induced

    Dissolved oxygen detection by galvanic displacement-induced graphene/silver nanocomposite ... dissolved oxygen (DO) detection based on a galvanic displacement synthesized reduced graphene oxide–silver nanoparticles ... Current Issue

  12. Simulation of coupled flow and mechanical deformation using IMplicit Pressure-Displacement Explicit Saturation (IMPDES) scheme

    El-Amin, Mohamed

    2012-01-01

    The problem of coupled structural deformation with two-phase flow in porous media is solved numerically using cellcentered finite difference (CCFD) method. In order to solve the system of governed partial differential equations, the implicit pressure explicit saturation (IMPES) scheme that governs flow equations is combined with the the implicit displacement scheme. The combined scheme may be called IMplicit Pressure-Displacement Explicit Saturation (IMPDES). The pressure distribution for each cell along the entire domain is given by the implicit difference equation. Also, the deformation equations are discretized implicitly. Using the obtained pressure, velocity is evaluated explicitly, while, using the upwind scheme, the saturation is obtained explicitly. Moreover, the stability analysis of the present scheme has been introduced and the stability condition is determined.

  13. Simultaneous measurement of particle and fluid velocities in particle-laden flows

    Jin, D. X.; Lee, D. Y.

    2009-01-01

    For the velocity measurement in a particle-laden fluid flow, the fluid velocity and the inherently dispersed particle velocity can be analyzed by using PIV and PTV, respectively. Since the PIV result statistically represents the average displacement of all the particles in a PIV image, it is inevitable that the PIV result includes the influence of the dispersed particles' displacement if a single CCD camera is used to simultaneously measure the fluid velocity and the dispersed particle velocity. The influence of dispersed particles should be excluded before the PIV analysis in order to evaluate the fluid velocity accurately. In this study, the optimum replacement brightness of dispersed particles to minimize the false influence of dispersed particles on the PIV analysis was theoretically derived. Simulation results show that the modification of dispersed particle brightness can significantly reduce the PIV error caused by the dispersed particles. This modification method was also verified in the analysis of an actual experimental case of the particle-laden fluid flow in a triangular grooved channel

  14. Industrial Application of Accelerators

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Univer...

  15. Industrial Application of Accelerators

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Uni...

  16. Accelerations in Flight

    Doolittle, J H

    1925-01-01

    This work on accelerometry was done at McCook Field for the purpose of continuing the work done by other investigators and obtaining the accelerations which occur when a high-speed pursuit airplane is subjected to the more common maneuvers. The accelerations obtained in suddenly pulling out of a dive with well-balanced elevators are shown to be within 3 or 4 per cent of the theoretically possible accelerations. The maximum acceleration which a pilot can withstand depends upon the length of time the acceleration is continued. It is shown that he experiences no difficulty under the instantaneous accelerations as high as 7.8 G., but when under accelerations in excess of 4.5 G., continued for several seconds, he quickly loses his faculties.

  17. Accelerators for energy

    Inoue, Makoto

    2000-01-01

    A particle accelerator is a device to consume energy but not to produce it. Then, the titled accelerator seems to mean an accelerator for using devices related to nuclear energy. For an accelerator combined to nuclear fissionable fuel, neutron sources are D-T type, (gamma, n) reaction using electron beam type spallation type, and so forth. At viewpoints of powers of incident beam and formed neutron, a spallation type source using high energy proton is told to be effective but others have some advantages by investigation on easy operability, easy construction, combustion with target, energy and directivity of neutron, and so forth. Here were discussed on an accelerator for research on accelerator driven energy system by dividing its researching steps, and on kind, energy, beam intensity, and so forth of an accelerator suitable for it. And, space electric charge effect at beam propagation direction controlled by beam intensity of cyclotron was also commented. (G.K.)

  18. Velocity Estimate Following Air Data System Failure

    McLaren, Scott A

    2008-01-01

    .... A velocity estimator (VEST) algorithm was developed to combine the inertial and wind velocities to provide an estimate of the aircraft's current true velocity to be used for command path gain scheduling and for display in the cockpit...

  19. Longitudinal instability of an induction linac with acceleration

    Smith, L.; Lee, E.P.

    1993-05-01

    The question arises as to what effect acceleration, which so far has been ignored, has on the longitudinal instability of an induction linac. The answer is not much for the anticipated acceleration rate (1--2 MeV/m) and minimum e-folding distance for the instability (50--500 meters). However, total unstable growth is significantly reduced over distances which are long enough for appreciable acceleration to occur. The purpose of this note is to record a calculation of the instability, including a constant acceleration rate. Some interesting features emerge -- for example, the velocity of the head is a more convenient independent variable than axial position and, for an initial sinusoidal perturbation of velocity in time, the number of oscillations along the pulse is constant; as the pulse shortens in nine the frequency increases

  20. Displacement Ventilation in a Room with Low-Level Diffusers

    Nielsen, Peter V.

    Ventilation systems with vertical displacement flow have been used in industrial areas with high thermal loads for many years. Quite resently the vertical displacement flow systems have grown popular as comfort ventilation in rooms with thermal loads e.g. offices.......Ventilation systems with vertical displacement flow have been used in industrial areas with high thermal loads for many years. Quite resently the vertical displacement flow systems have grown popular as comfort ventilation in rooms with thermal loads e.g. offices....